当前位置: 仪器信息网 > 行业主题 > >

未知化合物鉴定

仪器信息网未知化合物鉴定专题为您整合未知化合物鉴定相关的最新文章,在未知化合物鉴定专题,您不仅可以免费浏览未知化合物鉴定的资讯, 同时您还可以浏览未知化合物鉴定的相关资料、解决方案,参与社区未知化合物鉴定话题讨论。

未知化合物鉴定相关的资讯

  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1.Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 未知物鉴定的新型数据库-mzCloud
    进行代谢组学、环境、法医和食品安全研究的科学家们可以借助一款新型全球通用的网络数据库利用高质量的高分辨率精确质量(HRAM)质谱数据鉴定未知物质。此数据库叫做mzCloud (www.mzCloud.org),是赛默飞世尔科技与HighChem公司的合作结晶。它是一款支持搜索的新型HRAM质谱数据库。所有高质量的数据来自赛默飞Orbitrap质谱仪。  &ldquo 集合大家的力量是建立一个结构设置多元化综合数据库的唯一途径。&rdquo HighChem公司CEO Robert Mistrik说。&ldquo 赛默飞和其他合作伙伴的投入使我们有机会为科学研究创造了这样一个功能强大的工具,它还具有直观而简单的网络界面。&rdquo   mzCloud为使用质谱鉴定未知物的科学家提供了一个新工具,它能提供多样的化学物质深度信息。另外,对完全未知的物质可采用子离子指纹识别,利用大量质谱数据鉴定结构。  &ldquo 识别未知物是代谢组学、毒理学、食品安全和环境应用研究的瓶颈之一。很多研究者在鉴定时需要参考碎片数据库,数据库的高质量和多样性是非常必要的。&rdquo 赛默飞数据库技术经理Tim Stratton说。&ldquo 把在质谱和化合物方面的资源与HighChem的化学结构知识相结合,我们创造了一个能帮助科学家鉴定未知化合物的碎片数据库。&rdquo   mzCloud将在第十一届代谢组学国际会议(2015年 美国三藩市)上展示。编译:郭浩楠
  • 用飞行时间质谱进行农药筛查过程中检测和鉴定非目标未知污染物
    目的在使用飞行时间质谱对环境水源进行广泛的农药筛查的过程中,成功鉴定天然河水中发现的一种非目标未知污染物。背景TOF筛查常用于目标筛查工作;在这种情况下,一种全面的数据库用于在筛查采集过程中将关键的目标化合物作为目标。当分析环境水源时,农药污染筛查是最重要分析之一。然而,诸如兽药或人用药品及其代谢物等其他污染物种类可能也以和农药类似的超微量水平存在并能对水生生态系统造成同等危害。发现一种非目标化合物后,需要对其进行确认和鉴定。TOF仪器必须足够灵敏和准确,从而确保未知化合物能被正确检出和鉴定,同时又能保持极低浓度组分的质量准确性。关于低能量前体离子和MSE高能量碎片离子的精准质量数据以及较窄的色谱提取窗口都为非目标种类的鉴定提供了更高的可信度。解决方案Waters Xevo&trade G2 QTof连同ACQUITY UPLC和ChromaLynxTMXS数据处理软件用于快速筛查经Oasis HLB柱萃取后的天然河水。该方案使用一种总运行时间为五分钟的UPLC通用筛查梯度。所用的流动相为10 mM醋酸铵水溶液和10mM的醋酸铵甲醇溶液。对河水空白基质进行了筛查,以研究可能存在的任何本底污染。经ChromaLynx XS软件去卷积后,在2.44分钟处发现了离子m/z 237.1031的一个明显色谱峰,如图1所示。Xevo G2 QTof采集得到的精确而可重现的准确质量数据为分析师提供了一种非目标污染物筛查和研究的解决方案,这种解决方案结果具有较高可信度。当这种准确质量离子使用MassLynxTM应用管理系统内的元素组成工具进行分析时,最大质量公差为2.0ppm的最有可能的建议分子式为C15H13N2O,并且通过使用i-FIT TM 而将该分子式选定为最佳拟合。该分子式与一种人用抗惊厥和情绪稳定药物质子化卡巴咪嗪相匹配。然后,在2.44分钟采集的低能量质谱和MSE高能量质谱使用MassFragmentTM 工具进行处理,并与卡巴咪嗪的母体分子及其初级碎片离子相匹配,如图2所示。最后,通过与纯卡巴咪嗪的溶剂标准溶液比较而得到了明确确认。图3所示的溶剂标准品数据与非目标污染物数据建立了一个匹配,从而清晰地证明了这种非预期化合物就是卡巴咪嗪。总结由Oasis HLB SPE萃取、通过ACQUITY UPLC快速分离并由Xevo G2 Qtof进行检测、以及接下来的ChromaLynx MS软件进行数据处理的一整套流程可成功用于天然河水的筛查。使用一种非目标筛查方法实现了对非预期污染物&mdash 药物分子卡巴咪嗪&mdash 的检测和鉴定。Xevo G2 QTof采集的精确而可重现的准确质量数据实现了母离子和碎片离子结构的明确分配。该方法为分析师提供了一种最终结果具有较高可信度的非目标化合物的筛查和研究解决方案。
  • 赛默飞全氟化合物解决方案助力2021环境科学技术年会
    赛默飞全氟化合物解决方案助力2021环境科学技术年会张丽娜 郭藤10月20-21日10月20-21日,以 “开局 ‘十四五’,深入打好污染防治攻坚战” 为主题的中国环境科学学会2021年科学技术年会于天津盛大召开。此次大会共设置130多个学术主题,旨在推动科技资源整合和协同创新,促进产学研用深度合作,共同推动我国生态环境科技创新和环保产业发展,为深入打好污染防治攻坚战、促进经济社会绿色低碳转型发展贡献新的更大的力量。 中国环境科学学会 2021年科学技术年会此次大会荣幸邀请到生态环境部副部长赵英民、天津市副市长孙文魁出席致辞,汇聚了来自生态环境领域的1000多名院士、专家、学者、企业代表参会。 赛默飞 携全氟化合物全面解决方案亮相在土壤与地下水污染防治分会场,赛默飞应用主管郭藤分享报告“赛默飞液质联用应对水中全氟化合物痕量分析的挑战”,并与参会老师就相关问题展开深入探讨。深入探讨 全氟化合物(Perfluorinated Compounds, PFCs)是指直链或者支链中全部或部分氢原子被氟取代的有机化合物。全氟化合物中C-F键所具有的高键能使其拥有独特的化学、生物、热稳定性和优良的疏水/疏油表面活性等,因而被广泛应用于化工、金属电镀、皮革纺织品、纸张和包装、涂料、建筑产品和医疗保健产品等工业和消费品生产领域。 随着分析技术的进步,全氟化合物被发现广泛存在环境中,已有毒理研究表明全氟化合物会对实验动物造成肝脏毒性、发育与生殖毒性、遗传和免疫毒性以及致癌性,而一些流行病学调查也发现人体暴露于全氟化合物与部分疾病或癌症发生有着关联性。各国的研究表明膳食摄入是人体全氟化合物暴露的最主要途径,其中由食品接触材料所引入的全氟化合物污染是一个重要影响因素。因此,由食品接触材料所带来的全氟化合物暴露和安全危害问题正日益受到关注。 赛默飞方案赛默飞作为全球科学服务的领导者,对环境领域的研究和分析一直保持着持续关注和投入,并提供丰富的产品和解决方案。针对环境样品中有机污染物,尤其是以全氟化合物为代表的持久性污染物推出了一系列分析方案,并参与制定和验证了美国EPA多项分析方法。(点击查看大图)全氟化合物广泛存在于衣物、容器、护理品、防水材料等常见物品,手套、SPE装置、液相管路等实验室设备中也常有全氟的踪影,因此在全氟分析过程中容易导致样品污染、系统背景高等问题,针对此问题赛默飞可以提供无氟前处理装置设备以及专门用于全氟分析的液相色谱PFAS Kit和方案;Thermo Scientific™ Dionex™ AutoTrace™ 280自动固相萃取装置和EQuan MAX Plus全自动在线净化、大体积进样装置,相比传统SPE可以解放人力提高通量和效率,大体积直接进样显著提升方法灵敏度,并确保实验结果的可靠性和重复性。 不同环境样品中全氟化合物含量差异较大,赛默飞TSQ系列三重四极杆可以满足微量、痕量和亚ppt级别的分析需求,借助于TSQ Altis(Plus)极高的灵敏度,可以实现水样中全氟化合物的直接进样分析,灵敏度优于EPA 8327 五倍以上。全氟化合物的种类和数量多达几千种,但已知以及有标准物质的只占极少部分,新型和未知全氟化合物的分析具有更大的挑战和需求,赛默飞基于Orbitrap技术的高分辨质谱结合专业的小分子定性软件Compound Discoverer和mzCloud PFAS Library,可以帮助客户快速筛查、发现样品中已知和未知全氟污染物,并进行二级谱图的比对和鉴定,最大程度的解析未知成分。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 赛默飞携爆炸物毒物未知物分析解决方案参加2013司法鉴定理论与实践研讨会
    2013年5月23日 &mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)参加了在上海举办的2013司法鉴定理论与实践研讨会,展示了赛默飞针对爆炸物分析的离子色谱应用方案及毒物未知物分析的高分辨质谱解决方案。 近年来,一些不法分子,为了提高硝铵炸药的爆轰感度,在硝铵炸药中加入氯酸盐,成为土制硝铵氯化炸药。这种炸药爆炸以后,爆炸残留物中可检出氯酸根离子,这是区别于其它种类的硝铵炸药爆炸的一个显著特征。因此,能否准确的测定氯酸根,对事件原因的调查起着至关重要的作用。与常规分析氯酸根的比色法、碘量法相比,离子色谱法适用于复杂样品的测定。测定含有高浓度硝酸根的样品中低浓度氯酸根的离子色谱法,可为今后此类案件的定性提供有力的证据。 ICS-5000+模块化RFIC-EG系统 在应对毒物检测时,研究人员通常会面对分析已知化合物、没有标准品的非目标化合物以及完全未知物等情况。针对不同的检测需要,赛默飞提供相应的工作流程。例如在线样品前处理或净化,能够帮助检测实验室提高工作效率和改善数据质量;三重四极杆质谱仪能够对已知化合物进行定量和确证,提供高选择性和最低的检出限;Q Exactive高性能台式LC-MS/MS质谱仪,将高性能四极杆的母离子选择性与高分辨的准确质量数(HR/AM)Orbitrap检测技术相结合,可以对成百上千种成分进行简便可靠的筛查;而Orbitrap组合型质谱仪能够为完全未知物及其代谢物解析提供可行的方法和丰富的信息。Q Exactive 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2300名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的维修服务中心,在全国有超过400名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 【瑞士步琦】不同类型化合物应用的最佳条件
    不同类型化合物应用的最佳条件现如今,Flash 及 Prep HPLC 色谱已经成为许多分离应用的首选方式。就像我这种“厨房小白”,黑暗料理界殿堂级人物,在做饭时,如果盐放多了都会不禁在想:是不是可以通过色谱分离的方式去除多余的盐?然而,尽管这些分离技术是化学的基础,但它们仍然难以捉摸,因为没有通用的一种方法可以适用于所有的样品。不同行业研究或感兴趣的化合物是多样性的,这些化合物理化性质差异性很大。幸运的是,前人们已经通过多年的经验总结出了对不同分子类型化合物最有效的纯化条件。所以,如果您在进行样品分离时,对流动相或固定相以及检测器的选择感到迷茫时。或许本篇文章会对您有些许的启发。第一阶段是流动相:样品一定要可溶于待选溶剂;其次是固定相:对您的样品要有保留。有两种色谱类型适用于这里:正相(NP)色谱和反相(RP)色谱。这两大色谱类型也是很多小伙伴在日常科研当中用到最广泛的。接下来是需要确定样品溶解度,判断是否可以液体进样?如果不可以,可以考虑固体上样的方式(Flash色谱)。最后一步是检测,包括需要了解样品是否具有紫外吸收,这将决定哪种检测方法对特定化合物最有效,之前“小步”同学也有给大家分享过关于检测器的选择,没有看过的同学可以点击这里,为了帮助快速进行 Flash 和 Prep HPLC 应用的开发,“小步”同学给出一些化合物类型适用的最佳条件。蛋白质和多肽蛋白质由氨基酸组成,在溶液中形成与它们的生物功能密切相关的高度有组织三维结构。多肽则是蛋白质的小版本,通常由含有 2-50 个氨基酸组成。就流动相而言,它们大多溶于水。反相(RP)色谱法适用于多肽或更小、更稳定的蛋白质,它们在纯化后会重新折叠。这需要含有较少极性溶剂的水混合物,如乙腈、异丙醇或乙醇。乙腈是最受欢迎的溶剂,因为它易挥发,很容易从收集的馏分中去除,除此之外,它还具有低粘度和低紫外线吸收等特点。对于多肽的分离,传统的三氟乙酸(TFA)被添加到流动相来进行pH控制(缓冲)和离子配对(与相反带电的离子团形成复合物以增强保留)。固定相是根据样品的分子量和极性进行选择。Prep HPLC 色谱法由于其可以搭配更小粒径尺寸色谱柱(柱效更高),所以成为分离极性相近或相似或化合物的首选纯化方法。对于 Prep HPLC 来讲,样品进样方式必须为液体进样。所以对于疏水性样品,使用低级性溶剂(乙腈),亲水性样品使用乙醇或丙醇最佳。对于高度亲水的样品,可以适当的加入微量二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)提高整体溶解能力,这使得样品可在最小溶剂体积内溶解,最大化减小溶剂扩散现象。如果需要使用固体上样,则更适用于 Flash 色谱。紫外检测器通常作为检测蛋白质或多肽最常用的方式,检测波长一般设为 280nm。这一波长已被证明特别有用,因为可以直接从蛋白质序列当中预测 280nm 处的摩尔吸收系数(消光系数),当然,这只适用于含有色氨酸或酪氨酸残基的蛋白质。如果芳香族氨基酸含量低或没有芳香族氨基酸,则推荐使用 205nm 作为检测波长。天然产物/提取物活的有机体,如植物、微生物或动物,通过初级或次级代谢途径产生这些代谢产物。初级代谢产物是生物体生长所必需的,次级代谢产物是初级代谢产物的最终产物。流动相的选择基于提取时所使用的溶剂类型,如果采用正相色谱(NP)纯化,则使用正己烷,石油醚,二氯甲烷(DCM),乙酸乙酯(EtAc),或其他与水不互溶的溶剂;反相色谱(RP)则采用乙醇和水进行提取,分离纯化流动相一般为甲醇/水或乙腈/水。对于固定相来说,所有的 NP(硅胶,二醇基,氨基等)和 RP(C18 等)均可被使用。天然产物的样品成分通常非常复杂,所以往往需要采用组合分离技术:通过 Flash 色谱进行前期预处理粗分,再经过 Prep 色谱对样品进行单体化合物分离。样品的载样量取决于天然产物提取物的体积,通常来讲提取物量都比较大。样品可以通过注射器或注射泵的方式注入到 Flash 色谱柱中,如果样品体积过大,则建议采取固体上样的方式,因为如果溶剂体积过大会导致色谱峰谱带变宽,进而影响分辨率。Flash 色谱预分离的样品后续可以在 Prep 上进一步纯化。天然产物样品的多样性和未知性决定了其被检测的方法。通常来讲,蒸发光散射检测器(ELSD)与紫外检测器(UV)的组合可以最大化保证样品检测的全面性。对于 NP 色谱,建议使用二极管阵列检测器(DAD)来对样品进行检测。碳水化合物碳水化合物可分为低分子量(单糖和双糖)和更复杂的重碳水化合物(寡糖和多糖)。单糖(葡萄糖)二糖(蔗糖)多糖(直链淀粉)碳水化合物都是亲水性的,流动相一般选择水/甲醇或水/乙腈进行搭配作为洗脱剂。在 RP 条件下,使用 C18 填料作为固定相可以降低高极性碳水化合物的保留。相反,氨基柱已经被证明是最适合作为分离碳水化合物的固定相。因为它不像 C18 那么非极性。上样方式方面,碳水化合物在 RP 条件下通常是可溶的,所以一般采用液体进样的方式进行上样。碳水化合物和脂类一样,缺乏发色团 目前,ELSD 是主要的检测方法。传统上使用示差折光检测器(RI),低波长 UV (190-205 nm),并通过薄层色谱进行纯化后分析。小分子药物这些化合物被定义为有机化合物,通常通过有机合成的方式获得。具有基本化学结构的小分子,分子量一般在 0.1-1kDA 之间。Flash 和 Prep HPLC 通常都可以在 NP 和 RP 条件下条件。小分子药物的目标通常是使用 RP,因为对它们来说水溶性是至关重要的。NP 只能在 RP 不可能的情况下使用或后续通过结构修饰等方式使其能具有更高的成药性。下表为正相色谱(NP)与反相色谱(RP)的对比:_优点缺点正相色谱(NP)__流动相有机试剂溶剂挥发试剂昂贵,安全与环保问题固定相二氧化硅填料便宜填料仅适合一次性使用最佳反相色谱(RP)__流动相水/醇混合物较便宜浓缩较慢(水沸点较高)固定相C18 填料可重复使用C18 填料较昂贵上样方式由样品的极性和纯化方式有关,高压不锈钢柱和 Flash 色谱柱可以液体和固体上样(只能 Flash 色谱使用)。液体注射进样是首选的方式,但是如果样品在方法的起始流动相梯度时溶解性不好,则需要采取固体上样。检测器方面,紫外检测器依然是首选,因为大多数的小分子药物都具有紫外吸收。然而,在某些情况下,如果化合物紫外吸收较弱,那么 NP 色谱所使用的有机溶剂会给其吸收带来干扰,进而影响实验人员对样品分离效果的判断。其他样品可能会是半挥发性的。基于此,在室温条件下使用 ELSD 检测器是最适的,因为高温条件下有机试剂的挥发顺带将化合物带走的情况时有发生,这会导致样品检测灵敏度降低。维生素/脂质由于维生素/脂质的性质多样性,以及篇幅原因。我们后续会专门出一期关于它们的文章,有相关研究的小伙伴可以持续关注哦。好了,现在您应该知道了不同类型化合物需要使用哪些色谱类型应用方法了吧。希望这篇文章能对您接下来的实验有所帮助!我是“小步”同学,我们下期再见!
  • 云南师大手性化合物分离研究获进展
    在国家自然科学基金仪器专项以及国家自然科学基金项目、科技部973前期专项等项目的资助下,云南师范大学生化分离分析材料与技术课题组在合成新型的功能材料,开展色谱、膜及萃取新技术研究,尤其是手性化合物的分离研究方面取得了一系列重要研究成果。 云南地处边疆和面向东南亚的桥头堡战略要地,其科研实力与中东部发达地区相比相对落后,但云南师大化学化工学院袁黎明教授课题组常年扎根云南,潜心科研,成果丰硕。课题组首次发文报道了手性金属-有机骨架材料(MOFs)用作高分辨气相色谱手性分离材料显示出优良的手性识别能力,并对烷烃、醇类以及位置异构体具有很好的分离效果,其为气相色谱手性分离材料的研究开拓了新途径。研究表明,3D手性多孔金属有机骨架材料对醇类、酮类、黄酮类、酚性化合物、碱性化合物以及胺类消旋体具有很好的手性识别效果。此外,课题组还首次报道了单壁碳纳米管自组装后作为固定相在气相色谱中的应用。近年来,该课题组在TrAC-Trend Anal. Chem.(IF=6.6)、Analytica Chimica Acta(IF=4.5)和J. Membrane Sci.(IF=4.9)等国际著名学术期刊上发表SCI源期刊论文80余篇,并出版了专著《手性识别材料》和《制备色谱技术及应用》,申请发明专利多项。课题负责人袁黎明教授被聘请为Journal of Separation Science(IF=2.6)、膜科学与技术等杂志编委。 近期,该课题组又首次报道了利用纳米纤维素晶体中的手性向列相结构特性与硅试剂反应合成手性介孔二氧化硅,并将其作为气相色谱固定相,结果表明,该分离材料对直链胺类、芳族烃、多环芳香烃同分异构体以及手性对映体都显示了显著的选择分离效果。该成果预示着手性介孔二氧化硅材料将很快应用于手性分离材料中(Anal Chem. 2014,86,9595,IF=5.8)。另外,该课题组将手性[Cu2(d-Cam)2(4,4' -bpy)]n作为液相色谱固定相,分离消旋体和异构体得到了显著的分离效果(J. Chromatogr. A. 2014,1325,163,IF=4.3)。以MOF[In3O(obb)3(HCO2)(H2O)]为固定相,在气相色谱、高效液相色谱和毛细管电色谱三种色谱分离中进行研究,对比探讨了手性金属-有机骨架材料对化合物结构、成分和手性识别间的相互关系。
  • 使用质谱引导的Prep100SFC系统的叠加进样和收集功能而实现手性化合物纯化
    Steve Zulli、Dan Rolle、Ziqiang Wang(博士)、Timothy Martin、Rui Chen(博士)和Harbaksh Sidhu Waters Corporation, Milford, MA, U.S.应用效益使用叠加进样模式进行手性化合物纯化证明了质谱引导的Prep 100 SFC系统所提供的收集方案具有多用性和灵活性。大气压条件下的开放床式收集平台在同时使用包括质谱检测器在内的多种检测器进行触发收集时,可提供更高的效率及成功率。沃特世解决方案质谱引导的Prep 100 SFC系统,2998型光电二极管阵列(PDA)检测器,3100型质谱检测器,2767型样品管理器MassLynx&trade 软件,FractionLynx&trade 应用管理程序,叠加进样模块关键词手性,Prep 100 SFC,叠加进样,质谱引导,开放床式收集引言根据FDA的规定1,手性色谱已经成为药物开发早期为通过药理学、毒理学和临床信息准确鉴定单一纯对映体并进行分离的首选工具。 超临界流体色谱(SFC)因其具有更高的效率、更大的通量和更宽的适用性而被证实成为手性化合物分离的一种主流技术。手性SFC越来越受到关注并且其应用范围不断扩大,在一些情况下逐渐成为首选方法。 通常情况下,对映体混合物含有一定数量的杂质,对于常用的叠加进样和基于信号阈值的收集策略而言(例如UV/ PDA检测),这些杂质可降低实际纯化过程的效率。多数情况下,进行一步预净化是必要的,但因存在资金和工作量限制却是不实际的。这需要一种能将对映体与其它杂质鉴别开来的多功能检测方案。除了UV/PDA检测器之外,3100型质谱检测器是一种可广泛用于手性分离的理想选择。 在本应用文献中,展示了质谱引导的Prep 100 SFC系统及其在开放床式平台上进行叠加进样和收集的功能,并被证实是一种手性化合物纯化的有效工具。下文回顾并描述了用于手性分离案例的系统配置和方法。 试验 化学品CO2由Airgas(Salem,NH,USA)公司提供,并以加压液体的形式在大约1100 &ndash 1300 psi的条件下,通过内置管道供应给质谱引导的Prep 100 SFC系统。甲醇和反式芪氧化物(T SO,MW:196)由Sigma-Aldrich(St.Louis,MO ,USA)提供。SFC色谱柱ChiralPak AD-H和ChiralCel OD-H(均为 21 mm x 250 mm、5 &mu m)由Chiral Technologies公司(West Chester,PA,USA)提供。SFC系统质谱引导的Prep 100 SFC系统配备一个附加的叠加进样器。2767型样品管理器配置为一个简化型重复馏分收集器。 方法条件SFC梯度和流速程序对于所述的全部数据而言,100 g/分钟的最大总流速与各种等度的改性剂程序配合使用。质谱检测器的条件用于各种试验的3100型质谱检测器标准ESI模式使用以下关键参数:毛细管电压: 3.5 KV锥孔电压: 40.0 V二级锥孔电压: 3.0 V射频透镜电压: 0.1 V源温度: 150 ˚ C脱溶剂气温度: 350 ˚ C脱溶剂气体流速: 400 L/小时锥孔气体流速: 60 L/小时0.1%的甲酸-甲醇溶液用作补偿液流进入质谱,以提高电离效率。数据管理MassLynx/FractionLynx,第4.1版 结果和讨论叠加进样模式下的纯化放大手性分离中通用的最佳做法是利用叠加进样模式进行样品进样和馏分收集,这可实现效率最大化并降低生产成本。 在含有一定杂质的复杂体系中,质谱引导的系统可以鉴定和选择性的收集感兴趣的目标化合物,并正确的忽略不需要杂质。因而,该系统对于手性化合物的SFC纯化,具有高效、适用范围广的特点,并成为手性药物开发的常规主流工具。 我们对质谱引导的Prep100 SFC系统进行了一定的改造,以便将该系统用于手性化合物分离纯化时达到其最大效益,其中包括添加了一个专用进样器并改变了收集床布局以容纳更大的容器,从而可重复收集对映体的馏分。 层叠进样/进样器的启用Prep 100 SFC系统整合了一个沃特世叠加进样模块,用户选择&ldquo 进样类型&rdquo 并输入叠加进样的总次数以及软件程序中的其它相关参数,如图1和图2所示。以叠加进样的模式,运行一个自定义的进样序列,该进样器可从单一样品容器中抽取多份等量样品。 未使用叠加进样模式时,2767型样品管理器能继续按照&ldquo 样品列表&rdquo 所定义的顺序从样品架上逐个进样单一样品。 图3显示了对一种双峰混合物进行叠加进样后得出的典型色谱图。紫外和质谱对所需物质的检测结果均是正确的,从而确保了通过紫外或质谱触发可进行可靠而成功的馏分收集。在本例中,紫外信号用作收集触发;必要时也可使用质谱信号。 自定义用于单个样品瓶的收集床布局质谱引导的Prep 100 SFC系统使用2767型样品管理器作为专用馏分收集器。在手性化合物纯化中,由于馏分收集数为两份(或者在某些情况下可能多达四份),因此需要用更大容器及重复式前后收集模式取代一对一模式下的常规类型试管架。 所以,2767型样品管理器可通过定义收集的位置及更大容器而进行定制。从而可对同一个对映体的所有叠加进样序列结果,通过重复式的前后收集方式,收集到相同的收集瓶中。如图3所示,两种对映体馏分分别被收集进1号瓶(粉红色条带)和2号瓶(绿色条带)。这在2767型样品管理器上以反复模式根据序列内的单一进样管线而完成。这表明使用Masslynx软件和Fractionlynx样品管理器进行样品收集的过程是成功的,并且满足了依据对映异构体对的信号强度水平进行正确鉴定和收集的关键标准。 图4所示,是对一个包含无关杂质峰与对映异构体对的体系进行分离和选择性收集的实例。如彩色条带所示,通过目标化合物的质谱引导,只有两个分离开的目标化合物被收集,而第三个峰(无关的杂质)没有被收集。 MassLynx/FractionLynx AutoPurify&trade 平台拥有众多高级、适用于复杂工作流程的检测和收集算法,例如,使用多种检测器信号进行触发的布尔逻辑算法。如果样品已足够纯净,那么用户可选择使用UV/ PDA进行检测;如果样品包含相当数量的杂质,那么用户可选择使用组合型信号和斜率算法以及特定的目标分子量,以确保得到更纯的收集馏分。 结论已经证实质谱引导Prep 100 SFC系统在不同药物的开发过程中具有高效、适用性强及用途广的特点。本文所述的质谱引导Prep 100 SFC系统叠加进样和收集的附加特点使其对手性分离具有更强的定制能力,从而可为纯化实验室的色谱分析师带来效益,例如:■ 多重、多功能检测模式实现了更高的成功率;■ 基于开放床式平台的相同叠加进样和收集模式简化了使用方法;■ 能提供一个遵从行业和政府规定的更安全的实验室环境。沃特世质谱引导的Prep 100 SFC系统是一种在药物发现以及其它制备型色谱中进行手性纯化的强有力工具,可满足实现更大产能和更高成功率的需求。参考文献[1] http://www.fda.gov/cder/guidance/stereo.htm 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 安捷伦与美国环保局合作开展水体和野生动植物中全氟化合物检测技术研究
    安捷伦科技与美国环保局合作开展水体和野生动植物中全氟化合物检测技术研究  2009年3月9日,芝加哥--安捷伦科技公司(NYSE:A)在匹兹堡会议上正式宣布已与美国环保局国家暴露研究实验室(NERL)签署了合作研究与开发协议(CRADA),该协议旨在利用安捷伦飞行时间质谱(TOF-MS)探测和识别环境中已知和未知的全氟化合物(PFCs)。  对全氟有机化合物的分布、持续性、及其环境和生态系统毒理效应的研究已取得一定成果,这些研究成果进一步促进了对环境中全氟有机化合物的研究。安捷伦科技与国家暴露研究实验室将重点合作开发PFOS和 PFOA的异构体和相关化合物的鉴别技术,并描述其环境分布和潜在的人体暴露途径。(perfluorooctanesulfonic acid 和perfluorooctanoic acid – 这两种化合物都被广泛应用于各种商业产品)  安捷伦副总裁、化学分析部总经理Mike McMullen 说:“安捷伦在TOF 和Q-TOF产品中引入了“精确质量数”概念,以加速进入质谱分析市场。该产品在环境应用中具有突出的准确性和灵敏度”  CRADA合作协议将用到安捷伦6220精确质量数飞行时间质谱,该产品可以帮助EPA探测和识别含量仅万亿分之一的化合物,这一突出能力与安捷伦Mass Hunter 软件相结合,非常适合探测和识别含量极低的未知化合物。安捷伦在合作协议中负责提供包括液相、工作站在内的分析仪器,并提供技术支持。NERL负责设计具体的研究方案、采集样品,利用安捷伦提供的仪器开展研究并保证研究成果的质量。  NERL 实验室PFC 人体暴露研究项目负责人Andy Lindstrom说“PFCs在环境中的含量通常很低,安捷伦的技术能够有效帮助EPA识别环境和生态系统中的PFCs。EPA将利用本次合作机会开发准确识别已知PFCs的方法,并探索我们的样品中以前未知的化合物”  关于国家暴露研究实验室  国家暴露研究实验室是美国环保局研究和开发办公室下属的三个国家实验室之一,负责研究、开发和升级分析方法和建立模型, 这些方法和模型用于评估和预测人体和生态系统在有害污染物和其他情况下的暴露风险,如空气、水体、土壤以及食品等。  关于安捷伦科技  安捷伦科技(NYSE:A)是全球领先的测量公司,是通讯、电子、生命科学和化学分析领域的技术领导者。公司的19,000 名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问www.agilent.com http://agilent.instrument.com.cn/ 。
  • 毛细管电泳-质谱技术在手性化合物分离分析中的研究进展
    手性是自然界和生命体的基本属性之一,诸如生物结构中的核酸、蛋白质及糖类等都具有手性。目前绝大多数药物都是以手性形式存在,这些药物在生命体内的药理活性、代谢作用和速率及毒性等方面均存在显著差异,比如一种对映体有活性,而另一种无显著的药理活性,甚至有毒副作用或可发生拮抗作用。除了旋光性上的差异,手性药物具有相同的物理和化学性质,故对其分离分析一直都是药物分析、分离纯化领域研究的重点和难点。新药的研发和应用亦需要研究人员继续开发新的高效手性分析方法,以实现高选择性和高灵敏度的手性化合物定量和定性分析。高效液相色谱-质谱(HPLC-MS)具有较高的灵敏度和重现性,是目前手性药物分离分析的主要方法。然而,HPLC-MS需要昂贵的手性柱和与MS兼容的色谱柱流动相,而且手性色谱填料的柱效和拆分能力仍有待提高。毛细管电泳(CE)技术凭借其高效、低样品消耗、分析快速、分离模式多样化等诸多优势,已经发展成为手性分离研究领域极具吸引力和应用前景的分析方法之一。紫外可见检测器(UV-Vis)是CE最常用的检测器,但是毛细管的光程长度较短,导致灵敏度较低,因此难以满足生物样品中痕量手性化合物的分析要求。激光诱导荧光检测器(LIF)可以提高检测的灵敏度,但是只适用于本身带有荧光或被荧光标记的物质。而毛细管电泳-质谱联用技术结合了CE的分离效率高、分析速度快、样品消耗低以及MS的高灵敏度和强结构解析能力,近些年来在蛋白质组学和代谢组学等领域发挥了重要作用。CE杰出的手性拆分能力与MS优势的结合,亦使CE-MS成为实现手性化合物高效分离分析的完美组合,尤其是在复杂生物基质中手性化合物分析的灵敏度和分辨率方面,为药物、医学以及食品科学等领域重要手性分子分析提供了新视角。手性CE-MS联用技术,在一次分析中能同时得到样品的迁移时间、相对分子质量和离子碎片等定性信息,解决了实际样品中未知手性化合物(包括无紫外吸收基团或荧光基团的手性化合物)的识别问题,在减少生物样品基质效应的同时,可以对多组手性对映体实现高通量分析。在过去的十几年里,基于不同CE-MS分离模式的高性能手性分析体系层出不穷,并成功应用于医药、生物、食品和环境科学等领域的手性化合物分析中。这篇综述着重评述了电动色谱-质谱(EKC-MS)、胶束电动色谱(MEKC-MS)和毛细管电色谱-质谱(CEC-MS)手性分离模式从2011年到2021年的最新发展和应用。综述介绍了CE-MS各种手性分析模式下的分离原理、手性选择剂以及在医药等领域中重要手性化合物的分析应用,并讨论了不同手性分析模式的局限性。最后总结了CE-MS联用模式在手性化合物分离分析中的应用前景。相比于广泛应用的HPLC-MS, CE-MS凭借其高效率、低消耗、高选择性、分离模式多样化等诸多优势,已发展成为手性分析领域应用前景广阔的分析方法之一,并且已成为HPLC-MS等其他经典手性分离方法的一个强有力补充技术。目前CE-MS手性分析的研究挑战之一是实现快速和超灵敏的手性分析。采用基于短毛细管的快速毛细管电泳(HPCE)结合在线样品富集有望解决这个难题。此外,CE-MS的不同手性分析模式大多数采用的是三管设计的鞘状流动界面,灵敏度较低。新进研发的新型界面技术,如通过微瓶辅助的界面流动、无套多孔尖端的设计以及CE-MS离子源的引入等,在提高手性化合物分析灵敏度方面显示出巨大应用前景。另一方面,开发同时对多种手性药物进行对映体分离、检测和定量的CE-MS手性分析方法,也是目前研究的重点和难点。这些研究将对开发制药工业中的通用方法和高通量分析生物样品中的手性药物及其手性代谢物具有重要意义,对手性药物和代谢物的药物-药物相互作用和毒性研究也具有指导价值。EKC-MS和MEKC-MS应用中的手性选择剂具有多样性,使其在新药开发和药物质量控制、药代动力学以及药效学研究中具有巨大的潜力。进一步开发MS友好、绿色和高选择性的手性选择将拓宽待分离手性化合物的应用范围。目前,CEC-MS手性分析研究中,研究者更多致力于开发用于整体柱或填充柱的新型毛细管手性固定相。使用功能化纳米颗粒增加CEC手性柱表面积以及CE-MS的微型化微芯片设备的研发,目前仍是尚未充分探索的领域,尤其在实际应用方面与相对更加通用的手性分离模式相比仍有较大差距。文章信息:色谱, 2022, 40(6): 509-519DOI: 10.3724/SP.J.1123.2021.11006迟忠美1, 杨丽2*1. 渤海大学化学与材料工程学院, 辽宁 锦州 1210132. 东北师范大学化学学院, 吉林 长春 130024
  • 使用ASTM方法对碳氢化合物的单一组分分析(DHA)
    在石油化工行业的各种分析实验室里,为了对一个特定的样品里的单个组分进行分析和鉴定以及对碳氢化合物的混合物进行表征,通常会用到碳氢化合物的单一组分分析(DHA)这种分离技术。多组分分析主要是检测汽油中的主体组分:石蜡,烯烃,萘和芳香族化合物和其他分子中碳原子数介于1到13的的可燃烧化合物,以确定汽油样品的总体质量。我们在这篇文章里所用到的氢气发生器设备是 Peak Precision 500 Hydrogen Trace Generator.对汽油中包含的易燃烧组分进行分析对于汽油的质量控制十分有必要。由于汽油样品的成分复杂,各组分的特性十分接近,为了将各个组分分离开,通常需要很长的色谱柱(100米)。碳氢化合物的单一组分分析的时候,多种方法通常会被用到,依据这些方法要用到的柱箱升温速率和色谱柱长度不同而将这些方法分开。这些方法各有利弊,有些方法对低沸点化合物的响应灵敏,分辨率高;有些方法对分子量大,出峰很晚的化合物有很好的分辨率。由于分析方法的性质复杂,再加上使用很长的色谱柱,在用氦气作载气的时候,气相色谱的测试时间往往会超过两个小时。但是,用氢气来做载气可以极大的提高测试的速度,因为氢气的高线性速率让它做载气时十分高效。这对石油分析实验室而言,无疑是一个十分吸引人的优点,因为样品的高通量意味着实验室的赢利水平提升。用氢气来做载气可加快气相色谱的分析速率,再加上当前氦气的供应紧张,价格上涨,这意味着那些从氦气切换到氢气做载气的气相色谱实验室不仅赢利水平会增加,同时分析的结果可以符合行业的标准。这篇应用文献阐明用氦气作载气时,按照ASTM的标准检测方法D67291来分析汽油样品的结果和利用毕克科技的Precision氢气发生器Trace生产出来的氢气未经过过滤来做载气,按照ASTM标准检测方法D67291 附录X2的汽油样品分析结果时的对比。通过对比,我们可以看到气相色谱跑样时间的减少,同时,对特定组分的分离效果保持不变。 结果与讨论对汽油进行碳氢化合物的单一组分分析显示:混合物中最后一个洗脱出来的化合物-正十五烷,当用氢气来替代氦气做载气时,它的出峰时间从125分钟减少到74分钟。(如图1所示)尽管分析的时间不同,但是,对汽油中的主要组分的分析(石蜡,烯烃,萘和芳香族化合物)显示使用氢气和氦气作载气时,测量出来的主要组分含量差异不明显。尽管用氢气来做载气时需要更高的气体流速,但是,在大多数情况下混合物的各组分分离的效果依旧很不错,甚至在某些时候,分离的效果得到了改善。对1-甲基环戊烯和苯的分离和检测,在汽油样品分析中有严格的规定,因为苯的碎片物质的分析十分重要。用氢气做载气的时候,尽管该有机物的洗脱时间变短了,但是,气相色谱对此有机物的分离效果却提高了。(如图2所示)对于甲苯和2,3,3-三甲基戊烷的分离,在用氦气作载气时可以实现,用氢气做载气时,这两个物质同时出峰(如图3所示)用氢气做载气时,若要将这两种物质进行分离,需对方法进行改进。用氢气或氦气作载气的时候,气相色谱对十三烷和1-甲基萘的分离效果都很好,不相上下。(如图4所示)碳氢化合物的单一组分分析结果显示,利用氢气做载气时,按照ASTM标准方法 D6729 附录X2的方法来进行汽油样品的分析既可以极大地减少分析的时间,同时,对特定关键组分的分离效果和分辨率依旧十分理想。表1 指定的ASTM标准检测方法在装有100米长毛细色谱柱高分辨率气相色谱仪的协助下,可以确定发动机燃料中易燃物的单一组分的含量。(ASTM 国际2002) 表2 对汽油中主要组分的定量分析及结果图1 利用氦气和氢气分别做载气时,对汽油样品进行碳氢化合物单一组分分析时的气相色谱图图2 利用氢气和氦气分别做载气时,对1-甲基环戊烯和苯的分离效果对比图3 利用氢气和氦气分别做载气时,对甲苯和2,3,3-三甲基戊烷的分离效果对比图4 利用氢气和氦气分别做载气时,对十三烷和1-甲基萘的分离效果对比 参考1. 指定的D6729-01标准检测方法需要用到装有100米长毛细色谱柱高分辨率的气相色谱仪,来确定发动机燃料中的易燃物的单一组分。 ASTM国际2002.2. 指定D6729-01附录X2,用氢气来做载气时,碳氢化合物的分析数据。ASTM国际2004
  • 蛋白质、碳水化合物和脂肪可以预测你的寿命
    来自悉尼大学的一项新的全球研究着眼于大量营养物质(蛋白质、碳水化合物和脂肪)如何与不同年龄段的死亡风险联系在一起。这是迄今为止最广泛的宏观营养素供应、生存统计和经济数据分析。悉尼大学查尔斯珀金斯中心(Charles Perkins Centre)和悉尼大学科学院(University of Science)的研究员Alistair Senior博士领导的这项研究发现,即使在2016年全球数据中,营养不足的证据也很普遍;尤其是在蛋白质供应方面,“最佳”供应量随着年龄的增长而变化。Senior博士说:“我们发现,在脂肪和蛋白质供应相对较高(分别占能量的40%和16%)的地方,早年死亡的风险会降至最低。然而,在晚年,减少脂肪的能量供应并用脂肪代替碳水化合物,死亡率最低。”这项研究发表在今天的《PNAS》上。“这是一个引人入胜的故事,从国家粮食供应的层面反映了一个事实,即宏观营养需求随年龄而变化,”Senior博士说。“考虑到各国的粮食安全,以及供应的变化如何转化为死亡率的模式,这也可能是一个有趣的问题。”合著者Stephen Simpson教授补充说:“这项研究很吸引人。我们可以看到从中年到晚年碳水化合物比蛋白质比率的增加与死亡率的减少有关,对应了实验室的衰老生物学研究。”与Simpson合著《像动物一样吃》的David Raubenheimer教授指出:“虽然食物供应数据并不是饮食的直接指标,但它们能很好地衡量各国食物环境的差异。令人难以置信的是,我们在这个水平上也看到了个人饮食的详细研究的影响。这证明了食物环境对饮食和健康的影响,这是我们新书的中心主题。”为什么大量营养物质很重要大量营养素是我们所吃食物的主要能量来源,并分为三大类:蛋白质、脂肪和碳水化合物。研究发现,随着年龄的增长,与最低死亡率相关的人均总热量供应相对稳定(约3500kcal/cap/天),但就饮食蛋白质、脂肪和碳水化合物而言,热量摄入的组成并不稳定。在50岁之前,40%到45%的能量来自脂肪和碳水化合物,16%来自蛋白质,可以最大限度地降低死亡率。然而,对于晚年,脂肪和蛋白质的供应量分别为22%和11%,而用碳水化合物来代替这些与死亡率最低有关。Senior博士说:“真正令人高兴的是,我们看到了一个明显的变化,这使得50岁以上的死亡率降至最低,高碳水化合物的供应似乎变得很重要。”我认为有必要指出的是,尽管这并不是一个个人应该吃什么的指南——我们研究了一个国家在人均水平上的供应量。这在理论上设定了人们吃什么的上限,但有一系列因素可以将一个国家的粮食供应转化为最终实际消费的粮食。”从方法论的角度来看,这篇论文也很有趣。研究人员利用全球供应数据和来自103个国家的1879个生命表,在宏观层面测试了能量摄入(卡路里的数量)和宏观营养素的平衡:在国家的营养供应和它们的年龄别死亡率之间。他们发现,即使在校正了时间和经济因素后,宏观营养供应仍然是年龄别死亡率的有力预测因子。Senior博士说:“我们在这里应用的相同的统计方法可以重新应用于研究死亡风险的模式和各种饮食方面,包括不同的食物类型(例如植物和动物蛋白质),或者更广泛的饮食模式(例如‘地中海式饮食’)。”
  • 贝克曼库尔特赋能化合物管理-Evotec 如何管理高通量化合物库
    化合物库是开展高通量筛选的重要物质基础,通过高通量药物筛选发现先导化合物(leading compounds),再到候选药物是新药开发的过程。其中的化合物库是新药开发中的必备工具,通过从化合物库中找到有效的化合物,来实现新药开发。因此化合物库的管理就成为如何成功搭建高通量筛选实验的重要部分。 Evotec作为化合物库管理的著名公司,每年处理交付超过4500万种化合物。让我们一起了解一下Evotec如何管理这些化合物的管理。 Access 双机器人系统 (DRS) 是一种模块化和可配置的针对样品管理工作流程优化的自动化平台与新的 Echo 655 纳升移液进行整合,具备以下特点: 为实现化合物管理的最佳通量 紧凑且符合人体工程学的设计,带有对接模块、转盘、可伸缩搁板和抽屉 可选功能可以包括环境管理减小环境湿度,避免化合物吸水 Echo 655T 纳升移液支持样品直接从存储管转移,以实现从样品中完全非接触式液体处理工作从存储到assay ready plate。 来自 Echo 合格微孔板和试管的非接触式转移 用于“基因组学和筛选”应用的液体转移 以低至 2.5 纳升的体积准确准确地转移样品 避免化合物损失、残留和污染的风险 与控制湿度系统配合,最大限度地减少化合物吸水 Evotec利用Biomek自动化移液工作站的灵活移液的能力进行大体积分液,并利用Echo的非接触式移液的高精准性和快速,结合Access的自动化高通量的能力,配合Mosaic化合物管理实现了高通量、快速、准确的化合物管理全过程。
  • 沃特世携手韩国庆北大学金城焕博士,以环形离子淌度技术推进复杂化合物精准分析
    2020年12月8日,沃特世公司(纽约证券交易所代码:WAT)宣布进一步深化与韩国庆北大学金城焕博士之间的长期合作,将沃特世离子淌度质谱(IMS)技术应用于分析复杂混合物中的各类化合物,以进一步拓展这项前沿技术的应用潜力。 Waters SELECT SERIES Cyclic IMS环形离子淌度质谱系统在分子水平准确鉴别复杂有机介质中的未知化学物质,已成为现代分析化学领域至关重要、却又难以攻克的研究课题。例如,原油就是一种复杂的、化学变异性非常高的有机混合物,因此在精炼之前表征石油化学复杂性难度很大,但这又是提升石油产品质量的必要条件。全球每天生产约9,000万桶石油,对应日产值超过30亿美元*。因此,即使只对化学表征过程进行微小改进,也将给炼油厂带来巨大的经济利益。沃特世亚太区副总裁David Curtin先生表示:“我们很高兴能将Waters SELECT SERIES Cyclic IMS环形离子淌度质谱系统部署于金博士位于庆北大学的实验室中。今后,我们将通力合作,充分利用双方的专业知识及创新理念,深入探索诸如石油分析等棘手的分析难题。”过去十年,金城焕博士一直致力于开发鉴别复杂混合物中化学物质的分析方法。他相信Waters SELECT SERIES Cyclic IMS系统将成为解决这一分析难题的重要推动力。金博士解释说:“Waters SELECT SERIES Cyclic IMS已成为我们构建完善分析方案的‘钥匙’。通过这款创新仪器,研究人员可以按照自己的想象来设计和实施各种新颖实验,从而获得新的信息,这也是目前其他仪器难以达到的。”过去,尽管离子淌度ToF质谱技术在原油化合物的结构表征中发挥了一定作用,但其受限于装置的离子淌度分辨率。相比之下,SELECT SERIES Cyclic IMS设计新颖,采用创新的环形行波离子淌度装置。用户通过选择IMS工作周期数便可获得不同水平的IMS分辨率,并能达到过去难以实现的气相分离度。近日,金博士与沃特世研究人员共同发表论文,详细介绍了他们在原油表征中利用SELECT SERIES Cyclic IMS解决复杂性和异构体问题的研究成果。值得一提的是,在本次研究中,许多化学成分之间仅相差不到0.1 Da,但环形离子淌度技术不仅成功检测并分离了这些成分,还得到了单个组分的干净MSMS谱图。金博士表示:“从Cyclic IMS仪器上获得的数据结果表明,这款创新型环形离子淌度质谱系统确实功能非常强大,可以对原油中单个化合物提供以往串联质谱所无法“看到”的信息;同时,它还有望缩短LC或GC分离时长(MS前端),以减少总体分析时长并增加通量。”作为合作的一部分,金博士与沃特世还将针对高科技产品所使用的复杂先进材料(例如电子元件中应用的材料)开展材料表征研究。在迅速发展的智能材料领域,材料的最终性能取决于这些精细化定制分子的结构纯度。即使侧链、功能单元或大分子组装体只发生细微变化,也可能导致整个产品批次不合格,甚至出现危险产品。对此,在工艺开发中使用环形离子淌度技术,将有助于研究人员检测出曾经难以发现的错误分子,提升产品质量。*来源:US Energy Information Administration关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 安捷伦科技MassHunter软件集成先进的目标化合物解卷积功能
    安捷伦科技MassHunter软件集成先进的目标化合物解卷积功能 从复杂样品中轻松获取稳定可靠的定量/定性数据 2014年7月11日,北京——安捷伦科技公司(纽约证交所:A)近日宣布将在其强大的MassHunter工作站软件中增加已优化的目标物解卷积功能。MassHunter目标物解卷积定量分析软件具备目标化合物解卷积功能,能够让用户有效地移除背景中基质离子的数据,并轻松获取复杂样品中目标物质的定量和定性结果。Mass Hunter定量分析软件B 06.00及以上版本包含此项新功能。 目标物解卷积是一种强大的分析方法,可对复杂样品中的小分子目标物质进行鉴定及定量分析。这种分析方法通常用于食品的农药残留分析、生物样品中管制物质的分析以及复杂的土壤或废水样品中环境污染物的分析。 安捷伦GC/MS市场部经理Terry Sheehan博士表示:“随着样品中的基质越来越复杂,扫描模式的气质联用系统在环境、食品安全、材料分析、代谢组学等领域的应用也面临着严峻的挑战。MassHunter 新的目标物解卷积功能极大地提高了从这些复杂的分离组分中提取质谱信息的可能性。” 相比安捷伦的ChemStation解卷积报告软件,MassHunter目标物解卷积软件使用更简单、更灵敏,可为每一个被识别组分的峰选择最佳设置并提供出色的目标匹配。 该软件只报告与目标参比图谱最匹配的组分图谱,提供交互式的数据审查和超范围标示功能,并且能够对保留时间 锁定目标进行 质谱谱库比对,以及对单个或整批样品快速生成 PDF格式报告。 Agilent LC/MS、GC/MS和ICP-MS仪器均使用MassHunter软件。它拥有直观的仪器控制、先进的数据采集、处理和报告能力,让用户最大限度扩展思路并找出目标结果。 现已签订软件维护合同的 MassHunter 用户可免费进行升级。 了解Mass Hunter定量分析软件的更多信息,请访问安捷伦MassHunter工作站与MSD ChemStation DA网站。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有20,600名员工,遍及全球100多个国家,为客户提供卓越服务。在2013财年,安捷伦的净收入达到68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • POPs2016上的“明星”—全氟化合物
    仪器信息网讯 谈起POPs,人们首先想到的就是垃圾焚烧厂排放的二噁英,然而最近在西安举办的第十一届持久性有机污染物国际学术研讨会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。会议现场  全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。  除了大会报告和各分会场中有多个涉及全氟化合物的报告外,为了集中讨论全氟化合物的问题,本次研讨会特设了“PFOS履约与安全替代”专场,邀请国内外专家共同探讨全氟化合物的危害和替代品。“PFOS履约与安全替代”专场  各位专家主要围绕全氟化合物的分布、危害和替代品三方面进行了报告。  POPs Environmental Consulting 的Roland Weber博士讲解了PFOS引起的水污染问题以及针对此问题的管理策略和成本。中科院生态环境研究中心王亚韡研究员以我国最大的全氟磺酸盐生产工厂为例,研究了周边地下水、表层土壤、职业工人、周边居民和周边母鸡中全氟化合物的分布、迁移、暴露以及消除规律,并根据研究成果提出了相应的安全防护措施。南开大学祝凌燕教授介绍了其团队在环境中全氟化合物的研究,主要结论包括河流输入是太湖水体中PFAFs的主要来源 直接排放是城市大气中PFOS和PFOA的主要来源 PFASs可以通过与气溶胶或颗粒物结合的形式在大气中传输 我国人体血清中以PFOS为主,短链化合物如PFHxS等有升高的趋势。  农业部环境保护科研监测所耿岳博士以“母亲全血中全氟化合物水平同胎儿先心病发生的相关性”为题,讲解了其在母亲全血中检出的全氟化合物浓度及种类,频率最高的是PFOS和PFOA,并且病例组和对照组之间没有显著性的差异。  中国民用航空飞行学院贾旭宏博士的团队成员为大家讲解了其团队开发的一种PFOS替代品——以短氟碳链(≤ C4)为基础的阴阳碳氟-碳氟表面活性剂复配体系, 并详细介绍了其在水成膜泡沫灭火剂中替代C8基氟表面活性剂的潜力。科慕化学(上海)有限公司Kai-Volker Schuber 博士介绍了其公司产品短链Capstone 含氟表面活性剂作为灭火剂原材料的风险,分别从原材料、产品以及降解产品三个方面,进行了环境、毒理、生态等方面的评估,论证了此种产品的环境友好性。中科院动物研究所戴家银研究员从分布特征和迁移转化规律、内分泌干扰与生殖毒性、复合毒性效应的表征、毒性效应的分子机制等四方面对全氟化合物进行研究,此次报告主要讲解了F-53B的研究成果,认为其各种效应仅次于PFOS和PFOA,不能作为PFASs的替代品。  在会议的茶歇期间,“PFOS履约与安全替代”专场主持人清华大学黄俊副教授接受了仪器信息网的采访,为我们系统介绍了全氟化合物的使用和研究情况。  仪器信息网:我国PFOS的应用情况如何?  黄俊:根据公约和我国的批准,总体来说,用于电镀、农药等特定豁免用途的PFOS将在五年之后全部淘汰,用于消防和全封闭体系电镀等可接受用途的PFOS将可继续使用。与无意产生的二噁英不同,PFOS是一种化工品。在消防领域,PFOS被认为是一种很好的灭火剂生产原料,由于我国石化基地比较多,可以说火灾防不胜防,如果不能找到效果良好的替代品,将对我国消防安全产生较大的影响。”  仪器信息网:PFOS是斯德哥尔摩公约新增列物质,这是否意味着PFOS的毒性小于二噁英等第一批列入公约的物质?  黄俊:这不一定,是否列入公约主要取决于科学认知和国家提名。一种物质如果产量较小,没有引起关注,但因为偶然原因发生危害并被证明毒性较大,可能就会被马上列入公约。再有一个是国家提名,不管一种物质的危害性如何,如果没有任何国家提名的话,也是不会列入公约的。  目前全氟化合物的很多毒理学性质还不清楚,虽然目前公约主要考虑PFOS和PFOA,但是研究者普遍认为应该有更多种类的全氟化合物属于POPs。现在的问题在于,研究众多,但是还没有一个公认的结论。就像阻燃剂一样,刚开始的时候,五溴二苯醚和八溴二苯醚被列入公约,对于十溴二苯醚大家经过了很长时间的争论,最终也列入了公约,这是一个科学证据完善的过程。  仪器信息网:全氟化合物的分析技术是否成熟?  黄俊:全氟化合物是表面活性剂,有阴离子型和阳离子型两种,种类非常复杂,且带有电性,有疏水性的,也有亲水性的,并且物质性质比较特别,所以在用液质联用同时分析多种全氟化合物时,就需要找到一个兼顾所有分析需求的方法。总之,多种全氟化合物的同时分析并不容易。  另外一个就是排除干扰。仪器中的很多密封件是采样特氟龙材质,这种材质会溶出全氟化合物从而形成干扰,目前的解决方法包括更换材质、增加预柱消除干扰、采用同位素稀释方法消除干扰。还有就是实验室的本底控制也很重要,像冲锋衣、地毯、涂料之类的,都会释放出干扰物质。编辑:李学雷
  • 大曹三耀:新“芯”新动力 助力复杂化合物的分析
    p style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "色谱是一种分离分析手段,分离是核心,因此担负着分离工作的色谱柱是色谱系统的心脏。目前市场上色谱柱种类和规格繁多,在制药、食品、环保、石化、农林、医疗卫生等领域有应用广泛,相关从业人数不断增长。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "以往大家比较关注色谱柱的应用情况,为使大家更全面的了解色谱柱类别、相关技术及最新应用进展等内容,仪器信息网特别策划了“/spana href="https://www.instrument.com.cn/zt/spzfl" target="_self"span style="font-family: 宋体, SimSun text-decoration: underline "istrong走近色谱的‘心脏’——色谱柱新技术新应用/strong/i/span/aspan style="font-family: 宋体, SimSun "”专题,并邀请色谱柱主流厂商来分享对色谱柱类别、技术发展及最新应用进展的看法。此次,我们特别邀请三耀精细化工品销售(北京)有限公司谈一谈色谱柱技术与应用。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:请谈下目前色谱柱技术有哪些问题亟待解决?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀/strong:目前市场上色谱柱种类繁多,按照不同的色谱分离模式和机理,色谱柱可分为反相、正相、亲水、疏水、离子交换、手性、尺寸排阻等。反相模式是高效液相色谱法中使用最多的一种,约有80%的HPLC分析都是在该模式下完成的。反相色谱法通常流动相条件简单,重复性好且分辨率高,适合于大部分化合物的分离,但反相色谱最主要的缺点在于对极性较强的化合物无法获得良好保留。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "亲水相互作用色谱(Hydrophilic Interaction Chromatography , HILIC)的出现很大程度上弥补了反相色谱在极性化合物领域分析的不足。HILIC模式通过如氨基、氰基、二醇基、酰胺以及两性离子等强极性固定相的键合,同时结合高比例有机相组成的流动相,能够实现对极性物质的保留。但HILIC模式对于疏水性物质而言保留不佳,限制了其应用范围。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "为了解决反相模式对极性物质保留能力有限的问题,各大色谱柱公司纷纷通过不同手段改进现有填料,包括低碳含量高表面极性耐纯水流动相的C18 AQ色谱柱,极性基团嵌合型色谱柱等。针对于此,2014年10月CAPCELL PAK家族推出了全新立体结构键合高表面极性反相系液相色谱柱——CAPCELL PAK ADME(图1)。一方面,该色谱柱采用了原资生堂公司的聚合物包膜技术,在色谱填料表面均匀包覆有机硅聚合物薄层,有效屏蔽残存硅醇基及残存金属离子的二次吸附作用,优化峰型,并提高色谱柱耐酸耐碱性能;另一方面由于金刚烷基特殊的立体结构,为该色谱柱带来了独特的表面极性和疏水性,适用于在反相条件下对高极性化合物进行分析,并适用于高极性化合物到疏水性化合物的共同分析。与常规C18色谱柱相比较,ADME色谱柱有效扩大了极性化合物分析范围,并对结构接近的同分异构体(非对映异构体)具有一定分离能力。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/02637c5f-4614-4085-8b8b-639fed78cbb6.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-indent: 0em text-align: center "span style="font-family: 宋体, SimSun "strong style="font-size: 12px "图1 CAPCELL PAK ADME色谱柱键合示意图/strong/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:请问贵公司重点关注的应用领域有哪些?贵公司产品目前在市场上应用情况如何?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀/strong:我们目前重点关注药品分析、化妆品和食品分析相关领域,并为用户提供各种应用方案。CAPCELL PAK ADME色谱柱从2014年投入市场至今,在化妆品、药品、食品检测方面已取得良好应用,部分应用方法已经发表成了学术论文,甚至纳入国家标准。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "比如,化妆品中极性跨度较大的10种α-羟基酸,使用CAPCELL PAK ADME色谱柱可以得到良好的分离,该方法作为修订检测方法于2019年3月被纳入《化妆品安全技术规范(2015年版)》,并将于2020年1月1日开始实施。2019年5月,中国食品药品检定研究院发布的《国家药品抽检探索性研究情况》中,联苯苄唑乳膏中极性跨度较大的防腐剂和抗氧化剂的检测,羌活饮片中焦糖色素的筛查,均使用了CAPCELL PAK ADME色谱柱。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "同时,CAPCELL PAK ADME色谱柱在药品分析中也得到很多的应用,对于中药苷类/核苷类物质、糖皮质激素类、多肽类均有良好的分离效果,在药物研发方面,由于ADME色谱柱分析对象广泛,可以兼顾极性杂质、中间产物及终产物,得到了众多医药企业客户的认可,已有药企将该款色谱柱纳入企业标准。尤其在药物代谢动力学研究方面,极性代谢物能够良好保留,代谢前体也可以在反相模式下同时分析,成为科研工作的有力帮手。另外,在食品分析中,由于CAPCELL PAK ADME色谱柱对有机酸、核苷酸、水溶性维生素等极性化合物分离效果极佳,因此也收到了许多客户的良好应用反馈。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "strong仪器信息网:您认为,未来几年色谱柱市场将会如何发展?/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "strong大曹三耀:/strong在未来的3-5年,特别是下一版中国药典的周期内,快速分析将越来越被大家所重视。为适应市场需求,今年公司在全新立体结构金刚烷基键合色谱柱ADME基础上,进一步对其耐水性能进行提升,推出升级版高表面极性CAPCELL PAK ADME-HR色谱柱。此次新产品在原有优质性能的基础上进一步提高了耐水性能,它将为广大色谱工作者提供更大的应用空间和更可靠的解决方案。于此同时,粒径2微米可耐受100MPa压力的CAPCELL PAK ADME-HR S2系列色谱柱及采用PEEK内嵌工艺可耐受50MPa压力的惰性CAPCELL PAK INERT ADME系列色谱柱也为极性跨度大的复杂化合物快速分析提供了解决方案。/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "同时,随着液相色谱的应用更加广泛,越来越多的特殊用途色谱柱将会被大家应用于各个检测领域,比如最近几年发展迅速的临床检测领域。大阪曹達集团的限进介质填料色谱柱CAPCELL PAK MF系列也正在被更多的用户所采用。/span/ppbr//p
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。  本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。  据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。  为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。  本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。  据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。  为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 光致变色化合物——执光为笔,存储记忆
    Light way- 点亮未来 - 光为人类带来无限可能,畅想未来与光相关的黑科技,光擦写技术无疑是具有无限升值空间的潜力股之一。例如光打印技术,无需油墨,重复擦写近100次,绿色环保,可节省纸张;又如新型记忆存储材料,超大密度海量信息记录,并可快速写入及擦除。 光擦写技术涉及到一种特殊的物质,即光致变色化合物,指某些化合物在一定的波长及强度的光作用下分子结构会发生改变,从而导致其对光的吸收峰值即颜色发生相应改变,且这种改变一般是可逆的,意味着这是反复可循环的过程。 光致变色化合物 利用光致变色化合物上述的特点,可将其制成计算机的记忆存储元件,实现信息的记忆与擦除,具有惊人的信息记录密度及良好的抗疲劳性能,能快速进行写入和擦除。这是新型记忆存储材料的一个新的发展方向。 光敏氯合物就属于一种光致变色化合物。从热稳定性的观点来看,光敏氯化合物可分为P型和T型。P型化合物通过光照生成的化合物是热稳定的,可逆变化需要再次光照。而T型化合物通过光照生成的化合物发生热可逆变化。 图1. a:P型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,再使用550nm光照20min 图2. 样品在365nm光照下随时间变化的吸光度曲线 图3. 样品先经365nm光照后,在550nm光照下随时间变化的吸光度曲线 图4. a:T型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,室温放置2h后 图5 样品在365nm光照下随时间变化的吸光度曲线 图6. 样品先经365nm光照后,室温下随时间变化的吸光度曲线 上述P型及T型光敏氯化物的光致变色反应使用岛津新推出的Lightway PQY-01光反应评价系统进行测试,PQY-01配置了快速光电二极管阵列检测器,可以对光致变色过程中的光谱变化进行快速追踪。
  • 参考指南 | 胺类化合物全流程分析方案
    胺类化合物 众所周知,胺类化合物是医药、环境、食品以及化工等领域极其常见的目标分析物。这类碱性物质的高活性也常常使气相分析面临重重困难,并夹杂着如拖尾,吸附,响应低等一系列问题。为此,安捷伦技术团队针对以上问题痛点研究出一整套消耗品方案,能有效解决或改善以上问题,从而帮助您更好地应对胺类分析挑战。 这本快速参考指南将帮助您,选择适用的应用色谱柱及工作流中所涉及的相关耗材。 应对胺类分析的安捷伦 J&W 气相色谱柱组合用于胺类分析的 Agilent J&W 气相色谱柱经过开发和测试,4 款色谱柱组合提供了从非极性到极性的宽固定相极性选择范围,满足不同样品的分离优化。无论是简单样品还是复杂样品,我们全面的创新型色谱柱系列产品都可助您实现快速、准确且可重现的分离。 胺类化合物方法开发色谱柱优选组合如果您的实验室工作涉及胺类化合物的方法开发,您可选择以上推荐的四款不同极性色谱柱的组合。这四款气相色谱柱的固定相皆有所不同,可提供不同的分离选择性,且都具有低流失和稳定耐用的特点,是理想的胺类化合物分析的色谱柱优选组合。 选择合适您样品的色谱柱对于胺分析检测,除气相色谱柱需要惰性处理外,如果整个流路不具备适当的惰性,使用气相色谱分析胺类化合物依然具有一定难度。在对活性化合物进行分析时,重要的是所选的所有部件能够在流路中提供尽可能高的惰性,以确保峰形尖锐、对称,并保持高灵敏度。 使用安捷伦惰性流路备件分析胺类化合物本订购指南提供了该分析所需产品的指导。单击“我的列表”标题将打开安捷伦在线商城* 中可编辑的预填充购物车,以便您轻松挑选所需的产品。 用于小分子挥发性胺类化合物的进样口衬管 用于分子量较大的胺类化合物,盐酸盐形式或中和后的碱性物质 安捷伦超高惰性进样口备件 安捷伦气体管理 安捷伦高品质样品瓶及瓶盖 来源:安捷伦视界
  • 沃特世科技举办极性化合物分析网络讲座
    色谱条件优化之极性化合物分析挑战--沃特世全面解决方案    仪器信息网讯 随着液相色谱技术的发展,色谱柱技术也得到了迅速发展。针对常规色谱柱无法检测的极性化合物,waters 的宋兰坤博士利用仪器信息网的网络讲堂在12月23日为大家带来了一场非常精彩的在线讲座,她详细讲解了极性化合物分析带来的挑战和解决方案。本次讲座吸引了来自科研院所、检测机构及医药领域的专家学者等共计79人参加。  宋兰坤博士在讲座中首先介绍了反相色谱分析极性化合物时容易遇到的疏水塌陷问题。她指出疏水塌陷是和色谱柱固定相的设计有关,Waters的Atlantis T3亲水性化合物保留专用柱是采用三官能键合和封端技术,在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力。  Atlantis T3色谱柱分析极性化合物的机理为疏水作用力,可以采用纯水为流动相,最大程度的增加样品保留 其次通过减少填料上C18的覆盖率,使得样品更容易与残留硅羟基相互作用,也起到增加样品保留的效果。图 使用Atlantis T3 柱检测尿嘧啶  随后,宋兰坤博士指出如果反相色谱条件下仍没有好的保留或者MS响应很低,可以尝试选用HILIC柱。HILIC也叫亲水作用色谱,是正相色谱的一个“变种”,它避免了使用与水不相容的有机溶剂,流动相中含有水,又称“水相正相色谱”。  HILIC模式的三大优势在于:1、与反相色谱互补,可以检测在反相色谱柱中没有保留的强极性化合物 2、高比例的有机相可以增加ESI-MS响应,增强质谱的灵敏度 3、增加样品的高通量,通过PPT,LLE和SPE净化提取后为高比例有机相,HILIC模式不需要挥干和复溶,可以采用直接进样。  HILIC模式的保留机理,是极性待分析物在HILIC填料表面的水层和乙腈/水流动相之间进行分配,带电荷的极性分析物同带电荷的硅羟基发生阳离子交换作用,在带正电的分析物和带负电的硅胶表面存在氢键作用力。同时介绍了分析极性化合物时不同流动相的溶剂选择性和洗脱强度,并总结到随着溶剂极性的减弱,化合物的保留是在增加的。图 HILIC模式的保留机理  同时宋兰坤博士为大家对比了杂化颗粒和硅胶基质的HILIC色谱柱,在PH为5.5的条件下,进样2000针后,Xbridge HILIC 色谱性能仍然完好,硅胶基质HILIC色谱性能则有相当大的退化。图 杂化颗粒VS.硅胶基质HILIC的色谱柱化学稳定性  在将近1个小时的讲座之后,仪器信息网的网络讲堂进入在线提问环节,与会者踊跃提出问题,宋兰坤博士一一为大家做了详细解答。
  • 文献解读丨GC×GC-MS结合化学计量学测定草鱼不同部位挥发性化合物
    GC×GC-MS结合化学计量学 | 测定草鱼不同部位挥发性化合物Doi: 10.1016/j.fbio.2023.103403研究背景淡水鱼的香气是富含多种挥发性分子的混合物,具有令人不悦的泥土气味。这些挥发性分子来源于各种生化反应。因此,人们对鱼的气味研究越来越感兴趣。目前,用于阐明非靶向香气特征的常用分析技术是GC-MS。然而,由于生物样品的复杂性,可能含有成百上千种挥发性成分。传统的一维GC-MS由于其分离能力不足,可能会出现共洗脱等问题。为了识别重叠峰,引入了全二维气相色谱质谱(GC×GC-MS)联用技术。GC×GC-MS由于具有优越的分离能力和更高的峰容量,能够生成大量的数据,这对处理和分析气相色谱数据提出了巨大的挑战。对于有针对的靶向研究,质谱解卷积工具足以使研究人员从所需化合物中有效地提取信息。相比之下,在无针对的非靶向研究中,研究者缺乏关于样品成分和相关化合物的先觉知识。因此,先进的数据处理工具对于处理GC×GC-MS数据是非常重要的。本研究改进并建立了一种检测草鱼挥发性化合物的新方法。采用具有高分辨率的GC×GC-MS完全分离挥发性化合物,使用基于Matlab编写的脚本、PCA、OPLS-DA等化学计量学方法对挥发性成分进行大规模、非靶向的研究,鉴定出了用于区分草鱼不同部位的51种关键挥发性候选物。方法和结论采用GCMS-TQ8050全二维气相色谱质谱系统,配备AOC-5000注射器、双级环型单调制器:DB-5MS色谱柱1(30 m × 0.25 mm × 0.25 μm)和BPX-1色谱柱2 (2.5 m × 0.1 mm × 0.1 μm),系统由Cycle Composer软件控制。配备65 μm PDMS/DVB(poly-dimethylsiloxane-divinylbenzene)萃取头的AOC-5000注射器自动执行HS-SPME过程。将色谱图数据文件加载到GC image软件中进行处理,生成省略S/N值小于100的blob表,该表包含如化合物ID、化合物名称、两根色谱柱的保留时间和RI、峰面积、blob体积等信息。由于不同样品的相同化合物在blob表中的ID是不同的,因此编写了基于Matlab的脚本来自动比较不同样品的相同物质。一个化合物种类最多的blob表被用作模板,其他blob表与其比较,以生成包含不同样品的相同化合物的矩阵。该矩阵被提交给Malab和SIMCA分别进行PCA和OPLS-DA分析,利用VIP值找出区分草鱼不同部位的关键挥发性成分(图1)。图1. 技术路线图2比较了来自相同样品的两个色谱图,其是使用相同仪器获得的。图2a显示了GC×GC曲线,图2b是1D GC(冷喷涂装置关闭,其他条件相同)。图2a的相应强度是图2b的3倍以上,这意味着GC×GC-MS比常规GC-MS更灵敏。图2. 相同样品的GC×GC (a)和1D GC (b)的 TIC色谱图图3展示了某一草鱼样品的GC×GC-MS指纹图谱(a: 1D-GC, b: GC×GC, c: 3D-GC)。可以看出,色谱柱1出现了峰重叠等现象,许多blob均在色谱柱2上分离。此外,在GC箱温度程序中,加热速度非常慢(2 ℃/min),这意味着这些重叠峰很难通过优化色谱柱来分离。由此得出结论,相对于传统一维GC-MS,岛津的GC×GC-MS(GCMS-TP8050)能够检测出更多的挥发性化合物。以图2b为例,共检测出8749个blob,当S/N50时有3042个blob,当S/N100时有1469个blob。显然,一维GC是不能分离这么多峰的。图3. 某一背肉样品的1D-GC (a), GC×GC (b), 3D-GC (c) 指纹图谱表1展示了体积最大的前100种挥发性化合物,包括8种醇、7种醛、3种酮、33种烷烃、7种烯烃、21种酯、2种吡啶、1种酸、1种酚和17种其他化合物。其中,63种首次在草鱼中发现,44种首次在鱼和相关鱼制品中鉴定。表1. 体积最大的前100种挥发性化合物(部分)表2展示了51种关键挥发性候选物,这些化合物被认为是区分草鱼不同部位的最有影响的变量。热图(图4)表明大多数化合物浓度较低,这表明化合物浓度越高,不代表其区分草鱼各部分的能力就越强。文献调研表明,51种关键挥发性候选物除了可能来自于鱼或鱼产品,也可能来自于植物、杀虫剂、环境污染物等。表2. 51种关键挥发性候选物(部分)图4. 51种挥发性候选物的热图文献题目《Determination of volatile compounds in different parts of grass carp using GC✕ GC-MS combined with chemometrics》使用仪器岛津GCMS-TQ8050全二维气相色谱质谱联用仪(GC×GC-MS)岛津AOC系列多功能自动进样器作者赵国强, … , 江勇*等 江西科技师范大学Guoqiang Zhao, Ya Yuan, Hong Zhou, Li Zhao, Yong Jiang*
  • 《环保产品认证实施规则 挥发性有机化合物检测仪》
    p  日前,中国环保产业协会印发《环保产品认证实施规则 挥发性有机化合物检测仪》。对VOCs检测仪环保产品认证做了详细的规定。全文如下:/pp style="TEXT-ALIGN: center"  环保产品认证实施规则/pp style="TEXT-ALIGN: center"  编号:CCAEPI-RG-Y-024-2017/pp style="TEXT-ALIGN: center"  2017-04-01 发布 2017-04-02 实施/pp style="TEXT-ALIGN: center"  中环协(北京)认证中心发布/pp  前 言/pp  本认证规则规定了挥发性有机化合物检测仪的适用范围、认证模式、认证环节、认证要求、认证标志使用及收费等内容。/pp  本认证规则由中环协(北京)认证中心技术部提出。/pp  本认证规则主要起草人:王则武、高晓晶、廖小卿。/pp  本认证规则由中环协(北京)认证中心 2017 年 04 月 01 日批准。/pp  本认证规则自 2017 年 04 月 02 日起实施,原认证实施规则《挥发性有机化合物检测仪》(CCAEPI-RG-Y-024-2013)即日起作废。/pp  本认证规则由中环协(北京)认证中心解释。/pp  1.适用范围/pp  本实施规则规定了挥发性有机化合物检测仪认证的模式、环节、要求、认证证书、标志及收费等内容。本规则适用环境空气挥发性有机化合物在线监测仪、污染源挥发性有机化合物在线监测仪、报警式挥发性有机化合物监控仪等 3 种挥发性有机化合物检测仪的环境保护产品认证。/pp  2.认证模式/pp  产品检验+工厂(现场)检查+认证后监督。/pp  3.认证的基本环节/pp  认证的主要环节包括:认证申请 产品检验 初始工厂检查 认证结果评价与批准 认证后的监督。/pp  4 认证实施的基本要求/pp  4.1 认证申请/pp  4.1.1 申请单元划分/pp  原则上按不同的型号、测量方式、分析原理来划分申请单元。产品由同一生产厂生产且测量方式、分析原理完全相同可以作为一个申请单元。/pp  配置不同的产品为不同的申请单元。/pp  主要零部件型号不同的产品为不同的申请单元。/pp  依据不同标准生产或不同生产场地的产品为不同的申请单元。/pp  4.1.2 申请文件/pp  申请认证应提交正式申请,并随附以下文件:/pp  a)工商行政管理部门核发的有效营业执照复印件 /pp  b)质量技术监督部门核发的组织机构代码证复印件 /pp  c)已经当地质量技术监督部门备案登记的申请认证产品的企业标准 /pp  d)申请认证产品工厂质量保证管理文件 /pp  e)产品说明书、主要技术性能指标说明、同一申请单元内各个型号产品之间的一致性说明及其差异说明等 /pp  f)申请认证产品两个以上用户意见 /pp  g)其他需要的文件。/pp  4.2 产品检验/pp  4.2.1 产品检验的抽样/pp  原则同一申请单元的产品,抽取具有代表性的样品 1 台进行产品检验。抽样基数不少于 5 台。/pp  4.2.2 产品检验的方式/pp  采取实验室检验与相关质量证明文件审查相结合的方式。/pp  4.2.3 产品检验依据的标准/pp  JJF 1172-2007 挥发性有机化合物光离子化检测仪校准规范/pp  GB/T6587-2012 电子测量仪器通用规范/pp  4.2.4 产品检验要求和方法/pp  环境空气挥发性有机化合物在线监测仪的指标要求、检验方法按照附件 1 的要求执行 污染源挥发性有机化合物在线监测仪的指标要求、检验方法按照附件 2 的要求执行 报警式挥发性有机化合物监控仪的指标要求、检验方法按照附件 3 的要求执行。/pp  4.3 初始工厂检查/pp  4.3.1 检查内容/pp  工厂检查的内容为工厂质量保证能力检查和产品一致性检查。/pp  4.3.1.1 工厂质量保证能力检查/pp  由认证机构派检查员对生产厂按照 CCAEPI-GK-305《环境保护产品认证工厂质量保证能力要求》进行检查。/pp  4.3.1.2 产品一致性检查/pp  在生产现场对申请认证的产品进行一致性检查。若认证单元为产品系列,则一致性检查应对每个单元的产品至少抽取产品检验时未进行的一个规格型号。重点核实以下内容:/pp  1)认证产品上和包装上标明的产品名称、型号、规格与产品检验报告上所标明的一致 /pp  2)认证产品的结构及主要配套设备应与产品检验时的样品一致 /pp  3)认证产品所用的原材料应与产品检验时申报并经认证机关确认的一致。/pp  4.3.1.3 检查范围/pp  工厂检查的范围覆盖申请认证产品的所有加工场所和所涉及的活动。包括与制造该产品有关的质量体系所涉及的部门、岗位、设施相关的质量活动。 4.3.2 初始检查时间一般情况下,产品检验合格后,再进行初始工厂检查。产品检验和初始工厂检查也可以同时进行。初始工厂检查时间,根据所申请认证产品的单元数量和工厂的生产规模确定,一般每个加工场所为 3 至 6 个人日。/pp  4.4 认证结果评价与批准/pp  4.4.1 认证结果评价与批准/pp  由认证机构负责对产品检验、工厂检查结果进行综合评价,评价合格后,由认证机构对申请人颁发认证证书。认证证书的使用应符合认证机构的有关规定。/pp  4.4.2 认证时限/pp  认证时限是指自受理申请之日起至颁发认证证书时止所实际发生工作日,包括产品检验时间、工厂检查后提交报告时间、认证结论评定和批准时间、以及证书的制作时间。产品检验时间根据产品和相关标准确定(因检验项目不合格,进行整改和复试的时间不计算在内),从收到样品和检测费用起计算。检验完成后,提交报告的时间一般为 5 个工作日。工厂检查后提交报告时间为 5 个工作日,以审核员完成工厂检查、收到生产厂递交了符合要求的不符合要求的不符合项纠正措施报告之日起计算。认证结果评定、批准时间及证书制作时间一般不超过 7 个工作日。/pp  4.5 认证后的监督/pp  4.5.1 监督的内容和方式/pp  一般情况下,在获证后三年有效期内,进行两次监督检查。监督检查的重点是认证后工厂是否持续符合环保产品认证的能力要求,以及产品一致性检查。监督检查可以采用以下方式进行:/pp  a)工厂质量体系检查 /pp  b)产品性能抽检 /pp  c)用户调查。/pp  4.5.2 增加监督频次的条件/pp  若发生下述情况之一可增加监督频次:/pp  a)获证产品出现严重质量问题或用户提出严重投诉并经查实为持证人责任时 /pp  b)认证机构有足够理由对获证产品与标准要求的符合性提出质疑时 /pp  c)有足够的信息表明生产者、生产厂因变更组织机构、生产条件、质量管理体系等,可能影响产品符合性或一致性时。/pp  4.5.3 监督结果的评价/pp  监督检查合格后,可以继续保持认证资格使用认证标志。监督检查时发现的不合格之处应在规定的时间内(一般不超过 3 个月)进行整改。逾期将撤消认证证书、停止使用认证标志,并对外公告。/pp  5.认证证书/pp  5.1 认证证书的保持/pp  5.1.1 认证证书的有效性/pp  本规则覆盖产品的认证证书有效期一般为 3 年。在规定的有效期内,证书有效性的保持依赖认证机构定期的监督获得。/pp  5.1.2 认证产品的变更/pp  5.1.2.1 变更的申请/pp  认证后的产品,如果涉及主要设计参数、产品结构、关键材料和元器件发生变更时,或证书持有者法人名称发生变更时,应向认证机构提出变更申请。/pp  5.1.2.2 变更评价和批准/pp  认证机构根据变更的内容和提供的资料进行评价,确定是否可以变更或需送样品进行检验,如需送样检验,检验合格后方能进行变更。/pp  5.2 认证证书覆盖产品的扩展/pp  5.2.1 扩展程序/pp  认证证书持有者需要增加与已经获得认证产品为同一认证单元内的产品认证范围时,应从认证申请开始办理手续,认证机构应核查扩展产品与原认证产品的一致性,确认原认证结果对扩展产品的有效性,针对差异做补充检验或检查,并根据认证证书持有者的要求单独颁发认证证书或换发认证证书。/pp  5.2.2 样品要求/pp  证书持有者应先提供扩展产品的有关技术资料,需要对扩展产品检验时,检验项目由认证机构决定。/pp  5.3 认证证书的暂停、注销和撤消。/pp  按照认证机构的有关规定执行。/pp  6.产品认证标志的使用/pp  证书持有者必须遵守认证机构认证标志管理办法的规定。/pp  6.1 准许使用的标志样式/pp  6.2 变形认证标志的使用/pp  本规则覆盖的产品允许使用认证机构规定的变形认证标志。/pp  6.3 加施方式/pp  可以采用认证机构允许的加施方式。/pp  6.4 标志的位置/pp  应在产品本体明显位置上加施认证标志。/pp  7.收费/pp  自愿认证收费由认证机构按国家有关规定收取。/pp style="TEXT-ALIGN: center"img title="图1.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/fbba6ffe-20ad-4595-b2f3-c37f4ddc60d5.jpg"//pp style="TEXT-ALIGN: center"img title="图2.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/438567f7-4c47-466d-8072-e3d8a69d571d.jpg"//pp style="TEXT-ALIGN: center"img title="图3.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/c2ca1ea0-ed35-4806-a3f3-1a241192df85.jpg"//p
  • 上海有机化学所郭寅龙团队最新成果:实现常压有机化合物的指纹图谱质谱分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 以 ESI 为代表的大气压离子化技术(API)产生以来,质谱技术与许多分离技术的联用日渐成熟,在环境监测、药物研发、法医鉴定、组学研究等诸多领域发挥出越来越重要的作用。但是与需高真空环境的经典离子源如电子电离源(EI)相比,API用于质谱定性分析存在明显缺陷。这主要是由于API离子源往往基于软离子化机理,化合物经软电离过程得到的多为偶电子离子,很难得到奇电子离子;常压离子化过程能量有限,得到化合物的碎片很少,不能获得丰富的“指纹“信息,无法全面地反映出目标化合物的结构。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "目前已有的质谱解离技术或碎裂模式局限(如碰撞诱导解离往往发生中性丢失)或无法与API进行方便联用(如电子捕获解离和高能诱导裂解需要高真空仪器环境),因此,API用于质谱定性分析的缺陷并没有得到根本性的解决和弥补。 /span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "近日,strong中国科学院上海有机化学研究所郭寅龙课题组发展了一种基于电弧等离子体的新型质谱解离(APD)技术/strong,使大气压环境下有机化合物分子的指纹图谱质谱分析得以实现,很好地弥补了上述缺陷。电弧放电产生的热等离子体同时具备高温、高能和特殊的化学反应性能,对分析物实现离子化的同时还伴随明显的碎裂现象。span style="text-indent: 2em "这种基于电弧等离子体的解离装置(APD)利用施加有约20千伏高压的两个电极,即可很方便地在常压环境下产生稳定的电弧等离子体。APD引起的化合物碎裂包含电荷诱导、自由基诱导以及等离子体独特的化学反应性诱导的断裂,可同时产生大量奇、偶电子碎片离子,所得化合物的“指纹”质谱图包含丰富的结构信息。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "题为《Arc Plasma-Based Dissociation Device: Fingerprinting Mass Spectrometric Analysis Realized at Atmospheric Condition》的成果近期发表在 Analytical Chemistry 上,文章的第一作者是上海有机所博士生朱苏珍。(DOI: 10.1021/acs.analchem.0c03127 )/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 232px " src="https://img1.17img.cn/17img/images/202011/uepic/634aa914-21a3-49af-b66a-7a51bf7fef8d.jpg" title="1.jpg" alt="1.jpg" width="600" height="232" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图1. APD装置示意图(左)和APD分析所得芬太尼指纹图谱(右)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "APD的优异解离性能在多种化合物类别中都已得到确认,包括毒品类化合物(甲基苯丙胺等)、精神活性类化合物(芬太尼等)、甾体激素类化合物(地塞米松等),不仅可分析极性化合物,对黄酮类、酚类、蒎烯类等ESI信号响应不好的化合物同样能取得良好解离分析效果。且当与纳升电喷雾电离源(nano-ESI)和零压纸喷雾(zero volt PSI)两种经典的API技术联用时,能很好地实现两种毒品类化合物的指纹图谱分析。利用APD与零压纸喷雾联用装置作者分析了一份来自吸毒者的原尿样品(由上海司法鉴定研究院提供),通过谱图比对,成功鉴定出其中的毒品甲基苯丙胺(冰毒)。此外,作者还发现APD解离模式中存在可能源于等离子体化学的消除亚甲基和芳构化两种特殊碎裂过程,并将后者成功应用于4-丁基苯胺和N-丁基苯胺两种同分异构体的区分中。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 443px " src="https://img1.17img.cn/17img/images/202011/uepic/ff54c960-bbe3-4396-9775-d1ee0abe2e98.jpg" title="2.jpg" alt="2.jpg" width="600" height="443" border="0" vspace="0"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图2. APD装置与nano-ESI联用装置(a)分析美沙酮标准品所得谱图(c);APD装置与zero-volt PSI联用(b)分析甲基苯丙胺标准品所得质谱图(d)分析原尿样品所得质谱图(右下)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "该解离技术有望实现基于APD的化合物指纹图谱库的构建,并进一步与液相色谱联用,成为一种有效的定性分析手段。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "strong郭寅龙研究员简介/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/2966ca54-17b6-44e5-b59c-9b477e45d647.jpg" title="郭.jpg" alt="郭.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "郭寅龙,中国科学院上海有机化学研究所研究员, 国家大型科学仪器中心上海有机质谱中心主任。主要从事质谱学研究,在新型离子源研发、反应机理研究、质谱衍生化试剂研发和质谱成像等领域,取得了突出的创新性成绩,2000年以来,在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、 Nat. Catal.、Anal. Chem.等国内外著名期刊发表研究论文近300篇,获得发明专利20余项。 /pp style="text-align: justify text-indent: 2em line-height: 1.75em "论文链接span style="color: rgb(255, 0, 0) ":/spana href="https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c03127" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "stronghttps://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c03127/strong/span/a/p
  • 中国碳水化合物动物营养研究中心成立
    7月2日,中科院大连化学物理研究所与四川农业大学动物营养研究所、中泰和(北京)科技发展有限公司在四川农业大学成都校区签署三方协议,共同成立“中国碳水化合物动物营养研究中心”。  合作中,中科院大连化物所将承担碳水化合物分离、分析、检测和规模化制备等相关研究工作,四川农业大学动物营养所将负责对结构明确的碳水化合物进行动物营养学评价,以求筛选出优质的可应用于畜牧饲养的碳水化合物,中泰和(北京)科技发展有限公司除负责新产品的设计和市场推广外,还将为该中心提供必要的科研经费支持。  四川农业大学动物营养研究所1986年成立,主要从事猪、禽、反刍动物和水生动物的营养物质代谢、营养需要、营养调控、饲料营养价值等评定。先后承担完成了国家973、国家自然科学基金等部省级科研项目近三百项,获得国家科技进步二等奖3项、四川省科技进步一等奖3项、以及其它省部级奖励共计二十余项。已出版教材及专著40余部,每年发表论文130余篇。  中泰和(北京)科技发展有限公司是专注于糖工程技术在畜牧业应用研发、推广的专业服务商,以“前沿智慧,成就客户”的核心价值观,为商业饲料企业和饲料养殖一条龙企业提供动物营养/健康的解决方案。
  • 中科院动物所等揭示大熊猫对竹子黄酮类化合物的代谢规律及其肠道微生物适应性响应机制
    植物次生代谢产物(Plant secondary metabolites,PSMs)在植食性哺乳动物的觅食生态中起到重要作用。黄酮类化合物是一类重要的PSMs,在植物中广泛存在;具有显著的促进健康的作用,包括抗菌、抗病毒、增强免疫,以及心血管保护等功能。目前,对食源性黄酮类天然复合成分的整体代谢规律及其与动物肠道微生物的双向作用,尚缺乏清晰的认识;关于黄酮类化合物的生态学功能研究相对较少,特别是其对濒危野生动物的生理影响及动物对食物中黄酮类化合物的适应性演化机制鲜有研究。  大熊猫属于食肉目动物,具有食肉目动物的消化生理特征,但其食性特化为专性食竹。竹中具有丰富的黄酮类化合物。因此,大熊猫-竹子为研究食源性黄酮类化合物在植食性动物与植物之间的生态学功能提供了理想模型。  9月22日,中国科学院院士、中科院动物研究所研究员魏辅文团队联合成都大熊猫繁育研究基地,在Microbiome上发表了题为Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal的研究论文。该研究运用代谢组学、宏基因组学和体外培养等方法,在完整的年周期内同步采集野外大熊猫的可获得样本(食物和粪便);采集成都大熊猫繁育研究基地中圈养大熊猫的食物、粪便和血浆,剖析了大熊猫对黄酮类化合物的吸收代谢、利用偏好和生物转化,以及黄酮类化合物对大熊猫肠道微生物组成和功能的影响。主要研究结果如下:  大熊猫对黄酮类化合物的利用规律:利用代谢组学方法,在竹子中鉴定了97个黄酮类单体化合物;与竹笋相比,竹叶中含有更多种类和更高丰度的黄酮类化合物。因此,随着食笋和食叶的季节性转化,黄酮类物质的摄入存在显著的季节性差异。血浆靶向代谢组学检测发现,直接以原型化合物的形式进入血液的化合物仅有12种。食物与粪便代谢组的比较分析发现,大熊猫对食物源黄酮类化合物的利用在亚类和单体水平上均有不同的偏好性,对食物源中的38种单体具有较高的利用率,且粪便中有新的黄酮类单体化合物生成。  大熊猫肠道微生物适应性响应机制:粪便代谢组和宏基因组关联分析显示,PSMs-黄酮类化合物与肠道微生物的季节性具有显著的相关性。体外培养实验证明,黄酮类物质的季节性的差异摄入驱动了大熊猫肠道微生物的季节性变化,如野外大熊猫肠道微生物关键物种的变化(狭义梭菌属1,Clostridium sensu stricto 1),特别是对有益菌的生长促进作用,如益生菌丁酸梭菌(Clostridium butyricum)。食物中黄酮类摄入越高,大熊猫肠道微生物的多样性越低,微生物毒力因子的丰度也更低。宏基因组功能分析揭示了70%黄酮类化合物的吸收转化由肠道微生物参与完成,且肠道微生物也促进大熊猫对黄酮类物质的转化和利用偏好。  以上结果证明,在长期演化过程中,大熊猫季节性食物转化行为是大熊猫对竹中有益元素最大化利用的适应。其中,黄酮类化合物对维持大熊猫肠道微生态的动态平衡发挥重要作用。该研究拓展了关于大熊猫营养生态学的认识:有益的PSMs可以通过调控肠道微生物,正反馈调节宿主生理,从而影响大熊猫的觅食策略。此外,该研究也为圈养大熊猫管理提供了重要参考,即食物源黄酮类化合物是大熊猫重要的天然益生元,对大熊猫的临床健康管理,特别是肠道疾病的治疗具有广阔的应用前景。  该研究首次以非模式野生动物为模型,探索食源性黄酮类化合物的吸收代谢规律及其与肠道微生物的互作模式。从动物生态学的视角,应用多组学方法探讨有益的PSMs对植食性哺乳动物的生理作用。黄酮类化合物与肠道微生物的双向作用为探究动物-肠道微生物共演化提供了新思路。研究得到中科院战略性先导科技专项(B类)、国家自然科学基金的资助。
  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制