当前位置: 仪器信息网 > 行业主题 > >

湍流多组分喷流

仪器信息网湍流多组分喷流专题为您整合湍流多组分喷流相关的最新文章,在湍流多组分喷流专题,您不仅可以免费浏览湍流多组分喷流的资讯, 同时您还可以浏览湍流多组分喷流的相关资料、解决方案,参与社区湍流多组分喷流话题讨论。

湍流多组分喷流相关的资讯

  • 科研人员在实验室实现激光驱动湍流磁重联
    记者从北京师范大学了解到,我国科研人员依托上海高功率激光物理国家实验室“神光Ⅱ”装置,首次在实验室实现激光驱动湍流磁重联物理过程,并通过标度变换用于解释太阳耀斑爆发现象,实验证实湍流过程对耀斑快速触发以及加速高能带电粒子的重要性。相关论文于北京时间1月17日刊发在《自然物理》期刊上。太阳耀斑是一种最剧烈的太阳活动现象,一次典型耀斑爆发释放的能量相当于数十亿枚氢弹的爆炸。耀斑能产生多波段辐射,剧烈的耀斑会严重影响日地空间环境和人类生活。因此,认识和了解耀斑活动具有重大意义。目前的理论认为磁重联导致了耀斑触发。磁重联是等离子体中方向相反的磁力线因互相靠近而发生的重新联结的过程,重联会将磁能快速转化为等离子体热能和动能。在天体物理中,磁重联模型还被广泛应用于恒星形成、太阳风与地球磁层的耦合、吸积盘物理以及伽马暴研究。湍流磁重联是等离子磁流体中磁场能量耗散的最有效方式之一,然而其尚未在实验室得到直接证实和系统研究。论文通讯作者、北京师范大学天文系仲佳勇教授领导的实验室天体物理研究团队,长期专注于利用强激光近距离、主动可控地模拟各类天体等离子体物理过程。早在2010年,仲佳勇与合作者就成功模拟了太阳耀斑中环顶X射线源和重联喷流。仲佳勇介绍,利用高能量激光系统,科学家能在实验室中获得极端物理实验条件,模拟多种高能量密度天体物理现象。这种研究方法不仅可以用来验证天文观测理论模型,还可为发现新物理过程提供新途径。团队此次在前期工作的基础上,提出了利用“神光Ⅱ”四路激光多点烧蚀金属靶,设计具有微扰特征且磁性相反的等离子体磁环来增大磁场相互作用区,进而实现湍流磁重联的实验构想。仲佳勇告诉科技日报记者,他们此次在实验上首次利用激光等离子体的方式驱动湍流磁重联,激光等离子体更加容易标度变换到太阳耀斑等离子体,从而可对太阳耀斑进行更加细致和系统的定量研究。该研究还发现,实验湍流磁重联中高能电子的加速主要来源于重联电场,而费米加速过程可以忽略,这对传统高能电子加速机制提出了新的认识和理解。
  • 厦大牵头研发的鼻喷流感病毒载体新冠肺炎疫苗获批紧急使用!
    12月2日,经国家卫生健康委提出建议,国家药品监督管理局组织论证同意,由厦门大学、香港大学、万泰生物联合研发的鼻喷流感病毒载体新冠肺炎疫苗(以下简称“鼻喷苗”)获批紧急使用!该疫苗是我国布局新冠疫苗应急攻关的五条技术路线之一,也是全球最早进入临床试验以及迄今唯一在三期临床试验中验证了安全性和广谱有效性的黏膜免疫新冠疫苗。鼻喷苗采用经特别改造以提高安全性和有效性的双重减毒甲型流感病毒作为载体,插入新冠病毒刺突蛋白RBD基因片段研制而成。流感病毒具有与新冠病毒(尤其是奥密克戎变异株)高度重叠的从鼻腔开始的全呼吸道易感细胞解剖分布特点,因此该疫苗通过鼻腔喷雾方式接种可以模拟病毒自然感染方式在呼吸道形成预防新冠病毒入侵的第一线免疫屏障,且与肌肉注射式新冠疫苗诱导全身性保护的机制彼此互补,有利于形成更全面的保护。研究显示鼻喷苗可诱导包括细胞免疫、体液免疫、固有免疫和训练免疫等多维度保护性免疫应答从而发挥广谱保护效果,因此基本不受病毒抗体逃逸突变的影响,对原型株或是包括奥密克戎BF.7、XBB、BQ.1.1变异株在内的迄今各主要变异株的保护性免疫应答强度相当。鼻喷苗三期临床试验是全球第一个黏膜免疫新冠疫苗的随机对照保护效力试验,在菲律宾、南非、越南和哥伦比亚等国入组了31038名18-91岁志愿者。临床试验数据显示,无论作为基础免疫还是序贯加强免疫,鼻喷苗对奥密克戎变异株感染导致的新冠病毒病(COVID-19)具有良好保护效果:(1)对住院及以上严重疾病的保护效力为100%;(2)在既往无其它新冠疫苗免疫史人群中,对症状较明显病例(具有3个及以上新冠相关症状)的保护效力为67%;对包括仅有轻微症状者在内的所有症状性感染的保护效力为55%;(3)在既往有新冠灭活疫苗免疫史的人群中,序贯加强鼻喷苗与用安慰剂加强相比,对症状较明显病例的相对保护效力为63%。此外,鼻喷苗安全性极佳,疫苗组和安慰剂组不良反应发生率相同且症状轻微,未发生疫苗相关严重不良事件。基于老年人和有基础慢病等脆弱人群是疫苗应用的最优先群体的考虑,该研究特别提高了志愿者中的老年人和有基础慢病人群的比例,共包含了4557名60岁以上老年人、4441名慢病患者(高血压、糖尿病、呼吸道疾病等),结果显示鼻喷苗对老年人、慢病人群的保护效力不弱于中青年健康人群,在各个群体中均表现出很好的安全性,疫苗组的不良反应情况与安慰剂对照组相当。鼻喷苗有效性好、广谱抗变异、安全性高、便捷无痛、接受度高,并且在老年人群、慢病人群中同样有极佳安全性和有效性,接种禁忌症少,可为我国高危群体疫苗犹豫难题的破解提供有力武器。鼻喷苗优先用于老年/慢病等高危人群的序贯加强以及疫苗犹豫人群的免疫,可显著降低我国高危人群的重症及死亡风险,避免医疗资源挤兑的大规模发生,为今后我国全面开放提供更全面保障。鼻喷苗的研发工作由夏宁邵教授牵头,获得了国家重点研发计划应急攻关项目、国家自然科学基金专项项目、教育部疫苗与分子诊断集成攻关大平台项目、教育部高校新冠肺炎防治科技攻关重点项目、福建省科技重大专项应急攻关项目、福建省自然科学基金杰青/重点项目、厦门市科技计划专项应急攻关项目、厦门大学“双一流”学科建设项目等支持。
  • 多组分检测:让煤气分析再简单一点
    煤的气化是我国煤化工工业的重要组成部分,特别是在石油资源日益紧张的条件下显得更加重要。煤气成分的检测分析是气化炉优化控制的前提,也是煤化工行业其他工序的重要参数。此外,高炉、转炉,焦炉以及玻璃,陶瓷等工业领域也经常需要进行煤气成分的检测。本文将详细介绍一种采用新型的电调制多组分红外气体分析方法,配合最新发展的MEMS 技术热导 TCD 气体传感器以及长寿命电化学 O2、H2S传感器开发的集成化多组分煤气分析仪Gasboard-3100的技术应用。希望对你从事煤气成分检测有所裨益。1红外线多组分气体分析上图为 ndir 红外气体分析原理图:以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm 波长的窄带滤光片后,由红外传感器监测透过4.26um 波长红外光的强度,以此表示 CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,如CO2、CO、CH4以及参考的滤光片,就可在一台仪器内完成对煤气成分中 CO2、CO、CH4的同时测量。煤气分析仪Gasboard-3100红外测量部分技术在一体化的四元探测器上安装有四个不同的滤光片(CO2、CO、CH4、参考),可实现对三种气体的同时测量(如下图)。 滤光片一体化四元红外探测器2MEMS 技术热导 tcd分析目前国内H2分析大都采用双铂丝热敏元件制成的热导元件,体积大精度低,传感器的死区(dead space)大。煤气分析仪Gasboard-3100采用了国际最新发展的基于MEMS技术的TCD气体传感器,只需要加上合适的电压就可以输出一个与浓度对应的毫伏级信号。3电化学氧气、硫化氢分析在煤气成分分析中,O2是一个安全参数,有些时候H2S 也是一个重要参数。煤气分析仪Gasboard-3100采用了一种长寿命(6年)的电化学 O2传感器和H2S 传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。4多组分煤气分析仪特点煤气分析仪Gasboard-3100包括用于CO、CO2、CH4的 NDIR 红外气体探测器,测量 H2的TCD热到探测器,O2、H2S 探测器;ADUC842测控系统及软件; ICD、键盘、打印机、气泵、以及报警等外部装置。电调制红外光源传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备。其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。煤气分析仪Gasboard-3100采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200HZ,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。气体干扰校正从原理上讲,CO,CO2,CH4之间由于采用了特征波长,彼此测量间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO 与CO2,以及 CO2与参考通道之间具有一定的干扰,因此成分之间具有一定的干扰,如果不加以校准,测量的误差将达到10% 以上,很难达到工业应用的要求,如按照单一标准气体 CO2标定后,如果通入不含CO2的70%的 CO进入仪器,CO2读数将达到7%左右。为了消除红外分析气体之间的相互干扰,煤气分析仪Gasboard-3100设置了10点标定程序,采用计算机算法得到了气体干扰校正方法,通过该方法的使用,可使CO、CO2、CH4的精度达到2%以上。研究表明,采用以往单一组分红外气体分析仪组成的煤气分析系统,如果直接采用测量读数,将可能得到不准确的测量结果。同时,煤气成分中的CO、CH4、N2、O2对 H2的测量准确性影响不大,主要是CO2的影响。通过大量实践证明,CO2对H2的影响是线性的,每1%含量的CO2将降低 H2含量为0.08%, 如果没有 CO2数据的校准,当CO2含量达到40%,则H2的误差将超过3%。这也充分说明,要想得到准确的煤气成分分析结果,各组分必须同时测量。测量流量控制虽然红外以及电化学气体分析在一定程度上受测量流量影响较少,但是对于 TCD 热导H2分析来说,气体流量的稳定直接关系到 H2的测量精度。为了保证测量流量的稳定,煤气分析仪Gasboard-3100采用了微型的柱塞气泵,将测量气体压缩到0.2mPa, 通过气体稳压和稳流阀后进入气体分析仪,这样可以将整个气体的测量流量维持在1L/min。流量的稳定在一定程度上,也提高了红外以及电化学气体测量的精度和稳定性。通过以上技术的采用,多组分煤气分析仪可以实现以下组分和精度的测量(表1),并已经应用在包括高炉、转炉、煤气发生炉等工业现场,取得了良好的成绩。表1:多组分煤气分析仪技术参数结论(1)通过采用新型电调制红外光源,省却了以往红外气体分析仪器复杂和昂贵的电机调制系统,大大降低了系统成本和功耗。实现了CO、CO2、CH4的同时测量。(2)通过采用MEMS 技术的 TCD 热导,以及长寿命的 O2、H2S 电化学气体传感器与红外气体测量的组分,实现了煤气多组分的同时在线测量。(3)红外测量组分间由于受滤光片带宽的限制,存在一定的相互干扰,通过计算机校正算法可以将组分的测量精度提高到2%以上,这也说明,以往单一组分的红外气体分析仪直接用于煤气分析,很可能造成测量数据不准确。(4)TCD 热导 H2分析必须进行 CO2气体的校准,否则将可能造成超过3%的误差。因此如果仅仅采用单一H2分析仪而没有其他气体气体的校准,以往组合式的煤气成分监测系统很可能得不到准确的测量数据。
  • Sigma-Aldrich将举办食品中农药多组分残留检测技术研讨班
    Sigma-Aldrich举办食品中农药多组分残留检测技术研讨班  2010年8月6日, 厦门  厦门出入境检验检疫局检验检疫技术中心  美国Sigma-Aldrich公司  联合举办  随着近年来各国对食品安全问题的日益重视,有关农药残留可能对食品、环境等各环节带来的安全隐患也日益受到重视,各国食品安全监督机构开始对其进行严格的监督管理,这不仅表现在对农药残留设定了比以往更低的限量值,而且限量标准也从过去的几种化合物扩大到现在的几十种甚至是上百种,或采用"一律基准"。这就对我们的检测技术提出了更高的要求,包括样品提取、样品前处理和净化、定量测定等。  农药多残留分析方法(Multi-ResidueAnalysis Method)不仅可以用于分析同一类农药中的不同成分,而且可以分析不同种类农药中的不同成分。前者称为选择性多残留分析方法(Selective Multi-Residue AnalysisMethod),后者称为多类多残留分析方法(Multi-class,Multi-Residue Analysis Method)。当今世界农残分析向多残留、快速分析发展。  为了便于广大分析检验工作人员了解和掌握食品中农药多组分残留检测技术,促进同行之间的互相切磋沟通,厦门出入境检验检疫局和美国Sigma-Aldrich公司定于2010年8月6日在厦门联合举办食品中农药多组分残留检测技术研讨班,欢迎大家参加。  报告人:  陈猛教授 厦门大学  张志刚高级工程师 厦门出入境检验检疫局  徐敦明高级工程师 厦门出入境检验检疫局  高珏 Sigma-Aldrich 产品经理  培训时间:1天(2010年8月6日)  培训地点:厦门  报名联系方式:   联系人: 马蕊华, 西格玛奥德里奇(上海) 贸易有限公司, 电话: 021-61415566-8105, 13761381210, 传真: 021-61415569, email: ruihuama@sial.com   我要参加,马上,电话、传真或email到 ruihua.ma@sial.com   培训内容与安排   报告主题 报告人   上午:   1. 农药残留分析研究进展 厦门大学陈猛教授   2. 液质联用技术在农药多残留检测中的应用 厦门出入境检验检疫局 张志刚高级工程师   3. 有机磷农药多残留检测技术 厦门出入境检验检疫局 徐敦明高级工程师   4.Sigma-Aldrich 分析产品及相关应用介绍 Sigma-Aldrich 产品经理 高珏   下午:   1. 有机磷农药多残留检测实验操作演示 厦门出入境检验检疫局检验检疫技术中心实验室   2. 交流答疑
  • 多组分时空分析:走进单细胞的“社会”
    p style="text-indent: 2em "1952年,美国细胞生物学家威尔逊曾提出,“一切生命的关键问题都要到细胞中去寻找答案。”纵观近50年来荣获诺贝尔奖生理学或医学奖和化学奖的重大突破,70多个都与细胞生物学密切相关。/pp style="text-align: center text-indent: 2em "img title="20197282317511500.jpg" style="max-height: 100% max-width: 100% " alt="20197282317511500.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/8e8f4b00-dde2-40b2-8c13-4213c687f8ec.jpg"//pp style="text-align: center text-indent: 0em "span id="_baidu_bookmark_start_182" style="line-height: 0px display: none "?/span研究团队进行相关实验/pp style="text-align: center text-indent: 0em "图片来源于网络/pp style="text-indent: 2em "作为研究细胞生命活动规律的科学,细胞生物学在科学家的显微镜下经历了近180年的历史,但细胞对人类来说依然是“黑箱”一般的存在。如今,研究人员正在尽力通过对单个细胞进行研究来阐明细胞的“天性”。/pp style="text-indent: 2em "自2014年起,在国家自然科学基金重大项目“单细胞多组分时空分析”支持下,中国科学家在有关单细胞生物学的重大科学问题上取得了一系列进展。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong没有两个细胞是完全相同的/strong/span/pp style="text-indent: 2em "如果把细胞环境比作一个社会,每个细胞就是一个独立的人。/pp style="text-indent: 2em "在对人类社会的研究中,不仅个体的特征和行为值得关注,研究所处环境中个体之间相互协调或对抗作用等关系以及群体所产生的集体行为,也相当重要。细胞研究亦是如此。/pp style="text-indent: 2em "多年来,通过对细胞的研究,科学家已经对生命体的生长发育、遗传变异、认知与行为、进化与适应性等若干生命科学问题有了较为清晰的认识。不过,在清华大学副教授陆跃翔看来,这些还远远不够。/pp style="text-indent: 2em "“在之前的研究中,科学家探索出细胞新陈代谢、生命运动过程中的各种表征方法,如蛋白表达分析、基因转录检测(反转录PCR)等,这些方法更多的是在大样本的细胞中进行观察与测量后,得到一个平均结果。”陆跃翔解释到。/pp style="text-indent: 2em "然而,没有两个细胞是完全相同的。这些平均结果掩盖了细胞之间微小的差异,这些差异可能在某些关键生命过程如细胞分化、肿瘤的发展过程中起着决定性作用。/pp style="text-indent: 2em "为了获取细胞生理状态和过程中更准确、更全面的信息,科研人员将目光瞄准单个细胞。/pp style="text-indent: 2em "“单细胞内部的生命活动,可以被认为是生物活性分子之间复杂的化学反应的结果,正是这些分子的时空分布、结构、功能及其相互作用方式,决定了细胞增殖、分化、凋亡以及重大疾病发生、发展、迁移等过程。”陆跃翔分析道。/pp style="text-indent: 2em "但是想要研究这些生物活性分子形成的精密复杂的相互作用和调控网络并非易事。它不仅要求科学家了解其化学成分,更要理解它们之间相互作用的复杂过程,以及在细胞内部细胞器中特定位置的作用区域和时空变化。/pp style="text-indent: 2em "strong2014年,国家自然科学基金委员会发布重大项目“单细胞多组分时空分析”申请指南,/strong清华大学化学系教授张新荣组织的研究团队的申请获批。他们凝练出strong荧光探针制备与合成、新型时空分辨成像方法以及在细胞内生物分子相互作用/strong研究等关键科学问题。/pp style="text-indent: 2em "“我们希望发展建立适于单细胞中多种生物活性分子时空分辨的荧光分析新方法,驱动生命科学和基础与临床医学研究进步。”谈及科学目标,张新荣如是说。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong新技术带你深入了解“社会”/strong/span/pp style="text-indent: 2em "如何实现这一目标?在张新荣看来,这需要从单细胞中多组分分子的时空信息获取方法出发。为此,项目组将其分为“荧光探针制备与合成”“新型时空分辨成像方法”以及“细胞内生物分子相互作用”三大方向进行攻关。/pp style="text-indent: 2em "strong要了解细胞这个独特的“社会”,首先需要的是一台可以钻进细胞内部获取关键分子信息的“放大镜”。因此,荧光探针制备与合成至关重要。/strong/pp style="text-indent: 2em "针对单细胞中极低含量分子检测问题,山东师范大学教授唐波课题组综合运用共轭聚合物信号放大、无光源激发、光谱红移、核酸杂交链式放大等技术,构建了若干超灵敏的分子与纳米荧光探针,实现了细胞及活体中某些活性分子浓度皮摩尔水平的原位、动态检测。/pp style="text-indent: 2em "同时,细胞中生理过程的发生和发展往往不是一类分子的孤立事件,涉及到多种分子的参与。因此课题组还开发了一系列的两组分、三组分和四组分同时检测的荧光探针,并设计了多模态探针来获取更丰富的成像信息。/pp style="text-indent: 2em "“本项目的一个重要特色工作是时任中国科学院上海应用物理研究所研究员樊春海课题组基于框架核酸构建的多组分分析探针和成像方法。”张新荣介绍,框架核酸是一类人工设计的结构核酸,具有尺寸精确、结构精确、修饰精确的特点,通过精确的化学修饰,可以将多种小分子及大分子探针负载到框架核酸上,实现多组分探针的可控构建。/pp style="text-indent: 2em "不过,实现探针在亚细胞区域内对胞内生物活性分子的精确定位和实时检测可并不那么容易。/pp style="text-indent: 2em "“细胞核内分子密度大且背景荧光特别高,导致人们对单分子的观察非常困难。传统光学显微成像分辨率,不足以解析染色体DNA的构造。”陆跃翔告诉记者,尤其在超高空间分辨率的前提下,要实现持续的动态观察,对荧光探针和成像方法都提出了更大的挑战。/pp style="text-indent: 2em "在活细胞超分辨成像方面,北京大学生物动态光学成像中心研究员孙育杰课题组研发了高性能探针Gmars-Q,使其在光照时进入暗态,从而延长成像时长,比已有最好探针的活细胞超分辨成像时间长一个数量级,这种超高分辨成像技术实现了纳米尺度的活细胞核内动态观测。/pp style="text-indent: 2em "“Gmars-Q的独特机制打开了基于蛋白结构和动力学优化荧光蛋白的设计策略。”德国卡尔斯鲁厄理工学院教授Gerd Ulrich Nienhaus曾对此给予高度评价。/pp style="text-indent: 2em "strong在现代分析化学的发展中,大科学装置的应用也越来越受到科学家的重视。/strong/pp style="text-indent: 2em "依托中国科学院高能物理研究所和中国科学院上海应用物理研究所的两台strong同步辐射光源,/strong樊春海课题组和中国科学院高能物理研究所研究员高学云课题组开展了strong同步辐射X射线细胞成像方法/strong的研究。/pp style="text-indent: 2em "实验团队通过搭建X射线全场三维成像平台,合成了一系列X射线成像探针,发展了细胞成像算法,实现了单细胞的X射线三维成像。为了应对单一技术无法在高分辨率下同时实现细胞的结构与功能定位的挑战,课题组又发展了X射线与超分辨荧光联用技术,实现了在纳米分辨下的细胞结构与功能融合成像的突破。/pp style="text-indent: 2em "已有研究发现DNA不仅有序列信息,还有三维结构信息。基于此,北京大学教授、中国科学院外籍院士谢晓亮课题组通过对sgRNA改造,开发了一种全新的活细胞染色质DNA的多色、稳定标记系统,实现对活细胞内基因位点的长时间连续观察追踪。/pp style="text-indent: 2em "2018年,该重大项目迎来一项重磅突破。谢晓亮课题组在《科学》上发表文章,介绍他们在单细胞水平研究双倍体哺乳动物细胞的基因组结构研究方面取得的成果。利用新发展的Dip-C技术,项目组构建了人源双倍体细胞的具有高空间分辨率的单细胞基因组三维结构。/pp style="text-indent: 2em "“这种结构分型对研究细胞功能有着至关重要的作用,也为唐氏综合症等染色体非整倍体疾病提供了研究和干预手段。”谢晓亮说。/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "让基础研究走出实验室/span/strong/pp style="text-indent: 2em "对于细胞“社会”的深层解析,不仅为了阐明各种生命现象与本质,科学家更是希望据此对这些现象和规律加以控制和利用,以达到造福人类的目的。在该重大项目支持下,诸多研究展现出了良好的社会应用前景。/pp style="text-indent: 2em "“许多疾病的研究和治疗最终都必须回归细胞水平。”在张新荣看来,一系列单细胞多组分时空分析技术能够有效加深人们对生命现象的本质理解,也有助于了解疾病机理,进而促进生物医药科学和相关产业的发展。/pp style="text-indent: 2em "strong“项目研发的诊疗一体化功能纳米探针,为相关重大疾病成因、诊断提供表征手段和依据,对疾病的早期预警以及提高疾病治愈率有着重要意义。/strong”张新荣讲道,部分创制的探针已经进行了市场转化,基于探针建立的荧光成像技术也成为国家重大新药创制课题中药效评价的关键技术之一。/pp style="text-indent: 2em "例如,唐波课题组研究的“超高灵敏度—可逆探针”能够在活体水平上示踪炎症发生发展过程中超氧阴离子的浓度水平及动态变化过程,缩短了药物临床试验周期,提高了药物筛选效能。为即将进入临床Ⅱ、Ⅲ期的鼻敏胶囊、咳敏胶囊、结肠炎栓3个中药新品种的作用靶点、药效评价研究提供了技术支撑。/pp style="text-indent: 2em "而基于同步辐射装置的X射线细胞显微成像技术,分辨率很容易达到数十纳米,可以在大视场下实现完整细胞的纳米分辨无损成像,与荧光显微装置相比具有巨大优势,在细胞显微成像方面也展现出了巨大的应用前景。/pp style="text-indent: 2em "然而,对于人类来说,走进细胞“社会”是一个任重而道远的过程。还有无数未知的奥秘等着科学家去探索。/pp style="text-indent: 2em "张新荣表示,该重大项目成果为下一步融合多种分析方法、发展全器官跨尺度高灵敏三维成像提供了基础。/pp style="text-indent: 2em "“通过研发同步辐射X射线相衬—电镜融合成像,有可能在全脑三维微米精度地图引导下选取局部特征区域进行纳米精度的结构解析,大幅降低高精度神经网络解析的盲目性。在特定位点,也可利用荧光分子成像和质谱分子解析,进一步作功能研究。”项目组成员表示,在有关“社会”的探索与发现之旅上,中国科学家一直砥砺前行。/p
  • 赫施曼助力多组分配液
    多组分配液常见于食品、药品、化妆品、化工、生物等试验及配方研发当中,一般有多种组分,每种组分有多种备选,而每种备选又有多种浓度。以锂电池电解液为例,如下图所示,其主要成分有溶剂、锂盐和添加剂三大组分,每个组分有多种选择。涉及的试验量会非常大,有大量的移液、配液和混液的工作。移液体积如果很小,是微升级别,实验室一般会用移液器(手动和电动两种)。手动移液器需要手转旋钮调节数值,手指按压进行吸排液。Miragen电动移液器,数值靠设定或选定(可储存6个移液程序),电机控制活塞运动,而且吸液和排液可分次数且各段体积可调,可实现单吸多排、多吸单排等效果,具有步骤少、更稳定、调数快、模式多等诸多优势。移液体积在零点几毫升到几十毫升,一般会用瓶口分液器来进行便捷、准确地分液。体积的调节方面,目前主流的有游标式、数字转盘式和刻度环量阶式。这三种方式中,游标式和数字转盘式是线性滑动,移液体积会随着相关部件的磨损、变形而发生变化。刻度环量阶式不是线性滑动,它将整个量程分为若干阶梯,每一阶梯始终对应一个量程,所以重复性更好,从设计上保证精度且终身无需校准。另外体积设定也非常快,半圈内就可以完成。移液体积如果稍大,处理次数很多,可采用赫施曼opus电动瓶口分液器,可用触屏设置分液的体积、次数、间隔时间,其中10ml的规格,单次排液体积小至10ul,大到500ml,单次程序中可设置分液次数1-9999次,非常适合试剂的大批量添加和分装,另外还有不等体积分液、双主机混液等应用。移液工作量进一步加大,到小试、中试等环节,需要仪器连续长时间移液,或者液体性质较为特殊,则可以考虑赫施曼的智能工作站。智能工作站能处理绝大多数的液体体积问题,类似稀释、定容、灌装、快速分装、液体量取、多道移液等,配备了不同类型、功率的电机且对转速有极好的控制,转速低至每分钟不到一转,高至每分钟几千转,流量覆盖了每分钟从几微升到几升的超大范围。工作站不仅用氟塑料和陶瓷等极耐腐蚀的材料,还针对不同类型的液体选配不同材质的泵管来解决腐蚀、析出、高温、消毒等各方面问题。常用于食品、制药、电子化工、政府等行业检测部门中的培养基分装、样品精密稀释、高粘度液体分装,甚至高温腐蚀性液体处理。
  • 有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染!
    有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染! 2020 China 挥发性有机物污染防治科技大会现场精彩回顾 挥发性有机物(VOCs)种类繁多,对人体健康和生态环境危害巨大,是较为复杂的一类污染物。VOCs China 2020是我国专注于VOCs污染防治领域的全产业链、供应链的专业展览会,最大范围荟萃国内外VOCs污染综合整治产业链上下游的先进技术、工艺、材料和装备等进行展示与合作。 天津润泽环保惊艳亮相展会现场,所携产品与解决方案备受瞩目,实现了信息技术与环保产业的深度融合。 01 监控污染明星产品 面对日益严重的环境空气污染问题,只有及时有效的实时监测污染情况,获得真实可信的数据,才可以为环境管理者提供制订管理措施的依据。 多组分气体监测仪:一款用于检测工业有毒有害气体的仪器,检测气体种类选择范围包括硫化氢、氨气、甲硫醚、甲硫醇、二甲二硫、二硫化碳、苯乙烯、氮氧化物、臭氧、二氧化硫、氯化氢、氯气、TVOC等工业气体,可以基于这些污染气体浓度分析出臭气浓度OU值。 用户也可根据实际应用需求定制气体种类、数量及检测范围等。相比较传统的化学法气体检测系统,本仪器具有检测速度快、检测灵敏度高、检测参数多并种类选择灵活、操作简便、系统维护量少等特点,逐步成为环境检测站、工业园区、大型化工制药企业等应对环境空气污染监测的必要的气体检测设备。 02 天津润泽环保技术团队 天津润泽环保科技有限公司依托总部雄厚的研发实力、注重科技投入、超前的思维、完善的管理机制, 以其从容、自信的姿态在行业中勇往前行。倾力打造国家信任、客户满意的企业形象。 通过本次展会,天津润泽环保迎来了很多老伙伴,更结识了很多新朋友,我们希望能把这份缘分持续下去,一起为中国环保产业做出贡献。感谢大家的关注!
  • HT8850上路啦——多组分温室气体分析走航测试
    上周,在经历了长期研发投入,昕甬智测2022年纯国产自主研发的新产品——HT8850便携式多组分温室气体分析仪首度公开亮相,搭上了合作伙伴的走航车,在宁波市郊进行温室气体观测。 图一 昕甬智测应用工程师现场操作HT8850温室气体分析仪 图二 全新开发上位机界面实时显示高精度、多组分观测数据 HT8850分析仪采用量子级联激光作为光源,专利设计中的中红外增强型积分腔,实现一机支持同时测量四温室气体组分:水汽、二氧化碳、甲烷、氧化亚氮。其特色如下:l 便携的仪器箱内实现快速响应、高准确度的温室气体测量l 多气体在吸收峰间不存在交叉干扰l 同步的水汽测量实现在线校正,一步到位获取气体的干基浓度密度l 低功耗的分析仪能够由太阳能或锂电池供电,上天下地、部署灵活 在数月的实验室测试之后,此次现场测试提供了真实现场条件下的仪器性能表现。昕甬智测将精益求精,继续更新迭代HT8850,为国家“碳中和”大目标贡献力量!
  • 190万!四川大学计划采购高压多组分气体吸附仪
    项目概况四川大学高压多组分气体吸附仪采购项目 招标项目的潜在投标人应在成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)获取招标文件,并于2022年06月14日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:SCZZ17-ZC-2022-0396项目名称:四川大学高压多组分气体吸附仪采购项目预算金额:190.0000000 万元(人民币)最高限价(如有):190.0000000 万元(人民币)采购需求:详见附件。合同履行期限:履约时间:(1)交货时间:【适用国产产品中标的情形】从预付款后,交货期为3个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。【适用进口产品中标的情形】交货期为6个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。(2)安装调试时间:仪器到达用户所在地后,根据采购人的通知,中标人在2周内安排仪器的安装调试,直至达到验收指标。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:无。三、获取招标文件时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)方式:现场报名或通过邮件方式报名。现场报名时,经办人员当场提交以下资料:供应商为法人或者其他组织的,提供单位介绍信或委托书原件、经办人身份证复印件;供应商为自然人的,只需提供本人身份证复印件。通过邮件方式报名时,请将汇款凭证、获取招标文件须提供的资料、单位名称、联系人、联系方式、邮箱地址、所购采购项目名称及采购项目编号等信息传至采购代理机构邮箱sczz@sczz84510079.com。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 10点00分(北京时间)开标时间:2022年06月14日 10点00分(北京时间)地点:成都市高新区吉泰五路88号(花样年香年广场)3栋16层开标厅五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目采购预算品目为A030321-催化剂检验分析评价装置,预算金额为人民币190万元,最高限价为人民币190万元,投标报价超过本项目最高限价的作无效投标处理。监督部门:本项目同级财政部门,即财政部国库司。联系电话:010-68513070、010-68519967。 采购代理机构:四川中志招标代理有限公司开户银行:中国建设银行成都市高新支行帐 号: 5100 1406 1370 5152 6738通讯地址:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)联 系 人:郑女士电 话:028-87333799-0(报名相关事宜咨询)028-84510079-8011(项目相关事宜咨询)电子邮件:sczz@sczz84510079.com七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:四川大学     地址:成都市武侯区一环路南一段24号        联系方式:杜老师 028-85407782      2.采购代理机构信息名 称:四川中志招标代理有限公司            地 址:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)            联系方式:郑女士 028-84510079            3.项目联系方式项目联系人:郑女士电 话:  028-87333799-0(报名相关事宜咨询)、028-84510079-8011(项目相关事宜咨询)
  • 深圳市检验检测认证协会发布《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见稿
    各有关单位及专家:由深圳市检验检测认证协会归口管理,协会成员等相关单位共同起草的《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准已完成征求意见稿,现面向社会各界公开征求意见。有关意见反馈,请填写《团体标准征求意见反馈表》, 并于 2024年2月15 日之前以邮件方式反馈至联系邮箱,逾期未回复意见的按无异议处理。联系人:彭建新/13326997196 ;文子瑞/17608991213邮箱:sztic2019@163.com;地址:深圳市宝安区新安街道兴东社区群辉路3号优创空间2号楼428 附件:《团体标准征求意见反馈表》深圳市检验检测认证协会2024年01月15日关于对《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见的通知.pdf团体标准征求意见反馈表(果蔬中多组分农药残留的快速检测 直接离子化小型质谱法).docx水果蔬菜中多种农药残留量的快速测定 直接离子化小型质谱法(征求意见稿).pdf
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 打破国外垄断 国产微痕量多组分气体标物的创新之路 ——访中国测试技术研究院化学研究所副所长潘义
    由中国测试技术研究院化学研究所与四川中测标物科技有限公司共同完成的科技创新项目——《微痕量多组分气体标准物质制备新技术研究及应用》荣获了2019年度中国计量测试学会科学技术进步一等奖。据了解,该项目不仅实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,还实现了多种产品的进口替代,并创造间接经济效益近千亿元,具有十分重要的经济社会效益。那么,什么是“微痕量多组分气体标准物质”?该项目有哪些创新?为何能取得如此大的经济效益?我国微痕量多组分气体标准物质的研发情况是怎样的?仪器信息网近期采访了中国测试技术研究院化学研究所副所长潘义,请他就以上问题进行了解答。 中国测试技术研究院化学研究所副所长 潘义仪器信息网:您能具体介绍下“标准物质”的概念以及何为“微痕量多组分气体标准物质”么?潘义:标准物质是具有准确量值的测量标准,具有足够均匀和稳定的特性,可以用来定性或定量。标准物质可以是单一的或混合的气体、液体和固体,气体标准物质是标准物质的重要组成部分。作为测量参考标准,标准物质是用于测量过程控制和测量结果评价不可缺少的工具,是建立一致可比的全球测量互认体系的物质基础和保障。在公平贸易、医疗卫生、环境监测、能源化工、先进制造,航空航天、安全防护、应急救灾和科学研究等国民经济的众多领域,每天都要进行千千万万次测量活动,这些测量活动中有80%都需使用标准物质以确保检测数据准确可靠。标准物质的技术水平直接影响到检测数据的质量,是确保检测数据准确可靠的“标尺”与“砝码”,是产品质量保证的源头,是确保测量结果可靠与国际互认的核心与关键。微痕量多组分气体标准物质是指量值在10-9至10-6数量级、组分数较多的一类气体标准物质。微痕量多组分气体标准物质的研制及其应用,对于统一我国气体分析量值体系,推动新的检测技术进步和确保产业的高质量发展,都具有十分重要的意义。仪器信息网:您能介绍下“微痕量多组分气体标准物质制备新技术研究及应用”这一项目的研究背景么?潘义:随着科学技术的迅猛发展,应用技术研究也有了长足进步,这也给全球标准物质研究带来挑战,即标准物质的定值特性已经由单一组分向多组分,常量、微量向痕量、超痕量转变,以满足越来越多样的应用需求。挥发性有机物、硫化物、氮氧化物、氨气、氯气、氯化氢、氟化氢等气体成分是环境监测、能源化工、医疗卫生、汽车制造、集成电路等国民经济领域重点监测的物质,具有含量低、组分多、易吸附、易腐蚀等特点。标准物质是确保这些气体组分监测数据准确可靠的“标尺”与“砝码”,但高精确度、高稳定性微痕量多组分气体标准物质的制备一直是我国的技术瓶颈,长期以来该类产品大部分依赖进口,受制于人。作为专业的国家级气体计量技术机构,我们有责任和义务开展科技攻关,解决这个“卡脖子”问题。本项目主要目标就是攻克微痕量多组分气体标准物质制备关键技术难题,研制出高质量的气体标准物质产品,替代进口,建立批量化生产线,并进行推广应用。仪器信息网:请问该项目主要取得了哪方面的创新?潘义:项目的突出技术创新体现在以下两个方面:首先是在宽沸点多组分精确制备技术方面取得了创新。我们克服了传统制备技术在转移过程中原料残留不均匀引起称量定值不准确的技术难题,在国内首次实现单个液体原料按照饱和蒸气压由低到高依次转移,大大提高了制备精度,降低了称量不确定度。其次是解决了铝合金气瓶内壁惰性化处理技术。项目组突破了高分子材料涂覆和金属镀层铝合金气瓶内壁处理技术,在国内首次攻克了微痕量多组分高活性组分(挥发性有机物、硫化物、氮氧化物、氯气、氯化氢、氟化氢等类)在气瓶中吸附严重和无法长期稳定存储难题,与普通气瓶相比,显著提升痕量活性气体的存储稳定性。此外,我们还在全惰性无死体积进样分析技术方面进行了集成创新,显著缩短了痕量吸附性、腐蚀性气体分析的系统吹扫稳定时间,降低了分析过程引入的不确定度;我们在产业化方面也进行了集成创新,项目组率先开发了气体标准物质智能化配气管理系统,实现条码管理生产流程,避免人为查找,进度可控;单组分标气制备效率可达到人均每天60瓶;还可自动生成原始记录和证书报告,自动计算定值,形成完整的产品质量追溯体系。这些产业化创新工作都是围绕提高产品质量和生产效率进行的。 仪器信息网:目前该项目取得了哪些研究成果?主要有哪些应用?该项目的完成具有哪些重要意义?潘义:项目取得国家一级标准物质2种,国家二级标准物质24种;制修订国家标准5项;取得授权发明专利和实用新型专利各1项;发表科技论文10篇;项目成果总体达到国内领先,部分成果填补国内空白,达到国际先进水平。项目的标准物质成果在计量校准、环境监测、能源化工、仪器研发和科学研究等行业得到了广泛应用,主要用于量值传递、生产过程质量控制、产品质量检测、仪器研发以及支撑标准制修订等方面。具体来讲,主要体现在以下几个方面:首先,项目的研究成果大大完善了我国微痕量多组分气体成分检测量值溯源体系,研究工作及成果得到气体计量测试领域国内外同行广泛关注和认可;项目发展的技术及研究成果,在服务国家重大专项,支撑国家工程实验室建设方面提供了技术支撑;多组分微痕量的VOCs气体标准物质研究成果推动了我国环境空气VOCs在线监测体系的加快建立;天然气全组分气体标准物质为天然气“提质增效”,促进天然气行业高质量发展做出了积极贡献;项目的微痕量硫化物气体标准物质研究成果还解决了长期制约我国氢能领域10-9量级硫化物杂质准确计量问题,确保氢能相关气体成分量检测数据的准确可靠。该项目的完成意味着我国实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,满足了我国环境监测、能源化工等重点行业的需求,确保了国家检测数据的量值安全。我们的标准物质产品打破了国外垄断,价格已降至进口产品的2/3以下,供货周期缩短至进口产品的1/3以内,产品已经远销国(境)外。近年来我国生态环境部所重点关注的39种、57种、65种、117种等系列环境VOCs气态污染物检测,以前大部分使用的是美国Linde、法国液空等国外气体公司的产品,造成我国VOCs检测数据的量值溯源性受制于人。很高兴的是我们在微痕量多组分VOCs系列气体标准物质方面已经完全替代进口,氮气中42组分挥发性有机物混合气体标准物质(GBW 08196)、氮气中57组分挥发性有机物混合气体标准物质(PAMS臭氧前体物,GBW 08808)等系列VOCs气体标准物质现在也已经相继取得国家一级标准物质定级证书,确保了我国环境监测相关数据的溯源性实现自主可控。多家知名跨国分析仪器公司的解决方案都转而使用本项目研发的标准物质产品,项目团队的标准物质成果已经得到了国际认可。仪器信息网:您能否谈一谈本项目团队在标准物质国际互认方面所做的工作?潘义:作为建立化学测量最有效的工具,标准物质可以保证检测结果的准确性和溯源性。同时,标准物质也是全球测量互认体系的支撑。英国国家物理实验室(NPL)在微痕量多组分气体标准物质研究领域处于世界领先水平,其研发的30组分臭氧前体物VOCs气体标准物质被选择作为世界气象组织(WMO,World Meteorological Organization)的基准气体标准物质。项目团队分别于2016年和2018年与NPL进行了两次标准物质计量比对(制备比对),分别是1×10-6 mol/mol氮中42组分VOCs气体标准物质和0.1×10-6 mol/mol氮中30组分VOCs气体标准物质,两次比对结果En值均小于1,取得很好的国际等效度。正是通过积极参与国际比对,确保了多组分微痕量VOCs气体标准物质的国际等效,继而为社会提供更加准确可靠的测量结果溯源共享服务,实现“更准确、更高效、更广泛”的测量。在标准物质计量比对方面,下一步我们将按照国家市场监管总局关于加强计量比对的指导意见要求,加大力度持续开展环境保护、产品质量安全、医疗卫生、安全生产、食品安全等领域密切相关的重点气体标准物质的国际国内计量比对,为服务国家产业高质量发展做出积极贡献。仪器信息网:请问贵团队下一步的研究重点是什么?潘义:我们团队一直以来都是围绕气体成分量的测试计量技术与标准化开展研究工作,建立和完善相应的气体成分检测量值溯源体系。项目组下一步主要工作是加快完善环境监测、能源化工等重点领域所需要的气体标准物质体系,以满足行业高质量发展的要求;同时紧跟国际前沿气体计量研究方向,建立超低含量(10-12数量级)气体成分量检测溯源体系,开发超低含量气体成分量的测试计量技术完整解决方案,满足氢能与燃料电池、航空航天等行业的超精密测量需求。
  • 190万!华南理工大学多组分气体穿透曲线分析仪采购项目
    项目编号:ZZ0230037项目名称:华南理工大学多组分气体穿透曲线分析仪采购项目预算金额:190.0000000 万元(人民币)最高限价(如有):190.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)1多组分气体穿透曲线分析仪 1套用于检测多组分材料的竞争性吸附测试。具体详见采购需求经政府采购管理部门同意,本项目(包组)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-8711296232.采购代理机构信息名称:广东志正招标有限公司地址:广州市天河区龙怡路117号银汇大厦5楼联系方式:罗小姐 020-87554018 851656103.项目联系方式项目联系人:白小姐、朱先生电话:020-87581202
  • HORIBA便携式红外多组分气体分析仪促销
    好消息,好消息!我司为回馈新老客户长久以来对我司的支持与厚爱,特推出HORIBA(堀场)红外多组分气体分析仪PG-300系列产品的促销活动。 凡在活动期间(2016-1-4——2016-2-4)购HORIBA(堀场)红外气体分析仪的新老客户,均可享受购仪器赠移动电源的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • HORIBA(堀场)红外多组分气体分析仪VA/VS-3000促销
    圣诞将至,为回馈新老客户长久以来对我司的支持与厚爱,今我司推出日本进口HORIBA(堀场)红外多组分气体分析仪VA/VS-3000的促销活动。 凡在活动期间(2014-12-22——2015-1-22)购HORIBA(堀场)红外多组分气体分析仪VA/VS-3000的新老客户,均可享受原价9.8折的优惠活动喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • 130万!中国石油大学(北京)多组分竞争性吸附分析仪采购项目
    项目编号:0873-2201HW4L0429项目名称:中国石油大学(北京)多组分竞争性吸附分析仪采购项目预算金额:130.0000000 万元(人民币)采购需求:包号名称数量/单位是否接受进口产品简要技术参数及规格描述1多组分竞争性吸附分析仪1套是详见附件采购需求。 (1)本次招标共分1个包。本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。技术参数及规格描述详见附件采购需求。(2)进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。(3)本项目采购标的对应的中小企业划分标准所属行业为:工业 。(4)本项目为非专门面向中小企业采购的项目。合同履行期限:合同生效后四个月内交货。本项目( 不接受 )联合体投标。
  • 乐氏科技获得MCA14-M高温红外多组分烟气分析仪中国区总代理权
    4月15日,北京乐氏科技和德国Foedisch达成协议,乐氏科技正式获得德国福德士MCA14-M高温红外多组分烟气分析仪中国区总代理权。  据悉,德国福德士MCA14-M高温红外多组分烟气分析仪是针对于目前市场行业的检测高湿低硫难、超低污染物排放等要求进而设计的现代光学科技一款仪器。全球首创-高温红外多组分气体分析仪(无需供应仪表气),MCA14-M可同时测量10个红外气体组分。所有浓度所需的计算均在仪表内部完成,仪器配置双段量程可自动切换,可视化 仪表操作、数据记录可通过随机软件完成。该分析系统满足了欧洲国家排放物连续在线监测的极为严格的测试要求。在对排放物的测量中,通过了权威机构对仪器单个测量组分的分别认证。  关于德国Foedisch:德国福德世环境监测技术股份公司成立于1991年6月,致力于环境监测的技术研发和仪器生产、及工程设计和维护服务。目前在烟气和粉尘的在线监测技术方面处于世界领先地位。其主要经营的产品有:布袋检漏仪、粉尘仪、气体分析仪、在线监测系统等。  关于乐氏科技:北京乐氏联创科技有限公司成立于2005年,是专业从事国外烟气分析仪、气体分析仪、H2S分析仪、超声波流量计等仪器设备的提供商,业务范围涵盖应用咨询、方案设计、系统集成、交钥匙工程、技术培训和维修服务等。作为国内专业的气体分析测量仪器供应商和系统集成商,乐氏科技与囯内高等院校、科研机构、汽车、石化、电力、冶金、环保、特检及节能等行业有着广泛的业务往来并深受客户信赖。乐氏科技拥有专业化的销售、维修及研发团队,凭借富有竞争力的人才及技术优势,在业内享有盛誉。
  • HORIBA红外多组分气体分析仪VA/VS-3000促销
    促销啦,促销啦,HORIBA红外多组份气体分析仪VA/VS-3000促销啦! 即日起,凡活动期间(2014-7-21——2014-8-21)在我司订购日本红外多组分气体分析仪的新老客户,均可享受购VA/VS-3000仪器赠送京东购物卡的优惠!促销不是天天有,该出手时就出手!(订购电话:010-82168186)
  • 应用案例 | T型光声池的光声光谱技术用于同时检测基于三重共振模态的多组分气体
    近日,来自西安电子科技大学、哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室的联合研究团队发表了《T型光声池的光声光谱技术用于基于三重共振模态的多组分气体的同时检测》论文。Recently, the joint research team from School of Optoelectronic Engineering, Xidian University, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality 油浸式电力变压器是现代电力分配和传输系统中最重要的绝缘设备之一。通过同时测量绝缘油中的溶解气体,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在电力变压器的过热、电弧和局部放电故障的早期诊断中提供合适的解决方案。变压器故障主要可分为过热故障和放电故障。CO、CH4和C2H2的含量变化是变压器故障的主要指标。过热故障包括裸金属过热、固体绝缘过热和低温过热。裸金属过热的特征是烃类气体(如CH4和C2H2)浓度的上升。上述两种气体的总和占总烃类气体的80%以上,其中CH4占较大比例(30 ppm)。CO的浓度(300 ppm)强烈指示固体绝缘过热和变压器故障中的低温过热。当变压器处于放电故障时,C2H2会急剧增加(5 ppm,占总烃类气体的20%-70%)。因此,本研究选择CO、CH4和C2H2作为目标分析物。传统的多组分气体定量检测方法,如气相色谱仪、半导体气体传感器和电化学传感器,在实时监测、恢复时间、选择性和交叉敏感性方面存在一定限制。基于光声光谱技术的光学传感器平台具有高灵敏度、高选择性、快速响应、长寿命和成熟的传感器设备等优点,在多组分气体传感领域发挥着重要作用。已经开发出多种基于光声光谱技术的多组分气体传感器模式,如傅里叶变换红外光声光谱模式、基于宽带检测的热辐射体或黑体辐射体使用多个带通滤波器、多激光器与时分复用(TDM)方法的结合,以及采用多共振器和频率分割复用(FDM)方案。然而,由于宽带光源的相对弱强度,弱光声(PA)信号易受到背景噪声的干扰,这是高灵敏度检测的主要障碍。Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (30 ppm). The concentration of CO (300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (5 ppm, 20%&minus 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection. 由于吸收和共振圆柱体共同决定了其共振频率,设计并验证了一种T型光声池作为适当的传感器。通过引入激励光束位置优化,从模拟和实验中研究了三种指定的共振模式,呈现了可比较的振幅响应。使用QCL、ICL和DFB激光器作为激发光源,同时测量CO、CH4和C2H2,展示了多气体检测的能力。A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.图片显示了配备了T型光声池的基于PAS的多组分气体传感器配置的示意图。使用三个激发激光器作为激光源,包括DFB ICL(HealthyPhoton,型号HPQCL-Q)、DFB QCL(HealthyPhoton,型号QC-Qube)和NIR激光二极管(NEL),分别在2968 cm&minus 1、2176.3 cm&minus 1和6578.6 cm&minus 1处发射,以实现对CH4、CO和C2H2的同时检测。ICL、QCL和NIR激光二极管在目标吸收波长处的光功率分别为8 mW、44 mW和32 mW,通过热功率计(Ophir Optronics 3 A)进行测量。所有激光源都通过调节电流和温度控制来驱动。A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm&minus 1, 2176.3 cm&minus 1 and 6578.6 cm&minus 1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.Fig. The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.HealthyPhoton, model HPQCL-QHealthyPhoton, model QCQube结论建立了基于T型光声池的多共振光声光谱气体传感器,并验证其能够进行多组分同时检测,达到ppb级别的灵敏度。通过有限元分析(FEA)模拟优化和实验光束激发位置设计,三个指定的谐振频率的光声响应相互比较,确保了同时检测多种微量气体的高性能。选择了CO、CH4和C2H2这三种可燃气体作为目标气体,使用QCL(4.59 µ m,44 mW)、ICL(3.37 µ m,8 mW)和NIR激光二极管(1.52 µ m,32 mW)作为入射光束进行同时检测验证。F1模式下,光束照射到缓冲腔体壁上,信噪比(SNR)相比通过吸收圆柱体的情况提高了4.5倍。实验得到了CO、CH4和C2H2的最小检测限(1σ)分别为89ppb、80ppb和664ppb,对应的归一化噪声等效吸收系数(NNEA)分别为5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2、1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2和4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2。对湿度交叉敏感性进行改进的研究提供了对光声光谱传感器在湿度松弛相关效应方面的更好理解。利用单个光声腔体和单个探测器进行多组分气体传感的这种开发的光声光谱模式,具有在电力变压器故障的早期诊断方面的独特潜力。Conclusions A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µ m, 44 mW), an ICL (3.37 µ m, 8 mW) and a NIR laser diode (1.52 µ m, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2, 1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2 and 4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.Fig. 1. Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.Fig. 2. Schematic structure of the developed T-type PAC.Fig. 3. Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).Fig. 4. Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.Fig. 6. The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.Fig. 7. The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement (b) The PA amplitude vs. frequency of F1 for the two incident ways (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.Fig. 8. Noise level analysis of F1, F2 and F3 modes for two incidence ways.Fig. 9. Experimental frequency responses of the developed T-type PAC.Fig. 10. The PA signal amplitudes vs. laser modulation amplitudes for multi-component gas sensing. (a) The ICL modulation amplitudes for 100 ppm CH4 detection (b) The QCL modulation amplitudes for 400 ppm CO detection (c) The NIR laser diode modulation amplitudes for 100 ppm C2H2 detection.Fig. 11. The experimental results for simultaneous detection of multi-component gases. (a), (b) and (c): Measured 2f-PAS spectral scans of the CO, CH4 and C2H2 absorption features for F1, F2 and F3 modes, respectively.Fig. 12. Schematic of the improved humidification system for humidity control.引用:Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.https://doi.org/10.1016/j.pacs.2023.100492
  • AVL Tippelmann 使用LaVision公司的滚流/湍流软件进行发动机缸内流场分析
    发动机研发中的流场微分研究视频演示的实验结果是北京欧兰科技发展有限公司代理的德国LaVision公司和奥地利AVL Tippelmann公司合作完成的(AVL Tippelmann 和 LaVision) 在一个研究型光学发动机上进行了滚流和湍流(或扭转流)现象的观测研究。透明的光学气缸安装在一个真实发动机气缸顶上。空气被抽走。测量的目标对象是气缸顶(像一个流动的盒子)安装在透明光学气缸体的顶部。其直径和发动机的缸内径相同。流动的PIV测试系统由LaVision公司提供.LaVision提供了一个附加的软件模块通过累计扭矩,刚性体的旋转等来计算滚流和湍流数.同时软件还具有生成体积流和滚流角的功能。对于滚流/湍流数计算所需要的像发动机缸径和发动机冲程等参数可以从一个遥控计算机输入,也可以手动输入。LaVision的全套系统都可以通过一个遥控计算机来完成全部的控制和分析操作。执行从启动实验记录,到速度场矢量计算直至生成滚流和湍流数。
  • 南京分析仪器展出DH-9086型多组分烟气分析仪——CIOAE 2011视频报道系列
    仪器信息网讯 2011年11月9日至10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心成功召开。在本届论坛的报道中,仪器信息网特别开设了视频报道形式,让广大网友跟随我们的镜头,近距离地了解本次论坛上各大仪器厂商展出的在线分析仪器新产品与新技术。以下是南京分析仪器厂有限公司市场部经理姚启生先生介绍该公司DH-9086型多组分烟气分析仪的视频。  姚启生先生首先介绍了南京分析仪器厂有限公司的发展概况,目前公司产品主要有环境监测、工业流程、工业系统和生化医疗等四大类仪器。随后向大家展示了公司在引进国外先进制造技术的基础上开发的高新技术产品DH-9086型多组分烟气分析仪,该款仪器采用国际上新型的电化学传感器和先进的数据采集分析处理系统,具有显示、存储、打印各种测量数据等功能。仪器科学的模块化整体设计,独立的测量模块,可灵活配置便于升级及扩大应用范围。目前,该款仪器主要用于测定一氧化碳、二氧化硫、氮氧化物等烟气中的各种成分。  南京分析仪器厂有限公司  南京分析仪器厂有限公司的前身——南京分析仪器厂,始建于1956年,是国内最早从事分析仪器研制和生产的专业厂、南京市首批高新技术企业,企业先后承担了国家重点科技攻关项目和国家火炬开发项目。如:国家科委“七五”重点科技攻关项目(过程分析仪器取样预处理开发研究),1990年通过机电部验收鉴定,并获国家重大科技成果奖;“八五”国家火炬开发项目(CX-6800工业气相色谱仪开发研究),获机电部科技进步二等奖等。  2005年3月企业经过改制,成立了南京分析仪器厂有限公司。新厂区位于江苏省高新技术开发区——南京雨花经济技术开发区内,占地108亩,建筑面积53400平方米。该公司是专业从事在线分析技术研究、开发、生产的高科技实体,公司内设有从事新产品开发的研发中心;有控制产品质量和传递国家计量标准的质量检测中心;有以数控镗铣、数控车削、数控冲压等设备为主的精密加工中心。公司被江苏省和南京市授予高新技术企业。
  • “高精度多组分气体检测传感器研制”启动会召开
    3月17日,“智能传感器”重点专项“跨地域复杂油气管网安全高效运行状态监测传感系统及应用”课题“高精度多组分气体检测传感器研制”启动会在安光所召开,会议由张志荣研究员主持。   项目承担单位国家石油天然气管网集团有限公司陈朋超教授级高工、课题承担单位中科院合肥物质院张志荣研究员、课题参与单位国家石油天然气管网集团有限公司科学技术研究总院蔡永军副总监等相关科技人员20余人通过线上线下形式参加了交流会。   课题负责人张志荣研究员就承担的研究任务、总体目标、实施方案、研究队伍等进行了汇报。该课题主要针对油气管网微小泄漏感知能力不足、特殊场景传感器缺乏、区域站场泄漏逃逸不明晰等痛点及热点问题,以集成探头研发、激光吸收光谱技术、组网方式等研究内容为核心,建立两类型高性能传感系统,为构建管网传感器及系统综合试验平台,开发管网智能传感系统数字化应用平台,建立管网状态感知指标体系和传感器谱系提供技术支持,并在中俄和中缅油气管道的多个典型场景进行示范应用,为全面实现管网状态监测水平的提升和管道感知技术的自主可控贡献力量。   与会人员听取了汇报后,针对目标、任务和实施方案进行了深入且细致的讨论,充分肯定了实施方案的可行性,并针对涉及的中俄、中缅管道及站场的示范应用情况作了详细的讲解和分析,希望所研发的多类型传感器能够在多个场景形成突出的特色应用,解决现场亟需的技术难题,以切实行动贯彻习近平总书记“打造平安管道、绿色管道、发展管道、友谊管道”的重要指示要求。会后,与会人员还参观了超导托卡马克大科学装置。   “跨地域复杂油气管网安全高效运行状态监测传感系统及应用”项目,由国家石油天然气管网集团有限公司、中科院合肥物质院、哈尔滨工业大学、沈阳仪表科学研究院有限公司、机械工业仪器仪表综合技术经济研究所、国家管网集团西南管道有限责任公司、山东微感光电子有限公司、中科院金属研究所、中国石油大学(北京)、国家管网集团北方管道有限责任公司等优势研究机构联合承担。
  • 张新荣教授评述:基于碳纳米材料的PM2.5多组分生物组织质谱成像研究进展
    近期,中科院化学所聂宗秀研究员发表在Angew Chem Int Ed上的“ Mass Spectrometry Imaging Reveals In Situ Behaviors of Multiple Components in Aerosol Particles”一文被选为“hot paper”,下面为清华大学张新荣教授为该篇文章撰写的评述。张新荣:清华大学教授。一直从事分析测试的方法与技术研究,最近的研究聚焦在单细胞质谱分析。研究成果曾获教育部自然科学一等奖、二等奖、以及国家科技进步二等奖等。英国皇家化学会会士,美国化学会Analytical Chemistry执行主编、Luminescence (Wiley)主编、国内外十余种学术刊物编委,担任中国分析测试协会副理事长、中国仪器仪表学会分析仪器学会副理事长、北京质谱学会理事长等职务。质谱技术具有快速、高灵敏度、高通量和多组分同时检测等优点,已被广泛应用于生物医药领域中蛋白质、糖类、代谢小分子等的检测。纳米材料由于其特殊的物理化学特性,广泛应用到包括疾病诊断、癌症治疗、生物传感、能量储存等在内的诸多领域,由此产生的潜在生物暴露影响和生物安全性的担忧和讨论始终存在。开发实用有效的用于研究纳米材料的亚器管分布及其与生物体之间相互作用的方法至关重要。质谱成像技术是近年来快速发展的一类用于研究生物组织中分子的分布和含量变化的一种有效的技术手段,MALDI-MS是其中较为典型的技术。但MALDI成像通常需要基质辅助解吸电离,适用于大分子质量蛋白的检测。2015年,中国科学院化学研究所聂宗秀研究组发展了一种免标记的纳米材料表面分子成像方法,将质量信号窗口转移到了小分子区域,研究了碳纳米材料在生物亚器官水平的分布的质谱成像。2018年,该研究组进一步利用纳米材料的基质效应,即可有效吸收紫外光并促进小分子的解吸电离,同时获得了纳米载体及负载药物在组织中分布的质谱成像,并实现了药物原位释放的定量分析。大气颗粒物,特别PM2.5的环境污染以及引起的健康效应是目前公众关注的问题。生物质或化石燃料的不完全燃烧产生的烟尘、黑碳和柴油发动机颗粒等碳质气溶胶是PM2.5等复杂大气颗粒物的重要组成部分。这些大气颗粒物通常由无机碳(EC)内核和多环芳烃的有机碳(OC)包覆而成,追踪真实的气溶胶粒子多种成分的体内行为至关重要。然而,由于其复杂性,现有方法难以同时实现质谱成像。最近,该研究组在前期工作的基础上实现了碳质气溶胶的多组分质谱成像研究,获得了碳质气溶胶中EC和OC的分布差异。定量结果显示,OC在肺实质中释放更多,且能够比EC更快地被肺部清除,原位肺癌模型的结果显示OC比EC能够更加深入地进入到癌组织区域。此外,他们还对肺外器官中EC和OC的特异分布进行了定量分析,并在原位肝癌模型中也观察到了与肺部相似的结果。可以预见,基于这一技术原理,我们可利用质谱成像对更多纳米体系的组织分布进行研究,从而解答纳米颗粒在体内行为与相互作用等重大科学问题。
  • “地球观测与导航”重点专项“基于光丝激光雷达的大气污染多组分监测技术研究”项目实施方案检查会在天津召开
    p style="text-align: justify " 近日,国家重点研发计划“地球观测与导航”重点专项“基于光丝激光雷达的大气污染多组分监测技术研究”项目实施方案检查会在天津召开。该项目由南开大学牵头组织实施,参加单位包括北京空间机电研究所、华东师范大学、上海理工大学等科研单位。南开大学副校长许京军、重点专项管理办公室、项目承担单位、专项总体专家组相关领导和专家合计20余人参加了会议。br/ 项目负责人汇报了项目任务目标与实施方案,专家组针对该项目实施方案进行了研讨交流,并对今后项目的实施提出了宝贵建议。会上,项目组成立了咨询专家组,并由许京军副校长为咨询专家组专家颁发聘书。br/ 该项目瞄准大气污染多组分监测国家重大应用需求,面向在轨应用时所面临的探测距离远、大气环境复杂及载荷环境适应性要求高等诸多挑战,开展光丝激光雷达技术的前瞻性研究工作,目标是解决强飞秒激光与物质相互作用机制的关键科学问题,具体包括飞秒激光在复杂大气中远程传输机制、诱导荧光谱分子动力学及在光纤放大器中的非线性效应等,力争在飞秒激光多维相干合成、光丝远程调控、高灵敏度组分荧光谱识别系统等关键技术方面取得突破。br/ 本次检查会上,与会专家从系统性、针对性、计划进度、成果形式、关键节点和风险控制等诸多方面对项目实施方案提出了改进意见和建议,为项目顺利开局和后续实施奠定了很好的基础。/p
  • 成果速递丨实验室台式XAFS谱仪用于精确分析多组分固体氧化物成分
    CeO2-Nb2O5复合氧化物,作为一种复合稀土氧化物陶瓷材料,常被应用于固体氧化物燃料电池、氧气传感器及异相催化等众多领域。之前不少的研究数据表明在高温固相法合成该复合稀土氧化物时,会部分形成Ce3NbO7+δ化合物。然而在大气氛围下的高温固相法合成这种带有部分还原的Ce氧化物是不太合理的。为了更加合理的验证CeO2-Nb2O5复合氧化物在高温固相法合成条件下得到的产物信息,研究人员综合利用了粉末X射线衍射(XRD)和实验室的X射线吸收谱(XAFS)等数据进行验证,并证实了之前研究中的一些错误观点,证明了Ce3NbO7+δ化合物并不存在。相关研究成果发表于Journal of Rare Earths, 2021, 39: 596-599.图1. (a) 合成样品,CeO2及CeNbO4的XRD谱图及精修结果;(b) 样品,CeO2及CeNbO4的XANES Ce L3 edge谱及线性组合拟合谱研究人员将化学计量比的CeO2和Nb2O5作为原料,利用基于大气氛围的高温固相法进行合成,得到产物。如图1所示,图a为产物及两种标准样的XRD图谱。图中数据和前人研究数据相吻合。经过XRD精修后,得到该产物主要含有54.8% wt%的CeO2和45.2 wt%的CeNbO4,对应的物质的量比为2.09:1。随后,该研究人员借助实验室台式XAFS谱仪测试了实验样品,CeO2、CePO4和Ce3NbO7+δ三种样品的Ce L3边XANES图谱,如图1b所示。CePO4的Ce L3 XANES展现了很强的白线峰特性,其吸收边位置在5725.8 eV。与之不同的是,CeO2主要包含三个低强度的峰,且吸收边位置在5726.7 eV。而合成产物的吸收边位置在5725.8 eV,介于Ce4+和Ce3+,说明样品中同时存在三价和四价的Ce离子。在通过线性拟合分析,以CeO2和CePO4的XANES谱图为基准,对样品的XANES谱图进行拟合,终得到非常理想的拟合结果。可以看出,根据线性拟合的结果,可以很好的重现样品的数据:0.65 CeO2和0.35的CePO4。这与之前XRD精修结果得到的四价和三价的Ce离子比例2:1较为吻合。综合精修XRD和XANES谱图,可以判定该样品的主要组成成分为CeO2和CeNbO4,而不会生成新的物质,诸如Ce3NbO7+δ等化合物。文章中,研究人员使用了美国easyXAFS公司的桌面式X射线吸收谱easyXAFS100+实现了对该样品的Ce L3 edge的XANES测试,同时结合Athena软件里面的线性组合拟合这一功能,实现了样品中主要成分的鉴定,得到了Ce4+和Ce3+的相对含量。该项研究为该领域中分析多组分的固体氧化物鉴定提供了重要的借鉴和指导意义。图2. easyXAFS公司的台式XAFS/XES谱仪实验室台式XAFS谱仪优势:1. 台式设计,可以在实验室内随时满足日常样品分析;2. LabVIEW软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试;3. 可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电/催化材料的结构变化;4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求 5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图3所示,其测得的Ni元素的EXAFS,Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致;图3. (a, b)台式XAFS/XES谱仪与同步辐射光源测得的Ni EXAFS及傅里叶变换后R空间对比谱图, (c、d)Ce和U L3-edge XANES谱图数据对比图6. 多种型号和配置可选,满足不同科研要求;7. 操作便捷,维护成本低,安全可靠. 参考文献:[1] S. K. Sun, L. M. Mottram, N. C. Hyatt. On the existence of the compound “Ce3NbO7+δ” prepared under air[J]. Journal of Rare Earths, 2021, 39: 596-599.
  • 如何同时对单细胞进行多组学研究
    大多数全基因组分析提供了大量细胞的平均水平,但是最近的技术进步可以克服这个局限。开创性的单细胞分析现在能够对基因组、表观基因组、转录组、蛋白质组和代谢组谱系进行分析。Cell旗下的Trends inBiotechnology综述了为同一的细胞提供复杂的谱系,将不同维度的分析组合成多组学分析的方法。  策略  和活细胞荧光成像不同,组学的方法比如新一代测序和质谱是破坏细胞进行分析的。第一代单细胞分析选择了一种类型的生物大分子(比如DNA、 RNA、染色质、蛋白或代谢产物)就会丢弃其它所有的材料。而现在证实了一个概念:不同的组学可以在同一个细胞进行平行分析。例如,基因组/转录组或基因 /蛋白水平。现在已经确定了如图所示的多组学单细胞分析的五种基本策略。  结合  在相同或相似的生物分子上的实验分析可以合并成一个单一的操作。例如,基于纳米孔测序方法和单分子实时(SMRT)技术所获得的动力学曲线,不仅反映了DNA序列,也进行了 DNA甲基化检测。同样,精心优化质谱检测可以提供相同细胞的蛋白组学和代谢组学数据。要从单个细胞获得高品质的集成文件,进一步提高检测的效率将是必不可少的。  组分分离  不同种类的生物分子可以在从相同的细胞裂解液提取、分离、和独立分析。例如,最近的一项研究用生物素标记的寡聚dT接头沉淀总RNA,进行 RNA测序文库制备,而游离的DNA可扩增后进行DNA测序。这种策略严重地依赖分离的质量,因为所有留在错误组分中的材料都丢失了。  分别处理  当精确的生化分离不可行时,细胞裂解液可以分别被独立处理。最近的一项研究通过将裂解液分别进行多步定量PCR反转录RNA分析和对DNA抗体报告基因的定量PCR分析。从概念上来说分别处理不如生化组分分离,因为有一些材料不可避免地丢失在错误的组分中。它是进行不同分析的最一般的策略。  转换  不同组学之间的生化转换使得它们能一起分析。例如,亚硫酸氢钠处理将DNA甲基化转换成DNA序列信息,可以进一步与GpC甲基转移酶处理结合来捕获DNA甲基化和单细胞核小体定位。它也可以通过对连接细胞核中三维空间接近的DNA片段的操作,获得单细胞染色体结构的信息。  预测  作为对上述实验策略的补充,也可以对一个或多个组学直接检测,而后通过计算机的方法来预测其它的。这五种策略的设为计更加全面的多组学分析提供了一个框架,因为它们可以以许多不同的方式相结合。  应用  单细胞多组学分析能发现其它方法难以处理的问题。  复杂组织和整个器官的数据驱动的分析可能会挑战我们目前的细胞类型的概念。随着分辨率和单细胞分析的吞吐量,我们可以找出无数的细胞状态,而不是少数的稳定和不同类型的细胞。  多组学分析的另一个关键的应用程序是在医药上。许多肿瘤、肿瘤部分区域在耐药、复发和转移、变化上不同,综合数据集可以提供足够详细的图谱来识别的肿瘤内差异的生物学基础。在平行的多组学分析可以帮助发现不同的耐药性,例如基于遗传和表观遗传学的改变,从而有助于自适应和个性化治疗。  第三个多组学谱系的应用是在生物技术和生态系统中研究不可培养微生物。这些细菌通常很难获得足够纯的群体进行大量分析,而单细胞的操作是综合分析的关键,例如将一定的蛋白组学和相关的代谢谱系联系起来。  最后,测量同一细胞内的细胞状态的不同方面的能力有望揭开细胞的基因组、表观基因、转录组、蛋白质组与代谢组之间的相关联系 可以揭示DNA甲基化、染色质于转录起始之间的复杂关系。  结语  第一个单细胞多组学的检测已经存在了,这预示了单细胞系统生物学是一个令人兴奋的新领域。文章预测,关注单细胞作为生物学的核心将为基础科学提供见解,在生物技术和生物医学方法提供有效的应用机会。
  • 乐氏科技获得德国福德士MCA14-M高温红外多组份烟气分析仪独家代理权
    近日,乐氏科技正式获得德国Foedisch高温红外多组份烟气分析仪MCA14-M的独家代理权,MCA14-M是针对于目前市场行业的检测高湿低硫难、超低污染物排放等要求进而设计的现代光学科技一款全球首创无需供应仪表气的高温红外多组分气体分析仪。  据悉,MCA14-M可同时测量10个红外气体组分。所有浓度所需的计算均在仪表内部完成,仪器配置双段量程可自动切换,可视化 仪表操作、数据记录可通过随机软件完成,该型仪器独特之处是:采用红外测量原理,全程高温气体分析,其运行时无需仪表气供应,开机自动校准零点,零点校准仅需环境空气来实现。该分析系统满足了欧洲国家排放物连续在线监测的极为严格的测试要求。在对排放物的测量中,通过了权威机构对仪器单个测量组分的分别认证。  福德士MCA14-M高温红外多组份烟气分析仪符合中国国家环境保护部超低排放技术要求及规范:GB13271-2014 《锅炉大气污染物排放标准 》、GB13223-2011 《火电厂大气污染物排放标准》、HJ629-2011 《固定污染源废气 二氧化硫的测定非分散红外吸收法》。
  • 圆桌论坛:“大咖云集,共话多组学”之共话肿瘤篇
    圆桌论坛:“大咖云集,共话多组学”之共话肿瘤篇肿瘤诊疗研究已经迈入依据个体基因组学特征、环境和生活习惯进行干预和治疗的jing准医学时代,包括jing准预防(患癌风险检测及预防性干预)、jing准诊断(肿瘤早期发现与诊断、分子分型)以及jing准治疗(分子靶向治疗、疗效预测与监控等)。中科新生命于5月14日举办以“质谱多组学技术在肿瘤临床诊疗的应用展望及面临的挑战”为主题圆桌论坛,围绕质谱多组学技术在肿瘤临床研究方面和伴随诊断方面的潜力和优势展开讨论。邀请到国内多位学术界、政府届、药企及仪器厂商的重磅级嘉宾出席。论坛时间5月14日上午 10:10开始报名方式识别二维码即可报名
  • 案例分享 | 基于北斗消息通信实现远程多组分温室气体监测
    本实验成果发布于IEEE SmartIoT 2023,国际智能物联网会议The relevant paper was published in 2023 IEEE International Conference on Smart Internet of Things.引言偏远地区的无线传输资源有限,卫星通信则不受此限制。然而现有民用的卫星通信带宽具有局限性。该研究项目将实测数据经过压缩,最大化利用北斗短报文有限的字符数,并且尝试了加密算法,保证了碳监测数据的安全性。IntroductionWireless transmission resources in remote areas are limited, whereas satellite communication is not subject to such constraints. However, existing civilian satellite communication bandwidth has limitations. This research project compresses measured data, maximizing the use of the limited character count in Beidou short messages, and explores encryption algorithms to the security of carbon monitoring data.实验:通信成功率定义:数据延迟在1分钟内被定义为成功。地点:宁波,中国实验一:半暴露平台 通信成功率:82.5%实验二:开放空间 通信成功率:92%Experiments: communication successful rateDefinition: data delay within 1 min is defined as successfulTest site: Ningbo China (29°47'53''N, 121°33'46''E)Experiment 1:Semi-exposed platformSuccess rate: 82.5%Experiment 2:Open spacesuccess rate: 92%结论(1) 系统功耗HT8850:100瓦通信:每次传输峰值17.5瓦,持续时间0.3秒,几乎不影响电池寿命。(2) 最终实现了两种传输模式第一种为单一用户模式,用户拥有自己的北斗接收模块,经过处理后的数据由树莓派实现灵活性高的数据获取。第二种模式支持北斗数据上云,多个拥有权限的用户能够透过人性化的网页界面,从云端获取实时数据。Conclusions1. System powerHT8850: 100WCommunication: peak 17.5W for 0.3 secons duration per transmission, barely influencing the battery life2. Two transmission modes were ultimately implementedThe first is a single-user mode, where each user has their own Beidou receiving module, and the processed data is obtained with high flexibility through a Raspberry Pi.The second mode supports uploading Beidou data to the cloud, where multiple authorized users can access real-time data via a user-friendly web interface.
  • 张钧:质谱技术在多组学研究和医学检验中的应用前景及挑战
    传统医学模式正进入到基因组学、蛋白质组学、代谢组学等多组学整合分析的精准诊断时代。以高性能质谱为核心的多组学研究已成为各类疾病筛查、早期诊断、治疗监测和预后评估的生物标志物创新发现的关键技术平台。近年来质谱技术的迅速发展及其在临床诊断中的推广应用,为提升医学检验水平奠定了坚实的基础,临床质谱技术将是医学检验未来发展的一大亮点。  张钧教授以通信作者在《国际检验医学杂志》发表论文“质谱技术在多组学研究和医学检验中的应用前景及挑战”,就质谱及多组学在医学检验中的现状、亟待解决的瓶颈及今后的发展趋势作一概述,并总结展望其面临的机遇与挑战。参考文献:  于海涛,王洪,张钧.质谱技术在多组学研究和医学检验中的应用前景及挑战[J].国际检验医学杂志,2021,42(1):1-7.  质谱技术在多组学研究和医学检验中的应用前景及挑战  质谱仪是一种通过测量相对分子质量或质荷比鉴定物质的分析工具,质谱仪通常由3个基本部分组成:即离子源、质量分析器和检测器。通过将双重/多重质量分析仪串联起来或与气相色谱、液相色谱、毛细管电泳等技术平台联用,可以提高质谱仪的分析性能。离子源是质谱仪的关键组成,是将分析物进行离子化的部分,在质谱仪发展的早期阶段,由于采用的电离方法很容易破坏有机分子中的共价键,因此很少用于生物分析。电喷雾电离(ESI)和基质辅助激光解吸/电离(MALDI)等“软”电离方法彻底改变了质谱技术,使质谱技术应用于生物大分子的高通量质量分析成为可能,促进了质谱技术在生物学和临床医学研究中的应用和推广,现代组学中最常用的质谱仪类型有:静电场轨道阱、离子阱、四极杆、傅立叶变换离子回旋共振、飞行时间等。  检验医学在临床诊断和治疗监测方面发挥着至关重要的作用,基因组学、转录组学、蛋白质组学和代谢组学等多组学研究成果促进了全新诊断标志物的研究发现和临床应用。质谱技术以其高灵敏度、高特异度和高通量的能力满足组学对复杂的生物标本分子组成及相互关系研究的需求,近年来以质谱分析技术为核心的多组学研究发现极大拓展了质谱在医学检验中的应用范围,可以预见基于质谱技术的疾病诊断方法将成为重要的临床检验诊断技术。  以高性能质谱为核心的组学研究已成为发现检验生物标志物的主要来源  生物标志物是指用于疾病诊断、风险评估及预后判断的生物分子,组学领域的扩展和检测技术手段的进步不断拓展了生物标志物的范畴。目前生物标志物不仅涵盖了传统的核酸、蛋白质、糖类及代谢物等标志物类型,还囊括细胞遗传学和细胞动力学参数,以及体液中的外泌体、细胞等。在过去的几十年里,研究者用各种组学技术致力于生物标志物的发现和疾病的早期诊断,质谱技术作为组学研究的核心技术,其在生物标志研发策略方面的科学价值和优势越来越受到检验医学的重视。质谱技术正成为蛋白质组学研究和临床应用的关键技术 蛋白质作为直接参与细胞生物学过程的大分子,是生理功能的执行者和生命现象的直接体现者,蛋白质水平的变化直接反映了生命在生理或病理条件下的变化,可以精准地预测疾病的状况和进展。临床蛋白质组学中有2种策略可以识别生物标志物,一是经典策略,使用电泳技术分离蛋白质和多肽混合物然后进行质谱鉴定 二是利用质谱技术分析样品的完整质谱图,以获得可以用作疾病“指纹”的完整蛋白质/肽谱。组织、器官、体液和细胞培养物等生物样品均可被用作为蛋白质类生物标志物的研究,但从临床诊断的角度来看,体液无疑是寻找生物标志物的最佳材料。蛋白质组学研究的一个重大挑战是蛋白质数据库的多样性分析及蛋白质、多肽鉴定,质谱技术较好地解决了这些难题,满足了蛋白质组学对技术平台的需求。ESI和MALDI 2种“软”电离方法使基于质谱的蛋白质组学蓬勃发展,MALDI通过激光辐射将与基质共结晶的蛋白质电离,而ESI将蛋白质样品电离出溶液,可以很好地保存目标分子的完整性,从而实现高灵敏度和高准确度的质量分析。MALDI通常与飞行时间联合用于蛋白质鉴定,而ESI的优势在于可以直接与液相色谱对接,用于从高度复杂的混合物中分析蛋白质。不同类型的质谱仪根据需要可以用于蛋白质的鉴定和定量分析、蛋白质翻译后的修饰研究、蛋白质相互作用分析等。  病变细胞或微环境产生的蛋白质或蛋白质片段可以在疾病发生和发展过程中扩散到循环系统中,通过质谱法测定其浓度,利用生物信息学工具进行数据分析后用于诊断。在过去的二十多年中,以质谱为核心的蛋白质组学成为分子临床医学研究的重要平台,并发现了一批涉及各种疾病的生物标志物。通过对不同类型癌症患者的血浆、血清及尿液蛋白质组学分析,发现了一系列与癌细胞形成和发展相关的蛋白质标志物,用于许多类型的癌症诊断,包括卵巢癌、前列腺癌、乳腺癌、膀胱癌、肾癌、肺癌、胰腺癌、星形胶质瘤等,这些标志物不仅可以对癌症进行筛查、诊断和预后监测,同时还可以对癌症的亚型进行分类。  外泌体蛋白质组学成为发现癌症标志物的一个新研究方向,外泌体蛋白标志物不仅可以区分组织中肿瘤与非肿瘤细胞,而且还可以确定肿瘤的原发灶。通过对胰腺癌患者血浆及血浆中外泌体的蛋白质组学分析,发现了外泌体携带的与胰腺癌相关的蛋白会引起体内的免疫反应并由此产生自身抗体,其中M2-型丙酮酸激酶和人可溶性半乳糖凝集素3结合蛋白产生的自身抗体可以比较好地区分早期胰腺导管腺癌与健康人群、早期胰腺导管腺癌与胰腺炎。  质谱技术是代谢物类标志物检测的最佳平台 代谢组学研究生物体中相对分子质量1×103 的所有代谢物,如激素、氨基酸、多糖等。代谢物可作为生理或病理状态的重要指标,并有助于了解疾病的发生和进展,有可能成为疾病早期诊断、评估治疗效果和生存率的有效指标。代谢组学研究主要有2种策略,即靶向分析和代谢物图谱分析。靶向分析是指对特定分析物的鉴定和量化 代谢物图谱分析又称为非靶向或整体分析,是比较相似样品中未量化的代谢谱对疾病或外来刺激下的不同反应特征。靶向分析和代谢物图谱分析在生物标志物的发现中是相辅相成的,首先利用代谢物图谱分析确定样品之间代谢谱的差异,然后选择关键的代谢物作为潜在的生物标志物进行目标代谢物定量,并在临床标本中进行验证。质谱技术与气相色谱、液相色谱、毛细管电泳等分离技术结合提高了代谢组学靶向和非靶向分析的灵敏度、可靠性和分析效率,从而被广泛地用于代谢组学研究。气相色谱-质谱因为价格便宜、可操作性强曾被广泛应用,但只有酮和醇等挥发性化合物(沸点低于300 ℃)才能直接用气相色谱-质谱法进行检测,对氨基酸和脂类等半挥发性化合物的分析需要额外的化学衍生化过程,另外一些带电荷的大分子不能被分析。利用电喷雾化的“软”电离方法,可以实现液相色谱-质谱的无缝对接,适合于非挥发性代谢物的直接分析,可以检测范围更广的代谢物。毛细管电泳与质谱串联通常可以获得比液相色谱-质谱更高的分离效率,可用于处理挥发性和非挥发性代谢物,是一种非常有前景的代谢组学研究工具。  质谱技术将在基因组学研究、核酸类生物标志检测和质谱影像分析中发挥重要作用 基因组学研究是现代生物科学的基础,人类基因组计划发现了32 000个人类基因,其中测序技术功不可没,更高通量的二代测序、三代测序技术在测序速度、精度、准确度和成本方面仍在不断进步。质谱技术能对DNA、RNA 的核苷酸及核苷酸/蛋白质的非共价复合体进行全面的检测,为研究配体、核酸和蛋白质之间的相互作用提供了重要信息。尽管在上世纪九十年代质谱技术也被用作测序的分析平台,但与测序技术相比缺乏竞争力。质谱技术在遗传标记的基因分型[单核苷酸多态性(SNP)、短串联重复序列及其组合测定],合成寡核苷酸的质量控制,脱氧核糖核酸、核糖核酸分子、核酸之间非共价相互作用及核酸、药物和蛋白质相互作用的研究等方面显示了强大的分析潜力。与基因组比较,转录组直接反映了在特定条件下活跃表达于细胞中的基因信息,并且与蛋白质组的变化密切相关,相对而言质谱技术在转录学研究中的应用较少,但基于DNA 微阵列的转录组学和基于质谱的蛋白质组学的结合,可以在系统水平上增强对细胞转录功能的认知。  美国食品药品监督管理局于2014年批准基质辅助激光解析串联飞行时间质谱(MALDI-TOF MS)可用于临床核酸检测。与传统的核酸分析技术比较,MALDI-TOF MS技术不仅可以准确地鉴定寡核苷酸序列,还可以快速、有效、准确地鉴别寡核苷酸所携带的修饰类型及修饰位点。SNP在遗传疾病的诊断、筛查、用药种类及剂量指导等方面有着极其重要的作用,临床最为常用的SNP检测手段主要为Sanger测序、荧光定量PCR、低密度基因芯片和焦磷酸测序等,这些方法不能进行多基因、多位点的检测(如耳聋基因检测涉及4个基因20个位点)。MALDI-TOF MS可同时检测多达52个SNP位点,极大地提高多基因多位点的检测效率。常见的DNA 甲基化检测方法主要有测序、甲基化特异性PCR、荧光定量PCR 等,而质谱DNA 甲基化检测,在引物设计、检测成本及数据分析等方面更加便捷、快速和准确,可检测低至5%的甲基化水平,特异性良好。此外,质谱分析可通过SNP等位基因比例对待测标本中目标基因的拷贝数变异进行定量分析,其原理是检测待测拷贝片段中存在的SNP,计算峰面积,得出该位点2种基因型的比值,然后推测含不同SNP基因型拷贝的相对比值。  核酸质谱分析是一种在PCR基础之上加入单碱基延伸步骤的方法,由于质谱检测采用的是多重PCR方法,同一反应体系内引物数量多,需要格外注意引物间出现互补的情况,避免SNP延伸引物3' 端与其他引物超过3个碱基的互补,干扰检测结果。此外,设计的引物与基因组中其他序列应无明显同源性,否则可能会出现错误的检测结果。与传统二代、三代高通量测序及芯片等方法比较,核酸质谱具有检测报告周期短、高效率、单样本检测费用低等显著优势。随着质谱技术和分离纯化技术的进一步发展,未来利用质谱技术分析核苷酸/修饰化产物的研究会获得更广而详细的数据,并显示出在医学领域的应用潜力。  质谱影像(MSI)是对组织标本中的代谢物、脂类、蛋白质及多肽直接进行分析,并将采集到的信号在组织标本中的空间分布以影像的形式呈现出来。目前用于组织影像分析的电离方式有2种:MALDI和解吸电喷雾离子化(DESI)。用于病理分析的组织切片包括新鲜组织、冷冻组织和石蜡包埋组织,均可以用作MSI分析。药物的MSI分析可以确定药物分子在组织的空间分布、药物分子的代谢产物及相互作用的分子。MSI分析可以精确地确定生物标志物在组织切片的位置,从而判断肿瘤组织的边缘和肿瘤组织是否切割完全。在一张组织切片上同时对多种肿瘤标志物进行原位MSI定量分析为癌症的病理分析增加了新的维度,并且可以更精准地分析肿瘤的异质性。DESI-MSI主要分析组织中的小分子(代谢物和脂类) MALDI-MSI可以分析组织中的多肽和蛋白分子 可以对每个患者的肿瘤分子特征进行分析,实现个性化治疗。  质谱技术是检验科未来发展的重要亚专业  与传统诊断技术比较,质谱技术有灵敏度、特异度、准确度均高的优势,单次分析可同时精确地检测出几十个甚至上百个生物标志物,并可检测出多种传统诊断技术无法检测到的生物标志物。质谱技术在医学检验中的应用涵盖了产前检查、新生儿遗传筛查、激素和维生素检测、微生物诊断和药物浓度检测等领域。在美国,质谱技术服务于临床检测的项目已达400余项,涉及新生儿筛查、遗传代谢性疾病检测、滥用药物监测、代谢物检查(氨基酸、脂肪酸)、类固醇激素检测(内分泌)、神经递质类物质、维生素检测及微生物鉴定等领域。国内质谱技术临床应用主要集中在中大型三甲医院和第三方检验所,开展的项目还不多,主要是集中在微生物鉴定的MALDI-TOF MS、新生儿遗传代谢性疾病筛查、治疗药物监测和维生素测定等。  新生儿遗传代谢性疾病筛查包括氨基酸代谢异常、糖类代谢异常、脂肪酸氧化障碍、尿素循环障碍、有机酸代谢异常、核酸代谢异常、金属元素代谢异常、内分泌代谢异常和骨代谢病等,液相色谱-质谱已成为新生儿遗传代谢病筛查的金标准并广泛用于各种类型代谢病的临床诊断。  近年来随着质谱技术在临床上的应用越来越广泛,许多基于质谱的蛋白大分子检测如胰岛素样生长因子-1精准检测、淀粉样变性分型检测等被临床广泛应用。另外,检测多个基因SNP的核酸质谱技术也正在被广泛评价和应用中。  大力提升质谱技术的质量管理意识和手段,进行多组学的有效整合研究,使质谱技术更好地服务于检验医学  质谱技术在标志物的发现和临床诊断方面取得了长足的进步,然而将该技术应用于医学检验和临床检测还受到一些限制,如缺乏质量管理及量值溯源、多组学数据系统的整合、自动化水平有待提升、缺乏简化数据分析方法等。  提升质量管理和量值溯源 目前绝大多数质谱检测方法为实验室开发方法,虽然国内外已有部分的参考指导性指南与共识,但临床质谱检测仍然存在仪器多元化、质谱电离方式的多样化、质量分析器的差异性、缺乏量值溯源系统、检测方法缺乏规范化和标准化、缺乏法规和监管措施等问题。现有的质谱项目的全国调研数据显示,质谱方法的优点并未真正体现出来,组内变异系数较大,不同实验室结果的可比性差,尤其是儿茶酚胺类激素、17-羟基黄体酮等检测难度较大的项目。高质量的质谱实验室的检测结果,需要严格的质量管理和量值溯源,推动参考方法和室间质量评价项目的改进,可有效促进临床质谱检测结果的标准化,这是一个长期复杂的任务,需要多方共同努力。做好质谱检测项目的质量评价,建立全国性的临床质谱实验室间质量评价体系,才能有效做好质量控制与质量保证工作,更好地促进临床质谱项目的开展和推广。  多组学的有效整合 疾病本身是生物体因为遗传及外界环境的改变而试图调整、修复和保持自身健康所发生的一系列系统应答反应。以质谱为核心的多组学技术的快速发展推进了对疾病(如癌症)的发生和进展在分子和细胞水平上的研究,在改进医学检验水平和提升精准医学方面发挥了关键的作用。每一种组学侧重于研究疾病发生和进展的复杂病理生理学的某一个部分,由此导致各种组学的实验结果往往不能相互关联。因此,整合多组学实验结果进行多维度、高分辨的系统生物学研究对揭示疾病的产生、进展、抗治疗性、复发的关键机制和发现精准标志物对疾病进行早期检测至关重要。  但目前并没有很好的多组学在临床中的应用范例,当前有2种方式的整合多组学用于精准医学研究:一是根据已知的分子通路和机制,分析各种检测到的分析物包括转录产物、蛋白质、代谢物等。该方法需要预先了解疾病发生过程的一些关键分子通路,从而将各种组学研究发现的信使RNA、蛋白质、代谢物、非编码RNA、长链非编码RNA、遗传序列变异体、DNA 甲基化和组蛋白甲基化变体与这些分子通路关联。二是首先分析各种组学数据的关联度,由此发现在各种组学研究中关联度高的分子。该方法的优势是能够发现新的与疾病过程相关的分子和通路,其挑战是各种组学数据量的不对称性。  整合多组学技术将有助于疾病的精准医学研究,SCHUSSLER-FIORENZA 等采用临床评估、多组学技术及可穿戴设备等手段,对109例有二类糖尿病风险的参与者进行了长达8年(中位数2.8年)的纵向研究,对收集的数据进行个性化综合分析,推导出预测长期健康结果的模型。该项研究成果表明所建立的模型可以应用于不同科室对疾病的预测和治疗方案的确定,包括心血管科、传染病科和肿瘤科等,这也是首次展示了整合多组学技术在健康结果预测中发挥的重要作用。随着多组学发展日趋成熟,其将成为医学检验和精准医学领域的主要研究平台并由此发现全新的疾病早期诊断标志物、预后监测标志物,从而制订高效个性化精准治疗。  临床质谱的自动化和信息化 对于临床诊断而言,质谱相对于传统技术的主要优势包括开发速度快,可同时测定单个样品中的多种分析物,单次测定成本低,特异性高,适合小分子分析物测定。但也存在仪器成本较高,操作复杂,学习周期长,缺乏技术人员等问题。不同的生物基质前处理方法不同,样品中遇到的蛋白质、盐和脂质水平较高,需要特殊的仪器设备,实现自动化难度较大。质谱仪器产生的数据量大,一般不能直接与现有的实验室(检验科)信息系统进行数据交互,需要专业的技术人员通过厂商软件处理数据后才能转化为临床检验可报告的结果,这也是限制质谱技术在临床推广的又一因素。质谱仪器系统较为复杂,对实验室技术人员的能力要求远高于常规医学检验系统,加之业内缺乏系统学习和相关技术背景人才储备,从事临床质谱技术人才的市场缺口较大。这些因素都是目前质谱技术在常规临床诊断工作流程中应用相对有限的原因,所以实现临床质谱的自动化和信息化、加快人才培养才能更好地推动质谱技术在临床检验中的应用。  小 结  尽管面临质量管理和量值溯源,以及标准化等诸多问题,但通过各方面努力,临床质谱技术正在朝着自动化、小型化、人工智能识别模式化等方向发展,质谱技术在实现精准检测方面有着强大的潜力和优势。生命科学研究的重心逐渐转向基因功能,即由测定基因的DNA 序列、解释生命的遗传信息转移到鉴定有生物学功能的蛋白类分子、探索人类健康和疾病奥秘的多组学研究中。临床质谱检验正进入到基因组学、蛋白质组学、代谢组学等多组学整合分析阶段。贯彻和执行国家精准医疗战略,推动临床质谱技术应用的规范化、标准化,引领中国临床质谱产业的发展,更好地服务于检验医学,为人类健康事业做出更多的贡献,是医学检验人员面临的重大机遇。  专家简介:  张钧,浙江大学医学院附属邵逸夫医院检验科主任,博士,博士生导师,教授,主任医师。目前担任浙江省医学会检验医学分会候任主任委员 中国医师协会检验医师分会青年委员会副主任委员 中华医学会检验医学分会青年委员 浙江省医师协会检验医师分会总干事 浙江省检验医学科住培基地质控中心副秘书长 北京医学奖励基金会检验医学专委会副主任委员 中国医药教育协会检验医学专业委员会委员 中国中西医结合学会检验专业分会委员 中国研究型医院生物标志物委员会常务委员 中国医疗保健国际交流促进会分子诊断学常务委员、质谱学组委员 《中华检验医学杂志》《检验医学与临床》《中华实验和临床病毒学杂志》等杂志编委或评审专家。主持、参与了国家自然基金面上项目4项 浙江省科技厅重点研发项目1项 浙江省自然基金、省厅级基金多项。发表学术论文80余篇,其中SCI论文60余篇。授权发明专利1项 获浙江省医药卫生科技奖二等奖1项,浙江省科学技术奖三等奖1项 荣获2019年度全国住院医师规范化培训“优秀专业基地主任”称号。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制