当前位置: 仪器信息网 > 行业主题 > >

通用襟翼模型

仪器信息网通用襟翼模型专题为您整合通用襟翼模型相关的最新文章,在通用襟翼模型专题,您不仅可以免费浏览通用襟翼模型的资讯, 同时您还可以浏览通用襟翼模型的相关资料、解决方案,参与社区通用襟翼模型话题讨论。

通用襟翼模型相关的资讯

  • 欧美联手打造1000个癌症新模型,癌症研究将迎“大跃进”?
    长久以来,对于研究癌症的科学家而言,人工培养的癌细胞系是不可或缺的研究工具。然而,令科学家头痛不已的一个大问题就是:这些经过人工培养的癌细胞与人体真实环境下的癌细胞往往存在某些不同之处。由此带来的一个恶果便是:某种试验药物或能有效杀死人工培养的癌细胞,但对癌症患者的疗效却很差。  如今,这一令科学家们无比尴尬的局面或将发生根本性改变。发生了什么事?原来,癌症研究领域的几位巨头正打算开展一项名为“人类癌症模型计划”(HCMI)的国际性合作,目标是发展1000个新癌细胞模型(细胞系)!并且,这或许仅仅是开始!  “人类癌症模型计划”的成员目前包括:美国国家癌症研究所(NCI)、英国癌症研究会、英国韦尔科姆基金会桑格研究所以及荷兰“海布雷赫茨类器官技术”基金会。按照该计划7月11日公布的方案,研究人员将在未来3年建立起1000个癌细胞模型。  美国国家癌症研究所负责人Louis Staudt称,即使是这首批1000个癌细胞模型,也已经是目前全球拥有的癌细胞模型数量的两倍。如果计划进展顺利,那么还会派生出数千个新癌细胞模型。事实上,按照Staudt的估计,因为癌症实在是种类繁多,要想充分满足研究人员所需,至少得有10000个模型。“当然,今后我们会不会把该项目继续往前推动,在很大程度上取决于前期计划进行得顺不顺利,是不是物有所值。”Staudt如是说。更真实  与现有的大多数癌细胞模型相比,此次打算推出的新模型优势明显。首先,新细胞系与临床数据结合得更紧密,甚至连捐赠者对治疗有何反应等信息都包含在了里面。其次,研究计划将会运用最顶尖的生物技术,包括细胞3D培养类器官技术,以更好地模拟体内生长条件。  正因为如此,与目前使用的癌症研究细胞系相比,新模型将更真实地反映人类肿瘤的组织架构和复杂程度,更准确地反映出人类肿瘤的生物学特性,从而更好地为新药研发和癌症新疗法的诞生助一臂之力。  伦敦大学学院组织工程专家Umber Cheema称,实施这项计划有利于联合各研究团体。她说:“眼下不同国家、不同研究团体在癌症研究领域显得有点各自为战,如果善于分享和整合,必将事半功倍!”  桑格研究所癌症研究专家Mathew Garnett认为,该项目将会为各成员提供解决问题的方案,有助于他们开发出更廉价、更高效的产品。目前存在的最主要的障碍则是:如何建立起一个收集样本的临床网络系统,并将其用于模型的开发中。  在这里要特别提一下美国国家癌症研究所,之前该研究所曾开展过一个项目,即用移植至小鼠体内、源自病人组织样本的细胞建立起癌细胞系。Staudt称该项目的成果也将融入本项计划。  Staudt指出,一些研究小组当下正在努力探索难以培养的癌细胞的最佳培养条件,比如说淋巴瘤。还有一些研究小组则把精力放在改进现有模型上,使之能更好地反映肿瘤的自然生长环境,例如,Cheema团队正采用3D培养技术来培养细胞,旨在更好地模拟现实环境,甚至还拥有血管系统(虽然较原始)。Cheema团队希望,通过对现有技术的改良,能够比较好地确定个体癌细胞是否具有转移性或对某种治疗方法如何反应。  雄心勃勃的“人类癌症模型计划”是否能取得成功,近而大力提升癌症研究整体水平、为广大癌症患者带来福音?还是让我们拭目以待吧。
  • 岛津应用:模型毛发样本中的药物成像
    -面向药物摄取履历的观察- 成像质谱分析法越来越广泛地应用于各领域中。由于毛发增长时会极微量地吸收当时所摄取的药物,因此,毛发作为记录药物使用履历的“磁带”式的样本备受关注。实际应用中经常使用 LCMS 等对从毛发中提取的药物进行分析。但是因提取操作的原因导致毛发中药物分布信息损失。如果能进行毛发纵轴方向截面的成像质谱分析,则可实现观察伴随毛发生长药物分布的变化情况、即实现药物使用履历的可视化。这项技术有望在法医学、临床医学、用药管理以及科学搜查等领域进行应用。 本次使用甲氧那明添加的毛发样品,进行了高空间分辨率的成像质谱分析,获得详细显示毛发中药物分布的成像结果。毛发在生长过程中,一边在根部吸收血液中的药物等,一边以每个月约 1cm 的速度生长。因此,毛发也被比喻为记录药物使用履历的磁带,在法医学和科学搜查中得到了应用,今后有望在用药管理、兴奋剂检查等更广泛的领域中应用。本应用报告中记载的添加毛发样本的制作过程与洗发香波、头发营养产品、头发定型产品和染发剂等头发护理用品的使用情况有很多共通点,因此,上述分析技术可以用于这些产品的开发和评价工作、进一步为头发的美容、健康作出贡献。iMScope TRIO (左)和 iMLayer(右) 了解详情,敬请点击《模型毛发样本中的药物成像-面向药物摄取履历的观察-》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • PD新模型:破坏线粒体复合物I功能足以诱导进行性帕金森症
    帕金森疾病(Parkinson’s disease, PD)是第二常见的神经退行性疾病,患者所表现出的运动功能障碍主要由黑质(substantia nigra, SN)中多巴胺能神经元丧失引起。尽管PD致病因素多样,但多项证据表明线粒体功能缺陷在其中的重要性,例如编码维持线粒体质量控制蛋白的PARK7、PARK6和PARK2基因突变能引起早发型PD【1】。多巴胺能神经元对线粒体功能障碍的易感性可部分归因于其高代谢需求,从而引起线粒体氧化磷酸化(OXPHOS)的持续刺激,然而这种巨大能量的提供是以线粒体氧化损伤增加为代价的。尸检研究表明,PD患者SN中mtDNA完整性的丧失与功能性线粒体复合物I(MCI)的丧失存在相关性。然而,这种MCI获得性损伤究竟是PD疾病进程中的一种副产品还是疾病的驱动因素还不得而知。2021年11月3日,来自美国西北大学Feinberg医学院的D. James Surmeier团队在Nature杂志上发表了一篇题为 Disruption of mitochondrial complex I induces progressive parkinsonism 的文章,这项研究通过选择性破坏小鼠多巴胺能神经元中MCI功能,发现MCI功能障碍足以导致进行性的帕金森病相关运动缺陷,且不同类型的运动功能损伤(精细动作和粗大运动)与不同部位(纹状体和黑质)多巴胺释放的相关性,挑战了长期以来存在的关于该疾病运动症状的观点。为了证明MCI功能障碍是否作为PD的驱动因素,该团队从小鼠多巴胺能神经元中特异性地敲除编码MCI催化核心亚基的Ndufs2基因。cNdufs2-/-小鼠在出生后20天(P20)仍表现出正常的粗大运动行为。但在随后10天中,SN多巴胺能神经元中的线粒体成为ATP的净消费者而非生产者,且线粒体嵴结构发生了明显改变。利用RiboTag方法分离多巴胺能神经元中的mRNA并进行测序发现,cNdufs2-/-小鼠中存在一种类似Warburg效应的代谢重编程,即编码促进糖酵解蛋白的基因上调,而与OXPHOS以及编码糖酵解抑制剂的基因下调。除了触发代谢重编程外,该团队还发现Ndufs2的缺失会导致与轴突生长和运输、突触传导、多巴胺(DA)合成和储存等相关的基因表达发生显着变化。对纹状体组织的液相色谱和质谱分析进一步验证cNdufs2-/-小鼠纹状体DA合成明显下降,此外,有助于驱动起搏的环核苷酸门控阳离子通道电流也明显减少。到P60,与多巴胺能信号相关的轴突蛋白的丢失由背侧纹状体扩大到腹侧纹状体,且cNdufs2-/-小鼠SN多巴胺能神经元胞体树突区域中的酪氨酸羟化酶表达降低至对照组一半左右,且DA释放量下降约75%。与在整个基底神经节中DA迅速耗尽的传统PD模型相比,cNdufs2-/-小鼠的病理分期能够评估DA释放的区域缺陷如何与行为相关联。随着背侧纹状体DA释放在P30左右下降到接近检测阈值,cNdufs2-/-小鼠失去了执行联想学习任务的能力,有趣的是,该任务可以通过P30时的左旋多巴治疗恢复,而P60的治疗则不能恢复。在通过小鼠从前爪去除粘合剂所花费的时间来评估精细运动技能的实验中,cNdufs2-/-小鼠完成任务时间明显延长,同时也表现出较差的旷场探索行为表现。此外,P60的cNdufs2-/-小鼠仅表现出轻微的步态障碍,到了P100才会表现出后肢张开、爪子位置异常和步幅改变等特征。而在P120-150期间,大约有40%的SN多巴胺能神经元丢失。需要注意的是,cNdufs2-/-小鼠在后期才出现粗大运动行为缺陷,这与SN DA而非背侧纹状体 DA释放变化平行。尽管有明确的临床证据表明纹状体DA耗竭对于PD患者的运动迟缓和僵硬是必要的【2】,但其充分性从未得到充分测试,因为传统的PD模型往往会导致整个基底神经节DA的快速耗竭。在此处通过对cNdufs2-/-小鼠的观察表明,背侧纹状体DA释放的丧失足以产生运动学习和精细运动缺陷,但并未达到类似于临床PD的运动症状水平。该团队通过分别向小鼠背侧纹状体或SN中立体定位注射携带AADC(可将左旋多巴转化为DA)的AAV,以及随后对小鼠旷场步态的分析,证明黑质多巴胺释放丧失对于粗大运动缺陷而言是必要因素。总的来说,这项研究不仅证明多巴胺能神经元中MCI功能丧失足以引发进行性的、轴突先行的功能丧失和左旋多巴反应性帕金森病,还证明背侧纹状体的DA耗竭对于联想运动学习和精细动作而言是必要的,但黑质的DA释放缺陷才会引起类似于临床PD患者表现出的粗大运动损伤特征。针对这项研究,来自美国格莱斯顿研究所的Zak Doric和Ken Nakamura在同期杂志上发表观点文章 Principles of Parkinson’s disease disputed by model 。他们指出González-Rodríguez等构建的基于线粒体功能障碍的帕金森疾病小鼠模型代表了目前可用的散发性PD最佳模型之一,它不仅可以研究复合物 I 缺陷在疾病中的作用,还可以提供一个模型来评估治疗策略的潜力。此外,该模型一个显著特征是多巴胺神经元在几个月中进行性退化,且轴突和胞体退化存在延迟,这种延迟便于详细研究两个不同部位多巴胺损伤所带来的影响。另一个相当大的进步是该模型证实纹状体多巴胺释放减少对于运动缺陷来说是必要而不充分的,也就是说,黑质多巴胺在维持粗大运动方面起着至关重要的作用。原文链接:https://doi.org/10.1038/s41586-021-04059-0https://doi.org/10.1038/d41586-021-02955-z
  • 2024两会提案:以大模型落地应用促进北京智能仪器仪表产业发展
    北京市人大代表、民建海淀区委主委、中国科学院自动化研究多模态人工智能系统全国重点实验室研究员赵晓光。1月23日,北京市十六届人大二次会议期间,新京报贝壳财经记者现场采访了北京市人大代表、民建海淀区委主委、中国科学院自动化研究多模态人工智能系统全国重点实验室研究员赵晓光。北京市政府工作报告明确提出2024年着力做好十一个方面工作,第三方面就是“做强做优做大数字经济,更好赋能首都高质量发展”,其中要求统筹推进数字产业化和大力支持产业数字化。提升人工智能底层技术和基础底座自主可控能力,推动人工智能模型对标国际先进水平,加快在政务、医疗、工业、生活服务等领域应用,保持人工智能研发应用领先水平。对于发展人工智能,赵晓光告诉贝壳财经记者,“我们需要加强的一个是算力,另一个是对发展方向的理念,即产业方向应该在哪里?目前,对于在先进制造领域应用人工智能和大模型,全世界都没有很好的破题的方法,相信在北京扎实的基础下,我们能率先破题,抢占科技制高点。”本次上会,赵晓光带来了《关于“以大模型落地应用促进北京智能仪器仪表产业创新发展”的建议》和《关于“增强青少年健康素质,引导体育健康消费”的建议》两份建议。我国高端智能仪器仪表仍依赖进口据了解,改革开放以来,我国仪器仪表行业在国家工业强基工程、高质量发展专项、重大科研仪器设备开发重点专项、重大科学仪器设备研制等专项支持下,行业科技创新和产业发展取得明显进步,已经形成产品门类品种比较齐全,具有一定技术基础和生产规模的工业体系,国产产品已能够满足大部分工业制造和社会生产生活需求,少数中高档产品接近国际技术水平,且有一定规模出口。不过,赵晓光告诉记者,我国在尖端科研、超精密测试分析、战略新兴产业等领域所需的高端智能仪器仪表仍依赖进口,是全球第二大仪器仪表进口国,“长期以来,全球TOP20仪器企业排行榜由美国、日本、瑞士、德国及英国企业包揽,并通过不断兼并收购仍在加速扩张。当前,以美国为首的发达国家对我国高技术产品出口和技术输出持续收紧,高端仪器自主可控成为我国仪器仪表产业面临的最直接挑战。”“创新技术和产品缺少试错机会。一个仪器产品从推出到受到市场认可大约需要5-10年时间,只有通过不断应用,仪器功能性能才能不断得到迭代优化。但国产高端仪器长期不被市场认可,得不到试错和迭代的机会。”赵晓光说。人工智能大模型为智能仪器仪表行业跨越发展带来新机遇在赵晓光看来,人工智能技术飞速发展和大模型的应用落地,可以为北京市智能仪器仪表行业跨越发展带来新的机遇。她建议,支持培育一批行业龙头企业创新发展,“依托于北京市的网络协同制造平台,大力支持、培育集研发制造、系统集成、创新应用于一体、具有生态主导力和核心竞争力的高端仪器领军企业,带动产业链上、下游配套企业走智能化、尖端化发展道路,在智能制造、工业互联网等专项中支持重点培育企业提升智能制造水平和数字化转型能力。”赵晓光还建议,打造智能仪器制造产业集群,支持大模型落地应用,“围绕国家大科学装置、先进制造业基地,支持产业特色鲜明、发展基础较好的区,以高端仪器整机制造龙头企业、应用领域典型用户为牵引,汇集创新力量和上游配套产业,聚集解决方案设计、系统集成、运营维护、维修服务等企业,形成创新功能集聚、产业优势互补的高端仪器产业集群。”“在大模型落地应用中,注重提升产品、工艺、服务标准,推动基础通用技术标准升级。同时,建议北京市优化智能仪器仪表支持政策,尤其是制定扩大用户领域的国产替代政策,在支柱性产业大力推广国产仪器的应用。鼓励企业开展国际合作,引进、消化、吸收国际先进技术,促进产业创新发展。鼓励京、津、冀地区仪器仪表企业深度参与大模型开发与落地应用工作,形成以北京为产业龙头,带动华北地区智能仪器仪表产业创新发展、抢占世界技术与产业高地的新发展格局。”赵晓光说。
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • 南方医科大学南方医院李国新团队首次提出 基于免疫评分的胃癌预后预测模型
    南方医科大学南方医院李国新团队首次提出 基于免疫评分的胃癌预后预测模型 近日,南方医科大学南方医院普通外科研究成果“immunoscore signature: a prognostic and predictive tool in gastric cancer”发表于国际外科学领域最具影响力、被引频次最高的美国外科协会和欧洲外科协会官方期刊annals of surgery (jcr 1区, if 8.569)。这项研究首次提出了基于免疫评分预测胃癌患者术后生存和辅助化疗效果的模型,极大补充并完善了传统肿瘤tnm分期和组织学分型对胃癌患者预后预测和治疗的指导作用。 胃癌作为全球发病率第四位、死亡率第二位的恶性肿瘤,其治疗和预后评估一直是研究人员和临床医生十分关注的问题。基于传统tnm分期和组织学分型进行预后预测和治疗方案选择是目前临床应用最广泛的方法,然而现实却是,尽管tnm分期和治疗方案相同,但患者预后大不相同。这意味着,现有的胃癌分期并不能涵盖患者所有的疾病信息,不能用于精准预测患者是否能从辅助化疗中获益。因此,完善现有的分期系统、建立可准确判断预后和指导治疗选择的新模型是亟需解决的问题。前期研究表明肿瘤组织中免疫细胞浸润具有重要临床意义,免疫评分基于肿瘤中心区域和浸润交界区域中淋巴细胞的数量而得出,评分高低提示着肿瘤浸润程度大小,这种免疫浸润的思想已被应用于结直肠癌分类且已有相关中心开展旨在验证和促进免疫评分成为临床结直肠癌治疗评估中常规操作的研究。另一方面,尽管已有研究分析免疫细胞在胃癌组织中的浸润,但囿于样本量和验证队列的缺乏,至今未有极具临床参考价值的结论。李国新课题组分析了879例胃癌患者数据,利用lasso-cox回归模型首次建立基于免疫特征的胃癌分类体系免疫评分(isgc),借此预测胃癌术后复发率、无病生存率和总生存率。为了更进一步贴近临床,李国新团队整合isgc和临床病理危险因素绘制了列线图,进一步预测能从辅助化疗中获益的ii期和iii期胃癌患者。本研究纳入了包括南方医院(251例)、南方医院(228例)、中山大学附属第一医院(300例)和中山大学肿瘤中心(100例)的胃癌患者分别作为训练队列、内部验证队列和两个外部验证队列。首先,通过对训练队列的免疫组化结果分析,初步确立了两个免疫簇(淋巴细胞免疫特征簇、髓样细胞免疫特征簇)。根据免疫簇水平并利用树形分层结构将患者进行分类,结果提示生存和淋巴细胞簇正相关,而复发和淋巴细胞簇负相关;与此相反,生存和髓样细胞簇负相关而复发和淋巴细胞簇正相关。 随后,研究在训练队列中确定出5项免疫特征并利用lasso-cox回归模型,建立胃癌免疫评分计算公式:isgc = (0.149×status of cd3im) + (0.021×status of cd3ct) + (0.044×status of cd8im) + (0.096×status of cd45roct) – (0.173×status of cd66bim),低表达视为0, 高表达视为1。通过x-tile将患者以0为临界值分为高和低isgc 两组,利用roc曲线分析isgc 评估生存预后的准确性,结果表明高isgc 评分组和低isgc 评分组的5年无病生存率、5年总生存率均存在显着差异,说明isgc 具有重要的预后评估价值。 胃癌tnm分期作为目前临床上应用最广泛的指导患者治疗和预测预后的参考,本文进一步说明了isgc 联合tnm分期对疾病预测的重要作用,多变量cox回归分析也表明isgc是胃癌患者极具价值的无病生存率和总生存的独立预后因素。在内部和外部验证队列中,对各期患者进行分层分析:相比低isgc 组,高isgc 患者具有更高的无病生存率和总生存率。这说明利用临床病理分期危险因素分层,isgc 仍是具有临床和统计学意义的预后模型。本研究同时指出在预后预测评估中,isgc 比tnm分期更具优势,两者联合比单独tnm分期效果更为理想。辅助化疗是目前部分可切除胃癌的围手术期标准治疗。李国新团队进一步探索了isgc 对指导辅助化疗是否获益的参考价值。结果表明,辅助化疗显着提高了ii期和iii期患者的无病生存率和总生存率;进一步在ii期和iii患者根据isgc 分层分析辅助化疗和isgc 间的关系,辅助化疗可显着提升高isgc 患者的无病生存率和总生存率,而对低isgc 无显着影响。此外,研究还对纳入病例的2年复发率进行了统计分析。数据表明,isgc 可用于指导筛选ii期和iii期胃癌患者能够从辅助化疗获益的人群。为了通过量化的方法预测ii期和iii期胃癌患者的总生存率和复发率,本研究整合了isgc 和传统临床病理因素,进一步绘制了两组列线图(辅助化疗组和非辅助化疗组),数据表明该isgc 模型能够较为理想地预测胃癌术后的生存和复发。
  • Nature :Stewart获得PDX模型
    p  Stewart等人报道了许多类型的儿科癌症的小鼠模型的建立方法和分析结果。研究者们将患者肿瘤活检得到的细胞移植到免疫缺陷小鼠中,从而获得PDX模型。他们使用几种技术来表征这些模型,这些技术包括显微镜和DNA序列分析,同时他们还在一些PDX模型小鼠上进行药物测试。研究人员将PDX肿瘤细胞冻存起来,之后将这些细胞解冻,并移植到其它小鼠中,以用于将来的分析。其他团队还创建了不同类型人类肿瘤的PDX模型。该领域关键的下一步是建立集中的开放存取库,以管理和共享来自不同团队的PDX研究数据。通过这种方法,我们可以促进识别临床试验中可测试的治疗方法的进展。/pp style="text-align: center "span style="color: rgb(153, 153, 153) "img width="600" height="178" title="" style="width: 600px height: 178px " alt="" src="http://img1.17img.cn/17img/images/201709/uepic/071cf1e3-494a-444b-b094-4dbd24d0c9ed.jpg" border="0" vspace="0" hspace="0"//span/pp  现在科学家们将患者的肿瘤细胞接种到小鼠体内,进而建立肿瘤模型,以用于分析和开展药物测试。目前研究人员已鉴定了一系列小儿实体肿瘤模型,同时相关数据的允许免费获取。/pp  罕见癌症的研究面临着两方面的挑战:可用的肿瘤样本少 缺乏相应的小鼠模型。最近科学家们非常成功地开发了将人类肿瘤细胞高效移植到免疫缺陷小鼠中的癌症建模技术。在《自然》(Nature)杂志上,Stewart等人对成功接种和生长的小鼠实体瘤进行了全面的分析,并展示了这些模型如何用于筛选罕见癌症患者的潜在靶向治疗。/pp  得益于高效的化疗药物组合,美国仅有不到20%的癌症儿童死于癌症。这些组合方案是通过高度实证和渐进的临床试验而建立起来的。然而,我们和其他癌症生物学家坚信,只有基本的科学发现才能产生变革性的进步。我们承认,儿童癌症的治疗比成年人的要有效得多,但仍然需要更好的治疗来减轻化疗药物造成的长期副作用。据美国国家癌症研究所(US National Cancer Institute)统计,每年年龄在20岁以下的癌症患者的死亡率比65岁以上癌症患者的死亡率低300-500倍。/pp  另一个被广泛接受的信念是癌症研究需要更多的模型系统,这些模型要便宜、易于操作,并且真实反映人类肿瘤的特征,以改善癌症靶向。在这方面,缺乏T、B和自然杀伤细胞,因而对人类肿瘤细胞排斥能力较弱的免疫缺陷小鼠(裸鼠)成为了接受患者来源肿瘤异种移植物(patient-derived tumour xenograft, PDX)的理想动物模型。利用裸鼠制造PDX模型非常简便,并且可以将裸鼠的肿瘤细胞冻存,解冻后还可以移植到其它小鼠身上。肿瘤细胞也可以用于原位生长,这意味着细胞生长在与人类肿瘤来源的器官对应的小鼠组织中(即肺癌细胞接种到裸鼠肺里)。这些肿瘤细胞可以进行遗传工程,携带便于体内追踪的标记分子(如GFP),并且可以模拟人类肿瘤微环境的特征。/pp  大多数原始PDX都会死亡。随着时间的推移,科学家们逐渐了解到,虽然PDX比体外生长的细胞系和常规小鼠肿瘤模型更贴近人类肿瘤特征,但它们也具有一些实质性限制。例如,当不同的小鼠被注射同一肿瘤标本的等分试样时,得到的PDX可以具有非常不同的突变、细胞表面标记和转录谱。用于异种移植的小鼠品系也对PDX生物学有很大的影响。因此,不同试验条件下得到的PDX小鼠模型都是不一样的。PDX专家们经常被问到这个问题:“这些模型是否与原始肿瘤相同?”其实两者之间差异很大。/pp  至少到目前为止,PDX的最大优点是其造模非常简单。我们现在可以使用PDX研究几种没有对应的转基因小鼠或细胞株的罕见癌症模型。由于PDX源于人类肿瘤,因而对特定药物存在抵抗。这可能有助于模拟早期临床试验中难治性癌症的药物筛选。现已有20多种PDX被用于2期临床试验。这些研究可以表征多个模型的药物响应的异质性、用于开发预测药物响应的检测方法,或可用于筛选肿瘤中存在的少数耐药细胞。/pp  现在有几个PDX存储库,含有数百个甚至数千个来源于接受过化疗或靶向治疗患者的肿瘤。这些库中的一些是开源的(可免费提供模型),包含400多个成人实质肿瘤PDX和300个儿科和成人血液肿瘤PDX,以及其他研究团队创造的大量数据。在儿童实质瘤网络计划(Childhood Solid Tumour Network)中,Stewart等人建立了60多种儿科实质肿瘤的PDX模型。/pp  Stewart等人贡献了非常多的数据。他们通过原位生长获得了15种肿瘤的148个标本,并报告了1173个细胞涂片的免疫组织化学分析结果,102个PDX的全基因组序列结果和转录谱。他们还报告了目标基因组区域的广泛靶向DNA测序 分析了结合DNA的组蛋白的9种不同的修饰情况 对PDX进行了电子显微镜扫描 并生成了5种PDX的肿瘤细胞系。他们的药物筛选测试产生了50万个以上的数据点。他们进行的体内研究包括:多个PDX细胞系的基因工程标记细胞,进行成像 一项小鼠研究药物治疗剂量 以及两个小鼠研究调查多个药物联用的剂量及疗效。这样一个内容丰富的数据集为该领域的研究人员进一步调查Stewar等人发现的突变、转录特征和药物敏感性奠立了基础。/pp  最大程度地发挥PDX在科学发现上的潜力需要非凡的透明度、标准化和开放获取模式。作为研究经费的使用者、癌症患者的保护者,我们责无旁贷。儿童实质瘤网络已经对多种儿童实质肿瘤建模,其中包括Stewart等人建立的模型,并免费提供,并已经将它们分发给了11个国家的120多名研究者。其他研究中心也可以学习Stewart等人的研究方法。儿童实质瘤领域的下一步将是建立一个更大的PDX库联盟、统一战线、合作表征PDX模型,建立数据库基础设施(图1)。/pp  Stewart等人对一般肿瘤,特别是儿童实质瘤模型的建立做出了突出贡献。迄今为止,他们提供了最全面的PDX存储库之一。 他们贡献的大量数据集将为世界各地的调查人员提供参考,并推动学界的分享文化,使所有人受益。/p
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 聚光污水智能运行监管模型顺利通过专家评审
    2014年9月11日,杭州市环境监察支队在杭州组织专家对聚光科技(杭州)股份有限公司承担的污染源排放(过程)工况监控污水智能运行监管模型进行评审,肯定了该污水智能运行监管模型的合理性和功能的完整性,并提出进一步完善意见。参加此次评审的专家组成员有中国环保产业协会马立学主任、浙江大学 尧一骏教授、浙江工业大学 童少平教授、上海市政工程设计研究总院 谭学军总工及萧山水务集团 方卫国总工。 为提升监测设备在环境执法中的作用,确保监测数据真实性,提高环境执法精准性,9月11日,杭州市环境监察支队在杭州组织专家对聚光科技(杭州)股份有限公司承担的污染源排放过程(工况)监控污水智能运行监管模型进行了论证。各专家组成员经过现场实地考察,对污水智能运行监管模型进行了详细审核,形成如下意见:1、 该模型符合《城镇污水处理厂污染源排放过程(工况)监控技术指南》要求;2、 该模型具有运行诊断、数据判定、物耗能耗核算等智能分析功能,满足合同要求;3、 该模型构架合理,监测参数齐全,满足对污染治理设施运行状态的判断要求;4、 建议进一步改进各子模型之间的相互验证功能,完善监测参数和取值范围,加强模型判断的实效性。 专家评审会现场
  • 使用原代细胞3D生物打印皮肤组织模型
    导读皮肤是我们与外部环境的第一个主要接口,是一个非常有吸引力的再生器官,在过去40年里,科学家们对它进行了大量的探索(Loai, 2019 Tarassoli, 2017)。皮肤组织模型的广泛应用领域,从药物筛选到化妆品测试和伤口愈合研究,部分原因是因为皮肤组织的组成相对简单,可以描述为两个主要层,每层都具有一种主要细胞类型。在过去已经建立了2D模型和培养系统。然而,这些模型并不能完全重述原生皮肤,也缺乏3D模型提供的空间组织(Loai,2019 Singh,2020 Vijayavenkataraman,2016)。为了增加物理相关性,提高体外结果与体内条件的可译性,迫切需要3D皮肤组织模型。仪器:CELLINK BIOX墨水:GelXA Skin生物墨水和Col MA生物墨水细胞:人真皮成纤维细胞、表皮角质形成细胞过程:❶设计皮肤模型❷打印真皮层和表皮层❸3D生物打印皮肤组织模型转移到transwell板中,皮肤组织模型从液体培养到气液界面培养。结果:该皮肤组织模型的构建方法创建了一个完整且坚固的结构,可保持它在整个实验过程中的形状。样品横切面的H&E染色初步表明,6天时真皮和表皮这两个隔室之间的连接很弱。但在第14天,两层已经合并(图4)。在第14天,可以看到表皮平滑地跟随真皮的轮廓,真皮和角质形成细胞开始重组。进一步观察表皮发育,免疫荧光图像显示角蛋白14的表达在整个培养过程中保持不变,而角蛋白10和聚丝蛋白的表达在第14天增加。角蛋白10作为分化角质细胞的标记物,位于表皮的中间部分,而角化层的标记物聚丝蛋白应位于表皮的最外层。角蛋白10和聚丝蛋白表达的明显增加表明角质细胞已经开始分化。在第14天,聚丝蛋白的表达向结构的顶部,朝向气-液界面,显示了细胞在生物打印模型内的重组能力。总结:这项研究举例说明了如何使用原代细胞培养系统和CELLINK的3D生物打印平台进行全厚度皮肤组织模型的3D生物打印。★ GelXA SKIN生物墨水为皮肤发育提供了良好的环境,ColMA表皮生物墨水支持皮肤组织模型内表皮的形成。★ 该皮肤模型设计为表皮和真皮的发育形成了一个稳定的平台,在14天的培养期间保持稳定,但它可以培养更长时间,以允许其他真皮和表皮标记物进一步成熟。
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • 多个类器官串联共培养在疾病模型研究中的意义
    多个类器官串联共培养在疾病模型研究中的意义翻译整理:北京佰司特贸易有限责任公司,2023-07-04人类系统性疾病的发生过程都是通过破坏两个或多个器官的自我平衡和相互交流。研究疾病和药物治疗就需要复杂的多器官平台作为体外生理模型的工具,以确定新的药物靶点和治疗方法。2型糖尿病(T2DM)的发病率正在不断上升,并与多器官并发症相关联。由于胰岛素抵抗,胰岛通过增加分泌和增大胰岛体积来满足胰岛素不断增加的需求量。当胰岛无法适应机体要求时,血糖水平就会升高,并出现明显的2型糖尿病。由于胰岛素是肝脏代谢的关键调节因子,可以将生产葡萄糖的平衡转变为有利于葡萄糖的储存,因此胰岛素抵抗会导致糖稳态受损,从而导致2型糖尿病。过去已经报道了多种表征T2DM特征的动物模型,但是,从动物实验进行的研究往临床上转化的效果不佳。更重要的是,目前使用的药物,虽然能缓解糖尿病症状,但对疾病进一步发展的治疗效果有限。在此,我们以胰腺和肝脏在芯片上的串联共培养为例(参考文献:Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model,2017, Nature Scientific Reports)来说明一下。胰腺和肝脏是参与维持葡萄糖稳态的两个关键器官,为了模拟T2DM,阿斯利康(AstraZeneca)的科学家利用TissUse GmbH公司的微流控多器官芯片(MOC)平台,通过微流控通道相互连接,建立一个双器官串联芯片(2-OC)模型,实现芯片上胰腺和肝脏类器官的串联共培养,在体外模拟了胰腺和肝脏之间的交流通讯。建立串联共培养类器官(胰岛+肝脏)和单独培养类器官(仅胰岛或肝脏),在培养基中连续培养15天,串联共培养显示出稳定、重复、循环的胰岛素水平。而胰岛单独培养的胰岛素水平不稳定,从第3天到第15天,降低了49%。胰岛与肝球体串联共培养中,胰岛可长期维持葡萄糖水平,刺激胰岛素分泌,而单独培养的胰岛,胰岛素分泌显著减少。胰岛分泌的胰岛素促进了肝球体对葡萄糖的利用,显示了串联共培养中类器官之间的功能性交流。在单独培养中的肝球体中,15天内循环葡萄糖浓度稳定维持在~11 mM。而与胰岛共培养时,肝球体的循环葡萄糖在48小时内降低到相当于人正常餐后的水平度,表明胰岛类器官分泌的胰岛素刺激了肝球体摄取葡萄糖。T2DM是一种多器官疾病,疾病表型和对药物的反应依赖于具有完全代谢功能的器官和它们之间的相互作用。这篇文章提出了一个胰岛和肝球体之间的类器官串联共培养的模型。与单一培养相比,在GTT(葡萄糖耐量测验)第一天内,串联共培养中的血糖水平从高浓度降至正常范围,随后保持平衡。在没有胰岛素刺激时,单独培养类器官(仅胰岛或肝脏)中的葡萄糖水平一直保持在高浓度。通过测量胰岛在葡萄糖负荷下释放到培养基中的胰岛素水平来评估肝脏和胰岛的串联共培养的作用。胰岛素促进了肝球状体对葡萄糖的利用,在共培养中葡萄糖维持在正常水平,而单独培养中葡萄糖水平一直偏高。因为,串联共培养中,分泌到循环中的胰岛素刺激了肝球体对葡萄糖的摄取,随着葡萄糖浓度的降低,胰岛素分泌会随之减少,这就表明肝脏和胰岛之间存在一个功能反馈回路。长期暴露于高糖水平下,缺乏肝球体的胰岛释放胰岛素的能力会降低,提示了长期高血糖损害胰岛功能。另外,与单层HepaRG细胞相比,受刺激和未受刺激的AKT磷酸化比例在肝球体中明显更高,这表明3D培养环境更利于模拟人体内的生理反应。这些结果鼓励我们建立2-OC模型来模拟T2DM的特征,通过胰岛-肝脏串联共培养揭示与T2DM疾病相关的机制,包括β细胞衰竭、胰岛素抵抗、脂肪变性、脂肪性肝炎和肝硬化。多器官芯片(MOC)的发展目标是建立各种不同的器官组合模型,用于药物有效性和安全性评估以及药动学/药效学(PK/PD)测试。
  • 最后一周丨超高精度高校建筑模型免费打印
    各位朋友,摩方最新超高精度3D打印的高校建筑模型出炉啦!本轮高校建筑模型有1个,来自中南大学,以下为实拍图分享~ 本轮“免费超高精度3D打印高校建筑模型”活动即将到8月底截止,欢迎感兴趣的朋友抓住最后一周机会参与,免费获取超高精度3D打印母校建筑模型! 中南大学门牌坊活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。
  • 器官芯片模型在神经免疫系统研究中的新进展
    帕金森病(PD)和阿尔茨海默病(AD)是由基因、环境和家族因素相互作用引起的神经退行性疾病。值得注意的是免疫系统对疾病发展的影响,脑部驻留的小胶质细胞的功能障碍,会导致神经元的丧失和症状加剧。研究人员通过神经免疫系统模型来更深入地了解这些神经退行性疾病的生理和生物学方面以及它们的发展过程。不列颠哥伦比亚大学的Stephanie M. Willerth教授团队和英国诺丁汉特伦特大学的Yvonne Reinwald教授团队于2024 年 1 月 23 日在《Journal of Neuroinflammation》(影响因子:9.3)杂志上发表了题为“Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases”的综述,介绍了神经免疫系统在三维模型和器官芯片系统方面取得的进展,以及模型在准确模拟复杂的体内环境方面的巨大潜力。 研究背景阿尔茨海默病(AD)是老年人中最常见的痴呆类型,与淀粉样斑块和磷酸化Tau蛋白的异常积累有关,虽具体原因尚不完全清楚,但与遗传和环境因素相关,诊断及早干预至关重要。帕金森病(PD)是一种神经系统疾病,主要表现为运动障碍,与聚集的α-突触核蛋白(α-syn)沉积物Lewy小体有关,相关基因变体也与其发病风险增加有关。尽管PD的确切原因尚不清楚,但其发病机制可能涉及多巴胺能神经元功能障碍以及氧化应激、线粒体功能受损、蛋白质代谢异常和神经炎症等多种因素。图1:阿尔茨海默病和帕金森病的病理生理学。 中枢神经系统(CNS)过度炎症的特征包括多种因素共同促进疾病进展,其中包括各种抗炎与促炎细胞因子的失调、CNS内小胶质细胞等免疫细胞的表型转化,以及外周细胞的巨噬细胞和淋巴细胞的招募,这些因素均导致突触丧失,成为随后认知功能障碍的最常见病理相关因素。图2:健康与病理神经免疫系统的比较:在健康的神经免疫系统中(1)小胶质细胞处于稳态和监视状态,(2)外周免疫细胞向中枢神经系统的浸润有限。在病理性神经免疫系统中:(3)小胶质细胞反应性增强,形态改变,(4)吞噬作用增加,(5)炎症标志物增加,(6)外周免疫细胞浸润增加。 研究进展1、目前阿尔茨海默病和帕金森病的治疗和临床试验针对AD,乙酰胆碱酯酶是一个常见的药物靶点,近期研究专注于开发单克隆抗体等药物以减少Aβ负荷,如lecanemab和aducanumab。此外,针对AD的临床试验正在进行中,旨在测试药物、设备和行为以改善患者认知和减缓疾病进展,而对于PD,则主要以药物和深部脑刺激为主要治疗手段,同时也在研究新的免疫调节治疗方法。 2、阿尔茨海默病、帕金森病和免疫系统的体外免疫系统模型癌症免疫系统的研究已经取得了许多成果,其中包括对3D模型的发展,这对于疾病建模和药物筛选至关重要,尤其是针对新的化疗药物和人工组织的开发。一种体外建模方案是使用细胞系,最常用的是SH-SY5Y人类神经母细胞瘤细胞系,模拟未成熟的儿茶酚胺能神经元,并可通过暴露于神经毒素或基因修饰来模拟AD或PD。然而,SH-SY5Y存在缺乏确立的培养维持程序、实验结果不一致和细胞生长的可变性等缺点,且不表现出成熟神经元的电生理和电化学特征。利用诱导多能干细胞(iPSC)创建基因准确的AD和PD模型,成为一个快速发展的研究领域,这些模型可以通过体细胞来源的iPSC诱导后,生成神经元与免疫细胞,用来构建AD和PD模型。图3:神经免疫系统的体内和体外模型的优缺点。 3、器官芯片模型在神经免疫系统研究中的新进展器官芯片平台的出现为建立体外模型提供了增强的设计和控制能力,能够模拟生物、生化、生理和机械现象,在活体器官系统中的发生。从血液-脑脊液屏障微流控模型到脑芯片模型,研究者们不断探索着复杂的生理学建模,为深入分析神经免疫相互作用提供了新的可能。这些模型不仅揭示了神经炎症在神经退行性疾病中的重要性,还为治疗干预提供了潜在途径,为了解AD和PD的潜在机制提供了宝贵的见解。同时,脑芯片模型被广泛应用于研究神经血管相互作用和神经退行性的不同方面。通过模拟神经-胶质-血管相互作用,研究人员发现了柴油排放颗粒等外源因素对AD类疾病病理特征的影响。这些研究不仅强调了神经免疫特异性行为的重要性,还突显了人类细胞模型在理解神经退行性疾病方面的关键作用。然而,尽管研究对细胞间相互作用和人类细胞模型的依赖日益增加,但对于AD和PD潜在机制的理解仍然相对有限。图4:芯片上器官的发展:示意图显示了开发和制造微流控芯片所需的步骤 先进的免疫细胞相互作用在AD和PD病理中至关重要,调节其功能可能为更有效的治疗提供希望;器官芯片模型具有模拟复杂细胞相互作用的优势,有助于深入了解AD和PD疾病机制并发现新的治疗策略。 文献索引:Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ , El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation. 2024 Jan 23 21(1):32. doi: 10.1186/s12974-024-03024-8. PMID: 38263227 PMCID: PMC10807115. 关于艾玮得生物作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得器官芯片应用全场景解决方案已能够全面覆盖新药研发评价、临床药敏检测、基础科学研究等应用领域,为科研、临床、药企等客户提供一站式解决方案。
  • 贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据
    北京蛋白质组研究中心/蛋白质组学国家重点实验室朱云平研究员课题组张纪阳博士等通过建立贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据,大幅提升蛋白质组质谱数据的利用率。相关论文发表在最新一期国际蛋白质组学权威杂志:《分子与细胞蛋白质组学》(Molecular & Cellular Proteomics, MCP)上面,同期杂志还发表了该所姜颖副研究员课题组、钱小红研究员课题组的两篇研究论文,创该刊单期同一单位发文数之最。  大规模、高通量的蛋白质组研究产生了海量的数据,其中包含了大量的噪声,而高可靠的数据是进一步生物学分析的基础,故目前的分析方法均采用了过严的标准,但在降低假阳性的同时也人为地造成了数据较高的假阴性及较低的利用率。因此,"在保证高可信度的前提下,最大限度地利用实验数据"一直是蛋白质组学界的追求。"鸟枪法"是目前蛋白质组鉴定中地位最重要、应用最广泛的技术策略。他们基于随机数据库策略、非参概率密度模型和贝叶斯公式,建立了串联质谱数据过滤的多元贝叶斯非参模型。通过标准蛋白和复杂样品的严格考核,表明该模型具有良好的灵敏性和普适性,可将质谱数据的利用率提高10~40%,创本领域最好水平。  原始出处:  Molecular & Cellular Proteomics 8:547-557, 2009.doi:10.1074/mcp.M700558-MCP200
  • 美国研发高精度气候模型精确预测气候状况
    GEOS-5气候模型所形成的模拟图片,模型精确地预测了主体云层系统的位置与形状     地球同步轨道环境卫星所拍摄的卫星图片  北京时间6月16日消息,据美国宇航局官网报道,美国宇航局地球系统科学家近期研制了迄今精度最高的地球气候模型GEOS-5气候模型,并通过该模型绘制了全球气候模拟图片。模拟图片与卫星图片对比显示,GEOS-5气候模型可以精确地预测气候状况。  科学是一个过程。科学家首先需要实地观测,然后提出假设用于解释观测数据,最后再通过系统验证和推理,找到支持或辩驳其假设的证据,从而得出一个科学的结论。许多人或许认为,科学家们在进行假设和验证的过程,所有工作都是在实验室中进行的。但是,对于研究地球如何运行的地球系统科学家来说,他们的实验室就是整个星球。面对庞大的星球,科学家们很难将全球各地不同的气温或云雨真正地集中到狭小的实验室中系统地研究。相反,他们只有将实地观测数据结合起来,形成复杂的电脑模型进行模拟研究。通过这类模型,科学家们可以对不同的假设进行测试和验证,并利用真实的观测数据进行检测,从而科学家们可以真正地理解地球大气、陆地和海洋等各个方面是如何协同工作的。  本文中的两幅图片分别为地球气候模型模拟图片(上图)和地球同步轨道环境卫星图片,上图显示的是分别通过两种方式所获得的同一时刻地球气候状况。该地球气候模型被称为“戈达德地球观测系统模型-第五版”(GEOS-5),也是迄今精度最高的地球气候模型。下图则是由美国宇航局和美国国家海洋和大气局的地球同步轨道环境卫星所拍摄的卫星图片。通过图片对比发现,GEOS-5模型精确地预测了2010年2月6日时的云层特点。当天,一股强烈的寒流为华盛顿特区带来了一场数英尺厚的暴雪。  2010年2月6日,GEOS-5模型和地球同步轨道环境卫星传感器分别对地球上空的云层进行了红外测量。两幅图片显示,陆地上空覆盖着厚厚的云层,模拟图片与卫星图片所描绘的情况极其吻合。模型精确地预测了主体云层系统的位置与形状,如北大西洋东部上空的卷曲云带以及美国海岸附近的强烈冬季风暴。高精度的GEOS-5气候模型甚至还可以详细预测云层形状的细节。在2月6日的模拟图片中,气候模型预测了一些小型云层的边线、云街现象以及冬季风暴的东部细节。在一幅全球模拟图片中,气候模型还精确地预测了热带地区的大量雷暴现象。  GEOS-5气候模型的精度通常为每像素5公里,尽管它的精度最高可达每像素3.5公里,因此它也是目前世界上最精确的全球气候模型。普通气候模型在模拟云层情况时,精度大约为每像素28公里。这就意味着,由普通气候模型所产生的全球平面地图包含了77.7万个网格单元(像素),而5公里精度的GEOS-5气候模型所产生的地图(上图)则包含了2400万个网格单元。因此,科学家可以根据GEOS-5气候模型获得关于地球的更详细的信息。  和所有的气候模型一样,GEOS-5气候模型也是利用数学方程式来计算气候变化情况。地球气候的一些物理属性,如温度和能量等,则需要实地测量。实时数据被输入模型,从而保证模型与真实世界尽可能一致。当然,在建造模型过程中,数百万次的计算则需要数千台计算机处理器。GEOS-5气候模型运行于美国宇航局戈达德太空飞行中心新成立的气候模拟中心的“发现”超级计算机之上。“发现”超级计算机拥有近1.5万个处理器。  气候科学家将利用GEOS-5气候模型预测未来数十年的气候变化情况。2010年6月2日,美国宇航局气候模拟中心以新名称开始运作。
  • 高校建筑模型打印:清华大学&华中科技大学
    各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自清华大学和华中科技大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“高校建筑模型征集活动”,免费获取超高精度3D打印母校建筑模型! 模型一:清华大学-大礼堂前日晷模型二:华中科技大学-新光电信息大楼活动主题:征集高校建筑模型图免费超高精度3D打印第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。感兴趣的也欢迎加小编微信,小编会拉您进群哦!
  • 中国科大利用火星上的波动观测对合声波激发理论模型进行测试
    合声波是广泛存在于地球和其他行星磁层中的一种电磁波动。将合声波的电磁信号转化为声音后听起来像清晨群鸟的合唱声,因而得名合声波。合声波能够通过共振的方式加速空间中的高能电子,在磁暴活动期间引发地球辐射带电子通量的快速上升;同时,合声波能够将空间中的高能电子散射到大气层中,形成弥散和脉动极光现象。   合声波的特征之一是其频谱通常呈现出窄带的快速扫频结构。该扫频结构的激发机制引起了人们的兴趣,科学家对此提出了多种理论模型。然而,关于合声波为何会出现扫频以及如何计算扫频率的问题存在争议。其中,一个主要争论点是背景磁场的不均匀度是否在合声波的扫频中起到关键作用,以及这种不均匀度如何影响合声波的扫频现象。此前,中国科学技术大学队提出的合声波“Trap-Release-Amplify”(TaRA)模型基于现代等离子体物理理论,认为磁层中合声波的扫频是非线性过程与背景磁场不均匀度共同作用的结果,并提供了相应的扫频率计算公式。然而,地球磁层中的磁场不均匀度变化有限,无法在更大的参数空间内对TaRA模型开展测试。   火星与地球之间存在不同的磁场环境:地球拥有全球性的类偶极磁场,而火星则只存在局地的岩石剩磁。在火星的剩磁环境中,MAVEN卫星也曾观测到类似合声波事件。图1展示了在火星和地球上观测到的波动事件以及相应的背景磁力线轨迹。研究通过计算发现,火星与地球的背景磁场不均匀度相差了五个数量级。对比研究地球和火星上的波动事件,可在更加极端的条件下测试此前所提出的TaRA模型。   本研究基于MAVEN卫星对火星粒子分布的观测,结合相应的火壳剩余磁场模型,采用基于第一性原理的粒子模拟方法,重现了火星上观测到的类合声波动现象。研究通过对粒子相空间分布的分析,确认了这种波动的扫频过程与地球上的合声波一致,即均由非线性过程引发。此外,该研究进一步使用TaRA模型提供的两种不同方法来计算合声波的扫频率,并将其与观测和模拟结果进行对比。研究发现,基于非线性过程和背景磁场不均匀度计算出的扫频率与模拟结果之间存在高度一致性。研究表明,尽管火星和地球拥有不同的磁场和等离子体环境,但在火星上观测到的类合声波动与地球磁层中的合声波动遵循相同的基本物理过程。同时,本研究还在磁场不均匀度相差五个数量级的极端条件下验证了TaRA模型所描述的扫频基本物理过程的广泛适用性。这一发现不仅确认了火星上存在合声波动,而且为在极端条件下验证和应用TaRA模型提供了重要支持。   相关研究成果以Whistler mode chorus waves at Mars为题,发表《自然-通讯》(Nature Communications)上。日本京都大学、美国加州大学洛杉矶分校、意大利ENEA非线性等离子体物理中心及浙江大学的科研人员参与研究。研究工作得到中国科学院类地行星先导专项、国家自然科学基金和中央高校基础研究经费的支持。火星和地球上的磁力线位型以及观测到的合声波频率-时间谱图
  • 青岛将建城市三维地质模型 构建陆海一体地质环境监测网
    p  青岛市自然资源和规划局消息,《青岛市城市地质调查工作方案》于近日印发实施。根据该方案要求,青岛市将建立城市三维地质基础模型,构建陆海一体地质环境监测网,为政府管理决策提供重要基础信息和资料支撑。/pp  青岛市自然资源和规划局副局长刘龙江介绍说,青岛市城市地质调查旨在通过开展“地下空间、资源、环境、灾害”等多要素地质综合调查,建立“一模一网一平台”(即:城市三维地质模型、地质环境监测预警网络和综合地质信息服务与决策支持平台)的城市地质管理与服务体系,综合评价城市地壳稳定性、资源保障承载能力和城市安全性,全面服务于国土空间规划、新旧动能转换、乡村振兴、军民融合、“一带一路”“上合示范区”、海洋强省、“十五个攻势”和新型城镇化建设等重大战略实施,有力保障经济社会高质量发展。/pp  据了解,根据《青岛市城市地质调查工作方案》,青岛市计划利用3年时间,采取“中央和地方共同出资”方式,联合开展城市地质调查工作。聚焦城市规划、建设、管理和生产、生活、生态等方面,统筹部署地上与地下、陆域与海域、资源与环境、地质灾害调查工作,为国土空间规划、重大工程建设、自然资源管理、生态环境保护、防灾减灾提供基础资料支撑和服务。/pp  据介绍,根据方案共有5项任务。一是开展城市地下空间资源地质调查。在市南区、市北区、李沧区、崂山区、黄岛区、青岛高新区等区域,开展环境地质、工程地质调查,摸清地下空间地质资源家底,科学评价地下空间开发利用地质适宜性和资源潜力,补齐城市发展的地质工作短板,拓展城市地下发展空间。在胶州湾东岸及湾内开展断裂构造地质调查,为重大工程规划提供参考 在大沽河、墨水河下游周边区域开展海水入侵状态调查,提出海水入侵机理与防治对策,为海岸带保护与修复提供依据。/pp  二是开展多门类自然资源综合地质调查。推进环境地质调查,在胶州湾、灵山湾、鳌山湾等区域开展陆海统筹海岸带综合地质调查、生态地质调查,重点查明海岸带环境地质条件,为海岸带重大工程规划建设提供基础数据 实施地质资源调查,在黄岛区、即墨区等重点农田、生态区,开展土壤、水体地球化学调查,重点查明富硒等特色土地资源分布、生态地球化学特征与问题成因,分析国土空间开发利用与周边水土环境关系,进一步预测发展趋势,提出对策建议,为发展现代化特色农业提供地质服务 开展地下水应急水源地调查,在白马-吉利河水源地、大沽河水源地等重点区域,完成可采资源量分析评价,提出应急水源地建议方案,为地下水资源保护利用和饮水安全提供保障 开展地热资源潜力和浅层地热能调查,分析评价重点区域地热资源成矿条件,提出开发利用建议 完成全域资源、环境、灾害地质补充调查,查明水文地质、工程地质、环境地质等基础地质条件,实现与资源环境承载能力评价、国土空间开发适宜性评价工作的有机衔接。/pp  三是建立城市三维地质基础模型。以精准支撑城市地下空间资源科学、综合开发利用为目标,构建全市域、重点区、示范区、精品区等四个尺度三维地质模型,实现城市地下空间透明化,有效支撑地下空间资源协同开发利用。/pp  四是构建陆海一体地质环境监测网。对重要的地质灾害隐患点、地下水超采区、海水入侵区、大型化工产业区、大型垃圾填埋场、地热和矿泉水资源、地质遗迹资源、岸滩剖面等,进行自动化监测或定期监测,实现信息数据集成共享,初步构建陆海一体监测预警网。/pp  五是建设城市地质信息服务与决策支持平台。建设“一个中心、两大系统”(即:青岛市地质大数据中心和地质信息辅助决策系统、地质信息公共服务子系统)的城市地质信息服务与决策支持平台,满足不同用户群体需求,为政府管理决策提供重要基础信息和资料支撑,为智慧城市建设、地下空间拓展、新型城镇化发展和推进重大项目建设提供基础地质保障。/pp  刘龙江表示,青岛城市地质调查工作预期形成基础性、理论性、应用性3大类成果,将为国土空间规划和地下空间开发利用提供服务支撑 为海岸带资源开发与保护提供服务支撑 为水土资源开发与保护提供服务支撑 构建城市地质环境监测预警网,为城市地质安全保障提供服务支撑 为重大工程选址建设规划提供服务支撑 为政府部门提供城市地质信息服务与决策支持,为社会公众提供地质科普资料,满足不同群体的城市地质信息需求。/p
  • 聚光重大专项“光栅型近红外分析仪及其共用模型开发和应用”正式启动
    2015年4月15日,由聚光科技(杭州)股份有限公司牵头的“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”开题报告会在杭州成功召开。来自浙江省科技厅、国家粮食局质量标准中心、中国药品食品检验研究院、广东出入境检验检疫局技术中心、河南省粮油饲料产品质量监督检验站、浙江大学、杭州电子科技大学的专家和领导,东华大学、三维集团和大北农集团等单位的用户代表,以及项目课题组的代表共50余人参加会议。 开题会现场 会议由陈训龙主持,浙江省科技厅领导发表讲话,聚光科技董事长兼CTO王健发表讲话,聚光科技实验室业务部总经理韩双来汇报项目实施方案。开题报告会紧紧围绕高精度光栅光谱仪研制及工程化、高维形象几何分析的NIR技术研究与软件开发、便携和实验室及在线近红外分析仪器研制及工程化、近红外光谱在粮食(饲料、种子、生鲜猪肉及肉制品)检测应用研究及专用仪器开发、近红外光谱纺织纤维成分无损和药物快速检测应用研究等几个议题展开。 与会专家认真听取了项目组的汇报,并经过质询与专家讨论,专家组一致认为:项目拟研制的科学仪器以需求为牵引,以应用为导向,应用面广,能有效促进经济社会发展和民生改善,带动我国近红外分析技术的发展;该项目所选用技术路线符合量大面广的近红外应用需求,是贴合我国当前国情的合适的技术的路线,经过本项目研究,将形成粮食、饲料、种子、肉类、药品、纺织品等大宗农副产品的综合性检测技术,能够有效的提升整体产业竞争力。与会专家和领导合影 作为此专项的牵头单位,我们是满满的收获和重任,我们有能力有信心推出更适合用户的光栅型近红外分析仪及共用模型尽快面世。 相关产品简介: 关于“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”更多信息 请关注聚光科技官网www.fpi-inc.com 微信或行业媒体
  • 我国首次利用冷冻电镜技术获得生物大分子复合体全原子模型
    美国《国家科学院院刊》(Proceedings of the National Academy of Science, USA)1月10日在线发表了中国科学院生物物理研究所朱平研究组程凌鹏副研究员等人的研究论文——Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping。该发现对研究dsRNA病毒的mRNA加帽(Capping)机制有重要意义。这是我国首次利用冷冻电镜技术解析的生物大分子原子结构模型,也是目前已报道的国内最高分辨率的冷冻电镜三维重构结果。同时,这是世界上首次利用冷冻电镜的CCD图像(电荷耦合器件图像传感器,可将图像资料由光信号转换成电信号)获得的生物大分子复合体的全原子模型。  本工作是完全基于生物物理所生物成像技术实验室2010年4月建成并试运行的Titan Krios电镜及其附属设备完成的,用单颗粒图像处理技术获得了呼肠孤病毒科的质型多角体病毒近原子分辨率的三维结构(3.9埃),并独立构建了全原子模型。呼肠孤病毒科病毒是一类重要的双链RNA病毒,其感染宿主包括植物、无脊椎动物、脊椎动物和人类,其中的质型多角体病毒是其两个亚科之一。该研究解析了呼肠孤病毒科质型多角体病毒的近原子分辨率三维结构并构建了完整原子模型,确认了该病毒新生mRNA的流出通道,对研究双链RNA病毒的RNA加帽机制,新生mRNA的释放过程,以及呼肠孤病毒的蛋白衣壳的稳定性和进化具有重要意义。  中国科学院生物物理研究所在中国科学院蛋白质科学研究平台二期建设当中重点发展了生物大分子冷冻电镜三维重构研究平台,已经建成了具有世界先进水平的生物成像技术实验室,拥有目前最先进的300千伏Titan Krios场发射冷冻透射电子显微镜。该成果表明:我国独立开展的生物大分子冷冻电镜高分辨率研究工作达到了该领域的先进水平 和2010年10月孙飞研究组以封面形式发表于Structure的分子伴侣素结构等系列成果表明:中国科学院蛋白质科学研究平台生物成像技术实验室的成功建立,为进一步开展冷冻电子显微前沿研究奠定了坚实的基础,生物物理所生物成像技术实验室已跻身于达到近原子分辨率三维重构水平的极少数实验室行列。  本工作得到基金委国家自然科学基金、科技部国家重点基础研究973计划、以及中国科学院百人计划等项目资助,该文章链接为http://www.pnas.org/content/early/2011/01/05/1014995108。  该研究由中国科学院生物物理研究所生物大分子国家重点实验室朱平研究组和孙飞研究组、华南农业大学孙京臣副教授和中山大学张景强教授等合作完成。其中,生物物理研究所朱平研究组程凌鹏副研究员完成了冷冻电镜成像和结构解析等工作,黄晓星助理研究员协助完成了病毒纯化工作,孙飞研究组研究生张凯协助完成了原子模型构建工作,生物成像中心电子显微镜平台高级工程师季刚博士提供了电镜成像技术支持。     图片说明:质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。
  • ASD | 应用PROSPECT模型提取叶片生化性状的适用性研究
    PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性叶片生化性状为理解植物光合功能、动态生长、养分循环和初级生产提供了有价值的信息。叶片叶绿素含量(Cab)、类胡萝卜素含量(Cxc)、含水量(Cw)和干物质含量(Cm)是四个重要的叶片生化性状,与植物光合作用、氮素、胁迫和衰老等健康和生长状态密切相关。能够对这些叶片生化性状进行高通量测量的方法对于表征植物生理状态和关键功能过程至关重要。PROSPECT模型是目前更常用的叶片辐射传输模型之一,可从叶片定向半球反射因子(DHRF)光谱来提取叶片生化性状,然而,在应用于叶片双向反射因子(BRF)光谱提取叶片生化性状方面尚待探索。叶片表面反射率和各向异性性状的存在可能是限制PROSPECT从叶片BRF光谱评估叶片生化性状的主要问题。基于此,在本研究中,研究者们提出了一个方法,整合了PROSPECT模型、光谱导数和相似性度量(SDM),称为PROSDM,去除了叶片BRF和DHRF光谱的差异,并从叶片BRF光谱提取了叶片生化性状。具体目标是:(1)通过PROSPECT反演调查叶片BRF和DHRF光谱差异随波长的变化以及对Cab、Cxc、Cw和Cm提取的影响,(2)开发PROSDM消除BRF和DHRF光谱差异,从叶片BRF光谱与PROSPECT和PROCOSINE以及PROCWT的比较来提取Cab、Cxc、Cw和Cm以及(3)评估PROSPECT、光谱子域、光谱噪音和模型参数范围对PROSDM性能的影响。为了获得各种叶片生化性状和反射率,作者收集了具有不同生长阶段、营养状况和种植区域的植物物种的10个数据集,包括1个测量数据集和9个公开获取数据集。从油菜(Brassica napus L.)、水稻(Oryza sativa L.)和柑橘(Citrus aurantium L.)随机采集2279个植物叶片,利用ASD FieldSpec 4测量叶片反射率,获得数据集#1。从EcoSIS光谱库中获得具有各种叶片光谱和生化性状的9个公开的数据集。其中,7个数据集的BRF光谱由ASD地物光谱仪(Analytical Spectral Devices, Inc., Boulder, CO, USA)搭配ASD叶片夹测量。 表1 数据集描述。Dataset#1是本研究中测得的,Dataset#2-#10是在线https://ecosis.org获取的。BRF和DHRF光谱的光谱区域是400-2500 nm。【结果】 平均BRF和DHRF光谱差异(a)以及这些差异对平均BRF光谱的贡献(b)。油菜(红线)在Dataset#1中获得,其他植物物种在Dataset#5中获得。 通过考虑非波长依赖性f(a,d)和波长依赖性f(b,c,e,f)两种情况,利用一阶(a-c)和二阶(d-f)导数的叶片BRF(绿线)和DHRF(橙线)光谱之间的差异。 利用PROSPECT反演(a–d),PROCOSINE反演(e–h),PROCWT-S4( i–l)和基于全光谱域PROSPECT-PRO 的PROSDM(m–p)的所有数据集(Dataset#1-#10)中Cab (a,e,i,m) ,Cxc (b,f,j,n), Cw (c,g,k,o) 和Cm (d,h,l,p)测量值和估算值比较。 【结论】 本研究中,作者提出了PROSDM这种新方法用来从叶片BRF光谱来提取叶片生化性状。结果发现光谱导数可以消除BRF和DHRF光谱的非波长依赖性差异。当BRF和DHRF光谱的差异随波长变化时,光谱导数仅能去除部分差异,而曼哈顿距离(MD)补偿了光谱导数的限制,进一步减少了差异。结果,PROSDM从叶片BRF光谱准确提取了不同植物物种的Cab、Cxc、Cw和Cm。与标准的PROSPECT反演需要利用带有积分球的光谱仪测量叶片DHRF光谱不同,PROSDM扩展了PROSPECT到叶片BRF光谱的应用,以提取叶片生化性状。它可利用不同手持式光谱仪和叶片夹原位提取叶片生化性状。 在全光谱域,PROSDM-SED实现了Cab和Cxc的更优提取,RMSE分别为7.64 μg/cm2 and 2.77 μg/cm2,PROSDM-FMD产生了Cw(RMSE = 0.0041 g/cm2)和Cm(RMSE = 0.0024 g/cm2)的更好估计。与PROSPECT相比,PROSDM提取的Cab、Cxc、Cw和Cm RMSE分别降低了20.33%,29.34%,25.45%和44.19%。结果表明,PROSPECT和PROCOSINE以及PROCWT的Cab、Cxc、Cw和Cm提取精度受到光谱饱和度、PROSPECT反演、光谱子域以及模型参数范围的影响很大。适当的光谱子域和模型参数范围可以改善不同反演方法的提取结果。这需要从实地测量和报告的研究中了解叶片生化和结构性状的先验信息。与这些反演方法相比,所提出的PROSDM在减轻Cab、Cxc、Cw和Cm提取的负面影响上具有很大潜力。对于不同的PROSPECT版本,建议利用PROSPECT-PRO从叶片BRF光谱提取叶片生化性状。 未来研究需要基于叶片BRDF模型测量叶片BRF光谱的光谱和方向变化,将BRDF模型与所提出的PROSDM耦合可以改善对BRF和DHRF光谱变化的表征。此外,由于植物物种BRF和DHRF光谱的差异变化,在不同的数据集中PROSDM不能获得一致性提取结果。预计更多的工作将集中在理解不同视角和照明角度下植物叶片光学特性的变化。期望PROSDM可以应用在不同的尺度上,提高其在遥感、生态和环境研究中的适用性。点击如下链接,下载原文:PROSDM:PROSPECT模型与光谱导数和相似性度量相结合从双向反射率中提取叶片生化性状的适用性
  • 比较 2D 培养和 3D 生物打印肿瘤模型中的药物反应
    导读在癌症生物学中,肿瘤微环境(TME)是肿瘤细胞和免疫系统之间的一个关键。TME是细胞外基质(ECM)、免疫细胞、信号分子、血管和成纤维细胞,它们包裹肿瘤并影响癌症进展。TME的成分通过分泌小信号分子相互作用,影响肿瘤行为的各个方面,包括细胞增殖、侵袭、转移和抗肿瘤治疗的耐药性(Bremnes,2011)。因此,重建TME对抗癌研究至关重要,但一个主要的痛点是无法开发出可预测的3D肿瘤模型用于高通量药物评估。3D肿瘤模型应再现肿瘤间质内细胞间的相互作用,并克服2D细胞培养系统的局限性。在这里,3D生物打印为预测体内结果、建模TME和评估药物反应提供了一个有前景的解决方案。肿瘤转移和化疗耐药性威胁着肿瘤患者的生存。在癌症治疗领域,化疗是一种很有效的治疗方式,它利用小的抗癌分子攻击特定的生长途径并杀死癌细胞。在这些分子中,顺铂(CIS)和吉非替尼(GEF)是FDA批准的靶向DNA和EGFR通路的抗癌药物。简而言之,CIS通过抑制细胞分裂和 mRNA的产生导致细胞凋亡,而GEF干扰癌细胞中EGFR信号的上调。有趣的是,虽然CIS和GEF都被用于治疗致命的胰腺癌和乳腺癌,但它们也与体外假阴性或假阳性预测有关,这表明它们在2D和3D中对细胞的影响不同(Reynolds, 2017)。为了进一步解决这一差异,我们使用两种乳腺癌(MCF7, MDA MB 231)和两种胰腺癌(BxPC3, Panc-1)细胞系,比较了CIS和GEF对2D单层细胞和3D生物打印类肿瘤模型的作用。材料和方法生物墨水制备和生物打印根据CELLINK方案制备3 mg/mL Coll 1 (CELLINK, Ref #IK4000002001)和5% GelMA (CELLINK, Ref #IK3051020303)用于生物打印。共3ml Coll 1或GelMA与5 x 106 cells/100µL培养基(10:1)混合,分别装入透明和琥珀色墨盒(CELLINK, Ref #CSO010311502),以~ 3kpa进行液滴打印。使用温度控制的打印头(TCPH, SKU #000000020346)设置为8℃,气动打印头分别在8℃的打印床上对Coll 1和GelMA液滴进行生物打印。使用BIO X (CELLINK, SKU #000000022222)上的液滴打印功能,将每种生物墨水打印在未经处理的96孔板(Thermo Fisher Scientific, Cat #267427)上。打印完成后,Coll 1液滴在37℃下热交联20分钟,GelMA液滴在365 nm下紫外交联6秒。每孔加100µL培养基,每2 ~ 3天更换一次。2D单层培养为了进行2D比较,将每个细胞株接种在处理过的96孔板上(Thermo Fisher Scientific, Cat #167425)。优化各细胞培养48小时后的细胞密度,达到90%的一致性。Panc-1细胞接种1.2 × 104个细胞/孔,BxPC3细胞接种1.7 × 104个细胞/孔,MCF7细胞接种2.0 × 104个细胞/孔,MDA MB 231细胞接种2.0 × 104个细胞/孔。药物治疗与分析生物打印类肿瘤细胞和2D细胞分别用不同浓度的吉非替尼(LC Laboratories,#G-4408)或顺铂(Cayman Chemical Company)处理96小时和48小时。MTS Assay(Sigma-Aldrich)和LIVE/DEAD染色试剂盒(Invitrogen)用于评估2D和3D条件下的细胞活力。所有的检测都是按照制造商的说明进行的。图1:该测定的优点显示了抗肿瘤药物对所有4种细胞系的强大作用,并描述了每种细胞类型和ECM的细胞形态变化。比例尺:1000m或650m。绿色:LIVE,红色:DEAD肿瘤根据细胞类型和培养条件适应不同的形态(Nath, 2016)。在GelMA和Coll 1中培养7天后,癌细胞聚集形成各种形态的球体。如图1所示,MDA MB 231细胞形成同心星形网络,MCF7细胞形成圆形椭球,BxPC3细胞形成葡萄状椭球,Panc-1细胞形成团块状椭球。使用GelMA和Coll 1作为肿瘤支架,由于孔隙度、刚度和成分的不同,也影响了球状体的形成。有趣的是,2D培养的癌细胞缺乏所描述的形态,可能是因为它们缺乏支持细胞间相互作用、紧密连接、营养和氧梯度的ECM(数据未显示)。3D模型的缺氧效应缺氧是药物反应的另一个变量,这是3D模型和体内组织所特有的。Warburg效应将缺氧描述为癌细胞的一种生存模式,它们从生产氧气和ATP转换为上调EGFR和AKT信号以促进增殖。这种转换增加了毒性、酸度和3D模型中的废物堆积,从而产生了一个三环低氧梯度。图1显示了低氧梯度,其中靠近球体中心的细胞呈死亡状态(红色),边缘的细胞呈存活状态(绿色)。最外面的环是一层增殖细胞,中间的环是一层活细胞,最里面的环是坏死细胞的核心,这是由于废物堆积和缺氧造成的(Nath, 2016)。顺铂在2D和3D模型的疗效分别在第2天和第7天,将低到高剂量的CIS添加到2D单层细胞和3D生物打印类肿瘤细胞中。2D细胞处理治疗48小时,3D生物打印类肿瘤治疗96小时。MTS试验显示,2D单层对所有细胞株的细胞毒性均呈剂量依赖性,3D乳腺癌类肿瘤细胞也是如此(图2A)。有趣的是,BxPC3和Panc-1细胞株在3D中比在2D中显示更高的IC50。换句话说,这两种胰腺癌细胞株在3D生物打印类肿瘤中基本上不受CIS的影响。这里,一种解释是胰腺癌细胞对CIS浓度的增加表现出了耐药性(Wang, 2016 凯兰,2007 Sangster-Guity, 2011)。针对药物治疗,胰腺癌细胞可能已经诱导了他们的生存途径,上调衰老、DNA损伤反应信号转导和跨损伤DNA合成(Gomes, 2019年)。吉非替尼在2D和3D模型的疗效EGFR癌蛋白常在乳腺癌和胰腺癌细胞系中表达。因此,药物抑制EGFR通路可导致细胞周期阻滞、衰老或凋亡(Jacobi, 2017)。如图2B所示,在3D和2D中,吉非替尼显著降低了细胞活力。对于所有细胞类型,3D Coll 1和GelMA的IC50均低于2D培养的IC50,这表明GEF在3D生物打印类肿瘤细胞中比在2D培养中造成更多的死亡。2D细胞培养的局限性2D细胞培养系统不能模拟体内肿瘤的内在特性,包括自然屏障、低氧梯度和紧密的细胞-细胞连接,这些都减缓了药物扩散。此外,它们缺乏支持3D生长和癌蛋白上调的组织特异性环境和ECM (Reynolds, 2017)。图2A的另一项研究显示,3D胰腺癌细胞比2D单层细胞对CIS的抗性更强。很明显,2D研究对于胰腺癌的体内治疗是一种误导和不准确的预测。结论使用CELLINK GelMA和Coll 1作为类肿瘤支架,为球状形成和药物扩散提供了稳定的肿瘤微环境(TME)。用GelMA和Coll 1构建的不同杀伤曲线模型表明,细胞外基质(ECM)在药物反应中起关键作用。未来的研究需要确定哪种支架适合特定的肿瘤模型。我们的研究结果显示,在2D和3D肿瘤模型中,顺铂(CIS)和吉非替尼(GEF)治疗具有剂量依赖性和细胞特异性反应。乳腺癌和胰腺癌细胞株在3D条件下比2D条件下对GEF更敏感。同样,乳腺癌细胞株3D对CIS治疗的敏感性高于2D,而胰腺细胞株对CIS治疗的敏感性则相反,提示3D模型的耐药水平升高。3D生物打印类肿瘤模型用于药物筛选,可用于减少假阴性和假阳性预测。未来的研究可以使用BIO X来扩大类肿瘤的生产,用于高通量药物测试。
  • 登顶!医渡科技大模型荣登MedBench评测榜首
    5月9日,医渡科技大模型(评测名:HH-YIDU-Med)在MedBench评测榜单中以综合得分61.3分的出色成绩荣登榜首,成为榜单中首个综合评分超过60的医疗大模型。MedBench是由上海人工智能实验室和上海市数字医学创新中心推出的权威评测平台,依托顶级医疗机构的专家经验和知识储备,致力于打造一个科学、公平且严谨的中文医疗大模型评测体系及开放平台,全方位多维度量化模型在各个医学维度的能力。它基于医学知识问答、医学语言生成、复杂医学推理、医学语言理解和医疗安全和伦理等5大维度,有8个公开数据集,12个自建数据集,约 30万数据量。MedBench榜单评测维度医疗行业因其独有的专业度和严谨性,对医疗大模型的能力提出了极高要求。尽管GPT-4已经在通用大模型领域取得了显著的突破,但医疗文本和知识具有特殊性,即使是GPT-4,在处理医疗场景的真实问题时如果未经专门训练也无法取得很好的成绩。医渡科技大模型在医学知识问答、医学语言理解、医疗安全和伦理三大关键维度中都拔得头筹,充分展现了其在专业性、理解力、逻辑性和安全性等方面的医疗专业实力。作为国内医疗智能行业的头部企业,医渡科技在医疗智能领域深耕近10年,其“医疗智能大脑”YiduCore经授权处理分析了超过40多亿份医疗记录,沉淀了大量多维度可量化的知识图谱。医渡科技大模型的构建不仅基于对大量临床实践指南、医学文献的筛选治理,还应用自研的数据生成技术,将多年实践积累的知识图谱用于大模型训练,从而显著提升了模型在医学领域的专业性能和准确性,增强了大模型生成内容的真实性和可解释性。此次登顶MedBench评测榜,说明医渡科技大模型从理解生成“基础”能力,到复杂推理“进阶”能力,再到伦理把控“高级”能力的模型性能都得到了验证和肯定。医渡科技表示,目前取得的成绩只是一个开始,医疗大模型还有很长的路要走。公司将继续稳步前行,不断突破创新,以实现医疗人工智能的更大潜力,推动大模型技术向更高水平发展,实现大模型技术在多领域场景下的渗透和应用,加速推动医疗行业的智能化转型升级。关于医渡科技:医渡科技成立于 2014 年,自成立之初即专注于医疗智能开发与应用。集团着力解决在公共卫生、研究、诊疗三大医疗场景下智能化应用的痛点,通过医疗智能基建为行业赋能,促进构建安全、普惠、价值导向的智能医疗体系。2021年1月,医渡科技成功在香港联交所主板挂牌上市,股票代码2158.HK。医疗智能基建YIDUCORE赋能三大业务板块,大数据平台和解决方案、生命科学解决方案、健康管理平台和解决方案,助力临床研究、医疗管理、区域公共卫生与人口健康管理、新药研发等领域,帮助加速医疗服务降本增效,致力于使价值导向的精准医疗惠及每一个人。
  • 建模成功!Nature子刊:成功建立新冠肺炎重症模型,揭示新冠病毒感染的分子机制
    自2019年年底开始,新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)疫情一直在全球范围内流行,全球死亡率居高不下,已经导致全球的公共卫生危机。COVID-19的临床症状多样,从发烧、乏力、干咳到呼吸困难,从轻度肺炎到急性肺损伤(ALI)和严重病例的急性呼吸窘迫综合征均可出现。  与SARS-CoV类似,SARS-CoV-2属于冠状病毒科β冠状病毒属,是一种包膜单链阳性RNA病毒。人血管紧张素转换酶2 (hACE2)已被证实是SARS-CoV-2的功能性受体。目前在各个国家都已开展对SARS-CoV-2的相关研究,一些hACE2表达小鼠模型,如hACE2转基因小鼠,AAV-hACE2转导小鼠和Ad5-hACE2转导小鼠已经被开发出来。然而,大多数模型只会对小鼠造成轻度至中度的肺损伤。一种能够重现COVID-19最严重呼吸道症状和高病死率的小动物模型仍然是当务之急。  近日,中国军事科学院军事医学研究院秦成峰/王慧团队联合中科院生物物理所王祥喜团队在国际期刊《Nature Communications》上在线发表了题为“Characterization and structuralbasis of a lethal mouse-adapted SARS-CoV-2”的研究论文,公开表示团队成功建立新冠肺炎重症模型并揭示新冠病毒跨种感染分子机制。  首先,研究团队在之前的研究中已经生成了一株SARS-CoV-2 (MASCp6)小鼠适应株,能对小鼠造成中度肺损伤。在此基础上,研究人员进一步连续传代30次,以产生更强毒力的小鼠适应株,最终在第36代产生了SARS-CoV-2(命名为MASCp36)。  实验表明,对不同月龄、性别的BALB/c小鼠进行不同剂量的鼻内注射后,9月龄小鼠对MASCp36毒性高度敏感,且对MASCp36毒性呈剂量依赖性。所有9个月大的小鼠受到高剂量MASCp36的攻击后,均出现典型的呼吸道症状,并表现出皮毛皱褶、驼背和活动减少等特征。此外,雄性小鼠比雌性小鼠对MASCp36更敏感。  (图注:MASCp36对不同性别、年龄的小鼠的毒性不同)  为了进一步确定MASCp36感染小鼠的病理结果,研究团队收集了肺组织进行组织病理学和免疫染色分析。裸眼观察发现,与未感染的对照动物相比,MASCp36感染小鼠的肺损伤严重,双侧呈红色,肺内有黏液。镜下观察可见细支气管管内大量脱皮上皮细胞(黄色箭头),肺泡上皮细胞大面积坏死,肺泡壁融合炎性细胞浸润,以中性粒细胞为主。血管周围严重水肿(青色箭头),散在出血(蓝色箭头),这都表明MASCp36感染诱发了坏死性肺炎和广泛弥漫性肺泡损伤。  (图注:MASCp36感染引起的小鼠急性肺损伤)  最后,研究团队就此模型进行了一系列深入的研究,深度测序发现MASCp36在连续传代中共检测到12个氨基酸突变位点,其中3个(N501Y、Q493H和K417N)位于S蛋白受体结合区(RBD),进一步实验证实,这一结构使得MASCp36病毒和鼠源ACE2亲和力显著增加,通过电镜发现,致死株MASCp36的RBD与鼠源ACE2可形成稳定结合的致密结构,这与野生型病毒RBD与人源ACE2的结构高度类似。  (图注:不同小鼠模型的RBD突变以及与hACE2的亲和力)  综上所述,这一研究产生了一种新的小鼠适应的SARS-CoV-2毒株MASCp36,该毒株会导致严重的呼吸道症状和死亡率。模型也显示了与严重COVID-19类似的年龄和性别相关死亡率。在体内传代过程中,通过对MASCp36受体结合区域(RBD)的深度测序,发现了N501Y、Q493H和K417N三个氨基酸替换。本研究为明确SARS-CoV-2发病机制提供了平台,并揭示了其快速适应和进化的分子机制。
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
  • 高校建筑模型打印——南京大学&安庆师范大学
    各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自南京大学和安庆师范大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“免费超高精度3D打印高校建筑模型”活动,免费获取超高精度3D打印母校建筑模型! 模型一:南京大学-现代工程与应用科学学院院楼模型二:安庆师范大学-红楼活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。
  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 英科学家研发新模型更精确检测外星生命
    这个行星上存在甲烷吗?  伦敦大学学院和澳大利亚悉尼新南威尔士大学的研究人员为&ldquo 炙热&rdquo 甲烷描绘了一个新光谱,可以用于检测温度高于地球分子水平的分子,温度上限高达1220摄氏度,这在之前是无法实现的。  为了查明环绕其它恒星的遥远行星的组成成分,天文学家分析了行星大气层吸收不同颜色的恒星光的方式,并将它与模型,或者称&ldquo 光谱&rdquo 相对比,从而鉴别不同的分子。研究合作作者、伦敦大学学院物理和天文系教授乔纳森· 坦尼森(Jonathan Tennyson)表示:&ldquo 目前的甲烷模型是不完备的,导致科学家们严重低估了行星的甲烷水平。我们预期我们研发的新模型将对未来的行星以及 寒冷 恒星的研究产生巨大的影响,潜在的帮助科学家们鉴别外星生命的迹象。&rdquo   这项发表在《美国国家科学院院刊》(PNAS)上的研究描述了研究人员如何利用英国最先进的超级计算机&mdash &mdash 由英国剑桥大学进行的利用高级计算的分布式研究(DiRAC)项目所提供&mdash &mdash 以计算近100亿根光谱线,每一根光谱线都具有独特的颜色,且这一颜色的光能够被甲烷吸收。最新光谱线的名单比之前的任何研究都至少要庞大2000倍,这意味着它能够在更宽广的温度范围内提供更精确的信息。  研究首席作者、伦敦大学学院物理和天文系的谢尔盖· 尤尔琴科(Sergei Yurchenko)博士表示:&ldquo 我们创造的综合光谱只可能通过强大的超级计算机的来实现,我们将温度范围限制在1500k以与现有的能力相匹配,未来可以进行更多研究以拓展这个模型,从而将温度上限提升到更高。我们的计算要求300万个CPU小时。我们非常激动能够利用这一技术极大地推动光谱模型的发展,以帮助研究天体上存在潜在生命的研究人员,我们迫不及待想要看到这个新光谱将帮助他们获得什么新发现。&rdquo   这一最新模型已经被测试和证实了,它成功的细节复制了失败恒星,也被称为褐矮星(brown dwarfs)上的甲烷吸收光的方式。
  • “奇趣蛋”模型和“鱼塘养鱼”论到底在说什么?
    4月21日晚7点,由康宁反应器技术和惠和化德生物科技联合主办的“助力农药产业升级、安全高质发展—农药行业连续自动化生产技术应用分享会” 顺利结束了。 两位嘉宾老师的分享可谓干货与诚意齐飞,经验共观点一色!有前沿的理论和概念、客观的实例分析与总结以及真诚的忠告与建议。他们形象生动的分享,再一次刷新了人们对于微通道反应器、危化工艺研究思路和工业化实施方式的认知。您想知道连续流工艺设计时的“五维”评估是什么;连续流工艺开发的“三步”法包括哪些方面;项目实施的“奇趣蛋”模型怎么解释;还有连续流工艺的“鱼塘养鱼”论到底在说什么吗?欢迎您关注”康宁反应器技术“公众号点击文末阅读原文,观看限时直播回放!让我们一起来回顾两位老师的精彩内容。嘉宾分享来自惠和化德的马兵博士,首先基于自身多年微通道连续流技术推广经验和深刻理解,分享了如何“精准”理解微通道反应器及其应用的。马博士又通过多个案例分享了农药行业如何应用微通道反应器,在工艺开发、工艺放大过程中解决反应的问题、通量的问题并促进项目顺利落地的。“五维”评估工艺开发“三步”走项目实施“奇趣蛋”模型马博士有关项目实施的“奇趣蛋”模型受到了广泛的关注,相关视频请关注“康宁反应器技术”公众号查看。康宁分享来自康宁反应器技术的周太炎老师,分享了客户连续流技术“鱼塘养鱼”论。他从农药产品涉及的反应出发,分享了在内卷时代,企业如何在自身产品系列的基础上,选择合适的产品线或者反应阶段进行连续工艺开发储备,在恰当的时机获得发展先机的。周老师还从硝化工艺的连续流应用起,分享了康宁AFR在加氢、重氮化、氧化、酰化、酯化以及多步连续反应的工艺开发和工业化实例,通过这些案例的分享不仅向参会者展示了应用微通道反应器不仅可以提高反应的安全性、选择性和收率,而且在资产投入、产出经济性方面依然具有优势。可以达到马博士说的“工艺做的好,客户用得起”!衷心感谢各方支持本次直播得到了中国国际贸易促进委员会化工行业分会,CAC农药展组委会、化工园区管委会、客户、高校科研机构以及合作伙伴的大力支持和参与。在此向所有支持和参与的朋友们表示最诚挚的感谢直播回放,请关注“康宁反应器技术”公众号查看
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制