当前位置: 仪器信息网 > 行业主题 > >

透明塑料瓶

仪器信息网透明塑料瓶专题为您整合透明塑料瓶相关的最新文章,在透明塑料瓶专题,您不仅可以免费浏览透明塑料瓶的资讯, 同时您还可以浏览透明塑料瓶的相关资料、解决方案,参与社区透明塑料瓶话题讨论。

透明塑料瓶相关的资讯

  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。 本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。本篇为系列二:塑料包装篇 回顾:系列一 纸包装篇 【塑料包装测试篇】塑料是一种很常见的包装材料,本测试使用包装为常用的白色PE塑料瓶、彩色HDPE塑料瓶及编织袋。 白色PE塑料瓶透光性较差,会干扰普通拉曼的检测。彩色HDPE塑料瓶的颜色会带来荧光干扰,同时瓶壁一般较厚,穿透难度更大。编织袋厚度较薄但有颜色且完全不透明,普通拉曼透过编织袋直接检测时往往受到荧光干扰。这些因素给普通拉曼的直接检测带来诸多难题。 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品不透明PE塑料瓶内的乙醇彩色HDPE塑料瓶内的乙醇编织袋内的蔗糖测试方法使用RS1500及RS1000分别隔着3种塑料包装,对塑料包装内的乙醇、蔗糖进行直接检测,观察并分析检测结果。检测结果1、不透明PE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线,混合物分析结果显示为聚乙烯和乙醇。图1.不透明PE塑料瓶测试结果 2、彩色HDPE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线。图2.彩色HDPE塑料瓶测试结果 3、编织袋RS1500:报出蔗糖,谱图见下方红色曲线,与蔗糖标准谱图(蓝色曲线)一致。RS1000:报出蔗糖,谱图见黑色曲线,特征峰强较弱。图3.编织袋测试结果结果分析 RS1500可检测到3种塑料包装内的不同样品并正确报出,RS1000可穿透编织袋测到包装内的蔗糖。RS1000直接检测白色塑料瓶时,由于采集乙醇信号的同时采集到了塑料包装的信号,导致没有直接报出,但通过混合物分析可正确识别出聚乙烯材料和包装内的乙醇。测试彩色HDPE塑料瓶时,由于瓶壁厚且颜色鲜艳,具有较强荧光,仅RS1500可穿透该包装获得乙醇的拉曼信号(图2红色曲线)。编织袋是化工制药企业原辅料的一种常见包装,RS1000能正确报出包装内蔗糖,但由于其有颜色且不透光,导致荧光信号强,获取到的谱图信息不如RS1500清晰丰富。但总的来说二者都可帮助制药企业在不打开编织袋包装的情况下,实现原辅料的快速无损鉴别。
  • 被扔掉的塑料瓶可以回收再利用么
    分析塑料瓶循环利用产品中的环状低聚物海洋塑料污染是当前全球亟待解决的难题之一,为构建塑料资源循环体制,全球大力推进塑料的3R、可再生资源的利用等。日本塑料瓶的循环利用率达84.6%,高于欧美水平,经回收的塑料瓶被重复用于塑料瓶(瓶to瓶)、薄片、纤维等(※1)的生产中。聚对苯二甲酸乙二酯(PET)是以对苯二甲酸和乙二醇为原料反应制成。原料单体熔融聚合,熔融纺丝形成聚酯纤维产品,熔融聚合后,固相聚合成型,形成塑料瓶(图1)。环状低聚物是PET的副产物,它会引起透明度、光亮度等外观瑕疵,因此实验过程中需要进行浓度管理。塑料瓶在固相聚合过程中环状低聚物减少,因此,塑料瓶比纤维产品中的环状低聚物浓度低(※2)。塑料瓶循环利用分为化学循环和机械循环两种。化学循环(图2)是指将塑料瓶粉碎、分离、清洗、去异物,经化学分解成原料单体,将重新缩聚产生的缩聚物作为再生PET树脂使用。机械(原料)循环(图3)是指将塑料球化物作为再生PET树脂使用。循环利用的纤维产品在化学循环中恢复成原料单体,因此它与纯纤维产品中的环状低聚物浓度并无区别,而采用机械循环,它的环状低聚物浓度会变低。此实验参考日本环境省制定的“关于确保指定采购产品等的显示可靠性的指导方针”(※3),利用溶解再沉淀法,提取使用塑料中回收的聚酯纤维的衣物、使用纯聚酯纤维的衣物、以及机械循环中塑料瓶中含有的PET环状低聚物,然后通过日立HPLC进行分析。高效液相色谱仪Chromaster方法及HPLC测定条件环状低聚物的前处理方法及HPLC测定条件塑料瓶循环利用产品中的环状低聚物测定实例参考文献1) PET瓶循环利用年度报告2019, PET瓶循环利用推进协议会.2) 塑料瓶循环利用产品中的环状低聚物浓度评价, Tri News 2010, vol.050.3) 关于确保指定采购产品等的显示可靠性的指导方针(2014年3月版) 日本环境省.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 研究发现矿泉水塑料瓶含雌激素成分
    研究发现矿泉水塑料瓶含雌激素成分 不利于健康  据美国每日科学网报道,目前塑料包装方兴未艾,塑料瓶装矿泉水更是琳琅满目,如果你认为瓶装矿泉水是干净的话,那么现在就该重新考虑了。据德国歌德大学的水中生态毒物学系的马丁瓦格勒和乔格奥尔曼研究发现,塑料瓶装饮用水含有雌激素化学成分,不利健康。  科学家通过分析市场上正在销售的矿泉水,发现有雌激素化学成分从塑料包装中渗透到饮用水中。而且,这些化学成分在活的生物体内确实能发挥作用,能加快新西兰田螺晶胚的发育。  此发现首次证实从塑料包装中渗透出来的化学成分具有雌激素的实际功能。此研究发现发表在世界第二大学术出版巨头Springe最新出版的《环境科学与污染研究》(Environmental Science and Pollution Research)杂志上。  为了查明包装材料中的化学成分是否渗透到了食品中,科学家检测了德国在售的20个品牌的矿泉水,其中9种为玻璃瓶装的,9种是塑料瓶装的,另外二种为纸和塑料膜的复合材料包装的。科学家从这些产品中抽取水样品,之后用这些样品水做新西兰田螺的繁育实验,以确定此外源雌激素的来源和功能,结果发现有60%的样品包含有雌激素化学成分,其中33%的玻璃瓶装水包含有雌激素,而包含有雌激素的塑料瓶装水则高达78%。而且,玻璃瓶装水所含雌激素成分比塑料瓶装水少。此外,二种复合包装的饮用水品牌也都含有相当多的雌激素成分。  通过新西兰田螺繁育实验,科学家发现放在塑料瓶中繁育的田螺数量是玻璃瓶中的二倍。这些结果证明矿泉水中所含的人工合成的雌激素污染来自塑料包装所渗透的化学物质。
  • 药品塑料瓶包装密封性能检测方案解析
    在药品包装领域,塑料瓶因其轻便、耐腐蚀、成本低等优点而被广泛使用。然而,塑料瓶的密封性能直接关系到药品的保存质量和安全性。因此,对药品塑料瓶包装的密封性进行检测是确保药品安全的关键环节。本文将解析药品塑料瓶包装密封性的检测方案。首先,药品塑料瓶包装密封性检测的基本原理是通过检测瓶内外压力差或真空度变化来判断瓶体的密封性能。常用的检测方法包括水检法、压力差法、真空衰减法等。这些方法各有优缺点,选择合适的检测方法需要根据实际需求和生产条件来确定。水检法是一种简便易行的检测方法,通过将塑料瓶完全浸入水中,观察是否有气泡产生来判断瓶体的密封性。这种方法适用于初步筛选和现场检测,但无法定量分析密封性能。压力差法是通过在塑料瓶内外施加不同的压力,检测瓶体是否漏气来判断密封性。这种方法可以定量分析密封性能,但需要专门的设备和技术人员操作。真空衰减法是通过在塑料瓶内部形成真空,检测真空度的变化来判断密封性。这种方法具有较高的灵敏度和准确性,但需要专门的真空衰减仪和熟练的操作技巧。在实际应用中,可以根据生产规模和检测要求选择合适的检测方法。对于小规模生产或现场检测,可以选择水检法;对于大规模生产或要求较高的检测,可以选择压力差法或真空衰减法。其次,药品塑料瓶包装密封性检测的设备选择也非常重要。不同的检测方法需要不同的检测设备,如LEAK-01负压法密封性测试仪,LSST-01泄漏与密封强度测试仪等。在选择设备时,需要考虑设备的精度、稳定性、操作简便性等因素。最后,药品塑料瓶包装密封性检测的操作流程也需要严格控制。无论是哪种检测方法,都需要进行标准化操作,以确保检测结果的准确性和可重复性。同时,还需要定期对检测设备进行校准和维护,以保证设备的正常运行和检测结果的准确性。综上所述,药品塑料瓶包装密封性检测是确保药品安全的关键环节。选择合适的检测方法和设备,严格控制操作流程,才能确保检测结果的准确性和可靠性。
  • 日本用塑料瓶研制辐射探测仪
    日本研究人员利用回收饮料瓶的塑料制成能够测知辐射的传感器,可用于辐射探测仪,有望让成本下降90%。  京都大学助理教授中村秀人(音译)与帝人公司合作研究,设计出一种以PET材料制成的传感器,可用于制造小型辐射探测仪和较大型号的辐射值读数测量仪。  PET,即聚对苯二甲酸乙二醇酯,广泛用于塑料饮料瓶。研究人员利用饮料瓶制成一种塑料树脂,发现这种材料遭到辐射时会发出荧光,且强度好、柔韧、成本低,可用作辐射探测仪中的传感器。  当前,日本市场上传感器原材料大多从法国圣戈班公司进口,价格较贵。  帝人公司公关部估计,传感器售价大约1万日元(约合130美元),比市场现有产品便宜九成,最早会在下个月供应一些政府部门和企业。  帝人公司销售主管石井彻(音译)告诉路透社记者,“我们的目标是在9月底制成最终成品”、即辐射探测仪,9月、10月供政府部门和企业试用,随后逐渐供应公众。  日本东北部3月地震和海啸后,福岛第一核电站泄漏,不少民众争相购买辐射探测装置。
  • 德国VITLAB新推出避光,抗紫外线塑料橙色容量瓶
    德国vitlab 新近首先推出PMP材质橙色、半透明塑料容量瓶,PP材质螺纹盖,适用于光敏物质,可避光,抗紫外线,有较高的抗破裂能力,较轻的重量,是传统棕色容量瓶的理想替代品。 规格有10,25,50,100,250,500和1000ML,,精度A级,,每个新型vitlab 橙色塑料PMP容量瓶都在20℃按DIN ISO 1042标准校正。 新型vitlab 橙色塑料PMP容量瓶,防透系数接近20 。由于非常低的传输系数,在紫外光280 nm和可见光580 nm时,它的避光性甚至远远超越高级棕色玻璃容量瓶。 ●特性:  好的透明度  能消毒灭菌(121℃ 20MIN)  可用福尔马林、乙醇消毒  可用&beta 射线消毒(25KGY)  适用于微波 ●使用说明:  初次使用请彻底清洗,推荐清洗温度不超过60℃,以免影响刻度准确性。  温度耐受性0℃到150℃,建议最高使用温度不要超过50℃  不能将产品置于火焰或者加热器  请用标准的洗涤液清洗  切勿用研磨剂或者钢丝球来清洗 ●抗化学腐蚀能力  在室温(20℃)时,对酸,碱,抗化学腐蚀  对脂肪烃及其衍生物、醛、酮、醇有较好的化学耐受性  不能用于芳香、卤代烃及其衍生物、醚类、氧化性酸、氧化剂
  • 研究表面微塑料可在摄入两小时后进入大脑
    奥地利科学家发表在《纳米材料》杂志上的一项对小鼠的新研究表明,微塑料颗粒在被摄体内后,仅2小时即可穿过血脑屏障进入大脑。这说明几乎无处不在的微小塑料可能比以前想象的更令人担忧。血脑屏障是一个由血管和组织组成的网络,是一种重要的细胞屏障,只允许水、氧气、二氧化碳以及全身麻醉剂进入大脑,同时有助于阻止毒素和有害物质进入大脑。研究人员在6只小鼠身上进行了研究,他们使用了3种尺寸的聚苯乙烯制成的微塑料,分别是9.5微米、1.14微米和293纳米,并根据大小对微小的颗粒进行了不同的荧光标记,在模拟消化液中对其进行了短时间的预处理。其中3只小鼠口服了这些微塑料颗粒,并在摄入后2—4个小时被实施安乐死。结果,摄入仅2小时后,研究小组就检测小鼠大脑中塑料的存在。这表明,一些微塑料颗粒能在较短时间内穿透肠道和血脑屏障。该研究的主要作者、奥地利维也纳医科大学的卢卡斯肯纳表示,在大脑中,塑料颗粒可能会增加炎症、神经紊乱,甚至是阿尔茨海默病或帕金森氏症等神经退行性疾病的风险。使用计算机模拟,该团队绘制了一种微塑料颗粒转运机制,即在膜表面胆固醇分子的帮助下进入大脑。他们希望新模型能够帮助更好地理解微塑料颗粒及其对健康的影响,并用于未来的研究。此前,科学家在全球多地动物体内发现了微塑料和纳米塑料颗粒,甚至在人类胎盘中也发现了它们。这种颗粒可通过装在塑料瓶和食品包装中的饮用水进入人体。新研究为微塑料颗粒几乎无处不在添加了新证据。
  • Seper优质塑料容器产品目录2012
    Seper优质塑料容器产品目录2012优质塑料容器;与国外品牌塑料容器品质一致;价格仅为进口价格的30%!广口圆瓶 通用的液体或者固体保存瓶;广口设计,使盛装更加便捷;PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌;HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度;琥珀色瓶可用于保存光敏感性物质。货号CatNo类型容量Capacity描述Description包装Packaging单位UnitSB08-1008PP广口8ml瓶身PP 瓶盖PP96/pk包SB08-1015PP广口15ml瓶身PP 瓶盖PP96/pk包SB08-1030PP广口30ml瓶身PP 瓶盖PP48/pk包SB08-1060PP广口60ml瓶身PP 瓶盖PP48/pk包SB08-11000PP广口1000ml瓶身PP 瓶盖PP6/pk包SB08-1125PP广口125ml瓶身PP 瓶盖PP24/pk包SB08-1250PP广口250ml瓶身PP 瓶盖PP12/pk包SB08-1500PP广口500ml瓶身PP 瓶盖PP12/pk包SB08-6008HDPE广口8ml瓶身HDPE 瓶盖PP96/pk包SB08-6015HDPE广口15ml瓶身HDPE 瓶盖PP96/pk包SB08-6030HDPE广口30ml瓶身HDPE 瓶盖PP48/pk包SB08-6060HDPE广口60ml瓶身HDPE 瓶盖PP48/pk包SB08-61000HDPE广口1000ml瓶身HDPE 瓶盖PP6/pk包SB08-6125HDPE广口125ml瓶身HDPE 瓶盖PP24/pk包SB08-6250HDPE广口250ml瓶身HDPE 瓶盖PP12/pk包SB08-6500HDPE广口500ml瓶身HDPE 瓶盖PP12/pk包SB08-7008HDPE棕色广口8mlHDPE瓶盖 瓶身96/pk包SB08-7015HDPE琥珀色广口15mlHDPE瓶盖 瓶身96/pk包SB08-7030HDPE琥珀色广口30mlHDPE瓶盖 瓶身48/pk包SB08-7060HDPE琥珀色广口60mlHDPE瓶盖 瓶身48/pk包SB08-71000HDPE琥珀色广口1000mlHDPE瓶盖 瓶身6/pk包SB08-7125HDPE琥珀色广口125mlHDPE瓶盖 瓶身24/pk包SB08-7250HDPE琥珀色广口250mlHDPE瓶盖 瓶身12/pk包SB08-7500HDPE琥珀色广口500mlHDPE瓶盖 瓶身12/pk包窄口圆瓶通用的液体或者固体保存瓶;窄口设计,较少易挥发物质的挥发;PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌;HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度;琥珀色瓶可用于保存光敏感性物质。 货号CatNo类型容量Capacity描述Description包装Packaging单位UnitSB08-2008PP窄口8ml瓶身PP 瓶盖PP96/pk包SB08-2015PP窄口15ml瓶身PP 瓶盖PP96/pk包SB08-2030PP窄口30ml瓶身PP 瓶盖PP48/pk包SB08-2060PP窄口60ml瓶身PP 瓶盖PP48/pk包SB08-21000PP窄口1000ml瓶身PP 瓶盖PP6/pk包SB08-2125PP窄口125ml瓶身PP 瓶盖PP24/pk包SB08-2250PP窄口250ml瓶身PP 瓶盖PP12/pk包SB08-2500PP窄口500ml瓶身PP 瓶盖PP12/pk包SB08-5008HDPE窄口8ml瓶身HDPE 瓶盖PP96/pk包SB08-5015HDPE窄口15ml瓶身HDPE 瓶盖PP96/pk包SB08-5030HDPE窄口30ml瓶身HDPE 瓶盖PP48/pk包SB08-5060HDPE窄口60ml瓶身HDPE 瓶盖PP48/pk包SB08-51000HDPE窄口1000ml瓶身HDPE 瓶盖PP6/pk包SB08-5125HDPE窄口125ml瓶身HDPE 瓶盖PP24/pk包SB08-5250HDPE窄口250ml瓶身HDPE 瓶盖PP12/pk包SB08-5500HDPE窄口500ml瓶身HDPE 瓶盖PP12/pk包SB08-8008HDPE棕色窄口8mlHDPE瓶盖 瓶身96/pk包SB08-8015HDPE棕色窄口15mlHDPE瓶盖 瓶身96/pk包SB08-8030HDPE棕色窄口30mlHDPE瓶盖 瓶身48/pk包SB08-8060HDPE棕色窄口60mlHDPE瓶盖 瓶身48/pk包SB08-81000HDPE棕色窄口1000mlHDPE瓶盖 瓶身6/pk包SB08-8125HDPE棕色窄口125mlHDPE瓶盖 瓶身24/pk包SB08-8250HDPE棕色窄口250mlHDPE瓶盖 瓶身12/pk包SB08-8500HDPE棕色窄口500mlHDPE瓶盖 瓶身12/pk包方瓶通用的液体或者固体保存瓶;方形设计有效增加包装箱的包装数量;PP聚丙烯材质,可以耐受大部分酸,碱和醇类物质,可承受高达121度的高温灭菌;HDPE高密度聚乙烯材质,可以耐大部分酸、碱和醇类物质,长期使用温度:0-100度;琥珀色瓶可用于保存光敏感性物质。 货号CatNo 容量Capacity描述Description包装Packaging单位UnitSB08-4050PP方瓶50ml瓶身PP 瓶盖PP48/pk包SB08-4100PP方瓶100ml瓶身PP 瓶盖PP24/pk包SB08-41000PP方瓶1000ml瓶身PP 瓶盖PP6/pk包SB08-4250PP方瓶250ml瓶身PP 瓶盖PP12/pk包SB08-4500PP方瓶500ml瓶身PP 瓶盖PP12/pk包SB08-3050HDPE方瓶50ml瓶身HDPE 瓶盖PP48/pk包SB08-3100HDPE方瓶100ml瓶身HDPE 瓶盖PP24/pk包SB08-31000HDPE方瓶1000ml瓶身HDPE 瓶盖PP6/pk包SB08-3250HDPE方瓶250ml瓶身HDPE 瓶盖PP12/pk包SB08-3500HDPE方瓶500ml瓶身HDPE 瓶盖PP12/pk包SB08-9050HDPE棕色方瓶50mlHDPE瓶盖 瓶身48/pk包SB08-9100HDPE棕色方瓶100mlHDPE瓶盖 瓶身24/pk包SB08-91000HDPE棕色方瓶1000mlHDPE瓶盖 瓶身6/pk包SB08-9250HDPE棕色方瓶250mlHDPE瓶盖 瓶身12/pk包SB08-9500HDPE棕色方瓶500mlHDPE瓶盖 瓶身12/pk包ETFE塑料瓶ETFE 是最强韧的氟塑料,它在保持了PTFE 良好的耐热、耐化学性能和电绝缘性能的同时,耐辐射和机械性能有很大程度的改善,拉伸强度可达到50MPa,接近聚四氟乙烯的2倍。氟塑料来源于美国杜邦公司和日本旭硝子公司。 容量Capacity货号CatNo描述Description包装Packaging单位Unit250mlSB08-0601ETFE材质螺纹口盖1/pk支500mlSB08-0602ETFE材质螺纹口盖1/pk支1000mlSB08-0603ETFE材质螺纹口盖1/pk支 Seper塑料放水桶放水口栓和封闭螺丝:PP聚丙烯,瓶身:PP聚丙烯,瓶盖:白色PP聚丙烯,TPE热塑性弹性体垫片, 用于存储培养基,蒸馏水等,无菌水存储的理想选择,可高压灭菌,抑制藻类或细菌的生长。容量Capacity货号CatNo描述Description包装Packaging单位Unit5LSB08-05015L1/pk支10LSB08-050210L1/pk支20LSB08-050320L1/pk支Seper优质塑料分液漏斗抗裂、透明、防粘易于清洁、防湿可完全排水,且密封可防止分液漏斗中的化学品渗透。即使是无色液体亦可清晰观察到相界面。活塞装置易于拆除,方便清洁。瓶身和瓶盖为PP材质,阀门为PTFE材质,漏斗嘴部采用PMP材质,可以拆卸,并可以耐受180度高温,可以灭菌使用。容量Capacity货号CatNo包装Packaging单位Unit125mlSA08-01011/pk包250mlSA08-01021/pk包500mlSA08-01031/pk包1000mlSA08-01041/pk包Seper优质塑料滴定管PMP材质的塑料滴定管透明度高,耐酸碱,膨胀收缩率小,阀体采用PTFE材质,让其几乎可以完成您所有样品的滴定工作。容量Capacity货号CatNo描述Description包装Packaging单位Unit10mlSA08-0201PMP+PTFE1/pk包25mlSA08-0202PMP+PTFE1/pk包50mlSA08-0203PP+PTFE1/pk包100mlSA08-0204PP+PTFE1/pk包Seper印字溶剂专用安全洗瓶LDPE容量Capacity货号CatNo描述Description包装Packaging单位Unit500mlSB08-0101蒸馏水专用6/pk包500mlSB08-0102丙酮专用6/pk包500mlSB08-0103乙醇专用6/pk包500mlSB08-0104甲醇专用6/pk包500mlSB08-0105异丙醇专用6/pk包500mlSB08-0106次氯酸钠专用6/pk包 PP HDPE化学相容性表 冰醋酸丙酮乙腈苯甲酸氢氧化钠饱和的硫酸铵乙酸戊酸戊醇苯HDPERRRNRRRRRNRPPTSTRNRNRTSTRTSTRNR 硝酸氯化钠0.1M硫基乙醇乙酸甲酯甲醇二氯甲烷乙醇溶剂油6N硝酸HDPENRRNDTSTRLTDRNRRPPNRRNDTSTRNRRNRTST 1N盐酸6N盐酸盐酸(ConC)氢氟酸氢3%过氧化氢30%过氧化氢90过氧化氢低钠HDPERRRRRRRNRRPPGRTSTNRNRRRTSTRR 臭氧中醛戊烷石油醚苯酚3N氢氧化钾吡啶硅油碳酸钠HDPETSTRLTDLTDNRRRRRPPNRTSTNRNDNRRRRR 四氯化碳溶纤剂(乙基)乙酸乙酯氯仿环己酮二恶烷二甲亚砜二甲基乙酰胺二甲基甲酰胺HDPENRRRLTDRRRRRPPNRRTSTNRNRRRRR 3N氢氧化钠硫酸(Conc)四氢呋喃甲苯三氯乙酸三氯乙烷三氯乙烯土温208M尿素HDPERRRLTDRLTDNRTSTRPPRNRNRNRRNRNRNDR 亚乙基二醇甲醛50%甲酸二甲苯汽油甘油6M氯酸胍5MI硫氰酸胍乙烷HDPERRRLTDLTDRGRGRLTDPPRRRNRNRRNDNDNR 硼酸乙酸丁酯丁醇硝基苯氮乙基苯基聚二乙醇乙酸异丙酯异丙酯煤油HDPERRRRNDTSTRRLTDPPRTSTRNRNDNDTSTRTSTR=表示推荐.仅用来表示在公开发表的相容性表中显示最高等级的聚合物与溶剂组合。GR=表示一般推荐。这一组合中没有特别提到有聚合物与溶剂组合,但是也述及能基本与一类溶剂相容,例如PES便可与乙醇相容TD=表示有限推荐。不锈钢仅能在有限的时间内接触化学品,接触时间延长便会产生腐蚀。换膜过滤器使用这种物质后一定要彻底地冲洗。NR=表示不推荐。用来表示在公开发表的相容性表中呈现比最高等级低的聚合物与溶剂组合。GNR=表示一般不推荐。这一组虽没有特别提到有聚合物与溶剂组合,但是也述及一般不能与溶剂相容,例如PMMA不能与脂族酯相容。TST=用来表示这样一组聚合物与溶剂组合,他们在公开发表的相容性表中在一些表中呈现出最高等级,而在另一些表中却显示低于最高级的相容性,建议用户预先进行测试。可能出现应力裂缝或膨胀的组件材料会影响过滤效果。ND=目前没有数据,在现有资料中没有相关信息。
  • 2023年联合国“地球卫士奖”:浙江海洋塑料废弃物治理新模式“蓝色循环”
    党的十八大以来,以习近平同志为核心的党中央高度重视海洋生态环境保护。习近平总书记强调:“加强海洋生态文明建设,是生态文明建设的重要组成部分。要坚持绿色发展,一代接着一代干,久久为功,建设美丽中国,为保护好地球村作出中国贡献。”新时代中国海洋生态文明建设取得显著成效,涌现出许多动人故事、先进经验。在近日揭晓的2023年联合国“地球卫士奖”评选中,由浙江省生态环境厅与浙江蓝景科技有限公司共同申报的海洋塑料废弃物治理新模式“蓝色循环”,从全球2500个申报项目中脱颖而出,获得这一联合国环保领域最高荣誉。“世界各地都在努力寻找创新方法解决塑料污染问题,改善地球环境。‘地球卫士’们正在带头推动这项工作。他们带来了解决塑料污染的希望,并提醒我们保护自然是实现可持续发展的关键。”联合国环境规划署有关负责人表示。“蓝色循环”模式自2020年开始在浙江探索,通过“政府引导+市场运作”,吸纳沿海群众参与海洋塑料废弃物收集,联合塑料应用企业,并设立“蓝色联盟共富基金”进行价值二次分配,实现生态保护与增收富民“双赢”。“目前,浙江全省已有6300多名群众和渔民、10180艘船舶及230多家企业共同参与‘蓝色循环’模式,共收集海洋废弃物约10936吨,其中塑料废弃物约2254吨,减少碳排放约2930吨,有效改善了近岸海域环境。”浙江省生态环境厅厅长郎文荣说。以创新绿色行动防治“白色污染”、保卫蓝色海洋,“蓝色循环”新模式,是新时代努力建设人与自然和谐共生的现代化的新实践。这一新模式是怎样运行的?破解了塑料污染治理的哪些难点,取得了哪些初步成效?下一步怎样总结经验逐步推广?怎样从海洋收集到岸上?渔民将海洋塑料废弃物及生活垃圾带回港口集中处理,群众捡拾海滩塑料废弃物动力提升“起网了!”东海浙江省温岭市海域,“浙岭渔休00003”号渔船上,转轮嘎嘎作响,渔网缓缓收起,温岭市石塘镇小沙头村渔民郭文标和同伴飞快地分拣从海底打捞上来的鳗鱼、鳐鱼、螃蟹等。渔网里,还混杂着一些一次性塑料餐盒、塑料袋、废弃渔网等废弃物。“这些废弃物不能扔回大海,必须带回岸上集中处理。”在海上打了一辈子鱼、皮肤晒得黝黑的郭文标说,“现在海里的塑料废弃物比以前少多了,海洋生态环境在持续改善。”在小沙头村,有个“小蓝之家”。“小蓝之家”是“蓝色循环”模式中的海洋塑料废弃物收集储存站点,主要负责海洋塑料废弃物的统一回收、分类、打包。郭文标和50多名渔民、沿海群众组成收集队,通过河口拦截、岸滩捡拾、渔网打捞等途径回收废弃物,再销售给专注于海洋可持续发展的国家高新技术企业蓝景科技。“海岸和海洋更干净了,出海更安全了,老百姓还有钱赚!”郭文标笑容满面。“如今,渔民们参与生态环境保护的积极性、主动性大大增强。”郭文标说,“满载而归的渔民不但把新鲜的渔获送到市场,还常常把塑料盒、塑料瓶、塑料袋等塑料废弃物送到‘小蓝之家’,既有船上产生的生产生活垃圾,也有作业时捞起的海洋废弃物。”治理全球海洋塑料污染,是海洋生态环境保护面临的一个世界性难题。联合国环境规划署发布的一份报告显示,塑料制品是海洋垃圾中占比最大、最有害和最持久的部分,至少占海洋垃圾总量的85%。联合国将预防和大幅减少海洋垃圾,列为可持续发展的一项指标。浙江海域面积26万平方公里,海岛4350个,加强海洋生态环境保护、治理海洋塑料污染任务重、压力大。郎文荣说:“为有效破解海洋塑料废弃物收集难、高值利用难、长效治理难等难点痛点,浙江省构建了‘市场化垃圾收集—国际化认证增值—高值化资源利用’的治理体系,打造了具有内驱力、可持续、可复制的‘蓝色循环’海洋塑料废弃物治理新模式。”“‘蓝色循环’模式运用区块链和物联网等技术,保障海洋塑料废弃物收集、再生、再制造、再销售等全环节可视化追溯,从而为海洋塑料的国际化认证增值及高值化资源利用奠定基础。”台州市生态环境局局长谢焕表示,“‘蓝色循环’模式实现了塑料废弃物回收利用的高溢价、高收益,提高了群众参与的积极性,是这一模式得以可持续运转的关键。”下午时分,温岭市石塘半岛金沙滩公园里,身着“蓝色循环”字样蓝色马甲的李启明,一手拿着长柄垃圾钳,一手拿着编织袋,将散落在沙滩上的塑料瓶夹起来,放入袋里。他胸前还佩戴着用于上传现场视频的记录仪。最近两年,“蓝色循环”模式带动了海洋塑料价格上涨,今年54岁的李启明在水产品加工厂打工之余,时常到海边捡拾塑料瓶。李启明算了一笔账:“现在一个塑料瓶差不多能卖两毛钱,夏季游客多的时候,一天能捡到几百个瓶子,一个月下来能赚一两千块钱。”既能增加收入又能减少海洋塑料废弃物,李启明参与“蓝色循环”模式尝到甜头,干劲十足。在台州市路桥区黄礁岛,74岁的渔民陈夏方近来也多了一份收入。“每天用空闲时间在海岸线上捡拾塑料废弃物,送到‘小蓝之家’,一个月大约能增加700元收入。”陈夏方说。怎样从废品变为资源?已建15个“小蓝之家”,集中收集、称重、分拣、转运海洋塑料废弃物温岭市石塘镇四新社区上箬路477号,箬山“小蓝之家”,30多平方米的房间内,堆满大袋的各类废弃塑料瓶。两名分拣员正熟练地将塑料瓶进行分类、压缩、打包、称重。“这份在家门口的工作,既能增加收入,又是一件很有意义的事情。”58岁的分拣员林云琴说。她是苍岙村村民,主要从事渔获批发,去年开始在“小蓝之家”兼职工作。她和同事将塑料瓶分为4类之后,再投入压缩机械,压缩成每个重30多公斤的“塑料瓶砖”。这些“塑料瓶砖”随后被运往现代化工厂处理,变为塑料颗粒。傍晚时分,李启明将捡拾的两大袋塑料瓶运到箬山“小蓝之家”。“小蓝之家”负责人张文祥将塑料瓶放到秤上称重,在“蓝色循环”手机应用程序上登记,生成可溯源的二维码。按流程完成一系列操作后,张文祥按高于一般废弃塑料瓶的价格,支付了收购费用。能有这样的高溢价,李启明和其他一线塑料废弃物收集者们佩戴的视频记录仪发挥着重要作用。“正是因为有视频等可溯源证据,‘蓝色循环’模式生产的塑料颗粒才能得到国际认证组织确认为‘海洋塑料’的认证,才能产生高溢价。”蓝景科技运维人员刘家安说。目前,在浙江省台州市、宁波市、舟山市,已建立了15个“小蓝之家”海洋塑料废弃物收集储存站点,其中台州已有11个。通过“小蓝之家”对海洋塑料废弃物预处理,其体积减小70%,大幅降低了后续运输处置成本。“台州探索建立了一系列制度,制定了专门工作方案,‘约束’与‘激励’并举,保障‘蓝色循环’模式可持续地运行。”谢焕介绍,台州围绕一线收集人员历史守信记录、日常管理、垃圾收集作业管理、环保培训记录等,构建信用评价服务体系,持续从事海洋塑料废弃物收集并且信用评价为“优良”的人员,可获得产业链增值效益再分配和社会保险服务。“蓝色循环”模式能够建立发展,离不开浙江数字技术的深厚家底。先进数字技术使得海洋塑料能够全环节可视化追溯,整个流程清晰可见。为防止并非海洋塑料的塑料废弃物混入“蓝色循环”,蓝景科技为一线收集者配备了视频记录仪等工具,用以记录塑料废弃物的来源地等信息;此外,还在近海岸线设置“电子围栏”,确保塑料废弃物来源于距海岸线3公里范围内,超出这一区域则不会被认定为海洋塑料废弃物。怎样从资源变为产品?海洋塑料废弃物历经3道工序,变为再生海洋塑料粒子,用于生产纺织品、包装、汽车零部件等海洋塑料废弃物变为高品质再生海洋塑料粒子,才能实现高值化利用。这其中需要经历哪些步骤?记者走进位于浙江省湖州市安吉县的威立雅华菲高分子科技(浙江)有限公司,实地探访“蓝色循环”模式收集的海洋塑料新生的全过程。“‘塑料瓶砖’来到这里的第一步,是要先清洗。”记者跟随威立雅华菲总经理宋平,来到塑料回收厂的清洗线。“‘塑料瓶砖’在这里拆包后,投入机器中,进行整瓶清洗,去除掉瓶体上的油渍、污泥、尘土等杂质。”塑料瓶五花八门、多种多样,在颜色、材质等方面有很大差异。“如果采取‘大锅烩’的处理方式,很容易导致回收再生的产品质量参差不齐。因此,清洗过后的塑料瓶还要经过自动光学分选设备和人工分选,剔除颜色和材质不符合后续加工工艺的杂瓶。”宋平介绍,材质、颜色、品质均一的瓶子被破碎后,就得到优质的冷洗瓶片。废弃塑料瓶在威立雅华菲的第二站,是热洗分选生产线。在这里,瓶片被高温清洗,进一步去除杂质,光学分选设备也将进行更精细的分选。“不同于陆地上的废弃塑料,海洋废弃塑料由于受海水浸泡的影响,可能色值偏黄、部分降解,物理性能降低。因此,需要依靠高品质的清洗工艺,去除瓶片表面和内部的高盐分。”宋平说。以针对性药剂配比实现精准清洗,高温搅拌蒸煮去除海盐、果糖、胶水等,高速摩擦机清除附着物,连续式4道浅水漂槽漂洗残留杂质……一道道严格工序,为后续高附加值利用奠定了良好基础。“进行到这一步,原本脏兮兮的海洋废弃塑料瓶,已经变成纯度接近100%的瓶片,但仍要进行严格的质量检验,保证杂质含量小于控制值,才能进入下一道工序。”宋平说。管道交错,机器轰鸣,造粒设备正源源不断地“吐”出塑料粒子。“这是第三道工序——符合要求的瓶片送入挤出机熔融,经过双级过滤后,切割成大小均匀的再生塑料粒子。”宋平介绍,最后出厂前,实验室还会对颗粒进行测试与检查,符合法律法规要求并满足技术特性的产品,才能对外销售。离开厂区,来到智能仓库,传输机上,一包包再生塑料粒子上下腾挪,整装待发。这里是海洋废弃塑料瓶在威立雅华菲的最后一站,再生塑料粒子被下游制造商购入后,经过进一步加工,广泛用于纺织品、包装、汽车零部件、数码产品等的生产。通过“蓝色循环”模式收集的海洋塑料,在这里实现了新生。“海洋塑料废弃物变废为宝,回到了我们的生活中。”威立雅华菲运营总监付现伟介绍,截至目前,威立雅华菲处理的来自“蓝色循环”模式的废弃海洋塑料瓶,已经达到约1000万个。“塑料的制造原料主要来自化石燃料。生产1吨再生海洋塑料粒子产生的碳排放,比生产1吨原生塑料粒子减少1吨多。因此,一些重视环境、社会和公司治理(ESG)的中外企业,更青睐海洋塑料粒子,以满足企业碳减排需求。”付现伟说。怎样既保护生态又增收富民?经过国际认证的海洋塑料粒子,比传统再生塑料有更大升值空间近年来,不少制造企业积极履行保护海洋生态环境的社会责任,愿意采购一些价格更高的再生海洋塑料粒子以替代原生塑料粒子。但其中一个关键难点在于,怎样解决海洋塑料溯源难、材料再生认证难等问题?为此,“蓝色循环”模式开发了基于区块链、物联网技术的可视化追溯系统。走进位于台州市椒江区的海洋废弃物系统指挥和运维中心,记者看到,这里展示的手机壳、洗发水瓶、收纳箱等海洋塑料再生产品上,都印有一个专属二维码。“比如这本笔记本,二维码就在外壳的右下角。”蓝景科技运维总监方敏介绍。记者掏出手机扫二维码,结果显示:这本笔记本含12.13克海洋塑料,可减少15.78克碳排放。“如果想了解从塑料瓶变成笔记本外壳的全部环节,可以点击‘可视化追溯’。”方敏说。记者点开“可视化追溯”,看到里面详细记录了海洋塑料废弃物收集、储存、转运、再生、制造的各个环节——塑料瓶拾捡于椒江区海门街道外沙路,经过收集储存和货车转运,在浙江省一家科技公司制作成再生海洋塑料粒子,再被运往广东省一家公司制作成笔记本。每个环节不仅有相关人员姓名、处理地点和时间等文字信息,还包括现场的图片、视频及区块链电子联单。“‘蓝色循环’模式依托区块链和物联网等技术,对塑料废弃物‘从海洋到货架’的全生命周期实现全程可视化追溯,进行碳标签、碳足迹标定,并经过国际权威认证机构认证,有力推动海洋塑料废弃物变废为宝、价值提升,既保护了海洋生态环境,又实现了海洋塑料废弃物的循环利用。”中国再生资源回收利用协会副会长兼秘书长潘永刚说。付现伟告诉记者:“目前市场上以海洋塑料废弃物为原材料生产的产品,售价要比同类产品高数倍,经过国际认证的海洋塑料粒子,比传统再生塑料有更大升值空间。”“‘蓝色循环’模式下生产的海洋塑料粒子,最高已卖到了1吨3万元,价格是同类型新生塑料的3倍多。”这让方敏和同事们倍感振奋。高回馈是“蓝色循环”模式可持续发展的重要驱动力。蓝景科技联合国际环保认证机构、产业链龙头企业等,组建“蓝色联盟”组织,提取海洋塑料高值利用溢价的20%,设立“蓝色生态共富基金”,用于支付前端废弃物回收人员的工资、意外保险、大病医保等。一线收集人员平均月增收约1200元。目前已为渔民累计发放1.2亿元绿色金融贷款。“‘蓝色循环’模式,用‘高收益’解决了‘无人收’的问题,用‘高信用’解决了‘价值低’的问题,用‘高回馈’解决了‘可持续’的问题。”郎文荣说,海洋塑料废弃物治理的“蓝色循环”模式,促进海洋数字治理、资源循环、共同富裕融合发展,得到了沿海群众的欢迎和国际社会的认可。“近年来,我国在推进海洋塑料废弃物治理方面取得显著进展,沿海各地建立健全‘海上环卫’制度并探索出一批好的经验做法。”国家海洋环境监测中心主任王菊英说,“浙江‘蓝色循环’模式荣获联合国‘地球卫士奖’,不但为我国海洋塑料废弃物治理提供了示范案例,也为解决全球海洋塑料废弃物治理这一热点问题贡献了中国方案和中国智慧。”郎文荣表示:“下一步,我们将加快‘蓝色循环’模式的复制推广,深化完善市场参与机制,积极助推海洋经济高质量发展,探索打造更多高值转化治理模式,培育绿色新增长点。同时,努力深化拓展国际合作,为世界海洋治理贡献中国方案,共同守护蓝色家园。”
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 德国SCHOTT DURAN 透明蓝盖试剂瓶现货促销中!
    德国SCHOTT DURAN 透明蓝盖试剂瓶大量现货促销中(有效期至12年6月30日)!欢迎新老客户来电咨询订购!021-51693889! 货号容量(ml)瓶盖(GL)直径(mm)高度(mm)市场价(元)促销价(元)218011452525367451.0031.00218011755032469160.0034.0021801245100455610555.0029.0021801365250457014361.0032.0021801445500458618173.0038.002180154510004510123096.0050.0021801635200045136265204.00110.00
  • 防水且透明柔性有机发光二极管制成
    图片来源:物理学家组织网由韩国科学技术院电气工程学院和国家纳米制造中心科学家领导的联合研究团队宣布,他们使用MXene纳米技术,成功开发出了一款防水且透明的柔性有机发光二极管(OLED),新材料即使暴露在水中也能发光和透光,有望应用于汽车、时尚和功能性服装等领域。相关研究刊发于最新一期美国化学学会《ACS Nano》杂志。透明柔性显示器在包括汽车显示器、生物保健、军事和时尚等多个领域备受瞩目。但众所周知,当发生小变形时,它们很容易断裂。为解决这个问题,科学家们正在对许多透明的柔性导电材料,如碳纳米管、石墨烯、银纳米线和导电聚合物等开展积极研究。MXene是一种具有高电导率和透光率的二维材料,具有优异的电化学和光电性能,可通过溶液加工实现大规模生产。尽管拥有这些诱人特性,但其电性能很容易因空气中的湿气或水而劣化,因此其商业化备受挑战。为解决这一问题,研究团队使用了一种封装策略,可保护MXene材料免受湿气或氧气引起的氧化,进而开发出一种寿命长、抗外部环境因素稳定性高的MXene基OLED。新设计的双层封装薄膜,可阻挡水分并具有柔韧性。其顶部还贴有厚度为几微米的塑料薄膜,使其可在水中洗涤而不会降解。这款基于MXene的OLED,亮度达到1000坎德拉/平方米或更高,即使在阳光直射的户外也可拥有清晰的显示效果。此外,即使在水下浸泡6小时,该OLED的性能也能保持稳定。研究人员指出,最新研究将成为MXene应用于电气设备领域的指导方针,可应用于其他需要柔性透明显示器的领域。
  • 行业提示:谨防塑料产品变身“危险品”
    近日,宁波鄞州1家企业报检了1批塑料洗手液瓶,宁波鄞州检验检疫局工作人员在现场检验时发现塑料瓶壁内部的填充物是一种油状液体,经核查证实该液体不是普通溶剂,而是危险化学品——无味煤油。  无味煤油是一种高闪点易燃液体,属于第三类危险化学品,并且具有一定毒性。该类煤油如在封闭的坏境内燃烧,甚至会引起爆炸,长期小剂量接触无味煤油,可出现神经系统损害,眼及呼吸道刺激症状等。企业为满足客户对产品的美观要求,在不了解无味煤油相关性能的前提下,为防止瓶壁内部颜色褪色而采用无味煤油填充,使产品在运输和储存中存在着易燃等严重的安全隐患。根据国家危险化学品安全管理条例规定,危险化学品的包装和运输必须符合相关规定,无味煤油的包装必须符合III类包装。  塑料卫浴类生产企业在设计生产产品时,为了色彩、造型美观,往往会在产品内部填充水、白油等液体。对此,检验检疫部门提醒相关生产企业:要加强学习,注重产品安全,企业负责人在更改产品原材料和生产工艺之前,必须掌握相关原材料的物理、化学性能,了解其相关要求,如不能确定,可以找相关实验室进行鉴定 要加强合同评审,不能唯客户要求是从,在与客户签订合同时,要理解并吃透具体条款的适用范围和附加说明,不能盲目听从客户要求,谨防产品“变身” 塑料卫浴产品在生产、使用、废弃和回收过程中会对环境造成较大的影响,是世界各国特别是发达国家的监管重点。因此,企业要加强对国外技术性贸易措施信息的收集,在选择原材料时,充分考虑环保要求,不断加强应对技术壁垒的能力,提升自身竞争力。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:纸包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。 【纸包装测试篇】白色信封为纸质不透明包装,普通拉曼难以穿透,黄色牛皮纸信封相较白色信封更厚,穿透难度更大,同时信封颜色也会导致荧光干扰,这些因素给拉曼直接检测带来多重难题。测试包装展示 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品黄色牛皮纸信封内的乙酰氨基酚药片白色纸信封内的乙酰氨基酚药片测试方法使用RS1500及RS1000分别隔着上述2种信封,对信封内的对乙酰氨基酚进行直接检测,观察并分析检测结果。 检测结果1、白色信封RS1500:正确报出对乙酰氨基酚,谱图见下方红色曲线。RS1000:未检出,谱图见黑色曲线。图1.白色信封测试结果2、黄色牛皮纸信封RS1500:正确报出对乙酰氨基酚,谱图见下方蓝色曲线。RS1000:未检出,谱图见黑色曲线。图2.黄色牛皮纸信封测试结果结果分析RS1500可检测到白色信封和牛皮纸信封中的对乙酰氨基酚并正确报出,测试谱图特征峰与对乙酰氨基酚标准谱图完全匹配(图1中蓝色曲线)。普通785nm拉曼无法检测到纸包装内样品信号,谱图信息被荧光淹没,测试白色信封时可在1050cm-1附近观察到疑似纤维素特征峰(图1中绿色曲线)的小尖峰,测试牛皮纸信封时仅观察到强荧光信号(图2中黑色曲线)。
  • 国家药典委发布关于鼓励参与塑料类药包材标准调研的通知
    日前,国家药典委发布通知,鼓励相关单位参与塑料类药包材标准调研。原文如下:各相关单位:国家药典委员会委托有关单位牵头起草《中国药典》塑料类药包材通用技术要求,现拟对部分产品的材料、工艺、检验检测等信息进行调研,以便结合调研情况开展标准制订工作。请相关单位按要求填写调研表(见附件1-4),并于2022年10月15日前,将调研表WORD版和盖章后的扫描件电子版一并以电子邮件的方式反馈至联系人(见附件5)。同时,为增强药包材标准研究用样品的代表性,补充征集部分研究用样(见附件6)。请相关单位配合提供符合要求的样品及有关资料,并于2022年10月15日前邮寄或直接送至“样品寄送地址”。我委鼓励相关企业积极参与调研以及后续标准制定研讨工作,为科学制定药包材标准提供技术支撑。附件: 1:药用塑料瓶及组件产品调研表.docx 2:口服固体药用塑料复合膜及袋调研表.docx3:口服固体药用塑料硬片调研表.docx4:滴眼剂用塑料瓶及组件调研表.docx 5:各课题联系人及联系方式.pdf6:复合膜样品征集信息表.xls
  • 中药口服液迎来新“外衣” 用“塑料袋”代替玻璃瓶盛装
    科技日报记者近日从中药制药共性技术国家重点实验室(以下简称共性技术实验室)得到消息:由该实验室为主体研制的国内首条中药口服液条包生产线已建成投产。该项目最大的特点是以新型“塑料袋”代替了传统玻璃瓶用来盛装口服溶液。由此,该生产线每年可处理中药材2.5万吨,年产口服液30亿条包。对中药行业来说,此举尚属首次。作为国内中药制药共性技术领域唯一的国家重点实验室,共性技术实验室依托鲁南制药集团而建,立足中药产业发展需求,集聚了130余名高精尖人才团队,联动百余所高校院所,在国内形成了“产—学—研”一体化应用研究与可实施科研成果迅速产业化的优势地位。复合膜包装用于中药口服液长期以来,“口服液+玻璃瓶”组合被视为液体类药品的黄金搭档。后者也因为其透明性、美观度、化学性质稳定等优点,一直被认为口服液包装的首选,但其重量大、运输存储成本高、不耐冲击、易破碎、吸药难等短板也为市场诟病。同时,中药成分也有与玻璃瓶发生反应的风险。在鲁南制药集团党委书记、董事长、总经理、共性技术实验室主任张贵民看来,市场的痛点便是国家重点实验室的攻关课题。复合包装膜是指由多层薄膜经过印刷复合等工艺形成的包装膜。但将复合膜包装用于中药口服液在业内尚无先例,需要解决一系列技术难题。为此,鲁南制药依托共性技术国家重点实验室,以小儿消积止咳口服液为示范载体,与四川省食品药品检验检测院及相关包材、设备生产单位开展协同技术攻关。2020年5月,国家药品监督管理局批准同意复合膜包材用于中药口服液体制剂生产。就此,国内首家将药用复合膜包装材料用于中药口服液药品包装的企业诞生了。将国家重点实验室建在企业里,前者便深深地接了地气。该实验室副主任关永霞向记者介绍:“与玻璃瓶装相比,一支药的内包材能节省约0.14元,一条生产线节省的资金数以亿计;同时,过去的瓶装需要包材、吸管、洗瓶机、灯检等复杂工序,现在仅需内包复合膜、外包材纸就可以了。这就意味着不仅工序简化了,人工和配套设备需求也更少了。”这并不是该实验室唯一的首创级别的技术。记者在采访中了解到,该实验室还研发了国内首条中药口服液灭菌条包生产线,采用全自动液体条包灌装设计,单条生产线灌装速度为660袋/分钟,可同时实现40万袋产品灭菌。大剂量的中药材变成一粒粒小药片汤剂是中药最为传统的一种运用形式,熬制汤药大有学问,弊端在于个体操作(煎煮)带来的质量差异,储存携带的不便,剂量较大,口感较差等,现代生活的快节奏也呼唤着中药的变革。于是,将大剂量的中药材变成一粒粒药片、胶囊、口服液等方便服用、计量统一的中成药便成了共性技术实验室的重要使命。现代生活中,便秘问题颇为常见。对共性技术实验室副主任杨梅和同事们来说,如何用中药治疗便秘便成为新课题。海量的筛选之后,何首乌、芦荟、决明子、枸杞、阿胶、人参、白术、枳实等药材参与了此次研制。而她们的目的是找到一种有效成分调节肠道微生物菌群,从而达到顺肠通便的目的。得益于现代化仪器的支持,科研人员对上述药材效果的分析实现了数据化、可视化。通过对成分的追踪,对效果的追踪,新药“首荟通便胶囊”由此诞生。作为国家科技创新体系的重要组成部分,国家重点实验室是国家组织高水平基础研究和应用基础研究、聚集和培养优秀科学家的重要基地。记者了解到,已组建了11年的共性技术实验室诞生了一项国家科技进步二等奖,两项山东省科技进步一等奖。
  • 透明电极指纹传感器问世
    p  让手机屏任何位置都能识别身份/pp  科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。/pp  指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。/pp  消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。/pp  韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。/pp  这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。/pp  研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。/pp  总编辑圈点/pp  手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。/ppbr//p
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 鉴知技术 1064手持拉曼穿透多种包装的检测合集
    前几期为大家详细介绍了鉴知1064手持拉曼-RS1500手持式物质识别仪穿透多种包装的系列测试报告,分别展示了RS1500对编织袋、信封、棕色试剂瓶、彩色塑料瓶等不同包装内样品的无损检测,在此,特别为大家做了汇总整理。往期回顾▶ 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:纸包装篇▶ 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇▶ 鉴知1064nm手持拉曼穿透不同包装的系列测试报告之:玻璃包装篇测试结论 系列测试报告中,我们准备了常见的信封、编织袋、深色玻璃及有色塑料等多种半透明及不透明包装,分别使用RS1500(1064nm)和RS1000(785nm)分别对包装内的乙醇、对乙酰氨基酚、小苏打、蔗糖等样品进行检测。结果显示透明玻璃瓶、棕色玻璃瓶、透明塑料袋和编织袋这四种包装,鉴知的RS1500和RS1000都可穿透并正确识别内部样品,此外,RS1500还可穿透牛皮纸信封、白色信封、彩色塑料瓶、绿色厚玻璃瓶并正确识别样品,在包装穿透方面具备卓越能力。 1064nm手持拉曼-鉴知RS1500手持式物质识别仪 鉴知RS1500采用1064nm激光光源,相较常见的785nm光源,1064本身可有效避免样品及包装带来的荧光干扰,而鉴知RS1500结合特殊的光路设计和智能识别算法,具备更强的穿透性和去荧光能力,可以穿透纸包装、有色塑料及深色玻璃等普通拉曼难以透过的包装进行准确识别。同时,RS1500内置上万种数据库,涵盖国家管制名单内的所有芬太尼,可检测各类常见的毒品、易制毒化学品及爆炸物,适用于缉私缉毒、应急管理等现场快检场景。
  • 微塑料分析新技术及其应用
    TED-GC-MS“热萃取热脱附 - 气相色谱 - 质谱”法是GERSTEL与德国联邦材料研究所(BAM)共同研发并且申请专利的微塑料检测新技术,可以对微塑料做到全面定性、准确定量、快速检测。TED-GC-MS 分析分两步:样品首先在热重分析仪 (TGA) 中进行热萃取,然后气态分解产物被捕获在固相吸附层上。随后,用热脱附气相色谱质谱法(TDU-GC-MS)分析固相吸附剂。这个技术的优势在于:1. 热萃取和热脱附分开,降低了GCMS被污染的风险,提高了仪器稳定性并最大限度地减少了维护工作2. TGA样品量大,可达100mg,提高了样品的重现性和检测准确性。3. 检测时间快,仅需几小时,可用于对环境样品做快速筛查4. 通过GC-MS可以实现定量分析TED-GC-MS: 热重分析(TGA)耦合热脱附-气质联用(TDU-GC-MS)TGA的样品制备简单,并且样品容量大自2014年以来,德国联邦材料研究所的Braun博士带领的团队,已经发表了数篇文章,下面是最新文献的总汇:01Determination of tire wear markers in soil samples and their distribution in a roadside soil(2022)“土壤样品中轮胎磨损标记物的测定及其在路边土壤中的分布”轮胎磨损是陆地生态系统中微塑料的重要来源。众所周知,道路排放的颗粒物对邻近区域的影响可达100米。这里首次应用热萃取热脱附气相色谱-质谱法 (TED-GC-MS) 通过检测丁苯橡胶 (SBR) 的热分解产物来测定土壤样品中的轮胎磨损,无需额外富集。TED-GC-MS测定丁苯橡胶的标准偏差均小于 10%, 是一种合适的分析工具,无需使用有毒化学品、富集或特殊样品制备即可确定土壤样品中的轮胎磨损。02Development of a Routine Screening Method for the Microplastic Mass Content in a Wastewater Treatment Plant Effluent (2022)“污水处理厂出水中微塑料质量含量常规筛查方法的开发”对经过三级处理的市政污水处理厂 (WWTP) 出水中的微塑料 (MP) 进行了调查。通过应用分级过滤方法(500、100 和 50 μm 网孔尺寸)采集1立方米的代表性样品体积。首次通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 检测微塑料质量分数,而无需进行先前需要的额外样品预处理。测试了用于评估 TED-GC/MS 数据的不同类型的量化方法,其准确性和可行性已在实际样品中得到验证。在出水样品中鉴定出聚乙烯、聚苯乙烯和聚丙烯。聚合物质量含量在5到50mg/m3 之间变化很大。TED-GC/MS测定1 mg滤渣中检出聚合物的峰面积;50、100 和 500 表示分馏过滤后以 µ m 为单位的分数粒径截止值。03Smart filters for the analysis of microplastic in beverages filled in plastic bottles (2021)水样中微塑料的高效收集与检测食品中微塑料 (MP)的出现,如塑料瓶装饮料,引起了公众的高度关注。现有的分析方法侧重于确定粒子数量,需要复杂的采样工具、实验室基础设施和通常耗时的成像检测方法。在目前的工作中,我们展示了智能过滤坩埚作为采样和检测工具的开发。过滤并干燥滤出的固体后,可以通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。新的过滤坩埚允许过滤粒径小至5 μm的微塑料。 结果显示,所测塑料瓶装饮料中微塑料含量低于0.01 μg/L到 2 μg/L,具体取决于饮料瓶类型。几种塑料瓶类型中的饮用水,可乐以及苹果汽水样品中测到的微塑料含量04Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples(2020)“评估几种逸出气体分析的热分析方法,用于检测环境样品中的微塑料”在这项工作中,比较了四种热分析方法,并讨论了它们的优点和局限性。 其中之一是热萃取热脱附气相色谱质谱法 (TED-GC-MS),这是近年来建立起来的一种微塑料检测分析方法。 此外,还应用了热重分析与傅里叶变换红外光谱 (TGA-FTIR) 和热重分析与质谱 (TGA-MS) 相结合的方法,这两种方法在该领域不太常见,但仍在其他研究领域使用。 最后,应用了微型燃烧量热仪 (MCC),这是一种尚未用于微塑料检测的方法。结果发现,TED-GC-MS 是最适合基质未知、微塑料种类和含量未知的样品的方法。 TGA-FTIR 是一种可靠的方法,适用于具有已知基质和定义种类的微塑料的样品。TGA-MS 可能会在未来为检测 PVC 颗粒提供解决方案。MCC 可用作一种非常快速和简单的筛选方法,用于识别未知样品中标准聚合物的潜在微塑料负载。用于通过 TED-GC/MS 检测 PE、PP、PS 和 PET 的定性和定量物质列表。使用三种 TGA 方法的实验室间测试样品的目标值和结果, TED-GC-MS的结果最好。05Development and testing of a fractionated filtration for sampling of microplastics in water(2019)“开发和测试用于水中微塑料采样的分馏过滤技术”采样、样品制备和检测的协调是获得环境中微塑料 (MP) 可比数据的关键。本文开发并提出了一种适用于水体的采样技术,该技术考虑了环境中不同的塑料特性和影响因素。给定微塑料质量浓度的人工水和废水处理厂的处理过的废水都用于验证衍生的采样程序、样品制备。使用热萃取热脱附-气相色谱-质谱法 (TED-GC-MS) 对微塑料进行分析。在给定微塑料质量浓度的人工水中,回收率范围为80%至110%,具体取决于不同的微塑料类型和大小等级。在处理过的废水中,我们发现了不同尺寸等级和数量的聚乙烯和聚苯乙烯。06Automated thermal extraction-desorption gas chromatography massspectrometry: A multifunctional tool for comprehensivecharacterization of polymers and their degradation products(2019)“自动热萃取热脱附气相色谱质谱法:一种用于全面表征聚合物及其降解产物的多功能技术”自动化TED-GC-MS代表了一种用于综合分析聚合物的新型灵活多功能方法,类似的聚合物表征以前只能通过多种独立分析方法的组合来实现。三个例子证明了这一点:第一个是木塑复合材料的分析,其中聚合物和生物聚合物(木材)的分解过程可以通过使用顺序分馏收集清楚地区分吸附剂。其次,通过与参考材料比较确定未知聚烯烃共混物的重量浓度,展示了定量的应用。第三是环境样品中微塑料浓度的测定正成为越来越重要的分析必需品。结果表明,TED-GC-MS校准曲线对最重要的微塑料前体显示出良好的线性,甚至可以成功分析复杂的基质材料(悬浮颗粒物)。六个选定降解产物峰的样品质量归一化的重复性积分结果。平均值显示为一条直线。四种化合物的RSD约为 6%,两种化合物的RSD约为 12%。纯 PE 的 TED 色谱图 (m/z = 55),放大了三萜(C31H62;MW = 434.8)保留时间附近的区域,叠加了 m/z = 434 的质量碎片离子。PE/PP 混合物参考样品的 TED 色谱图(上)和未知样品的色谱图(下);标记了 PE 和 PP 的特定峰,用于确定重量比。悬浮物基质 (SPM) 中 PE(左上)、PP(右上)和 PS(下)的特定降解化合物的线性回归。07Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method (2015) “使用热分解法分析环境样品中的聚乙烯微塑料”直径小于5毫米的小聚合物颗粒称为微塑料,通过聚合物碎片和工业生产进入环境。需要一种方法来识别和量化各种环境样品中的微塑料,以生成可靠的浓度值,这对于评估环境介质中的微塑料是必要的。通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。与热解气相色谱质谱 (Py-GC-MS) 等其他色谱方法相比,TGA中可以使用相对较高的样品质量(比Py-GC-MS 中使用的样品质量高约200倍)。聚乙烯 (PE) 是微塑料最重要的代表之一,被选作识别和量化的示例。土壤中PE的校准曲线的线性达到了约 0.99 ,该方法的相对误差从约为10%。土壤中 PE 的校准曲线达到了约 0.99 的 R2 因子,该方法的相对误差从约为 10%
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • BPA奶瓶或存安全隐患 玻璃奶瓶更安全
    问题奶粉的阴云尚未散尽,宝宝们的奶瓶竟然又出了问题。近日,欧美一些国家陆续对含有BPA的婴儿奶瓶发出禁令,国内的家长们忧心忡忡。请关注——含BPA的奶瓶到底有没有危害?  法国国民议会6月23日投票通过一项法案,禁止生产和销售含有BPA(双酚基丙烷)的婴儿奶瓶,但该法案尚不涉及其他塑料制品。法国健康产品卫生安全局援引相关研究成果称,含有BPA的奶瓶存在健康安全隐患。此前,法国一些城市的幼儿园已开始禁用此类奶瓶。  对此,北京市塑料制品质量监督检验站朱女士却表示:“根据我国的食品容器、包装材料聚碳酸酯成型品卫生标准,PC容器里的BPA含量微乎其微,溶出量不大于0.05mg/kg,而且这是一种高分子材料,结构非常致密,很难释放出来。”  BPA到底有没有危害?  BPA又称双酚A,是一种化工原料,在工业上用来合成聚碳酸酯和环氧树脂等材料。聚碳酸酯(PC)是一种透明的硬塑料,常用于制造婴儿奶瓶的瓶体。而环氧树脂则常被用作金属容器——比如婴儿奶粉罐的衬里。这些塑料与食品直接接触,其安全性自然会引起关注。  事实上,美国凯斯西部保留地大学医学院的帕特里夏亨特博士早在2003年就研究发现,在对实验鼠进行的实验中BPA可导致其染色体异常等病变,并就此向消费者发出警告。但这一结论在当时遭到了生产厂家的一致否认,科学界也有一些不同看法。  近年来,陆续又有研究发现BPA可能导致更多的健康威胁,包括诸如导致内分泌紊乱、可能诱发少女早熟、造成学习能力下降、肥胖、生殖健康风险等。甚至有动物实验显示,BPA与猴子大脑功能失常和情绪紊乱有关,还可能与乳腺、前列腺及生殖系统疾病有关,甚至会诱发某些癌症。  中国科学院生态环境研究中心周益奇博士介绍说:“BPA既具有雌激素特性,又可干扰雄性生殖活动的某些机制,是一种潜在的危害很大的化学物质。其弱雌激素特性和抗雄性激素效应均在实验室动物实验中得到证实。”  而北京市塑料制品质量监督检验站朱女士则认为:“所有证明BPA有毒的都只是动物实验,还没有人体实验证实这一结论。每年有数以万吨计的PC制品被生产出来,那些生产工人天天接触,也没有BPA中毒的,我们做塑料制品检测的,也天天在接触这些材料,都没有中毒,老百姓日常使用中很难会因此中毒。”  塑料奶瓶仍稳占市场  在北京市翠微路附近的一家孕婴用品专门店,记者发现,贝亲、新安怡、丽儿宝、利其尔等进口品牌的奶瓶明显占据着上风。他们各自设有专柜,奶瓶品种数量繁多。价格则从六七十元到上百元不等。  据店员介绍,店内塑料奶瓶数量达到了6成左右,进口品牌非常热销,由于目前并没有接到什么通知,所以如常销售。很多产品都是口碑相传,消费者一进店就指定买某个品牌的奶瓶。尽管店员也有听说顾客害怕塑料瓶有毒,但众多奶瓶标签明确注明“耐高温,120℃以下使用安全”“允许蒸汽消毒”等字样。  有专家指出,识别是否是含有BPA的塑料制品,可以看瓶身或者塑料制品的底部是否有一个三角形的环保回收标志,如果三角形中的数字是7的话,就一定含有BPA。但记者在易初莲花超市发现,这里无论是奶瓶、水杯,还是喂药器,绝大多数都是塑料瓶,并且这些塑料奶瓶和水杯的瓶身上都没有任何标识,只是纸质标签上都注明材料为PC(聚碳酸酯),可以煮沸消毒。  周益奇表示:“BPA是生产环氧树脂、聚碳酸酯等高分子材料的主要原料,在日常生活中,可能含有这一物质的常用塑料用品有塑料水杯、塑料盆等。BPA在水里有一定的溶解度,用塑料制品装水时有一定的溶出,尤其是酸性水,比如醋。在不清楚塑料容器是否含有BPA时,尽量不要用其装食品,也不要装醋,尤其不要用其盛装婴儿食品,不要作为加热器具。”  朱女士表示:“现在市场上绝大多数塑料容器都是PC制品,进口品牌的奶瓶也90%以上是PC材料,因为PC材料相对于PET、聚乙烯而言,透明度高、强度好,是很好的耐高温材料,但PC材料里面肯定就含有BPA,但含量极少,很难释出。”  玻璃奶瓶危害小  在上世纪七八十年代,人们喂养婴儿主要用的是玻璃奶瓶。从材质安全性而言,玻璃奶瓶虽然较塑料奶瓶无毒,但在使用中危险性较高,一旦瓶子被摔碎,玻璃碎渣和瓶中温度较高的奶汁,都可能对婴儿造成严重的伤害。因此,近年来,国际上普遍流行的还是塑料奶瓶。  然而,面对塑料奶瓶的BPA隐患,北京市东四妇产医院儿科主治医师付小青建议家长尽量用玻璃奶瓶,用塑料奶瓶的话,给奶瓶消毒时温度不要超过100℃,要用专门的消毒锅。有的家长习惯用蒸锅给奶瓶消毒,但蒸锅的温度超过了100℃,此时PC奶瓶中的BPA会溶出更多,因此不宜用蒸锅消毒。  江苏省大丰市第二人民医院妇产科副主任朱海琴表示:“选择奶瓶的首要原则是奶瓶的材质要安全无毒,尽量选用玻璃奶瓶,虽然不够轻巧,但是可以反复消毒,放心使用。塑料奶瓶虽然轻巧、方便携带,但经受反复消毒后‘耐力’就不如玻璃制品了。”  事实上,现在已经有不少年轻的妈妈开始重新使用玻璃奶瓶,认为“只有用质量可靠的玻璃奶瓶才比较放心”。家住北京市朝阳区常营的李淼女士的孩子还不满1岁,她说:“玻璃奶瓶和塑料奶瓶我都用,但是塑料奶瓶只有在出门玩耍时,给宝宝喂温水喝。平时在家喝水喝奶都还是用玻璃奶瓶。”
  • 三管齐下解决塑料污染危机
    世界经济合作与发展组织(OECD)的数据显示,2019年,全球生产了3.53亿吨塑料废物,超过2/3被送往垃圾填埋场或焚烧;1/5的废物管理不善,被随意倾倒在陆地或水中。OECD预测,到2060年,塑料废物将增至每年10亿多吨,必须采取有效政策阻止这一趋势。  nature 杂志最近发表的一篇文章认为,改变可能就在眼前。去年3月,联合国环境大会批准了一个历史性协议:在2024年底前制定一项全球塑料条约。科学家正在调查减少塑料生产、使用和处置的最佳政策;也有研究人员专注于利用技术来改善塑料的回收利用,或创造出新型塑料。英国朴茨茅斯大学政策中心主任史蒂夫弗莱彻说,上述三大解决方案缺一不可。  评估最佳政策  朴茨茅斯团队根据科学论文、行业报告、新闻文章和专家意见等,审查了全球130多项与解决塑料污染有关的政策,发现在大多数情况下,“对政策的监督几乎为零”。弗莱彻表示,如果没有太多关于什么政策有效的证据,怎么能制定一项致力于减少全球塑料污染的全球条约?  全球塑料政策中心研究员安塔娅玛奇指出,一个有效政策的例子是,2016年安提瓜和巴布达禁止销售或使用塑料购物袋,一年后垃圾填埋场丢弃的塑料数量减少了15%。有几个因素促成了这一成功,包括明确的实施计划、公众支持、严厉的惩罚措施——罚款1100美元以及最高6个月的监禁等。  皮尤慈善信托基金会预防海洋塑料项目2020年的一项分析显示,实施良好的干预措施可能会产生实质性影响。他们发现,如果不采取行动,到2040年,每年将产生约2.4亿吨管理不善的塑料垃圾(高于经合组织给出的数据)。如果减少塑料生产、打击塑料废物的国际出口、用纸张等材料代替塑料,以及扩大各种回收方法的规模等8种干预措施都能发挥其最大潜力,到2040年,管理不善的塑料废物将降至每年4400万吨,与不采取行动相比减少约80%。  竞逐回收新技术  在法国克莱蒙费朗的一家工厂内,Carbios公司正在测试一项技术——使用转基因酶来分解常见的PET塑料。公司计划在此基础上创建世界上首个酶回收塑料工厂,预计今年开始建设,并于2025年竣工。  美国得克萨斯大学哈尔阿伯尔团队创造了一种分解塑料瓶的蛋白质,这是一种特殊的酶变体,能够将PET塑料在一周内分解,某些情况下,分解时间仅为24小时。  根据Carbios首席科学官阿兰马蒂的说法,使用该公司的酶,一个20立方米的生物反应器可在100小时内降解10万个塑料瓶,他们计划于2025年竣工的工厂每年将分解5万吨PET塑料。  但基于酶的回收仍有局限性。首先这项技术仍然很昂贵,美国国家可再生能源实验室今年开展的一项研究估计,目前酶回收PET的成本可能是传统回收的4倍左右;其次,酶回收方法目前似乎仅限于PET和聚氨酯,并不适用于聚烯烃等其他塑料。  设计下一代塑料  瑞士洛桑联邦理工学院杰里米鲁特巴彻认为,解决危机的一种方案是设计出全新的塑料。2022年,鲁特巴彻领导的国际研究小组利用植物不可食用的部分,研制出了一种类似PET的新型可回收塑料,其制作工艺简单且坚固耐热,潜在用途广泛——从包装材料和纺织品,到制药与电子产品。  新一代塑料通常被统称为生物塑料,它们的原材料来自植物、可降解生物材料,降解后也不会产生有毒残留物。目前市面上主要有两大类生物塑料:聚羟基链烷酸酯(PHA)和聚乳酸(PLA),主要用于食品包装、餐具和纺织品等领域。  据估计,生物塑料目前仅占每年生产的4亿多吨塑料的1%,尽管生产生物塑料产生的碳排放低于生产原始塑料,但大规模生产生物塑料也很昂贵。
  • 微塑料污染进入人体 专家说是否威胁人类健康尚不明确
    p  短短60秒内,全球就能卖出100万个塑料瓶,200万个塑料袋。/pp  人类平均每年制造800万吨塑料废物,然而,这些急速增加的塑料要等1000多年才能降解。等不及降解,它们很快就会碎裂成被称为“微塑料”的微小碎片,无处不在:海平面以下四五公里,极圈的海冰里,瑞士的高山上,水龙头里,鱼类体内,甚至你桌上的啤酒和盐罐里??/pp  现在,它还出现在了人体内。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/40dd7986-7878-483a-944b-afebdd54e8fb.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "  科学家观察海水中的微塑料 图据纽约时报/pp  据《纽约时报》报道,正在维也纳举行的欧洲联合胃肠病学周10月22日的学会上发布了一项新研究,该研究首次确认,人体内发现了多达9中不同种类的微塑料。/pp  微塑料对海洋的污染,对动物的危害已经说得不少,但它们对人体有什么危害,又是从哪里来的呢?/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/361c2bd5-6190-4800-930c-995d846a6c6c.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "  遭到塑料污染的海洋 图据每日邮报/pp  strong研究首次确认微塑料进入人体/strong/pp  “塑料在日常生活中无处不在,人类以太多方式暴露在塑料中,但我个人根本没有想到每个样本都能检测出微塑料。”该研究的第一作者,维也纳医药大学胃肠病学家菲利普· 施沃布尔表示,“研究结果令人震惊。”/pp  过去十多年来,微塑料——长度小于0.5毫米的碎片,已经成为环境研究学者的主要忧虑之一。海洋生物学家一直警告海洋微塑料污染的危害,海洋生物体内已检测出高含量微塑料。不只是海洋,陆地水源也被严重污染。去年,全球83%的水龙头样本中检测到微塑料。其中最为严重的是美国,94%的水龙头水样本都被污染。/pp  研究人员早就怀疑,微塑料终会进入人体。/pp  “这是第一个关于人体内微塑料的研究。”施沃布尔及其团队研究人员想确认人体内是否存在任何微塑料。他们从芬兰、意大利、日本、波兰、俄罗斯、英国、奥地利和荷兰8个国家分别选择了一名志愿者。这些年龄33到65岁的志愿者,进行了为期一周的饮食控制,最终提供粪便样本供研究。/pp  结果,8个样本均发现了微塑料,而且多达9种不同种类的微塑料,大小从0.05~0.5毫米不等,比头发丝还小几倍。其中最常见的为聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)——两者皆为塑料瓶和瓶盖的主要成分。/pp  根据这个研究,施沃布尔估计,全球50%的人口体内都有微塑料,不过,这还需要进一步做更大样本的研究进行确认。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/facd36e5-4a7b-4e6f-8d8c-f0ba4f613dc0.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "  随处可见的塑料污染 图据美国新闻周刊/pp  strong微塑料对人体的危害暂未明确 微塑料进入人体,到底有什么危害呢?/strong/pp  海洋里,多达114种水生物种的体内发现了微塑料。研究表明,它们和塑料的遭遇结果往往是致命的。小至浮游生物,大到鲸鱼,都不可避免地吃进了各种塑料。微塑料能进入动物血液,淋巴系统,甚至肝脏,造成肠道甚至生殖系统的损害。/pp  但微塑料是否对人类造成健康威胁,到底造成什么程度的威胁目前尚不明确。/pp  研究人员指出,肠道内的微塑料可能影响消化系统的免疫反应,或帮助有毒化学物和病原体的传播。但鉴于此次研究的样本量小,很难做太多结论。这次实验中发现的微塑料因为体积够大而不太可能造成严重威胁,同时,平均每10克粪便中含20个微塑料颗粒,这种污染浓度相对算低。/pp  不过,据CNN报道,当微塑料进一步分解为更小的微粒后,很可能被人体循环系统吸收,进而进入人体器官。此外,这些塑料在制造过程中可能有一些化学物。“当浓度足够的时候,这些化学物质能伤害甚至杀死细胞。细胞可能会被成功替代,也可能不会,蛋白质及DNA都可能受到伤害。”伦敦国王学院教授弗兰克· 凯里称。/pp  伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也指出,“这些大体积微塑料的更大威胁是,它们是否在人体内留下相关化学污染,并且在人体组织内逐渐累计起来。”/ppstrong  微塑料污染的来源相当广泛 人体内的这些微塑料到底从哪来的?/strong/pp  人类每年平均制造800万吨塑料废物,这些废物从海岸地区进入海洋。在阳光和海浪的共同作用下,这些塑料废物变成小颗粒,污染海洋,进入海洋生物体内。陆地上,微塑料也无处不在。合成纤维衣服上的纤维,尤其是聚酯和丙烯酸,会通过洗衣机排水进入淡水系统。/pp  “绝大多数实验参与者都喝瓶装水,鱼类和海产品的食用也比较普遍。”施沃布尔称,“很可能食物在加工和包装的各个步骤都受到了微塑料污染。”/pp  不管是食用已经受了污染的食物,或者无意识吃下食品包装上的微小塑料都可能造成人体内的微塑料污染。一份研究曾预测,经常吃贝类的人每年可吃进1.1万片微塑料。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/a7bd0afb-8949-435a-acd1-de9ec53e5675.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "  微塑料被发现进入人体 图据Getty Images/pp  “在人体内发现那么多种不同的聚合物,这说明污染来源非常广泛。”伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也表示。此次实验有两名参与者并没有吃海产品,依然检测出微塑料。/pp  “如果人类不改变现状,塑料污染程度会进一步恶化。”施沃布尔强调,人类需要减少塑料制品的使用,提高回收再利用。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201810/uepic/d73036b6-c761-4b9c-b207-8e85ee9e09e6.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "  塑料污染问题严重 图据美国新闻周刊/pp  关于塑料的危害强调已久,全球范围的禁塑行动已经在陆续开展,很多国家已经完全禁止使用塑料袋。美国很多城市计划禁止使用塑料吸管及其他一次性塑料制品。今年,欧洲议会还投票禁止在化妆品中使用微塑料。到2025年,欧盟国家一次性塑料瓶的回收率将达到90%。但这种程度的努力,被质疑为杯水车薪。/ppbr//p
  • CNW 20mm钳口20mL平底透明顶空样品瓶促销
    货号:VBAP-320020E-2375-100中文名称: CNW 20mm钳口20mL平底透明顶空样品瓶(带书写)型 号:100/盒 价格:250元促销价:200元促销时间:2012年5月7日-2012年12月31日 顶空进样分析作为气相色谱的一个辅助方法,近几年来普及程度越来越多,其具有样品处理简单,检测灵敏度高等特点,在分析残留溶剂时有不可比拟的优点,所以被广泛应用。如:水中挥发性有机物检测药物溶剂残留检测食品包装材料、烟用包装材料及其他印刷品中的有机溶剂残留检测食用植物油中溶剂残留检测化妆品中甲醇含量检测血液中酒精浓度检测等 而由于顶空进样过程中,整个体系处于高温高压的状态,所以对样品瓶的耐压性能有很高要求。安谱公司为广大用户提供高质量的CNW顶空进样瓶及配套瓶盖和隔垫。CNW顶空进样瓶的壁厚度都在1.2mm,以保证顶空进样瓶不会爆裂。磁性铝盖可以用于CTC自动进样器,安全铝盖可防止体系压力过大导致的危险,并针对不同的实验条件提供不同的隔垫供选择,满足绝大部分实验要求。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 孕妇胎盘中首次发现微塑料
    p  据最新一期《环境国际》杂志报道,意大利科学家首次在孕妇胎盘中发现了微塑料颗粒。研究小组在妇女生完孩子后捐赠的6个胎盘中的4个发现了12个微塑料碎片。有3种被确定为被污染的热塑性聚合物聚丙烯,而其他9种被鉴别出的颜料,则来自于人造涂料、油漆、粘合剂、手指画颜料、化妆品和个人护理用品等。/pp  据报道,国外科学家们尚不清楚人体中的微塑料对健康有何具体影响。但是,微塑料中可能含有某些化学物质,这对胎儿可能造成长期的身体损害,甚至使胎儿的免疫系统崩溃。/pp  据称,胎儿体内的微塑料颗粒很可能是母亲吸入,或通过饮食带入体内的。/pp  据报道,研究者们对四名怀孕和分娩过程都正常的健康妇女进行了检查。结果,科学家们在胎盘的胎儿和母体两侧,以及胎儿发育的薄膜中都检测到了微塑料。据悉,十几个微塑料颗粒被检测出来。然而事实上,科学家们仅分析了每个胎盘约4%的部分,这表明微塑料的总数要多得多。/pp  微塑料颗粒大多为10微米(0.01毫米)左右,这意味着它们足够小,可以进入血液中。这些微塑料颗粒可能已经进入了婴儿的体内,但研究人员目前无法进行分析。br//pp  罗马圣乔瓦尼· 卡利比塔医院的妇产科主任安东尼奥· 拉古萨(Antonio Ragusa)表示:“他们就像半机械婴儿似的,不再单纯由人类细胞组成,而是掺杂着无机物。”/pp  研究人员称:“我们仍需进行进一步研究,以评估微塑料的存在是否会触发胎儿的免疫反应,或导致有毒污染物在体内的释放,从而对人体造成危害。”br//pp  不过,参与该研究的另外两名女性的胎盘中并未查出微塑料颗粒,这可能是由于不同的生理状况、饮食或生活方式造成的。/pp  从珠穆朗玛峰的山顶到漆黑无边的深海,微塑料污染已遍及地球的每个角落。/pp  本网相关报道:/pp  a href="https://www.instrument.com.cn/news/20200824/557449.shtml" target="_blank"警惕!人体47处被检出微塑料,或成健康研究下一个热点/a/pp  a href="https://www.instrument.com.cn/news/20200522/539229.shtml" target="_blank"除了海洋里,空气中也有浮游微塑料 你呼吸了吗?/a/pp  a href="https://www.instrument.com.cn/news/20190829/492232.shtml" target="_blank"洗涤衣物可能是未被充分认识的微塑料污染源/a/pp  a href="https://www.instrument.com.cn/news/20190820/491533.shtml" target="_blank"北极微塑料从哪儿来?科学家又发现新证据/a/pp  a href="https://www.instrument.com.cn/news/20180904/470662.shtml" target="_blank"美研究:13国水管及食盐和啤酒中存在“微塑料”/a/pp  今年十月,科学家们发现婴儿使用塑料瓶饮用配方奶粉时,每天要吞咽数百万个微塑料颗粒。2019年,研究人员在胎盘一侧发现空气颗粒污染物,这表明未出生的婴儿也暴露于交通和化石燃料燃烧产生的污染物中。/pp  显然,如何避免这些微型颗粒对人体造成潜在的危害,将在未来成为一项重要的课题。/p
  • 中科院化学所等利用透明墨水打印出全彩结构色图案
    结构色是一种由微观物理结构与自然光之间的相互作用(如散射、干涉、衍射等)所产生的颜色。与传统的化学色相比,结构色可以完全避免染料或色素的使用,是更加环保和稳定的呈色方式。然而,人工结构色的实现,需要借助先进的微纳加工技术或组装手段对纳米生色结构进行高精度调控,成本较高且工艺复杂,较大程度上阻碍了结构色的广泛应用。此外,为了促进结构色的应用拓展,需要将结构色像素点制备成有序的图像,但结构色的像素点是由众多周期与形貌存在差异的微纳结构组成,将这些呈色物理结构精确制备并集成为特征化的彩色图像,颇具挑战性。  中国科学院化学研究所绿色印刷实验室研究员宋延林、李明珠,与复旦大学教授石磊等合作,精准控制微小液滴的成型打印(即精确调控打印基材的浸润性与微小液滴的体积来控制打印墨滴的形貌)与剖析全内反射光学微结构呈色的机理,发展出一种利用透明高分子墨水打印全彩结构色图像的方法。该方法突破了关于彩色印刷的认知(呈现不同的颜色需要不同的墨水),仅利用一种透明的高分子聚合物墨水,便实现了全色系彩色像素点的精准制备。此外,研究凭借对微观像素点空间位置的精确分布,解决了结构色难以实现棕色、白色、银色等特殊色制备的难题。科研人员探索了微结构形貌与颜色、灰度的对应规律,利用高精度喷墨打印实现墨滴精准成形,在不添加任何染料色素的前提下,打印出各种形象逼真的彩色人像图案。这种方法具有普适性,可制成透明墨水的高分子材料均可应用于这种全色系结构色图案的打印,为结构色在彩色印刷、显示、防伪及高灵敏传感等领域的应用提供了全新的思路。  近日,相关研究成果发表在Science Advances(DOI:10.1126/sciadv.abh1992)上。研究工作得到国家自然科学基金、科技部和中科院的支持。
  • 欧盟提高塑料类食品接触材料安全标准
    近日,欧盟发布2011/8/EU号法令,禁止化学物质——双酚A(BPA)被用于生产婴儿奶瓶。同时,要求所有塑料类食品接触材料中,BPA允许迁移量不得高于0.6mg/kg。据了解, BPA因具有可提高产品透明度的特性而被广泛用于加工生产塑料制品。一些动物实验表明BPA会引起大脑生物化学物质改变,影响人体免疫系统,以及提高乳腺肿瘤感病几率。目前,加拿大、美国与澳大利亚已先后禁止儿童用品中使用双酚A。丹麦和法国是推动欧盟出台上述法规的积极倡导者,并已成为欧洲最早禁用双酚A奶瓶的国家。我国在食品接触材料安全监管方面,并没有针对该种化学物质提出限定要求。
  • 必达泰克透视拉曼技术“全”解析
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"拉曼光谱是一项成熟的非接触式无损检测技术,传统拉曼光谱是将激光聚焦在样品表面,并在样品表面收集拉曼散射信号。由于激光焦距固定,拉曼光谱可以有效分析薄透明包装材料内(如塑料样品袋或透明玻璃瓶)的样品。但是,面对一些特殊的物料,如不透明包装内的样品、必须避光保存的物料等,目前现有的拉曼技术不能满足检测需求。为了解决这一技术难题,美国必达泰克于今年推出了透视拉曼技术。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  为了更深入的了解有关透视拉曼的相关信息,仪器信息网编辑与必达泰克相关负责人进行了进入的沟通。/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"/span/pp style="TEXT-ALIGN: center"img title="280x280.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/8dda73dc-de47-4f29-afa1-bd3930520dc3.jpg"//pp style="TEXT-ALIGN: center"a title="" style="TEXT-DECORATION: underline FONT-FAMILY: 楷体,楷体_GB2312, SimKai" href="http://www.instrument.com.cn/netshow/sh100950/C266120.htm" target="_blank"span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"strongi-Ramansup® /supPro ST高通量透视拉曼光谱仪/strong/span/a/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"Pittcon2017期间,必达泰克发布了i-Raman® Pro ST高通量透视拉曼光谱仪新品。据介绍,这款产品采用共轴的激光激发-信号采集光学结构,通过特殊方法增大采样面积而大大提高穿透深度,能够分析不透明包装内的样品,其透过不透明包材采样的能力将大大扩展拉曼光谱的应用领域,且得益于i-Raman® Pro ST拉曼的大光斑,其对于非均匀物质的检测效果会更加理想。/span/ppstrong  仪器信息网:请介绍透视拉曼的优势?/strong/pp  strong必达泰克:/strongi-Raman® Pro ST可以穿透不透明包装材料例如塑料瓶,纤维样品袋,双层玻璃,纸张和纤维包封等,检测包装内部的样品。结合特殊的软件算法,i-Raman® Pro ST可以在药厂仓库进行带包装(即使是不透明包装中)原辅料的快速鉴别,相比于传统的拉曼光谱具有显著的优势。/pp  另外,i-Ramansup® /supPro ST具有毫米级的采样面积,而传统拉曼的采样面积只有约为100微米,其对非均质样品(如粉末混合物、片剂和天然样品)的信号具有更好的重复性。此外,由于激光光斑较大,能量密度较小,系统对深色样品的检测具有天然优势。/pp  strong仪器信息网:透视拉曼最适合的应用领域?/strong/pp  strong必达泰克:/strongi-Raman® Pro ST符合GMP规范,可用于不拆包装的药物原辅料的鉴别,简化原辅料检测的工作流程,在任何需要的现场轻松方便的进行实时物料鉴别。在验收时透过包装材料(如纤维编织袋,厚玻璃瓶和不透明的样品瓶)检测样品,ST Raman™ 技术无法检测不透光材料,如纤维板桶,金属桶和厚度大于等于30mm的厚塑料。遇到此种情况,可以取少量样品并将其放入样品容器中,拉曼技术仍可以快速、无损的识别样品,减少检测时间,提供实验室级别的检测结果。/pp  ST Raman™ 技术还可用于法医刑侦、海关和邮政检查,无需打开信封和其他类型不透明包装,就可鉴别未知、非法或有害等物质。化学、制药厂商和运输中经常使用i-Raman® Pro ST检测白色塑料瓶中的物料。 ST Raman™ 技术可以在不打开容器的情况下识别包材内的物质,避免内部材料受到污染、防止暴露篡改。/pp  i-Raman® Pro ST拥有最小化能量密度,更深的采样深度和较大的采样面积等特点,在生物医学研究上可通过皮肤和组织进行测量,推动了拉曼在疾病诊断和非侵入性筛查领域的应用不断发展。/pp  strong仪器信息网:请分析市场对透视拉曼的需求情况/strong。/pp  strong必达泰克:/strong上述所有领域都有对ST Raman™ 技术的需求。制药企业需要做100%原辅料检验。大部分提供的包材是编织纤维袋(即SuperSack® )和其他不透明包装,而便携式i-Raman® Pro ST可用于识别包材内的物质检测。ST Raman™ 拉曼比传统拉曼的优势在于,可以透过不透明以及厚壁玻璃和塑料等更多的包材,并且可以在不打开容器或取出样品的情况下进行物料鉴别。/pp  药物制剂是活性成分与赋形剂、粘合剂和润滑剂的混合物。 i-Raman Pro ST的大面积取样面积有利于这种样品的化学分析,以确定粉末混合物在混合之前的混合均匀性。此外,由于药品片剂成分不均匀分布,所以最终的片剂样品的含量可以在较大的采样面积下更好地测量。 ST Raman™ 可以穿透片剂的包衣,测量并确定包衣片剂中的主要成分而不破坏片剂。透视技术和较大的采样面积相结合,有利于制药企业从仓库原辅料到最终产品销售整个环节监测假冒产品。/pp  法医和安防行业需要ST Raman™ 拉曼技术在不打开包裹的情况下安全检查和识别未知样品,从而保持证据的完整性,同时尽量减少对可疑样品的接触。/pp  strong仪器信息网:必达泰克在透视拉曼方面的优势有哪些?有什么样的专利技术?/strong/pp  strong必达泰克:/strong必达泰克正在申请专利的ST RAMAN™ 技术,采用共轴的激光激发-信号采集光学结构。 在这种设计中,使用特制的探头增加了采样深度和面积,透过包材或样品表面深入样品内部,采集到高质量的拉曼信号,以分析不透明样品内部的化学信息。/pp  这种设计的优点在于,它提供了快速、无损检测与透视能力。 该设计还具有用于常规表面拉曼测量的多功能性,并可针对包装(如双壁玻璃瓶)中的样品调整最佳焦距。 此外,i-Raman® Pro ST的特殊光学结构赋予了仪器本身极大的灵活度。多种探头附件可以很容易地互换,实现包括穿透包材、表面测量、浸入、显微、远程等多种探测方式。/pp  strong仪器信息网:请介绍必达泰克在透视拉曼方面开展的应用研究工作?/strong/pp  strong必达泰克:/strong必达泰克i-Raman Pro ST主要应用市场是原辅料鉴定和药品测试。 另一个目标市场是法医和安防现场可疑物品或其他场合遇到的危险和非法材料进行鉴别。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制