当前位置: 仪器信息网 > 行业主题 > >

微细金属

仪器信息网微细金属专题为您整合微细金属相关的最新文章,在微细金属专题,您不仅可以免费浏览微细金属的资讯, 同时您还可以浏览微细金属的相关资料、解决方案,参与社区微细金属话题讨论。

微细金属相关的论坛

  • 雾化微细粒子

    雾化微细粒子在测完气密性后,人工候拔不出来,超声也试过了,不能[img]https://ng1.17img.cn/bbsfiles/images/2022/03/202203011433125300_5803_5368288_3.png[/img]

  • 五花肉被传有助排出雾霾中重金属 韩国人疯购

    发布日期:2013-12-09 来源:环球网 【环球网综合报道】据韩国《首尔经济》12月8日报道,有消息称,猪五花肉和矿泉水能帮助排出雾霾中含有的污染物及重金属,韩国五花肉和矿泉水人气暴涨,销量激增。 韩国HOME PLUS超市8日表示,由于雾霾笼罩朝鲜半岛,1-7日共销售150多吨猪肉,销量同比上涨32%.有传言称,吃五花肉有助于排出微细颗粒物,五花肉销量暴涨315%.猪头肉、排骨和前腿肉的销量也分别暴涨307%、78%和109%. 此外,矿泉水的销量也增长了29%.其他与雾霾相关商品销量也有明显增加,防尘口罩销量狂涨344%,口腔清洁剂销量也上涨32%. HOME PLUS畜产品组采购员姜炯植(音)表示,随着猪肉中的不饱和脂肪酸能有效地帮助排出积聚在呼吸器官及肺部的微细颗粒物和重金属消息的不胫而走,购买猪肉的顾客大幅增长。为应对猪肉购买热潮,HOME PLUS将在韩国各分店举行相关促销活动。(实习编译:陈梦颖,审稿:李小飞)

  • 【讨论】如何看待微生物吸附重金属的作用?

    曾经做过一段微生物对重金属离子的生物吸附,感觉如果能够很好的利用,其可以在很多方面都得到较好的应用效果,比如环境保护,金属冶炼,金属提纯等。先介绍一下其吸附的原理:生物吸附是指生物体从溶液中吸附金属离子、非金属化合物和固体颗粒的过程,是个吸附-解吸的可逆过程,被吸附的离子可被其他离子、螯合剂或酸解吸下来。这其中就分为两种情况:非活性生物的吸附作用和活性生物的吸附作用(也称为生物累积)生物吸附主要是生物体细胞壁表面的一些具有络合、配为能力的基团起作用,如巯基、羧基、羟基等基团,这些基团通过与所吸附的金属离子形成离子或共价键来达到吸附金属离子的目的;生物累积主要是利用生物新陈代谢作用产生的能量,通过单价或二价的离子的离子转移系统把金属离子输送到细胞内部。因此生物累积受温度、pH、能源等诸多因素的影响较大,实际应用中有很大的限制。

  • 【分享】金属和合金的微观分析

    【分享】金属和合金的微观分析

    金属和合金的微观分析 microanalysis of metals and alloys   金属与合金的各种相的形貌(形状、大小和分布等)、晶体结构、化学组成等微观的研究,统称微观分析。金属与合金的性能与其显微组织密切相关。随着微束分析仪器的不断发展,对金属与合金的分析也逐渐深入,由过去的毫米、微米尺度正在进入到纳米(1nm=10-9m=10┱)尺度。在某些特殊情况下,甚至可以直接观察单个原子,并确定其原子序数。根据微束源不同,微观分析仪器可分光子、电子和离子束三大类(图1)。此外中子衍射也有所应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34034_1634962_3.jpg[/img]光束微观分析 人们最早是使用光学显微镜观察钢的相变及各种相的形貌,在此基础上形成了金相学这门学科(见光学金相显微术)。后来又用 X射线衍射研究晶体结构(见X射线衍射),曾以此证明 β-Fe与铁素体相同,不是一种新相。到了30年代,这种晶体结构研究阐明了电子化合物的晶体结构类型与电子浓度间的关系,发现了固溶体在预沉淀阶段中溶质原子偏聚成的GP区,确定了金属晶体在范性形变中的滑移面与滑移方向,并在此基础上发展出位错概念和其几何模型(见晶体缺陷)等等。这种X射线金相研究的建立为金属学奠定了基础。   过去,合金中的第二相颗粒的化学成分,主要是用化学或电化学方法,先将它们从基体中分离出来,再用常规化学分析方法测定,如过渡族金属在铝合金中与铝形成的化合物和在合金钢中与碳形成的合金碳化物等(见合金相)。应用激光技术,在光学显微镜中安装激光源,使激光通过透镜中心孔射到金相试样上选好的第二相颗粒上,测定所含各元素的发射光谱,可以测定微区成分,但是激光束的直径在10μm以上,因此这种激光探针只适用于分析如钢中夹杂物、矿物及炉渣中较粗大的颗粒。   电子束微观分析 电子显微镜的问世把放大倍率由光学显微镜的一千多倍提高到扫描电子显微镜(SEM)的几万倍或透射电子显微镜(TEM)的几十万倍(见电子显微学)。不仅如此,电子显微镜还发展成为一个全面的微束分析仪器,既能观察几个埃(┱)的微观细节,还能进行几十埃范围的晶体结构分析(选区或微束电子衍射)和成分分析(X射线谱或电子能量损失谱)。   X射线波谱和电子探针 聚焦的电子束照射到试样上,使其中的原子失掉核外电子而处于激发的电离态(图2a),这是不稳定的,外层电子会迅速填补内层电子空位而使能量降低(图2b)。4释放出来的能量(在图中是EK-EL2)可以产生该元素的具有特征波长或能量的标识X射线谱。根据这些X射线的波长不同,经分析晶体展谱(X射线波谱,wave dispersive spectroscopy,简写为 WDS)或根据X射线光子能量不同由半导体探测器等展谱(X射线能谱,energy dispersive spectroscopy,简写为EDS)。X射线波谱仪的构造原理与X射线荧光谱仪基本相同,只不过是用电子而不是用X射线作为激发源。X射线波谱仪的特点是分辨率高,因此分析的精度高而检测极限低,此外,根据布喇格定理2dsinθ=λ,采用晶面间距d 大的分光晶体,可以分析标识X射线波长为λ的硼、碳、氮、氧等轻元素。它的缺点是分光晶体接受X射线的立体角小,X射线的利用率低;此外,试样要求象金相试样那样表面平正光洁,不能分析凸凹不平的试样。电子探针(electron microprobe,简写为EMP)就是由几个电磁透镜组成的照明系统与 X射线波谱仪结合在一起的微束分析仪器,电子束焦斑直径一般是0.1~1μm。将金相试样置于电子探针仪中,用静止的电子束可以得到定点的分析结果,也可以用扫描电子束得到一些元素在一条直线上的一维分布或一个面上的二维分布。电子探针在分析合金中第二相的成分、偏析、晶界与表层成分方面用途很广。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34035_1634962_3.jpg[/img]X射线能谱仪 主要由半导体探测器及多道分析器或微处理机组成(图3),用以将在电子束作用下产生的待测元素的标识 X射线按能量展谱(图4)。X射线光子由硅渗锂 Si(Li)探测器接收后给出电脉冲信号。由于X射线光子能量不同,产生脉冲的高度也不同,经放大整形后送入多道脉冲高度分析器,在这里,按脉冲高度也就是按能量大小分别入不同的记数道,然后在X-Y记录仪或显像管上把脉冲数-脉冲高度(即能量)的曲线显示出来。图4就是一个含钒、镁的硅酸铁矿物的 X射线能谱图,纵坐标是脉冲数,横坐标的道数表示脉冲高度或X射线光子的能量。X射线能谱仪的分辨率及分析的精度不如根据波长经晶体分析的波谱仪,但是它没有运动部件,适于装配到电子显微镜中,而且探测器可以直接插到试样附近,接受X射线的效率很高,适于很弱的X射线的检测。此外,它可以在一、二分钟内将所有元素的 X射线谱同时记录或显示出来。X射线能谱仪配到扫描电子显微镜上,可以分析表面凸凹不平的断口上的第二相的成分;配到透射电子显微镜上可以分析薄膜试样里几十埃范围内的化学成分,如相界、晶界或微小的第二相粒子。因此X射线能谱仪目前已在电子显微学中得到广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34036_1634962_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34037_1634962_3.jpg[/img]X 射线能谱分析的一个较大弱点是目前尚不能分析原子序数为11(Na)以下的轻元素,因为这些元素的标识X射线波长较长,容易为半导体探测器上的铍窗所吸收。目前正在试制无铍窗及薄铍窗的探测器,目的是检测碳、氮、氧等轻元素。   电子能量损失谱(electron energy loss spectro- scopy,简写为EELS) 能量为E的入射电子与试样中原子的非弹性碰撞使后者电离而处于较高能量的激发态(图2a中是K激发态、能量为EK),入射电子损失的能量为EK+ΔE,ΔE为二次电子的逸出功。由此可见,对于不同元素,电子能量损失有不同的特征值。使透射电子显微镜中的成像电子经过一个静电或电磁能量分析器,按电子能量不同分散开来。除了有一个很强的无能量损失的弹性电子能量峰外,还会出现一些与试样中各元素相对应的较弱的具有特征能量损失的峰。尽管这些峰不很明锐(较好的水平是2~3eV),定量分析还存在一定困难,但是由于它有下列两个显著优点而在透射电子显微术中逐渐得到广泛应用:一是可以分析B、C、N、O等轻元素;二是将电子束聚焦到几十埃就可以测出微小区域的组成。显然,入射电子由于产生标识X射线而损失一定能量(图2a、b),可见电子能量损失谱和X射线能谱有着密切关系。

  • 学习蚂蚁饮少食微细嚼慢咽

    学习蚂蚁饮少食微、细嚼慢咽。细嚼能增加唾液,其中的消化酶可助消化,还能形成保护胃部的薄膜。老人牙齿稀松、消化功能逐渐减退,各种消化液分泌减少,加之肠道蠕动减弱,更应细嚼慢咽。

  • 做金属分析的你,知道重金属对人体的危害吗?

    说到安全,大家都会想到直读光谱仪的辐射,版内关于辐射的讨论也有很多做直读光谱分析的版友们,基本上都是从事金属的分析检测工作,你知道重金属对人体的危害吗?以下引用网上查到的资料:化学上根据金属的密度把金属分成重金属和轻金属,常把密度大于5g/cm3的金属称为重金属,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属,如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。其中,对人体危害最大的有5种:如铅、汞、铬、砷、镉等。这些重金属在水中不能被分解,与水中的其他毒素结合生成毒性更大的有机物。其他对人体有危害的还有:铝、钴、钒、锑、锰、锡、铊等。重金属对人体的伤害常见的有: 汞:食入后直接沉入肝脏,对大脑神经视力破坏极大。天然水每升水中含0.01毫克,就会强烈中毒。 铬:会造成四肢麻木,精神异常,铬过量摄入尤其是高毒性的六价铬会对健康带来严重损害尤其是其具有致癌性以及对皮肤呼吸消化系统都有损害。 砷:是砒霜的组分之一,有剧毒,会致人迅速死亡,长期少量接触,会导致慢性中毒,另外还有致癌性。 镉:导致高血压,引起心脑血管疾病;破坏骨骼和肝肾,并能引起肾功能衰竭。 铝:积累多时,对儿童造成智力低下;对中年人造成记忆力减退;对老年人造成痴呆等。 钴:能对皮肤有放射性损伤。 钒:伤人的心、肺,导致胆固醇代谢异常。 锑:与砷能使银手饰变成砖红色,对皮肤有放射性损伤。 硒:超量时人会得踉跄病。 铊:会使人得多发性神经炎。 锰:超量时会使人甲状腺机能亢进。也能伤害重要器官。 锡:与铅是古代巨毒药‘鸠’中的重要成分,入腹后凝固成块,坠人至死。铅:是重金属污染中毒性较大的一种,一旦进入人体将很难排除。能直接伤害人的脑细胞,特别是胎儿的神经系统,可造成先天智力低下;对老年人会造成痴呆等。另外还有致癌、致突变作用。在日常生活中儿童使用的彩色颜料的积木注塑玩具带图案的气球图书画册不合格的彩釉餐具铅笔蜡笔油画棒等文具用品有很多的铅,爆米花之类的膨化食品松花蛋等食品也含铅。铅在人体内的代谢半衰期为1460天每天进入人体内的铅长期积蓄即可造成慢性铅中毒人就会出现疲劳精神不振注意力不集中头痛头昏失眠多梦等神经衰弱症状并有轻度兴奋急躁易怒焦虑不安 癔病样发作等精神或情绪上的变化铅和铝是在我们日常生活中对身体伤害最多的金属,并且对于儿童来说更是,是智力杀手。这两样金属多存在于有防腐剂添加剂的食品中,特别是小孩子的小食品中更是很多。这些重金属中任何一种都能引起人的头痛、头晕、失眠、健忘、神精错乱、关节疼痛、结石、癌症(如肝癌、胃癌、肠癌、膀胱癌、乳腺癌、前列腺癌及乌脚病和畸形儿)等;尤其对消化系统、泌尿系统的细胞、脏器、皮肤、骨骼、神精破坏极为严重。而直读光谱主要用于金属行业,比如不锈钢中的铬、高锰钢中的锰、铅青铜中的铅、锡,甚至有人是从事铅基、锡基材料分析的,这些重金属的含量还是很高的长期从事直读光谱的人,激发产生的金属粉末,清灰时直接接触?长期待在光谱实验室是否会呼吸进入人体?是否会对人体造成伤害,到底有多大程度的伤害呢?是大家一直都忽略了这个问题,还是我杞人忧天呢?

  • 【原创】金属材料组织分析方法-金相组织分析法-金相显微镜分析方法

    金属材料组织分析方法-金相组织分析法-金相显微镜分析方法金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。 众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段 。

  • 直径只有50微米及以下的线材做金相分析

    我们公司的样品都是微细线材, 大部分是几十微米,显微组织做出了看不清楚,所以做得很少,但是进行横截面的圆整度分析倒是做得很多,不知道大家都是怎么制样的,保证样品垂直进而做截面分析的?

  • 日本教授开发出利用微生物回收稀有金属技术

    http://www.cn-ferment.com/file/upload/201308/04/18-13-15-56-1.jpg  资料图  【环球网综合报道】据日本《朝日新闻》8月2日报道,日本芝浦工业大学教授山下光雄等人,近日开发出一种利用微生物回收工业废水中蕴含的稀有金属硒的技术。因为收集到的硒将可以作为资源加以利用,所以这些技术或将可以进行事业化。  据悉,硒是铜矿石等中少量含有的稀有金属,可用于太阳能电池板的原料,也可用来制作玻璃的着色和脱色剂。一旦溶于水中将会有毒性,摄取过量的话也会引起神经障碍等症状。  据报道,山下教授等在提炼硒的工厂附近的污泥中,发现了可将硒酸和亚硒酸转化为硒的微生物。如果在工业废水中培育此种微生物,则可回收78.8%的硒。

  • 浅谈激光粒度仪在金属粉行业中应用

    浅谈激光粒度仪在金属粉行业中应用

    一、金属粉及其性能 金属粉末是指尺寸小于1mm的金属颗粒群。包括单一金属粉末、合金粉末以及具有金属性质的某些难熔化合物粉末,是粉末冶金的主要原材料。 金属粉末属于松散状物质,其性能综合反映了金属本身的性质和单个颗粒的性状及颗粒群的特性。一般将金属粉末的性能分为化学性能、物理性能和工艺性能。化学性能是指金属含量和杂质含量。物理性能包括粉末的平均粒度和粒度分布,粉末的比表面和真密度,颗粒的形状、表面形貌和内部显微结构。工艺性能是一种综合性能,包括粉末的流动性、松装密度、振实密度、压缩性、成形性和烧结尺寸变化等。此外,对某些特殊用途还要求粉末具有其他的化学和物理特性,如催化性能、电化学活性、耐蚀性能、电磁性能、内摩擦系数等。金属粉末的性能在很大程度上取决于粉末的生产方法及其制取工艺。粉末的基本性能可用特定的标准检测方法测定。粉末粒度及其分布的测定方法很多,一般用筛分析法(44μm)、沉降分析法(0.5~100μm)、气体透过法、显微镜法等。超细粉末(0.5μm)用电子显微镜和 X射线小角度散射法测定。金属粉末习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。二、金属粉行业发展现状 铜粉等有色金属粉末是粉末冶金工业的重要基础原理,广泛应用于电触头合金、电碳制品、摩擦材料、金刚石工具材料、含油轴承、粉末冶金零件等生产,而铜粉又是主要的有色金属粉末品种。国内铜粉等有色金属粉末至今已有50多年的发展历史,通过几十年的发展,国内铜粉等有色金属粉末不断壮大。特别是十多年来更是实现了跨越式发展,国内生产企业无论从企业数量、生产规模、产量、技术等方面均取得了显著的成就。据行业不完全统计,目前仅各种铜及铜基粉末年产量已超4000吨,且正在不断快速增长,发展前景看好。三、粉末冶金基础知识 1 .粉末的化学成分及性能 ;尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵颗粒形状 即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。 ⑵流动性 指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。流动性受颗粒粘附作用的影响。 ⑶压缩性 表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。 ⑷成形性 指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。成形性受颗粒形状和结构的影响.四、激光粒度仪在金属粉行业中的应用 粉末颗粒几何特点主要有颗粒大小、形状、表面积等。其中粉末颗粒的大小或粒度和粒度分布最为重要。它在很大程度上决定了粉末颗粒加工工艺和效率,是设备选型以及工艺过程控制的基本依据,对物料的应用而言,粉末的粒度及其分布是重要的物理机械性能之一。目前对粉末颗粒粒度的描述和测定方法很多,但各种方法所得出的粒度值也不同,有的相差甚远,但各种方法也有其使用的领域。目前在金属粉末粒度仪检测方面已经普遍应用的是激光粒度仪检测方法。

  • 粮食重金属检测仪检测范围详细概述

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]粮食重金属检测仪检测范围详细概述[/color][/font]粮食重金属检测仪主要用于快速检测粮食中的重金属含量,特别关注大米、糙米、小麦、玉米等粮食作物。这些粮食作物中常见的重金属污染包括铅、砷、镉、硒等。粮食重金属检测仪通过特定的技术方法,如阳极溶出伏安法,能够准确地分析粮食样品中的重金属含量,为粮食质量和安全性的快速评估提供了有力支持。粮食重金属检测仪的广泛应用领域包括但不限于食品药品环境部门、市场监督管理局基层监管站、粮食部门粮库、农业局基层监管站、食品生产企业检测部、食品配送企业检测部以及科研院所实验室等。在这些领域中,粮食重金属检测仪都发挥着重要作用,为粮食重金属的快速检测提供了可靠的技术手段。此外,粮食重金属检测仪不仅具备高灵敏度和高检验精度,还具有操作简便、结果准确和稳定的特点。它能够及时发现粮食中的重金属超标问题,为相关部门的监管和决策提供有力依据。总的来说,粮食重金属检测仪在保障粮食质量和安全方面起着不可或缺的作用。随着技术的不断进步和设备的不断升级,粮食重金属检测仪的检测范围可能会进一步扩大,为粮食安全提供更加全面和有效的保障。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403281005024296_653_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【原创大赛】横向赛曼石墨炉原子吸收光谱法在紫外正型光刻胶中的应用

    横向赛曼石墨炉原子吸收光谱法在紫外正型光刻胶中的应用摘 要:随着电子技术的飞速发展,对紫外正型光刻胶的质量提出了极高的要求。因为紫外正型光刻胶中钙、铬、铜、铁、钾、镁、钠、镍、铅、锌的存在将严重影响器件的成品率、可靠性和电化学性。因此建立准确、快速的分析方法有一定的意义。对于光刻胶中金属的检测方法,有电感耦合等离子体-质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-AES),但是这两种方法光刻胶都需要经过湿法消解或者干法灰化后才可以进样。湿法消解或者干法灰化容易引起易挥发元素的损失,同时存在容器污染,酸基体或者其他试剂的污染,本底较高等问题。本文提出了用石墨炉原子吸收法(GFAA)直接测定紫外正型光刻胶中十种金属元素的方法,本方法不经任何化学处理和富集,减少了中间过程,避免了样品被污染。详细描述了仪器最佳条件选择、控制空白,建立标准曲线、加标回收、测定检出限的方法。钙、铬、铜、铁、钾、镁、钠、镍、铅、锌的检出限分别为0.07ng/ml、0.03ng/ml、0.15ng/ml、0.15ng/ml、0.01ng/ml、0.03ng/ml、0.05ng/ml、0.36ng/ml、0.14ng/ml、0.02ng/ml。石墨炉原子吸收法(GFAA)需要选择合适的溶剂稀释光刻胶,考虑到试剂对光刻胶的溶解性,试剂本身空白值的大小等因素,我们最终选择丙二醇甲醚醋酸脂(PGMEA)做稀释剂,稀释样品后直接进样。关键字:紫外正型光刻胶、金属、石墨炉原子吸收绪 论:光刻胶(又称光致抗蚀剂)是指通过紫外光、准分子激光、电子束、离子束、X射线等光源的照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料。主要用于集成电路和半导体分立器件的微细加工,同时在平板显示、LED、倒扣封装、磁头及精密传感器等制作过程中也有着广泛的应用。由于光刻胶具有光化学敏感性,可利用其进行光化学反应,将光刻胶涂覆在半导体、导体和绝缘体上,经曝光、显影后留下的部分对底层起保护作用,然后采用蚀刻剂进行蚀刻就可将所需要的微细图形从掩模版转移到待加工的衬底上。因此光刻胶是微细加工技术中的关键性化工材料。随着集成电路(IC)存储容量的逐渐增大,存储器电池的蓄电量需要尽能的增大,因此氧化膜变得更薄,而紫外正型光刻胶中的碱金属杂质(Na、[/size

  • 重金属的分类及危害!

    定义:重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。重金属指的是原子量大于55的金属。如铁的原子量为56,大于55,故也是重金属。重金属约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。另外、砷虽不属于重金属,但因其来源以及危害都与重金属相似,故通常列入重金属类进行研究、讨论。  例如,汞中毒的临床表现有:全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。

  • 【重金属来袭】 镉的危害及相关测试方法

    随着工业化的发展,重金属污染事件频发,人们对其关注程度也与日俱增。近段时间浮出水面的毒大米事件就是一个例证。然而重金属是如何污染了人们的生活,对人们有哪些危害?标准中对重金属的限量要求如何?有哪些检测方法?欢迎大家提供线索,每周将针对一种重金属向大家搜集信息,使大家对重金属污染有更深的认识!本周主题:镉Cd镉(gé),是一种化学元素,它的化学符号是Cd,它的原子序数是48,是一种蓝白色的过渡金属,性质柔软,有毒。镉能在锌矿中找到以下分两种内容向大家征集,即重金属的危害和检测方法。大家提供其中的一种即可,当然欢迎大家两种都提供。1, 重金属危害:(每条1分)【事件】 【危害】 对人体有哪些影响【来源】 该重金属的来源?采矿?工业污染?废弃物?【防治】 2, 检测方法:(每条2分)【标准】 国内外标准均可,国内外标准进行对比将有额外积分鼓励【限量】 【仪器】

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制