当前位置: 仪器信息网 > 行业主题 > >

湍动边界层

仪器信息网湍动边界层专题为您整合湍动边界层相关的最新文章,在湍动边界层专题,您不仅可以免费浏览湍动边界层的资讯, 同时您还可以浏览湍动边界层的相关资料、解决方案,参与社区湍动边界层话题讨论。

湍动边界层相关的论坛

  • 关于高低温试验箱的设计判定——厂家花了不少心思

    关于高低温试验箱的设计判定——厂家花了不少心思

    [b]高低温试验箱[/b]空气与水之间的热湿交换原理:[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/04/202104191403050616_5401_1037_3.jpg!w348x348.jpg[/img][/align]  高低温试验箱空气通过开阔水面时,与水面发生热湿交换。根据水温的不同,只能进行显热交换,也可以同时进行显热交换、湿交换和潜热交换。显热交换是指空气与水之间的温差,由于热传导、对流和辐射而产生的热量传递,而潜热交换是水蒸气在空气中蒸发(或凝结)吸收(或释放)汽化潜热的结果。总热交换量是显热交换量和潜热交换量的代数和。  高低温试验箱中的气流通过箱体内浅水盘的表面,将温度等于水面温度的饱和空气边界区换为水分和热量。当边界区域内的蒸汽分子浓度大于通过气流中的水蒸汽分子浓度时,即为增湿,反之则为除湿。  在高低温试验箱中,在低温高湿条件下,加入的蒸汽和空气未充分混合,或与箱壁接触发生局部冷凝,不仅减少了蒸汽的加入量,而且释放热量,使箱内潮湿空气温度升高。增加;加上前面提到的ε′ε,所以这不是一个等温增湿过程,箱内的温度会有所增加。  蒸汽加湿,如电加热加湿,分为开式和闭式。敞开式响应慢,常有滞后现象,湿度波动大,但结构简单可靠。闭式蒸汽压力大于大气压,在0.1~0.3Mpa之间,无滞后现象,但需配减压阀、电磁阀、排水管等,结构复杂,多用于大型人工气候室。敞开式多用于中小型湿热箱。  如果边界层的温度高于其上方空气的温度,热量就从边界层转移到空气中;否则,热量就从空气转移到边界层中。如果边界层中水汽分子的浓度大于其上方空气中水汽分子的浓度(即边界层中水汽的分压大于空气中水汽的分压),则空气中水汽分子的数量将增加;否则,就会减少。前者称为“蒸发”,后者称为“冷凝”。在蒸发过程中,边界层中还原的水蒸气分子被跳出水面的水分子所取代;在冷凝过程中,边界层中过多的水蒸气分子会返回水面。

  • 氙灯耐气候试验箱湿热老化试验怎么做到的

    氙灯耐气候试验箱湿热老化试验怎么做到的

    氙灯耐气候试验箱的常用试验之一就是湿热老化试验,这是保证设备能够满足客户要求并精准获得试验结果的保障!因此我们非常有必要了解它是通过何种方式来进行湿热老化试验,以及工作原理和运作方式分别是什么?  氙灯耐气候试验箱就是通过模拟湿气加热气来对产品循环进行老化的试验仪器。试验箱在低温高湿时,由于吸入的蒸汽与空气未充分混合,或与工作室箱壁接触而出现局部冷凝,不但会减少加入的蒸汽量,而且还会释放出热量使箱内湿空气温度上升,加上前述的所以并非等温的加湿过程,箱内温度会有所升高。  市场上出现的此类温湿度循环设备一般都是采用空气与水面直接接触的湿热循环交换原理:设备蒸汽用电热加湿一般分为开启式和密闭式。开启式响应性较慢,常有滞后现象,故湿度波动较大,但结构简单可靠。闭式蒸汽压力大于大气压,在0.1~0.3MPa之间,无滞后,但需配有减压阀、电磁阀、泄水管等,结构复杂,多用于大型人工气候室中。http://ng1.17img.cn/bbsfiles/images/2016/02/201602251037_585046_2930782_3.jpg  当空气经过敞开的水面时,与水表面发生热湿交换。设备按其水温不同,可能仅发生湿热交换;也可能既有热湿交换,又能湿交换,同时还有湿热交换。湿热交换是空气与水之间存在温差,因导热、对流和辐射作用而换热,而潜热交换是空气中的水蒸汽蒸发(或凝结)而吸收(或放出)汽化潜热的结果。总热交换量为湿热交换量与潜热交换量的代数和。空气与水面直接接触时,在贴近水面上,由于水分子作不规则运动的结果,高低温交变湿热试验箱形成了一个温度等于水面温度的饱和空气边界层,且其水蒸汽分子的浓度或水汽分压力取决于边界层的饱和空气温度。  试验箱湿热原理通过电加热水,使水槽内产生蒸汽,蒸汽通过喷雾管进入湿热箱,对箱内空气进行加湿。如边界层的温度高于其上空气的温度,则由边界层向空气传热;反之则由空气向边界层传热。如边界层内水蒸汽分子浓度大于其上空气的水蒸汽分子浓度(即边界层的水蒸汽分压力大于空气的水蒸汽分压力),则空气中的水蒸汽分子数将增加;反之则将减少。前者称为蒸发,后者称为冷凝。湿热试验箱在蒸发过程中,边界层中减少了的水汽分子由水面跃出的水分子补充;在冷凝过程中,边界层中过多的水汽分子将回到水面。  氙灯耐气候试验箱中气流通过箱内的浅水盘表面,此温度等于水面温度的饱和空气边界区进行湿热交换。当边界区内蒸汽分子浓度大于流过的气流的水蒸汽分子浓度,则为加湿,反之则为降湿。由此可见,空气与水之间的湿热交换取决于边界层与其上方空气之间的温差,而湿交换及由此而引起的潜热交换取决于二者之间水蒸汽分子的浓度差或分压力差。

  • 大气污染==(空气)污染预报

    污染指数公报表明现在的空气质量状况,实际还需要掌握未来会产生什么样的状况,以便采取对策。因为气象条件与空气污染密切相关,所以天气预报的副产品可以推测未来的空气污染状况,例如风速大小、冷高压的位置、强度、逆温层结是否出现等。综合上述预报出的因子,可以得到空气污染的潜势预报,指出对污染是否有利的气象条件。另一种是空气污染的数值预报,需要建立数值模式,包括:1、大气小尺度动力学,除一般的平流运动之外还能描写大气对流运动,另外要用适当方法描写大气边界层(大气边界层在对流层下部靠近地面的1.2─1.5公里范围内的薄层大气称为大气边界层或行星边界层。因为贴近地面,空气运动受到地面摩擦作用影响,又称摩擦层。

  • 【分享】烟圈不散孤烟直

    【分享】烟圈不散孤烟直

    小时候经常看到吸烟者能吐出一个一个的烟圈,在空中历久不散,觉得很有意思,但对于其成因,不甚明了,现在看到科学杂志上相关的解释,与大家分享。为什么“烟圈不散”呢?最简单直接的解释是,层流现象,缺乏足够的动能达到湍流水平。烟气粒子取决于燃烧的程度,这里的烟气粒子直径非常小,维持在气溶胶水平,就是能够悬浮很久,而不降落。同时,烟气中的能量非常弱,不足以产生足够的卷吸力,产生上升的湍动的羽流。第三,烟圈内部也有一定的自组织流动(伯努利原理),维持烟圈的形状。我们日常所见的的烟气,由于浮力的作用而上升,因为流动过程的卷吸而湍动化,造成很快的失稳现象。烟圈缺乏足够的能量,只能靠扩散和布朗运动来扩张,感觉上就是烟圈不散了。这是由于扩散尺度大大小于对流的尺度造成的,因为烟气缺乏足够的动能失稳(林家翘教授的成名理论)。上学时学到王维的名句:“大漠孤烟直”当时老师的解释是因为在大漠因为无风,所以烟就能成烟柱直上云霄了。通常情况下,燃烧产生的烟气在浮力的作用下向上升,不断卷吸周围空气的结果,是体积的膨胀和动能的衰减,从外观上看,就是V型的羽流(因为浮力作用,流动容易失稳,光线通过不均匀的流场,产生扰动现象,远处观察,如同片片羽毛在飞,这是英语中Plume的来源。我国古代庄子称之为野马,影影绰绰,如同草原上奔腾不已的野马群在跑)。成都公交纵火案中,能量非常密集,产生了强劲的羽流。细看其中有大尺度的涡流,那是燃烧与流动发生共振造成的Puffing现象造成,也是一种流动失稳的原因。这是我们日常生活中常见的湍动的羽流现象,以至于很难想象“孤烟直”的现象。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912061410_188282_1623180_3.jpg[/img]实际上当能量密度不足时,燃烧产生的动能不足以让流动失稳,产生的烟气在微弱的浮力作用下上升,无法产生卷吸,因此体积无法膨胀,仅仅靠扩散是不够的,于是形成一种烟柱,长久不消散(当然环境必须无风,没有扰动。塞外,沙漠,戈壁,是最容易产生大尺度层流边界层的自然环境),如此可以产生足够高的烟柱让远处的烽火台看到,把信号接力传下去。这种层流的浮力流动现象,就是诗人王维在孤寂的边塞看到的“孤烟直”现象了,非常符合当时的场景。

  • V锥流量计的优势及功能介绍

    V锥流量传感器与差压变送器组合成为V锥流量计,是目前最先进的差压式流量计之一,可精确测量宽雷诺数范围(8×103~ 5×107)内各种介质的流量。V锥流量计可耐高温,无运动部件,具有长期精度高、稳定性好、受安装条件影响小、耐磨损、测量范围宽、压损小等优点。 V锥流量计克服了一般流量仪表很难在扰动流动中取得正确测量值的缺点,在极恶劣的安装条件下,如上游有两个不在同一平面上的弯头,而且很靠近锥体,V型锥体也能使速度分布变得平坦和对称,从而确保了测量精度。V锥流量计的节流缘是钝角,流动时形成边界层,使流体离开了节流缘。边界层效应使肮脏流体不能磨损节流缘,其值长期不变。因此无需重复标定,具有长期的稳定性。 V锥流量计改善了传统差压流量计的使用局限,提高了精确度和重复性,安装时几乎无直管段要求,自清洗功能,适用于容易结垢的脏污介质,气液两项测量。V锥流量计适用于各行业的液体、气体和蒸汽流量的测量,特别适合脏污介质的测量。

  • 【分享】科学家揭秘“宙斯的武器”——移动云层掌管闪电

    【分享】科学家揭秘“宙斯的武器”——移动云层掌管闪电

    “宙斯的武器”——闪电的秘密已经被破解。美国研究人员说,他们已经找到了闪电形成的原因,以及它是如何逃出风暴云团的控制。[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807140039_97907_1644912_3.jpg[/img]网易探索3月26日讯,这个理论是建立在一个计算机模型基础上的,这个模型首次解释了目前已知的所有类型闪电——从规则云层到地面闪电,还有巨大的穿越云层顶部逃逸出的“喷射状闪电”,还有“晴天霹雳”——可以在大晴天下击中距离雷暴数十英里远的地面。“早先的理论很难解释清楚闪电从乌云中“逃出”的原因,”美国宾夕法尼亚大学的Jeremy Riousset说到。之前科学家们只知道,闪电形成于带正电云层与带负电云层之间,但没法解释闪电是怎样从云层中释放出来的。“依照当时的理论,所有的雷电都应被带电云层限制在了云团之内,”Rioussrt说。“我们曾研究它为何会击向地面,但我们从未想过它为何会向上喷射。”蓄能Riosset的模型显示,当云团中带有正负两极电荷的云层被再次分开时,就创造了产生闪电“逃逸”云团的必要条件——云层间的某些差异被悄悄扩大了。闪电“逃逸”的方向取决于云团内最初的电荷是怎样分布的,它们的磁极是正是负。出乎常理的是,电荷向上聚集的速度远大于向下移动的速度。当一道闪电从它最初的“逃逸”路径被重新定位到新的路径时,“晴天霹雳”的景象就会发生。大规模向上流动的闪电由于电荷被排列到云团的边缘而改变了方向。从云团中不同路径释放出的闪电能轻而易举地击中离雷暴云40公里之外的地点。Riousset补充到:“令人惊讶的是,从符合“晴天霹雳”的闪电匹配情况来看,‘晴天霹雳’的发生在普通不过了。”落雷Riousset说,风暴云团中的电荷被重新定位路径时,通常会有三条路径可走,其中一条是往高处。他们认为,电荷散发程度之所以有所不同,取决于电荷所处的不同高度,即带电云层可在云团上部形成。另外,云团内部的闪电将电荷带到了云团的每个角落,近地闪电则因为击中地面,而将电荷从云中转移到了大地中。这些变化进一步地将电荷间的平衡打乱,从而创造了闪电从风暴上方喷射的条件。Riosuset介绍说,他和同事开发出的这套计算机模型还可以用于预测哪种类型的雷暴云将会形成。这意味着Riosuset的小组可以预测闪电是朝上释放,还是朝下击中云团下的地表,或者是否会袭击离风暴几十英里远的地区。

  • 大气科学之气象观测==高空气象观测

    测量近地面到30公里甚至更高的自由大气的物理、化学特性的方法和技术。测量项 目主要有气温、气压、湿度、风向和风速,还有特殊项目如大气成份、臭氧、辐射、大气电等。测量方法以气球携带探空仪升空探测为主。观测时间主要在北京时7时和19时两次,少数测站还在北京时1时和13时增加观测,有的测站只测高空风。此外其他不定时探测内容有2公里以下范围的大气状况的边界层探测、测量特殊项目的气象飞机探测和气象火箭探测等。

  • 【分享】地球内核某些区域在融化 高密度液态层围绕内核

    英国利兹大学、美国加州大学圣地亚哥分校和印度理工大学联合研究发现,由于上覆层地幔的热量循环作用,地球内核从整体上在凝固,但局部存在融化现象。新研究有助于人们进一步理解地球内核的形成以及作为“地球发电机”的外核是怎样产生地磁场的。相关论文发表在5月19日的《自然》杂志上。  地球内核是个像月球大小的固体铁球,外面被高速流动的液态铁镍合金(也有些其他较轻元素)外核、高黏度的地幔和固态的地壳所包围。经过几十亿年,地球内部冷却下来,一部分铁核凝固,因此内核以大约每年1毫米的速度生长。而地球内部在冷却中将散发出的热量传到地幔层,就像火炉上开水的对流,较热的地幔运动到表面,较冷的地幔进入中心。这种逸热效应提供的地质动力与地球的自旋相结合产生了地磁场。  之前的观点认为,整个地球内核都在凝固并逐渐向外生长。但新研究显示,虽然整体上说,从核到幔的热量流动网确保了外核物质凝固使内核生长,但内核的某些区域确实在融化。  研究小组用计算机模拟外核对流模型并结合地震学数据,发现在核—幔边界的热量流动变化依赖于上覆地幔结构。在地震活跃区下面,沿着“环太平洋火山带”构造板块正在向下潜没,剩余的处于地幔底部的较冷海洋板块通过地幔从地核吸取了许多热量,这种地幔制冷使得较冷物质向下流动,使得部分内核凝固。反过来,在非洲和太平洋下面两个大区域,其最下面的地幔比地幔平均温度要高,这些区域下面的外核会变暖,慢慢融化变成固体的内核。  论文合著者、印度理工学院比诺德-斯利尼瓦萨说:“如果地球内核某些地方在融化,在接近内—外核边界的地方,其动力作用会比以前认为的更加复杂。一方面,从纯铁内核的边界会不断释放出一团团较轻元素;另一方面,融化在边界上会形成一层高密度液体,较轻元素将从这里升起。”  论文作者之一、利兹大学乔恩-蒙德博士表示,由于样本无法从地球中心采集,只能通过地表检测和计算机模型来推测地球核心发生了什么,地球磁场的起源依旧是个谜。根据地震观测数据显示,围绕着内核有一个高密度的液态层,而且地震产生的震波在地核的某些部分传播得更快。局部融化理论可为此提供相对简单的解释。(科技日报)

  • 大气科学之气象观测==气象气球

    气象气球  用橡胶或塑料制成的球皮,充以氢气、氮气等比空气轻的气体,能携带仪器升空进行高空气象观测的观测平台。气球的大小和制作材料由它们的用途来确定,主要有以下几种:(1) 测风气球 气象上称小球,用橡胶制作,球皮重约30克,主要用于经纬仪测风或边界层探空,最大升空高度在10-15公里。(2) 探空气球 用橡胶或氯丁乳胶制作,球皮重0.8─2.0千克,携带1千克仪器升速为5─6米/秒,最大升空高度可达30公里。是日常高空观测使用的气球。(3) 系留气球 用缆绳拴在地面绞车上,能控制浮升高度的气球。通常用聚脂薄膜做成流线形,缆绳长度及与地面交角可以估算气球距地面高度,它可以携带测量仪器在指定高度作数小时连续测量,用完后收回作多次使用。特别适用于大气污染监测和研究大气边界层等。(4) 定高气球 在大气中保持在等密度面上平稳地随气流飘移的气球,也称等密度气球或等容气球。气球由塑料制成多层复合膜,耐压性强,保气性好。在地面施放时仅部分充气,升到预定高度时,因球内气体量不变因而密度不变,保持在一个等密度面上飘行,气球大小视飞行高度和所带仪器的重量而定,其直径小至一米,大至数十米不等,在空中可飘行数天至数月。大型定高气球直径22米,距地高24公里,可携带200个探空仪,能接受卫星指令,每隔一定飘浮距离投下一架探空仪,下投的探空仪带降落伞,观测数据由无线电信号发到母球,再由母球转送到卫星,最后由卫星播发到地面站接收。这种与卫星结合的定高气球称为母子定高气球系统,在测量气团属性变化和大气电学特性等方面已广泛应用。

  • 半导体器件/材料焊接层\填充层空洞分析手段-超声波扫描显微镜

    半导体器件芯片内部失效分析 超声波扫描显微镜(扫描频率最高可以达到2G). 其主要是针对半导体器件 ,芯片,材料内部的失效分析.其可以检查到:1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹. 3.分层缺陷.4.空洞,气泡,空隙http://simg.instrument.com.cn/bbs/images/brow/emyc1002.gif请点激链接:半导体器件芯片失效分析 芯片内部分层,孔洞气泡失效分析C-SAM的叫法很多有,扫描声波显微镜或声扫描显微镜或扫描声学显微镜或超声波扫描显微镜(Scanning acoustic microscope)总概c-sam(sat)测试。XRAY 与C-SAM区别XRAY:X射线可以穿过塑封料并对包封内部的金属部件成像,因此,它特别适用于评价由流动诱导应力引起的引线变形 在电路测试中,引线断裂的结果是开路,而引线交叉或引线压在芯片焊盘的边缘上或芯片的金属布线上,则表现为短路。X射线分析也评估气泡的产生和位置,塑封料中那些直径大于1毫米的大空洞,很容易探测到. 而小于1毫米的小气泡空洞,分层.就非常难检测到.用X射线检测芯片焊盘的位移较为困难,因为焊盘位移相对于原来的位置来说更多的是倾斜而不是平移,所以,在用X射线分析时必须从侧面穿过较厚的塑封料来检测。检测芯片焊盘位移更好的方法是用剖面法,这已是破坏性分析了。C-SAM:由于超声波具有不用拆除组件外部封装之非破坏性检测能力,根据其对空气的灵敏度非常强的特性.故C-SAM可以有效的检出IC构装中因水气或热能所造成的破坏如﹕脱层、气孔及裂缝…等。 超声波在行经介质时,若遇到不同密度或弹性系数之物质时,即会产生反射回波。而此种反射回波强度会因材料密度不同而有所差异.C-SAM即最利用此特性来检出材料内部的缺陷并依所接收之讯号变化将之成像。因此,只要被检测的IC上表面或内部芯片构装材料的接口有脱层、气孔、裂缝…等缺陷时,即可由C-SAM影像得知缺陷之相对位置C-SAM服务超声波扫描显微镜(C-SAM)主要使用于封装内部结构的分析,因为它能提供IC封装因水气或热能所造成破坏分析,例如裂缝、空洞和脱层。C-SAM内部造影原理为电能经由聚焦转换镜产生超声波触击在待测物品上,将声波在不同接口上反射或穿透讯号接收后影像处理,再以影像及讯号加以分析。C-SAM可以在不需破坏封装的情况下探测到脱层、空洞和裂缝,且拥有类似X-Ray的穿透功能,并可以找出问题发生的位置和提供接口数据。主要应用范围:· 晶元面处脱层· 锡球、晶元、或填胶中之裂缝· 晶元倾斜· 各种可能之孔洞(晶元接合面、锡球、填胶…等)· 覆晶构装之分析C-SAM的主要特性: 非破坏性、无损伤检测内部结构 可分层扫描、多层扫描 实施、直观的图像及分析 缺陷的测量及百分比的计算 可显示材料内部的三维图像 对人体是没有伤害的 可检测各种缺陷(裂纹、分层、夹杂物、附着物、空洞、孔洞、晶界边界等)C-SAM的主要应用领域: 半导体电子行业:半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS等; 材料行业:复合材料、镀膜、电镀、注塑、合金、超导材料、陶瓷、金属焊接、摩擦界面等; 生物医学:活体细胞动态研究、骨骼、血管的研究等;

  • 求助中文文献

    序号】:【作者】:袁松【题名】:边界层大气气溶胶和水汽的激光雷达探测与Raman-Mie激光雷达的研制【期刊】:中国科学院文献情报中心【全文链接】:https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMTA1MTkSGXh3Y2FsaXMyMDEzMDMwNTAwMDA5NjgwMzAaCDUycHQ2eGNi

  • 【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    【原创大赛】碳纳米管表面负载后官能团红外振动峰的变化

    实验目的: 研究酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰的强弱是否会有变化。实验背景:金属粒子催化剂一般具有比较好的催化性能,例如燃料电池催化剂,水电解催化剂等,但是金属纳米粒子在制备过程中如果不分散,它的表面积会减小,影响对应的催化活性,所以提高他的分散性对于保证催化剂粒子的催化活性就很重要。一般来说,通过将纳米粒子负载于碳载体上,例如炭黑或者碳纳米管上,可以保证纳米粒子的分散性,保证它具有比较大的比表面积。然而,纳米粒子在未处理的碳载体上还是会发生团聚,现在研究表明,对碳载体进行酸化可以减少团聚,然而对于酸化碳纳米管上究竟什么样的官能团对于提高分散性有帮助,进行的红外光谱的研究。实验所用的测试手段:傅里叶变换红外光谱(BRUKER EQUINOX55)推测结果:经过负载后的碳纳米管表面官能团红外振动峰减弱。分析: 通过下图红外光谱分析结果可以看到,在3500和1250 cm-1位置对应的羟基以及碳氧双键的振动峰并没有发生明显的改变,但是位于1730 cm-1位置处对应的羧基的伸缩振动峰在负载之后却明显的减弱,这一实验结果说明,对于酸化后的碳纳米管,其金属离子主要负载于羧基官能团处,而且因为金属粒子的负载,使得碳纳米管表面的羧基的振动峰减弱,即会对其表面官能团有影响。http://ng1.17img.cn/bbsfiles/images/2015/08/201508252229_562842_2257998_3.jpg结论:经过酸化后的碳纳米管表面负载金属粒子后表面官能团的振动峰会减弱,主要是在羧基的位置上进行负载来提高分散性。

  • 【资料】粉尘云最小点火能测试方法 双层振动筛落法

    GB-T 15929-1995 粉尘云最小点火能测试方法 双层振动筛落法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=59546]GB-T 15929-1995 粉尘云最小点火能测试方法 双层振动筛落法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=59545]GB-T 15929-1995 粉尘云最小点火能测试方法 双层振动筛落法[/url]

  • 大气科学之气象观测==热带云团

    热带云团定义:在热带地区由大量对流云所组成的直径在4~10个纬距范围内的云体。综述:存在于热带地区由大量对流云所组成的直径在 4~10个纬度距离(简称纬距)范围内的云区。这种云团是从卫星云图上发现的。云团所经过的地区,常发生大风和暴雨,并能发展成东风波、台风等热带天气系统。它是近年来人们所注意的热带天气系统之一。热带云团是在卫星云图上发现的新天气系统,许多热带系统都与它有关,它占热带地区面积的20%。云团是由许多积雨云单体组成,其顶部的卷云粘连成一片,表现为密实的白色云区,其尺度相差很大,小的不到一个纬距,大的可达7个纬距以上。云团的垂直方向分为流入层、垂直运动和流出层。云团内以上升运动为主,400hPa以下为辐合上升运动,400hPa以上则为辐散为主。低空为正涡度,高空为负涡度。

  • PM1.0 !站住!

    大家已经知道,以大气中颗粒物的直径来划分,有PM10、PM2.5和PM1。数值越小,表示颗粒物的“个头”越小。目前PM2.5占PM10的一半以上,而PM1占了PM2.5中颗粒物数量的绝大部分。PM1甚至可以进入人的血液,会更容易携带大气中致癌物质,进入人体内。新疆乌鲁木齐已开展对PM1的研究性监测,将为重启空气质量预报提供数据支撑。而大连市位于星海的东北第一个空气质量超级自动监测站即将试运行,“超级站”与另4个监测子站从8月底开始将盯紧PM1.0。 名词解释PM1.0    PM1.0是指大气中直径小于或等于1.0微米的颗粒物。    超级站监测项目为PM2.5、PM1.0、能见度、吸收系数、散射系数、气象参数、大气气溶胶有机碳/元素碳(EC/OC)、挥发性有机物、汞、温室气体等一次污染物化学组成监测、灰霾颗粒物粒径分布、气溶胶大气边界层高度、大气温廓线、太阳辐射等与形成光化学烟雾有关参数的监测。    灰霾站监测项目为二氧化硫、二氧化氮、一氧化碳、PM10、PM2.5、PM1.0、臭氧、能见度、吸收系数、散射系数、气象参数。

  • 欢迎专家学者来组合一个行业标准的启动包---薄层色谱仪

    薄层色谱法(简称TLC)。真如“省部重点实验室”所言:薄层色谱实际上是柱色谱的一种改良,薄层板可以认为是一个开放的色谱柱。但就技术操作来看,又很类似纸色谱。其操作方法概述如下:先制备薄层板,即在大小适当的玻璃板上,均匀涂上吸附剂,厚度在一毫米以内,然后在距底边1.5厘米处点上样品溶液,形成一个小点,称为“原点”。再将薄层板置于盛有动相溶剂的玻缸内(此溶剂称为“展开溶剂”,玻缸称为“展开槽”)。当溶剂沿薄层扩散到距原点以上一定距离时(一般10—12厘米),取出薄层板,记录展开溶剂扩展前沿距原点的距离A。然后用喷洒显色试剂或紫外光线照射的方法使被分离的化合物显色,此过程称为“显谱”。但由于不同的样品需要使用不同的显色方法,故对于标准仪器的要求显得就凌乱了。TQ-1是最早也是较为全面的薄层色谱法启动包。但是怎么样才能真正组合一套薄层色谱仪,用户拿来就能用,既能加热显色,又能喷雾显色,也能紫外检测。考虑成本关系,扫描仪就别考虑了。这可是个世界性难题。欢迎专家学者来组合一个行业标准的启动包---薄层色谱仪

  • 中朝边界丹东市 8

    [b][color=#cc0000]中朝边界丹东市 8[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202038279650_1305_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 10

    [b][color=#cc0000]中朝边界丹东市 10[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202040167246_2200_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 4

    [b][color=#cc0000]中朝边界丹东市 4[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202035049562_1570_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 2

    [b][color=#cc0000]中朝边界丹东市 2[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202033062285_4680_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 中朝边界丹东市 13

    [b][color=#cc0000]中朝边界丹东市 13[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202044171982_1731_1841897_3.jpg!w690x517.jpg[/img][/color][/b]

  • 中朝边界丹东市 1

    [b][color=#cc0000]中朝边界丹东市 1[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/03/202403202032043189_7404_1841897_3.jpg!w690x920.jpg[/img][/color][/b]

  • 传热学三类边界条件的新定义及其背后的物理意义和应用

    传热学三类边界条件的新定义及其背后的物理意义和应用

    [size=16px][color=#339999][b]摘要:针对传热学三类边界条件目前常见的定义,本文从导热、对流和辐射三种传热机理出发介绍了三类边界条件的物理意义及其拓展。另外,本文重点介绍了三类边界条件更直观的温度形式的定义,以及这些边界条件温度形式在热物性测量中的实际应用。[/b][/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#339999][b]1. 传热学三类边界条件的常规定义[/b][/color][/size][size=16px] 在常规条件下,固体物体的热传递有导热、对流和辐射三种形式。依据热传递的这三种基本形式,现有教科书和网络资料对物体传热过程中的三类边界条件定义,可以归纳为:[/size][size=16px] (1)第一类边界条件:规定了物体边界上的温度值。[/size][size=16px] (2)第二类边界条件:规定了物体边界上的热流密度(也称之为热通量)。[/size][size=16px] (3)第三类边界条件:规定了物体边界与周围流体间的表面传热系数和周围流体的温度。[/size][size=16px] 三类边界条件下物体内部的温度变化和传热形式如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.三类边界条件传热示意图,690,223]https://ng1.17img.cn/bbsfiles/images/2023/03/202303301739128668_1088_3221506_3.jpg!w690x223.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 物体的三类边界条件及其内部温度变化形式[/b][/color][/size][/align][size=16px] 对于第一类边界条件很容易理解,就是物体在边界处的内外温度相同。[/size][size=16px] 同样,依据能量守恒定律,对于第二类边界条件,则是物体在边界处的热流密度相同,即进入物体表面单位面积上的热量等于在物体内部(边界内)单位面积上传导的热量。由于物体中进入热量并进行热传导,自然会形成温度梯度,这样就会与物体的导热系数发生关系,而这种热流密度与导热系数之间的关系则在很多热计算和导热系数测量中得到应用。[/size][size=16px] 从图1所示的三类边界条件可知,第一和第二类边界条件实际上是对物体导热传热时的描述,而第三类边界条件是对辐射或对流传热时的描述。这里之所以将辐射与对流归为一起,是因为辐射传热可以进行线性化处理近似为对流形式。[/size][size=16px] 当有流体通过或热源辐照物体边界,会使用对流或辐射边界条件,这在许多热工程应用中非常普遍,如散热器、热交换器、发动机和涡轮机等,这种第三类边界条件也会常被用来在对流和辐射条件下对物体的换热系数和热辐射系数进行测量。[/size][size=18px][color=#339999][b]2. 传热学三类边界条件的温度形式定义[/b][/color][/size][size=16px] 在传热学的实际应用中,无论是哪一种边界条件的实现和测量,最基本、最简单也是最直观的是物体边界的温度变化。因此,我们就以温度形式来对这三种边界条件进行说明和补充。[/size][size=16px] (1)第一类边界条件[/size][size=16px] 当物体在恒定的介质温度(T=常数)条件下进行加热时,物体表面温度随时间变化是一条直线,如图2所示,这一类加热(或冷却)的边界条件就是第一类边界条件,也称之为第一类正规工况。[/size][align=center][size=16px][color=#339999][b][img=02.以温度形式表达的三类边界条件示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/03/202303301739299894_6022_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 以温度形式表达的三类边界条件示意图[/b][/color][/size][/align][size=16px] (2)第二类边界条件[/size][size=16px] 如果介质温度按线性规律变化,物体以恒定的速率被加热或冷却,或者物体是以恒定的热流加热或冷却,此时物体内任一点的温度是时间的线性函数,如图2所示,这就是第二类边界条件,也称之为第二类正规工况。[/size][size=16px] 在第二类边界条件下,经过短暂的初始时间后,物体内部任意点温度会呈线性变化,这使得物体内任意两点之间的温差始终保持不变,这种动态形式称之为准稳态,因此第二类边界条件也称为准稳态边界条件或准稳态工况。[/size][size=16px] 由于第二类边界条件的这种准稳态特性以及简便易操作,只需对物体进行线性加热或冷却就可实现,从而使得这类准稳态边界条件在热物性测试中得到较多应用。通过对被测样品加载恒定的升降温速率,理论上可用于测量任意温度范围内的高低温热物理性能参数,如ASTM E2584量热计法 。这种方法也常被用于各种热分析仪器,如差热量热仪(DTA)、差热扫描量热仪(DSC)和绝热量热仪等。[/size][size=16px] (3)第三类边界条件[/size][size=16px] 常规定义的第三类边界条件,是对实际对流和辐射传热的一种描述,但在传热性能试验测试中较难实现。这是由于第三类边界条件的实验模拟,很难获得稳定的对流环境,特别是实现高低温对流环境的准确控制更为复杂和困难。[/size][size=16px] 为此,可以将第三类边界条件同样转换成温度形式,温度变化呈正弦波形式,如图2所示。这种正弦波形式温度变化的第三类边界条件可以有两种基本形式,一种是纯正弦波变化形式,另一种是在纯正弦波上叠加一个现象变化,即温度在正弦波变化的同时还在线性升温,而温度的线性拟合曲线为一直线。[/size][size=16px] 这种温度形式的第三类边界条件在实际应用经常可以看到,如对于各种薄膜材料的热物性参数测量中,如Angstrom法、ISO 22007-3温度波法、ISO 22007-6温度调节比较法、3Omega法和交流量热法等。这种第三类边界条件在热分析中的重要应用是温度调制式差示扫描量热仪(MTDSC),这是一种在线性温度程序上叠加一个正弦波形式的温度程序,形成热流速率和温度信号的非线性调制的差示扫描量热法。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过以上描述和分析可以看出,传热学中的三类边界条件其背后的物理意义分别代表了物体的导热、对流和辐射三种传热机理,但在实际应用中,特别是在材料的热性能测试分析过程中,可将这三类边界条件分别转换为不同的温度变化形式,这将非常便于三类边界条件的工程实现。[/size][size=16px] 实际应用中采用温度形式的第二和第三类边界条件时,尽管测试模型的数学求解相对比较复杂,但除了工程实现简单之外,更重要的优势是可以保证测量的准确性和宽泛的温度范围,这是很多其他方法很难具备的测试能力。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 大气污染==(挽救臭氧层)南极臭氧洞

    大气污染==(挽救臭氧层)南极臭氧洞

    2000年9月3日南极上空的臭氧层空洞面积达到2830平方公里,超出中国面积两倍以上,相当于美国领土面积的3倍。这是迄今观测到的最大的臭氧层洞。图中覆盖在南极上空如同兰色水滴的就是就是卫星观测到的臭氧洞。http://ng1.17img.cn/bbsfiles/images/2011/07/201107172044_305368_1978540_3.jpg北极臭氧洞http://ng1.17img.cn/bbsfiles/images/2011/07/201107172044_305369_1978540_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制