当前位置: 仪器信息网 > 行业主题 > >

土壤碳

仪器信息网土壤碳专题为您整合土壤碳相关的最新文章,在土壤碳专题,您不仅可以免费浏览土壤碳的资讯, 同时您还可以浏览土壤碳的相关资料、解决方案,参与社区土壤碳话题讨论。

土壤碳相关的资讯

  • 土壤固碳是实现碳中和与土壤健康的双赢解决方案
    近日,农业农村部发布中国再次启动土壤普查意义重大相关报道,其中提到土壤普查是认识和保护土壤资源的基础,将有助于保障粮食安全,并助力碳达峰、碳中和目标的实现。40年来中国土壤至少有以下三方面发生了变化:(1)土壤重金属污染快速加重;(2)土壤的快速酸化;(3)土壤的有机质变化。第三次土壤普查的意义重大“十四五”规划和2035年远景目标明确要求以保障国家粮食安全为底线,坚持最严格的耕地保护制度,深入实施“藏粮于地、藏粮于技”战略。我们期待第三次土壤普查能够服务两大目标:一、促进土壤的自身健康,实现粮食在质和量上的安全;二、通过促进土壤健康,增强土壤的固碳能力,助力中国达成“2030年碳达峰,2060年碳中和”的宏伟目标。 (1)粮食安全方面 第三次土壤普查的对象为全国耕地、园地(果园、茶园等)、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。针对耕地、园地,普查将检测样本中45项理化指标,此外还将开展土壤动物和微生物调查。 (2)生物固碳方面 土壤构成最大的陆地有机碳库,是目前大气中约8300亿吨碳含量的3倍,和当前每年的化石燃料碳排放量约100亿吨的240倍。土壤既可以释放二氧化碳和甲烷而成为温室气体的来源,又可以通过土壤有机质固碳而作为碳汇。因此减少土壤的温室气体排放、增加土壤的碳固定对于缓解气候变化的意义重大。第三次土壤普查并没有为土壤固碳能力设定具体目标和明确的任务。但是,其检测指标中包含了土壤有机质和碳酸钙(无机碳)这两个含碳的指标,这将为本次调查中不同土地类型的土壤碳库的核算、土壤固碳潜能的评估,以及推进土壤固碳技术的发展打下坚实的基础。 土壤固碳是实现碳中和与土壤健康的双赢解决方案。我们期待,在第三次土壤普查之后,中国能将土壤固碳作为农业固碳减排技术正式纳入官方文件,制定具体目标、明确的任务和行动方案。
  • 精准助力土壤三普之快速测定土壤中有机碳
    国务院于今年2月份发出第三次土壤普查的通知,其土壤普查理化性状检测指标中,就有机质项目的检测要求。土壤有机质主要来源于土壤中动、植物的残体以及微生物生命活动所产生的有机物质,主要成分为C和N的有机化合物;其含量将决定植物的生长发育,并且对土壤的养分结构、理化性状起着关键性作用。东北黑土地就由于其富含有机质而土壤肥沃,素有“谷物仓库”之称。目前,测定土壤中有机质的方法多采用先测定土壤中的有机碳含量(TOC),再乘以与有机质的换算系数1.724,即为土壤有机质的含量。所以需准确测试土壤中的有机碳。土壤有机碳检测方法一般分为燃烧氧化法和化学氧化法两类。Ø 化学氧化法——做样速度较慢(大于0.5h),受基体影响较大化学氧化法是较为传统的方法,主要通过重铬酸钾-浓硫酸溶液将土壤溶液中的有机碳氧化,再通过硫酸亚铁滴定或分光光度法进行定量测定。此类方法虽然所需设备较为简单,但是实际测试时却有较多不足:(1)需要试剂种类较多,操作步骤复杂,做样周期较长,往往需要半小时以上;(2)由于土壤中的基体非常复杂,且各个地方的土壤成分差异大,同计量的试剂对有机碳的氧化是否彻底,将会影响测定结果;(3)在滴定法或分光光度法测定时,样品基体不同,也对其显色产生不同程度的干扰,造成数据不准,需根据样品再摸索掩蔽剂等条件。Ø 燃烧氧化法——做样3-4min即可出结果,不受基体影响燃烧氧化法方法是较新的方法,该方法是将土壤样品称量后,加酸加热去除无机碳,后置于高温灼烧(1100℃左右)使土壤样品中的有机碳氧化为二氧化碳,最后用仪器检测器测定产生的CO2值,并转换为TOC浓度。此方法有以下优势:(1)样品固体进样即可,制备流程少、做样简单、可操作性强;(2)做样速度快,固体样品进入仪器只需3-4min即可完成测试;(3)无需多种试剂,只需加酸即可,试剂损耗小;(4)不受样品基体影响,由于燃烧温度高,可更加充分地将有机碳氧化,所以无论什么样品基体,均可得到准确结果。以下为土壤有机质测定相关标准对比 :标准氧化方式检测原理试剂耗时NY/T 85-1998土壤有机质测定法重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时LY/T 1237-1999森林土壤有机质的测定及碳氮比的计算重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时HJ 658-2013 土壤 有机碳的测定 氧燃烧—滴定法高温燃烧氢氧化钡吸收,草酸滴定氢氧化钡、草酸、酚酞、盐酸5小时HJ 615-2011 土壤 有机碳的测定 重铬酸钾氧化-分光光度法重铬酸钾-硫酸溶液加热分光光度法重铬酸钾,硫酸,硫酸汞8小时HJ 695-2014 土壤 有机碳的测定 燃烧氧化-非分散红外法高温燃烧非分散红外法(NDIR)磷酸或盐酸3-4分钟德国耶拿可为您提供燃烧法测试土壤中TOC的全套解决方法:方案1:总有机碳分析仪multi N/C+ HT 1300采用燃烧法可直接测量土壤固体中的TOC含量,具有以下特点,保证实验的高效准确。可分析液体或固体样品… … … … … … … … … … … … … … … … … 软件切换,无需机械移动冷开机20分钟内即可工作,进样3-4min出结果… … … … 实验效率高直接称量于陶瓷舟中… … … … … … … … … … … … … … … … … … … 操作简便最高称样量达3g… … … … … … … … … … … … … … … … … … … … … 保证样品代表性燃烧温度可达1300℃ … … … … … … … … … … … … … … … … … … 充分氧化无需催化剂… … … … … … … … … … … … … … … … … … … … … … … … 低耗材成本高聚焦NDIR检测器 … … … … … … … … … … … … … … … … … … … 抗干扰,宽范围方案2:元素分析仪multi EA 4000全自动固体TOC分析,可全参数分析TOC、TIC、TC参数。具备自动加酸处理等功能。应用实例:通过测定多种标准土验证方法准确性,测试结果均在质控范围内,且测试6次,RSD在0.76~6.29%。具体数据如下:标准品号平均值%RSD (n=6)%标准值相对误差%GBW073140.876.290.86% ± 0.1%1.2NST-62.190.862.2% ± 0.1%0.3GBW07416a0.720.760.73% ± 0.05%0.69GBW074591.280.991.27% ± 0.05%0.39注:multi N/C+ HT 1300方案测定通过以上数据可知,采用耶拿的快速燃烧法测定土壤有机碳,准确度、精密度等指标均符合土壤分析要求,从根本上解决了人为分析误差、污染和环境污染等弊端,消除了基体干扰对结果的影响;提高工作效率,可实现批量化分析。
  • 土壤修复专家探索中国重金属污染土壤治理技术
    5月31日在京举行的“2012重金属污染土壤治理与生态修复论坛”上,约340名中国土壤专家及环保企业代表共同展示了最新的土壤修复技术方案,探讨重金属治理的评估、控制和产业政策问题。  这是广西龙江河镉污染事件后中国首次举办有关土壤重金属污染的大型学术研讨会,1月发生在广西柳州的镉污染给当地150万居民的饮水安全造成威胁,引发公众对土壤重金属污染的忧虑。  中国科学院地理科学与资源研究所研究员陈同斌说,与大气和水污染相比,公众对土壤污染的认识尚显不足 不同于有机污染物,重金属不能降解,与土壤分离难度大 重金属不仅污染农田,还可渗入地下水和地表水。  中国环境科学研究院固体废料污染控制技术研究所首席专家王琪举例说,中国有70余家铬盐生产企业,半数以上采用有钙焙烧工艺,产渣量可能数倍于铬盐产量,对当地土壤和地下水污染严重,2011年底至少有200万吨铬渣未得到有效处置。  土壤重金属修复指通过技术手段减低或固化受污土壤所含的汞、镉、铅、砷、铬等重金属。陈同斌团队研发的神奇植物蜈蚣草具超富集能力,可有效“吮吸”土壤中的砷,通过与甘蔗、桑树间作的方法,实现了土壤原地修复作业,并给当地农民带来一定收入。  与会的华南理工大学环境科学与工程学院的环境研究者也提出了土壤重金属的生物修复解决办法,他们利用农业废弃物玉米秸秆孔隙大的特点,将秸秆经改良后用于吸附土壤中的镉,实现“以废治废”。  王琪认为,土壤修复是一项系统工程,重金属处理流程的规范还未在产业领域形成统一认识。“例如固化技术可将重金属固化在土壤中,但有些企业将之视作固体废料简单填埋,这可能会造成新的污染风险。”王琪说。  此外,论坛也吸引了众多环境修复技术企业参加,企业代表均表示土地修复产业的市场潜力巨大。  为期2天的论坛由中国科学院地理科学与资源研究所、环境保护部南京环境科学研究所和中国环境科学研究院主办。
  • CIF发布土壤有机碳消解仪新品
    CIF土壤有机碳消解仪土壤有机碳消解仪又名土壤有机碳恒温加热器 ,CIF所生产的土壤有机碳消解仪采用环绕立体加热技术,消解快速、高效、便捷。并且严格按照国标法生产的消解土壤有机碳的仪器设备。本产品适用于国标《HJ 615-2011 土壤有机碳的测定 重铬酸钾氧化-分光光度法》,Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method。可同时消解24-48个样品,主要适用于各行业中土壤中有机碳的测定。产品特点u 更安全:加热模块和控制模块分体式设计,控制模块可置于通风橱外使用,不但保证操作人员的安全,而且避免腐蚀性气体对控制模块的损害。u 更高效:采用环绕立体加热技术,“一站式”消解理念,快速、高效、便捷。u 更防腐:整个加热模块都是采用耐酸碱、耐高温、高传导性、高保温性能的等静压石墨材料制作,并经过耐高温的特氟龙防腐涂层处理。u 更稳定:加热系统采用嵌插(镶)式设计,性能稳定,加热快速高效,维修简单方便,大大延长了仪器的使用寿命,是其他同类产品寿命的2-3倍。u 更准确:控制系统采用智能程序化梯度控温技术,温度可校准,保证了控温的准确性、均匀性和稳定性,样品间温度差小于±1℃。加热模块上没有任何金属附件,无污染,保证实验结果的准确性。u 更美观:外观设计新颖,美观大方。u 更耐用:可连续工作48小时以上。u 更可信:企业通过 ISO9001-2008 质量管理体系认证,产品通过欧盟CE认证。技术参数型号控温范围℃控温精度℃功率kw孔径mm孔深mm孔数外形尺寸mm电源V/HzTOC-24RT-260±0.1或±11.8Φ315024320X235X165220/50Φ445015TOC-482.4Φ315048400X315X165Φ445030附:《土壤 有机碳的测定 重铬酸钾氧化-分光光度法》(土壤有机碳消解仪的依据)适用范围本标准规定了测定土壤中有机碳的重铬酸钾氧化-分光光度法。 本标准适用于风干土壤中有机碳的测定。本标准不适用于氯离子(Cl-)含量大于2.0×104 mg/kg的盐渍化土壤或盐碱化土壤的测定。当样品量为0.5g时,本方法的检出限为0.06%(以干重计),测定下限为0.24%(以干重计)。规范性引用文件 本标准内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。 HJ 613 土壤 干物质和水分的测定 重量法HJ/T 166 土壤环境监测技术规范方法原理 在加热条件下,土壤样品中的有机碳被过量重铬酸钾-硫酸溶液氧化,重铬酸钾中的六价铬(Cr6+)被还原为三价铬(Cr3+),其含量与样品中有机碳的含量成正比,于585 nm波长处测定吸光度,根据三价铬(Cr3+)的含量计算有机碳含量。干扰和消除u 土壤中的亚铁离子(Fe2+)会导致有机碳的测定结果偏高。可在试样制备过程中将土壤样品摊成2~3 cm厚的薄层,在空气中充分暴露使亚铁离子(Fe2+)氧化成三价铁离子(Fe3+)以消除干扰。 u 土壤中的氯离子(Cl-)会导致土壤有机碳的测定结果偏高,通过加入适量硫酸汞以消除干扰。试剂和材料除非另有说明,分析时均使用符合国 家标准的分析纯化学试剂,实验用水为在25℃下电导率≤0.2mS/m的去离子水或蒸馏水。u 硫酸:ρ(H2SO4)=1.84 g/ml。u 硫酸汞 u 重铬酸钾溶液:(K2Cr2O7)=0.27 mol/L。 u 液称取80.00 g重铬酸钾溶于适量水中,溶解后移至1000 ml容量瓶,用水定容,摇匀。该溶液贮存于试剂瓶中,4℃下保存。 u 葡萄糖标准使用液:ρ(C6H12O6)=10.00g/L 。u 称取10.00 g葡萄糖溶于适量水中,溶解后移至1000 ml容量瓶,用水定容,摇匀。该溶液贮存于试剂瓶中,有效期为一个月。仪器和设备u 6分光光度计:具585 nm波长,并配有10 mm比色皿。u 天平:精度为0.1 mg。 u 土壤有机碳消解仪:温控精度为135±1℃。恒温加热器带有加热孔,其孔深应高出具塞消解玻璃管内液面约10 mm,且具塞消解玻璃管露出加热孔部分约150 mm。u 具塞消解玻璃管:具有100 ml刻度线,管径为30~45 mm。 u 离心机:0-3000 r/min,配有100 ml离心管。 u 土壤筛:2 mm(10目)、0.25 mm(60目),不锈钢材质。u 一般实验室常用仪器和设备。创新点:土壤有机碳消解仪又名土壤有机碳恒温加热器 ,CIF所生产的土壤有机碳消解仪采用环绕立体加热技术,消解快速、高效、便捷。并且严格按照国标法生产的消解土壤有机碳的仪器设备。本产品适用于国标《HJ 615-2011 土壤有机碳的测定 重铬酸钾氧化-分光光度法》,Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method。可同时消解24-48个样品,主要适用于各行业中土壤中有机碳的测定。产品特点?更安全:加热模块和控制模块分体式设计,控制模块可置于通风橱外使用,不但保证操作人员的安全,而且避免腐蚀性气体对控制模块的损害。?更高效:采用环绕立体加热技术,“一站式”消解理念,快速、高效、便捷。?更防腐:整个加热模块都是采用耐酸碱、耐高温、高传导性、高保温性能的等静压石墨材料制作,并经过耐高温的特氟龙防腐涂层处理。?更稳定:加热系统采用嵌插(镶)式设计,性能稳定,加热快速高效,维修简单方便,大大延长了仪器的使用寿命,是其他同类产品寿命的2-3倍。?更准确:控制系统采用智能程序化梯度控温技术,温度可校准,保证了控温的准确性、均匀性和稳定性,样品间温度差小于± 1℃。加热模块上没有任何金属附件,无污染,保证实验结果的准确性。?更美观:外观设计新颖,美观大方。?更耐用:可连续工作48小时以上。?更可信:企业通过 ISO9001-2008 质量管理体系认证,产品通过欧盟CE认证。土壤有机碳消解仪
  • 减缓土壤碳排 退化泥炭沼泽中“谁”最稳?
    12月10日,中国科学院成都生物研究所研究员陈槐及其团队以“退化泥炭沼泽中有氧层、过渡层和厌氧层土壤二氧化碳排放对增温的响应”为题,在国际期刊《通讯地球与环境》上发表论文。该研究发现在退化泥炭沼泽土壤剖面中,受有氧厌氧循环影响的过渡层土壤二氧化碳排放潜势最低,且对增温不敏感,指出过渡层是退化泥炭沼泽碳库中较为稳定的部分,对泥炭沼泽土壤碳库保护具有重要意义。泥炭沼泽是全球重要的土壤碳库,深层碳是泥炭沼泽土壤碳库的重要组成部分。气候变化和人类活动使泥炭沼泽退化严重。在退化泥炭沼泽中,水位降低将泥炭沼泽土壤剖面划分为环境差异的三层。其中,表层有氧层,长期处于有氧环境中,且其中含有大量的来自植物根系和凋落物的新有机碳。深层厌氧层,长期处于厌氧环境中,几乎不含有来自植物的新有机碳。有氧厌氧过渡层,周期性处于有氧厌氧交替状态,含有少量的来自植物根系和凋落物的有机碳。长期的差异环境可能导致三层土壤在有机碳组成、微生物活性及二氧化碳排放等方面不同。过去的泥炭沼泽土壤剖面碳动态研究,均以深度为依据研究不同深度土壤二氧化碳排放,忽视了沿土壤剖面水文环境的差异。通过对不同层土壤取样及室内控制实验,研究团队发现在水位影响的三层土壤中,过渡层土壤碳化学组成复杂、不易分解,微生物活性和二氧化碳排放速率最低,二氧化碳排放对增温也表现为不敏感特性。该研究结果表明过渡层土壤在退化泥炭沼泽中较为稳定,在气候变暖过程具有减缓土壤碳丢失的作用,对泥炭沼泽碳库稳定意义重大。该研究结果表明以往的以深度为依据的土壤碳排放研究可能高估了退化泥炭沼泽碳的丢失,因为忽视了稳定的过渡层。在未来的泥炭沼泽土壤碳动态研究中,需要考虑沿剖面土壤环境的变化,同时需要考虑营养物质在土壤碳排放中的重要性。
  • 减缓土壤碳排,退化泥炭沼泽中“谁”最稳?
    12月10日,中国科学院成都生物研究所研究员陈槐及其团队以“退化泥炭沼泽中有氧层、过渡层和厌氧层土壤二氧化碳排放对增温的响应”为题,在国际期刊《通讯地球与环境》上发表论文。该研究发现在退化泥炭沼泽土壤剖面中,受有氧厌氧循环影响的过渡层土壤二氧化碳排放潜势最低,且对增温不敏感,指出过渡层是退化泥炭沼泽碳库中较为稳定的部分,对泥炭沼泽土壤碳库保护具有重要意义。泥炭沼泽是全球重要的土壤碳库,深层碳是泥炭沼泽土壤碳库的重要组成部分。气候变化和人类活动使泥炭沼泽退化严重。在退化泥炭沼泽中,水位降低将泥炭沼泽土壤剖面划分为环境差异的三层。其中,表层有氧层,长期处于有氧环境中,且其中含有大量的来自植物根系和凋落物的新有机碳。深层厌氧层,长期处于厌氧环境中,几乎不含有来自植物的新有机碳。有氧厌氧过渡层,周期性处于有氧厌氧交替状态,含有少量的来自植物根系和凋落物的有机碳。长期的差异环境可能导致三层土壤在有机碳组成、微生物活性及二氧化碳排放等方面不同。过去的泥炭沼泽土壤剖面碳动态研究,均以深度为依据研究不同深度土壤二氧化碳排放,忽视了沿土壤剖面水文环境的差异。通过对不同层土壤取样及室内控制实验,研究团队发现在水位影响的三层土壤中,过渡层土壤碳化学组成复杂、不易分解,微生物活性和二氧化碳排放速率最低,二氧化碳排放对增温也表现为不敏感特性。该研究结果表明过渡层土壤在退化泥炭沼泽中较为稳定,在气候变暖过程具有减缓土壤碳丢失的作用,对泥炭沼泽碳库稳定意义重大。该研究结果表明以往的以深度为依据的土壤碳排放研究可能高估了退化泥炭沼泽碳的丢失,因为忽视了稳定的过渡层。在未来的泥炭沼泽土壤碳动态研究中,需要考虑沿剖面土壤环境的变化,同时需要考虑营养物质在土壤碳排放中的重要性。
  • “全国土壤普查超级会客厅——探秘土壤检测”直播活动在京举行
    11月2日,“全国土壤普查超级会客厅——探秘土壤检测”全媒体直播活动在北京举行。相关领导、专家及一线测试人员介绍第三次全国土壤普查内业测试化验、信息化平台建设及全程质量控制等重点工作,带领观众深入了解第三次全国土壤普查(以下简称“土壤三普”)。2022年,国务院启动第三次全国土壤普查工作,计划在四年内完成。内业测试化验是普查数据的重要来源,是形成普查成果的重要依据,而信息化平台建设对推动土壤三普全流程工作发挥着重要作用。当前,全国各地土壤三普试点调查采样工作正在进行中,内业测试化验工作进入关键时期,信息化平台建设有序推进,普查各项工作正向预期目标前进。在演播室现场,国务院第三次全国土壤普查领导小组办公室副主任、农业农村部耕地质量监测保护中心主任谢建华向观众解读了土壤三普内业测试化验工作的重要性,以及与土壤二普的不同之处。谢建华表示,第三次全国土壤普查是时隔40多年后,我国开展的又一次土壤的“全面体检”,是几代耕地质量监测保护人接续奋斗努力的结果,“高质量地完成土壤三普工作是我们这一代人义不容辞的责任和担当”。直播现场连线了江苏省地质调查研究院和中科院南京土壤所分会场,探访国家级质控实验室和样品制备实验室,规范展示样品制备流程,演示土壤性状指标检测等。第三次全国土壤普查专家技术指导组副组长、农业农村部耕地质量监测保护中心总农艺师马常宝借助现场实物,从四个方面介绍了内业测试化验的重点工作,对内业测试化验三级质量控制进行了解读。第三次全国土壤普查专家技术指导组成员、农业农村部耕地质量监测保护中心检测标准处处长郑磊从机构人员、技术方法、质控物资、指导服务等四个方面介绍了前期准备工作。土壤普查采样点不仅有“身份证”,还有“行程码”。国家级土壤普查工作平台系统让土壤三普插上了信息化的翅膀,在平台上可进行全流程的调度、控制与管理。第三次全国土壤普查专家技术指导组成员、中国农业科学院农业资源与农业区划研究所副研究员余强毅在现场展示了土壤三普调查采样、样品流转和质量控制APP,以及桌面工作系统使用。第三次全国土壤普查专家技术指导组成员、中国农业科学院农业资源与农业区划研究所研究员王迪现场介绍了样点布设的目的、原则与技术路线。国务院第三次全国土壤普查领导小组办公室副主任、农业农村部农田建设管理司一级巡视员陈章全强调了全程质量控制对土壤三普工作的重要意义,指出要通过技术规程规范完善与宣贯、严格作业人员资质要求、加强专家技术指导服务、工作平台全程管控、落实分级监督抽查等五大环节,切实把好土壤三普质量关。“全国土壤普查超级会客厅——探秘土壤检测”由国务院第三次全国土壤普查领导小组办公室和中国农业电影电视中心策划主办,由农业农村部耕地质量监测保护中心、中国农业科学院农业资源与农业区划研究所和中国农影全媒体运营中心承办,得到中国科学院南京土壤研究所和江苏省地质调查研究院的支持。“全国土壤普查超级会客厅”系列直播活动已成功举办三期,总观看量超1000万人次。接下来还将把“会客厅”开到田间地头、深入普查一线、发掘工作典型,全方位多角度宣传展示全国各地土壤三普工作情况。
  • 土壤/沉积物中的有机碳、无机碳及元素碳检测方案 | 德国元素
    对于诸多应用而言,总有机碳含量(TOC)都是一项重要指标。在农业科学中,碳是了解土壤和沉积物中元素循环的重要参数。有机碳通过植物和动物排泄物分解进入土壤,成为微生物和植物的主要养分来源。因此,TOC分析可提供有关微生物活性和有机物质的重要信息,从而对土壤和沉积物进行定性和评估。直接测定TOC是一种重要的分析方法。通常先测定总碳含量,然后再减去总无机碳。除了有机碳,在土壤和沉积物中还存在无机碳,通常以碳酸盐的形式存在。然而其实还有一种碳源的存在,那就是元素碳(ROC),其与无机碳一样,均不具有生物可利用性。但是通过传统的酸化法无法区分元素碳、有机碳及无机碳,这也是一直进行土壤与沉积物中有机碳测定的困扰。德国元素 Soli TOC cube 碳组分分析仪采用创新的温度梯度法,无需对样品进行前处理,即可通过不同的温度梯度,直接区分测定土壤及沉积物中的不同碳组分,如有机碳、无机碳与元素碳。经过多年的不断优化,Soli TOC cube 内置多种优化方法,应对不同样品的测试需求。案例分享:直接将标样与土壤直接称于不锈钢坩埚中;将坩埚直接放置于仪器自动进样器上;按照仪器内置方法进行测定。实验数据:结果显示,德国元素 Soli TOC cube 碳组分分析仪 可高精度分析土壤中的不同碳组分,且与标样、标准土壤样品的理论值非常接近,完全满足客户的测试要求。
  • 东北地理所等在土壤有机碳热稳定性研究方面取得进展
    土壤有机碳的稳定性影响土壤固碳潜力。如何提取土壤活性与稳定性碳组分用以定量表征土壤有机碳稳定性,是土壤固碳研究领域的关键科学问题。当前,提取土壤有机碳活性及稳定性组分的方法多样,包括物理、化学及生物手段,导致结果难以比较,同时存在耗时长、成本高及操作步骤繁琐等缺点,亟需一种高效、可信度高且应用广泛的测定方法。对比分析不同热分解技术的优缺点, 包括热裂解气相-质谱联用测定技术、热重分析技术、差示扫描量热分析技术及Rock-Eval(RE)热分解方法,人们普遍认为RE方法操作简单、耗时短、成本低、结果易于分析,可信度较高,可以很好地表征土壤有机碳稳定性,有利于土壤有机碳研究的横向对比。   中国科学院东北地理与农业生态研究所研究人员依托保护性耕作长期定位实验(建于2001年)在国内首次开展了相关研究,包含免耕玉米-大豆轮作(NTCS)、秋翻玉米-大豆轮作(MPCS)、免耕玉米连作(NTCC)、秋翻玉米连作(MPCC)、常规耕作玉米连作且秸秆不还田(CTCC)5个处理。该研究采集了不同深度的土壤样品,测定其土壤热稳定性(图1),计算RE相关指标,同时与土壤异养呼吸及微生物残体进行相关分析。RE方法分为热解和氧化两个阶段,包括S1-S5五个阶段,具有多个相关指标,TMAX(℃)代表在S2热解阶段释放的富氢化合物达到峰值时对应的温度,可作为指示土壤有机碳成熟度的指标。HI表示在土壤有机碳中富氢化合物的相对含量,OIRE6表示在土壤有机碳在S3阶段释放的O2相对含量,代表土壤有机碳的相对氧化状态。T50代表在氧化阶段(S4)释放的CO2达到该部分总释放值50%时的温度,用来表征稳定性碳库。研究结果表明,耕作方式对RE指标影响很大(TMAX、HI、T50),但是作物轮作对其无显著影响,其中免耕显著提高了土壤表层的有机碳热稳定性(TMAX)。RE指标(HI)在短期室内培养实验中(100天)可以很好地表征土壤异养呼吸情况,也在国际上首次发现TMAX指标与真菌残体(GluN)有很高的相关性(R2=0.93)(图2)。该研究为未来RE方法在国际上的推广应用提供了有效的数据支撑。   相关研究成果以Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil为题发表在Soil Biology and Biochemistry上。研究工作得到中科院战略性先导科技专项、国家自然科学基金等项目的资助。图1 RE方法测定图谱(以免耕玉米大豆轮作及秋翻玉米大豆轮作0-5 cm土层为例)图2 真菌残体GluN与TMAX线性回归关系
  • 【恒美】土壤总有机碳检测仪:掌握有机碳,打造丰产田
    点击此处可了解更多产品详情:土壤总有机碳检测仪 土壤总有机碳检测仪对农业具有重要意义。该仪器可以通过测量土壤中的有机碳含量,评估土壤的肥力水平。这对于农民来说是一个重要的指标,因为它可以帮助他们了解土壤的状况,以便进行适当的施肥和耕地管理。 此外,土壤总有机碳检测仪还可以监测土壤的健康状况。如果土壤中的有机碳含量过低,可能会导致土壤质量下降,影响作物的生长。因此,通过定期检测土壤中的有机碳含量,农民可以采取必要的措施来保护土壤健康,并确保作物的生长。土壤总有机碳检测仪对农业具有重要的作用。它可以帮助农民了解土壤的状况,保护土壤健康,提高作物的产量和质量。 土壤总有机碳检测仪是一种用于检测土壤中有机碳含量的仪器。它通常是一个手持设备,可以通过分析土壤样品中的有机物质,来测量土壤中的总有机碳含量。 该仪器在农业中具有广泛的应用价值。通过测量土壤中的有机碳含量,农民可以了解土壤的肥力水平,并采取必要的措施来提高土壤质量。此外,仪器还可以帮助监测土壤的健康状况,并提前发现可能存在的土壤问题,土壤总有机碳检测仪是一个重要的工具,可以帮助农民更好地了解土壤的状况,保护土壤健康,提高农作物的产量和质量。
  • 江苏首个土壤碳中和项目落地 “FACE实验平台”将于本月完工
    近日,江苏首个土壤碳中和项目落地南京市江宁区淳化街道。由中国科学院南京土壤研究所主导建设的这一项目,主攻农田“土壤固碳”研究,一期工程“FACE实验平台”将于本月完工。农田减排固碳、土壤碳汇……这些事情看上去与我们的日常生活相距甚远,其实不然。从“应对气候变化”的角度来说,农业活动是我国温室气体排放的第三大来源,土壤碳库在陆地生态系统碳库中占比达到60%以上,研究土壤碳汇、农田减排固碳,对于减少温室气体排放意义重大,与每个人的关系并不遥远;其次,在农田减少化学肥料、多施用有机肥,将更多二氧化碳固定到土壤中,意味着增加土壤有机碳含量,换一种说法就是“绿色有机农业”,显然与消费升级中的市民餐桌息息相关。对于农业和农村发展来说,包括农田减排固碳在内的绿色项目,有助于提升农业综合生产能力、改善农村环境,旨在探索从生态价值向经济效益转化的新路径,是对产业结构、生产方式、生活方式、空间格局的整体更新。今年5月,农业农村部、国家发改委联合印发的《农业农村减排固碳实施方案》提出,到2025年,农业农村减排固碳与粮食安全、乡村振兴、农业农村现代化统筹融合的格局基本形成,农业农村绿色低碳发展取得积极成效。土壤碳汇、农田减排固碳,不仅事关气候变化,更事关乡村振兴。今年7月,高淳东坝启动了有机水稻固碳减排项目,标志着一粒米减排固碳的“江苏探索”迈出重要一步。采用固碳减排技术种植的有机大米,包装上除了营养标签外,还会新增一个碳标签。目前,欧美日韩等地相继实施碳标签制度,从消费端引导低碳化的生产制造;未来,碳标签有可能成为新的贸易壁垒。还有一个更“近”的例子:溧水永阳镇一家有机农业企业,是获得全国首批“零碳农产品”认证证书的5家公司之一。该企业使用有机肥代替化学肥料,大幅减少碳排放,并将废弃物发酵后作为肥料循环使用,土壤有机质增加可提升碳吸收量,“一减一增”实现零碳目标。这样生产出来的有机农产品,更符合消费者的口味和需求。企业负责人称:“我们农业企业看起来像个科技型公司了。”了解了这些故事,就会更加理解“实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革”。与碳减排、碳汇有关的科技和实践,自始至终都贯穿于整个社会,也影响着整个社会,小到一张餐桌,大到象征着粮食安全与产业实力的经济数字。南京依托浦口和溧水的两个国家级科创载体打造农业科技创新高地,农业科技进步贡献率超71%。今年上半年,全市绿色优质农产品比重达66.2%,位居全省前列。这一成绩的背后,是南京市贯彻新发展理念,大力实施绿色优质农产品工程,促进农业增效、农民增收和农村增绿,以绿色发展引领乡村振兴。期待更多“三农人”紧跟数字农业和绿色发展趋势,用好本地优势资源,走出一条绿色致富路。
  • 《自然》成果揭示: 微生物碳利用效率对全球土壤有机碳储起决定作用
    近日,清华大学和美国康奈尔大学的研究者带领国际团队,在生态学和计算机科学领域开展深度学科交叉,利用人工智能和数据同化技术,揭示了微生物碳利用效率对全球土壤有机碳储量的决定性作用。日前,该研究成果发表在《自然》杂志上。目前,促进土壤有机碳形成和积累是人们降低大气二氧化碳浓度、应对气候变化的自然解决方案。传统研究主要关注植物有机碳输入和土壤有机质分解这两类机制对土壤有机碳的影响。然而近年来,新的研究开始强调微生物过程在土壤有机碳形成和储存中的关键作用。微生物碳利用效率对土壤有机碳的两种控制途径 清华大学供图微生物既是土壤中主要的有机质分解者,同时也通过其生长和死亡直接产生土壤有机质。解析微生物过程对土壤有机碳储存的双重控制机制以及定量评估其相对重要性,是理解土壤碳循环及其响应气候变化的关键。为此,清华大学地球系统科学系教授黄小猛、博士生陶凤以及康奈尔大学教授骆亦其组织的国际研究团队,以微生物碳利用效率为变量整合了微生物过程对土壤有机碳储存的双重控制机制,并探讨了其与全球土壤有机碳储量的关系。研究团队通过将一个描述复杂土壤碳循环的机理模型与5万多条土壤碳观测数据相融合,发现在全球范围内,微生物碳利用效率与土壤有机碳储量正相关 。微生物代谢中对有机合成较高的碳分配比例最终导致了土壤有机碳的积累而不是流失。涌现的微生物碳利用效率与土壤有机碳储量关系 清华大学供图研究还发现,微生物过程在土壤碳储存中发挥着最为关键的作用,准确描述微生物碳利用效率的空间格局,也是准确模拟全球土壤有机碳储和空间分布的关键。其重要性是土壤有机质分解和植物碳输入等其他所有过程的4倍以上。“我们的团队突破性地解决了在全球尺度评估微生物过程与其他过程对土壤碳储存的相对重要性这一难题。”骆亦其说。据介绍,该研究立足于过去两百年的土壤碳循环理论,整合了世界最大的土壤有机碳数据库并结合先进人工智能和数据同化技术,首次系统评估了各种土壤碳循环过程对全球土壤有机碳储存的相对贡献。该研究还揭示了微生物碳利用效率与土壤有机碳储量的关系,为通过土地管理影响微生物过程促进土壤固碳和实现碳中和目标,提供了科学理论基础研究构建的机理模型。生态大数据与人工智能相融合的的新范式也为其他相关领域研究提供了新思路。
  • 助力“土壤三普” 守护土壤健康丨浅谈土壤元素有效态
    导读2022年2月,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,以全面查明查清我国土壤类型及分布规律、土壤资源现状及变化趋势,真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,为守住耕地红线、优化农业生产布局、确保国家粮食安全奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。 第三次全国土壤普查理化性状检测指标第三次土壤普查内容包括土壤性状、类型、立地条件、利用状况、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇总等。其中土壤性状作为普查重点,将涉及理化性状及多种无机污染物的检测分析。 表1 第三次全国土壤普查理化性状检测指标土壤理化性状是直接反映土壤质量的重要指标,包括土壤中有效态元素、微量元素和重金属元素等一系列分析测试项目。今天带大家看看何为土壤元素有效态以及如何开展分析的。 什么是土壤元素有效态?土壤中金属元素由于土壤类型、污染源等原因存在着不同的形态,它不仅包含水溶态、酸溶态、鳌合态和吸附态,还包括能在短期内释放植物可吸收利用的某些形态。土壤元素有效态指的是能被植物吸收利用的元素形态,它决定于土壤中该元素的全量及其活性。 岛津三机种方案轻松应对土壤元素有效态分析 原子吸收光谱法(AAS)相关检测标准应用案例参考标准 GB/T 23739-2009《土壤质量 有效态铅和镉的测定 原子吸收法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用原子吸收光谱仪建立了测定土壤中有效态Cd、Cu、Ni和Pb 元素的方法。表2 仪器工作条件表3 土壤样品有效态元素测定结果实验结果表明,该方法测试快捷,精密度高,分析结果与标准值相吻合。双原子化器自动切换,大大提升实验室分析效率。 电感耦合等离子体发射光谱法(ICP-OES)相关标准 应用案例参考环境标准HJ 804-2016《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用电感耦合等离子体发射光谱仪建立了测定土壤中有效态元素的方法。 表4 仪器工作条件表5 土壤样品分析结果实验结果表明,该方法检出限低,精密度高,分析结果与标准值相吻合。分析过程采用99.95%普氩运行,大大降低实验室运行成本。 电感耦合等离子体质谱法(ICP-MS)相关标准应用案例参考标准DB12/T 1022-2020《土壤中有效硼含量的测定 电感耦合等离子体质谱法》,以沸水浸提,使用岛津ICPMS-2030系列电感耦合等离子体质谱仪测定了土壤中有效硼含量。表6 ICP-MS分析条件表7 土壤中有效硼测试结果实验结果表明,ICP-MS测试有效硼的方法检出低,准确度好。微型炬管+普氩+Eco模式,大大降低实验运行成本。 结语土壤是人类赖以生存和发展的重要自然资源和物质基础,土壤环境质量状况直接关系到农产品安全、人居环境安全和生态安全等问题。土壤有效态能够更好地反映土壤实际污染状况及其对植物的危害,可作为土壤环境质量的评价指标。岛津拥有从前处理设备、分析仪器、试剂耗材和技术服务的完整工作方案,将为“土壤三普”高效精准检测和高质量完成土壤普查任务保驾护航。 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 助力“土壤三普” 守护土壤健康丨浅谈土壤元素有效态
    导读2022年2月,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,以全面查明查清我国土壤类型及分布规律、土壤资源现状及变化趋势,真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,为守住耕地红线、优化农业生产布局、确保国家粮食安全奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。 第三次全国土壤普查理化性状检测指标第三次土壤普查内容包括土壤性状、类型、立地条件、利用状况、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇总等。其中土壤性状作为普查重点,将涉及理化性状及多种无机污染物的检测分析。 表1 第三次全国土壤普查理化性状检测指标 土壤理化性状是直接反映土壤质量的重要指标,包括土壤中有效态元素、微量元素和重金属元素等一系列分析测试项目。今天带大家看看何为土壤元素有效态以及如何开展分析的。 什么是土壤元素有效态?土壤中金属元素由于土壤类型、污染源等原因存在着不同的形态,它不仅包含水溶态、酸溶态、鳌合态和吸附态,还包括能在短期内释放植物可吸收利用的某些形态。土壤元素有效态指的是能被植物吸收利用的元素形态,它决定于土壤中该元素的全量及其活性。岛津三机种方案轻松应对土壤元素有效态分析 1原子吸收光谱法(AAS) 相关检测标准应用案例参考标准 GB/T 23739-2009《土壤质量 有效态铅和镉的测定 原子吸收法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用原子吸收光谱仪建立了测定土壤中有效态Cd、Cu、Ni和Pb 元素的方法。 表2 仪器工作条件表3 土壤样品有效态元素测定结果实验结果表明,该方法测试快捷,精密度高,分析结果与标准值相吻合。双原子化器自动切换,大大提升实验室分析效率。 2电感耦合等离子体发射光谱法(ICP-OES) 相关标准 应用案例参考环境标准HJ 804-2016《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》,采用二乙烯三胺五乙酸(DPTA)作为提取剂,使用电感耦合等离子体发射光谱仪建立了测定土壤中有效态元素的方法。 表4 仪器工作条件表5 土壤样品分析结果 实验结果表明,该方法检出限低,精密度高,分析结果与标准值相吻合。分析过程采用99.95%普氩运行,大大降低实验室运行成本。 3电感耦合等离子体质谱法(ICP-MS) 相关标准应用案例参考标准DB12/T 1022-2020《土壤中有效硼含量的测定 电感耦合等离子体质谱法》,以沸水浸提,使用岛津ICPMS-2030系列电感耦合等离子体质谱仪测定了土壤中有效硼含量。表6 ICP-MS分析条件表7 土壤中有效硼测试结果实验结果表明,ICP-MS测试有效硼的方法检出低,准确度好。微型炬管+普氩+Eco模式,大大降低实验运行成本。 结语土壤是人类赖以生存和发展的重要自然资源和物质基础,土壤环境质量状况直接关系到农产品安全、人居环境安全和生态安全等问题。土壤有效态能够更好地反映土壤实际污染状况及其对植物的危害,可作为土壤环境质量的评价指标。岛津拥有从前处理设备、分析仪器、试剂耗材和技术服务的完整工作方案,将为“土壤三普”高效精准检测和高质量完成土壤普查任务保驾护航。
  • 土壤三普丨赛恩思碳硫仪助力贵州绿环科技检测
    全国第三次土壤普查正在进行中,贵州绿环科技检测有限公司作为一家第三方检测公司将参与此次项目的实验室检测部分。通过多方考察,贵州绿环科技选择赛恩思高频红外碳硫仪SES-802作为土壤中全硫检测设备。赛恩思仪器作为行业领先品牌,其中高频红外碳硫仪应用燃烧红外光谱法检测土壤中的全硫含量,在此次三普检测项目中获得多家单位的认可和青睐。赛恩思高频红外碳硫仪优势1. 高精度测量赛恩思高频红外碳硫仪SES-802采用先进的检测技术,具备高精度的测量能力。在全国土壤三普中,全硫检测的准确性对于环境监测至关重要,而SES-802的高精度能够确保测试结果的可靠性,为科研和监测提供有力支持。2. 快速响应赛恩思高频红外碳硫仪SES-802具有快速响应的特点,能够在短时间内完成全硫检测,提高了检测效率,为科研人员和环保从业者节省了宝贵的时间。3. 先进技术支持赛恩思作为仪器行业的领军企业,不仅在产品性能上有所突破,还提供了全面的技术支持。贵州绿环科技检测有限公司选择赛恩思高频红外碳硫仪SES-802,不仅仅是为了获得一台先进的仪器,更是为了得到一个强大的技术后盾。第三次全国土壤普查的开展对中国的可持续发展具有重要的战略意义。四川赛恩思仪器有限公司作为分析仪器制造商很荣幸能参与此次全国的土壤普查项目,为我国环保事业的发展贡献一份力量。
  • 全国第三次土壤普查,高频红外碳硫仪的应用
    国务院下发通知,按照党中央、国务院有关决策部署,为全面掌握我国土壤资源情况,国务院决定自2022年起开展第三次全国土壤普查。碳、硫是土壤样品的常规分析项目。土壤有机碳深刻影响着土壤的质地和结构。硫是蛋白质的重要组成部分,也是作物生长发育所必需的营养元素。区别于传统的重量法、碘量法、滴定法等,高频红外碳硫分析仪测定土壤中的总碳、总硫、有机碳具有操作简便、快捷等特点。 推荐仪器:四川赛恩思HCS-808型高频红外碳硫仪 仪器特点1. 进口元件,创新技术,自主研发;2. 物理除水装置,降低氢元素和结晶水对测试结果的影响,对含水量20%以内的样品可直接测试;3. 搭载双控制系统,各项参数自动监控,根据温度修正数据,数据更准确;4. 可选配催化炉装置、卤素捕捉装置、隔离保护装置,双气路系统、双碳双硫测试系统,配置更灵活;5. 每小时分析60个样品,测试更高效;6. 高效能清洗技术,成本更低。 应用领域满足总碳、总硫、有机碳、固定碳的测量。为多目标区域地球化学调查、土壤污染状况普查中碳、硫的测试提供有效解决方案。 合作案例四川成都综合岩矿测试中心四川省地矿物资有限公司青海核工业地矿局青海有色地质测试中心国土资源部湖北武汉地质矿产研究中心湖北第一、第四、第六、第七、第八地质大队湖南省地质调查院测试中心国土资源部湖南长沙地质矿产测试研究院国土资源部福建省地质矿产测试中心福建龙岩121地质大队福建三明地质队浙江省地质勘查局浙江省地质勘察设计院国土资源部广州地质矿产测试中心河南有色地质矿产测试中心天津地质矿产研究所天津市环境监测站江西地调院江西金源有色地质测试中心核工业云南209地质测试中心国土资源部昆明地质矿产测试中心云南核工业三0八地质队新疆中合地矿测试研究有限公司新疆有色地质矿产测试中心新疆核工业二一六测试中心中国冶金地质总局西北地质勘查院酒泉检测中心甘肃省地矿局天水地质测试中心江苏省地质调查研究院河北华勘514地质大队中国冶金一局测试中心山东省第三地质矿产勘查院山东省第四地质矿产勘查院山西地矿213队陕西汉中地质大队西北有色地质研究院吉林地质研究所吉林第五地质调查所黑龙江地堪六院国土资源部广西地质矿产测试中心沈阳地质矿产研究所中国地质调查局沈阳地质调查中心贵州113地质大队内蒙紫金矿业有限公司江苏地调院中国煤炭地质总局测试中心中国建筑材料工业地质勘查中心内蒙古总队西部矿业集团有限公司紫金矿业集团股份有限公司塞尔维亚波尔铜业刚果国家地质实验室
  • 土壤好不好,测一测很重要!一起探秘土壤检测!
    土壤好不好,测一测很重要。2022年,国务院启动第三次全国土壤普查工作,计划在4年内完成对我国土壤的全面“体检”。全国土壤普查查什么?采集回来的样品是如何变成土壤资源数据的呢?内业测试化验与外业调查工作如何进行衔接?宝贵的普查数据将怎么保存和应用呢?11月2日,“全国土壤普查超级会客厅——探秘土壤检测”直播活动在京举行。国务院第三次全国土壤普查领导小组办公室(以下简称“全国土壤普查办”)相关负责人、第三次全国土壤普查专家技术指导组专家及一线工作人员就第三次全国土壤普查(以下简称“土壤三普”)内业测试化验、全程质量控制等重点工作进行了详细介绍。全国土壤普查查什么?“随着城镇化、工业化快速推进,大量废弃物排放直接或间接影响农用地土壤质量;土壤生物多样性下降、土传病害加剧,制约土壤多功能发挥。” 在“全国土壤普查超级会客厅”第一期直播活动中,全国土壤普查办相关负责人曾表示,为全面掌握全国耕地、园地、林地、草地等土壤性状、协调发挥土壤的生产、环保、生态等功能,需开展全国土壤普查。那么,土壤普查都查些什么呢?“此次普查对象是全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。”全国土壤普查办副主任、农业农村部农田建设管理司一级巡视员陈章全在直播活动中介绍。记者从农业农村部官网了解到,根据《第三次全国土壤普查工作方案》,此次土壤普查内容包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。“目的在于查清不同生态条件、不同利用类型土壤质量及其退化与障碍状况,摸清特色农产品产地土壤特征、耕地后备资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。”陈章全继续补充。以土壤性状普查为例,就是要通过土壤样品采集和测试,普查土壤颜色、质地、有机质、酸碱度、养分情况、重金属等土壤物理、化学指标,以及满足优势特色农产品生产的微量元素;在典型区域普查植物根系、动物活动、微生物数量、类型、分布等土壤生物学指标。全国土壤家底怎么查?土壤普查的工作量如此巨大,具体怎么查呢?根据国家有关部门统一安排,土壤三普工作步骤具体包括8项:构建工作平台、制作工作底图、布设采样样点、外业调查采样、内业测试化验、数据整理分析、质量控制校核、成果汇交汇总等。“外业调查采样和内业测试化验是必不可少的两个环节,即野外作业和室内作业。”陈章全介绍,外业调查采样和内业测试化验由各省(区、市)共同组织实施,主要以县为单位组织专门队伍到野外定点取样,编码后送专业机构进行测试化验。“在‘土壤三普’工作中,外业调查采样是最基础的关键环节。通常来说,一个点的土壤性状可以代表类似的一片区域,我们通过挖掘点位土壤剖面、采集点位土壤样品的办法,可以了解土壤空间变化规律,实现以点带面,进而支撑土壤资源管理。”陈章全表示,外业调查采样是决定普查成果科学性、准确性的核心。据介绍,土壤三普外业调查充分利用了遥感、地理信息系统、全球定位系统、移动互联等现代技术,构建了多层级的现场实操、在线技术指导和质控体系,可实现对每一个采样点位的实时技术支撑、过程跟踪和质量控制。“国家级土壤普查工作平台系统让土壤三普插上了信息化的翅膀,在平台上可进行全流程的调度、控制与管理。”第三次全国土壤普查专家技术指导组成员、中国农业科学院农业资源与农业区划研究所副研究员余强毅说道,土壤普查采样点不仅有“身份证”,还有“行程码”,他现场详细展示了土壤三普调查采样、样品流转和质量控制APP。“9月开始了大规模的土壤普查工作,已对88个试点县实施了外业调查,采样样点将近9万个,基本已完成了90%;大约需采集样品20万个,目前已完成了14万。”陈章全介绍了土壤三普的工作进展,他表示,当前,全国土壤普查已开始从外业调查阶段转为内业测试化验阶段,已有22个省进入内业化验环节,有5000多个样品已化验结束,数据结果已出。当前,全国土壤普查外业调查工作正有序推进,各地已经采集到了不少土壤样品。接下来,这些取自耕地、园地、林地、草地等的大量土壤样品将进行测试化验,获取进一步的理化数据。内业测试化验是土壤三普核心环节之一“内业测试化验是土壤三普数据的重要来源,是形成普查成果的重要依据。”全国土壤普查办副主任、内业工作组组长、农业农村部耕地质量监测保护中心主任谢建华介绍,土壤三普是距离二普43年后,我国开展的又一次土壤的“全面体检”,当前,土壤三普内业测试化验工作进入关键时期,信息化平台建设有序推进,普查各项工作正向预期目标前进。谢建华表示,内业测试化验要以国家标准、行业标准和现代化验分析技术为基础,规范确定土壤三普统一的样品制备和测试化验方法。其中,重金属指标的测试方法与全国农用地土壤污染状况详查相衔接一致。开展标准化前处理,进行土壤样品的物理、化学等指标批量化测试。充分衔接已有专项调查数据,相同点位已有化验结果满足土壤三普要求的,不再重复测试相应指标。选择典型区域,利用土壤蚯蚓、线虫等动物形态学鉴定方法和高通量测序技术等,进行土壤生物指标测试。第三次全国土壤普查专家技术指导组副组长、内业技术组组长、农业农村部耕地质量监测保护中心总农艺师马常宝从四个方面介绍了内业测试化验的重点工作,对内业测试化验三级质量控制进行了详细解读。“由检测实验室对土壤样品有机质、酸碱度、水溶性盐等多项理化指标进行测试化验,并出具检测报告,为后期开展土壤质量状况和土壤利用适宜性评价分析提供科学的数据支撑。”马常宝介绍,样品应由调查采样队指定专人负责流转,并由实验室指定专人负责样品接收。“全程质量控制对土壤三普工作具有重要意义,要通过技术规程规范完善与宣贯、严格作业人员资质要求、加强专家技术指导服务、工作平台全程管控、落实分级监督抽查等五大环节,切实把好土壤三普质量关。”陈章全如是说,普查即将进入内业测试化验阶段,以完善与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总等工作。
  • 论坛预告丨2018第三届中国国际土壤与地下水修复高峰论坛即将召开(土壤监测与修复行业动态早知道)
    p  2018年11月29日-30日,以“发展可持续绿色修复,实现“净土”战略””为主题的“土壤与地下水高峰论坛(Soiltec China 2018)”即将召开,众多来自国内外的大咖将齐聚上海浦东新区,共赴一场饕餮盛宴。/pp  本次论坛,将以主旨演讲、小组讨论、圆桌会议,产品展示,提问交流等多种形式,深入探讨行业发展规律,全面解读技术应用趋势,助力中国土壤修复/监测走向世界巅峰。“展”与“会”的结合以及二个分论坛的深度剖析(分论坛一:土壤地下水修复技术,分论坛二:土壤地下水监测技术)是本次活动的几大亮点之一。/pp  此次论坛阵容强大,威立雅,永清环保,加拿大 WIKINET公司,法国VALOGO SA,欧美大地/Royal Eijkelkamp,EOS/优斯亚环境科技股份有限公司,上海盛司环境科技有限公司 /美国AMS samplers,沈阳光大环保科技股份有限公司,南京贻润环境科技有限公司,北京博瑞希环保能源科技发展有限公司,国土资源部土地整治中心,中国地质科学院水文地质环境地质研究所,上海市政工程设计研究总院(集团)有限公司,烟台三维岩土工程技术有限公司,广东省环境科学研究院,上海环境科学研究院,煤科集团杭州环保研究院有限公司,环境保护部环境规划院生态部、天津泰达科技发展集团有限公司,中建水务环保有限公司,上海市虹口区土地发展中心,上海聚博房地产开发有限公司,上海久澄环境工程有限公司,上海勘测设计研究院有限公司,上海宝信建设咨询股份有限公司,力国企业发展(上海)有限公司,上海市岩土地质研究院有限公司,上海傲江生态环境科技有限公司,上海富士施乐有限公司,中科院烟台海岸带研究所,上海临港金山新兴产业发展有限公司,上海同纳建设工程质量检测有限公司,上海弋风环保科技技术有限公司,北京德严科技有限公司,上海琸域环境有限公司,中地装(北京)科学技术研究院有限公司,防灾科技学院 ,环境保护部环境规划院,华东师范大学,上海交通大学,浙江大学,华中科技大学、中国农业大学、安徽农业大学、上海理工大学、南京林业大学、山东大学,河北科技大学,中国石油大学等。/pp  赛默飞世尔、珀金埃尔默、安捷伦, 深圳中检联检测有限公司,苏州微谱检测技术有限公司,上海仪电科学仪器股份有限公司,上海思达分析仪器有限责任公司,艾力蒙塔贸易(上海)有限公司,上海仪真分析仪器有限公司,必维申美,理学电企仪器(北京)有限公司,上海元析,艾吉析科技(上海)有限公司,培安CEM/北京安南科技有限公司,蔚海光学仪器(上海)有限公司,北京莱伯泰科仪器股份有限公司,默克化工技术(上海)有限公司,南京滨正红仪器有限公司,北京博医康实验仪器有限公司,慈溪市惠佳净水设备厂,青岛盛瀚色谱技术有限公司,艾卡(广州)仪器设备有限公司,上海安谱实验有限公司,上海磐合科学仪器有限公司,诺安实力可商品检验(青岛)有限公司,日立高新,上海光谱,北京吉天仪器、北京迪马科技发展中心,谱尼测试,奥林巴斯(中国)有限公司上海分公司、上海皆战达贸易有限公司、上海华测品标检测技术有限公司、澳实分析检测(上海)有限公司、德国斯派克分析仪器公司,南京滨正红仪器有限公司,北京博医康实验仪器有限公司,慈溪市惠佳净水设备厂,青岛盛瀚色谱技术有限公司,艾卡(广州)仪器设备有限公司,上海安谱实验有限公司,上海磐合科学仪器有限公司,诺安实力可商品检验(青岛)有限公司,农业部环境保护科研监测所、天津市环境监测中心、国家环境分析测试中心、上海环境监测中心,江苏省环境监测站,广东省环境监测站,浙江省环境监测站,常州市环境监测站,Ziltek Pty Ltd.、上海昕亦电工设备有限公司等。/pp  更有行业大咖助阵,环境保护部环境规划院环境工程部 孙宁主任,国土资源部土地整治中心魏洪斌 高工,环境保护部环境规划院生态部黄国鑫工程师 ,同济大学环境科学与工程学院 付融冰研究员,中国环境科学研究院 王兴润研究员,中国地质科学院水文地质环境地质研究所韩占涛研究,Johnny Browaeys 上海格林曼环境技术有限公司的国际修复专家,美国壳牌Lahvis Matthew土壤与地下水研发主管,苏州环境科学研究所 张建荣 总工/副所长,肇庆学院环境与化学工程学院 袁国栋 研究员 ,永清环保 斯克诚博士/首席专家,中科院合肥物质科学研究院蔡冬清博导,广东省环境科学研究院陈能场副主任/研究员,原国家环境分析测试中心李玉武老师,江苏省地质调查研究院蔡玉曼副总工,广东省环境监测中心赵志南高工,江苏省环境监测中心赵永刚分析部副部长,上海市环境监测中心陈丰高工,威立雅中国,北京化工研究院尹洧 高级工程师,王立前云南省环境监测中心站高工,澳实分析检测(上海)有限公司李桂香总经理等。/pp  还有更多重量级大咖等待现场解锁,想要了解更多行业动态国家政策,了解最新技术/产品,最新项目案例吗?想要和目标客户,行业大咖面对面交流吗?赶快报名参会吧!/pp  如想了解Soiltec China 2018最新议程或更多会议信息,请联系我们:/pp  Soiltec China 2018组委会/pp  联系人:徐小姐/pp  电话:021-80319119/pp  手机:17721476160/pp  网站:www.soil-china.com/pp  邮箱:amy@soil-china.com/pp/p
  • 案例分享丨复旦大学聂明团队在土壤碳循环方面取得新进展
    近日,复旦大学生科院聂明团队在全球变化生态学研究领域取得重要进展。相关成果以“Rising temperature may trigger deep soil carbon loss across forest ecosystems”为题发表于Advanced Science 杂志。 因大气CO2浓度升高引起的全球变暖问题是21世纪人类社会所面临的最严峻挑战之一。全球土壤有机碳库储量约是大气碳库的三倍,因此通过土壤有机碳分解释放的CO2对大气CO2浓度有着重要的影响,进而改变区域乃至全球气候。土壤有机碳的分解强度受到温度的调控,其对温度的敏感性被认为是决定未来气候变化态势的关键因素之一,也是陆地气候预测模型的关键假设与重要参数。底层土壤储藏着与表层土壤相当的有机碳,然而以往研究主要集中于表层土壤,对底层土壤碳分解的温度敏感性还知之甚少,这直接制约了对未来气候变化态势的判断。 为此,该研究团队选取我国90个典型森林生态系统(图1),涉及热带雨林、亚热带森林、暖温带森林、寒温带森林与北方森林。每个森林中分6个土层采集了1米深度的土壤,探究土壤有机碳分解温度敏感性随土壤剖面变化的一般性规律及其调控机制。 图1 中国森林90个典型土壤剖面采样点空间分布图。 研究发现,随着土壤深度的增加,有机碳分解的温度敏感性随之增大,表明底层土壤碳分解对全球变暖的响应更为敏感(图2a)。此外,表层土壤碳分解温度敏感性主要受气候因子调控,而底层土壤主要受气候因子和碳质量的共同调控(图2b)。 图2 土壤有机碳分解温度敏感性(Q10)随土壤深度增加而增大(a)及不同因子对Q10调控作用的相对贡献随土壤深度的变化(b)。 该研究还发现,忽视土壤有机碳分解温度敏感性沿土壤剖面的变异,会极大低估土壤释放的CO2量(图3),强调急需将这一特征纳入到陆地气候预测模型中以提高预测精度。 图3 与多层模型(six-layer model;使用剖面变异的温度敏感性Q10值)相比,单层模型(single-layer model;将表层0–10 cm土壤的Q10值应用于整个土壤剖面)会低估本世纪末温度升高3°C时土壤碳排放,即高估土壤相对碳库(relative SOC stock)。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202001242 从聂明老师团队的研究中发现,土壤有机质分解的温度敏感性(Q10)不仅是生态学和土壤学研究的核心科学问题之一,也是全球变化生态学研究的热点领域。国内外学者对Q10的影响因素或机制开展了大量卓有成效的研究工作,并有不少相关的综述或展望。 在该项研究中,聂明老师团队运用的测定方法是连续变温培养+气相色谱手动测量,而今天要为大家介绍的是一种更快的连续变温培养+连续自动测试新模式。 长期以来,室内培养研究的方法经历了几次技术更新。最早是用碱液吸收法+气相色谱来进行(CDM模式),该方法无法变温,测试点少,并且需要人工操作;之后经过技术改进,可以变温培养,仍然采用气相色谱设备检测(VDM模式),该方法仍然存在取样点少,人工操作不方便,无法大量样点试验等问题。 鉴于培养和测定模式对实验研究的重要性,北京普瑞亿科科技有限公司和中国科学院地理科学与资源研究所何念鹏研究团队合作研发了PRI-8800全自动变温土壤培养温室气体(同位素)分析系统,并发展了Q10研究的连续变温培养+连续自动测试的新模式。3种模式的示意图见【图1】,各自的特点、优缺点见【表1】。图1:3种模式示意表1:3种模式的特点VCM模式实验过程 150mL样品瓶(PRI-8800样品瓶)中填装40g土壤样品,向其中混入10g石英砂,防止土壤板结,调整含水量至60%(WHC),放置在样品盘上。土壤样本在25°C下预培养7天,排除微生物活动干扰。分别在第1天、5天、8天、15天、22天和26天的时候,使用PRI-8800全自动变温控制土壤通量系统(PRI-ECO,中国)测量每个样品瓶中SOM分解速率(Rs)。该系统允许连续改变培养温度并在高频下测量Rs。测样时,每个样品需在一个设定温度恒温稳定至少30分钟,然后在12小时的测量周期内测量36次(75s一个样品)。PRI-8800每秒钟记录一次CO2浓度,同步记录土壤温度,以提供准确的Rs和土壤温度配对数据。采用称重法监测土壤水分。最后,使用经典指数方程计算Q10值,每个方法的R2和P值。所用设备 点击图片查看详情 PRI-8800即可对接温室气体分析仪,又可对接碳氮同位素分析仪。稳定同位素技术具有示踪、整合和指示等多项功能和检测快速、结果准确等特点,δ13C、δ15N同位素技术被广泛用于土壤碳氮循环研究,也成为探讨土壤中有机组分来源和转化动态的有效手段,利用δ13C同位素可区分土壤呼吸的不同成分,指示碳的来源和周转途径;δ15N用于土壤氮素转换等的研究。可灵活对接不同分析仪(同位素分析仪、气体浓度分析仪等);标配16位样品盘,也可选配4位或9位样品盘;自动化程度高,无人值守,24h不间断工作;可方便拆卸土壤瓶固定装置,实现在线置换土壤瓶;全自动控温系统(-20~80 ℃),控温精度优于0.1 ℃;土壤温度传感器探针可频繁自动插入土壤瓶中,准确测量土壤温度;高效的气体循环气路——双回路气路设计,可根据需要对CO2浓度进行预处理,调控系统内的起始CO2浓度(避免过高CO2浓度的抑制效应);高效的气路设计,缩短响应时间;可灵活设定的标定系统,保障测量数据的准确性;友好的软件界面,可根据具体实验需要设定参数及数据存储等功能;全自动日变化温度模拟功能。参考文献: Robinson J M , T. A. O’Neill, Ryburn J , et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year[J]. Biogeochemistry, 2017, 133(3):101-112.Liu Y, He NP*, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2019, 138, 107596何念鹏, 刘远, 徐丽, et al. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11).
  • 文献上新!PRI-8800助力土壤有机碳分解对温度变化响应的研究
    土壤有机碳是指土壤中各种正价态的含碳有机化合物,是土壤极其重要的组成部分,对地球碳循环有巨大的影响,既是温室气体“源”,也是其重要的“汇”。由于土壤有机碳的组成成分和结构十分复杂,加之受到环境与测量技术的限制,目前对其分解特征和循环转化尚未得到充分的认识。 2018年,由北京普瑞亿科科技有限公司与中国科学院地理科学与资源研究所联合研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达17篇。 今天与大家分享的文章是罗忠奎课题组关于揭示剖面土壤有机碳分解对温度变化的响应特征及其控制因子的研究。 在该项研究中,针对土壤培养和Q10估算,采用PRI-8800作为关键设备之一,该成果发表于《Soil Biology and Biochemistry》,我们一起学习一下吧! 在气候变暖的背景下,土壤有机碳分解温度敏感性(Q10)的研究主要集中在表层土壤,而深层土壤有机碳分解特征及其控制因子还未得到充分的认识,这将会明显增加陆地生态系统土壤碳库—气候反馈的强度和方向预测的不确定性。 针对上述问题,浙江大学环境与资源学院遥感所罗忠奎研究员课题组在中国西藏东南部,采集沿着海拔区间约2500米(约2100米至约4600米)的样带(从常绿阔叶林到高寒草甸)10个地点、5个连续土层深度(0-10、10-20、20-30、30-50和50-100 cm)土壤样品,结合13C-NMR和物理化学分组技术表征了有机碳的化学分子结构和物理化学稳定性,并对剖面土壤进行培养(128天),评估了土壤有机碳分解的温度敏感性及其主要影响因子。图1.不同海拔和土层间Q10值的分布,Q10-cum,基于128天累积培养呼吸计算;Q10-q,基于累积消耗碳组分0-0.1%、0.2-0.3%、0.4-0.5%计算;Q10-k基于模型模拟快库、慢库、惰库计算。表1.海拔和土层对不同Q10的影响 研究结果发现不同海拔和不同土层土壤有机碳的化学稳定性和物理化学稳定性都存在显著差异。高海拔地区(海拔3600米以上的冷杉林和高山草甸)土壤有机碳的化学抗性高于低海拔地区。土壤有机碳分解的Q10受土壤深度和海拔高度的显著影响。而深度对Q10的影响远小于海拔梯度对Q10的影响。高海拔地区土壤有机碳矿化的温度敏感性高于低海拔地区。图2.随机森林模型明确气候因素、土壤理化性质、化学组分和物理保护对Q10-q的影响 土壤有机碳的化学性质在土壤有机碳矿化温度敏感性的变异中起主要解释作用,其中有机碳疏水性、累积矿化碳组分和烷基碳/氧烷基碳比率为重要性前三的土壤有机碳化学性质;土壤有机碳物理保护作用次之。图3.气候、土壤理化性质、化学组分和物理保护对Q10的影响 有机碳的化学组成及其对分解的物理化学保护对Q10值的解释方差贡献了80%。路径分析表明,气候通过调控土壤有机碳的化学组成及其物理化学稳定性间接影响Q10。基于数据约束的碳模型进一步揭示,快速、缓慢和被动碳库的Q10表现出显著差异,这是由于其分解过程中化学组成参与和物理化学保护的不同造成。 研究成果以“Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile”为题,于2022年6月2日在线发表于土壤学科领域著名期刊Soil Biology and Biochemistry(5年影响因子8.312)。浙江大学环境与资源学院助理研究员毛霞丽为第一作者,博士研究生郑金阳成为共同第一作者,浙江大学环资与资源学院研究员罗忠奎为通讯作者。该项目得到国家自然科学基金项目(41930754、32171639),国家重点研发政府间国际科技创新合作项目(2021YFE0114500),中央高校基础研究基金(226-2022-00084)。相关论文信息:Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.全文链接:https://doi.org/10.1016/j.soilbio.2022.108743UPGRADED!为了更好地助力土壤研究服务国家“双碳”目标普瑞亿科从未停止创新的脚步历时一年的研究与探索2022年全新升级的PRI-8800重磅上线升级后的系统有哪些亮点?我们一起了解一下~ 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02 PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.何念鹏, 刘远, 徐丽, 温学发, 于贵瑞, 孙晓敏. 2018. 土壤有机质分解温度敏感性研究:培养与测定模式. 生态学报, 38: 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.
  • 土壤三普全硫检测丨江苏地勘院引进赛恩思碳硫仪
    近日,江苏省地质勘探院引进赛恩思高频红外碳硫仪已安装调试成功,这台设备将用于全国土壤三普项目,检测土壤中的全硫含量。全国土壤三普项目旨在全面了解土壤的特性,以制定更有效的土壤保护和改进计划。赛恩思仪器的高频红外碳硫仪在此项目中将发挥重要作用,提供准确、可靠的土壤全硫含量数据,有助于技术人员更好地了解土壤质量状况。赛恩思仪器一直以来致力于生产高质量的分析检测仪器,其高频红外碳硫仪具有卓越的性能。这款仪器不仅在多个领域有广泛的应用,而且在土壤全硫含量的检测方面表现出色。赛恩思高频红外碳硫仪的优势:高精度检测:赛恩思高频红外碳硫仪具备高精度检测能力,确保土壤样品的硫含量测量结果准确可靠。高效性能:仪器快速完成测试过程,提高了工作效率,为土壤三普项目的顺利实施提供了重要支持。江苏省地质勘探院,作为江苏省地质环境勘查院下属的国有企业,在多领域的工程勘察和地质勘查方面拥有丰富的经验和专业知识。立足于丰富的经验和专业知识,借助赛恩思仪器高频红外碳硫仪的卓越性能,将积极参与全国土壤三普项目,为土地资源的保护、环境的可持续发展和国土资源系统的发展贡献力量。
  • 氮沉降调控森林土壤碳排放的格局及机制获揭示
    中科院华南植物园副研究员郑棉海团队联合美国康奈尔大学教授骆亦其等科研人员,研究揭示长期氮沉降调控热带森林土壤碳排放的格局及机制。相关研究12月1日发表于《自然地球科学》(Nature Geosciences)。同月5日该期刊再次以研究简报(Research Briefing)的形式进行了报道。人类活动所导致的大气CO2增加已成为当前重要的科学话题并引起了广泛的政治和社会关注。土壤是陆地生态系统最大的碳库,至少有一半的土壤有机碳储存于森林中。热带和亚热带森林主导全球森林碳循环,它们占据全球森林78%总碳排放和55%总碳吸收。人类活动也导致大气氮沉降加剧。氮沉降通过影响植物生长和微生物活性改变森林土壤呼吸及碳排放,但目前学术界关于氮沉降如何影响森林土壤呼吸的认识主要源于短时间尺度的研究。由于氮沉降是个长期的生态环境过程,缺乏长期且连续的研究将无法准确认识氮沉降调控森林土壤碳排放的格局及机制。研究人员依托我国最早建立的模拟森林氮沉降研究平台——广东省鼎湖山国家级自然保护区,发现长期氮沉降对南亚热带森林土壤碳排放的影响呈现阶段性变化。研究平台包括3种典型森林类型:季风常绿阔叶林、针阔叶混交林和马尾松针叶林。9-13年长期氮添加处理后,森林土壤呼吸呈现“无显著变化-显著降低-无显著变化”的三阶段格局。相比低、中氮处理,高氮处理缩短了三阶段格局的时间。在整个实验过程,氮添加累计减少土壤CO2排放总量为6.53-9.06 Mg CO2 ha-1,氮添加减少土壤CO2排放的效率为5.80-13.13 Mg CO2 Mg N-1。研究人员还基于鼎湖山模拟氮沉降样地测定的849项有关土壤、植物和微生物碳氮循环数据,构建了氮沉降调控热带森林土壤碳排放的机理框架。这些结果表明过去许多短期氮添加实验无法准确反映森林土壤呼吸响应氮沉降的格局。该研究成果为氮沉降促进热带森林土壤碳固持现象提供了重要证据,也为全球气候变化的预测和生态系统碳中和目标的实现提供新的依据。上述研究得到国家自然科学基金重点项目、面上项目、中科院青促会项目和中国生态学会青年人才托举工程项目等资助。郑棉海副研究员为该论文第一作者,张炜副研究员和莫江明研究员为共同通讯作者。此外,鲁显楷研究员、黄娟副研究员、毛庆功助理研究员、王森浩博士,以及合作者骆亦其教授、叶清研究员和刘菊秀研究员、岭南师范大学张涛博士也参与该项工作。
  • 文献分享丨最新研究发现土壤有机碳分解热适应的调控机制
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达18篇。 今天与大家分享的文章是东北林业大学林学院周旭辉教授团队首次从底物消耗与微生物适应角度,揭示了土壤有机碳分解热适应的调控机制的研究论文。在该研究中,采用了PRI-8800作为关键设备之一,我们来具体了解一下吧~ 长期以来,学界普遍认为气候变暖加速土壤有机碳分解,进而使得地球平均温度上升,形成正反馈效应。而近期的一些长期增温实验发现土壤有机碳分解速率可能会随着增温时间呈逐渐下降趋势,表现出热适应现象。当前,针对土壤有机碳分解的热适应调控机制,国内外生态学家仍存在较大争议,其根本难点在于无法有效区分底物消耗与微生物适应在土壤碳分解中的相对贡献。为了解决这一难题,何杨辉等研究人员依托长期野外增温实验平台,巧妙地使用土壤微生物灭菌-接种方法区分底物与微生物的调控作用,研究结果表明土壤底物可利用性是调控土壤有机碳分解热适应的主要因素。这一重要发现将增进人们对土壤有机碳分解热适应性的理解,为准确预测陆地土壤碳-气候反馈提供重要的科学依据。 土壤有机碳分解热适应潜在调控机制 值得注意的是,在实验过程中,研究团队通过PRI-8800连续变温培养和高频土壤呼吸在线测量的优势,克服了恒温培养模式土壤微生物对特定培养温度的适应性和底物消化不均的难题,加速研究进程并获得可靠的研究结果。 研究成果“Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability”为题,在线发表于国际顶级生态学期刊Global Change Biology(IF=13.211),何杨辉教授为论文的第一作者,周旭辉教授为论文通讯作者。相关论文信息:He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022.全文链接:https://doi.org/10.1111/gcb.16523 UPGRADED! 土壤有机质是陆地生态系统最大的碳库,在全球变暖背景下,土壤有机质分解对温度变化的响应很大程度影响着陆地生态系统对全球气候变化反馈效应。气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖已成为目前科学家主要关注的内容之一。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。 01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02 PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.18.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022. 如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:地址:北京市海淀区瀚河园路自在香山98-1号楼电话:010-51651246 88121891邮箱:support@pri-eco.com
  • 土壤硫含量检测的利器丨赛恩思SES-902高频红外碳硫仪
    赛恩思SES-902高频红外碳硫仪是一款先进的设备,最近在谱尼测试完成安装调试,即将投入使用。这一仪器将为土壤三普样品中的硫含量检测提供可靠的解决方案。水分是影响土壤样品测试准确性的重要因素之一。传统的测试方法往往需要耗费大量时间和精力来去除土壤样品中的水分,而且操作繁琐,容易出现误差。而此款赛恩思SES-902高频红外碳硫仪搭载自动除水装置,为土壤样品中的水分去除提供了高效解决方案,从而保证了测试数据的精准性。赛恩思SES-902高频红外碳硫仪的投入使用,将极大地促进土壤硫含量检测工作的进展。我们期待着赛恩思仪器在土壤分析领域发挥更大的作用,推动我国土壤三普项目的顺利进行。
  • 土壤呼吸 | 极端干旱改变土壤微生物功能群丰度来降低土壤异养呼吸
    土壤呼吸 | 极端干旱通过改变高寒泥炭地土壤微生物功能群丰度来降低土壤异养呼吸而非甲烷通量【温室气体】人类活动造成温室气体排放急剧增加,全球地表温度持续上升,显著改变了自然生态系统碳水循环格局。极端气候事件,尤其是极端干旱事件发生的频率和强度不断升高,对土壤含水量、土壤微生物群落结构和功能、土壤异养呼吸(Rh)以及土壤甲烷(CH4)通量具有重要影响。高寒泥炭地拥有巨大的碳储量,对气候变化高度敏感。虽然目前围绕高寒泥炭地碳排放开展了一些研究,但对高寒泥炭地生态系统碳排放对极端干旱响应的微生物机制仍不清楚。若尔盖国家级自然保护区基于此,中国林业科学研究院湿地研究所的研究团队以青藏高原东部若尔盖国家级自然保护区高寒泥炭地(33°47′56.62′′ N,102°57′28.44′′ E,3430 m.a.s.l.)为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,旨在解决以下问题:(1)不同植物生长期,极端干旱如何影响Rh和CH4通量?(2)极端干旱如何影响土壤微生物群落结构和功能群?以及(3)驱动Rh和CH4通量变化的主要因素是什么?作者于2019年6月18日至9月25日测量了Rh(PS-9000便携式土壤碳通量自动测量系统(北京理加联合科技有限公司))和CH4通量(一个闭路静态室(0.5×0.5×0.5 m)+ABB LGR便携式温室气体分析仪(UGGA,GLA132-GGA))。试验三个生长期结束时,作者测量了样地0-20 cm土壤的土壤性质,包括总氮(TN)、土壤有机碳(SOC)、有效磷含量(AP)、总磷(P)、pH值、溶解有机碳(DOC)、土壤含水量(SWC)、硝态氮(NO3--N)、铵态氮(NH4+-N)、微生物生物量磷(MBP)、微生物生物量氮(MBN)和微生物生物量碳(MBC)。此外,还进行了新鲜土壤样品的DNA提取、PCR扩增和测序。图1 PS-9000便携式土壤碳通量自动测量系统。【结果】图2 不同植物生长期极端干旱对土壤异养呼吸(a)和甲烷通量(b)的影响。“ED”,“MD”,和“LD”分别代表植物快速生长期、盛花期和植物生长衰退期。图3 不同植物生长期极端干旱对细菌碳循环功能群的影响。图4 驱动因素对土壤微生物呼吸(a)和甲烷通量(b)的相对贡献。【结论】极端干旱导致植物生长衰退期土壤异养呼吸显著降低38.04 mg m−2h−1,但对CH4通量无显著影响。极端干旱显著降低了细菌的α多样性,显著降低了植物快速生长期和衰退期的Rokubacteria和Chloroflexi菌的相对丰度,显著增加了盛花期Actinobacteria菌的相对丰度。在植物快速生长期和盛花期,极端干旱使芳香烃降解功能群(aromatic hydrocarbon degraders)相对丰度分别降低了50.26%和64.37%。在植物生长衰退期,极端干旱显著降低了甲醇氧化(methanol oxidizers)和木质素降解(lignin degraders)功能群的相对丰度,分别为81.63%和82.08%。随机森林模型分析表明,细菌功能群在决定土壤异养呼吸和甲烷排放中起着重要的作用。芳香族化合物降解(aromatic compound degraders)和芳香烃(aromatic hydrocarbon degraders)降解功能群对土壤异养呼吸累计贡献率为11.89%。芳香族化合物降解(aromatic compound degraders)、芳香烃降解(aromatic hydrocarbon degraders)、脂肪族非甲烷烃降解(aliphatic non-methane hydrocarbon degraders)和甲基营养(methylotrophs)功能群对甲烷通量的累计贡献率为13.29%。研究结果强调土壤细菌碳循环功能群对于探索未来极端干旱背景下土壤碳循环可能的微生物响应机制至关重要,为高寒泥炭地应对未来气候变化提供了理论基础和科学依据。【产品简介】PS-9000是一套用于测量土壤CO₂通量的便携式测量系统,采用动态气室法测量,专利设计。具有控制测量、存储和数据处理等功能,可测量呼吸室内CO₂浓度变化,同时结合自身测量的空气温度、大气压、土壤温度等传感器的数据,计算处理得到CO₂通量。PS-9000可通过掌上控制器实现无线操作,实时显示仪器测量的各种参数值,并可现场修改各种设置参数。
  • "凤凰"号火星探测新发现:火星土壤可能有害
    东方网8月6日消息:“凤凰”号火星探测器在火星上发现水和冰的消息令人惊喜,但目前它又传来不好的消息:在火星土壤样本中发现了一种对生命有害的物质。   据美国媒体8月5日报道,亚利桑那大学的首席科学家彼得史密斯4日发表声明指出:第一次实验结果显示火星土壤与地球类似,但是经过进一步的检验发现了火星土壤成分中与地球土壤不同的方面。“凤凰”号将火星土壤样本和地球水放在烧杯中搅拌,并通过24个烧杯内置传感器检测土壤的pH值,寻找各种矿物质的痕迹。第一次检测结果显示火星土壤呈弱碱性,含有生命必需的镁、钠和氯化钾等成分,但第二次检验就发现了高活性的高氯酸盐。   高氯酸盐是一种有毒化学物质,是火箭固体燃料的主要成分,烟花爆竹和其他爆炸物中也有它。目前,还不清楚火星上高氯酸盐的成因和含量。美国宇航局正在调查高氯酸盐是否是由凤凰 ”号着陆前的外来污染所致。“凤凰”号的动力系统燃料是联氨,而非高氯酸盐。   这次发现需要进一步证实,因为“凤凰”号的另一个仪器8月3日在对土壤样本进行烘烤试验时并没有发现高氯酸盐的踪影。   不过,美国布朗大学地质学家约翰马斯特德认为,在得到所有数据前,断言火星土壤能够支持生命存在还为时尚早。   “凤凰”号于今年5月25日登陆红色火星,已经成功地证实了火星北极冰的存在,现在它的主要任务是分析火星环境是否能够支持原始生命形成,美国宇航局已经将“凤凰”号3个月的任务延长了5周。
  • 福建师范大学黄锦学、刘源豪等研究人员揭示外源碳输入对常绿阔叶林土壤碳排放的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达25篇。 今天与大家分享的是福建师范大学黄锦学、刘源豪等研究人员在研究外源碳输入对常绿阔叶林土壤碳排放影响方面取得的进展,在该项研究中,研究团队利用PRI-8800测定土壤CO2排放速率,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,其碳储量约占陆地生态系统碳储量的60%,其微小变化对大气中的CO2浓度影响较大。土壤微生物呼吸是陆地生态系统向大气释放CO2的主要途径,对维持土壤碳库平衡起着重要作用。气候变暖将提高植物净初级生产力,从而提高凋落物和根系分泌物的输入量,导致外源葡萄糖输入增加,进而改变土壤碳循环过程。土壤微生物呼吸是土壤微生物为获取化学能量和营养物质,分解土壤有机碳并释放CO2的过程,其速率不仅受土壤pH值和碳、氮含量等因素的影响,而且受葡萄糖输入的显著影响。 目前对葡萄糖输入后土壤CO2排放动态特征的研究多集中在长期(60d以上)观察,对于短期内的变化研究较为缺乏。多数研究对于土壤CO2排放的动态观测时间间隔较大。因此,探究短期内不同葡萄糖输入量对土壤CO2排放的影响及其动态变化特征,对预测外源碳输入对土壤碳动态的影响具有重要意义。图1 不同浓度葡萄糖输入对土壤CO2排放速率和土壤CO2累积排放量的影响注:图中不同小写字母表示不同处理间差异显著(P0.05) 为了更好地研究外源葡萄糖输入量对土壤CO2排放动态过程的影响及机理,福建师范大学黄锦学、刘源豪等研究人员以中亚热带常绿阔叶林土壤为研究对象,在培养温度为恒温20℃,土壤田间持水量60%的条件下,输入不同浓度的葡萄糖(碳含量分别为0、50、150、450μgg-1,分别标记为CK、C1、C2、C3处理)进行室内培养试验,测定不同浓度葡萄糖输入下不同时间的土壤CO2排放。 在室内培养试验过程中,研究团队采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统测定土壤CO2排放速率,采样时间间隔为1h,室内培养试验结束共计获得1232条土壤CO2排放速率数据,为该项研究提供了有力的数据支撑。图2 预培养期间土壤CO2排放速率和土壤CO2累积排放量图3 葡萄糖输入后土壤CO2排放速率和土壤CO2累积排放量的动态特征注:*表示培养28h前后的土壤CO2排放速率、土壤CO2累积排放量差异显著(P0.05) 研究结果表明,C2、C3处理的土壤CO2排放速率和土壤CO2累积排放量均显著升高(P0.05);C2、C3处理28h后,土壤CO2排放速率随培养时间的延长显著升高(P0.01),土壤CO2累积排放量随培养时间的延长显著升高(P0.01);当培养时间超过65h后,C1处理的土壤CO2排放速率随培养时间的延长有显著降低的趋势(P0.01),C3处理的土壤C/N、DOC变化量较CK显著增大(P0.05),土壤CO2排放速率与C/N、DOC含量呈显著正相关关系(P0.05)。不同浓度葡萄糖输入对土壤CO2排放的影响有显著差异,在中亚热带常绿阔叶林土壤中,根系分泌物葡萄糖的输入增加可能会改变土壤C、N含量,提高CO2排放量,从而进一步影响土壤C库的固存。 相关研究成果以“外源碳输入对常绿阔叶林土壤碳排放的影响”为题发表于期刊《Journal of Forest & Environment》上。相关论文信息:刘源豪, 熊德成, 吴晨, 等. 外源碳输入对常绿阔叶林土壤碳排放的影响[J]. Journal of Forest & Environment, 2023, 43(5).DOI:10.13324/j.cnki.jfcf.2023.05.006 截至目前,以PRI-8800为关键设备发表的相关文章已达25篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).
  • 国家标准《肥料和土壤调理剂 黄腐酸含量及碳系数的测定方法》征求意见
    国家标准计划《肥料和土壤调理剂 黄腐酸含量及碳系数的测定方法》由 TC105(全国肥料和土壤调理剂标准化技术委员会)归口,TC105SC7(全国肥料和土壤调理剂标准化技术委员会腐植酸肥料分会)执行 ,主管部门为中国石油和化学工业联合会。主要起草单位 辽宁普天科技有限公司 、山东泉林集团有限公司 、沈阳农业大学等 。附件:1.征求意见稿2.编制说明
  • 浅谈土壤环境质量监管监测
    p  《土壤污染防治行动计划》的出台,展现了我国政府对土地污染防治的坚定决心和意志,对改善生态环境,促进生态系统安全具有极为重要的意义。本文从土壤环境监管与监测角度出发,分析了当前存在问题和提出了应对措施。/pp  土壤是最重要的自然要素之一,是人类赖以生存的物质基础。土壤环境质量状况不仅直接关系到农产品安全和生态安全,而且关系到人体健康,甚至关系到社会发展与稳定,随着人口增加急速发展,我国土壤污染情况日趋严重,土壤环境安全问题突出。/pp  一、土壤污染防治技术体系指导思想《土壤污染防治行动计划》是我国土壤保护的纲领性文件,对今后一个时期我国土壤污染防治工作做出了全面战略部署。“土十条”提出了预防为主、保护优先、风险管控的总体思路,在构建土壤污染防治技术体系时,需要考虑土地利用类型、污染程度、污染物类别、技术经济条件等因素,体现系统化、差异化、科学化、法制化、透明化的指导思想。具体而言:1.系统化。土壤污染防治涉及法律法规、监管能力、科技支撑、资金投入和宣传教育等各个方面,要统筹法律规划、技术规范、管理手段,在土壤污染的源头预防、风险管控、治理与修复、监管能力建设等方面构建土壤污染综合防治的“大网”,推动土地精准管理及安全利用。2.差异化。我国幅员辽阔,区域特征明显,污染特征和成因差异较大,需要因地制宜,按照土壤环境现状和经济社会发展水平,开展区域差异化土壤污染综合防治。同时,农用地和建设用地污染特征、风险传播途径以及资金渠道等存在较大差异,在制定地方土壤防治方案时需要差异化对待。3.科学化。我国土壤污染防治工作基础薄弱,土壤污染家底不清,成因复杂,空间异质性强,风险传播途径多样,土壤污染防治相关标准和技术规范不健全,选择适宜的技术和模式,引导区域产业合理发展,逐步推进和完善土壤污染防治工作。4.法制化。依法治土是全面有效地防治土壤污染的迫切需求,完善土壤保护体制和机制,从污染者付费、土地资源管理与规划、土地开发利用、土壤保护技术与能力等方面,使土壤污染防治工作步入规范化、法制化轨道。 5.透明化。土壤污染防治各环节相关信息的公开透明化,一方面有利于建立土壤污染的监测预警体系和土地分类分级管理机制,为配套落实公众参与、终身责任追溯等机制提供物质基础 另一方面响应各利益方诉求,有助于解决其利益矛盾冲突,更好地发挥政府的主导和监管作用、公众的参与和监督作用、企业的积极性和自我约束作用等。/pp  二、我国土壤环境监管监测中存在的问题/pp  1.土壤环境监管能力弱,环境监测队伍建设落后/pp  (1)我国的基层环保监管监测体系尚未全面建立,县级以下土壤监测专职机构及人员稀缺,监测设备及人员能力普遍较低。尤其是中西部地区和基层环境管理水平、监测能力薄弱,直接影响到环境监管监测工作的正常开展。(2)土壤污染累积性强,均匀性差,污染物分布不均匀,滞后性隐蔽性强,污染可逆性较差,治理复杂,无法开展自动检测,监管和监测需要所需的人力物力财力投入量巨大。相对水污染和大气污染,土壤监管监测工作往往得不到足够重视,资金保障不充分不及时。(3)土壤基质成分复杂,土壤环境污染物成分复杂,需要对适配有针对性的指标及检测方法,监测中的各技术问题都需要进行专题研究,相对水和大气检测的技术要求更高。由于“人财“支持乏力,土壤环境科研能力无法有效支撑土壤监管决策。/pp  2.土壤环境保护法律体系建设滞后目前,土壤环境监测工作使用的《土壤环境质量标准》主要是出于对农业用地的保护,不太适宜评价其它土地利用类型的土壤。缺少专门的土壤环境保护法律,关于土壤环境保护的法律法规内容分散,缺乏实际操作性,不能适应我过土壤污染防治工作的需要。各级政府部门也没有考核指标。结合我国土壤污染现状特点和国外趋势,建议在对土壤环境质量标准进行修订时除了农业用地外还应考虑饮用水源地、城镇居民区、工业商业用地等不同的利用方式。在充分调查分析的基础上,通过设置评价因子的自然背景值、依据土壤风险评估制定的指导值和土壤受到污染危害的临界值,区分地区间土壤重金属的总量和有效态差异。/pp  3.缺乏对保护土壤环境重要性的认识数量庞大的污染企业为追求利润最大化,超标排放污染物,有些企业不惜以身试法,偷排污染物,对土壤环境进行了直接或间接的污染。尤其是大批量的集中偷排,监管难度大,是恶性环境污染事件发生的重要原因,对国家及人民生命财产安全造成了严重的影响。虽然公众环境自保意识与日俱增,但大部分人仍然缺乏对环境问题的深刻认识,公众对环境违法行为举报抵制参与程度低。/pp  三、对土壤环境监管监测的建议/pp  1.确立国家层面例行土壤环境质量监测制度及监测网络首先需要清楚了解我国不同区域的土壤质量现状,详细调查土地污染情况,设立国家土壤环境监测控制点,建立土壤环境质量信息系统,定期在全国或区域范围内例行开展土壤环境质量监测,及时掌握土壤环境变化趋势,明确潜在风险,为环境保护及民生改善提供科学技术支撑。2.做好运行经费的保障工作,建立完善的资金监管长效机制。土壤环境监测是一项重大的、涉及国计民生与社会稳定的公共服务事业,做好运行资金的监管工作,确保运行资金落实到实际工作中,对于土壤环境监测工作的顺利开展至关重要。政府部门在财务预算中应对这方面内容单独、明确立项,才能确保土壤环境监测工作长效、持续开展。3.全面推进从上往下的各级环境监测站建设。在对国家级、省级和地市级的环境监测站点进行重点强化的基础上,对县级环境监测站进行重点建设,对土壤环境监测基本的技术设备、作业设施及经费给予充分保障。/pp  4.持续推进基层环保机构建设,在各地区,要建立专门的监测监管机构及人员,有效开展土壤环境监测及防治工作。加强筹建土壤环境监测人力资源体系,使高端人才能积极投入到土壤环境监测技术工作岗位屮去,对人才准入门槛耍逐步提高。要配备基本的人才培训及引进专项经费,丰富人才培训渠道,形成多样化的、互动式的人才培训体系。在多元化的培养机制中,推动土壤环境监测学科带头人的成长,使土壤环境监测技术队伍朝着专业化的方向发展。/pp  5.加强土壤环境保护与污染防治法律保障体系建设,加快制定相关的法律法规,如对污染企业违规排污的有效防范措施设计。对土壤环境保护相关的法律法规也要加大宣传力度,形成社会影响。/pp  6.增强社会公众土壤环境保护意识。积极开展土壤环境保护和污染防治的社会培训、科普教育和全民宣传,全面提升公民的土壤环境风险防范和土壤环境保护意识/pp  四、结束语/pp  中国的土壤环境质量例行监测工作刚刚起步,土壤环境质量监测体系尚未完全建立,土壤环境状况底子不清、情况不明仍然是客观事实,不能完全满足土壤环境保护和管理决策需求。因此,应该针对土壤实际情况,开阔思路,制定切实可行的土壤环境监测方案,加强土壤环境监测,以掌握土壤环境的真实状况,进一步推进土壤环境监管。当前,大力加强土壤环境质量监测工作迫在眉睫,进一步提升管理和监测工作水平极为关键。要以建设生态文明、美丽中国为指导思想,以保护土壤环境为主题,以耕地和重点区域土壤为重点,构建全国土壤环境监测网,切实提升土壤环境监管能力和水平,努力实现土壤环境监测的现代化、标准化、信息化。力争建成较为完善的土壤环境监管监测网络,能够基本说清全国土壤环境质量状况、污染空间分布和变化趋势。同时,为确保土壤环境质量例行监测的顺利开展,还应做好各项保障措施。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/97751681-a456-4d2d-a8b4-27a90b571b32.jpg" title="绿仪社.png" alt="绿仪社.png"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加绿· 仪社为好友 了解更多环境监测精彩资讯!/spanbr//p
  • 关于召开“2022年第六届中国国际土壤地下水高峰论坛”的通知
    关于召开“2022年第六届中国国际土壤地下水高峰论坛”的通知各有关单位:自“十四五”“双碳”等政策实施后,各有关部门深入贯彻国家生态文明思想,认真落实党中央、国务院决策部署,推进环境保护取得积极成效;近日,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。为进一步提升环境修复、监测技术水平和管理能力,第六届中国国际土壤与地下水环境高峰论坛将于2022年8月17-18日在安徽合肥召开,本届大会将以“共话土壤污染防治,助力土壤三普”为主题,将探讨土壤地下水修复技术与设备、工程案例应用,环境三方检测服务,分析技术、仪器设备等,并以“主题报告+精品展示+需求剖析+解决方案+现场交流”等形式,与行业专家、企业同仁分享,助力第三次全国土壤普查,为我国环境行业应用提供有力支撑!特此致函,望复函为盼。会议时间 2022 年 8月17-18日 会议地点 安徽合肥组织单位/承办单位 清华苏州环境创新研究院低碳环保圈 上海同巨文化传播有限公司安徽同巨文化传媒有限公司支持单位山东省环境保护产业协会日程安排8月16日 全体签到8月17日 签到+开幕式+会议+交流+观展8月18日 会议+交流+观展+闭幕大会议题一、主会场“双碳”目标下,环境行业带来的机遇与挑战第三次全国土壤普查对产业发展需求及投资预测分析土壤、地下水污染防治产业现状及发展趋势国内外土壤污染治理前沿技术和解决方案第三方环境检测机构发展现状与展望环境监测发展有关问题与对策探讨土壤与地下水监测标准解读二、土壤与地下水修复专场浅析污染场地调查与评估现状和发展污染场地风险管控技术与案例应用新型土壤和地下水采样成套设备(土壤采样钻机等设备) 新型筛分破碎铲斗与搅拌工艺与成套设备应用土壤修复功能材料研发及应用土壤与地下水修复材料、药剂案例应用城市污染场地土壤修复技术及工程应用农用地污染土壤修复技术及工程应用油田污染土壤修复技术及工程应用重点行业及军事污染场地修复技术及工程应用在产企业土壤地下水自行监测技术、案例工业场地、园区土壤与地下水污染管控与修复固危废、垃圾填埋场地土壤与地下水污染管控与修复矿区及周边土壤修复技术与工程应用地下水污染模拟、风险管控与修复土壤修复智能装备研发制造、应用土壤环境大数据分析和信息智能管理系统第三方环境检测服务解决方案三、分析技术与检测专场全国土壤普查相关仪器、设备、耗材应用实验室的科学化管理与信息化建设解决方案探析浅谈国内外土壤环境监测方法与技术探讨土壤分析质量控制技术与要求解读土壤采样技术规范探讨样品前处理与实验室分析检测技术环境检测中前处理设备的应用及联用应用分析解析环境样品中的光谱、色谱、质谱解决方案探讨环境中常规污染物分析关键技术土壤与地下水监测技术及应用土壤与地下水分析及监测仪器设备应用案例土壤重金属、VOCs、油类等检测仪器应用土壤微生物检测方法及仪器设备应用土壤环境实验室常用仪器、设备、耗材、试剂、标物等应用分析浅析土壤环境中无机/有机污染物测定探析环境监测中物联网、大数据技术的应用土壤/地下水环境智能化监测及信息化管理系统解决方案拟邀专家(排名不分先后)魏馥盛 中国科学研究院 院士朱永官 中国科学研究院 院士孙 宁 生态环境部环境规划院环境工程部 主任黄国鑫 生态环境部环境规划院 土壤环境保护中心 副研究员/高级工程师黄业茹 国家环境分析测试中心 研究员郭 峰 国家地质实验测试中心 副研究员夏 新 中国环境监测总站 研究员赵晓军 中国环境监测总站 研究员 陈传忠 中国环境监测总站 监测业务管理室主任赵永刚 江苏省环境监测中心 副主任谢剑锋 河北省环境监测中心站 站长钱贞兵 安徽省生态环境监测中心 主任/高工陈 丰 上海市环境监测中心 高级工程师 赵志南 广东省环境监测中心 高级工程师李玉武 原国家环境分析测试中心 研究员张培新 江苏省地质调查研究院/国土资源部南京矿产资源监督检测中心 主任/高工龙 涛 生态环境部南京环境科学研究所 研究员谷庆宝 中国环境科学研究院 研究员徐友宁 中国地质调查局西北调查中心 研究员李芳柏 广东省科学研究院生态环境与土壤研究所 研究员张 华 中国科学院地球化学研究所 研究员韩建均 清华苏州环境创新研究院 主任/高工韩占涛 中国地质科学院水文地质环境地质研究所 研究员周连碧 北京矿冶科技集团有限公司 正高级工程师高艳丽 北京建工环境修复股份有限公司 总经理胡培良 永清环保股份有限公司 修复事业部总工程师朱湖地 北京高能时代环境技术股份有限公司 副总工程师肖 愉 中节能大地(杭州)环境修复有限公司 高级工程师刘 爽 中科鼎实环境工程股份有限公司 副总经理朱红祥 广西博世科环保科技股份有限公司 技术总监 斯克诚 中建八局环保科技有限公司 技术专家/博士赵 颖 中冶南方都市环保工程技术股份有限公司 教授级高工参与群体修复技术/设备单位、综合治理/工程承包单位、环境工程设计、施工单位、修复材料单位;实验室仪器设备、耗材厂商、代理商;第三方检测机构;各地环保机构、监测中心、设计院、研究院、协会/学会、高校、实验室等专家、领导、实验室人员;各级政府规划、环保、城建、行业管理部门;投融资机构、行业媒体等。企业产品信息展示 大会组委会热忱欢迎有关企业和研究机构在会议期间开展技术相关的成果(产品、创新技术,仪器设备等)、各式产品的广告与资料展示宣传活动,自备展出资料。具体事宜请会务组联系。会议摘要 参与专家请于2022年7月30日前将参加研讨会的论文摘要(2000 字,中英文,阐述论文主要观点) 以中文和英文两种文本通过电子邮件方式发 Henry@tjevents.cn,并请注明“会议论文”字样。 会务费 组委会热忱欢迎有关科研院校参会。 会务费:5月31日前1500元/人,6月1日后2600元/人;高校院所统一收费:800元/人;包括注册费、会议资料、摘要、茶歇、餐饮、会后公开版本PPT。交通往返费、住宿费用自理!大会组委会联系人联系人:张女士电话:021-6032 4864手机:182 2175 6169(微信同号)邮箱: anna@tjevents.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制