当前位置: 仪器信息网 > 行业主题 > >

完整蛋白质

仪器信息网完整蛋白质专题为您整合完整蛋白质相关的最新文章,在完整蛋白质专题,您不仅可以免费浏览完整蛋白质的资讯, 同时您还可以浏览完整蛋白质的相关资料、解决方案,参与社区完整蛋白质话题讨论。

完整蛋白质相关的论坛

  • 蛋白质数据库介绍

    蛋白质数据库1.PIR和PSDPIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。PIR和PSD的网址是:http://pir.georgetown.edu/。数据库下载地址是:ftp://nbrfa.georgetown.edu/pir/。2. SWISS-PROT SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。SWISS-PROT的网址是:http://www.ebi.ac.uk/swissprot/。3. PROSITEPROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。PROSITE的网址是:http://www.expasy.ch/prosite/。4. PDB蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。RCSB的PDB数据库网址是:http://www.rcsb.org/pdb/。5. SCOP蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。SCOP的网址是:http://scop.mrc-lmb.cam.ac.uk/scop/。6. COG蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。COG库的网址是:http://www.ncbi.nlm.nih.gov/COG。下载COG库和COGNITOR程序在:ftp://ncbi.nlm.nih.gov/pub/COG

  • 蛋白质与多肽蛋白质粉

    蛋白质与多肽蛋白质粉 人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。 蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄蛋白质RNL(g/d) 初生—6个月 1.5-3 1岁 35 3岁 45 5岁 55 7岁 60 9岁 65 10-16岁 75-85 成年女性 65 成年男性 75 妊娠 +15 乳母 +20 根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。 上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状 单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。 现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。三、优质蛋白质和劣质蛋白质的区别。 要弄清楚何为优质蛋白质?何为劣质蛋白质?我们要引入什么是必需氨基酸的概念。营养生理学家、生化学家发现构成人体蛋白质的氨基酸共有21种,而这些氨基酸中其中有4种是可以由体内含碳和含氮底物自己合成的,被称为非必需氨基酸,还有10个必需的氨基酸,是人类机体无法制造需要从饮食中摄取的,另有7个是介于这两者之间的被称为条件必需氨基酸。表2. 必需、条件必需和非必需氨基酸 必需氨基酸条件必需氨基酸 非必需氨基酸 亮氨酸牛黄酸 丙氨酸 异亮氨酸酪氨酸 谷氨酸 缬氨酸甘氨酸 天冬氨酸 赖氨酸丝氨酸 天冬酰胺 苯丙氨酸(酪氨酸)脯氨酸 蛋氨酸(半胱氨酸)谷氨酰酸 苏氨酸 胱氨酸 色氨酸 组氨酸 精氨酸 虽然蛋白质广泛存在于许多动物性和植物性食物中,但是必需氨基酸的构成异差很大,WHO把“蛋白质其组成恰好符合人体需要”的蛋白质称为理想蛋白质,在自然界这种理想的蛋白质普遍认为是鸡蛋蛋白,因此就把鸡蛋蛋白作为衡量蛋白质优劣的参照蛋白,科学家把它作为一把尺子来衡量各种蛋白质,并制定出标准,以4种必需氨基酸为最低限来决定其优劣,即色氨酸、苏氨酸、赖氨酸或者蛋氨酸(半胱氨酸)。 通过比较科学发现,肉、鱼、蛋、牛奶、乳酪含有优质蛋白,大豆、花生、豌豆也含有较多的高质量蛋白。进一步研究发现它们都不够完美,因而要求大家对优质的动物性蛋白和植物性蛋白进行了科学搭配才是最完美的全价蛋白质(complete protein)。表3. 部分高质量蛋白

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 蛋白质化学与蛋白质组学(推荐)

    蛋白质化学与蛋白质组学夏其昌 曾嵘 等编著2004年4月出版ISBN 7-03-012401-4/Q.133116开,平装,580页定价: 75.00元 本书系统论述了蛋白质化学基础理论和实验技巧,也反映了蛋白质组学研究的最新成果。内容包括:蛋白质的表征,蛋白质的组成分析和序列测定,与此相关的实验方法,包括各种色谱、电泳、质谱技术等,以及应用在蛋白质表征研究和基因工程产品的质检方面的实际范例。在蛋白质组学领域介绍了基本概念、样品制备、双向凝胶电泳的图像分析和定量分析、质谱等常规方法,并介绍了国际上最新的多维技术在研究中的应用;同时充分体现了生物信息学在蛋白质组研究中的重要性。 本书可作为生物学、医学、化学专业大学生,研究生和教学人员的参考书,也是从事生物化学、分子生物学、医学等领域中分离分析工作人员的参考书。

  • 有关蛋白质与蛋白质水解物理化指标的理解

    [color=#444444]检测单上有两个指标的意思不是很理解,“相对分子质量小于1000的蛋白质水解物”所占比例为80%,而“蛋白质(以干基计),%”为70%。为什么蛋白质(以干基计)的数值还要更低呢。[/color]

  • 【转帖】蛋白质数据库介绍!

    蛋白质数据库 1. PIR和PSDPIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。 PIR和PSD的网址是:http://pir.georgetown.edu/。 数据库下载地址是:ftp://nbrfa.georgetown.edu/pir/。 2. SWISS-PROT SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。 SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。 SWISS-PROT的网址是:http://www.ebi.ac.uk/swissprot/。 3. PROSITE PROSITE数据库收集了生物学有显著意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。PROSITE的网址是:http://www.expasy.ch/prosite/。 4. PDB蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。RCSB的PDB数据库网址是:http://www.rcsb.org/pdb/。 5. SCOP 蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。SCOP的网址是:http://scop.mrc-lmb.cam.ac.uk/scop/。6. COG 蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。COG库的网址是:http://www.ncbi.nlm.nih.gov/COG。下载COG库和COGNITOR程序在:ftp://ncbi.nlm.nih.gov/pub/COG。

  • 【转帖】生命所需——蛋白质和多肽蛋白质粉!

    人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄 蛋白质RNL(g/d)初生—6个月 1.5-31岁 353岁 455岁 557岁 609岁 6510-16岁 75-85成年女性 65成年男性 75妊娠 +15乳母 +20根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。

  • 【转帖】质谱与蛋白质组学

    质谱与蛋白质组学蛋白质组学对一个细胞或组织所表达的蛋白质进行的系统分析,而质谱是它的关键性分析工具。在过去的两年中,标准蛋白质组技术中的进展增进了更高水平自动化和敏感性的蛋白质识别技术。另外,新的技术促成了鉴定蛋白质功能相关特性的里程碑性的进展,包括它们的定量和在蛋白质复合物中复杂情况。缩写2DE two-dimensional gel electrophoresis双向凝胶电泳CID collision-induced dissociation碰撞诱导的解离ESI electrospray ionization电喷雾离子化FT-ICR Fourier-transform ion cyclotron resonance傅里叶-变换离子回旋加速器共振ICAT isotope-coded affinity tagsIEF isoelectric focusing等电聚焦MALDI matrix-assisted laser desorption ionization基质辅助的激光解析离子化Q-TOF quadrupole-TOFRP reversed phase反向TOF time-of-flight飞行时间简介蛋白质组学的核心组成是系统识别一个细胞或组织中表达的每一个蛋白质,以及确定每个蛋白质的突出特征(比如,丰度、修饰状态以及在多蛋白质复合体中的复杂状态)。这些分析的技术包括分离蛋白质和肽的分离科学、识别和定量分析物的分析科学和数据管理和分析的生物信息学。它的初步工具包括使用IEF(等电点聚焦)/SDS-PAGE凝胶的高分辨率的双向凝胶电泳(2DE),结合质谱和数据库搜索来分离、识别和定量在一个复合样本中存在的个体蛋白质,最终识别被分离的蛋白质。一个常用的方法用在Fig1中用图解说明。此技术以及由此而来的变化(综述见[1])已经被用来识别和分类在复杂样本中存在的大量蛋白质,并在蛋白质组数据库中呈现它们,该过程我们这里称之为"描述蛋白质组学"比如,Shevchenko等[2]从2D凝胶上系统地鉴定了150个蛋白质。数目庞大的这样的数据库现在可以找到。同样的技术现在已经被作为普遍的发现工具来动态检测一个细胞或组织对外来或内部干扰反应而在蛋白质组中的改变。因为检测动态改变需要精确定量每个被检测成分,我们使用"定量蛋白质组学"来定义。在此报告中,我们总结了自1999年1月至2000年4月来报道的与蛋白质组学和质谱相关的最重要的进展。在核心质谱技术中的进展已经导致2DE为基础的蛋白质组学技术的进一步改进。它们同时又促进了传统凝胶为基础的方法的替代方法,诸如引入以同位素稀释理论为基础的精确蛋白质定量技术和蛋白质复合物的系统分析。蛋白质组分析的MS技术进展在此部分,我们总结了在MS设备、它们的控制和操作中的进展,以及比较质谱数据和序列数据库识别蛋白质所用的搜索工具的进展。随着新型质谱仪的引入,蛋白质组学研究现存类型的质谱仪性能已经显著改进了。在此综述期间最普遍使用的仪器是可以分为两类:单一阶段的质谱仪和串联质谱为基础的系统。单一阶段的质谱仪,最显著的是基质辅助的激光解吸电离(MALDI)飞行时间(TOF)仪器,被用于无数通过肽质谱图谱技术大规模蛋白质识别的项目中。此方法在鉴别表达自小一些的和完全测序的基因组的蛋白质特别成功[3,4]。串联质谱仪器诸如triple quadrpole、离子捕获(ion-trap)和近来引进的混合quadrupole飞行时间(Q-TOF)被常规应用于[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS或用电喷雾电离(ESI)来生成肽片段离子谱,以便通过搜寻序列数据库进行蛋白质鉴定。使用仪器控制程序来自动选择肽离子进行碰撞诱导的解离(CID)(数据依赖CID)的不断增多是这些MS/MS仪器的一个明显的趋势。一些新的构造的具有高潜能的质谱仪被引入到蛋白质组学研究中产生深刻影响。两个研究组近来一个MALDI离子源和一个混合Q-TOF耦联了起来[5,6]。Q-TOF提供的质量准确性和敏感性提升了数据库搜寻结果并同时使它成为MS/MS从头测序的当然仪器选择。MALDI Q-TOF构造提供了激动人心的机会进行自动化和高通量应用以及在一个样品盘上存档样品进行日后研究的可能。Medzihradszky等[7]描述了一个不同的混合仪器称之为MALDI TOF TOF。此设备享有许多MALDI Q-TOF的优点,另外能够进行高能量CID和非常快速的扫描速率。傅里叶-变换离子回旋加速器共振(FT-ICR)质谱对于蛋白质组学来说相对陌生。这些设备具有非常高的敏感性和分辨率,质量精确性可以达到1ppm。这些特征被用来在一次分析中测量和定量几百种蛋白质的完整的分子质量[8]。Goodlett等[9]表明FT-MS测量的一个肽的准确质量以及可以容易获得的限制因素能够通过序列数据库搜索被用来识别蛋白质。蛋白质组学如果没有软件工具来进行质谱数据和序列数据库的关联将变得几无可能。现存的数据库搜索程序已经变得越来越成熟和可以(从网络)可获得。另外,引入了新的算法。主要相关程序是Sequest[10],MASCOT[11],PeptedeSearch[12],PROWL[13]和Protein Prospector[14]。在它们中间,Sequest使用CID谱设置了蛋白质识别的实验室标准(benchmark),因为它与边界MS/MS数据工作得最好,并高度可信,可以从整个[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS实验中自动分析数据,并不需要任何使用者的破译工作。在所提的程序中,然而,只有Sequest不能在网络上搜索。MASCOT是一个新的、快速、网络可进入和多功能的程序,具有进行肽指纹分析、用部分破译或未破译的CID谱进行数据库搜索的功能。

  • 【资料】什么是蛋白质

    蛋白质的英文名词来源于希腊文,其含义是“第一”和“基本的”。反映了蛋白质是生命活动中最基本的和最重要的物质。蛋白质由碳、氢、氧、氮4种主要元素组成,有的蛋白质还含有硫、磷等其他元素。如血红蛋白含有铁、甲状腺球蛋白含有碘等。蛋白质的基本结构单位是氨基酸。氨基酸的特点是在分子一端含有氮和氢元素组成的化学基团——氨基。动物不能合成氨基,只有植物有利用硝酸盐合成氨基的能力。所以在动物饲养中,要依靠含有氨基酸、蛋白质的饲料,使家畜、家畜等生产蛋白质(净肉)。 蛋白质由一长串氨基酸链组成。一般都很长,如血红蛋白是由580个氨基酸组成。但氨基酸种类只有20种,在蛋白质中按严格的顺序排列,构成多种多样的生物专一性的蛋白质。由于人体不能合成氨基酸,只能从食物中获得蛋白质,并在肠内将蛋白质分解成各种氨基酸,这些氨基酸被吸收后,重新合成人体的特殊蛋白质。合成蛋白质的主要器官是肝脏。 从蛋白质这个名字看,好像蛋白质来源离不开蛋。其实动物、植物以及其他生物体都含有蛋白质。虽然最常党见的蛋白质——蛋清是白色的。但并非所有蛋白质都是白色的。血液上的血红蛋白是红色的,绿色植物的叶绿蛋白是绿色的。 同碳水化物和脂肪相比,蛋白质的两个代谢特点,一是它主要在代谢中发挥作用,而不是分解后为人体提供能量;二是蛋白质代谢的起点和终点都是蛋白质,即起点是人体的异蛋白质(如鱼的蛋白质,鸡肉蛋白质等),而终点则成了人体特有的蛋白质。蛋白质由氨基酸组成,是另一种重要的供能物质,每克蛋白质提供4卡路里的热量。但蛋白质的更主要的作用是生长发育和新陈代谢。过量的摄入蛋白质会增加肾脏的负担。因此蛋白的摄入要根据营养状况、生长发育要求达到供求平衡。通常蛋白摄入所产生的热量约占总热量的20%左右为宜。

  • 【求助】蛋白质沉淀和水解蛋白质结合物的应用规则

    在前处理中,内脏组织大多杂质很多,需要沉淀蛋白质,沉淀后离心,提上清夜再萃取,但内源性物质中的待检物同时也会和蛋白质成结合状态,需要水解,再萃取。所以请问如果我先沉淀了蛋白,那么会不会把成结合状态的待检物一同沉淀,损失待检物。在运用中如何处理蛋白质杂质和蛋白质结合物的前处理问题?

  • 【转帖】蛋白质提取与纯化技术

    [size=3]选择材料及预处理   以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。   微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 蛋白质的分离纯化 一,蛋白质(包括酶)的提取   大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法   稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。[/size]

  • 蛋白质的测定

    [color=#444444]现在有两个方法:[/color][color=#444444]GB/T 5413.1-1997,[/color][color=#444444]主要用于婴儿配方食品和乳制品中蛋白质的测定;[/color][color=#444444] GB5009.5-2003,[/color][color=#444444]主要用于食品中蛋白质的测定。都用凯氏定氮法,但是最后计算公式有差异。[/color][color=#444444]5413:蛋白质含量=[u] (V-V0)* C(H+)*2* 0.014 *F [/u] * 100[/color][color=#444444] m* 25/1005009:蛋白质含量=[u] (V1-V2)* C* 0.014 *F [/u] * 100[/color][color=#444444] m* 10/100[/color][color=#444444]折算下来,5413 乘的系数是 8,而5009乘的系数为10。搞不懂了?为啥会这样?[/color][color=#444444][/color][color=#444444]究竟用两种方法测出的奶粉的蛋白质,会不会有很大差异呢?[/color]

  • 【求助】蛋白质分析

    向大家请教几个问题1. 在使用MALDI-TOF的时候,为什么大分子量的蛋白质可以被有效分析,而大于80bp的DNA分析的效果不好?2. Electrospray-TOF和MALDI-TOF在分析蛋白质的时候有那些区别?3. 质谱用于蛋白质测序中的几种方法及原理?先道谢!本人对蛋白质分析实在是不熟悉。请解答的详细一些!再次致谢!

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 【分享】蛋白质提取

    介绍了不同几种来源蛋白质的提取方法以及在提取过程中的注意事项.对做蛋白研究的很有用..1.植物组织蛋白质提取方法2.植物组织蛋白质提取方法 3.组织:肠黏膜 4.lysis solution5.植物材料:水稻苗,叶鞘,根6.蛋白质样品制备7.植物根中蛋白质的抽取8.SDS extraction followed by acetone precipitation9.材料:细菌蛋白10.线粒体蛋白的提取 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=120198]蛋白质提取[/url]

  • 【转帖】蛋白质纯化

    蛋白质纯化 蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。  是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。常用技术有:  1、沉淀,  2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。  3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。  4、层析:  a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。   b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。  5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

  • 【讨论】蛋白质折叠病

    蛋白质折叠病 ▲许多疾病,如阿兹海默症(Alzheimer's),疯牛病(Mad Cow, BSE),可传播性海绵状脑病(CJD),肌萎缩性脊髓侧索硬化症(ALS),还有帕金森氏症(Parkinson's)等正是由于一些细胞内的重要蛋白发生突变,导致蛋白质聚沉或错误折叠而造成的。因此,深入了解蛋白质折叠与错误折叠的关系对于这些疾病的致病机制的阐明以及治疗方法的寻找将大有帮助。 ▲基因组序列的发展使我们得到了大量的蛋白质序列,结构信息的获得对于揭示它们的生物学功能是十分重要的。依靠现有手段(X-ray晶体衍射、NMR及电镜)测定蛋白质的结构需要较长的时间,因此结构解析的步伐已落后于发现新蛋白的步伐。而结构预测的方法虽然速度较快,但可靠性并不高,只有当我们对于维持蛋白质结构,驱动蛋白质折叠的理化因素更为了解,这一方法才可能有根本的改进。另外,我们对于蛋白质相互作用、配体与蛋白质的作用等结构与功能关系的研究也有赖于蛋白质折叠机制的阐明。【蛋白质折叠与“折叠病” 】 人们对由于基因突变造成蛋白质分子中仅仅一个氨基酸残基的变化就引起疾病的情况已有所了解,即所谓“分子病”,如地中海镰刀状红血球贫血症就是因为血红蛋白分子中第六位的谷氨酸突变成了颉氨酸。现在则发现蛋白质分子的氨基酸序列没有改变,只是其结构或者说构象有所改变也能引起疾病,那就是所谓“构象病”,或称“折叠病”。 大家都知道的疯牛病,它是由一种称为Prion的蛋白质的感染引起的,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,只是空间结构不同。这一疾病的研究涉及到许多生物学的基本问题。一级结构完全相同的蛋白质为什么会有不同的空间结构,这与Anfinsen原理是否矛盾?显然这里有蛋白质的能量和稳定性问题。 从来认为蛋白结构的变化来自于序列的变化,而序列的变化来自于基因的变化,生命信息从核酸传递到蛋白。而致病Prion的信息已被诺贝尔奖获得者普鲁辛纳证明不是来自基因的变化,致病蛋白Prion导致正常蛋白Prion转变为致病的折叠状态是通过蛋白分子间的作用而感染!这种相互作用的本质和机制是什么?仅仅改变了折叠状态的分子又如何导致严重的疾病?这些问题都不能用传统的概念给予满意的解释,因此在科学界引起激烈的争论,有关研究的强度和竞争性也随之大大增强。 由于蛋白质折叠异常而造成分子聚集甚至沉淀或不能正常转运到位所引起的疾病还有老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤等等。由于分子伴侣在蛋白质折叠中至关重要的作用,分子伴侣本身的突变显然会引起蛋白质折叠异常而引起折叠病。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。现在发现有些小分子可以穿越细胞作为配体与突变蛋白结合,从而使原已失去作战能力的突变蛋白逃逸“蛋白质质量控制系统”而“带伤作战”。这种小分子被称为“药物分子伴侣”,有希望成为治疗“折叠病”的新药。 新生肽的折叠问题或蛋白质折叠问题不仅具有重大的科学意义,除了上面提到的在医学上的应用价值外,在生物工程上具有极大的应用价值。基因工程和蛋白工程已经逐渐发展成为产值以数十亿美元计的大产业,进入21世纪后,还将会有更大的发展。但是当前经常遇到的困难,是在简单的微生物细胞内引入异体DNA后所合成的多肽链往往不能正确折叠成为有生物活性的蛋白质而形成不溶解的包含体或被降解。这一“瓶颈”问题的彻底解决有待于对新生肽链折叠更多的认识。

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

  • 【分享】GB 5009.5-2010 食品中蛋白质的测定

    分享标准,均自网络收集,上传者不保证资料完整性以及版权。下载仅供研究,请勿用于其他用途。研究完毕请及时删除,若有正版需求,请联系出版单位。GB 5009.5-2010 食品中蛋白质的测定

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

  • 蛋白质提取分离方法

    硫酸铵沉淀法和一般的蛋白质盐提、碱提、水提法等有什么区别?硫酸铵沉淀法适用于哪类蛋白质?

  • 什么是大豆蛋白质?

    [size=10.5pt][color=#0000ff][font=微软雅黑]什么是大豆蛋白质?[/font][/color][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是一种植物性蛋白质。大豆蛋白质的氨基酸组成与牛奶蛋白质相近,除蛋氨酸略低外,其余必需氨基酸含量均较丰富,是植物性的完全蛋白质,在营养价值上,可与动物蛋白等同,在基因结构上也是最接近人体氨基酸,所以是最具营养的植物蛋白质。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%,球蛋白约占90%。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白也有缺点,怕高温,气味怪。大豆蛋白的食用温度最好不要用鲜开始,100℃的开水会破坏大豆蛋白质结构,会降低其营养价值。同时,大豆蛋白含有的大豆异黄酮等等物质让大豆蛋白质的冲食具有一定的腥味。[/font][/size]

  • 蛋白质纯化及复性

    蛋白质纯化及复性 重组蛋白在大肠杆菌(E. coli)高效表达时,往往以不溶的、无活性的蛋白聚集体,即包涵体(inclusion body)的形式存在于细胞内。必须从细胞内分离出包涵体,采用高浓度变性剂(如7.0mol/L盐酸胍、8.0mol/L脲)溶解包涵体,然后除去变性剂或降低变性剂的浓度,使包涵体蛋白得以复性,最后再用色谱法使目标蛋白质得到纯化。其中包涵体蛋白的复性和纯化是整个过程中的核心。 目前重组蛋白生产中普遍存在的问题是:(1)复性效率低。传统的复性方法稀释法和透析法。稀释复性法对样品几十倍,甚至上百倍的稀释会使样品的体积急剧增大,给后续的分离纯化带来很大的困难,而且复性过程中需要较大的复性容器。透析法耗时较长,而且要多次更换透析溶液。这两种方法的共同缺点是蛋白质在复性过程中会发生聚集而产生大量沉淀,复性效率低,通常蛋白质的活性回收率只有5~20%,而且复性后的蛋白质溶液中含有大量的杂蛋白,需要进行进一步的分离纯化。(2)工艺路线烦琐,生产周期长。在传统的重组蛋白质分离纯化工艺中,大多采用经典的软凝胶分离介质,由于这种介质的颗粒较大,分离效率较差,因此常常需要采用多种不同模式的色谱操作联用对目标蛋白质进行纯化,才能得到纯度符合一定标准的目标蛋白质。另外,这种色谱介质的耐压性很差,只能在流速较低的情况下进行操作,分离纯化时间较长。分离纯化步骤多和分离时间长使得蛋白质的质量回收率和活性回收率很低。而且在传统的重组蛋白质生产工艺中,蛋白质的复性和纯化是生产过程中两个独立的单元操作,也在很大程度上制约着生产效率。(3)生产成本高,设备投资大。由于复性和分离纯化分别单独进行,而且分离纯化步骤多,每一步都需要有与之配套的设备,致使设备投资大,生产成本高。随着生产规模的增加,这种弊端会愈来愈严重。 1991年耿信笃教授首先将高效疏水相互作用色谱(HPHIC)用于变性蛋白的复性,很好的解决了上述问题,现已成功用于重组人干扰素-g(rhIFN-g)、重组人干扰素-a(rhIFN-a)、人粒细胞集落刺激因子(rhG-CSF)、重组人胰岛素原(proinsulin)、重组牛朊病毒(prion)等重组蛋白以及溶菌酶和核搪核酸酶等标准模型蛋白的复性与同时纯化中。目前,排阻色谱法、离子交换色谱法和亲合色谱法也已用于蛋白质的复性和同时纯化中。与传统的稀释法及透析法比较,用色谱法进行蛋白复性的优点是:①在进样后可很快除去变性剂;②由于色谱固定相对变性蛋白质的吸附,可明显地减少、甚至完全消除复性过程中蛋白质聚集体和沉淀的产生,从而提高蛋白质复性的质量和活性回收率;③在蛋白质复性的同时可使目标蛋白质与杂蛋白分离以达到纯化的目的,使复性和纯化同时进行;④便于回收变性剂,以降低废水处理成本。简言之,色谱法复性可以提高蛋白质的活性和质量回收率,将蛋白复性和纯化集成在一步操作完成,缩短了操作步骤和生产时间,减少了设备投资,使生产成本大大降低,已经引起了全世界范围内许多生化研究者和重组蛋白药物生产厂家的关注。由于高效液相色谱(HPLC)分离效率高,往往在一步操作中便可得到纯度符合要求的蛋白质,而且分离速度快,在应用方面具有更大的优势。

  • 怎么检验蛋白质?

    双缩脲试剂(biuret reagent)是由双缩脲试剂A(NaOH)和双缩脲试剂B(CuSO4)两种试剂组成.双缩脲试剂A的成分是氢氧化钠的质量分数为0.1 g/mL的水溶液;双缩脲试剂B的成分是硫酸铜的质量分数为0.01 g/mL的水溶液。双缩脲试剂可以验证蛋白质的存在。具体方法是:先将双缩脲试剂A加入组织样液,振荡均匀(必须营造碱性环境),再加入双缩脲试剂B,摇荡均匀。如果组织里含有蛋白质,那么会看到溶液变成紫色。具有两个或两个以上肽键的化合物皆可与双缩脲试剂产生紫色反应。蛋白质的肽键在碱性溶液中能与Cu2+络合成紫红色的化合物。颜色深浅与蛋白质浓度成正比。双缩脲(NH2CONHCONH2)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。双缩脲试剂本是用来检测双缩脲,因蛋白质中也有-CONH-基也可用于检验蛋白质,与蛋白质接触后的颜色呈紫色

  • 【讨论】蛋白质分子量测定

    目前蛋白质分子量测定有多种方法。最常用的应该是SDS--PAGE,分子筛了或者称为凝胶过滤,更为精确的是蛋白质质谱分析。欢迎大家对这些方法的有缺点进行讨论。

  • 【求助】蛋白质分析

    最近做蛋白质分析,用的是AB的Qtrap 5500.方法设置如下:EMSIDAEPI得到的谱图有多个峰,我想如何得到我蛋白质的二级谱图。

  • 蛋白质测定仪的测定原理

    蛋白质测定仪是根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量的仪器但是实际中怎么操作呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制