当前位置: 仪器信息网 > 行业主题 > >

微纳米加工

仪器信息网微纳米加工专题为您整合微纳米加工相关的最新文章,在微纳米加工专题,您不仅可以免费浏览微纳米加工的资讯, 同时您还可以浏览微纳米加工的相关资料、解决方案,参与社区微纳米加工话题讨论。

微纳米加工相关的资讯

  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • 纳米压印光刻领头羊天仁微纳获数千万元战略投资,加速布局微纳光学市场
    据麦姆斯咨询报道,近日,青岛天仁微纳科技有限责任公司(以下简称“天仁微纳“)宣布完成由中芯聚源独家战略投资的数千万元A轮融资。本轮融资将用于加快公司用于微纳光学等领域纳米压印设备和解决方案的研发和布局,完善售后服务,进一步扩大市场领先优势。从2015年成立至今,天仁微纳已经成为国际领先的纳米压印设备与解决方案供应商,应用包括3D传感(DOE、Diffuser等)、增强现实与虚拟现实(AR/VR)、生物芯片、集成电路、平板显示、太阳能电池、LED等领域。依靠着全球领先的创新技术和设备性能,完善的售后服务,快速的产品迭代,凭借2018年以来微纳光学晶圆级加工生产的市场契机,天仁微纳厚积薄发,打败诸多国际竞争对手,迅速占领了国内超过90%的市场份额,成为该领域市场的领头羊。晶圆级光学加工(WLO)2017年苹果公司发布的结构光人脸识别技术第一次将微纳光学元器件引入了消费类电子领域,晶圆级光学器件加工的概念也逐渐映入人们的眼帘。随着纳米压印光刻技术被应用在结构光人脸识别的DOE元件生产,业界逐渐认识到,与传统光学透镜加工不同的是,基于纳米压印光刻技术的晶圆级光学加工(WLO工艺)更加适合移动端消费电子设备。特别是在3D视觉发射端结构复杂的情况下,光学器件采用WLO工艺,可以有效缩减体积空间,同时器件的一致性好,光束质量高,采用半导体工艺在大规模量产之后具有成本优势。2019年高端智能手机3D传感iToF(间接飞行时间)模组中的匀光片(diffuser)再次引入了纳米压印作为量产手段,2020年AR衍射光波导光栅加工将纳米压印技术的应用推向面积更大的12英寸,纳米压印终于完成了从科研到大规模量产的华丽转身。纳米压印结果厚积薄发,从跟随到超越晶圆级光学加工量产对纳米压印设备精度、稳定性与一致性要求极高,过去一直被德国、奥地利两家光刻设备公司的进口设备所垄断。天仁微纳创始人冀然博士,从事纳米压印技术研发与推广20年。冀然博士2000年赴德留学,师从欧洲纳米压印之父Kurz教授研究纳米压印设备与材料,先后获得德国亚琛工业大学硕士学位与马普所博士学位。博士毕业后加入德国半导体设备上市公司负责纳米压印设备开发与市场推广。2015年,看到纳米压印在微纳光学晶圆级加工领域的市场前景,冀然博士辞去德国上市公司纳米压印首席科学家职位归国创业,成立天仁微纳,专注于纳米压印设备与全套解决方案的研发与产业化。纳米压印应用领域经过几年的研发与积累,实现了面向微纳光学晶圆级加工的完整设备与工艺材料的解决方案。2019年,在中国高科技企业受到国外技术封锁与制裁的背景下,国产高端智能手机着眼于使用国产设备加工3D传感所需的衍射光学器件。作为国内该领域唯一一家能与欧洲设备公司"掰手腕"的天仁微纳,凭借领先的技术、完善的售后服务和快速的市场应对能力抓住了这个机会,设备打入衍射光学器件量产生产线,经过不断的打磨与迭代,占领了大部分市场份额,打败国际竞争对手,实现了国产替代。2020年初,AR衍射光栅波导市场迅速展开,天仁微纳凭借多年研发,积累了完整的AR衍射光波导生产解决方案,包括步进式压印制造12英寸大面积衍射光栅模具、高精度工作模具复制与大面积高保型性光栅压印的全套设备与工艺解决方案,通过给客户提供AR衍射光栅波导生产“设备+工艺”的一站式解决方案的模式,一举垄断了国内市场,从技术到市场全面超越进口设备。不改初心,剑指纳米压印全球第一对于公司未来的发展,冀然博士充满信心:“无论从技术领先性,还是产业化市场份额,我们在国内微纳光学市场已经具有绝对领先优势,对比国际竞争对手,我们有两大竞争优势:一是贴近市场,二是响应速度快。市场需求是驱动技术创新和发展的源头,而未来纳米压印生产最大的市场一定在中国。我们立足于中国市场,贴近客户需求,以最低的沟通成本得到市场反馈。纳米压印是一个不断发展中的、动态变换的技术和市场,基于对市场需求的理解,我们要发挥我们的快速技术迭代能力,不断推出适应客户需求的设备和工艺,来推动市场的发展。这些优势都是国外竞争对手所不具备的,我们要将这些优势发挥到极致,转换为胜势,在快速发展的同时,发挥精雕细琢的工匠精神,相信我们一定能在纳米压印这个细分领域做到全球第一!“天仁微纳将继续致力于纳米压印光刻在晶圆级光学加工领域的拓展,加快设备与工艺的研发迭代,扩大领先优势,同时还将拓展纳米压印在半导体集成电路、平板显示、生物芯片等其它领域的产业化应用,为客户提供更多、更完善的研发和生产解决方案。中芯聚源创始合伙人暨总裁孙玉望表示:“纳米压印是微纳光学器件量产的理想方式,随着3D传感、AR等应用的持续发展,纳米压印将迎来快速发展的黄金期。中芯聚源看好天仁微纳团队在纳米压印行业的多年积累,天仁微纳已推出多款适用于不同场景的纳米压印设备,形成纳米压印设备和材料的一体化平台,将助力国产纳米压印设备打破进口垄断。”冀然博士表示:”深耕纳米压印这个技术20年了,无论市场对这个技术是冷是热,一直坚持下来,就是因为坚信这个技术会有很好的应用前景。守住这份初心,不贪大而全,先做好小而美,做隐形行业冠军,认真打磨产品,真诚服务每一个客户,在一个技术领域深挖到极致,为中国的微纳加工设备产业发展踏踏实实地做出我们的贡献,未来天仁微纳才能成长为有国际竞争力的公司。”关于天仁微纳青岛天仁微纳科技有限责任公司成立于2015年,是世界领先的纳米压印设备和解决方案提供商,产品与服务涵盖纳米压印相关的设备、模具、材料、工艺以及生产咨询服务。天仁微纳致力于拓展纳米压印技术在创新产品领域的应用,例如3D传感(DOE、Diffuser等)、AR/VR、生物芯片、集成电路、显示、太阳能电池、LED等。天仁微纳的使命是成为世界领先的创新公司,并利用卓越的创新力为客户解决高附加值生产难题,帮助客户实现创新技术到产品的转化。
  • 国家纳米中心等在微纳制造方法研究种获进展
    微纳加工是纳米研究的两大基础之一,备受重视。然而,随着各种新型器件和结构的出现,常规的微纳加工方法已无法完全满足需要,激发了人们探索更高性价比、更强加工能力的非常规加工方法。中国科学院国家纳米科学中心刘前团队基于自主开发的新概念激光直写设备,开发出多种非常规加工方法。近日,该团队在物理不可复制功能(PUF)防伪标签研究中取得新进展。相关研究成果以Random fractal-enabled physical unclonable functions with dynamic AI authentication为题,在线发表在《自然-通讯》(Nature Communications)上。   当前,传统防伪标签因其确定性的构筑模式在自身安全性上面临挑战。PUF标识本征的唯一性和不可预测性可作为商品的“指纹”秘钥,从根本上遏制标签自身被伪造的可能。为此,科学家利用金属薄膜去湿原理产生的随机分形金网络结构作为PUF,开发出一种由随机分形网络标识符和深度学习识别验证模型组成的新型PUF防伪系统,并展示该PUF的多层级防克隆能力。   借助高通量的图案化光刻(镂空模板)、薄膜沉积及一步热退火技术,可实现晶圆级PUF单元制作,体现了批量化、低成本(单个标签成本不到1美分)的生产特点。为了应用到实际防伪场景,研究人员开发了一种基于深度学习算法的图像PUF识别验证系统,借助ResNet50分类神经网络模型对37000个PUF标识符(10348)实现了可溯源、快速(6.36 s)、高精度(0%假阳性)验证,并提出了动态数据库策略,赋予深度学习模型极高的数据库扩容能力,理论上打破了庞大数据库的建立与低时间成本之间难以兼容的障碍。此外,这种PUF制作与微电子工艺流程高度兼容,有望与元器件同时集成并完成元件单元的真实性验证。PUF系统可初步满足工业化需求,有望推动商业化的PUF防伪技术的发展与普及。相关技术已申请国家发明专利并已获授权。   研究工作得到国家自然科学基金,国家重点研发计划“纳米科技”专项等的支持。该工作由国家纳米中心、北京航空航天大学和德国卡尔斯鲁厄理工学院合作完成。图1. PUF的制作流程及表图2. 深度学习识别验证系统的建立与性能展示
  • 华为哈勃再出手!投资纳米压印光刻领头羊天仁微纳
    近日,华为旗下深圳哈勃科技投资合伙企业(有限合伙)新增一家对外投资企业青岛天仁微纳科技有限责任公司(以下简称“天仁微纳”),持股比例约为5%。天仁微纳成立于2015年,专注于纳米加工领域,尤其是纳米压印技术。其官方显示,公司是世界领先的微纳加工设备和解决方案提供商,核心竞争力是为客户提供纳米压印整体解决方案。产品与服务涵盖纳米压印相关的设备、模具、材料、工艺以及生产咨询服务。公司致力于拓展纳米压印技术在创新产品领域的应用,例如发光二极管、微纳机电系统、虚拟现实和增强现实光波导、3D传感、生物芯片、显示以及太阳能等。公开资料显示,天仁微纳创始人冀然博士,从事纳米压印技术研发与推广20年。冀然博士2000年赴德留学,师从欧洲纳米压印之父Kurz教授研究纳米压印设备与材料,先后获得德国亚琛工业大学硕士学位与马普所博士学位。博士毕业后加入德国半导体设备上市公司负责纳米压印设备开发与市场推广。2015年,看到纳米压印在微纳光学晶圆级加工领域的市场前景,冀然博士辞去德国上市公司纳米压印首席科学家职位归国创业,成立天仁微纳,专注于纳米压印设备与全套解决方案的研发与产业化。
  • 纳米压印设备商光舵微纳完成近亿元B+轮融资
    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。 作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大领域的产业化应用,并取得了重要进展。此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。 近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。 金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。 中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • Nanoscribe出席微纳米技术与医疗健康创新大会(2021)
    科学技术的飞速发展为人类对美好生活的梦想插上了一对可实现的翅膀,公共卫生、智慧生活、健康医疗,不但是科学技术的基础研究热点,更是大众的需求。作为交叉学科的微纳米技术在生物医学领域得到了越来越广泛的应用。微纳米技术与医疗健康的结合可以解决生物、医学、公共卫生等无法解决的问题,具有很广泛的应用前景和意义。5月29-31日,微纳米技术与医疗健康创新大会(2021)暨中国微米纳米技术学会第五届微米纳米技术应用创新大会将在上海嘉定喜来登酒店召开,以“推动微纳米技术与医疗健康的融合发展”为主题。Nanoscribe中国子公司纳糯三维科技(上海)有限公司将出席参加该会议。在会议展区B13展位为您介绍基于双光子聚合技术的高精度3D微纳加工技术在微纳机器人,微流控等领域的最新应用成果,并于5月30日17:25分在分会场一(主题:微纳米机器人在医学上的应用)带来主题为《双光子无掩模光刻技术在微纳医学中的应用》的现场报告,欢迎现场莅临交流。Nanoscribe双光子聚合技术3D微纳加工系统成功项目案例:匹兹堡大学的科学家们使用Nanoscribe的3D打印设备制作了微针阵列,成功研发了新型皮肤微针疫苗接种装置。不来梅大学IMSAS研究所使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中,处理高达100微升/分钟的高流速液体。斯图加特大学和阿德莱德大学联手澳大利亚医学研究中心通过使用德国Nanoscribe公司的双光子微纳3D打印设备研发了内置微光学器件宽度仅有125微米的3D打印微型内窥镜。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 复旦成立微纳加工和器件公共实验室
    6月15日,经校长办公会议最终审议通过,决定成立复旦大学微纳加工和器件公共实验室。实验室由物理系系主任沈健教授牵头,物理系和微电子系共同参与建设和运转。   纳米科技在高科技领域中具有重要战略地位,但加工、配套器件工艺设备投入和运行成本较大。我国长期以来在先进科研设备方面投入偏少、分散,严重限制了相关领域的前沿基础研究和成果推广。从学科发展现状考虑,复旦大学微纳米加工领域的落后条件已成为多个学科进一步发展的瓶颈问题,这严重限制了研究效率,也无法确保对成果知识产权的所有权。   作为学校“985工程”三期重点建设的高水平学术研究中心之一,微纳加工和器件公共实验室致力于提升复旦大学在微纳米尺度的实验研究能力,满足纳米相关学科前沿研究的迫切需求,服务于全校的研究课题。实验室建成后,将致力于成为国内微加工技术领域学术交流和人才培养的重要基地,促进我国纳米科技的发展。   作为一个服务性质的校级公共实验设施,实验室将直接对学校负责,向全校所有物质科学和信息科学的院系开放。同时,微纳加工实验室良好的实验条件,有利于实施或争取多项国家重要科技计划(如若干重大专项、纳米重大研究计划等),可大幅度提升我校在国家纳米科技领域的地位。   此外,目前上海地区无开放纳米加工平台,复旦大学微纳加工实验室将面向全校、全市、全国开放,促进学校研究成果的技术转化,孵化对加工有需求的高新企业,对地方经济做出贡献。
  • iCEM 2016特邀报告:聚焦离子束(FIB)技术在微纳米材料研究中的应用
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 聚焦离子束(FIB)技术在微纳米材料研究中的应用 /strong /p p style=" TEXT-ALIGN: center" img title=" 彭开武.jpg" style=" HEIGHT: 278px WIDTH: 200px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/insimg/01ec28bb-5e1a-48ea-973c-2268ccee47cb.jpg" width=" 200" height=" 278" / & nbsp /p p style=" TEXT-ALIGN: center" strong 彭开武 高级工程师 /strong /p p style=" TEXT-ALIGN: center" strong 国家纳米科学中心纳米检测技术室 /strong /p p strong 报告摘要: /strong /p p   聚焦离子束技术原理和功能,并围绕其在微纳米材料表征方面,介绍几个具体应用,包括:透射电镜样品制备、纳米材料的三维表征等,重点讨论用于微纳米材料电学性能测试的电极制作方法。 /p p strong 报告人简介: /strong /p p   彭开武,高级工程师。1999年开始在中国科学院电工研究所微纳加工研究室从事基于电镜(含扫描电镜与透射电镜)的电子束曝光机的研制工作。2003年以访问学者身份在英国卢瑟福实验室中央微结构中心从事微纳米器件工艺研究。2007年起至今在国家纳米科学中心纳米检测技术室从事聚焦离子束加工方面的工作。 /p p strong 报告时间: /strong 2016年10月25日上午 /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" span style=" TEXT-DECORATION: underline COLOR: rgb(255,0,0)" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /span /a span style=" TEXT-DECORATION: underline COLOR: rgb(255,0,0)" /span /p
  • 跨尺度微纳米测量仪的开发和应用重大仪器专项启动
    3月20日,国家重大科学仪器设备开发专项&ldquo 跨尺度微纳米测量仪的开发和应用&rdquo 项目首次工作会议在市计测院举行。国家质检总局科技司副处长谢正文主持会议,清华大学院士金国藩、同济大学院士李同保、上海理工大学院士庄松林,国家质检总局科技司副司长王越薇、市质监局总工程师陆敏、市科委处长过浩敏等专家和领导出席会议。   会上,项目总体组、技术专家组、项目监理组、用户委员会和项目管理办公室宣布成立。会议报告了项目及任务实施方案,介绍了项目管理办法,并由专家现场进行了技术点评和项目管理点评。   王越薇对项目推进提出了具体工作要求。她要求项目所有单位本着为国家产业发展负责的精神,对项目予以高度重视。牵头单位要围绕总体目标,做细做实项目推进计划,项目各参与单位必须按时保质完成分目标,确保项目顺利推进。她要求加强项目的过程管理,制定并落实各项管理制度,对项目推进中出现的问题,要协调解决,必要时召开专题会议,并且做好包括基础数据、过程记录在内的档案管理。她还要求加强项目的财务管理,牵头单位和各参与单位都要重视财务管理,尤其要提高国家级重大项目的财务管理水平,确保项目经费的使用符合财务管理要求。最后,王越薇长还代表国家质检总局科技司表示,将尽全力做好项目实施单位与国家科技部的桥梁工作。   会上,陆敏要求市计测院勇于创新,集中力量确保项目顺利实施,并通过科研项目促进科研管理水平和能力的提高。   过浩敏感谢国家质检总局对项目的支持,肯定了重大专项对上海市创建具有国际影响力的科创中心的重要意义,并表示市科委将尽全力做好项目实施的地方配套服务工作。   &ldquo 跨尺度微纳米测量仪的开发与应用&rdquo 项目以我国近年来多项创新技术及市计测院科研成果为基础,突破我国在微纳米检测技术领域检测方法集成开发的诸多技术瓶颈,旨在攻克宏微联动多轴驱动和多测头集成、基于原子沉积光栅的纳米量值溯源等关键技术,研制用于计量、工业生产、产品检测中微形貌和几何尺寸测量的微纳米测量仪,并构建跨尺度、高精度微纳米测量与研发平台,为我国国防、航空航天、半导体制造业、微机电产业、大气污染物防治等领域提供有效的纳米计量技术支持和保障,提升我国高新技术产业中微纳米尺寸定量化测量的技术水平。   在国家质检总局的组织和指导下,项目经过近两年半时间的筹备和酝酿,于2014年10月获得国家科技部批准立项。项目牵头单位为上海计测工程设备监理有限公司,第一技术支撑单位为市计测院,16家参加单位涉及清华大学、上海交通大学、复旦大学、同济大学等国内顶级高校,以及中国工程物理研究院、国家纳米中心、中国科学院等国内顶尖研究机构。   项目研究过程中,将以产业需求为牵引,以实际应用为导向,注重基于国际先进技术基础上的集成创新和工程化、产业化开发,着力挖掘科研成果转化的潜力,提高我国微纳米测量科学仪器设备的自主创新能力和自我装备水平,并促进产、学、研、用的结合。项目完成后,将形成具有完全自主知识产权的仪器产品、附件、服务、标准等成果,能够填补国内空白,挑战国外仪器在相关领域的权威地位,促进纳米科技与经济紧密结合、科技创新与产业发展紧密融合,更树立国家在纳米制造、微电子、新型材料、超精密加工制造等领域的国际权威地位与话语权。
  • 欧波同应邀参加中国激光微纳加工技术大会
    2016 年 9 月 21-23 日,“中国激光微纳加工技术大会”在苏州召开。国内著名激光专家集结于此,共同商讨微纳加工,为推动苏州乃至全国的激光产业发展贡献力量。欧波同有限公司应邀出席了此次盛会并带来了报告分享,为激光行业注入了国际尖端的科技力量。 本次会议的三大主题分别为“激光微纳加工前沿技术”、“集成电路 IC、光伏、电子芯片等的激光处理”、“激光在电子产品、移动终端的工艺解决方案”。 欧波同高级工程师为与会专家学者带来了“欧波同微纳米结构显微分析系统解决方案”的精彩分享。介绍了欧波同旗下微纳米分析产品线,从光学微观形貌观察到电子光学纳米形貌的分析,以及能谱、背散射、背散射衍射、波谱、阴极荧光等一系列电镜辅助分析手段,为与会专家提供了一套完整的微纳米全系统实验室解决方案,充分拓展了蔡司显微镜在微纳米研究中的功能。 工程师还为与会专家学者现场展示了蔡司的显微镜设备,并与许多参会专家纷纷就自己在实际工作中遇到的问题进行了深入的交流探讨。 目前,微纳加工技术已成为国家科学技术发展水平的重要标志。近年来,微纳技术的出现促使微纳加工向其极限加工精度——原子级加工进行挑战。 未来,激光微纳加工技术市场前景将更加广阔,此次论坛的开展将有利于激光微加工技术的普及推广,帮助客户找到最适用的显微镜分析系统解决方案一直是欧波同所追求的方向,作为将国际尖端显微镜检测技术引进到中国的先驱,提高中国激光微纳加工技术的整体质量控制水平是我们的责任。希望通过我们的技术与服务,不断为中国各领域的质量检测和科研创新带来全新的视野!
  • 天津大学在纳米加工领域取得新进展
    超精密纳米制造技术体现了一个国家制造业的综合实力。近年来,纳米机械加工由于具有效率高、可靠性好、成本低等特点,被认为是最有发展潜力的纳米精度制造方法之一。但由于材料去除是在纳米尺度,传统加工理论不再完全适用,发展受到了限制。   近日,国际生产工程科学院(International Academy for Production Engineering - CIRP)公布了于2012年8月开展的历时一年的国际精密制造技术比对结果。其微工程工作委员会(Micro Engineering Working Group)对通过初选的11个研究小组提出了具体的比对样件及指标,各研究小组完成指定的样件制备后,隐去样件来源信息,由德国物理技术研究院会同爱尔兰根大学进行测量和评估。最终,仅有两个研究小组加工试件满足全部5项评价指标,天津大学微纳制造实验室房丰洲教授研究小组位列其一。   房丰洲领导的研究小组长期从事微纳米加工、复杂形面加工、超精密加工与检测的基础理论研究及新方法的探索。他们深入研究了材料纳米级去除表面的形成机理,揭示了材料在纳米尺度切削过程的推挤去除机制,在国际上首次通过切削技术获得粗糙度为1nm的单晶硅表面。研究小组提出的粒子注入辅助纳米加工(Nanometric machining of ion implanted materials&mdash NiIM)方法,通过粒子注入辅助方式改变被加工材料表层的可加工性能,实现硬脆材料平面及复杂形面的高效切削加工,解决了以往硬脆材料无法采用切削技术制造光学自由曲面的难题(CIPR Annals,2011,Vol.60/1, pp 527-530)。CIRP精密工程委员会原主席威克曼教授认为, NiIM方法是复杂形面纳米精度加工中最具发展前景的新方法。   基于微纳制造领域的深入研究与贡献,今年在哥本哈根举行的第63届CIRP大会上,房丰洲受邀做了题为&ldquo 光学自由曲面制造与检测&rdquo 的会议主题报告(Keynote paper)。这是自CIRP成立以来,国内学者第一次以第一作者身份发表主题报告。CIRP的主题报告是制造领域最权威的学术文献之一,对相关领域的研究具有重要的指导意义。   相关研究得到国家自然科学基金重大研究计划&ldquo 纳米制造的基础研究&rdquo 重点支持项目(项目资助号:90923038)等的资助。
  • NanoFrazor——纳米加工最新技术攻略
    科学技术不断发展的时代,功能结构的微纳米化不仅可以带来能源与原材料的节省,同时可以实现多功能的高度集成和生产成本的大大降低。微纳米加工技术主要分为直接加工技术和图形转移技术。直接加工技术有激光加工,聚焦离子束(FIB)刻蚀,Local Anodic Oxidation局部阳氧化(基于AFM),Dip Pen NanoLithography浸蘸笔纳米加工刻蚀等; 图形转移技术主要分为三个部分:薄膜沉积,图形成像(必不可少),图形转移。作为微纳加工工艺的核心,图形生成工艺可分为三种类型:(1) 平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,主要包括光刻技术(掩模,直写),电子束曝光(EBL);(2) 探针图形化工艺是利用高精度探针对样品或涂层进行逐点扫描成像技术,具有精度高,部分实现直写,3D加工等,代表技术有:热式扫描探针技术(NanoFrazor);(3) 模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术(NIL),还包括模压和模铸技术。 虽然目前微纳加工技术众多,但能够实现纳米(100nm以下)分辨率的结构加工仅有: 聚焦离子束刻蚀(FIB),纳米压印技术(NIL) 和 电子束曝光(EBL)。聚焦离子束刻蚀(FIB) 采用聚焦后的离子束撞击材料表面并实现去除基体材料的目的,可实现3D纳米结构直写,适用材料广泛,但加工精度不高;纳米压印NIL采用具有纳米微结构的模板将其上的图形转移到其他材质上,效率高,但模板本身需要其他工艺制备,一般采用EBL,模板价格昂贵,无法修改图形,适用于大批量生产;电子束曝光利用聚焦电子束将胶体改性,经过显影高可实现10 nm精度的加工,是传统高精度加工的典范,但其价格昂贵,操作繁杂,临近效应使得两个结构无法贴近。 瑞士Swisslitho公司的 3D纳米结构高速直写机NanoFrazor采用IBM苏黎世研究中心研发多年的热探针扫描刻写技术及新型的直写胶技术,创新地将基于热探针的纳米结构刻 写和基于冷探针形貌读取相结合,实现高精度3D 纳米结构的直写和实时的形貌探测功能。该技术创新获得R&D杂志2015年R&D top 100大奖。NanoFrazor凭借其10 nm的加工精度和0.1 nm精度的形貌探测能力,成为纳米加工领域的新技术。NanoFrazor技术特点:背热式扫描探针: Swisslitho采用特殊工艺,以Si材料制备背热式直写探针,其探针针直径小于5nm(图1)。通过改变针背部区域的掺杂量,实现电压控制下的局域加热,而探针其他位置不受影响。加热区温度高达1000℃,针温度可300-600℃。探针侧臂设计有热传感器用于形貌探测,形貌探测精度高达0.1 nm。性能的直写胶PPA: IBM苏黎世实验室开发的用于纳米加工的PPA直写胶(resist), 其特点在于当温度高于150℃,PPA会受热瞬间分解为有机分子单体,随着保护气排出。当加热的探针靠近PPA到一定范围,针附近的PPA会瞬间分解成气体分子,留下针形状的孔洞,而孔洞周围部分由于PPA热导率低而不受影响。有效避免了普通高分子材料的熔融堆积效应影响分辨率和针寿命。 多个探针的孔洞组合,形成高精度图形,通过控制下针的深度,可以实现3D纳米结构的加工。NanoFrazor书写的纳米结构欣赏:3D高速直写的结构和吉尼斯纪录制备在PPA胶和Si基底上的周期性结构 NanoFrazor无临近效应,非常容易制备临近的纳米结构,如蝴蝶结天线和周期性结构NanoFrazor能够实现纳米线,二维材料涂胶后无标记物的定位和形貌观察,并实施特定方向的形状,器件,电等设计 实现功能结构微纳米化的基础是先进的微纳米加工技术,微纳米加工中的更多技术细节的改善和优化是科研领域及仪器设备厂商不断追求的技术方向,NanoFrazor也在不断尝试更、更便捷,成为性价比更高的、更具实力的3D直写设备。相关产品:3D纳米结构高速直写机
  • 祝贺诺泽流体科技微纳米技术卓越中心正式成立
    诺泽流体科技微纳米技术卓越中心(以下简称技术中心)于2020年5月31日在上海正式成立,并邀请复旦药学院副院长王建新老师,中科院药物所课题组组长甘勇老师、张馨欣老师、苏州大学纳米学院执行院长刘庄老师及天津中医药大学博导刘志东老师出席揭幕仪式。 (诺泽总经理张锋和嘉宾一起揭幕)诺泽流体科技总经理张锋为嘉宾们先介绍公司两大核心产品,微射流均质机和超微粉气流粉碎机应用成果,后陪同嘉宾一起参观技术中心。(总经理张锋介绍产品的应用案例)技术中心建有符合GMP要求的C级净化间、分析室、小试粉碎间、规模生产区域;配备超微粉气流粉碎机(实验型、小试型 、中试型、生产型)、微射流均质机(实验型、中试型、生产型),高剪切、粉体特性测试仪、粒径检测设备等仪器,可满足工艺验证,实验用途代加工,放大生产,配置OEB5的粉碎隔离器,还可实现高活性原料药的微粉化。为众多企业解决从研发阶段、中试放大阶段以及大生产阶段的问题。 (参观技术中心)诺泽流体科技(上海)有限公司自2012年成立以来,一直秉承着安全、可靠、创新的理念,赢得全球众多高科技公司与知名药企的认可及一致性好评。此次,企业成立的技术中心,将为业界提供更专业、优质的技术解决方案服务。(诺泽员工与嘉宾合照留念)
  • 全球最小的三维纳米雄鸡贺卡,3D纳米激光直写设备NanoFrazor专业定制
    金鸡报晓已迎春,元宵临近聚福门,Quantum Design China恭祝大家新春愉快,元宵吉祥。上图这幅立体逼真的画作是 Quantum Design China专为您打造的新年特别礼物。看到图像右面的坐标轴,是不是很惊讶?没错,这不是一幅手绘作品,而是借助SwissLitho公司制造的3D纳米结构高速直写设备—NanoFrazor专业定制的三维纳米雄鸡贺卡! 这幅雄赳赳气昂昂的鸡年贺卡,其尺寸仅有10μm*10μm,深度差为50nm,是目前全球小的三维纳米鸡年贺卡。整只雄鸡的微纳尺寸,以及鸡身立体的轮廓和清晰的线条,都体现了3D纳米结构高速直写机NanoFrazor让人膜拜的高直写精度(XY: 10nm, Z: 1nm)、高形貌感知灵敏度(0.1nm),另外还有高速直写,无需显影,实时观察直写效果,无临近效应,无电子/离子损伤等有的特点。 NanoFrazor纳米3D结构直写机的问世,源于发明STM和AFM的IBM苏黎世研发中心,是其在纳米加工技术的新研究成果。NanoFrazor纳米3D结构直写机采用直径为5nm的探针,通过静电力控制实现直写3D高精度直写,并通过悬臂一侧的热传感器实现实时的形貌探测,次将纳米尺度下的3D结构直写工艺快速化、稳定化。该技术自问世以来已经多次刷新了上小3D立体结构的尺寸,创造了上小的马特洪峰模型,小立体地图,小刊物封面等记录。2016年10月,瑞士Swisslitho公司又发布了一款NanoFrazor Scholar,这款小型的纳米加工设备竟然可以放置在实验室桌面上,而且分辨率依然可达到XY:10nm;Z:2nm,轻松实现小于20nm的线宽与间距,更加便于课题组内进行纳米原型器件、微纳光学/光子学/磁学,NEMS、超材料等领域纳米机构与器件的设计与制备,是纳米结构和器件加工制备领域的之选。 2017的年味儿少不了科学的情怀,少不了我们对未知的探索和追求,带着NanoFrazor专业定制的全球小的三维纳米雄鸡贺卡,Quantum Design China祝愿大家在新的科学年中创意无限,收获满满!2017,Quantum Design China将继续伴您左右,提供丰富、的科研设备,便捷、专业的售后服务,助力您的科学研究更有说服力,更具创造力! 相关产品: 3D纳米结构高速直写机NanoFrazor: http://www.instrument.com.cn/netshow/C226568.htm小型台式无掩模光刻系统: http://www.instrument.com.cn/netshow/C155920.htm
  • 新发现对进行微纳加工等具有重要指导意义
    近日,西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心研究生余倩在导师孙军、肖林等指导下,与美国宾夕法尼亚大学李巨教授、丹麦瑞瑟国家实验室黄晓旭博士合作,对微小尺度金属单晶材料中的孪晶变形行为及其对材料力学性能的影响进行了深入研究,发现单晶体外观尺寸对其孪晶变形行为的强烈影响,以及相应材料力学性能的显著变化。该研究结果发表在1月21日出版的《自然》杂志上。   孙军等通过实验设计,基于六方晶体结构金属孪晶、位错滑移变形的特异性,选取钛—5%铝合金单晶中以孪晶变形为主导塑性变形方式的晶体取向,有针对性地研究了孪晶变形在微小尺度材料中的行为规律和机理。结果发现,当外观几何尺度减小到微米量级时,与相应宏观块体材料相同,材料的塑性变形仍以孪晶切变为主,但材料的屈服强度及其塑性变形中能够承受的最大流变应力均有显著的提高。但当晶体的外部几何尺度进一步减小到亚微米量级时,其塑性变形方式将发生根本性转变:孪晶变形被位错滑移变形所取代。而发生这一转变的临界特征晶体尺寸为1微米左右,远大于多晶纳米材料强度极值对应的20纳米。文中提到,由于仅有1%左右的位错可作为极轴,而晶体尺寸愈小,就愈难于利用螺型位错的极轴作用将两个相邻的滑移面有效耦合在一起形成孪晶,从而解释了孪晶变形具有强烈的晶体尺寸效应和“尺寸愈小、强度愈高”的内在原因。   该研究结果对于系统认识微小尺度材料的力学行为有着十分重要的作用。对于微电子元器件与微机电系统所用材料的性能表征评价与设计,特别是利用其强度的强烈晶体尺度效应进行微纳加工等具有重要指导意义。
  • 普洛帝多维跨越创造液体颗粒检测新高度 发布全新品类微纳米检测设
    普洛帝多维跨越创造液体颗粒检测新高度发布全新品类微纳米检测设备 [导读]英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,本系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨两个大单位级,是微纳米检测相融合的全新品类的技术型产品。 可用于微纳米微粒检测的PMT-2液样颗粒分析仪英国普洛帝近期宣布,在全球范围内发布其核心激光颗粒检测技术型新产品—液样颗粒分析仪,并与2017年3月伦敦、纽约、北京三地同时上市,2017年5月将会向世界所有行业开放订购渠道。PULUODY/普洛帝PMT-2系列产品是普洛帝在第七代双激光窄光检测技术基础上接入原纳米检测技术研发而成,横跨三大单位级,是毫米、微米和纳米检测相融合的全新品类的技术型产品。PMT-2创新点多维跨越 创造液体颗粒检测新高度测试精度高 - 重新定义微米级别的检测(0.01微米或10纳米)检测误差小 - 双激光窄光技术一检测二核查的检测思维分析浓度高 - 创新构造传感器技术(PMT创新检测技术) 在线监测、便携移动式检测、实验室离线分析等多方式集于一体手机APP、PC分析、远程LAN监控等控制方式可多操作途径可实现纳米、微米和毫米减的一键切换应用于医药类微粒检测、油品类颗粒度检测和零部件清洁度监测知识链接:随着个人掌上电脑、数码产品的丰富,工业PC、商业电脑及各类工控设备的发展更新,电子半导体领域日新月异,对于生产过程中的污染物监测尤为重要。工业中的清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污染物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。产品是由零件经过设备加工装配而成,所以清洁度分为零件清洁度和产品清洁度。产品的清洁度与零件的清洁度有直接的关系,同时还与生产工艺过程、车间环境、生产设备及人员有密切关系。PULUODY/普洛帝PMT-2将会对污染物的种类、形状、尺寸、数量、重量等项目上进行相关的数据分析,并保证分析的误差、准确度和重复性,成为工业企业中污染物控制设备的有力检测工具。企业链接:油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!029-85643484
  • 重磅新品!Nanoscribe全能双光子微纳加工系统Quantum X shape
    Quantum X shapeReshaping precision,output,usabilityQuantum X shape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。作为2019年推出的第一台双光子灰度光刻 (2GL ® ) 系统Quantum X的同系列产品,Quantum X shape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到最高水平的生产力和打印质量。作为一款真正意义上的全能机型,该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。Quantum X shape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等)。作为Nanoscribe的新型高精度3D打印系统,Quantum X shape可自由设计几乎任何2.5D或3D形状的结构,并提供大尺寸高质量结构制作。Reshaping precision.作为已被工业界认可的Quantum X平台的二代加工系统,Quantum X shape在3D微纳加工领域无与伦比的精度,比肩于Nanoscribe公司在表面结构应用上突破性的双光子灰度光刻(2GL ® )。全新的Quantum X shape的高精度有赖于其最高能力的体素调制比和超精细处理网格,从而实现亚体素的尺寸控制。此外,受益于双光子灰度光刻对体素的微调,该系统在表面微结构的制作上可达到超光滑,同时保持高精度的形状控制。双光子聚合(2PP)是一种可实现最高精度和完全设计自由度的增材制造方法。而作为同类最佳的3D微加工系统Quantum X shape具有下列优异性能:在所有空间方向上低至 100 纳米的特征尺寸控制,适用于纳米和微米级打印制作高达 50 毫米的目标结构,适用于中尺度打印左图:机械器件的快速高精度小批量生产。200个结构的通宵产量右图:使用Nanoscribe微纳加工技术制作的3D微针,轻松实现具有高纵横比,形状精度和锋利边缘的不同设计变化Reshaping output.高速3D微纳加工系统Quantum X shape可实现一流形状精度和高精度制作。这种高质量的打印效果及产量是结合了最先进的振镜系统和智能电子系统控制单元的结果,同时还离不开工业级飞秒脉冲激光器以及平稳坚固的花岗岩操作平台。Quantum X shape具有先进的激光焦点轨迹控制,可操控振镜加速和减速至最佳扫描速度,并以 1 MHz 调制速率动态调整激光功率。Quantum X shape 带有独特的自动界面查找功能,可以以低至 30 纳米的精度检测基板表面。这种在最高扫描速度下的纳米级精度体现,再加上自校准程序,可在最短的时间内实现可靠和准确的打印,为 3D 微纳加工树立了新标杆。这些优异的性能使Quantum X shape 成为快速原型制作和应用于微纳光学、微流体、材料表面工程、MEMS 等其他领域中晶圆级规模生产的理想工具。Reshaping usability.通过系统集成触控屏控制打印文件来大大提高实用性。通过系统自带的nanoConnectX软件来进行打印文件的远程监控及多用户的使用配置,实现推动工业标准化及基于晶圆批量效率生产。Quantum X shape作为具备光敏树脂自动滴配功能的直立式打印系统,非常适合标准6英寸晶圆片工业批量加工制造。用户还可以通过设备的集成触控屏直接或远程访问Quantum X shape打印系统来控制打印作业。通过远程访问软件nanoConnectX ,用户可以看到触控屏的显示选项并操控所有功能,实现从任何地方启动、监控和控制连接打印系统的打印作业进程。这使得整个小组成员(例如研究小组或部门所有成员)均可在个人电脑访问打印系统。实现了最低限度减少实验室准备时间,简化并提高整个制备、执行和监控打印作业效率,并在共享系统时大大提升团队协作。nanoConnectX远程访问软件实现任意电脑连接到Quantum X shape系统进行远程执行,检查和控制整个打印作业。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 清华大学《PNAS》:基于极小曲面的微纳米点阵材料的优异力学性能
    作为一种新兴的力学超材料,三维微纳米点阵材料具有低密度、高模量、高强度、高能量吸收率和良好的可恢复性等优异的力学性能,极大地拓展了已有材料的性能空间。如何通过拓扑结构设计获得具有优异力学性能的三维微纳米点阵材料是固体力学领域的研究热点之一。微纳米点阵材料通常由具有特定结构的单胞在三维空间中周期阵列形成。根据组成单胞的基本元素的种类,可以将三维微纳米点阵材料分为基于桁架(truss)、平板(plate)和曲壳(shell)三种类型。目前,基于桁架的微纳米点阵材料已经表现出良好的力学性能,但其节点处的应力集中限制了其力学性能的进一步提升。近年来的研究表明,基于平板的微纳米点阵材料可以达到各向同性多孔材料杨氏模量的理论上限,然而其闭口的结构特点为其通过增材制造的手段进行制备带来了挑战。相比之下,具有光滑、连续、开口特点的曲壳结构则在构筑具有优异力学性能的微纳米点阵材料方面具有天然的优势。近期,清华大学李晓雁教授课题组采用面投影微立体光刻设备(microArch S240,摩方精密BMF)制备了特征尺寸在几十至几百微米量级的多种桁架、平板和曲壳微米点阵材料。所研究的结构包括Octet型和Iso型两种桁架结构、cubic+octet平板结构以及Schwarz P、I-WP和Neovius三种极小曲面结构。其中,cubic+octet平板结构是早先研究报道的能够达到各向同性多孔材料杨氏模量理论上限的平板结构。该团队通过原位压缩力学测试研究并对比了多种不同结构的微米点阵材料的变形特点和力学性能。结果表明,相对密度较大时,I-WP和Neovius曲壳微米点阵材料与cubic+octet平板点阵材料类似,在压缩过程中呈现均匀的变形特点。而Octet型和Iso型两种桁架点阵则在压缩过程中形成明显的剪切带,发生变形局域化。相应地,I-WP和Neovius两种曲壳点阵和cubic+octet平板点阵具有比桁架点阵更高的杨氏模量和屈服强度,这与有限元模拟的结果一致。有限元模拟同时揭示了曲壳和平板单胞具有优异力学性能的原因在于其在压缩过程中具有更均匀的应变能分布,而桁架单胞节点处存在明显的应力集中,其节点处及竖直承重杆件的局部应变能甚至可以达到整体结构平均应变能的四倍以上。该研究表明,基于极小曲面的点阵材料能够表现出比传统的桁架点阵材料更为优异的力学性能,同时其光滑、连续、无自相交区域的特点使得其在构筑结构功能一体化的微纳米材料方面具有重要的应用前景。图1. (A-F) 多种桁架、平板及曲壳单胞结构;(G-L)采用面投影微立体光刻技术制备的多种不同结构的聚合物微米点阵材料图2. 利用面投影微立体光刻技术制备的聚合物微米点阵材料原位压缩力学测试结果。(A-F)工程应力-应变曲线;(G-L)不同结构的点阵材料在加载过程中的典型图像(标尺为2 mm) 图3. 周期边界条件下不同单胞结构单轴压缩的有限元模拟结果。(A-B)归一化杨氏模量和屈服强度随相对密度的变化;(C-H)不同单胞结构的应变能分布
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 微纳加工薄膜应力检测的国产化破局
    1.为什么要检测薄膜应力?薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,直接影响着薄膜器件的稳定性和可靠性,薄膜应力过大会引起以下问题:1.膜裂;2.膜剥离;3.膜层皱褶;4.空隙。针对薄膜应力的定量化表征是半导体制程、MEMS微纳加工、光电薄膜制备工艺流程中品检、品控和改进工艺的有效手段。(见图一)图一、薄膜拉/压内应力示意图(PIC from STI 2020: Ultraviolet to Gamma Ray, 114444N)2.薄膜应力测试方法及工作原理目前针对薄膜应力测试方法主要有两种:X射线衍射法和基片轮廓法。前者仅适用于完全结晶薄膜,对于纳米晶或非晶薄膜无法进行准确定量表征;后者几乎可以适用于所有类型的薄膜材料。关于两种测试方法使用范围及特点,请参考表一。表一、薄膜应力测试方法及特点测试方法适用范围优点局限X射线衍射法适用于结晶薄膜1.半无损检测方法;2.测量纯弹性应变;3.可测小范围表面(φ1-2mm)。1.织构材料的测量问题;2.掠射法使射线偏转角度受限;3.X射线应力常数取决于材料的杨氏模量E;4.晶粒过大、过小影响精度。基片轮廓法几乎所有类型的薄膜材料激光曲率法:1.非接触式/ 无损;2.使用基体参数,无需薄膜特性参数;3.大面积测试范围、快速、简单。1.要求试样表面平整、反射;2.变形必须在弹性范围内;3.毫米级范围内平均应力。探针曲率法(如台阶仪):1.使用基体参数,无需薄膜特性参数;2.微米级微区到毫米级范围。1.接触式/有损;2.探针微米级定位困难导致测量数据重复性不够好。速普仪器自主研发生产的FST5000薄膜应力测量仪(见图二)的测试原理属于表一中的激光曲率法,该技术源自于中国科学院金属研究所和深圳职业技术学院相关研究成果转化(专利号:CN204854624U;CN203688116U;CN100465615C)。FST5000薄膜应力测量仪利用光杠杆测量系统测定样片的曲率半径,参见图三FST5000薄膜应力测量仪技术原理图。其中l和D分别表示试片(Sample)和光学传感器(Optical Detector)的移动距离, H1和H2分别表示试片与半透镜(Pellicle Mirror),以及半透镜与光学传感器之间的光程长。 图二、速普仪器FST5000薄膜应力测量仪示意图图三、FST5000薄膜应力测量仪技术原理图3.速普仪器FST5000薄膜应力测量仪技术特点及优势a.采用双波长激光干涉法,利用Stoney公式获得薄膜残余应力。该方法是目前市面上主流测试方法,包括美、日、德等友商均采用本方法,我们也是采用该测量方法的国内唯一供应商。并且相较于进口友商更进一步,速普仪器研发出独特的光路设计和相应的算法,进一步提高了测试精度和重复性。通过一系列的改进,使我们的仪器精度在国际上处于领先地位。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)b.自动测量晶圆样品轮廓形貌、弓高、曲率半径和薄膜应力分布。我们通过改进数据算法,采用与进口友商不同的软件算法方案,最终能够获得薄膜应力面分布数据和样片整体薄膜应力平均值双输出。(参考中国软件著作权:FST5000测量软件V1.0,登记号:2022SR0436306)c.薄膜应力测试范围:1 MPa-10 GPa,曲率半径测试范围:2-20000m。基于我们多年硬质涂层应力测试经验,以及独特的样品台设计和持续改进的算法,FST5000薄膜应力测量仪可以实现同一台机器测试得到不同应用场景样品薄膜应力。具体而言,不但可以获得常规的小应力薄膜结果(应力值<1GPa,曲率半径>20m),同时我们还能够测量非常规小曲率半径/大应力数值薄膜(应力值>1GPa,曲率半径<20m)。目前即使国外友商也只能做到小应力测试结果输出。d.样品最大尺寸:≤12英寸,向下兼容8、6、4、2英寸。FST5000薄膜应力测量仪能够实现12英寸以下样品测试,主要得益于我们独特的样品台设计,光路设计及独特的算法,能够实现样品精准定位和数据结果高度重复性。(参考专利:ZL201520400999.9;ZL201520704602.5;CN111060029A)e.样品台:电动旋转样品台。通过独特的样品台设计,我们利用两个维度的样品运动(Y轴及360°旋转),实现12英寸以下样品表面全部位置覆盖及精准定位。(参考专利:ZL201520400999.9)f.样品基片校正:可数据处理校正原始表面不平影响(对减模式)。通过分别测量样品镀膜前后表面位形变化,利用原位对减方式获得薄膜残余应力面型分布情况。同样得益于我们独特的样品台设计和光路设计,保证镀膜前后数据点位置一一对应。4.深圳市速普仪器有限公司简介速普仪器(SuPro Instruments)成立于2012年,公司总部位于深圳市南山高新科技园片区,目前拥有北京和苏州两个办事处。速普仪器是国家高新技术企业和深圳市高新技术企业。公司拥有一群热爱产品设计与仪器开发的成员,核心团队来自中国科学院体系。致力于材料表面处理和真空薄膜领域提供敏捷+精益级制备、测量和控制仪器,帮助客户提高产品的研发和生产效率,以及更好的品质和使用体验。速普仪器宗旨:致力于材料表面处理和真空薄膜领域提供一流“敏捷+精益”级制备、测量和控制仪器。速普仪器核心价值观:有用有趣。
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 中科院发明砷的微纳米电化学检测新方法
    近期,中科院合肥研究院智能所仿生功能材料与传感器件研究中心&ldquo 百人计划&rdquo 黄行九研究员和973首席科学家刘锦淮研究员领导的课题组研究人员在砷的微纳米电化学检测中取得新进展。   长期以来,地下水砷污染问题已成为世界性的环境问题,已被世界卫生组织称为&ldquo 人类史上最大的危害&rdquo 。实现地下水环境中砷的痕量、高准确性、高选择性检测,是正确评估环境污染的关键所在,可为环境管理和规划、污染防治提供科学依据。近几年来,该课题组研究人员一直致力于探索纳米材料应用于电分析行为实现环境中无机砷的可行性检测。通过对相关文献的调研、总结归纳,提出了自身对电分析技术检测无机砷的认识与理解。该研究成果也以综述形式发表在顶级分析化学杂志&mdash 《分析化学发展趋势》上。   近期,智能所科研人员从实际应用的角度出发,依托内蒙古托克托县兴旺庄村地下水为背景,通过简易方式构建了金丝微纳米结构电化学电极,从多方面系统研究了其应用于地下水砷的电化学检测问题,并讨论地下水无机离子及有机质分子对砷检测的影响规律,实现了复杂地下水环境中砷的高效准确灵敏检测,可针对大量监测点砷污染情况进行实时分析。同时也提供了一种可实现高效稳定在线检测砷的方法。研究论文发表在环境类知名期刊《危险材料杂志》上。   以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。 金丝微纳结构电极实现复杂环境中As(III)的电化学检测
  • 990万!南京大学微纳米X射线三维成像系统采购项目
    一、项目基本情况项目编号:ZH2024020078(2440SUMEC/GXGG1056)项目名称:微纳米X射线三维成像系统预算金额:990.000000 万元(人民币)最高限价(如有):990.000000 万元(人民币)采购需求:序号名称数量1微纳米X射线三维成像系统1具体详见招标文件第四章招标技术规格及要求合同履行期限:合同签订后2个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月07日 至 2024年05月11日,每天上午9:00至11:30,下午14:00至17:30。(北京时间,法定节假日除外)地点:江苏苏美达仪器设备有限公司,南京市长江路198号14楼方式:详见其它补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京大学     地址:南京市栖霞区仙林大道163号        联系方式:王老师 025-89688969      2.采购代理机构信息名 称:江苏苏美达仪器设备有限公司            地 址:南京市长江路198号            联系方式:文件发售:李婧怡025-84532580,技术咨询:王嘉卉 025-84532585、黄丹025-84531274            3.项目联系方式项目联系人:黄丹电 话:  025-84531274
  • 关键芯片开发至关重要,高端仪器的开发离不开高端芯片—访苏州纳米所纳米加工平台曾中明主任
    近日,中科院苏州纳米所纳米加工平台曾中明主任出席了第十三届纳博会。展会现场,仪器信息网就微纳加工技术应用、技术研发挑战、微纳加工设备国内外现状等话题采访了曾中明主任。曾中明主任表示,高端传感器、处理器等芯片严重依赖进口,亟需国家大力支持......更多观点请查看视频以下是对中科院苏州纳米所纳米加工平台曾中明主任的现场采访视频:2022年3月1-3日,由科技部、中国科学院指导,中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会(CHInano 2023)在苏州国际博览中心举行。本届纳博会为期3天,聚焦第三代半导体、微纳制造、纳米新材料、纳米大健康等热门领域,开设1场大会主报告、11场专业论坛、344场行业报告、22000平米展览、2场创新创业大赛,包括19位院士在内的300余位顶级专家、行业精英齐聚一堂,新技术、新产品、新成果集中亮相,为大家奉上一场干货满满、精彩纷呈的科技盛会,推出专业论坛、创新赛事、沉浸式游学等系列活动,全方位释放大会红利,推动产业生态建设,共绘美好发展蓝图。回望过去,寄语未来。展会现场,仪器信息网采访了15位专家、厂商代表,分别谈了各自的与会感受以及他们眼中中国半导体、MEMS、OLED、半导体设备、科学仪器、微流控、封装技术等产业的发展现状和前景展望。
  • 国家纳米科学中心“微纳技术检测及应用”系列标准宣贯会通知
    标准是经济活动和社会发展的技术支撑,是国家基础性制度的重要方面。新时代推动新质生产力的高质量发展、全面建设社会主义现代化国家,迫切需要进一步加强标准化工作。国家纳米科学中心是全国纳米技术标准化技术委员会(SAC/TC279)、全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)和全国微细气泡技术标准化技术委员会(SAC/TC584)秘书处所在单位,同时,也是国际标准化组织纳米技术委员会(ISO/TC229)和国际电工委员会纳米电工产品与系统技术委员会(IEC/TC113)、国际标准化组织微细气泡技术委员会(ISO/TC584)对口单位。为深入贯彻实施《国家标准化发展纲要》以及《2024年全国标准化工作要点》相关要求,国家纳米科学中心拟于5月30日~31日在北京举办“微纳技术检测及应用”标准宣贯会,旨在为纳米技术、颗粒技术和微细气泡技术标准化工作搭建沟通平台,深化标准化交流合作,加强标准化宣传,同时也为从事检测工作的科研和技术人员增进对标准制定、检测标准方法、标准应用等工作的了解提供广阔的平台,促进检测标准化的发展,提升业界标准化技术支撑水平。会议组织单位主办单位:国家纳米科学中心协办单位:上海中晨数字技术设备有限公司会议时间及地点会议时间:2024年5月30日~31日(会议30日09:00开始)注册时间:2024年5月29日15:00-17:00 2024年5月30日08:00-09:00会议地点:北京 国家纳米科学中心(北京市海淀区中关村北二条)会议日程*日程尚在更新中,以现场最终日程为准扫码报名主讲老师▣ 国家市场监督管理总局国家标准技术审评中心▣ 全国纳米技术标准化技术委员会(SAC/TC279)专家▣ 全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会(SAC/TC168SC1)专家▣ 全国微细气泡技术标准化技术委员会(SAC/TC584)专家▣ 纳米技术、颗粒表征、微细气泡等相关技术标准首席起草人参会对象▣ 各省市、各行业和地方从事纳米技术、颗粒表征、微细气泡标准化研究和管理人员▣ 2024年有新标准制修订项目立项的起草团队人员▣ 2024年拟申请新标准制修订项目的起草团队成员▣ 国际标准拟注册及在册专家及项目团队成员注册费及缴费方式▣ 请参加会议人员在线填写以下参会回执▣ 会议费用为1200元/人(主要用于邀请讲课教师及相关标准资料购买)▣ 本次会议食宿费用自理▣ 请于开会前将会议费汇到国家纳米科学中心,备注“标准宣贯会议费+参训人姓名”,并邮件zhoul2024@nanoctr.cn告知汇款结果▣ 会议费为电子发票,邮件到参会代表报名时提供的邮箱账户名称: 国家纳米科学中心开 户 行: 建设银行北京中关村分行账 号:1100 1007 3000 5926 1021展位招商▣ 会议诚招展商,面向本次参会代表和国家纳米科学中心全体师生,提供三天的展示▣ 展商费用为10000元/席(设6席)会议联系人国家纳米科学中心周老师 18311283997 zhoul2024@nanoctr.cn 高老师 010-82545672 13811507217 gaoj@nanoctr.cn
  • 王晓东:干法刻蚀引领半导体微纳加工
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。会议期间,中科院半导体所、集成电路工程研究中心的王晓东研究员做了题为《半导体微纳加工中的硅干法刻蚀技术》的报告。 /p p style=" text-align: justify text-indent: 2em " 硅干法刻蚀即等离子体刻蚀技术,相对于湿法刻蚀,具有更好的各向异性,工艺重复性,且能降低晶圆污染几率,因此成为了亚微米下制备半导体器件最主要的刻蚀方法。在此次报告中,王晓东研究员介绍了三种不同的硅干法刻蚀技术。 /p p style=" text-align: justify text-indent: 2em " 据介绍,硅干法刻蚀的物理机制,主要包括物理溅射刻蚀、纯化学刻蚀、化学离子增强刻蚀和侧壁抑制刻蚀等。影响硅干法刻蚀效果的因素主要有三类:一是等离子体密度和能量,通过配备两套射频源,ICP和RF射频源来分别控制;二是腔室气压,由于鞘层的存在,一般需要气压小于100 mtorr使得离子平均自由程大于鞘层宽度;三是刻蚀气体选择,气体需要根据反应生成物是否容易去掉来选择,首选挥发性产物。 /p p style=" text-align: justify text-indent: 2em " 王晓东研究员重点介绍了三种硅干法刻蚀技术,即Bosch、Cryo、Mixed。Bosch通常刻蚀特征尺寸>1 μm,刻蚀深度>10 μm,刻蚀结果深且宽,即深硅刻蚀;Cryo即所谓的低温工艺,可以得到平滑侧壁以及纳米尺寸结果;Mixed刻蚀深度<10 μm,具有低的深宽比,也即浅硅刻蚀。 /p p style=" text-align: justify text-indent: 2em " 深硅刻蚀(Bosch)是目前应用最广泛,发展最成熟的硅刻蚀工艺。Bosch最初的基本工艺过程(Basic Bosch Process)就是钝化和刻蚀交替进行。此后,在其中加入轰击过程,发展出先进工艺(Advanced Bosch Process),即钝化、轰击和刻蚀三个过程不断循环,以此达到深硅刻蚀目的。Bosch工艺的优势是高速率、高各向异性和高选择比。其劣势为工艺复杂,晶片状况影响工艺过程,存在侧壁scallop等。同时,深硅刻蚀也存在一些典型的刻蚀问题:一是刻蚀剖面控制,如Undercut、Bowing、Bottling、Trenching、Footing等问题;二是负载效应,随硅暴露面积的增加,刻蚀速率和刻蚀均匀性都会降低,通常减少腔体气压可解决此问题;三是ARDE问题,即随着刻蚀深宽比的增加,刻蚀速率会下降,一般可通过增加沉积保护气体气压,增宽离子的角分布和加入刻蚀截止层等解决;四是Notching问题,即由于电荷积累造成钻蚀,可采用低频脉冲模式LF Pulse Mode来解决。 /p p style=" text-align: justify text-indent: 2em " 除深硅刻蚀外,下电极温度在液氮-100 ℃下,可以进行比较精细的刻蚀—低温刻蚀(Cryo)。与深硅刻蚀相比,其工艺气体不同,一般为SF sub 6 /sub 和O sub 2 /sub ,生成物SiO sub x /sub F sub y /sub 在-85 ℃时很容易形成,在室温下即可挥发,腔室环境非常干净。因此低温刻蚀可以得到侧壁光滑,undercut很小,选择比高的结果。但此时光刻胶会受影响,所以胶的厚度不能太厚,通常小于1.2 μm,且需要进行合适的烘烤,防止胶裂。 /p p style=" text-align: justify text-indent: 2em " 最后一种就是浅硅刻蚀(Mixed),即在相对较浅的刻蚀中(<10 μm),多采用同步刻蚀方法,钝化和刻蚀同步进行,所以也称同步工艺。与深硅刻蚀不同,浅硅刻蚀的刻蚀性气体与聚合物生成气体同时输入腔室,刻蚀和钝化同步进行,导致钝化和刻蚀的作用会在很大程度上抵消一部分,所以实现了光滑的侧壁(<100 nm)。但这使得刻蚀环境十分复杂,工艺窗口相对较窄,工艺重复性控制难度较大。与多步刻蚀相比,采用同步刻蚀方法进行刻蚀时,为获得较高的刻蚀速率和各向异性,刻蚀中所用射频功率和偏压较高,导致刻蚀材料和掩模之间的选择比低,刻蚀结果对掩模质量依赖性较强,对掩模材料和质量要求高。 /p p style=" text-align: justify text-indent: 2em " 在报告最后,王晓东研究员还介绍了半导体所在微纳器件制备中如MEMS、纳米波导、纳米线器件等方面的大量工作。 /p p style=" text-align: justify text-indent: 2em " 随着亚微米下制备半导体器件需求的增加,硅干法刻蚀技术也显得越来越重要,而半导体所所级公共技术服务中心具备上述技术能力。同时这是一个开放的平台,如果有相应的需求也可以进行合作参与。 /p
  • 全球纳米压印光刻技术尚处于产业化初期阶段——访青岛天仁微纳董秘刘兵
    仪器信息网讯 8月29日,全国半导体设备和材料标准化技术委员会微光刻分技术委员会第四届微光刻分委会年会暨第十三届微光刻技术交流会在青岛成功召开。会议期间,仪器信息网特别采访了青岛天仁微纳科技有限公司董事会秘书刘兵。据介绍,天仁微纳主要提供纳米压印光刻设备及整体解决方案,产品主要应用于显示光学、生物芯片等领域。纳米压印光刻产业化应用时间不长,目前还处于产业化初期阶段。刘兵认为,纳米压印光刻技术或设备将来应用范围会非常广泛。以下为现场采访视频:
  • CIMNE-2009中国(上海)国际微纳米新技术会议
    我公司将参加2009年4月1日-3日在上海光大国际酒店举办的 &ldquo CIMNE-2009中国(上海)国际微纳米新技术会议&rdquo 展位号:B129 并将在&ldquo 材料科学与技术&rdquo 分会场为您提供&ldquo 纳米材料制备与表征的创新技术与应用&rdquo 的报告 届时欢迎您的光临指导
  • Nanoscribes3D微纳加工技术 - 光谱学3D非球面微透镜研发
    近日,一个由华沙大学物理系,日本筑波物质材料研究所以及法国格勒诺布尔国家科学研究中心所组成的国际科研团队的科学家们通过运用Nanoscribe的3D微纳加工技术设计出了如头发丝般细小的纳米级3D非球面微透镜组。此款具有3D形状的微透镜组可以更大程度从半导体样品导入光源,并将射出部分光源重整为超窄光束。这一突破性的研究成果可替代用于光学测量的实验装置中笨重的显微镜物镜。该微透镜增加了两个数量级的可用工作距离(即透镜前端到样品表面之间的距离),为各种光学实验开辟了全新视角。此外,该3D微透镜也可以在不同材料(包括易碎的石墨烯类材料)上进行3D打印制作。图片来自华沙大学Aleksander Bogucki教授:使用Nanoscribe双光子微纳3D打印设备Photonic Professional系列在短时间内制作的3D非球面微透镜阵列。微透镜的优点透镜是一种人们非常熟悉的光学元件,它属于被动光学元件,在光学系统中用来会聚、发散光辐射。随着科学技术的进步,传统方法制造出来的光学元件已经不能满足当今科技发展的需要了。而利用微光学技术所制造出的微透镜和微透镜阵列以其体积小、重量轻、便于集成化、降低制造和包装成本等优点,已然成为新的科研发展方向。微透镜用处广泛,可用于例如照明,显示器,传感器和医疗设备等领域。有效地进行光的传输和收集,对于微光学系统的性能和潜能有着至关重要的作用。通常,我们会运用不同的方式来增加全内反射临界角或减少界面处的菲涅尔反射,例如在光源发射器下方放置镜子,在防放射层上覆盖基材表面以减少内部反射等。在对于半导体纳米结构,通常会使用半球形的固体浸没透镜(SIL)来解决问题。通过三维减材制造制造的SIL可以增加23%甚至40%的光子提取。但是,这些方法都不能达到令人满意的效果,仍然需要借助使用具有高数值孔径的聚光光学器件。而科学家们此次通过使用Nanoscribe3D激光直写技术(DWL)制造的椭圆微透镜(μ透镜)适用于光谱测量中的点光源发射器。基于菲涅耳反射的减少和全内反射的临界角的增加的原理,该非球面透镜成倍提高了光的提取效率。此外,还将收集的光源重整为超低发散光束(测得的光束发散半角小于1°)。因此,发出的光可以直接以约600-700 mm的有效WD引入聚光光学器件,这是标准的高NA长WD显微镜物镜的70倍。在传统实验中,科学家们通常会将重达半公斤,几乎手掌大小的重型显微镜物镜放置在距离分析样品几毫米的位置上。显而易见,这会限制很多现代实验的操作和可行性,例如在脉冲高磁场,低温或微波腔中的测量实验。而这款基于Nanoscribe3D微纳加工技术具有微型化和轻便特性的非球面微透镜则可以轻松解决这类问题。科学家们对该非球面微透镜阵列在两种类型的半导体发射器上的性能已得到验证:自组装量子点(QDs)和新型准二维材料制成的范德华异质结构(van der Waals heterostructures)。3D微纳加工技术应用于微透镜阵列Nanoscribe的双光子微纳3D打印设备具有极大设计自由度的特点,因此可以轻松制作出具有光学质量表面的各种光学元件,例如球形,非球形甚至自由曲面的微透镜。此外,Nanoscribe的3D微纳打印设备速度很快,在短时间内即可以实现在样品上打印数百个微透镜,并按规则或随机排列阵列,用来实现微透镜阵列的不同新功能及应用。相关文献:"Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses" - Nature :Light:Science & Applicationshttps://www.nature.com/articles/s41377-020-0284-1更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 双光子灰度光刻微纳打印设备
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制