当前位置: 仪器信息网 > 行业主题 > >

同位素特征

仪器信息网同位素特征专题为您整合同位素特征相关的最新文章,在同位素特征专题,您不仅可以免费浏览同位素特征的资讯, 同时您还可以浏览同位素特征的相关资料、解决方案,参与社区同位素特征话题讨论。

同位素特征相关的论坛

  • 地化所汞同位素示踪研究取得新进展

    近期,中科院地球化学研究所环境地球化学国家重点实验室冯新斌研究员带领研究团队在利用汞同位素示踪汞污染源研究方面取得新进展,为准确解析和评估环境流域中污染物的来源提供了有力的技术手段和理论依据。  汞是环境中毒性最强的重金属之一。环境汞污染问题一直是世界各国关注的焦点和热点。作为中国经济发达和城镇化建设最为典型的区域之一,珠江三角洲东江流域汞污染日益严重。准确分析环境流域中汞的来源和归趋问题不仅是目前研究汞的环境生物地球化学过程的难点,而且对评估和治理环境流域中汞污染具有重要意义。稳定同位素示踪是地球化学研究中的重要内容和技术。目前,国际上初步建立的汞同位素体系已明确汞同位素可以作为汞污染源和生物地球化学反应及其发生程度的示踪剂。  冯新斌研究员带领研究团队利用地化所矿床地球化学国家重点实验室的多接收电感耦合等离子体质谱仪(MC-ICP-MS),建立了一套精准的测定样品中汞同位素的方法,同时利用此项技术对东江流域沉积物汞同位素特征进行了深入的研究。研究结果表明,东江沉积物中不同生态单元的汞污染程度和汞同位素特征差异显著。通过深入分析和合理推断,结合沉积物中汞质量分馏和非质量分馏明显特征(图1),研究人员建立了流域汞污染源(自然源,生活源和工业源)三元混合模型,并采用东江流域各生态单元沉积物汞含量进行模型检验,明确证明不同来源的汞具有不同的汞同位素比值(图2)。由此证明,汞同位素技术可以有效用于示踪和量化沉积物中不同来源的汞。  相关研究成果已分别在地球化学和环境科学领域的国际杂志Chemical Geology(2011,287:81-89) 、(http://www.gdlord.com)Chinese Journal of Analytical Chemistry (2010, 38(7):929-934)、Applied Geochemistry(2010, 25:1467-1477) 等期刊上发表。  目前,冯新斌研究员带领的有害污染物研究课题组仍在进一步探索汞同位素技术在环境科学和地球化学领域的应用与发展。http://photocdn.sohu.com/20110922/Img320129065.jpg图1. 东江沉积物中不同生态单元的汞同位素特征(δ202Hg vs Δ199Hg)http://photocdn.sohu.com/20110922/Img320129068.jpg图2. 东江沉积物中不同汞来源的贡献比例(X, Y, Z 分别代表工业源,生活源和自然源)来源地球化学研究所)

  • 【原创】同位素质谱进行食品的认证和溯源

    同位素质谱进行食品的认证和溯源 作者:S.D Kelly, Institute of Food Research,UK 翻译:generalsky1.介绍:稳定同位素早在1970年代了,同位素质谱(IRMS)就已经被用来检测经济食品的欺诈问题。由于绝大多数的同位素质谱的技术都是用在地质,诊断,和环境科学中。但是最近,同位素质谱的技术得到了广泛的接受:在食品控制实验室作为可靠性和在线技术方面使用IRMS分析作为一个新的检测系统。最终,IRMS可以提供明显的食品掺假的证据,可以作为实验室的日常的检测手段,并且作为一些代理机构起诉不诚信商家的证据。 本节将会回顾一下同位素质谱在食品真实性的历史发展,和出现的两个主要的在食品检测方面IRMS的技术。不过,起初的部分会描述许多同位素质谱(IRMS)技术的基本理论和定义。

  • 【分享】气相色谱同位素比质谱仪联用技术在地球化学中的应用现状二

    [size=4][font=黑体][color=#DC143C][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]同位素比质谱仪联用技术在地球化学中的应用现状与前景[/color][/font][/size] 之二=============================================================2 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-C/TC-IRMS技术油气地球化学的应用 石油地球化学家自上个世纪中期就开始运用碳同位素来确定石油的成因运、移及分类,这方面前人已经作了很多工作,特别是碳同位素应在油气地球化学方面,从上个世纪60年代开始,国外一些学者就开始对石油天然气同位素作了分类(Stahl 1973 Galimov1974),70年代以来更多的学者进行了广泛的研究并以理论和实际应用方面阐述了碳同位素的研究价值。伴随着有机地球化学的发展与同位素测试技术的提高, 利用沉积物中有机质碳同位素的变化可以判断出沉积物中有机质的来源。因此根据碳同位素组成可以对原油进行分类和对比和鉴别[7]从而确定原油的性质和来源。在石油勘探中可应用碳同位素进行油—油、油—源岩对比来确定生油层(sofer等),杨家静等曾利用单体碳同位素对吐哈盆地原油和烃源岩单烃碳同位素组成特征及油源对比探讨,获得了很多信息。choell et al通过研究原油中生物标志化合物中13C/12C值确定了生油层.,Simoneit and Schoell通过碳同位素研究,表明多环芳烃(PAHs)是由于沉积物中的干酪根在高温作用下断裂形成。不同沉积环境决定了有机质的性质进而决定了原油的性质,这充分反映了在碳同位素的区别上。单体烃碳同位素更能反映成油母质的性质及所处的沉积环境从而为油—油、油—源岩提供更为直观的信息[8]。 氢同位素研究方面,由于氢同位素组成具有变化范围广的特征,氢同位素的组成可能会反映更多的信息,所以近几年来成为国内国际上研究的热点,氢同位素除了受母质特征,热演化程度的影响受原岩沉积环境和水质介质条件影响更大(Whiticar 1996)。沈平等(1992年)根据我国十多个含油气盆地天然气氢同位素研究,提出甲烷氢同位素δ13DCH4≥190为海相沉积,δ13DCH4-190为陆相沉积的氢主要来源于有机质并与水介质有关,近年来更多地出现将同位素直接用于油气普查的研究成果,英国的Coleman介绍了用氢氧同位素组成变化研究油层中两种来源水混合造成的水的同位素组成不均一性,为探究油田中油、水运动方式和途径提供了资料。

  • 【求助】寻找北京做过单烃同位素质谱分析的高手

    说来惭愧,论文要做这个,但是到现在对具体的操作还一知半解,不知道坛子里有没有做这个的,我想做的是大气降尘的有机物分析,包括有机组分的含量很各组分同位素特征,现在最头疼的是前处理,即从降尘中抽提得到有机物质的操作没有了解,大家谁帮帮我,在北京的话我去现场学习,多谢了

  • 【资料】氢氧稳定同位素在SPAC水分循环中的应用研究进展

    氢氧稳定同位素是广泛存在于自然界水体中的环境同位素,其在不同水体中组成特征的差异可以指示水分循环过程及植物用水机制等,从而成为广泛应用于水分循环研究中的重要手段。本文介绍了稳定同位素技术在土壤-植物-大气连续体(SPAC)水分循环中的应用原理及研究进展,并阐述了其在SPAC水分循环应用中存在的问题及发展前景,以期为氢氧稳定同位素技术在SPAC水分循环研究中的深入应用提供参考,为研究水资源、水环境问题,特别是干旱、半干旱地区的水分利用效率、水分分配机制等关键性问题提供理论依据和技术支持。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=141294]氢氧稳定同位素在SPAC水分循环中的应用研究进展[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=141295]稳定同位素在作物水分关系研究中的应用[/url]

  • 同位素肽_同位素标记_同位素技术

    同位素肽_同位素标记_同位素技术

    目前我们国肽生物合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/05/201905091355121241_560_3531468_3.jpg!w422x228.jpg[/img]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122172;17718122684;17730030476;17718122397

  • 【转帖】放射性同位素的特点

    放射性同位素的特点   众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同 时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也 不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用“半衰 期”来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一 半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32 原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢,半衰期越 短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有 不同的半衰期,衰变的时候放射出射线的种类和数量也不同。 常用同位素的特征 同位素 符号 半衰期 β射线能量(MeV) 氢-3 3H 12.3年 0.018 碳-14 14C 5720年 0.156 磷-32 32P 14.3天 1.71 硫-35 35S 87.1天 0.167 碘-131 131I 8.05天 0.605 人造元素一览表 原子序数 元素名称 元素符号 发现者 发现年代 半衰期 43 锝 Tc 西格雷,佩里埃 1937 Tc97 260万年 61 钷 Pm 马林斯基等 1945 Pm145 18年 85 砹 At 西格雷,科森等 1940 At210 8.1小时 87 钫 Fr 佩雷 1939 Fr212 20分钟 93 镎 Np 麦克米伦 1940 Np237 214万年 94 钚 Pu 麦克米伦,西博格 1940 Pu244 7.6×107年 95 镅 Am 西博格,吉奥索 1944 Am243 7370年 96 锔 Cm 西博格,吉奥索 1944 Cm247 1.54×107年 97 锫 Bk 西博格,汤普生等 1949 Bk247 1400年 98 锎 Cf 西博格,吉奥索等 1950 Cf251 900年 99 锿 Es 西博格,吉奥索 1955 Es254 276天 100 镄 Fm 西博格,吉奥索 1955 Fm257 82天 101 钔 Md 吉奥索 1955 Md258 55天 102 锘 No 弗列罗夫等 1957 No259 58分钟 103 铹 Lr 吉奥索 1961 Lr260 3分钟 104   Rf 弗列罗夫,吉奥索 1964,1968 ~1分钟 105   Db 弗列罗夫,吉奥索 1970,1970 ~40秒 106   Sg 美,苏 1974 ~0.9秒 107   Bh 联邦德国 1981 ~10-3秒 108   Hs 联邦德国 1984 ~10-3秒 109   Mt 联邦德国 1982 5×10-3秒   二、放射性强度及其度量单位   放射性同位素原子数目的减少服从指数规律。随着时间的增加,放射性原子的数目按几何级数减少,用公式表示为: N=N0e- λt这里,N为经过t时间衰变后,剩下的放射性原子数目,N0为初始的放射性原子数目,λ为衰变常数,是与该种放射性同位素性质有关的常数,λ=y(t)=e-0.693t/τ,其中τ指半衰期。放射性同位素不断地衰变,它在单位时间内发生衰变的原子数目叫做放射性强度(radioactivity),放射性强度的常用单位是居里(curie),表示在1秒钟内发生3.7×1010次核衰变,符号为Ci。    1Ci=3.7×1010dps=2.22×1012dpm    1mCi=3.7×107dps=2.22×109dpm    1μCi=3.7×104dps=2.22×106dpm   1977年国际放射防护委员会(ICRP)发表的第26号出版物中,根据国际辐射单位 与测量委员会(ICRU)的建议,对放射性强度等计算单位采用了国际单位制(SI), 我国于1986年正式执行。在SI中,放射性强度单位用贝柯勒尔(becquerel)表示,简称贝可,为1秒钟内发生一次核衰变,符号为Bq。1Bq=1dps=2.703×10-11Ci该单位在实 际应用中减少了换算步骤,方便了使用。 三、射线与物质的相互作用   放射性同位素放射出的射线碰到各种物质的时候,会产生各种效应,它包括 射线 对物质的作用和物质对射线的作用两个相互联系的方面。例如,射线能够使照相底片 和核子乳胶感光;使一些物质产生荧光;可穿透一定厚度的物质,在穿透物质的过程 中,能被物质吸收一部分,或者是散射一部分,还可能使一些物质的分子发生电离; 另外,当射线辐照到人、动物和植物体时,会使生物体发生生理变化。射线与物质的 相互作用,对核射线来说,它是一种能量传递和能量损耗过程,对受照射物质来说, 它是一种对外来能量的物理性反应和吸收过程。   各种射线由于其本身的性质不同,与物质的相互作用各有特点。这种特点还常与物质的密度和原子序数有关。α射线通过物质时,主要是通过电离和激发把它的辐射能量转移给物质,其射程很短,一个1兆电子伏(1MeV)的α射线,在空气中的射程 约1.01MeVrβ射线,在空气 中的射程是10米,高能量快速运动的β粒子,如磷-,能量为1.71MeV遇到物质,特别是突然被原子序数高的物质(如铅,原子序数为82)阻止后,运动方向会发生改变,产生轫致辐射。轫致辐射是一种连续的电磁辐射,它发生的几率与β射线的能量 和物质的原子序数成正比,因此在防护上采用低密度材料,以减少轫致辐射。β射线能被不太厚的铝层等吸收。γ射线的穿透力最强,射程最大,1MeV的r射线在空气中的射程约有米之远,r射线作用于物质可产生光电效应、康普顿效应和电子对效应,它不会被物质完全吸收,只会随着物质厚度的增加而逐渐减弱。

  • 稳定同位素样品取样方法-生态学方向

    稳定同位素样品取样方法1 植物水分利用效率的研究:取样部位:叶片测定指标:d13C基本原理:d13C分析是评估C3植物叶片中细胞间平均CO2浓度的有效方法。根据Farquhar等(1982),植物的d13C值可由下式来表示:d13C p= d13C a-a-(b-a)×Ci /Ca 式中,d13C p和d13C a分别为植物组织及大气CO2的碳同位素比率,a和b分别为CO2扩散和羧化过程中的同位素分馏,而Ci和Ca分别为细胞间及大气的CO2浓度。可明显看出,植物的d13C值与Ci和Ca有密切的联系。植物组织的d13C值不仅反映了大气CO2的碳同位素比值,也反映了Ci /Ca比值。Ci /Ca比值是一重要的植物生理生态特征值,它不仅与叶光合羧化酶有关也与叶片气孔开闭调节有关,因而Ci /Ca值大小也与环境因子有关。另一方面,根据水分利用效率的定义,植物水分利用效率也与Ci和Ca有密切的联系,这可由下列方程式中看出:A= g×(Ca-Ci)/1.6E= g×ΔWWUE=A/E= (Ca-Ci)/1.6ΔW 式中,A和E分别为光合速率和蒸腾速率,g为气孔传导率,而ΔW为叶内外水气压之差。这样,d13C值可间接地揭示出植物长时期的水分利用效率:WUE=http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif由于植物组织的碳是在一段时间(如整个生长期)内累积起来的,其d13C值可以指示出这段时间内平均的Ci /Ca值及WUE值。注意事项:²[/siz

  • 【讨论】氢氧稳定同位素在土壤蒸发规律研究中应用

    介绍了利用氢氧稳定同位素研究土壤蒸发的基本原理,综述了国内外对土壤蒸发中氢氧稳定同位素技术应用的研究现状,分析了盐类、温度梯度、土壤水迁移机制和土壤分层及植被等因素对各种土壤蒸发机理及其描述计算方法的影响,利用氢氧稳定同位素在土壤蒸发过程中的分馏特性揭示了土壤蒸发机理。最后,指出了选择合适土壤水提取技术的重要性和土壤蒸发研究存在的不足与值得进一步研究的问题。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=141297]氢氧稳定同位素在土壤蒸发规律研究中应用[/url]

  • 同位素标记物、同位素技术_生物素标记肽

    同位素标记物、同位素技术_生物素标记肽

    随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[align=center][img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151433525331_7755_3531468_3.jpg!w422x228.jpg[/img][/align]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQELHPLC分析:[align=center][img=,562,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434210520_3873_3531468_3.jpg!w562x236.jpg[/img][/align]MS分析:[align=center][img=,562,256]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434419961_6047_3531468_3.jpg!w562x256.jpg[/img][/align]合肥国肽生物官网:http://www.bankpeptide.com[img=,690,163]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151435146731_1710_3531468_3.jpg!w690x163.jpg[/img]

  • 【原创】同位素比值R、δ值及同位素标准

    同位素比值R为某一元素的重同位素丰度与轻同位素丰度之比,例如 D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且很冗长繁琐不便于比较,故在实际工作中采用了样品的δ值来表示样品的同位素成分。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=133463]稳定同位素比值R、δ值及同位素标准[/url]

  • 气体同位素测试人的抱怨

    我是学分析化学的,去年来到地质行业做同位素分析工作,而且做的是稳定同位素中硅酸盐氧和包体水中氢氧的分析。且不说两中方法分析流程长,步骤烦琐,就是这两种方法的成功率也是底得不行,能达到30%我感觉就不错了。具体一点的讲:(1)做硅酸氧的实验台如果放置一个星期以上就需要重新做条件实验,麻烦!做包体水中氢实验台架在连续做样中断再起用时也需要做许多标准,以确定台架实验条件是否良好,累!其原因,个人以为国内目前气体同位素分析的前处理装置都是各单位自己搞出来的东西,温控、真空计、玻璃管线、加热炉都是自己临时配置上去的 ,而且都已经到了早该退休的年龄,实验条件不容易维持,这段时间做得可以却不能保证隔一段时间再做还行(2)计量认证要求过高,现在硅酸盐氧同位素需要保证的测量精度在千分之0.3、水中氢同位素测量精度要求在千分之1,这样的精度要求在实验台架最好的状态时可以达到,但是在大数情况下都是不可能达到的。(3)待续

  • 大家来谈谈同位素内标法和同位素稀释法

    同位素内标法用在有机分析比较多,而同位素稀释法用在无机分析或无机元素的形态分析(如有机锡,有机汞等)比较多。同位素内标法是一种非常有效的校正实验中基质干扰,回收率差的手段,但它和和同位素稀释法是不同的。传统意义的内标法中选择和待测化合物性质相近并且样品中不含有的化合物作为内标,大家的经验是内标物可以校正仪器分析如气相色谱的偏差,比如进样量等,质谱检测器的基质效应等,但毕竟是不同的物质,在提取,净化等方面和待测物还会有很大区别,而且这样的物质宁不好找。同位素内标法会选用同位素标记了的化合物,即化合物的某个元素部分或全部由其同位素取代,比如C由C13取代,氢由氘取代,由于用于标记的同位素的自然丰度很低,所以样品中不会存在相同的同位素标记的化合物(或者说检测不出来),并且在一般情况下,同位素标记的内标物和待测化合物的色谱保留(出峰时间)十分接近或者一致,所以同位素内标法在质谱检测器中使用非常广泛。更重要的是,事实上他们的化学性质完全一样,所以在测试过程中的提取效率,净化过程的损失,基质影响等完全一致,可以用来校正这些带来的测试偏差。只是同位素标记内标物的价格十分昂贵。大家来分享下各自的经验,我的感觉还是同位素标记物难买,除非找人合成,那就得花大价钱了。

  • 【资料】同位素辐射技术

    1. 同位素与辐射技术基本内容分类 放射性同位素的应用是核能利用的一个重要方面。 随着核技术的发展,核反应堆、加速器的不断建造,核燃料循环体系的建立,为放射性核素的应用提供了日益丰富的物质基础。另一方面,放射性核素应用研究的开展,又为更经济有效地利用上述设备,综合利用这些“资源”开辟了一条新的途径。同位素辐射技术在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益。 2. 放射性同位素的制备 放射性同位素的制备是同位素与辐射技术应用的物质基础。目前人工放射性同位素制备大体有三种方法:在核反应堆中生产,用于制备丰中子同位素,简称堆照同位素;用带电粒子加速器制备,多用于贫中子同位素生产,简称加速器同位素;从核燃料后处理料液中分离提取同位素,这种同位素通常称为裂片同位素。 3. 放射性同位素在工业上的应用 工业同位素示踪 放射性同位素的探测灵敏度极高,这是常规的化学分析无法比拟的。利用微量同位素动态追踪物质的运动规律是放射性示踪不可替代的优势。目前,这一技术已广泛用于石油、化工、冶金、水利水文等部门,并取得显著的经济效益。 同位素电池 放射性同位素在进行核衰变时释放的能量,可以用作制造特种电源——同位素电池。这种电池是目前人类进行深空探索唯一可用的能源。空间同位素电池(如钚-238电池)的特点是:不需对太阳定向,小巧紧凑,使用寿命长。 同位素监控仪表 放射性同位素放出的射线作为一种信息源可取得工业过程中的非电参数和其他信息。根据这一原理制作的各种同位素监控仪表,如料位计、密度计、测厚仪、核子秤、水分计、γ射线探伤机和离子感烟火灾报警器等可用来监控生产流程,实现无损检测,以及探知火情等。 辐射加工方面 辐射加工是利用电离辐射作为一种先进的手段对物质和材料进行加工处理的一门技术。这种加工方式目前已在交联线缆、热缩材料、橡胶硫化、泡沫塑料、表面固化、中子嬗变掺杂单晶硅、医疗用品消毒、食品辐照保藏以及废水、废气处理等领域取得显著成效,形成产业规模。  4. 同位素在农业上的应用 辐射育种 辐射育种,是利用γ射线等射线诱发作物基因突变,获得有价值的新突变体,从而育成优良品种。我国辐射突变育种的成就突出育成的新品种占世界总数的四分之一。特别是粮、棉、油等作物的推广,取得了显著的增产效果。 示踪技术方面 同位素示踪在农业中的应用主要是从事肥料与农药的效用和机理、有害物质的分解与残留探测、畜牧兽医研究以及农用水利方面检查测定堤坝、水库的泄漏等。另外还可以用于生物固氮、家畜疾病诊断及其妊娠预测等方面的研究。 昆虫辐射不育 昆虫受到电离辐射照射可使昆虫丧失生殖能力,从而降低害虫的数量,进一步达到防治甚至根除害虫的目的。昆虫辐射不育是一种先进的生物防治方法,不存在农药的环境污染问题。国外使用该技术在大面积根除地中海果蝇以及抑制非洲彩蝇方面取得了重大成果。而我国用此法对玉米螟、小菜蛾、柑桔大实蝇等害虫的辐射不育研究,也取得了较好的防治效果。 食品辐照保藏 食品辐照保藏,就是利用电离辐射对食品进行照射,以抑制发芽、杀虫灭菌、延长货架期和检疫处理等,从而达到保存食品的目的。经辐照彻底灭菌的食品是宇航员和特种病人最为理想的食品。目前,国外食品辐照已作为预防食源性疾病和开展国际农产品检疫的一种有效手段。 核医学诊断与癌症放射性治疗 核医学诊断是根据放射性示踪原理对患者进行疾病检查的一种诊断方式。在临床上可分为体内诊断和体外诊断。体内诊断是将放射性药物引入体内,用仪器进行脏器显像或功能测定。体外诊断是采用放射免疫分析方法,在体外对患者体液中生物活性物质进行微量分析。我国每年约有数千万人次进行这种核医学诊断。 电离辐射具有杀灭癌细胞的能力。目前,放射治疗是癌症治疗三大有效手段之一,70%以上癌症患者都需要采用放射治疗。放射治疗可分为外部远距离照射、腔内后装近程照射、间质短程照射和内介入照射等。 体内放射性药物治疗是近来颇受医学界关注的临床手段。单克隆抗体与放射性核素结合生成的导向药物(“生物导弹”),可能为恶性肿瘤的内照射治疗提供一种新的有效途径。

  • 同位素内标

    我是分析新手一名,最近在用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]做实验中,用到了氘代同位素,甲醇稀释,但不知怎么回事,同位素内标中检测到了药的离子对,污染的概率不大,想问一下各位高手,同位素内标在什么可能下才会检测到药的离子对呢?

  • 同位素标样

    请问哪里有橄榄油同位素工作标准的标样?我是同位素质谱仪的用户.

  • 【转帖】同位素质谱

    同位素质谱(资料来源:http://www.cmss.org.cn/xshd/isotope.htm)专业简介: 中国质谱学会成立以来,我们同位素质谱获得了重大发展。一大批从事同位素质谱工作的专家在同位素地质学、核科学和基础科学中取得了不少重要的研究成果。同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展: (1)同位素地质学方面同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。 (2)核科学与核工业方面同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;3)U、Li等同位素标准参考物质的研制。 (3)核物理研究方面包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用: 研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额; 高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。(4)标准参考物质的研制发明方面标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。(5)在临床医学方面进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。(6)在生物学和化学研究工作中的应用稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。 用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。 用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。 在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。(7)环境科学中的应用近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。(8)在农业增产方面的应用现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。⑴合理使用肥料;⑵农药毒性的研究;⑶用轻水灌溉;⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;(5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。(9)其他应用如石油、冶金、电子等方面。

  • 铅同位素的测量

    看文献上面书铅同位素测量的主要方法有:TIMS 0.005–0.01%Q-ICPMS 0.1–0.5%ICP-SMS (S: sector field 是高分辨吧) 0.05–0.2%MC-ICP-MS 0.005–0.02%ICP-TOF-MS 0.05–0.1% 后面为测量铅同位素比值的精度 RSDICP-SMS ( inductively coupled plasma sector field mass spectrometry) 和ICP-TOF-MS的精度一样,但是TOF应该比高分辨简单吧?这不ICPTOFMS还是有竞争力的?

  • 【讨论】诚征关于同位素质谱与无机质谱技术及应用的讨论

    各位版友及使用质谱类仪器的朋友们:您现在使用的是什么类型的无机质谱仪?是同位素质谱还是同位素稀释质谱?二次离子质谱?离子探针?电感耦台等离子体质谱?激光电离质谱?加速器质谱?火花源质谱?您利用它们都主要应用在什么领域?是同位素地质年代学、同位素地球化学方面还是核科学、农业、医学、环境学、计量学或其他学科的应用?您在使用质谱分析样品过程中有什么问题吗?您一定有好的实用技术经验!真诚请您和大家交流分享您的经验、体会!我们将非常感谢您的积极参与!

  • 铅的同位素

    用ICP-MS测定总铅的含量,我一般是测定 206 207 208 这三个同位素。我发现还有一个同位素204 ,为什么不需要一起测定?

  • 质谱同位素

    质谱中同位素,只有最强峰在1000左右,而其他同位素峰没有看到,怎么回事?!

  • 汞的同位素定性和定量

    大家好,有一个问题需要大家帮忙看看。我手头有一个汞样品,客户要求测定样品中的汞是哪个同位素,而且要知道含量或者百分比。样品里可能是一种汞的同位素,也可能是几种同位素的混合物,用哪种质谱来测比较合适,才能分开这几种同位素?另外就是给推荐一下测试的机构和高校和研究所,联系电话等等。谢谢。

  • 同位素选择的问题

    问个小白的问题:测定时选取那个同位素测呢?有没有通用的原则?师姐当时给我说选黑体的,但她自己又说她自己选择的是她摸索后选定的。我自己试了试,感觉有的元素选不同的同位素,测定的结果差别还是很大的,比如58Ni要比60Ni高1-4倍左右。请问大家都是怎么定的呢(用标准物质做吗)?谢谢

  • 同位素内标标曲方程

    同位素内标标曲方程,理论上每次进样的方程系数都应该一样的,但因为受离子化效率,或是放置时间过长(同位素内标与标准品的降解程度不同步时),我想问一下同位素内标标曲方程的方程系数变化到哪种程度就不能用了呢?如果我的标曲方程是Y=aX+b,a、b变化有没有个限制,比如a±a15%,可以这样吗?

  • [转贴]稳定同位素标记药物在临床药代动力学研究中的应用

    稳定同位素标记药物在临床药代动力学研究中的应用 临床药代动力学(Clinical Phamacokinetics)研究提示了众多药物体内命运的奥秘,丰富了人类临床合理用药的知识。无疑对避免药物不良反应的发生、提高药物治疗水平起着重要的指导作用。临床药代动力学研究的关键是能否获得准确的、能反映客观规律的生物样本中药物及其代谢物的浓度(含量),它与所采用检测方法的灵敏度(Sensitivity)、精密度(Precision)、选择性(Selecivity)和专属性(Specficity)等密切相关。体内药物分析有高效液相色谱法(HPLC)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(GC)、免疫分析法(IA)、放射同位素示踪法(RIT)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联机法(GC-MS)、液相色谱-质谱联机法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])等。这些方法都有较高的灵敏度和专属性,特别是GC-MS和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url],具有GC、LC分离,MS检测的独特优势,检测限可达pg/ml水平。由于这两种方法的可利用性,近二十年来,稳定同位素标记(Stable isotope-labelling,SIL)示踪技术有临床药代动力学研究领域中得到了较大发展,本文综述了稳定同位素标记物应用于临床药代动力学研究的原理和方法。1 稳定同位素及其标记物的有关知识1.1 同位素化学简介同位素为相同化学元素的原子,由于在原子核中存在不同的中子数而具有不同的质量,有轻、重同位素之分。根据物理特性,又将同位素分为放射性和稳定性两种形式。放射性同位素(radioactive isotope)如:3H、14C经历着自身的衰变过程,并放射出辐射能,是不稳定的,具有物理半衰期。尽管放射性同位素仍应用于生物样本分析中(放免分析),但由于它的辐射作用能对人体产生潜在的不良作用,其应用受到严格的限制,常用于放射治疗医学和影像医学中。稳定性同位素(stable isotope)无放射性,物理性质稳定,以一定比例存在于自然界,对人体无害,可采取化学合成的方法将其标记到药物分中去,在生物样本中的标记药物和未标记药物的浓度可运用GC-MS或[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]方法同时被检测。常用的稳定同位素有2H、13C、15N和18O四种(见Tab)。表中天然丰度(natural abundance)表示稳定同位素存在于自然中的百分比值。以碳元素为例,稳定同位素有12C和13C两种形式,分别占总额含量的98.893%和1.107%(共100%)。在各药物分子中,碳原子均以上两种同位素的比例自然存在。每一种有机物都是由不同同位素核素(Nulide)组成的混合分子。如维拉帕米的分子式为C27H38N2O4,分子量为454,而以各稳定同位素存在的平均分了量为454.27。在药物分子中,1个天然13C原子的存在,分子量就为455,因此,应用MS检测药物时,在质荷比(m/e)为455处会出现同位素族峰,其强度与分子中含该元素的原子数目及其重同位素的天然丰度密切相关。对某一有机化合物CWHXNYOZ而言,由重同位素天然存在引起的M+1(分子量+1)和M+2峰的相对强度可下式计算:(M+1)峰相对强度(%)=(1.1×W)+(0.015×X)+(0.037×Y)+(0.09×Z)(M+2)峰相对强度(%)=(1.1×W)2×(0.2×Z)/200如果将药物同重同位素13C、15N或2H(deuteriun,记作d量标记,则在M+1处会出现很强的标记药物峰,用GC-MS法能同时检测标记药物就是依赖它们之间存在的干扰,(即:M+1质荷比处检测标记药物的同位素峰共同贡献)。这种测试干扰可通过同位素分布计算方法来消除。避免同位素族峰干扰的最好方法是标记三个以上的原子(如标记三个氢原子,记作d3),使标记药物的质量差≥3,此时,同位素峰干扰会很小,或不存在。另一个应予考虑的是用何种重同位素标记和标记位置问题,主要取决于药物的结构特征和体内代谢性质。标记物和未标记物的药代动力学及蛋白结合率等性质必须基本相同,不能存在同位素效应(见1.3部分),所标记的部位不能放在该药代谢失活的重要位置或药物作用功能基上。因此,运用该技术之前必须对所研究药物的体内代谢特征及在MS上电离碎片式等知识有所认识和了解。1.2 使用安全性自1927年Ason等人首次发现同位素以来,药理、毒理学研究者对其毒性、致畸及致突变反应进行了探讨。小鼠体内13C含量增加到总碳含量的15%-20%,未观察到致畸反应。用于饲养小鼠的水及空气中的氧90%以18()取代,观察三代也未出现毒性和致畸反应。仅在体内有高含量的2H时(占体重的15%)会对哺乳动物产生显著性毒性。人体主要由氢、碳、氮、氧元素组成,以70kg人体重量计,大约含重同位素270g,人体内所含的及每天摄取的稳定重同位素的量远大于用标记药物试验的投药量(见Tab),给予常剂量的稳定同位素标记药物进行人体实验是很安全的。Tab.Stalbe isotopes commonly utilized in pharmacokinetic studies  Natural Body Normal Drug study Isotopes Abundance Content Daily Intake Intake*   (%) (mg/kg) (mg/kg) (mg/kg) 2H 0.015 15 6.93 0.049 13C 1.107 1980 99.90 0.106 15N 0.366 111 0.15 0.122 18O 0.204 1300 133.40 0.147 * Calculations based on a molecule with average molecular weight of 350 containing six atoms of deuterium or two atoms of other isotoped.Total dose is 100mg per 70kg human subjects

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制