当前位置: 仪器信息网 > 行业主题 > >

涂层组织结构

仪器信息网涂层组织结构专题为您整合涂层组织结构相关的最新文章,在涂层组织结构专题,您不仅可以免费浏览涂层组织结构的资讯, 同时您还可以浏览涂层组织结构的相关资料、解决方案,参与社区涂层组织结构话题讨论。

涂层组织结构相关的资讯

  • 有机硅涂层离型膜行业的主要趋势
    尽管许多相关合作伙伴面临着全球挑战,但离型膜行业仍在不断增长:新冠疫情爆发导致2020年成为艰难的一年,但令人欣慰的是,从化学品供应商到离型膜制造商,离型膜行业的全球强劲增长对所有相关组织而言是一个好消息。而对于那些依赖纸张或有机硅的企业而言,这一情况特别具有挑战性。由于离型膜行业对于纸张和有机硅的依赖性非常严重,因此纸张和有机硅的短缺尤其给这一行业带来了挑战。市场短缺使得纸张和有机硅供应商们奋力满足需求,同时市场价格出现了飙升。事实上,在有机硅市场,由于价格上涨和不稳定的供应,许多相关方在2020年和现在的2021年考虑替代材料。离型膜的供需状况似乎没有受到太大影响。APAC(亚太地区)业绩增长最快,市场份额最*大。其中,中国凭借着在有机硅生产领域处于世界领*先地位的强劲记录,在离型膜市场中的份额最*大。其他地区(例如美国,其次是欧洲)都显示出强劲的市场增长迹象。离型膜行业的发展方向:离型膜行业正转向更薄的材料(和涂层)以及更高的生产效率,以降低成本。无论是用于饮料瓶还是大量用于医疗领域,标签占据的离型膜市场份额最*大,遥遥领*先。医疗领域的高需求推动着市场生产更薄、更容易处理的标签。这意味着人们开始使用基于薄膜的合成材料,而非市场上唯*一的基材——纸张。这些离型膜所依赖的并非典型的纸张生产方式,而是由聚丙烯、聚酯和聚乙烯制成,因此可能比传统产品类型要薄得多。为什么这些材料越来越受欢迎?因为这些薄膜合成材料最*高可以减少60%的厚度,对环境和商业具有重大影响。除了产生的废物量更少、生产效率更高外,还更轻便,储存和运输时更高效,这意味着在使用的各个阶段节省大量资金。然而,市场无法持续推动离型膜变得更薄。如果太薄,其将无法发挥作用。多年来,以纸张为基础的离型膜已证明其自身的价值,因此不会在一夜之间被取代。在压敏标签等特定关键领域,其仍然是至关重要且不可或缺的产品。传统的离型膜正发生改变,以满足多种需求,而传统纸张和有机硅离型膜将不会随处可见,而且随着环境问题变得越来越重要,尤其是在中国,合成塑料离型膜已成为一股新兴力量,可能会在未来发挥更重要的作用。日立LAB-X5000能量色散X射线荧光(EDXRF)光谱仪能够让有机硅涂层的重量分析变得更加轻松。这款坚固耐用、结构紧凑的分析仪可在实验室或生产环境中提供可靠且具有可重复性的结果。内置的大气补偿功能允许操作人员在无需氦气的情况下进行分析,从而将每次分析的成本降至最*低。应用工程师对分析方法参数进行了优化,方便对玻璃纸和粘土涂层纸进行快速而简单的分析。新型LAB-X5000可作为用户的质量保证计划的一部分,让用户全天24小时以较低的生产成本确保产品符合规范。日立已针对各种应用领域进行研究,并专业提供离型膜XRF分析解决方案。
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101
  • 仿生超疏液涂层可解决5G天线罩“雨衰效应”
    记者从中国科学院兰州化学物理研究所获悉,该所环境材料与生态化学研究发展中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关研究论文近日发表于《自然通讯》。5G天线罩是5G基站的重要组成部分,用来保护天线系统免受外界复杂环境干扰,提高天线精度和使用寿命。但是,雨水会在5G天线罩表面形成水滴或水膜产生“雨衰效应”,即水的介电常数很高,会吸收、反射大量电磁波,导致5G信号严重衰减。“避免雨水在5G天线罩表面形成水滴或水膜是解决‘雨衰效应’的关键。”中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副主任、研究员张俊平介绍,仿生超疏液涂层(超疏水、超双疏涂层)具有液滴接触角高(大于150°)、滚动角低(小于10°)等特点,液滴易从表面滚落,在自清洁表面、抗液体黏附、防液体铺展等领域具有广阔的应用前景,有望用于5G天线罩表面,解决其“雨衰效应”。然而,采用仿生超疏液涂层解决5G天线罩“雨衰效应”尚需突破涂层不能同时具有优异的耐压性、机械稳定性及耐候性的技术瓶颈。张俊平团队与山东鑫纳超疏新材料有限公司合作,研发了一种兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,该涂层能够避免雨滴在5G天线罩、雷达罩表面黏附,有效解决了其“雨衰效应”,并在全国多地5G天线罩、雷达罩上进行了实际应用。张俊平介绍,黏结剂的引入虽然能够提升涂层的机械稳定性,但也同时将低表面能纳米粒子包埋,导致涂层具有较高的表面能,进而使得涂层的超疏水性和耐压性较差。通过调研大量文献,并结合此前的研究经验,该团队对涂层进行了系统设计,成功制得兼具优异耐压性、机械稳定性和耐候性的仿生超疏液涂层。“首先,涂层的三级微/微/纳米结构以及致密的纳米结构,使其具有优异的耐压性。其次,涂层的近似各向同性结构及黏结剂的黏结作用,使其具有优异的机械稳定性。同时,我们选用具有化学惰性的原材料制备涂层,使其具有优异的耐候性。”张俊平说。此外,5G天线罩、雷达罩基材大多为ABS塑料。“这类基材具有较低的表面能,导致涂层与基材的黏结强度较弱。”张俊平说,团队通过对黏结剂的种类进行优化,筛选出与ABS等基材具有优异黏结强度的黏结剂来制备涂层,成功克服了涂层与ABS等基材黏结强度弱的缺陷。经过3年的研发、产业化和规模化应用,该涂层性能已取得大幅提升。张俊平告诉记者,未来,团队将探索更多仿生超疏液涂层的潜在应用领域,实现其在高压输电线路、桥梁、隧道防结冰,5G天线罩、雷达罩防雨衰,抗危化液体黏附,电子产品防水防油膜,自清洁市政工程等方面的工程化应用。
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 中级培训 | 如何实现最佳涂层效果:从KRÜSS的角度优化涂层和基材的性能
    研究背景各种类型的涂层,包括粘合剂和油墨,在包装优化过程中起着关键的作用。对于所有形式的涂层来说,了解并匹配基材的表面特性和涂层的特性是至关重要的,即润湿性、液滴铺展、染料吸收、短期/长期的附着力及印刷质量等。讲座中,KRÜ SS的国内外专家将揭示包装中涂层、印刷和粘接背后的科学,阐述通过不同的表界面测试方法有效地评估涂层和基材性能的原理,这些可量化、可重复的表界面测量方法能够帮助用户在生产和研发过程中实现最佳的涂层效果。我们的国内外专家们从科学和技术两方面带来了丰富的实践经验,并将在这次讲座中和广大行业用户共同探索交流。讲座内容将涵盖接触角测量、表面自由能和预处理等基本原理、测量仪器的技术性能及涂料和印刷行业的各种应用实例。此次讲座内容丰富,干货满满,且完全免费,欢迎新老用户踊跃报名参加!(本次研讨会属于内部技术培训,不提供PPT和纸质资料,请大家做好笔记呦!)讲座安排时间:5月25日(周四)下午13:00至17:30地点:上海市闵行区春东路508号E幢2楼多功能厅费用和注册:本次活动原收费每人1000元,但本次为特别回馈老客户支持,完全免费。此次讲座为线下活动,与会人员必须提前登记预订席位,每家用户的参会名额为2位。报名截止日期为2023年5月22日。讲座内容:液体涂料的评价:静态和动态表面张力的测量理论固体基材的分析:接触角、液滴铺展和附着力分析的基础知识涂层常见缺陷及其处理方法常见的的接触角测量误区实验操作和测量方法的标准化及分析……报名方法:关注公众微信号“克吕士科学仪器”- “最新资讯”。专家团队:王磊:克吕士中国公司总经理,从事KRÜ SS品牌在中国的推广超过15年,对表界面相关领域的应用及测量技术有深刻的理解和洞察。Dr.Thomas Willers:KRÜ SS GmbH应用与科学部门负责人,德国科隆大学实验物理学博士学位,负责德国总部的应用实验室、应用市场、业务发展和培训活动,在界面化学和物理方面拥有多年经验。张晶晶:克吕士科学仪器上海有限公司应用部经理,实验室负责人。研究方向为表/界面张力及泡沫的原理和应用,对KRÜ SS仪器和软件的操作及使用富有经验,长期为客户提供解决方案。杨雅雯:克吕士科学仪器上海有限公司应用工程师,在接触角、表面张力及泡沫分析领域具有多年应用经验,在高温高压领域的解决方案具有实践见解。
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。官网:https://www.bmftec.cn/links/7
  • 美国SOC为NASA洞察号火星探测器项目提供热控涂层
    SOC为美国航空航天局计划于2018年5月发射的“洞察”号火星探测器提供热控涂层。该探测器的任务是在火星表面放置一个固定的有地震仪和传热探头的装置,用于研究火星的早期地质演变。 地震仪设备是“洞察”号探测器上装载的主要科学仪器,由SOC涂层实验室为其提供热控涂层。 SOC的项目经理Maria Zimmerman指出关键技术:在三米大小的实验室里将蒸汽沉积物经加工处理后覆盖在地震仪设备组件的金制表面上,在这个实验室里让一束光照射该经过加工处理后的沉积物时光束会全部吸收,以此就可以制成横贯三个空间结构的多层均衡涂层。 SOC多年来一直承接美国航空航天局的任务,其中最为显著的是提供了太空飞行器上的开普勒望远镜、核分光望远镜阵列和钱拉德太空望远镜的涂层。
  • 如何利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验?
    要利用QUV紫外老化加速试验机对彩色涂层板进行紫外老化试验,可以按照以下步骤进行:1.准备样品:将彩色涂层板切割成适当的尺寸,确保其适应QUV试验机的样品架。同时,应注意保护样品表面以免划伤或损坏。设置试验条件:根据所需的试验条件,根据试验机的指引或使用手册,设置合适的光照强度、温度和湿度参数。这些参数应该基于所模拟的实际使用环境。2.安装样品:将切割好的彩色涂层板样品固定到试验机的样品架上,确保样品表面与试验机光源之间的距离是均匀且适当的。3.运行试验:启动试验机,根据设定的试验条件,让样品暴露在QUV试验机的紫外光源下。试验的时间可能根据需求而有所不同,可以根据具体情况进行设置。4.监测和评估:定期监测样品的变化,包括颜色变化、表面质量、表面结构、光泽度和物理性能等。这可以通过视觉观察、光谱测量和物理性能测试等方法进行。5.结果分析:根据试验数据和观察结果,评估彩色涂层板的紫外老化性能。比较试验后的样品与未经紫外老化的对照样品的差异,并分析可能的原因。通过QUV紫外老化试验,可以帮助评估彩色涂层板在长期暴露于紫外环境下的耐候性能和色彩稳定性,以指导产品改进和选用合适的材料或材料配方。在进行试验前,最好理解QUV试验机的使用方法和样品的实际使用条件,以确保试验结果的准确性和可靠性。QUV紫外老化加速试验机QUV紫外老化加速试验机是简单、可靠、易用的紫外老化试验机。世界各地使用的QUV紫外加速老化试验机数以万计,它是世界上使用广泛的紫外老化试验机。QUV紫外老化加速试验机使用特殊的荧光紫外灯管模拟阳光的照射,用冷凝湿度和水喷雾的方法模拟露水和雨水,真实地再现由阳光造成的材料损伤。损伤类型包括褪色、光泽消失、粉化、龟裂、开裂、模糊、起泡、脆化、强度减小和氧化。QUV可方便地容纳多达48个样品(75mm x 150mm),完全符合国际、国家和行业规范,确保了测试程序的可靠性和可重复性。
  • 喷涂涂层回路控制技术Coating AI
    喷涂涂层回路控制新技术Coating AI,实现人工智能涂装,大数据提升涂装质量水平喷涂涂层回路控制新技术,利用人工智能实现自动化涂层过程,提升涂装质量水平和喷涂效率。了解喷涂涂层回路控制技术Coating AI在这个视频里你可以看到,在涂装生产线上使用Coating AI喷涂涂层回路控制新技术实现人工智能涂装,通过大数据优势提升涂装质量水平。使用Coating AI人工智能涂装系统的好处:解决劳动力短缺问题:Coating AI人工智能涂装系统提供了一个专家顾问工具,可以用来定义最佳喷涂参数,节省成本:通过人工智能学习,显著降低粉末消耗,废品率和劳动强度提高喷涂质量Coating AI 可以实现稳定的喷涂质量,即使是不同人不同时间操作也能保证最后的喷涂质量重点解决的问题:喷涂过程非常复杂,控制影响喷涂过程的不同参数非常困难,需要经验丰富的工人,世界范围内缺乏有经验的喷涂工人,这可能带来的后果是喷涂过量,或者使用太多的粉末,导致次品或者废品,以此同时客户追求更高的涂层质量。Coating AI人工智能涂装技术可以解决问题,喷涂涂层回路控制技术Coating AI可以自己学习和理解喷涂过程,能够找到正确的最佳的喷涂参数,使企业能够实时优化喷涂工艺,操作简单,任何人都能够很容易地使用Coating AI调整喷涂生产线。人们可以通过任何的方法轻松访问CoatingAI,CoatingAI可以集成到生产线上,在云端运行,用户可以通过任何设备访问云端数据。操作流程:工人按照之前的操作在工件上喷涂,使用涂魔师涂层测厚仪进行涂层厚度测量,将测量结果传输到co-pilot上,然后使用该测量值优化生产线,co-pilot可以优化生产线质量,获得相同的涂层厚度,提高生产效率,喷涂效率或生产线速度。参数定义CoatingAI 人工智能涂装喷涂回路自动控制系统能够定义实现高质量涂层结果的最佳机器参数,完全独立于生产线操作员的经验闭环回路控制CoatingAI 是第一个为涂层生产线带来闭环回路控制的解决方案。与涂魔师非接触测厚的关系CoatingAI与涂魔师是合作关系,CoatingAI从涂魔师丰富的涂层测厚数据进行训练学习。点击了解更多关于涂魔师非接触无损测厚仪产品信息如果您对CoatingAI人工智能喷涂涂层回路控制技术感兴趣,欢迎联系翁开尔。
  • 石墨烯“三防”涂层技术问世 填补市场空白
    p style="text-indent: 2em "在工业生产中,涂层最常起到抗腐蚀、抗热、抗氧化等功能。像海洋这种高盐高湿的恶劣环境,电化学腐蚀能在极短的时间内将钢铁船变成一块废铁,因此常采用阴极保护与防腐涂层结合的方法来保护船体及一些暴露在烟雾等腐蚀条件下的工件、设备或部分等。/pp style="text-indent: 2em "但对于舰船燃气轮机等在高温环境下的部件来说,需要的涂层不仅要耐湿耐腐蚀,同时还要有优异的耐高温性能。最近,一种石墨烯“三防”涂层技术已在秦皇岛经济技术开发区研发成功,可应用于舰船燃气轮机、航空航天发动机高温部件保护以及舰船防盐雾及海生物腐蚀等,有力地填补了高温涂层技术应用在重盐雾地区的市场空白。/pp style="text-indent: 2em "这种石墨烯“三防”涂层技术由远科秦皇岛节能环保科技开发有限公司历时3年多时间研发成功,相关涂层材料在南海、东海重盐雾地区的高温部件上挂件测试,通过6000小时连续工作验证,使原基材在不改变属性的情况下,增加3倍以上的使用寿命,经国家权威部门认定,该产品具有防霉菌、防盐雾腐蚀、抗高温氧化功效,完全可以满足高温条件下发动机热部件1500小时的应用,解决了我国在这一领域的技术难题。/pp style="text-indent: 2em "据了解,这种石墨烯涂料主要是碳原子和稀土氧化物原子复合而成,这种复合性碳原子保护共性材料,使基础材料强度增强,形成了超保护薄膜,从而改变了隔热系数。/pp style="text-indent: 2em "据远科秦皇岛节能环保科技开发有限公司总经理闫俊良透露,随着我国在石墨烯涂层技术上取得突破,它的应用领域会逐渐扩展,“三防”涂层技术除可应用于我国舰船燃气轮机、航空发动机领域外,还可在各种远洋运输船、游轮等民用船舶上使用。这种材料一旦得到应用,预计每年可为我国节省维护费用上百亿元,并使各类装备的使用寿命和强度大幅提升。/p
  • 浙江:纳米涂层研发中心正式启动
    日前,“纳米功能涂层产业化国际论坛暨产业联合研发中心启动仪式”在杭州召开。浙江大学党委常务副书记陈子辰、浙江省科协秘书长董克军、国际溶胶凝胶协会副主席Eric、中国硅酸盐学会副秘书长谭抚、浙江省科技厅纳米专项专家组组长杨辉等出席论坛。  本次论坛聚焦探讨纳米功能涂层、溶胶-凝胶技术及其在眼镜等行业的应用,以促进中国眼镜等产业的技术创新及全球化发展。论坛中,浙江加州纳米研究院凯美特溶胶凝胶联合研发中心和赛凡功能图层联合研发中心正式启动。  与会代表建议组建浙江眼镜行业创新公共技术服务平台,攻克共性技术难关,并为企业提供个性化服务。浙江泰恒光学有限公司唐天日提出:“我们可以将3G功能和眼镜相结合,创造有特色的眼睛。只有走在市场前沿,才能更好地主导市场。”
  • 改性石墨烯增强有机硅涂层及其性能研究
    HS-DSC-101差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。改性石墨烯增强有机硅涂层及其性能研究【齐鲁工业大学 姚凯 】改性石墨烯增强有机硅涂层及其性能研究上海和晟 HS-DSC-101 差示扫描量热仪
  • 巴斯夫韩国建立环保汽车涂层研发中心
    巴斯夫正在筹建位于韩国京畿道安山市(AnsanCity,Gyeonggi Province)的涂层技术研发中心支持公司的环保水性涂层漆的研发工作 这一技术中心支持的水性漆产品主要用于汽车领域OEM生产,另外中心的建立将进一步优化巴斯夫涂层一体化整合处理操作,并促进更多经济型涂层产品的问世。  这一涂层技术中心预计将于2010年中期投入使用 巴斯夫涂层部门总裁Mr.Raimar Jahn表示,“这一韩国中心的建立将进一步强化巴斯夫国际间涂层技术网络,使我们以更优质的产品服务韩国以及全球客户。这一中心旨在促进可循环型环保产品的研究进程以及根据客户特殊需求定制产品的服务能力,因此未来可以大大提高我们的竞争优势。”  在水性涂层领域,水取代了传统溶剂型涂层中普遍存在的有机溶剂而存在,因而在很大程度上减少了有机溶剂排放对环境造成的影响。而作为汽车涂层使用时,创新型一体化处理方法将减少涂层喷刷的工作时间,从而提高资源使用效率与时间利用率。
  • 德国 AIM Systems发布德国AIM Systems全自动涂层测厚仪CoatPro新品
    德国AIM Systems公司简介 德国AIM Systems有限责任公司一家是专注于工业涂布涂覆无损检测技术的光电科技公司。公司集研发、生产、销售与服务为一体,拥有无接触无损涂层检测的国际领先专利技术和产品,可为客户提供定制化的涂层测厚系统解决方案和专属产品。公司由Stefan Boettger博士在德国萨尔州圣英贝特市创立。公司顺利通过了国际质量管理体系ISO9001认证。 Boettger博士及其领导的核心技术团队,多年来一直致力于利用光热红外法对涂层无损检测的技术研发和工业应用,具有丰富的工业项目实践经验,曾为众多包括大众、奥迪、戴姆勒、采埃孚、蒂森克虏伯、特瑞堡集团、奥钢联、杜尔集团、ABB等几十家全球知名企业成功地提供过定制化的涂层测厚系统解决方案和产品,获得了用户的广泛认可。 北京东方德菲仪器有限公司是德国AIM System公司在中国区的指定代理商,作为AIM Systems公司在中国区的授权代理商,东方德菲将继续秉承“Leading by Professional因专业而领先”的理念,与AIM Systems公司一起用我们严谨的产品研发理念、深厚的工业应用经验、精湛的无损检测技术、卓越的产品、和真诚的服务为您的智能制造助力,我们期待与您的合作!德国AIM System全自动涂层测厚仪CoatPro 德国AIM System全自动涂层测厚仪CoatPro由德国AIM Systems公司研发生产,采用光热红外法技术原理,可被固定安装在机器臂或其他横动装置上,与电脑及配套测量软件组成实时在线涂层测厚系统,在涂装线上对涂层的湿膜或干膜厚度进行实时无损无接触在线测量,为客户提升涂装质量和优化控制涂装工艺提供重要的检测手段和数据支持。 一、全自动涂层测厚仪CoatPro基本原理---光热红外探测技术原理 待测样品在调制光源的激励下吸收了光辐射的能量,产生红外热辐射即热波,由于待测样品内部的多层结构或者自身缺陷而存在分界面特性的差异,导致红外热波在通过分界面时波形发生变化,不同层状结构厚度以及样品缺陷形貌对热波波形变化有不同的影响,通过探测反射热波形的随时间变化及相对激发光信号的延迟可以分析得到待测样品层状结构以及缺陷形貌尺寸的信息。二、CoatPro技术参数:测量精度:±0.5微米或更优测量范围:3-300微米工作距离:100± 30 毫米距离容差:±50毫米允许探测角度:±60°测量时间:1-2秒/点 三、CoatPro技术优势:无损无接触式测量适用范围广: 适用于不同材料上的不同涂层的干膜和湿膜厚度测量, 可测量的基材材质不限(金属、塑料、橡胶、复合材料等), 可测量的涂料种类不限(油漆、粉末涂料、粘胶剂、润滑涂层等) 可测量的涂装工艺不限可在曲面、粗糙表面和各种厚度的基底上测量高精度,通常在±0.5μm或更小LED光源,使用安全,无辐射和激光危害满足工业防爆安全区要求可自动生成检测报告和数据统计可在线实时测量, 适配于涂装机器人设备维护成本低四、CoatPro典型应用领域全自动涂层测厚仪CoatPro的应用领域极其广泛,不受限于涂层的基材材质,也不受限于涂装材料以及涂装工艺,典型应用领域如下:油漆涂装领域(例如汽车车身漆层、机车车身漆层以及零部件漆层的厚度量)塑料涂装领域(例如塑料外壳、电路板、汽车内饰/外饰上的涂层厚度测量)卷材涂装领域(例如钢卷和铝卷表面镀膜厚度的测量)粉末涂装领域(例如在粉末涂装加热烘烤前对膜厚进行测量) 其他涂装领域(例如橡胶或者复合材料上的涂层厚度测量) 用于实验室检测 创新点:1.采用了独特的采用光热红外法技术原理2.适用范围广:适用于不同材料不同涂层的干、湿膜厚度测量,且基材材质不限、涂料种类不限3.高精度,通常在?0.5µ m或更小4.LED光源,使用安全,无辐射和激光危害德国AIM Systems全自动涂层测厚仪CoatPro
  • 综述:红外热成像技术在FRP复合材料/热障涂层无损检测应用中的研究现状与进展
    红外热成像是具有非接触、检测面积大、检测结果直观等突出优势的新兴无损检测技术,近年来被广泛应用于金属、非金属、纤维增强复合材料(FRP)以及热障涂层等的无损检测与评价。图1 某航空发动机及其涡轮叶片热障涂层结构示意图近日,江苏省特种设备安全监督检验研究院、南京农业大学和东南大学的科研团队在《红外技术》期刊上发表了以“红外热成像技术在FRP复合材料/热障涂层无损检测应用中的研究现状与进展”为主题的文章。本文首先简要介绍了红外热成像技术的基本原理和检测系统构成,特别是对光学、超声以及电磁等主要热激励形式的特点和优劣势进行了对比。然后,根据热激励形式的发展历程,详细介绍了光激励红外热成像技术在FRP复合材料和热障涂层无损检测与评价方面的研究现状与进展,重点关注了FRP复合材料/热障涂层热成像无损检测中的热难点问题。最后总结并展望了FRP复合材料/热障涂层红外热成像无损检测技术的未来发展趋势。红外热波成像技术任何高于绝对零度的物体都会向周围环境发出电磁热辐射,根据Stefan-Boltzmann定律,其大小除与材料种类、形貌和内部结构等本身特性有关外,还与波长和环境温度有关,而红外热波成像技术即是利用红外热像仪通过遥测材料表面温度场,从而实现对材料结构特性和物理力学性能的无损检测与评价。根据被测对象是否需要施加外部热激励,该技术可分为主动式与被动式,其中主动式红外热波无损检测技术由于具有更高的热对比度与检测分辨率,近年来受到极大的关注。主动式红外热波检测技术是利用外界热源对待测试件进行热激励,同时利用红外热像仪记录其表面温度场的演化历程,并通过对所获得的热波信号进行特征提取分析,以达到检测材料表面损伤和内部缺陷的目的。根据外激励热源的不同,该技术又可被分为光激励红外热成像、超声红外热成像与电涡流红外热成像等。图2总结了目前主动式红外热波成像检测技术中的主要分类依据及分类结果。图2 主动式红外热成像检测技术的主要分类依据及结果虽然红外热成像无损检测技术种类众多,但由于所检测对象琳琅满目,且结构与物理特性比较复杂,因此在实际应用中需结合检测对象本身特性,选择一种相对合适且高效的主动式红外热波成像无损检测方法,从而达到对待测对象进行高分辨率、高精度、快速可靠检测与评价的目的。光激励红外热成像是主动红外热成像中一种相对高效的无损检测方法,由于其非接触、非破坏、检测时间短、检测面积大、易于实施等突出优点,在热障涂层结构、纤维增强复合材料无损检测与评价中备受关注。在该方法中,当外激励光源入射到待测试件时,基于光热转换效应所产生的热波扩散并与内部界面或缺陷相互作用,同时,利用红外热像仪远程记录待测试件表面的瞬态热响应,即红外热图像序列。然后,借助先进的后处理算法对所获取的热图像序列进行综合分析,从而实现待测试件的无损检测与定量表征。图3为光激励热成像技术原理和目前常用光激励红外热成像检测系统。图3 光热无损检测原理及典型闪光灯激励热成像检测系统此外,根据热激励形式的不同,红外热成像技术又可被分为红外脉冲热成像、红外锁相热成像与红外热波雷达成像,这也是根据红外热成像发展历程、目前最为常用的分类方法之一。红外脉冲热成像技术检测效率高,但其探测深度通常较浅,无法满足对材料深层缺陷高分辨率检测的要求;且其检测结果易受表面加热不均匀、表面反射率及发射率不均等影响,瞬时高能量脉冲也易使材料表面产生热损伤。为克服红外脉冲热成像技术的局限性,红外锁相热成像技术应运而生,但由于该技术在单一调制频率热激励下仅能探测与其热扩散长度相对应深度的内部缺陷,因此对FRP复合材料或热障涂层类结构内不同深度或不同铺层界面的缺陷,需选择不同调制频率对待测试件进行激励,因此,该方法检测时间仍相对较长且易出现漏检。红外热波雷达是一种新兴的无损检测技术,具有红外脉冲热成像与红外锁相热成像技术所无法比拟的突出优势,如高分辨率、高检测效率、大探测深度等,近年来备受关注。表1总结了红外脉冲热成像、红外锁相热成像以及红外热波雷达成像这3种技术的优缺点及适用范围。表1 红外脉冲热成像、红外锁相热成像以及红外热波雷达成像检测技术的对比FRP复合材料光激励红外热成像无损检测研究现状红外脉冲热成像检测技术红外脉冲热成像技术是发展最早且目前应用最为广泛的一种红外热波无损检测技术,该技术是使用高能光源(如激光、卤素灯、闪光灯)对待测试件进行非常短时间(通常几毫秒)的脉冲激励加热,由于内部界面或缺陷的热阻效应会对待测试件表面温度场产生差异,然后,利用红外热像仪同步记录这种温度差异,并借助于先进的后处理算法可实现对待测试件内部界面或缺陷的无损检测与评价。红外脉冲热波检测技术检测速度快,且对厚度较小的试件具有较好的检测结果,但其探测深度非常有限,不适用于检测大厚度构件。此外,该技术还易受表面加热不均、表面发射率不均等影响,瞬时高能量脉冲也易使试件表面产生热损伤。FRP复合材料的强各向异性和显著内部界面效应,极易使得其产生界面分层等类型缺陷,极大影响FRP复合材料结构或装备的使用性能。英国巴斯大学Almond等对CFRP复合材料裂纹状缺陷的边缘效应进行了研究,并提出了一种瞬态热成像法测量缺陷尺寸的方法。加拿大拉瓦尔大学Maldague等提出了一种将脉冲热成像与调制热成像技术相结合的红外脉冲相位热成像检测技术,该技术基于傅里叶变换可获得能无损表征CFRP复合材料的相位图像,因此克服了脉冲热成像技术对表面加热均匀性的限制。意大利学者Ludwig等研究了红外脉冲热成像检测技术中的热损失与三维热扩散对缺陷尺寸测量的影响。为了克服脉冲热成像技术的局限性,加拿大拉瓦尔大学Maldague等随后提出了双脉冲激励热成像检测技术,并表明该技术可进一步增强热对比度。加拿大学者Meola等利用脉冲热成像法对GFRP复合材料的低速冲击损伤进行了无损检测。英国巴斯大学Almond等又通过解析法研究了脉冲热成像技术的缺陷检测极限与缺陷径深比、激励能量以及缺陷深度都密切相关。伊朗桂兰大学Azizinasab等还提出了一种使用局部参考像素矢量来处理脉冲热成像检测结果的瞬态响应相位提取方法,实现了CFRP复合材料缺陷检测和深度预测。此外,为增强FRP复合材料缺陷检测效果,许多集成先进特征提取方法的脉冲热成像检测技术也被提出,例如主成分热成像、矩阵分解热成像、正交多项式分解热成像和低秩稀疏主成分热成像。国内的哈尔滨工业大学、电子科技大学、湖南大学、东南大学、火箭军工程大学、首都师范大学、南京诺威尔光电系统有限公司等科研单位也对FRP复合材料红外脉冲热成像无损检测技术开展了大量研究工作,并取得了丰硕的研究成果。首都师范大学研究了GFRP复合材料脉冲热成像检测的热图像序列的分割与三维可视化,并提出了一种基于局部极小值的图像分割算法。北京航空航天大学对FRP复合材料次表面缺陷红外脉冲热成像无损检测的检测概率进行了深入研究,并分析了阈值、特征信息提取算法等对检测概率的影响。此外,国内研究学者还提出集成了稀疏主成分分析、矩阵分解基算法、流形学习和快速随机稀疏主成分分析等算法的红外脉冲热成像检测技术。红外锁相热成像检测技术红外锁相热成像技术是20世纪90年代初发展起来的一种新型数字化无损检测技术,该技术是利用单频正弦调制的热激励源对待测试件进行加热,然后,待测试件内部将也产生一个呈周期性变化的温度场,由于缺陷区与无缺陷区处的表面温度场存在差异,因此采用锁相算法可对表面温度场进行幅值与相位提取,最终实现对材料表面损伤或内部缺陷进行无损检测与评价。红外锁相热成像检测技术的探测范围要大于红外脉冲热成像检测技术,此外,通过降低激励频率大小可增大探测深度。英国华威大学和意大利那不勒斯大学等研究学者较早地将红外锁相热成像技术用于CFRP航空件缺陷检测,并证实了该技术与瞬态热成像与超声C扫描无损检测技术相比,更适于CFRP航空件表面冲击损伤的快速无损检测。Pickering等研究了同等激发能量下,红外脉冲热成像和红外锁相热成像对CFRP复合材料分层缺陷的检测能力。Montanini等证实了红外锁相热成像技术也可用于厚GFRP复合材料的无损检测,并深入研究了与缺陷几何形状和深度相关的检测极限问题。随后,Lahiri等发现随着GFRP复合材料缺陷深度增加,利用红外锁相热成像技术所获得的相位对比度增大,而热对比度却减小。Oliveira等提出了一种融合光学锁相热成像和光学方脉冲剪切成像的CFRP复合材料冲击损伤高效表征方法。国内哈尔滨工业大学、浙江大学和东南大学等科研人员也对FRP复合材料红外锁相热成像检测开展了较多有价值的研究工作。哈尔滨工业大学对CFRP复合材料分层缺陷的大小和深度以及热物性的无损检测与定量评价,开展了系统的理论与实验研究,并提出了多种先进特征增强算法来提高其内部分层缺陷的可视性。浙江大学使用红外锁相热成像无损检测CFRP复合材料分层缺陷,并利用深度学习对测量过程中的传感器噪声、背景干扰等进行有效去除,显著提高了CFRP复合材料次表面缺陷无损检测与定征的精度。此外,东南大学针对CFRP复合材料分层缺陷红外锁相热成像无损检测中所存在的热成像数据缺失以及低帧率导致的低分辨率问题,提出了基于低秩张量填充的热成像检测技术,不仅可有效解决红外锁相热成像数据高度缺失问题,还可显著提高常用红外热像仪的帧频率。红外热波雷达成像检测技术近年来,红外热波雷达成像技术因检测效率高和灵敏度高以及不易对材料产生热损伤而受到越来越多的关注,并开始应用于FRP复合材料的无损检测与评价。红外热波雷达成像技术具有红外脉冲热成像技术与红外锁相热成像技术所无法比拟的优势,但由于被用于FRP复合材料无损检测与评价的时间并不长,尚存在一定的局限性。例如,由于通常采用较低调制频率激励源去探测较深范围的内部缺陷信息,随之而来的是热扩散长度的增大,致使检测分辨率降低;另外,为提高检测信号的信噪比,通常采用增加热流激励强度的方法来解决,但在检测重要目标构件时,为防止对检测对象的热损伤,这种方法并不适合。加拿大多伦多大学Mandelis教授与印度理工大学Mulaveesala教授首先将线性调频雷达探测技术引入到红外热成像检测技术中,提出了脉冲压缩热成像或热波雷达无损检测技术。为显著提高探测热波信号的信噪比与灵敏度,随后提出了热相干层析成像和截断相关光热相干层析成像技术,截断相关光热相干层析成像技术的具体原理如图4所示。印度理工学院与印度塔帕尔工程技术大学等科研人员还将脉冲压缩热成像与红外脉冲热成像等其他检测技术在检测FRP复合材料次表面缺陷时的检测性能进行了对比,并分析了各种技术的优势所在。为增强FRP复合材料分层缺陷检测,比利时根特大学最近也提出了离散频率相位调制波形的热波雷达技术,并证明了该技术具有更高的深度分辨率。图4 截断相关光热相干层析成像检测技术原理:(a)截断相关光热相干层析成像数学实施;(b)激光诱导热成像系统框图国内的哈尔滨工业大学、东南大学、电子科技大学和湖南大学等科研人员也对脉冲压缩热成像或热波雷达开展了较多的研究工作,并取得了重要的创新研究成果。哈尔滨工业大学较早地将红外热波雷达成像技术拓展到CFRP复合材料铺向和分层缺陷的无损检测与评价,并对热波雷达检测技术的特征提取方法也开展了深入研究。湖南大学和电子科技大学还分别用感应红外热成像/热波雷达检测技术和参考脉冲压缩热成像检测技术对CFRP复合材料分层缺陷检测,并取得了较为满意的检测效果。最近,东南大学也提出了正交频率相位调制波形的热波雷达检测技术,可有效增强CFRP复合材料分层缺陷的检测效果。热障涂层红外热波成像无损检测研究现状关于热障涂层红外热波检测技术的研究始于20世纪80年代,伴随着信息电子与计算机技术的快速发展,近年来在航空和先进装备等领域受到极大关注。在目前的热障涂层红外热成像无损检测中,仍以光激励红外热成像检测技术为主,这仍然是由于光激励红外热成像技术具有非接触、快速、检测面积大、检测结果直观等突出优点,非常适合于热障涂层结构性能与健康状况的在线检测与表征。根据激励热源生热机理的不同,除光激励红外热成像检测技术外,其他无损检测方法还包括:超声热成像、振动热成像和涡流热成像。红外脉冲热成像检测技术针对热障涂层红外脉冲热成像无损检测,国外专家学者较早地开展了相关研究,并取得了较多的研究成果。Cielo等利用红外脉冲热成像技术无损检测热障涂层,研究表明当光学穿透深度远小于而加热区域远大于涂层实际厚度时,该技术可有效表征热障涂层热物性和表面涂层厚度。Liu等提出了可无损检测热障涂层内部裂纹和厚度不均匀性的稳态热流激励热成像技术,可实现直径远小于1 mm的裂纹检测。Shepard等利用红外脉冲热成像技术对热障涂层厚度和脱粘缺陷进行无损检测,并结合先进后处理方法提高了时空域分辨率和信噪比。Marinetti与Cernuschi等利用红外脉冲热成像技术结合机器学习和相位特征提取方法,系统地研究了热障涂层结构中的表面涂层厚度变化、脱粘缺陷以及涂层过厚与粘附/脱粘缺陷的区分问题。随后,为无损评价热障涂层老化程度以及完整性,Bison与Cernuschi等利用红外脉冲热成像技术检测了热障涂层面内与深度方向热扩散率以及孔隙率。此外,利用红外脉冲热成像检测技术还可监测热障涂层损伤演化历程以及寿命评估,且热障涂层粘结界面处粗糙度形貌、深度以及基底强度等对其损伤演化也有重要影响。Ptaszek等还研究了热障涂层表面非均匀及红外透光性等对其光热无损检测的影响。最近,Mezghani等利用激光激励红外脉冲热成像技术无损检测了表面涂层厚度变化。Unnikrishnakurup等利用红外脉冲热成像技术和太赫兹时域谱技术同时对不均匀涂层厚度进行测量,并获得了对热障涂层厚度估计小于10.3%的平均相对误差。虽然我国关于热障涂层红外脉冲热成像无损检测的研究起步较晚,但北京航空航天大学、北京理工大学、哈尔滨工业大学、陆军装甲兵学院和北京航空材料研究院等的科研人员仍取得了重要研究成果。北京航空航天大学利用红外脉冲热成像技术,通过使用有限元数值模拟与热成像检测实验方法,对存在脱粘缺陷和厚度不均匀时热障涂层表面温度场以及热障涂层的厚度与疲劳特性进行了较为深入的研究。北京航空材料研究院利用闪光灯激励红外脉冲热成像技术不仅检测出直径小于0.5 mm的脱粘缺陷,还识别出了肉眼无法观察到的微裂纹。海军工程大学利用有限体积法研究了脉冲热激励下热障涂层脱粘缺陷时表面温度场相位差变化,并利用Levenberg-Marquardt算法对涂层厚度和脱粘缺陷位置进行定量化表征。哈尔滨工业大学将红外脉冲热成像技术与模拟退火和马尔科夫-主成分分析-神经网络等方法相结合,实现了热障涂层不均匀厚度和脱粘缺陷深度与直径的有效量化确定。最近,哈尔滨商业大学还提出了一种基于同态滤波-分水岭-Canny算子混合算法的长脉冲热成像检测技术,不仅可有效识别热障涂层脱粘缺陷的边缘,还增强了缺陷特征提取效果。陆军装甲兵学院采用脉冲红外热成像检测技术对热障涂层厚度与脱粘缺陷进行了较为系统的研究,并表明热图重构及先进后处理算法可有效提高表面涂层厚度表征的精度和脱粘缺陷的检测效果。近来,关于热障涂层激光扫描热成像技术的无损检测与评价研究也开始出现,北京理工大学和南京理工大学利用线型激光扫描热成像技术实现了对热障涂层脱粘缺陷以及20~150 μm厚薄涂层的高精度无损检测与评价。为了检测热障涂层表面微小裂纹,北京理工大学还开发了一种将线型激光快速扫描模式与点激光精细扫描模式相结合的激光多模式扫描热成像检测技术,实现了仅9.5 μm宽表面微小裂纹的高效检测。红外锁相热成像检测技术不同于热障涂层红外脉冲热成像无损检测研究,国内专家学者较早地开展了热障涂层红外锁相热成像无损检测的研究,而国外对此的研究还很少。例如,韩国国立公州大学Shrestha和Kim利用红外脉冲热成像技术和红外锁相热成像技术对热障涂层表面不均匀涂层厚度进行了无损检测与评价,并开展了有限元数值模拟与热成像检测实验分析了各种技术的优势所在。国内的哈尔滨工业大学、火箭军工程大学等为基于红外锁相热成像技术的热障涂层无损检测与评价研究做了积极探索。火箭军工程大学利用红外锁相热成像技术对涂层厚度进行检测,并表明该技术可实现对涂层厚度的快速检测,且检测精度可达到95%。哈尔滨工业大学利用红外锁相热成像检测技术和热波信号相关提取算法对热障涂层脱粘缺陷进行检测,并研究了光源功率、分析周期数和激励频率大小等对检测结果的影响。随后,哈尔滨工业大学利用激光激励红外锁相热成像技术高精度地量化了SiC涂层碳/碳复合材料的薄涂层厚度分布的均匀性。上海交通大学针对热障涂层内部裂纹缺陷的快速无损检测与评价,也提出了一种基于多阈值分割和堆叠受限玻尔兹曼机算法的红外热成像无损检测技术。红外热波雷达成像检测技术红外热波雷达成像作为一种新兴的无损检测技术,其高信噪比、大探测范围等突出优势更利于热障涂层次表面脱粘缺陷的高精度无损检测。而目前关于热障涂层红外热波雷达成像无损检测与评价的研究还鲜有报道,目前仅有国内的哈尔滨工业大学和东南大学针对热障涂层红外热波雷达成像无损检测开展了相关的理论与热成像检测实验研究工作。哈尔滨工业大学利用红外热波雷达成像技术对热障涂层脱粘缺陷进行检测,该技术利用线性调频信号调制光源强度,并引入了互相关和线性调频锁相提取算法,研究表明该技术可实现热障涂层脱粘缺陷的有效检测。东南大学基于Green函数法,对热障涂层光热传播理论进行了较为深入的研究,并提出了一种先进非线性调频波形的脉冲压缩热成像检测技术,可实现热障涂层次表面脱粘缺陷的高信噪比、大探测深度的高分辨率检测。结束语本文介绍了红外热成像技术在FRP复合材料和热障涂层无损检测应用中的研究现状和进展,通过文献调研和相关研究结果分析,可发现,由于FRP复合材料和热障涂层的复杂结构特性,使得传统的无损检测技术无法较好地实现高效可靠的无损检测与评价。作为新兴的无损检测技术,红外热波雷达成像技术由于具有高分辨率、大探测深度、检测结果直观等突出优点,为FRP复合材料和热障涂层的高精度无损检测与评价提供了新契机。此外,在对FRP复合材料和热障涂层红外热成像无损检测进行研究的过程中,笔者也发现,红外热成像无损检测技术的发展还面临着一些主要瓶颈制约问题,也促使红外热成像检测技术须向多样化、智能化、集成化和多源信息融合方向发展,呈现出以下发展趋势:1)多样化传统无损检测方法和红外热成像等新型无损检测技术都有其各自的优缺点及适用范围,随着检测对象的多样化和检测要求的多元化,所需要的检测手段也呈现多样化发展的趋势,具体体现在:①热激励源由卤素灯、超声和电磁等向半导体激光器、相控阵超声等其他热激励形式发展;②随着计算机和电子信息技术的快速发展,传统的红外脉冲热成像和红外锁相热成像向着新兴的先进激励波形脉冲压缩热成像或热波雷达成像检测技术方向发展。2)智能化近年来人工智能技术的快速发展使得基于深度学习模型的红外目标识别与跟踪方法取得了巨大进步,这无疑为红外热成像无损检测技术的进一步发展提供了很好的发展契机。深度学习方法的高识别率特点使其在红外目标特征识别、红外图像分割与分类方面性能优异,在精度和实时性方面,甚至远远赶超传统检测方法。人工智能赋能红外热成像检测技术,有望取代人工判断,推动红外热成像无损检测技术向着智能化检测方向发展。3)集成化红外热成像检测系统通常需要激励热源、红外热像仪、光路等调节装置、固定装置等模块,体积较大、结构较为复杂,且仍需人工或仪器自动采样。为满足实际无损检测应用中原位测量及低能耗的需求,红外热成像检测技术需逐步向小型集成化方向发展,最终实现无损检测现场的便携式携带和操作。4)多源信息融合发展多源多模态热成像数据能比单一热成像数据提供更多的关键信息,此外,在信息呈现和表达上,多来源、多模态红外热成像数据还增加了无损检测结果的鲁棒性。因此当检测要求较高时,常常需要采用优势互补、多种检测方法相结合的方式,通过多源多模态热成像数据的融合与集成,最终提供优质、高效、安全、可靠的无损检测解决方案。因此,红外热成像技术也需向多源信息融合方向发展。
  • 《Soft Matter》:利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 μm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。 基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。 总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。
  • 标准缺失 儿童玩具涂层安全需警惕
    美国消费品安全委员会(CPSC)最近宣布了一项暂行政策,关于部件测试和证书在儿童产品及其它消费品中涂层的铅含量限值为0.009% (90ppm)和儿童产品非涂层的铅含量限值为0.03% (300ppm)。  此前,因涂层铅含量超标,中国产玩具、服装、饰品等被美国CPSC多次召回,2010年1月26日年,美国消费品安全委员会与Blip玩具公司联合宣布对中国产Nature Wonders HD花马玩偶实施自愿性召回。召回原因为,该花马表面油漆的铅含量超标,违反了美国联邦含铅涂料标准。2009年10月6日,美国消费品安全委员会CPSC与Daiso(加利福尼亚)有限公司联合宣布对中国产木制玩具、中国产儿童玩具、钱包和笔袋实施自愿性召回。召回原因为,笔袋或钱包上的拉链和平衡玩具表面涂料的铅含量超标,违反了美国联邦含铅涂料标准 充气棒球棒的DEHP(邻苯二甲酸(2-乙基己基酯))含量超标,违反了美国联邦邻苯二甲酸酯限量标准。7、8月份中国产玩具产品也曾多次遭美国消费品安全委员会CPSC召回,9月份召回次数有所减少,但10月份目前已有两宗,这也继续给出口企业的质量管控敲响警钟。  美国及其他欧洲国家对产品质量特别是儿童用品的标准十分严格,除了CPSC,加拿大卫生部发布的关于儿童玩具表面涂层含有特定重金属的通知规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。一方面,我们要看到,这对于以出口为主的国内企业提出了更高的要求标准,另一方面,我们也不禁要问,为什么国内市场儿童产品质量标准多年来一直处于缺失的状态呢?  临近春节,中国人的传统习俗是走亲拜友,如果家中有小朋友的,可能会收到很多玩具、儿童用品等。细心的家长不妨留意一下,这些产品上可有质量标准认证、完整的警示标签、追踪标签等?恐怕大多数产品都不能提供完整的信息。排除某些无良商家制造的假冒伪劣产品,即使是正规厂家生产的产品,也很少将这些消费者本应知晓的信息标注在产品上。究其原因,很重要的一点是国内对于儿童产品没有像CPSC的规定一样严格的标准,或者即使有标准,其限制也不够严格。因此造成目前市场上流通的儿童玩具质量安全性良莠不齐,家长选购玩具时对其安全性不能完全信任的现状。  含重金属的涂料做涂层以提高部件的亮度和美观度,但高浓度的重金属铬对人体皮肤黏膜有刺激作用,易引起皮炎、湿疹、气管炎和鼻炎,并有致癌作用。尤其是儿童玩具产品,对自我保护不强,器官幼嫩的儿童伤害更加严重。笔者在搜集国内市场儿童玩具涂层检测结果时发现,这方面的报道并不多见,只有2009年7月,北京3种儿童玩具涂层涂料不合格下架,其中,广东飞轮科技实业有限公司生产商经销的乐豹爵士鼓,重金属铬含量超标下架等寥寥几条报道。与外销玩具频频被召回相比,国内市场玩具涂层不合格的报道如此之少,是因为国内市场的儿童玩具比欧美国家更加安全吗?笔者认为,恐怕更主要的原因是我们的检测标准不够严格,检测力度不够大所致。这样的对比,不仅不能让人放心,反而使家长们更为担忧。  孩子是我们民族的未来,新的一年,我们希望国家能够加大儿童玩具产品质量检测力度,明确产品标识,让孩子们每天相伴的玩具不仅是新奇有趣的,更是安全的,希望食品、玩具损害儿童健康的新闻不在见诸报端,希望每个孩子都能健康成长。事实上,随着涂料技术的进步,制品表面涂层正朝着绿色环保的方向发展。在涂料企业和国家监管部门的共同努力下,让我们共同创造一个更加安全的儿童产品消费环境!
  • 案例分享‖东华分析DH7000系列电化学工作站GΩ量级金属涂层EIS测试
    电化学阻抗谱(EIS)是腐蚀科学中一种重要的频率域研究测试方法,是研究金属电化学腐蚀动力学、金属和涂层的腐蚀机制及耐蚀性能的重要方法之一。涂层是防止金属腐蚀的一种重要手段,用EIS方法可以在不同频率段分别测得从参比电极到涂层之间的双电层电容Cdl、溶液电阻Rs、电荷传递电阻Rct以及涂层微孔电容等其它与涂层耐腐蚀性能和涂层腐蚀过程的相关信息。然而,金属涂层一般具有高阻抗的特性,其阻抗量级可以达到GΩ以上,需要测试仪器具有非常高的输入阻抗以及具备精确采集微小信号的能力。如何准确测量并得到该量级下涂层的交流阻抗谱,具有非常大的难度。东华分析DH7000系列电化学工作站配合法拉第屏蔽箱,能够准确测量高达百GΩ阻抗量级的涂层阻抗。接线方式:常规三电极接线方式,SE与G短接后接屏蔽箱,可有效提高仪器输入阻抗以及降低体系噪声。图1 接线方式测试案例:图2 7000C测试高阻涂层样品阻抗图Nyquist图Bode图双参比电极:常用参比电极具有良好的电极电势稳定性,但是有一些参比电极由于存在多孔烧结陶瓷或烧结玻璃封口,它们的电阻较大,与恒电势仪配合使用时,往往使测量的响应时间变慢,而且增加了50Hz的干扰,在高频时,会出现相位偏移(超过90°)的问题。为了得到电极电势同时又不影响实验响应时间的参比电极,可把普通参比电极与铂丝电极按图 3 相连接,组成一只双参比电极。这种双参比电极的电势由普通参比电极所决定,它能保持良好的电极电势稳定性,而且使用双参比电极时,50Hz干扰可由电容 C滤去,从而减少了干扰,大大缩短响应时间。图 3 双参比电极结构图4 使用双参比电极前后高阻涂层样品频率—相位角图
  • 特种无机涂层重点实验室09年年会召开
    12月20日,中国科学院特种无机涂层重点实验室2009年度学术委员会会议在上海硅酸盐研究所召开。丁传贤院士、孙晋良院士、胡行方研究员等实验室发展顾问,罗宏杰教授、吴国庭研究员、朱美芳教授、沈红卫教授、宋志棠研究员、赵小翔研究员、韦平高级工程师、宋力昕研究员、祝迎春研究员等学术委员会委员出席会议。上海硅酸盐所科技一处处长王东和实验室部分科研人员列席了本次会议。  会议由实验室学术委员会副主任、上海硅酸盐所所长罗宏杰教授主持。罗宏杰所长首先致欢迎辞,对各位发展顾问和学术委员会专家的到来表示热烈欢迎。随后,各位专家听取了实验室主任宋力盺研究员所作的中科院特种无机涂层重点实验室2009年度工作汇报。报告总结了实验室一年来各项工作情况,包括各研究领域最新研究进展、学术论文发表和专利申请、在研课题及到位经费、人才队伍建设以及开放基金执行情况等。会议还听取了学委会委员沈红卫教授所作的“Z94.3A重型燃机的简要介绍”和朱美芳教授所作的“有机/无机杂化功能材料及其应用”特邀学术报告。  委员们审议了实验室年度工作报告,充分肯定了实验室挂牌一年来在学科方向凝练、科研进展、队伍建设等方面取得的显著成绩。并就实验室在研究方向的调整、加强学科交叉、国内外合作交流及2010年度开发课题等问题进行了热烈讨论,提出了许多宝贵的意见和建议。  专家们还参与了实验室学术交流活动。刘宣勇研究员、陶顺衍研究员以及赵丽丽副研究员分别作了“新型生物活性涂层研究”、“新型高温热障涂层的研究进展”和“空间对地观测系统关键材料技术研究”的学术报告。所内部分研究生也积极参加了学术交流活动,并就各自感兴趣的问题与三位报告人进行了热烈的交流。
  • 我司再次中标马钢硅钢项目涂层测厚仪项目
    2013年12月2日,我司独家代理的日本Kurabo公司的硅钢涂层测厚仪采购招标中,RX400产品凭借独特的优势和市场业绩,再次中标。
  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 加拿大发布玩具表面涂层重金属含量法规
    近期,加拿大卫生部发布了一则关于儿童玩具表面涂层含有特定重金属的通知。该通知提醒所有玩具制造商、进口商和零售商,儿童玩具必须经过重金属含量测试,证明完全符合加拿大的法规之后,才可以进入加拿大市场销售。该通知同时公布了上述重金属的法定限量及测试方法。  儿童玩具进入加拿大市场需符合加拿大《危险产品法案》及《危险产品(玩具)条例》,该法规规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。所有制造商、进口商、经销商和零售商均有责任保证,在加拿大宣传、进口或销售的任何玩具(包括二手玩具)都已符合《危险产品法案》中规定的所有适用的安全规定。  同时,该通知还特别提到,在产品制造过程中使用的标签和贴花纸也属于表面涂层。由于,在许多情况下(特别是在重金属方面),加拿大的法规及相关的测试方法不同于美国或欧洲,因此需要相关人员特别注意。检验检疫专家建议,各相关机构及生产出口企业,应制定针对不同市场玩具重金属限量要求及检测方法的生产应对措施,实行“按需生产”,同时积极了解目标市场法规变化,进行有针对性检测,做到有备无患。
  • 瑞典禁止幼儿食品包装涂料和涂层含BPA
    瑞典近日批准了禁令,禁止幼儿食品包装涂料和涂层中含双酚A(BPA)。新法律将从2013年7月1日开始生效。  2012年5月,瑞典环境部(Swedish Ministry of Environment)曾宣布采取措施,禁止在3岁以下儿童食用的食品包装材料中含BPA。  2013年1月4日,瑞典法典(Swedish Code of Statutes, SFS)公布了法规SFS 2012:991,禁止3岁以下儿童食用食品包装涂料和涂层中含BPA。新规修订了食品法规2006:813,并将于2013年7月1日生效。  通过批准新措施,瑞典成为继奥地利、比利时、丹麦和法国后欧盟第五个制定某种形式的禁令,在特定材料和/或产品中禁止BPA的成员国。  新法律的重点以及与欧盟及其他成员国有关BPA禁令的比较如表格一所示:  表格一管辖范围法律引文物质范围要求所指一般是BPA含量,除非另有说明生效日期欧盟欧盟(EU)10/2011法规BPA食品接触塑料模拟食品(迁移)中≤0.6毫克/千克2012年12月欧盟欧盟(EU)321/2011法规BPA1岁以下儿童用聚碳酸酯婴儿奶瓶禁止2012年6月奥地利食品安全和消费者保护法案(LMSVG)BPA奶嘴和牙胶禁止2012年1月丹麦丹麦兽医和食品管理局BPA3岁以下儿童用食品接触材料和物品禁止2010年比利时2012年9月法案BPA3岁以下儿童用食品接触材料和物品禁止2013年1月1日法国2010-729法案BPA婴儿奶瓶禁止2010年2012年12月2012-1442法案BPA3岁以下儿童用食品接触材料和物品(2006/141/EC指令,第二条)和较大婴儿配方奶粉(1999/21/EC指令)禁止2012年1月1日BPA除上述两项以外的食品接触材料和物品禁止2015年1月1日瑞典SFS 2012:991BPA 3岁以下儿童用食品包装涂料和涂层禁止2013年7月1日
  • 提供MSE 表面涂层综合性能评价试验机的样品性能评估测试
    佰汇兴业(北京)科技有限公司最新引进日本MSE 表面涂层综合性能评价试验机, 可提供多种涂层材料的综合性能评估,欢迎社会各界人士对我公司进行参观考察并进行样品的性能评估测试。 日本Palmeso Co., ltd 公司 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)使用恒定的固体微粒对材料表面进行冲蚀,材料磨损量随表面强度而改变。MSE试验机将磨损量的变化转换成磨损率,来评估和对比各种材料表面强度。 适用范围:涂层、镀层、镀膜◎ 涂层强度 (可检测多级涂层强度且数值化)◎ 复合涂层厚度(可分层检测多涂层)◎ 涂层间、涂层与基体结合力◎ 通过对膜的检测,评价镀膜工艺性能◎ 涂层均匀度 评估事例:◎ 表面粗糙材料上薄膜的膜强度和膜厚度的评价◎ 塑料镜片上的硬质薄膜的膜强度和膜厚度的评价◎ 基体表面上很薄的DLC涂层的膜强度和膜厚度的评价◎ PVD陶瓷表面复合涂层的膜强度和膜厚度的评价◎ 树脂薄膜上软材质复合涂层的膜强度和膜厚度的评价◎ 金属表面化学镀膜处理后的膜强度和膜厚度的评价欢迎来电咨询!
  • 网络研讨会|白色家电涂层工艺漆膜膜厚自动检测
    涂魔师漆膜膜厚自动检测系统非接触无损测量白色家电涂层厚度涂魔师漆膜膜厚自动检测系统能够精准控制涂层厚度,保证产品质量,非常适合白色家电生产制造商和涂装商。粉末涂料喷涂由于其优越的机械性能和无溶剂涂料的应用,在工业领域发挥越来越重要的作用。但只有当涂层厚度保持在一定的容差范围内,粉末涂料喷涂才能发挥其优势,因此喷涂工艺的重点必须放在粉末涂料的有效使用和控制上。对白色家电喷涂涂层工艺的优化不仅仅适用于大型工厂流水线上,而且也适用于小型的涂装生产线,甚至是人工涂装线,在这些生产线上,每小时的工作或每公斤的清漆对企业的盈亏起到决定作用。在白色家电的生产环境中,涂层工艺的另一个挑战是搪瓷!搪瓷就是在金属表面覆盖一层无机玻璃氧化涂层,涂层最主要的作用是保证金属材质不被氧化和腐蚀。烤箱和炊具的所有零部件(马弗炉、柜台门、风扇罩、锅等)进行搪瓷,主要是为了提高这些家电的耐用性和耐高温性,同时也使得这些家电易于清洁,保证卫生。本次网络研讨会,涂魔师专家Francesco Piedimonte将介绍涂魔师漆膜膜厚自动检测系统,演示涂魔师漆膜厚度检测仪先进的ATO光热法原理,以及使用涂魔师非接触无损测厚仪实时在线自动测量粉末、湿膜/干膜和搪瓷涂层厚度。涂魔师漆膜膜厚自动检测支持连续测量生产过程中流水线上的移动部件。马上发邮件到【marketing@hjunkel.com】,备注【9月9号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。涂魔师漆膜膜厚自动检测系统工作原理ATO光热法介绍涂魔师采用ATO光热法专利技术;该项技术采用氙灯安全光源代替激光束进行激发,并以脉冲方式短暂加热待测涂层,内置高速红外传感器将记录涂层表面温度分布并生成温度衰减曲线,最后利用专门研发的算法分析表面动态温度曲线计算待测涂层厚度。通常,涂层厚度越大,反应时间越长(例如1-2秒);涂层厚度越小,反应时间越短(例如0.02-0.3秒),如图所示。相比于传统非接触式测厚仪,涂魔师ATO漆膜膜厚自动检测系统明显降低了仪器维护成本,而且涂魔师能更加快速精准和简单测厚,无需严格控制样品与测厚仪器之间的测试角度和距离,即使是细小部位、弯角、产品边缘、凹槽等难测部位也能精准测厚,并且对操作人员的专业要求低。另外,涂魔师容易集成到涂装系统中,与机械臂或其他移动装置配合使用能方便精准测量工件膜厚,实现不间断连续膜厚监控,提高生产效率。涂魔师漆膜膜厚自动检测系统优势涂魔师漆膜厚度检测仪可以测湿膜直接显示干膜厚度,在生产前期非接触式测量未固化的涂层直接得出涂层的干膜厚度,如粉末涂料、油漆等;涂魔师漆膜膜厚自动检测系统采用先进的热光学专利技术,无需接触或破坏产品表面涂层,在允许变化角度和工作距离内即可轻松测量膜厚;涂魔师漆膜膜厚自动检测允许允许测量各种颜色的涂料(不受浅色限制);适用于外形复杂的工件(如曲面、内壁、边角、立体等隐蔽区域);涂魔师漆膜厚度检测仪100%测量数据安全自动储存于云端,实现生产工艺的统计及不间断追溯,高效监控膜厚真实情况。翁开尔是瑞士涂魔师中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • 网络研讨会 | 3个铝型材粉末涂层测厚案例研究
    3个铝型材粉末涂层测厚案例研究网络研讨会对早期的喷涂工艺涂层厚度测量可以节省高达30%的涂层材料,避免废品,同时还可以提供一个详细的粉末涂层厚度测量记录文件,方便后续管理。涂魔师Coatmaster提供了完美的涂层厚度测量技术,一方面支持在固化前和固化后进行非接触无损涂层测厚,另一方面易于集成,并可以根据不断变化的环境条件进行及时调整。在此次网络研讨会上,涂魔师Coatmaster总经理Nils A. Reinke教授博士将介绍涂魔师粉末喷涂厚度检测系统技术在垂直方向和水平方向喷涂中的最创新应用。案例研究的范围是从手动非接触无损涂层厚度测量到自动整体成像涂层厚度测量以及闭环涂层厚度控制。此次网络研讨会非常适合铝型材喷涂作业,粉末涂料喷涂作业,垂直方面喷涂作业和水平方向喷涂作业的公司和技术人员参加,欢迎报名参加!通过此次研讨会,你将了解如何通过对早期喷涂工艺进行涂层测厚控制,为喷涂生产线争取更大的效益!网络研讨会时间:2021年7月14日马上发邮件到【marketing@hjunkel.com】报名参加,邮件标题【7月14日涂魔师网络研讨会】进行登记,我们将在研讨会结束后给您发送资料和视频。涂魔师非接触无损测厚系统FLEX介绍涂魔师非接触无损涂层测厚系统FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚,而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。
  • 金属材料、涂层的快速分析利器——手持式XRF分析仪
    为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网联合多家优质仪器厂商上线了专门的仪器展示专题,提升用户选购仪器的效率;同时面向广大仪器厂商发起征稿活动,仪器厂商可围绕“2000亿贴息贷款政策下,如何助力快速选型采购”这一主题进行原创稿件创作(字数1000字左右),稿件一经采用将发布在仪器信息网上并收录到相关专题中。专题链接:https://www.instrument.com.cn/topic/txdk2022.html近期,2000亿贴息贷款政策正进行的如火如荼,高校和相关企业都在加紧申报购买需要的仪器设备。金属材料,作为目前工业中使用量最大的材料种类,一直就是科研攻关的热点领域,同时,相关企业生产也离不开金属材料的检测分析。为了帮助高校和相关企业更好更快的选择心仪的仪器设备,朗铎科技特别推出了此文章,希望对金属材料及涂层相关的高校和生产企业提供一定的帮助。对于生产企业来说,为保障产品的可靠性和生产过程中的和安全性,用于制造质量保证和控制的金属合金验证十分重要。从金属生产到服务中心和分销商,从组件制造到最终产品组装——材料混淆的可能性非常大,可追溯性的需求现在是重中之重。对于生产企业金属材料检测可以采用的检测方式有很多,如原子吸收光谱法(AAS)、滴定法、电感耦合等离子体光谱法(ICP)等,但这些方法都无法做到无损检测,而且检测周期长,无法对来料进行全部检测,这时候X射线荧光光谱法(XRF)就可以大展拳脚!XRF的优势在于无损、快速、准确,可以对所有来料进行快速筛查,对生产过程中的质量进行实时监控,是相关金属企业的必备工具,其中手持式XRF使用最为广泛,它方便携带,且可以检测成品及一些不好触及的位置,已经成为一些企业的必备仪器。手持式XRF分析仪可在多个领域进行材料检查:1. 过程物料识别——管道系统和其他工艺组件的例行检查,以确保加工流中不存在不相容合金(Retro PMI)2.维护和制造相关的材料标识——确保在施工和维护程序(新管道、阀门等)期间不会将不相容的合金插入工艺流中。3. 来料 QA/QC——确保您收到的材料与订单相符4. 出货 QA/QC——对客户进行最终检验和认证装运5.库存管理与恢复——确保材料的隔离受到控制,也可协助回收“丢失”的材料以正确地重新放入供应链除上述合金材料外,金属涂层工艺在金属制造中也非常普遍,其工艺可用于装饰目的或增强金属制品表面的物理或化学性能。金属镀层可用于增强金属的耐蚀性、耐磨性、耐热性、导电性、附着力、可焊性和润滑性。涂层过厚会显着增加制造成本,而涂层过薄会导致产品失效。为了避免这些可能,控制涂层重量或涂层厚度在金属表面处理、制造、汽车和航空航天工业中至关重要,以确保组件具有正确的特性并同时优化生产成本。过去,XRF分析技术一直用于固定式或台式仪器测量涂层厚度。但是,必须将样品放入分析仪样品仓内或靠近分析仪样品仓以便使用固定式 XRF 方法进行分析,这使得在不切割样品的情况下测量大型和重型零件上的涂层厚度变得不切实际。现在,使用手持式 XRF 分析仪可以克服这一限制,手持式XRF涂层测厚分析技术俨然成为一种成熟的金属和合金鉴定技术。朗铎科技 Niton XL2、XL3 和 XL5 系列由朗铎科技代理的赛默飞世尔 Niton XRF 分析仪(全国总代理)可在几秒钟内提供合金等级鉴定和化学分析。它们被用于制造车间、铸造厂、服务中心和石化精炼厂,以验证来料合金、恢复丢失的材料可追溯性并确认成品——所有这些都是无损完成的。朗铎科技的客户已经确定他们不能再依赖工厂测试报告 (MTR),而是亲自动手来确认材料成分的全检。 从低合金钢到不锈钢再到超级合金,从钛合金到稀有元素——Niton 合金分析仪为您提供无法从一张纸上获得的材料可靠性信心。从最简单的到最复杂的涂层样品,Niton 手持式XRF分析仪涂层模式均可满足分析要求,并提供准确的结果。用 Niton 手持式XRF分析仪进行涂层分析的操作界面简单直观,用户可根据 AISI/ASTM、DIN 或 GB 标准选择涂层类型,并使用元素列表或可用合金库输入涂层和基材的组成即可使用,近乎“开箱即用”无过多调整及设置。为确保满足客户的涂层规格,需要在生产前、在线或最终产品 检验期间进行质量控制。Niton XRF 分析仪帮助操作员: • 通过测量金属等级和成分,确保收到的货物与采购订单相符 • 通过最小化生产错误降低生产成本- 涂层太薄Niton XRF 分析仪可能导致耐腐蚀性差、保修成本高和 / 或产品故障 - 涂层太厚会增加生产成本- 无损分析意味着不需要切割或损坏高价值产品 • 通过多次测量和自动平均,确保整个产品的涂层一致,从而提高质量 • 提供更快的运行速度,立即产生结果,无需样品制备(与统计取样和实验室分析相比,后者耗时) • 通过简单的报表生成工具生成质量报告和证书 • 创建从进货检验到产品出厂的产品审计跟踪 • 遵守国际方法 ISO 3497 和 ASTM B568,实现安全生产 无论是在现场还是在车间,Niton XRF 分析仪都能使您随时应对最具挑战的工业环境,操作人员可检测各种材料,满足不同分析需求。识别纯金属和合金,检测杂质元素或获取涂镀层数据,真正实现多应用合一—— Niton XRF分析仪随时应对各种分析挑战。 除了金属材料检测和涂层快速无损检测外,朗铎科技 Niton XRF 分析仪还可以应用于石油化工、能源电力、汽车制造、地质地矿、文博考古等领域。感兴趣的老师欢迎联系朗铎科技,点击进入朗铎科技展位(https://www.instrument.com.cn/netshow/SH103331/),了解更多信息。
  • 哈工大吴晓宏教授团队攻克超黑涂层常温制备技术瓶颈
    近日,哈尔滨工业大学化工与化学学院吴晓宏教授团队在超黑涂层技术领域取得重要突破。团队攻克了超黑涂层常温制备技术瓶颈,得到了一种朗伯特性显著的高稳定超黑涂层。经第三方权威机构检测,宽光谱吸收高达99.8%,光线80°入射时总散射积分低至1.5%,可凝挥发物为0.00%,全面满足多种基体、复杂形面、超大面积实施工艺和空间极端环境应用需求,性能与技术成熟度均优于国内外现役同类产品。超黑涂层能吸收几乎所有照射在其上的光,应用领域十分广泛。绝大多数精密光学仪器,都需要超黑涂层来屏蔽光学干扰,提升信噪比和探测能力。此外,超黑涂层能够隐藏高低起伏的物体轮廓,可为设备或人员提供必要的保护。20多年来,吴晓宏教授团队潜心攻关、攻坚克难,产学研用一体化研究不断取得突破。针对工况条件,“量身定制”出一系列满足服役环境的超黑涂层,已交付遮光罩、挡光板、光阑筒、定标黑体等产品数千件,成功应用于我国风云、海洋、高分、环境、通信技术试验等数十颗国家型号卫星和天启、天雁、天拓等近百颗商业卫星,有效提升了我国航天器光学载荷的在轨探测能力和定位精度,为保证载荷全寿命周期高性能稳定运行提供了必要条件。实施超黑涂层的遮光罩哈工大全媒体(卢松涛 文/图)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制