当前位置: 仪器信息网 > 行业主题 > >

土壤

仪器信息网土壤专题为您整合土壤相关的最新文章,在土壤专题,您不仅可以免费浏览土壤的资讯, 同时您还可以浏览土壤的相关资料、解决方案,参与社区土壤话题讨论。

土壤相关的资讯

  • 助力“土壤三普” 守护土壤健康丨浅谈土壤元素有效态
    导读2022年2月,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,以全面查明查清我国土壤类型及分布规律、土壤资源现状及变化趋势,真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,为守住耕地红线、优化农业生产布局、确保国家粮食安全奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。 第三次全国土壤普查理化性状检测指标第三次土壤普查内容包括土壤性状、类型、立地条件、利用状况、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇总等。其中土壤性状作为普查重点,将涉及理化性状及多种无机污染物的检测分析。 表1 第三次全国土壤普查理化性状检测指标土壤理化性状是直接反映土壤质量的重要指标,包括土壤中有效态元素、微量元素和重金属元素等一系列分析测试项目。今天带大家看看何为土壤元素有效态以及如何开展分析的。 什么是土壤元素有效态?土壤中金属元素由于土壤类型、污染源等原因存在着不同的形态,它不仅包含水溶态、酸溶态、鳌合态和吸附态,还包括能在短期内释放植物可吸收利用的某些形态。土壤元素有效态指的是能被植物吸收利用的元素形态,它决定于土壤中该元素的全量及其活性。 岛津三机种方案轻松应对土壤元素有效态分析 原子吸收光谱法(AAS)相关检测标准应用案例参考标准 GB/T 23739-2009《土壤质量 有效态铅和镉的测定 原子吸收法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用原子吸收光谱仪建立了测定土壤中有效态Cd、Cu、Ni和Pb 元素的方法。表2 仪器工作条件表3 土壤样品有效态元素测定结果实验结果表明,该方法测试快捷,精密度高,分析结果与标准值相吻合。双原子化器自动切换,大大提升实验室分析效率。 电感耦合等离子体发射光谱法(ICP-OES)相关标准 应用案例参考环境标准HJ 804-2016《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用电感耦合等离子体发射光谱仪建立了测定土壤中有效态元素的方法。 表4 仪器工作条件表5 土壤样品分析结果实验结果表明,该方法检出限低,精密度高,分析结果与标准值相吻合。分析过程采用99.95%普氩运行,大大降低实验室运行成本。 电感耦合等离子体质谱法(ICP-MS)相关标准应用案例参考标准DB12/T 1022-2020《土壤中有效硼含量的测定 电感耦合等离子体质谱法》,以沸水浸提,使用岛津ICPMS-2030系列电感耦合等离子体质谱仪测定了土壤中有效硼含量。表6 ICP-MS分析条件表7 土壤中有效硼测试结果实验结果表明,ICP-MS测试有效硼的方法检出低,准确度好。微型炬管+普氩+Eco模式,大大降低实验运行成本。 结语土壤是人类赖以生存和发展的重要自然资源和物质基础,土壤环境质量状况直接关系到农产品安全、人居环境安全和生态安全等问题。土壤有效态能够更好地反映土壤实际污染状况及其对植物的危害,可作为土壤环境质量的评价指标。岛津拥有从前处理设备、分析仪器、试剂耗材和技术服务的完整工作方案,将为“土壤三普”高效精准检测和高质量完成土壤普查任务保驾护航。 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 助力“土壤三普” 守护土壤健康丨浅谈土壤元素有效态
    导读2022年2月,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,以全面查明查清我国土壤类型及分布规律、土壤资源现状及变化趋势,真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,为守住耕地红线、优化农业生产布局、确保国家粮食安全奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。 第三次全国土壤普查理化性状检测指标第三次土壤普查内容包括土壤性状、类型、立地条件、利用状况、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇总等。其中土壤性状作为普查重点,将涉及理化性状及多种无机污染物的检测分析。 表1 第三次全国土壤普查理化性状检测指标 土壤理化性状是直接反映土壤质量的重要指标,包括土壤中有效态元素、微量元素和重金属元素等一系列分析测试项目。今天带大家看看何为土壤元素有效态以及如何开展分析的。 什么是土壤元素有效态?土壤中金属元素由于土壤类型、污染源等原因存在着不同的形态,它不仅包含水溶态、酸溶态、鳌合态和吸附态,还包括能在短期内释放植物可吸收利用的某些形态。土壤元素有效态指的是能被植物吸收利用的元素形态,它决定于土壤中该元素的全量及其活性。岛津三机种方案轻松应对土壤元素有效态分析 1原子吸收光谱法(AAS) 相关检测标准应用案例参考标准 GB/T 23739-2009《土壤质量 有效态铅和镉的测定 原子吸收法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用原子吸收光谱仪建立了测定土壤中有效态Cd、Cu、Ni和Pb 元素的方法。 表2 仪器工作条件表3 土壤样品有效态元素测定结果实验结果表明,该方法测试快捷,精密度高,分析结果与标准值相吻合。双原子化器自动切换,大大提升实验室分析效率。 2电感耦合等离子体发射光谱法(ICP-OES) 相关标准 应用案例参考环境标准HJ 804-2016《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用电感耦合等离子体发射光谱仪建立了测定土壤中有效态元素的方法。 表4 仪器工作条件表5 土壤样品分析结果 实验结果表明,该方法检出限低,精密度高,分析结果与标准值相吻合。分析过程采用99.95%普氩运行,大大降低实验室运行成本。 3电感耦合等离子体质谱法(ICP-MS) 相关标准应用案例参考标准DB12/T 1022-2020《土壤中有效硼含量的测定 电感耦合等离子体质谱法》,以沸水浸提,使用岛津ICPMS-2030系列电感耦合等离子体质谱仪测定了土壤中有效硼含量。表6 ICP-MS分析条件表7 土壤中有效硼测试结果实验结果表明,ICP-MS测试有效硼的方法检出低,准确度好。微型炬管+普氩+Eco模式,大大降低实验运行成本。 结语土壤是人类赖以生存和发展的重要自然资源和物质基础,土壤环境质量状况直接关系到农产品安全、人居环境安全和生态安全等问题。土壤有效态能够更好地反映土壤实际污染状况及其对植物的危害,可作为土壤环境质量的评价指标。岛津拥有从前处理设备、分析仪器、试剂耗材和技术服务的完整工作方案,将为“土壤三普”高效精准检测和高质量完成土壤普查任务保驾护航。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • 【干货】土壤监测技术—土壤采样如何减少误差?
    随着《土壤污染防治行动计划》(以下简称“土十条”)的发布,很多业内人士分析认为,未来5年我国的土壤检测市场潜力巨大,可高达520亿元。  土壤污染实际状况的把握和风险管控的前提是采样的代表性和检测的准确性。但是笔者在考察中发现,实际操作时,土壤采样的代表性、采样密度以及检测准确性等有时却成为土壤检测的技术瓶颈。  事实上,土壤本身是个高度不均匀的介质,采样误差远远大于分析误差。  有研究对1亩地这样一个土体性质变化不大的地块随机选取9 个样点,分别采集9 个土样,分析土壤有效磷含量。结果发现样品间的方差是平行样的6倍,是仪器读数重复的73倍,足见采样误差比起仪器分析误差大得多。  同样,另一个案例对一个长40米宽32米的田块进行8米×8米的网格采样,对所采的20个样品分析全氮发现,采样误差远远大于分析误差。  因此土壤污染研究中的采样问题可能成为时下土壤检测行业的瓶颈。为此我们有必要说说土壤采样如何减少误差这一问题。  土壤是个开放体系。在生态系统中,土壤位于水圈、大气圈、岩石圈和生物圈的核心圈。土壤圈本身是个开放体系,和4个圈层存在着物质和能量的交换。大气圈和水圈的污染物质一部分会进入土壤,造成土壤污染。  根据进入途径的不同,重金属等污染物在空间分布上有着很大的差别。对于通过点源如冶炼厂的污染排放进入土壤的污染物,其以污染点为中心分布,同时,污染物的空间分布还受常年主导风向的影响显著,点源的影响范围和程度受到点源的排放量、烟囱高度、地形、气象条件的影响。  对于水源污染,一般呈现沿着河流两岸污染的线型分布特征,且受地形影响很大。由于土壤具有较大的吸附性能,进入稻田后,重金属在田块中非常不均匀。据日本科学家研究,一个54米长的田块中,镉、锌、铅等元素的浓度可以相差一倍,镉分别是2.02毫克/千克和1.04毫克/千克,铜分别是348毫克/千克~168毫克/千克,锌分别是101毫克/千克~53.1毫克/千克 且田块左右两侧数值也不尽相同。  而在我国台湾地区的研究中,一个50米的田块进水口的镉浓度可以高达7.0毫克/千克,而出水口可以低到0.2毫克/千克,相差高达35倍。如果没有多点采样,容易对田块的污染状况造成误判。  在大气、水、土壤等环境要素中,唯有土壤是最不均匀的介质。土壤是一个多相的疏松多孔体系,同时也是一个胶体体系、化学体系、生物体系,还是一个氧化还原体系。  所以污染物进入土壤后会发生各种各样的物理、化学和生物学过程而重新分布。固然到达土壤表面的污染物主要分布于土壤的表面,但重金属主要是被黏土矿物部分吸附,因此其之后的分布则受到黏土矿物分布的影响。  有研究测定土壤表层0~15厘米的土壤镉含量为5.0毫克/千克,但如果分离出其黏土部分,测定到的镉含量则高达18毫克/千克。由于土壤中镉主要吸附在其中的黏粒上,所以采集土样时主要土壤质地的差异将带来显著的影响。  因此,在耕作过程中,土壤颗粒的再分布容易造成土壤重金属的分异。有日本科学家研究表明,在进行犁耙田后,由于土壤黏粒的上浮以及随后其沉淀于土壤表层,水田表层3厘米土层的重金属含量可以比其下的土层高出一倍以上。所以采样时务必上下均匀取样,否则容易带来误差。  在进行重金属分析的采样过程中,除了避免采样工具和器具带入的污染外,必须确定采样方式(蛇形、对角线、梅花点等),进行多点采样(通常5点或以上)、采集混合样 单点采样则必须是上下均匀采样。  而对其他有机污染物的采样,考虑到污染物的性质(挥发性、光分解等),更应该采取各种相对应的采样对策,以确保采样带来的误差降到最小。
  • 精准助力土壤三普之快速测定土壤中有机碳
    国务院于今年2月份发出第三次土壤普查的通知,其土壤普查理化性状检测指标中,就有机质项目的检测要求。土壤有机质主要来源于土壤中动、植物的残体以及微生物生命活动所产生的有机物质,主要成分为C和N的有机化合物;其含量将决定植物的生长发育,并且对土壤的养分结构、理化性状起着关键性作用。东北黑土地就由于其富含有机质而土壤肥沃,素有“谷物仓库”之称。目前,测定土壤中有机质的方法多采用先测定土壤中的有机碳含量(TOC),再乘以与有机质的换算系数1.724,即为土壤有机质的含量。所以需准确测试土壤中的有机碳。土壤有机碳检测方法一般分为燃烧氧化法和化学氧化法两类。Ø 化学氧化法——做样速度较慢(大于0.5h),受基体影响较大化学氧化法是较为传统的方法,主要通过重铬酸钾-浓硫酸溶液将土壤溶液中的有机碳氧化,再通过硫酸亚铁滴定或分光光度法进行定量测定。此类方法虽然所需设备较为简单,但是实际测试时却有较多不足:(1)需要试剂种类较多,操作步骤复杂,做样周期较长,往往需要半小时以上;(2)由于土壤中的基体非常复杂,且各个地方的土壤成分差异大,同计量的试剂对有机碳的氧化是否彻底,将会影响测定结果;(3)在滴定法或分光光度法测定时,样品基体不同,也对其显色产生不同程度的干扰,造成数据不准,需根据样品再摸索掩蔽剂等条件。Ø 燃烧氧化法——做样3-4min即可出结果,不受基体影响燃烧氧化法方法是较新的方法,该方法是将土壤样品称量后,加酸加热去除无机碳,后置于高温灼烧(1100℃左右)使土壤样品中的有机碳氧化为二氧化碳,最后用仪器检测器测定产生的CO2值,并转换为TOC浓度。此方法有以下优势:(1)样品固体进样即可,制备流程少、做样简单、可操作性强;(2)做样速度快,固体样品进入仪器只需3-4min即可完成测试;(3)无需多种试剂,只需加酸即可,试剂损耗小;(4)不受样品基体影响,由于燃烧温度高,可更加充分地将有机碳氧化,所以无论什么样品基体,均可得到准确结果。以下为土壤有机质测定相关标准对比 :标准氧化方式检测原理试剂耗时NY/T 85-1998土壤有机质测定法重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时LY/T 1237-1999森林土壤有机质的测定及碳氮比的计算重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时HJ 658-2013 土壤 有机碳的测定 氧燃烧—滴定法高温燃烧氢氧化钡吸收,草酸滴定氢氧化钡、草酸、酚酞、盐酸5小时HJ 615-2011 土壤 有机碳的测定 重铬酸钾氧化-分光光度法重铬酸钾-硫酸溶液加热分光光度法重铬酸钾,硫酸,硫酸汞8小时HJ 695-2014 土壤 有机碳的测定 燃烧氧化-非分散红外法高温燃烧非分散红外法(NDIR)磷酸或盐酸3-4分钟德国耶拿可为您提供燃烧法测试土壤中TOC的全套解决方法:方案1:总有机碳分析仪multi N/C+ HT 1300采用燃烧法可直接测量土壤固体中的TOC含量,具有以下特点,保证实验的高效准确。可分析液体或固体样品… … … … … … … … … … … … … … … … … 软件切换,无需机械移动冷开机20分钟内即可工作,进样3-4min出结果… … … … 实验效率高直接称量于陶瓷舟中… … … … … … … … … … … … … … … … … … … 操作简便最高称样量达3g… … … … … … … … … … … … … … … … … … … … … 保证样品代表性燃烧温度可达1300℃ … … … … … … … … … … … … … … … … … … 充分氧化无需催化剂… … … … … … … … … … … … … … … … … … … … … … … … 低耗材成本高聚焦NDIR检测器 … … … … … … … … … … … … … … … … … … … 抗干扰,宽范围方案2:元素分析仪multi EA 4000全自动固体TOC分析,可全参数分析TOC、TIC、TC参数。具备自动加酸处理等功能。应用实例:通过测定多种标准土验证方法准确性,测试结果均在质控范围内,且测试6次,RSD在0.76~6.29%。具体数据如下:标准品号平均值%RSD (n=6)%标准值相对误差%GBW073140.876.290.86% ± 0.1%1.2NST-62.190.862.2% ± 0.1%0.3GBW07416a0.720.760.73% ± 0.05%0.69GBW074591.280.991.27% ± 0.05%0.39注:multi N/C+ HT 1300方案测定通过以上数据可知,采用耶拿的快速燃烧法测定土壤有机碳,准确度、精密度等指标均符合土壤分析要求,从根本上解决了人为分析误差、污染和环境污染等弊端,消除了基体干扰对结果的影响;提高工作效率,可实现批量化分析。
  • 关注土壤污染防治,助力土壤修复事业
    由中国能源环保高新技术产业协会主办的“重金属污染防治及土壤与地下水修复最佳可行技术研讨会”于2015年6月26日~28日在青岛成功举办。本次大会吸引了重金属污染防治方面的从业者及专家100余人到场参加,朗铎科技应邀参加了本次大会并在现场演示尼通(Niton)手持式光谱仪在重金属污染与防治方面的应用。相关专家在会议上发言 会议上来自中国能源环保高新产业协会的重金属污染防治专家就重金属污染及土壤与地下水污染现状及防治政策、重金属污染治理技术、土壤和地下水污染调查评估技术与修复方案编制和污染土壤与地下水修复技术与应用等四个方面做出了报告。报告详细分析了我国当前的重金属污染现状和亟待解决的问题并全面介绍了关于土壤与地下水重金属污染的解决方案。会议现场 近年来,随着我国经济的快速发展和产业结构调整的加速推进,我国长期累积形成的严重的重金属及土壤与地下水污染问题快速的暴露出来,严重威胁着我国的生态环境和国民身体健康,成为我国发展可持续经济道路上的重要阻碍,受到了政府和民众的广泛关注。因此,如何快速检测土壤重金属污染程度从而快递制定解决方案就成了土壤修复的重中之重。尼通(Niton)手持式光谱仪在重金属污染与防治方面拥有非常广泛的应用。通过扣动扳机,尼通(Niton)手持式光谱仪就可以在短短几秒内精准分析出土壤中十分含有过高的重金属成分,既免去了实验室检测复杂的制样环节,又可以得到实验室级的分析效果,大大提高了检测效率。尼通(Niton)手持式荧光光谱仪在土壤重金属检测中的应用 朗铎科技作为尼通(Niton)手持式荧光光谱仪在中国区域的优选经销商,多年来一直与赛默飞世尔科技公司保持这高度紧密的战略合作关系。在我国急需有效治理土壤污染的今天,朗铎科技愿为我国的土壤修复事业提供国际尖端的技术支持,与我国土壤修复事业从业者一道攻坚克难、共度难关,一同为我国土壤修复事业更快更好的发展而努力。
  • 土壤普查 | 谱育科技用心守护中国土壤安全
    背景2022年2月16日,国务院印发《关于开展第三次全国土壤普查通知》,要求利用四年时间全面摸清农用地和部分未利用地的土壤质量情况。农业农村部相继公布了《第三次全国土壤普查工作方案》和《关于开展普查实验室筛选工作的通知》;通知中明确规定了43项土壤理化性状指标和检测所需要的主要仪器设备。针对第三次全国土壤普查,谱育科技提供从前处理到后端分析的全面解决方案。ICP-MS抗干扰能力出色,分析更精确SUPEC7000系列SUPEC7000系列采用全新的六级杆碰撞反应池,保证高效离子传输能力的同时,大大增强了碰撞消除干扰效率,结合KED工作模式,为土壤等复杂基体样品提供无可比拟的痕量元素分析方案。超级微波消解仪更好,更快的处理土壤样品EXPEC790S系列 EXPEC790F系列EXPEC790系列超级微波消解仪能够40min内完成一批样品消解,四腔体同时使用,可实现单批次96个处理样品。独特的消解管设计,使用成本更低,采用水冷设计,冷却速度更快,极少的加酸量使用,助您缩短样品前处理时间,提高工作效率。ICP-OES给您一个稳定可靠的结果EXPEC6000系列EXPEC6000系列 ICP-OES采用垂直炬管设计,耐盐性更好,双向观测方式可选,能够实现高低含量元素同时检测。专利FSC实时校准技术,确保仪器长时间运行,谱线不会发生漂移。出色的稳定性,是土壤检测实验室可靠的保证。谱育科技是基于聚光集团研发团队组建,专注于重大科学仪器研发及产业化,经过十多年的技术积累创新,产品涵盖质谱,光谱及样品前处理等领域。广泛应用于环保/食品新型污染因子监测、医疗临床检测、生命科学研究、工业物联网、安全应急等行业。可靠的产品,出色的服务,得到越来越多客户的认可和支持。
  • 湖南发布土壤修复标准 与土壤新标对接
    p  湖南省环保厅最近发布了地方标准《重金属污染场地土壤修复标准》(DB43/T 1125-2016),此标准由湖南省环境保护科学研究院起草,用于指导重金属污染场地土壤修复工作。/pp  此标准共规定了10类11项重金属指标,详见下表:/pp style="text-align: center "img style="width: 600px height: 262px " src="http://img1.17img.cn/17img/images/201605/insimg/8df44bf8-9665-45c0-b3e3-17753e8df91a.jpg" title="湖南.jpg" height="262" hspace="0" vspace="0" width="600" border="0"//pp  按照我国现行有效的土壤环境质量标准,此土壤修复标准减少了总镍指标,增加了总锰、总钒、总锑三项。/pp  但是我国的壤环境质量标准正在进行修订,目前已发布第三次征求意见稿,征求意见稿中规定的重金属项目有15项,基本项目为总镉、总汞、总砷、总铅、总铬、总铜、总镍、总锌,其他项目为总锰、总钴、总硒、总钒、总锑、总铊、总钼。此次湖南发布的土壤修复标准为其中的10项,且多数为基本项目,即此修复标准基本可以满足土壤新标的要求。/ppbr//pp附件:a href="http://img1.17img.cn/17img/files/201605/ueattachment/0db9314f-2d01-4d97-ab99-be912c296a2e.pdf"《重金属污染场地土壤修复标准》(DB43/T 1125-2016)/abr//p
  • 治疗土壤“疑难杂症” 土壤检测治理势在必行
    土壤是一个具有高度生命力的系统,它由生物、气候、地形等因素相互作用而成。土壤中的生物具有千万种,据数据显示1平方米的土壤中至少含有百万细菌,数条蚯蚓、蜗虫以及1只脊椎动物。   但近年来,土壤污染问题不容小觑。土壤酸化导致土壤重金属活化、土壤生物多样性骤减、土壤矿物质流失惊人、影响农作物健康等问题愈加严重。   近日,中科院西双版纳热带植物园研究人员揭示了硫改良剂对农业污染土壤中植物重金属吸附的影响。硫作为一种吸附植物重金属有积极效用的非金属元素,可促进土壤修复或减缓污染。该项研究成果发表在国际期刊《环境污染》上。该项研究有效进行土壤农田问题修复,但纵观目前土壤环境来看,土壤污染问题仍较为严峻。   土壤“疑难杂症”繁多 农田污染修复迫在眉睫   土壤是水质污染和大气污染的归宿,这些污染物沉降到土壤之中造成二次污染,土壤作为环境、农产品等污染源头,进入新一轮的污染中。如雨后土壤中的污染物会污染地下水和地表水。而在光照环境中,土壤中蒸发出的挥发性物质也会传播到空气中。麻烦的是,这些土壤并不能被搬运到其他地方,不然新地方依然会被污染,处理十分棘手。   另外,化肥过度使用给土壤生态带来极大危害。化肥农药过度施用容易引起土壤急剧酸化和生态系统功能弱化。而土壤酸化将原本存在于矿物质、吸附在土壤黏粒上的重金属活化,土壤金属性超标,粮食作物含金属量超标。特别是于镉,一种在土壤—植物系统容易迁移的有害重金属。土壤酸化后镉活化效应明显,导致农产品超标。   土壤质量改良措施出台 土壤监测治理走上快车道   土壤污染类型主要包括农业、矿山等场所土壤污染。根据环保部2014年4月发布的全国土壤污染状况调查显示,全国土壤污染总点位超标率16.1%。同时,专家强调,目前全国土壤污染空间分布与工业生产状况有一定相关性。   2018年,环保部起草并发布《中华人民共和国土壤污染防治法》,制定土壤污染行动计划,至此土壤监测大有可为。   首先从土壤监测上来说。监测人员可利用激光熔蚀法(LA)、氢化物发生法(HG)、X射线荧光光谱法,对土壤中痕量元素进行测定和分析。在土壤监测和生物恢复方面则可利用PCR技术、变性梯度凝胶电泳(DGGE)技术和生物芯片技术。现场污染事故中常用快速监测,及时的掌握污染物排放源和污染情况,对污染物进行快速的分析,并得出污染物相关数据。ICP-MS法等痕量和超痕量分析技术检测重金属污染物的毒性,提升了我国土壤环境监测精度,控制土壤污染。   其次从土壤农田污染修复上看,了解和掌握土壤性质、土壤污染特征等问题是基础。这就要求研究人员选择重金属吸收能力低的农产品;降低土壤重金属适时水分;降低施用土壤重金属的调理剂;进一步将植物体内的离子拮抗或者络合固定阻碍已经进入作物体内的重金属 迁移到籽实部位的叶面;施用微生物添加剂,降低镉活化。   另外,相关技术干预手段研发。硫改良剂就是其中之一。研究人员梳理了硫改良剂对污染土壤中农作物的吸附重金属效应,并随机分析效应模型。结果显示,农作物被施用硫后,植物对镉、铬、镍的吸附量分别提高了1.6、3.3、12.6倍,对铜吸附量降低了0.3倍。植物的独立器官对重金属的吸附差异显著。各器官重金属吸附量从大到小依次为根、叶、茎、籽粒、谷壳。   值得注意的是,土壤施用硫不会影响粮食品质,但在施硫情况下,作物叶子的重金属积累量可能会超标,从而对人体健康构成威胁。因此应针对不同植物器官,政府应该制定相应的农产品质量监控标准。   目前,土壤监测、治理手段渐渐向着技术化看齐。未来,土壤监测还需向着几个方向努力:基本摸清土壤污染底数,分块检测土壤污染状况以及污染地块;重点区域重金属污染物排放限值、加强企业强制性清洁生产审核,减少重金属排放;对于毒质土壤,应当采取固化的方法,不让污染物具有活动性和迁移性,使其和矿物质结构形成固定的物质;收回、回购或供应对人体健康有严重影响的污染场地或是未经治理修复、修复不达标的场地。   土壤的状况影响着粮食的安全与营养。因此,土壤污染治理不是单纯地关注土壤重金属含量是否超标这一因素上,而能从改善整体土壤状况下手。随着国家多个于土壤污染防治政策出台,我国土壤污染防治工作又将往前迈一大步。
  • 土壤固碳是实现碳中和与土壤健康的双赢解决方案
    近日,农业农村部发布中国再次启动土壤普查意义重大相关报道,其中提到土壤普查是认识和保护土壤资源的基础,将有助于保障粮食安全,并助力碳达峰、碳中和目标的实现。40年来中国土壤至少有以下三方面发生了变化:(1)土壤重金属污染快速加重;(2)土壤的快速酸化;(3)土壤的有机质变化。第三次土壤普查的意义重大“十四五”规划和2035年远景目标明确要求以保障国家粮食安全为底线,坚持最严格的耕地保护制度,深入实施“藏粮于地、藏粮于技”战略。我们期待第三次土壤普查能够服务两大目标:一、促进土壤的自身健康,实现粮食在质和量上的安全;二、通过促进土壤健康,增强土壤的固碳能力,助力中国达成“2030年碳达峰,2060年碳中和”的宏伟目标。 (1)粮食安全方面 第三次土壤普查的对象为全国耕地、园地(果园、茶园等)、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。针对耕地、园地,普查将检测样本中45项理化指标,此外还将开展土壤动物和微生物调查。 (2)生物固碳方面 土壤构成最大的陆地有机碳库,是目前大气中约8300亿吨碳含量的3倍,和当前每年的化石燃料碳排放量约100亿吨的240倍。土壤既可以释放二氧化碳和甲烷而成为温室气体的来源,又可以通过土壤有机质固碳而作为碳汇。因此减少土壤的温室气体排放、增加土壤的碳固定对于缓解气候变化的意义重大。第三次土壤普查并没有为土壤固碳能力设定具体目标和明确的任务。但是,其检测指标中包含了土壤有机质和碳酸钙(无机碳)这两个含碳的指标,这将为本次调查中不同土地类型的土壤碳库的核算、土壤固碳潜能的评估,以及推进土壤固碳技术的发展打下坚实的基础。 土壤固碳是实现碳中和与土壤健康的双赢解决方案。我们期待,在第三次土壤普查之后,中国能将土壤固碳作为农业固碳减排技术正式纳入官方文件,制定具体目标、明确的任务和行动方案。
  • 2024年土壤检测到底测什么?土壤普查究竟查什么?
    土情连着农情、国情、民情。对于农民而言,土壤质量好坏干系到农作物的生长状况;对于农业研究工作者,土壤健康程度代表土壤肥力强弱,指导研究方向;对于环保从业者,土壤污染检测关联着土壤治理与修复……小到个人,大至国家,土壤质量已然深入我们的生活、工作。那么,什么样的土壤才是健康的?国务院第三次全国土壤普查领导小组、办公室平台工作组组长、中国农业科学院农业资源与农业区划研究所所长吴文斌认为,可以从土壤肥力、 土壤自我修复能力、土壤的结构、通风、通气等一些物理特性、土壤里有害成分比例、土壤生物群落结构等五个方面判断土壤是否健康。“土壤三普”是对农用地土壤的一次“全面体检”。那么,此次“土壤三普”主要查什么?据有关专家介绍,一方面要查土壤质量,另一方面要查土壤污染情况。这次“土壤三普”当中涉及到的指标,耕地、园地是45项指标左右,林地、草地是19项指标左右,共性地都包含有机质含量这一指标。同时,还包括容重 pH值、群氮、群磷、群钾等与养分相关指标。除此之外,土壤结构也是关注的点。“土壤三普”如何检测土壤有没有被污染?随着全国土土壤普查的正式启动,土壤污染受到更广泛的社会关注。据仪器信息网的报告专家介绍,三普过程中,判断土壤有没有被污染,可以根据一些重金属指标,包括铬、镍等,一些不同形态的重金属也是值得关注的,例如,如果查某种重金属污染,可以检测其是否有游离态存在,因为游离态的容易被作物吸收;而一些非游离态的,可能跟其他物质结合,作物不吸收,但可定量。当前,土壤检测技术已经相对成熟,检测对象也相对固化,那么土壤检测中有哪些值得关注的点呢?从技术角度看,分析仪器依然是实验室主流检测手段,除此之外,快速筛查设备、便携式设备,在面对场地土块污染检测方面发挥着独特作用。从污染物种类看,自2022年《新污染物治理行动计划》发布以来,新污染物检测名噪一时,具体到土壤,又有哪些相关检测标准或质量基准出台?土壤重金属检测的难点有哪些?又有哪些新标准出台?土壤检测又有哪些新技术手段?新成果发布?全球首台快速土壤检测设备“知土”的真实“样貌”如何?带着您的种种疑问与好奇,欢迎报名第五届土壤检测技术大会,可以同时了解 新污染物、土壤三普、农田土壤、场地土壤、重金属等各方面内容,甚至还有一个《土壤检测实战指导》编委面对面的论坛,全是干货~~~强烈推荐!报名转发会议,集赞30个还能得一本《ICPMS实战宝典》这羊毛不得不薅呀!(添加助教微信:13260310733)部分精彩报告如下,点击下方链接即可报名:https://www.instrument.com.cn/webinar/meetings/soil240507/5月7日 新污染物专场+新技术及新应用报告时段报告主题报告嘉宾09:00--09:30土壤中微塑料的来源、识别及生态环境效应研究穆莉 农业农村部环境保护科研监测所 研究员09:30--10:00土壤中新型半挥发性有机污染物的非靶向筛查与风险评估高丽荣中国科学院生态环境研究中心 研究员10:00--10:30岛津方案助您轻松应对土壤有机物检测杜世娟 岛津企业管理(中国)有限公司 高级工程师10:30--11:00睿科自动化技术在土壤新污染物前处理中的应用王永朝 睿科集团股份有限公司 应用工程师11:00--11:30土壤纳米金属颗粒的定量分析与环境风险党菲 中国科学院南京土壤研究所 研究员11:30-12:00土壤中新污染物分析技术进展与应用黄毅 国家地质实验测试中心 副研究员14:00--14:30知土-新一代土壤成分现场监测技术与装备董大明 北京市农林科学院 研究员14:30--15:00实现农业可持续发展的关键:土壤检测新技术与碳氮分析的应用张欢 华唯意朴仪器(上海)有限公司 区域销售经理15:00--15:30赛默飞痕量元素分析在环境土壤的应用张志杨 赛默飞世尔科技(中国)有限公司 应用工程师15:30--16:00《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)》标准解读姜晓旭 中国环境监测总站 高级工程师16:00--16:30基于可见-近红外光谱和数据挖掘的土壤检测技术陈颂超 浙江大学杭州国际科创中心 科创百人研究员5月8日土壤三普检测+土壤重金属检测09:00--09:30土壤检测指标的方法验证刘善江 北京市农林科学院植物营养与资源环境研究所 质检中心主任09:30--10:00钢研纳克土壤检测综合解决方案文桦 钢研纳克检测技术股份有限公司 产品经理10:00--10:30基于近红外光谱技术的土壤参数光谱在线检测系统开发李民赞 中国农业大学 教授10:30--11:00三普土壤检测中关键点分析及内部质量控制刘桀佳 中国冶金地质总局第三地质中心实验室 总工程师14:00--14:30场地调查重金属分析要点简介陈素兰 江苏省环境监测中心 质量部部长 研究员14:30--15:00环境样品重金属检测技术研究进展曹莹 中国环境科学研究院 高级工程师15:00--15:30用逐步回归分析法筛选土壤重金属XRF校准模型经验系数法中的基体元素李玉武 研究员/理学博士 原国家环境分析测试中心分析测试技术研究室主任15:30--16:00场地重金属的现场快速筛查测试技术李培中 北京市科学技术研究院资源环境研究所(原轻工业环境保护研究所) 副研究员5月9日 土壤检测实操培训+“实战宝典编委面对面”论坛9:30-10:00原子吸收分光光度计的使用及其在土壤分析中的应用韩木先 湖北生态工程职业技术学院 高级实验师10:00-11:00“实战宝典编委面对面”论坛主持人赵小学 河南省土壤重金属污染监测与修复重点实验室 正高级工程师 李百球 江西省地质调查研究院 高级工程师报名转发会议,集赞30个还能得一本《ICPMS实战宝典》这羊毛不得不薅呀!(添加助教微信:13260310733),或扫码添加:
  • 土壤氧化还原电位仪(土壤氧化还原电位仪的作用)
    前言: 土壤氧化还原电位仪是一种专门用于测量土壤中氧化还原势(Eh)的专业仪器,其在揭示土壤健康状况、指导农田管理和环境保护等方面具有重要价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C307153.htm 一、【实时检测土壤,评估土壤环境】 土壤氧化还原电位仪可以实时准确地测定土壤的氧化还原电位值,这一参数反映了土壤环境中电子转移活动的程度。通过持续监测和分析,能够判断土壤是处于氧化还是还原状态,进而评估土壤肥力水平、污染物降解能力及微生物活性等多方面土壤健康状况。 二、【指导科学施肥与改良措施】 利用土壤氧化还原电位仪得到的数据,农业生产者可以更准确地了解土壤对养分的有效性以及潜在的重金属污染风险。据此调整施肥策略,避免过度施肥导致的土壤酸化或盐碱化问题,并采取针对性的土壤改良措施,提高农作物产量与品质,实现土壤资源的可持续利用。 三、【环保治理与生态修复的重要工具】 在土壤污染治理和生态修复领域,土壤氧化还原电位仪同样发挥着关键作用。通过对受污染土壤Eh的动态监测,可为污染物迁移转化规律的研究提供依据,指导实施有效的土壤修复方案。此外,在湿地保护、矿山复垦等领域,该仪器也能帮助科学家和工程师深入理解并调控土壤系统的氧化还原过程,促进生态环境恢复。
  • 世界土壤日到来之际,我国土壤普查成果初见成效!
    12月5日是一年一度的世界土壤日,今年的主题是“土壤和水:生命之源”。世界土壤日(World Soil Day,WSD)每年于12月5日举行,旨在关注健康土壤的重要性,倡导可持续管理土壤资源,提高人们对于其生命之源的认识。2013年6月,联合国粮农组织大会一致通过了世界土壤日,并要求在第68届联合国大会上正式通过。2013年12月,联合国大会作出回应,将2014年12月5日定为第一个正式的世界土壤日。世界土壤日到来之际,我国土壤普查成果也初见成效。土壤普查是我国的大事、要事,做好土壤普查,对保障国家的粮食安全、推进生态文明建设,促进经济社会可持续发展具有重要意义。2022年,在全国选择88个试点县、14个省份198个盐碱地普查县,布设20万个调查样点,检测数据309万项次,目前全国均已完成试点任务,构建了一套适宜于全面普查的工作体系与技术体系,各试点县都形成了试点成果与盐碱地普查成果。2023年,土壤三普全面铺开,第三次全国土壤普查检测实验室共768家。当前正值秋收秋种的腾茬窗口期,外业调查采样工作正在全国各地规模化展开。截至目前,根据土壤三普工作平台调度,全国已完成近90万个点位的外业调查、近10万个内业样品制备和6000多个样品检测工作。今年,全国土壤普查办已经相继在西南区、华北区、华东区及华南区、西北区、华中区、东北区举办2023年土壤三普培训班6期,培训了各省份土壤普查办相关负责人、各试点县土壤普查办相关负责人,各省份土壤普查办外业工作和技术负责人、剖面土壤调查技术领队,各试点县成果形成技术负责人1500余人。
  • 土壤环保专项计划将出台 将建土壤监测网
    继大气污染防治行动计划出台后,土壤环境保护行动计划有望成为第二个出台的环保专项计划。环保部自然生态保护司司长庄国泰在出席第九届环境与发展论坛间隙向记者透露,由环保部牵头制定的土壤环境保护行动计划已上报,最晚将于今年底明年初推出。环保部还将公布全国土壤污染状况调查结果。  庄国泰表示,环保部已制定完成土壤环境保护行动计划。土壤环境保护行动计划内容将与国务院已发布的《近期土壤环境保护和综合治理工作安排》相衔接。《安排》指出,到2015年,全面摸清我国土壤环境状况,建立严格的耕地和集中式饮用水水源地土壤环境保护制度,初步遏制土壤污染上升势头,确保全国耕地土壤环境质量调查点位达标率不低于80%。建立土壤环境质量定期调查和例行监测制度,基本建成土壤环境质量监测网,对全国60%的耕地和服务人口50万以上的集中式饮用水水源地土壤环境开展例行监测。力争到2020年,建成国家土壤环境保护体系,使全国土壤环境质量得到明显改善。  庄国泰说,土壤环境保护行动计划力度虽然可能不及大气污染防治行动计划,但由于土壤问题治理难度大、周期长,所需投资将非常巨大。土壤环境保护行动计划将综合运用中央政府、地方政府与企业力量,通过市场机制推动土壤污染治理,制定激励机制,吸引公众参与。  他透露,环保部计划公布全国土壤污染状况调查结果。资料显示,全国土壤污染状况调查工作于2006年7月全面展开,耗资10亿元专项资金,调查范围覆盖我国除台湾省和港澳地区以外的所有省、市、自治区的全部陆地。庄国泰介绍,由于数据整理工作繁杂,直到2010年才最终完成调查结果统计工作。  目前,我国是世界上土壤污染最严重的国家之一。  环保部2006年公布的数据显示,我国受污染耕地约1.5亿亩,占18亿亩耕地的8.3%。目前对土壤保护与修复的资金投入不足全部环保投入的1% 。近年来,国家对土壤环境保护重视程度不断增强。  十二届全国人大常委会第五次会议21日举行第一次全体会议。会议听取了全国人大法律委员会副主任委员张鸣起作的关于环境保护法修正案草案修改情况的汇报。草案三审稿增加规定,加大环境保护的财政投入,在拟定经济、技术政策时应充分考虑对环境的影响,赋予环保部门相应执法手段,建立生态补偿长效机制,加强土壤环境保护等。
  • 检测土壤质量,土壤养分检测仪引导合理施肥
    土壤养分检测仪在农业领域中发挥着关键的作用,通过检测土壤的养分含量,为合理施肥提供科学依据。以下是土壤养分检测仪在检测土壤质量和引导合理施肥方面的应用和优势:了解土壤养分检测仪产品详情→https://www.instrument.com.cn/netshow/SH116147/C541962.htm应用领域农田管理:用于农田土壤的养分测定,帮助农民了解土壤中各种养分的含量,以实现科学合理的施肥。农业科研:用于农业科研机构对土壤质量的研究,为制定合理的土壤管理策略提供数据支持。农业咨询:农业专业人员可以利用土壤养分检测仪为农民提供合理的施肥建议,以提高农作物产量和质量。优势和特点移动实验室:土壤养分检测仪具备携带方便的特点,可以在农田、实验室以及野外环境中进行即时测试,提供移动的土壤实验室。实时鉴别:通过实时检测,能够准确鉴别土壤中的各种养分含量,包括氮、磷、钾等,实现对土壤养分的实时监测。精准施肥:通过检测结果,为农民和农业从业者提供有针对性的施肥建议,确保农田中各类作物得到合理的养分供应。数据上传和分析:土壤养分检测仪通常具有数据上传功能,可将检测结果上传至云端或专业软件进行分析,实现对土壤质量的长短期动态监测。节省成本:相较于传统的土壤检测方法,土壤养分检测仪具有更高的效率,可避免繁琐的实验室操作,从而降低检测成本。通过引导合理施肥,土壤养分检测仪有助于提高土地的可持续利用率,增强农业生产的效益,同时促进环境友好的农业实践。
  • 土壤修复专家探索中国重金属污染土壤治理技术
    5月31日在京举行的“2012重金属污染土壤治理与生态修复论坛”上,约340名中国土壤专家及环保企业代表共同展示了最新的土壤修复技术方案,探讨重金属治理的评估、控制和产业政策问题。  这是广西龙江河镉污染事件后中国首次举办有关土壤重金属污染的大型学术研讨会,1月发生在广西柳州的镉污染给当地150万居民的饮水安全造成威胁,引发公众对土壤重金属污染的忧虑。  中国科学院地理科学与资源研究所研究员陈同斌说,与大气和水污染相比,公众对土壤污染的认识尚显不足 不同于有机污染物,重金属不能降解,与土壤分离难度大 重金属不仅污染农田,还可渗入地下水和地表水。  中国环境科学研究院固体废料污染控制技术研究所首席专家王琪举例说,中国有70余家铬盐生产企业,半数以上采用有钙焙烧工艺,产渣量可能数倍于铬盐产量,对当地土壤和地下水污染严重,2011年底至少有200万吨铬渣未得到有效处置。  土壤重金属修复指通过技术手段减低或固化受污土壤所含的汞、镉、铅、砷、铬等重金属。陈同斌团队研发的神奇植物蜈蚣草具超富集能力,可有效“吮吸”土壤中的砷,通过与甘蔗、桑树间作的方法,实现了土壤原地修复作业,并给当地农民带来一定收入。  与会的华南理工大学环境科学与工程学院的环境研究者也提出了土壤重金属的生物修复解决办法,他们利用农业废弃物玉米秸秆孔隙大的特点,将秸秆经改良后用于吸附土壤中的镉,实现“以废治废”。  王琪认为,土壤修复是一项系统工程,重金属处理流程的规范还未在产业领域形成统一认识。“例如固化技术可将重金属固化在土壤中,但有些企业将之视作固体废料简单填埋,这可能会造成新的污染风险。”王琪说。  此外,论坛也吸引了众多环境修复技术企业参加,企业代表均表示土地修复产业的市场潜力巨大。  为期2天的论坛由中国科学院地理科学与资源研究所、环境保护部南京环境科学研究所和中国环境科学研究院主办。
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业
  • “土壤医生”是啥新职业?国内高校首个“土壤医院”在扬州大学成立
    p  人病了可以去医院看病,土地生病、连年低产又该怎么办呢?/pp  近日,扬州大学成立了国内高校首个" 土壤医院" ,利用学院研究成果,给" 患病" 土地开方治病。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0568f153-d184-4204-8424-8dfba1a2dc2f.jpg" title="1.jpg" alt="1.jpg"//pp  在试验田里,扬州大学" 土壤医院" 的指导老师正带着几名" 土壤医生" 给土地做抽样检测。老师介绍,农户在平时种植中遇到的低产问题,很多源自于土壤。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/f7c19ecc-77bf-486f-8b0e-1e3d5f7ef9dc.jpg" title="2.jpg" alt="2.jpg"//pp  扬州大学" 土壤学院" 指导老师陶天云介绍,土壤医院成立是想在土壤的次生盐渍化、土壤的重金属等问题方面有所建树。依托扬州大学环境科学与工程学院的学科力量和研究成果," 土壤医院" 已形成一套土壤障碍快速诊断与精准治理的技术体系,能有效解决土壤盐渍化、重金属污染、酸碱失衡等问题。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/16bfd0c0-8bd6-4c6c-8be3-a4586079070d.jpg" title="3.jpg" alt="3.jpg"//pp  陶天云介绍,土壤医院可以提供上门服务,把土样采集回来,在实验室进行分析测定,有针对性地看看到底土壤出现了什么问题。 然后根据问题开出明确的药方,从而修复土壤。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/be789d59-3ce1-4a75-a20b-b960f2b5819a.jpg" title="4.jpg" alt="4.jpg"//pp  目前," 土壤医院" 医院相关技术已在扬州、宿迁、无锡等多地进行试点,并在南京六合建立了实验基地。未来," 土壤医院" 还将参与全省绿色防控体系的建设和推广,负责土壤障碍快速诊断,提高农产品品质。/p
  • 土壤治理在路上
    2016年5月31日,国务院颁布了有"土十条"之称的《土壤污染防治行动计划》,这是国家层面继"大气十条"、"水十条"后出台的又一个环保行动计划.这份备受瞩目的"土十条"为我国的土壤污染治理工作做出了全面部署战略,拉开了土壤治理的大幕。  土壤是环境的重要组成部分,土壤环境监测是指通过对影响土壤环境质量因素的代表值的测定,确定环境质量(或污染程度)及其变化趋势。通常所说的土壤监测是指土壤环境监测,一般可以分为全国区域土壤背景、农田土壤环境、建设项目土壤环境评价、土壤污染事故等类型的监测,包括布点采样、样品制备、分析方法、结果表征、资料统计和质量评价等技术内容。现场采集土壤样品  为实现对土壤和沉积物污染状况的监测和预警,提升土壤监测数据获取的“准确性、可靠性”及土壤环境质量综合分析能力。聚光科技(杭州)股份有限公司下属子公司浙江聚光检测技术服务有限公司(以下简称“浙江聚光检测”)投入了满足标准要求的各种仪器设备,如GC-MS、ICP-OE、ICP-MS、IC、等大型仪器设备及辅助设备。主要开展各种土壤介质中pH、有机质含量、阳离子交换量、镉、汞、砷、铅、铬、铜、锌和镍、六六六、滴滴涕和苯并(a)芘、艾氏剂、狄氏剂、异狄氏剂、七氯、氯丹、硫丹、灭蚁灵、毒杀芬、五氯苯、六氯苯、多氯联苯、挥发性有机物(VOCs)等290多个参数通过计量认证,还在不断的开发与完善土壤检测方法研究工作,以满足各类项目对土壤和沉积物的监测要求。现场采集土壤样品  浙江聚光检测承担了中策橡胶土壤质量监测、温州市环境监测站土壤质量监测、杭州市环境监测中心的土壤检测项目、浙江省环境保护设计研究院土壤检测、浙江工业大学环境科学与工程研究所土壤检测分析等项目,积累了丰富的检测和分析评价经验,有一整套高效、快捷的应对土壤突发异常事件的解决方案,拥有一支技术过硬、实践经验丰富的专业检测队伍。  在监测管理运营上,浙江聚光检测始终以良好的专业素质、高度的责任心,实事求是的作风,客观公正地开展各类监测工作。同时,按照采购方要求,及时、准确地提供可靠、详实、完整的分析评价报告。针对我国土壤污染的现状,浙江聚光检测始终坚持严谨精细保质量,以“锐化竞争优势,尽责未来环保”为企业愿景, 以“方法科学,数据公正,高效服务,诚信为本”为质量方针,以“提供科学服务,共建美好家园”为使命,为土壤治理工作给予支持与贡献。
  • 土壤养分检测仪厂家-土壤养分检测仪厂家
    土壤养分检测仪厂家-土壤养分检测仪厂家 Manufacturer of soil nutrient detector - manufacturer of soil nutrient detector土壤养分检测仪 施肥是根据土壤中的养分状况来决定的,土壤中的养分包含很多种,既有人们熟悉的氮磷钾元素,又存在着钙、镁、硫、铁、锰、硼、锌、铜、氯等微量元素,这些元素为我们的作物生长提供了足够的需要,但是随着土壤一系列问题的出现,比如酸化、盐渍化等,这些因素导致我们的土壤养分供给不足,无法满足农业生产的要求,这就要求我们及时改变现状。土壤养分速测仪检测项目:1、土壤养分:●全氮、全磷、全钾、铵态氮、硝态氮、碱解氮、速效磷、速效钾、有机质、pH值、水份、盐分等; ●中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等。2、肥料养分:●单质化肥中的氮素、磷素、钾素、尿素氮素、缩二脲测定;●复(混)合肥及尿素中的全氮、全磷、全钾; ●有机肥中全氮、全磷、全钾、硝态氮、速效磷、速效钾、有机质,●肥料中水溶性腐植酸、游离腐殖酸、总腐殖酸测定;●有机肥及微肥中微量元素(钙、镁、硫、铁、锰、硼、锌、铜、氯、硅)测定等。3、植株养分:●植株中的氮素、磷素、钾素;钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等项。4、植物养分:●硝态氮、速效磷、速效钾以及作物中的微量元素等。5、土壤、肥料重金属:●铅、铬、镉、砷、汞等重金属。土壤养分速测仪特点:★全国《机箱/药剂一体式铝合金机箱》专利设计,便于携带、坚固耐用,配套成品药剂。★微电脑控制,数字化线路、程序化设计,液晶显示,交直流两用,可野外流动测试,程度降低操作者的失误和劳动强度。★分辨率:0.001,触摸式按键,内置热敏打印机,可打印测试结果。★全项目土壤肥料养分检测仪可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。★采用高亮LED灯光源、双拨轮滤光式处理技术,保证光源波长稳定, 硅半导体作为信号接收系统, 寿命长达10万小时级别。光源稳定,重现性好,准确度高。★比色槽部分采用单通道设计,无机械位移及磨损,光路测试定位精确,保证测定结果精度。★配套专家施肥系统数据,可对百余种全国农业、果树、 经济作物的目标产量科学计算推荐施肥量。★采用自主发明专利分析方法,保证检测结果达到国标要求。
  • 吴青:土壤质量标准欠科学建议立法防治土壤污染
    今年,新当选的全国人大代表吴青带来了《关于制定中华人民共和国土壤污染防治法的立法议案》。对于这份议案,吴青据理力荐,“到北京后,将和其他代表联名提交。”据了解,土壤污染对食品安全、人体健康、生态环境、农田的可持续发展,会造成很大危害,但由于土壤污染的隐秘性、不可逆转性和治理成本高、周期长,一直没有引起广泛关注。去年,吴青一直在关注这个问题,一年来发生了较多突发性环境事故,更让她决心提出这个议案。  对于土壤污染,环保部05年启动了全国性普查工作,但相关数据没有公布,“有一部分普查信息应该是可以公开的,逐步公开,有选择性地公开,到最后是越来越扩大地公开。”她提出,普查做完后相关数据要公开,除了会引起重大社会恐慌的情况,可以根据情况审慎处理,工作既然做了,花了这么多资金,一般的信息就应该公开。  “之前普查的数据不精准,不全面,土壤标准也不齐。”她认为,环保部的普查工作还需要继续进行,也应该建立科学、系统的土地质量标准。05年普查土壤环境的质量标准用的是95年的标准,只针对农田有质量标准,但对商业用地、工业用地、城市居住用地没有标准,05年有关的普查肯定不全面。
  • “土壤三普”七问
    遵照《国务院关于开展第三次全国土壤普查的通知》要求,农业农村部会同国务院第三次全国土壤普查领导小组成员单位组织编制了《第三次全国土壤普查工作方案》(简称《方案》),并于近日印发。这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,引起社会广泛关注。为进一步做好《方案》宣传,提升公众对第三次全国土壤普查(简称土壤三普)的重要性认识,农业农村部农田建设管理司就有关问题进行解读。问什么是土壤普查?土壤普查是对土壤形成条件、土壤类型、土壤质量、土壤利用及其潜力的调查,包括立地条件调查、土壤性状调查和土壤利用方式、强度、产能调查。普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。问为什么要开展第三次全国土壤普查?第三次全国土壤普查是一次重要的国情国力调查,对全面真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,落实最严格耕地保护制度和最严格节约用地制度,保障国家粮食安全,推进生态文明建设,促进经济社会全面协调可持续发展具有重要意义。一是守牢耕地红线确保国家粮食安全的重要基础。随着经济社会发展,耕地占用刚性增加,要进一步落实耕地保护责任,严守耕地红线,确保国家粮食安全,需摸清耕地数量状况和质量底数。全国第二次土壤普查距今已40年,相关数据不能全面反映当前耕地质量实况,迫切需要开展土壤三普工作,实施土壤的“全面体检”。二是落实高质量发展要求加快农业农村现代化的重要支撑。贯彻新发展理念,推进农业发展绿色转型和高质量发展,需要土壤肥力与健康指标数据作依据。提高农产品质量和竞争力,需要详实的土壤特性指标数据作支撑。指导因土种植、因土施肥、因土改土,提高农业生产效率,需要土壤养分和障碍指标数据作支撑。发展现代农业,促进农业生产经营管理信息化、精准化,需要土壤大数据作支撑。三是保护环境促进生态文明建设的重要举措。随着城镇化、工业化快速推进,大量废弃物排放直接或间接影响农用地土壤质量;农田土壤酸化加剧、重金属活性增强、污染趋势加重,农产品质量安全受威胁。土壤生物多样性下降、土传病害加剧,制约土壤多功能发挥。为全面掌握全国耕地、园地、林地、草地等土壤性状、协调发挥土壤的生产、环保、生态等功能,需开展全国土壤普查。四是优化农业生产布局助力乡村产业振兴的有效途径。推进优化农林牧业生产布局落实落地,需要以土壤普查基础数据作支撑,合理利用土壤资源,发挥区域比较优势,优化农业生产布局,提高水土光热等资源利用率,实现既保粮食和重要农产品有效供给、又保食物多样,促进乡村产业兴旺和农民增收致富。问第三次全国土壤普查的主要任务是什么?以完善与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善全国土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总。查清不同生态条件、不同利用类型土壤质量及其障碍退化状况,摸清特色农产品产地土壤特征、后备耕地资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。问第三次全国土壤普查要形成哪些成果?数据成果。全国土壤类型、土壤理化和典型区域生物性状指标数据清单,土壤退化与障碍因子,特色农产品区域等专题调查土壤数据,适宜于不同土地利用类型的土壤面积数据等。图件成果。全国土壤类型图,土壤养分图,土壤质量分布图,耕地酸化、盐碱化等退化土壤分布图,土壤利用适宜性评价图,特色农产品生产区域土壤专题调查图等。文字成果。土壤三普工作报告、技术报告,全国土壤利用适宜性评价报告,全国耕地、园地、林地、草地质量报告,东北黑土地、盐碱地、酸化耕地等耕地改良利用、特色农产品区域土壤特征等专项报告等。数据库成果。土壤性状数据库、土壤退化和障碍数据库、土壤利用等专题数据库。样品库成果。标准化、智能化的国家级和省级土壤样品库、典型土壤剖面标本库等。问第三次全国土壤普查什么时间完成?按照“一年试点、两年铺开、一年收尾”的时间安排进度有序开展。2022年,启动土壤三普工作,完成技术规程制订、工作平台构建、外业采样点规划布设及培训宣传等工作,在31个省(自治区、直辖市)选择若干个县开展全面试点。对重点区域开展盐碱地调查,完成全面盐碱地普查。2023-2024年,各省(自治区、直辖市)全面开展普查,2024年底前完成全部外业采样和内业化验等工作,初步建成省级土壤普查数据库与样品库。2025年,完成省级普查成果汇总、验收,初步建成国家级数据库、样品库,形成全国耕地质量报告和土壤利用适宜性评价报告等,汇总形成全国土壤普查各类成果。问第三次全国土壤普查怎么组织实施?以土壤二普、国土三调、全国农用地土壤污染状况详查等工作形成的相关成果为基础,统筹现有工作平台、系统等资源,坚持摸清土壤质量与完善土壤类型相结合、土壤性状普查与土壤利用调查相结合、外业调查观测与内业测试化验相结合、土壤表层采样与重点剖面采集相结合、摸清土壤障碍因素与提出改良培肥措施相结合、政府主导与专业支撑相结合的“六结合”的方式方法。建立土壤三普统一工作平台,统一技术规程,编制土壤三普统一工作底图,统一规划布设外业调查采样点位,统一筛选测试化验专业机构,构建涵盖普查全过程统一质控体系。按照“统一领导、部门协作、分级负责、各方参与”的原则组织实施。一是加强组织领导。成立国务院第三次全国土壤普查工作领导小组及办公室,办公室设在农业农村部,负责普查工作的具体组织和协调。地方各级人民政府成立相应的普查领导小组及办公室,负责本地区普查工作的组织和实施。二是强化技术支撑。全国和各省土壤三普办公室组织开展技术规程制定、技术培训、技术指导,成立专家指导组和技术工作组,负责重大技术疑难问题咨询、指导与技术把关等。各省(自治区、直辖市)组建省级专家指导组和专业普查队伍体系,承担本区域的外业调查和采样等工作。需要注意的是,在土壤三普培训上,除由全国各级土壤三普办委托的单位外,其他社会第三方的培训都与各地组织开展土壤三普无关。三是强化经费保障。土壤普查经费由中央财政和地方财政按承担的工作任务配置。地方各级人民政府根据工作进度安排,统筹资金渠道经费支持土壤三普工作,纳入相应年度预算,并加强监督审计。四是加强宣传引导。广泛宣传土壤普查重要意义,提高全社会对土壤三普工作重要性的认识。认真做好舆情引导,积极回应社会关切的热点问题,营造良好的外部环境。问土壤普查和土地调查有什么不同?一是范围不同。土壤三普对象是全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地中突出与食物生产相关的土地,未利用地重点调查与可开垦耕地资源潜力相关的土地,如盐碱地等。调查面积约为陆地国土的76%。国土三调对象是我国陆地国土。二是目的不同。土壤三普目的是查明全国土壤类型及分布,全面查清土壤资源现状和变化趋势,掌握土壤质量、土壤健康等基础数据,实现对土壤的“全面体检”。国土三调目的是全面查清某一时间节点全国土地资源数量及利用状况,掌握真实准确的土地利用状况基础数据。三是内容不同。土壤三普是对土壤理化和生物性状、土壤类型、土壤立地条件、土壤利用情况等的普查。国土三调是对土地利用现状及变化情况、土地权属及变化情况等的调查。四是方法不同。土壤三普是调查采集表层土壤样品,挖掘土壤剖面、采集分层土样,分析化验土壤理化性状等,是三维立体式调查。国土三调是在第二次全国土地调查利用类型图基础上,通过遥感影像对土地利用现状进行判读,实地调查核实变化土地的地类、面积和权属,是二维平面式调查。土壤三普与国土三调相互衔接,土壤三普需要用国土三调形成的土地利用现状图来编制工作底图,土壤三普成果可推动土地利用类型布局的优化,为确定特色农产品规划布局、后备耕地资源开发利用、土地治理等工作提供科学依据。
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 2 部分:土壤中总砷的测定》(GB/T 22105.2-2008)。5.2.53 总铅5.2.53.1 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.53.2 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.53.3 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.53.4 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.54 总镉5.2.54.1 石墨炉原子吸收分光光度法:《土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法》( GB/T 17141 - 1997)。5.2.54.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55 总铬5.2.55.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.55.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.55.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。5.2.56 总镍5.2.56.1 电感耦合等离子体原子发射光谱法:《固体废物22 种金属元素的测定 电感耦合等离子体原子发射光谱法》(HJ 781-2016)。5.2.56.2 电感耦合等离子体质谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.56.3 火焰原子吸收分光光度法:《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法》(HJ 491-2019)。土壤含水量的测定按《土壤检测 第 3 部分:土壤机械组成的测定》(NY/T 1121.3-2006)。采用林业行业标准的检测方法按《森林土壤含水量的测定》(LY/T 1213-1999)测定含水量。5.3 结果上报检测实验室完成样品检测后,检测员需及时填写检测原始记录。原始记录经三级审核无误后,检测结果(附表 4)及时录入上报至土壤普查工作平台,经省级质量控制化验室审核后确认。原文下载:全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 土壤好不好,测一测很重要!一起探秘土壤检测!
    土壤好不好,测一测很重要。2022年,国务院启动第三次全国土壤普查工作,计划在4年内完成对我国土壤的全面“体检”。全国土壤普查查什么?采集回来的样品是如何变成土壤资源数据的呢?内业测试化验与外业调查工作如何进行衔接?宝贵的普查数据将怎么保存和应用呢?11月2日,“全国土壤普查超级会客厅——探秘土壤检测”直播活动在京举行。国务院第三次全国土壤普查领导小组办公室(以下简称“全国土壤普查办”)相关负责人、第三次全国土壤普查专家技术指导组专家及一线工作人员就第三次全国土壤普查(以下简称“土壤三普”)内业测试化验、全程质量控制等重点工作进行了详细介绍。全国土壤普查查什么?“随着城镇化、工业化快速推进,大量废弃物排放直接或间接影响农用地土壤质量;土壤生物多样性下降、土传病害加剧,制约土壤多功能发挥。” 在“全国土壤普查超级会客厅”第一期直播活动中,全国土壤普查办相关负责人曾表示,为全面掌握全国耕地、园地、林地、草地等土壤性状、协调发挥土壤的生产、环保、生态等功能,需开展全国土壤普查。那么,土壤普查都查些什么呢?“此次普查对象是全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。”全国土壤普查办副主任、农业农村部农田建设管理司一级巡视员陈章全在直播活动中介绍。记者从农业农村部官网了解到,根据《第三次全国土壤普查工作方案》,此次土壤普查内容包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。“目的在于查清不同生态条件、不同利用类型土壤质量及其退化与障碍状况,摸清特色农产品产地土壤特征、耕地后备资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。”陈章全继续补充。以土壤性状普查为例,就是要通过土壤样品采集和测试,普查土壤颜色、质地、有机质、酸碱度、养分情况、重金属等土壤物理、化学指标,以及满足优势特色农产品生产的微量元素;在典型区域普查植物根系、动物活动、微生物数量、类型、分布等土壤生物学指标。全国土壤家底怎么查?土壤普查的工作量如此巨大,具体怎么查呢?根据国家有关部门统一安排,土壤三普工作步骤具体包括8项:构建工作平台、制作工作底图、布设采样样点、外业调查采样、内业测试化验、数据整理分析、质量控制校核、成果汇交汇总等。“外业调查采样和内业测试化验是必不可少的两个环节,即野外作业和室内作业。”陈章全介绍,外业调查采样和内业测试化验由各省(区、市)共同组织实施,主要以县为单位组织专门队伍到野外定点取样,编码后送专业机构进行测试化验。“在‘土壤三普’工作中,外业调查采样是最基础的关键环节。通常来说,一个点的土壤性状可以代表类似的一片区域,我们通过挖掘点位土壤剖面、采集点位土壤样品的办法,可以了解土壤空间变化规律,实现以点带面,进而支撑土壤资源管理。”陈章全表示,外业调查采样是决定普查成果科学性、准确性的核心。据介绍,土壤三普外业调查充分利用了遥感、地理信息系统、全球定位系统、移动互联等现代技术,构建了多层级的现场实操、在线技术指导和质控体系,可实现对每一个采样点位的实时技术支撑、过程跟踪和质量控制。“国家级土壤普查工作平台系统让土壤三普插上了信息化的翅膀,在平台上可进行全流程的调度、控制与管理。”第三次全国土壤普查专家技术指导组成员、中国农业科学院农业资源与农业区划研究所副研究员余强毅说道,土壤普查采样点不仅有“身份证”,还有“行程码”,他现场详细展示了土壤三普调查采样、样品流转和质量控制APP。“9月开始了大规模的土壤普查工作,已对88个试点县实施了外业调查,采样样点将近9万个,基本已完成了90%;大约需采集样品20万个,目前已完成了14万。”陈章全介绍了土壤三普的工作进展,他表示,当前,全国土壤普查已开始从外业调查阶段转为内业测试化验阶段,已有22个省进入内业化验环节,有5000多个样品已化验结束,数据结果已出。当前,全国土壤普查外业调查工作正有序推进,各地已经采集到了不少土壤样品。接下来,这些取自耕地、园地、林地、草地等的大量土壤样品将进行测试化验,获取进一步的理化数据。内业测试化验是土壤三普核心环节之一“内业测试化验是土壤三普数据的重要来源,是形成普查成果的重要依据。”全国土壤普查办副主任、内业工作组组长、农业农村部耕地质量监测保护中心主任谢建华介绍,土壤三普是距离二普43年后,我国开展的又一次土壤的“全面体检”,当前,土壤三普内业测试化验工作进入关键时期,信息化平台建设有序推进,普查各项工作正向预期目标前进。谢建华表示,内业测试化验要以国家标准、行业标准和现代化验分析技术为基础,规范确定土壤三普统一的样品制备和测试化验方法。其中,重金属指标的测试方法与全国农用地土壤污染状况详查相衔接一致。开展标准化前处理,进行土壤样品的物理、化学等指标批量化测试。充分衔接已有专项调查数据,相同点位已有化验结果满足土壤三普要求的,不再重复测试相应指标。选择典型区域,利用土壤蚯蚓、线虫等动物形态学鉴定方法和高通量测序技术等,进行土壤生物指标测试。第三次全国土壤普查专家技术指导组副组长、内业技术组组长、农业农村部耕地质量监测保护中心总农艺师马常宝从四个方面介绍了内业测试化验的重点工作,对内业测试化验三级质量控制进行了详细解读。“由检测实验室对土壤样品有机质、酸碱度、水溶性盐等多项理化指标进行测试化验,并出具检测报告,为后期开展土壤质量状况和土壤利用适宜性评价分析提供科学的数据支撑。”马常宝介绍,样品应由调查采样队指定专人负责流转,并由实验室指定专人负责样品接收。“全程质量控制对土壤三普工作具有重要意义,要通过技术规程规范完善与宣贯、严格作业人员资质要求、加强专家技术指导服务、工作平台全程管控、落实分级监督抽查等五大环节,切实把好土壤三普质量关。”陈章全如是说,普查即将进入内业测试化验阶段,以完善与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总等工作。
  • 土壤也要“体检” 土壤监测仪器仪表迎机遇
    土壤污染形势严峻 土壤是人类赖以生存,不可或缺的重要自然资源,事关家家户户的米袋子、菜篮子、水缸子,事关国家生态安全,事关美丽中国建设。然而,相比大气污染和水污染,土壤污染以其隐蔽性、潜伏性、长期性、不均匀性和不可逆转性,成为了污染防治攻坚战中最难缠的“看不见的敌人”。近些年,无论是农用耕地还是建设用地,人们对“脚下的环境”越发关注。 另外,小编了解到,土壤污染的特点主要有四个,首先是具有隐蔽性和滞后性。土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题,通常会滞后很长时间。 其次,具有累积性和地域性。污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不像在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。 再者,具有不可逆性。如被某些重金属污染的土壤需要200~1000年才能够恢复。最后,土壤污染治理的艰难性。如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。 因此,土壤污染一旦发生,则很难恢复,治理成本较高、治理周期较长。文章开头,小编提到,对于土壤污染防治处于“后知后觉”的状态,很大程度上是因为我国缺乏对土壤环境质量评估的重视,没有及时对土壤环境质量现状展开调查评估。而在两会上,全国人大代表、致公党江苏省委副主委沈仁芳表示,实施第三次全国土壤普查,对我国土壤质量进行“全面体检”已成为当务之急和农业现代化发展的重大战略需求。土壤质量亟待“体检” 土壤环境质量是土壤质量的一部分,是土壤容纳、吸收、净化污染物的状况。土壤环境质量评估是按一定的标准和方法,通过对土壤中污染物浓度进行监测,判定土壤环境是否受到污染,是单要素环境质量评估的一种。 据数据显示,将全国20.23亿亩耕地质量等级由高到低依次划分为一至十等,评价为一至三等的耕地面积为6.32亿亩,占耕地总面积的31.24%;评价为四至六等的耕地面积为9.47亿亩,占耕地总面积的46.81%;评价为七至十等的耕地面积为4.44亿亩,占耕地总面积的21.95%。(数据为2019年全国耕地质量公告)。 此外,耕地土壤质量的监测,主要是了解土壤质量变化情况。其重点监测pH、铅、镉、汞、砷、铬、镍、铜、锌等内容,根据国家土壤环境质量对农田土壤进行质量分等定级,并提出农业生产合理布局、环境质量与土壤修复的意见。 对土壤环境质量评估是加强土壤污染防治工作的前提,对耕地土壤进行一次全面“体检”,帮助农民因土、因作物施肥,提高肥效利用率,保护土壤和环境,在此发展背景下,其监测仪器仪表设备发展强劲。“体检”土壤 相关仪器仪表设备发展强劲 土壤环境监测网络由各类监测仪器仪表组成,通过对各项指标的监测分析,探讨各参数间的相互关系,为土壤质量的监测和科研或决策部门提供了科学的土壤参数。根据全国土壤详查实验室要求,承担土壤详查的实验室要具备一定数量仪器设备,如分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪、微波消解仪、索氏提取器、气相色谱-质谱联用仪等。 此外,土壤中除了矿物质、有机质、土壤微生物,杂质,剩下的就只有土了。但其实土壤空隙中还存在着部分液体、固体。土壤分析是对土壤的组成分和物理、化学性质进行的定性、定量测定。作为农业发展的基础,土壤分析对农业也有具有举足轻重的作用,如不同的土壤适合种何种作物、作物生长过程中缺少哪种元素等都可以通过土壤分析检测而得出结果。 作为做好土壤污染防治、质量评估的基础,土壤监测必然提速。可以说,土壤监测是贯穿至土壤污染防治始终的。在初期基础性工作中,土壤污染状况以及污染地块分布调查需要监测先行,从而摸清“家底”;因此,耕地土壤质量亟待全面“体检”,给土壤监测仪器仪表带来的机遇不可小觑。最后,我们要知道,土壤是人类赖以生存,不可或缺的重要自然资源,土壤相关监测仪器仪表等将成为推动土壤污染监测的关键,其设备发展强劲。
  • 土壤养分分析仪器-土壤养分分析仪器-土壤养分分析仪器
    土壤养分分析仪器【选择山东霍尔德电子科技】Soil testing instrument manufacturers为山东霍尔德电子科技新一代仪器生产厂家研发,性能可靠,具有强大的售后保障,为仪器生产优势厂家,能够满足各种检测需求【点击上方进入公司主页可电话咨询】土壤养分分析仪器是在合理施用农家肥的基础上进行的,在开展测土配方工作中,各级农业部门积极引导农民积存农家肥,实施秸秆还田等技术,提高有机肥的利用水平,使土壤养分结构得到改善,耕地质量明显提高。土壤检测仪器技术指标:  1.电源:交流 220±22V 直流 12V+5V(仪器标配内置锂电池也可用车载电源)  2.功率: ≤5W  3.量程及分辨率:0.001-9999  4.重复性误差: ≤0.02%(0.0002,重铬酸钾溶液)  5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量) 一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量) 两个小时内数字漂移不超过0.5%(0.005,透光度测量)。  6.线性误差: ≤0.1%(0.001,硫酸铜检测)  7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-3  8.波长范围 :红光:680±2nm 蓝光:420±2nm 绿光:510±2nm 橙光:590±4nm  9.PH值(酸碱度): (1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.1  10.含盐量(电导):(1)测试范围:0.01%~1.00% (2)相对误差:±5%  11.土壤水分技术参数水分单位:﹪(g/100g) 含水率测试范围:0-100﹪ 误差小于0.5%  12.土壤中速效N、P、K三种养分一次性同时浸提测定、科学推荐施肥量(农业部速测行业标准起草者)  13.肥料中氮(N)、磷(P)、钾(K)等养分同时、快速、准确检测  14.测试速度:测一个土样(N、P、K)≤30分钟(含前处理时间,不需用户提供任何附件)  15.同时测8个土样≤1小时(含前处理时间)  16.仪器尺寸:43×34.5×19cm, 主机净重:5.1kg
  • 土壤养分检测仪 土壤养分分析仪 厂家
    (一)多功能土壤肥料检测仪测定项目土壤:铵态氮、有效磷、速效钾、有机质、碱解氮、硝态氮、全氮、全磷、全钾、有效钙、有效镁、有效硫、有效铁、有效锰、有效硼、有效锌、有效铜、有效氯、有效硅、pH、含盐量、水分;肥料:单质肥、复合肥中的氮、磷、钾等。有机肥、叶面肥(喷施肥)中各形态氮、磷、钾、腐植酸以及pH值、有机质,钙、镁、硫、硅、铁、锰、硼、锌、铜、氯等。植株:氮、磷、钾、钙、镁、硫、硅、铁、锰、硼、锌、铜、氯等。(二)多功能土壤肥料检测仪功能介绍1.操作系统:Android操作系统,主控须采用多核处理器,CPU主频≥1.8Ghz,大容量内存,运转速度快、稳定性强,无卡顿卡机现象。配带 USB 双接口,快速导出上传数据,快速导出上传数据。2.仪器采用7.0寸大屏幕,支持中英文一键切换,可存储打印检测结果,具备历史数据查询打印功能。3.内置中英文双语显示,一键切换,满足出口需求。4.自主研发科研级高精度检测模块,软件著作权证书号:软著登字第7934007号。5.仪器具有自身保护功能,可设置用户名及密码;配有指纹锁用于指纹登录,防止非工作人员操作查看实验数据。6.支持Wifi传输,数据可局域网和互联网数据上传,检测结果可直接传至云平台。7.内置作物图谱:根据各农作物营养缺失的图片,进行叶面对比,丰缺诊断。8.数据打印:内置热敏打印机,可打印出检测项目、检测单位、检测人员、检测时间、通道号、吸光度、含量(mg/kg)、二维码等信息。9.每台仪器配备专属的云平台账户密码,可通过电脑网页及手机微信查看。10.仪器内置样品前处理步骤以及上机检测步骤操作视频,点击仪器主界面即可观看,一对一指导教学,上手更快速简单!11.内置先进的定位器,实现每个通道定位精准;12.仪器配置四种(红、蓝、绿、橙)波长光源,光源波长稳定,寿命长达10万小时级别,重现性好,准确度高。13.仪器带有电压显示灯,实时显示当前电压值,保证操作过程的稳压状态,并带有断电保护功能,在突然断电时,可以对数据进行自动储存,以防数据丢失。14.内置测土配方施肥系统,直接输入养分检测结果,即可计算出一次性施肥量;可对百余种全国农业经济作物的目标产量计算推荐施肥量,配方施肥科学指导农业生产;测土配方施肥结果可打印,打印内容包含作物种类、肥料种类、目标产量、需求总量、建议施肥方案。15.土壤中速效N、P、K等多种养分一次性同时浸提测定。16.检测速度:在正常熟练程度下,测土壤铵态氮、磷、钾三项要20分钟(含土样前处理及药剂准备),测肥料氮、磷、钾三项需50分钟左右,微量元素单项检测需20分钟左右。(三)多功能土壤肥料检测仪技术指标1.电源:交流220±22V直流12V+5V(仪器内置大容量锂电池)2.功率:≤5W3.量程及分辨率:0.001-99994.重复性误差:≤0.04%(0.0004,重铬酸钾溶液)5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。6.线性误差:≤0.2%(0.002,硫酸铜检测)
  • 第三次全国土壤普查暂行土壤分类系统研讨会在京召开
    为加快《第三次全国土壤普查工作暂行土壤分类系统(试行)》编制与完善工作,支撑土壤普查全面铺开。8月23—25日,国务院第三次全国土壤普查领导小组办公室在京组织召开第三次全国土壤普查暂行土壤分类系统研讨会。会议汇总梳理了已整理的土壤分类工作进展,研讨校准了完善土壤类型图的方法和措施,提出了土壤三普工作暂行土壤分类系统方案。会议以线上线下相结合的方式召开。全国土壤普查办有关负责人,第三次全国土壤普查专家技术指导组专家等70余人参会。  土壤分类是土壤调查的基础,是土壤资源管理和利用的依据。第三次全国土壤普查暂行土壤分类系统基于《中国土壤分类与代码》(GB/T 17296-2009)土壤分类单元提出。专家们根据《中国土壤分类与代码》(GB/T 17296)中划分依据或指标不完善的情况,特别是缺乏基层分类土属、土种的划分依据和指标,结合近年来的研究,提出了从土类到土种的分类描述依据与方法,并按区域梳理了存在争议和疑问的土壤类型处理意见。会议明确按区域由专家分工将现行土壤分类系统各类型不同土类、亚类梳理出规范化描述标准,土属、土种的分类依据和标准由各省组织专家梳理。在此基础上汇总归纳形成第三次全国土壤普查工作分类系统。
  • 新品推荐|土壤研磨机,土壤粉碎、研磨、混合、均一化一步到位
    一机多能,一步到位优云谱土壤研磨机是一款高效多功能的实验室设备,专为土壤研究和分析而设计。它集成了土壤粉碎、研磨、混合和均一化的功能,一机完成多个步骤,为土壤样品的前处理提供了便捷解决方案。了解更多产品信息→https://www.instrument.com.cn/netshow/SH116147/C541974.html精准研磨,保持土壤特性通过先进的研磨技术,土壤研磨机能够将土壤样品精细破碎,确保土壤颗粒的均匀性和细度。这有助于提高后续实验的准确性,同时保持土壤的基本特性。广泛应用于土壤科研该设备在土壤科研领域得到广泛应用,特别适用于土壤样品的制备和前处理。无论是土壤肥力研究、植物生态学还是环境科学,土壤研磨机都能满足不同实验的需求。高效节能设计土壤研磨机采用高效能耗设计,保证在实现高效研磨的同时,能够有效降低能源消耗。这有助于提高设备的可持续使用性。操作简便,适用于不同实验室设备设计简单,易于操作,适用于各类实验室,包括科研机构、环境监测站和农业科研单位等。它为研究人员提供了一种高效、方便的土壤前处理方案。土壤研磨机的一体化设计使其成为土壤研究领域中的得力助手。通过粉碎、研磨、混合和均一化的一体化操作,它简化了土壤样品的前处理过程,提高了实验效率,为土壤科研工作者提供了一种高效便捷的实验解决方案。
  • 两会总结|加强土壤保护,做好耕地土壤污染检测修复工作
    “民以食为天”,土壤是人类赖以生存、兴国安邦、生态文明建设的基础资源,是保障国家粮食安全与生态环境安全的重要物质基础。对于我国这样一个人口众多、土壤资源紧缺的国家而言,健康的土壤则显得尤为重要。2023年3月4日-3月13日,全国两会召开,各界代表就土壤环境问题提出了一系列建议,强化政策支持,保障土壤环境安全健康。仪器信息网对“两会土壤相关建议”进行了部分统计,展示如下:国务院总理李克强政府工作报告:加大土壤污染风险防控和修复力度国务院总理李克强3月5日在政府工作报告中指出,加大土壤污染风险防控和修复力度,强化固体废物和新污染物治理。全面划定耕地和永久基本农田保护红线、生态保护红线和城镇开发边界。坚持山水林田湖草沙一体化保护和系统治理,实施一批重大生态工程,全面推行河湖长制、林长制。深入实施长江流域重点水域十年禁渔。加强生物多样性保护。完善生态保护补偿制度。森林覆盖率、湿地保护率分别达到24%、50%以上,水土流失、荒漠化、沙化土地面积分别净减少10.6万、3.8万、3.3万平方公里。人民群众越来越多享受到蓝天白云、绿水青山。沈仁芳:制定土壤环境标准体系是打好净土保卫战的关键沈仁芳为准备建议开展的调研中发现,一是我国土壤类型及其利用方式多,空间分布格局复杂;二是我国土壤污染类型多,耕地重金属污染严重,呈区域差异化分布,同时出现抗生素和微塑料等多种新污染物;三是我国土壤污染防治工作起步晚、历史欠账多、底子依然薄弱。沈仁芳建议,全面持续推进我国土壤(特别是耕地)污染防治工作,并将其作为建设人与自然和谐共生的美丽中国和健康中国的重要任务。其中,土壤环境基准科学求证和土壤环境质量标准合理制定是高质量推进土壤环境管理和深入打好净土保卫战的关键所在。中国绿发会:在全国土壤普查中将“土壤生物多样性”列入全国普查一级指标。当前,关于土壤中的生物多样性,我国在本底数据方面的重视不够。而土壤生物多样性及其所提供的生态系统服务对全球生态系统至关重要,在解决粮食安全、环境污染、气候变化及公共卫生等全球重大问题方面起着关键作用。由中国生物多样性保护与绿色发展基金会建议我国政府采取进一步行动,可由国务院牵头,并协调农业农村部、自然资源部、国家发展改革委、财政部、生态环境部、水利部、国家统计局、国家林草局等部门,尽快在全国土壤普查中将“土壤生物多样性”列入全国普查一级指标。朱晓丽:深化耕地污染土壤防治 把“饭碗”端稳端牢“农田土壤修复不只是治理污染,还要在治理后提升土壤的生产能力,让它成为老百姓的‘饭碗田’。”2023年全国两会上,全国人大代表、西北大学城市与环境学院教授朱晓丽接受采访时表示。今年全国两会,朱晓丽将履职目光聚焦到农业环境领域,针对土壤污染生态修复、土壤质量提升以及进一步完善高标准农田建设等话题提交了相关建议。她建议,加大遴选绿色生态修复技术力度,加强科研创新,提升土壤利用效率;对严格管控的受污染土地进行更详细排查,通过采取挖沟或者筑坝的形式,把干净的土壤区域分隔开,进行再次利用。同时,政府应加大人才培养力度,设立专门的研究机构,建立人才培养机制,发挥人才队伍作用,促进更多的科研成果转化落地,从而为经济高质量发展奠定基础。苏家恩:加强农作物核心产区土壤保护“一直以来,党中央高度重视土壤污染防治和土壤环境保护工作。国家先后制定了《中华人民共和国土壤污染防治法》《中华人民共和国黑土地保护法》等法律法规,但目前尚缺少针对高标准农田或农作物核心产区制定土壤保护方面的法律法规。”全国人大代表苏家恩说。他建议,制定单行的《耕地土壤污染防治法》,在现行法律中增加、细化高标准农田或农作物核心产区土壤保护内容。同时,健全相关的配套措施和救济机制,加强高标准农田保护,确保高标准农田或农作物核心产区能够高效绿色地促进农业增产和稳产,保障国家粮食安全。朱永官:塑料污染破坏土壤生态系统,亟待治理“2020年,我国塑料用量为9087.7万吨,废弃量约为6000万吨。其中,40%是一次性塑料制品,如塑料包装袋、农业塑料薄膜、快餐盒、饮料瓶等。我国面临着严重的塑料污染问题。”全国人大代表、中国科学院院士朱永官指出。预计到2050年,全球塑料累计产量将增至340亿吨。届时,全球年人均塑料消费量将达到84.37千克。“地膜、轮胎颗粒等塑料在土壤环境中不断积累,这直接影响到了土壤的物理化学结构。塑料会吸附农药、重金属等有毒有害物质,干预土壤生物新陈代谢,破坏土壤生态系统。”朱永官说。因此,他建议,积极推动国家塑料污染防治行动计划。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制