当前位置: 仪器信息网 > 行业主题 > >

涡结构

仪器信息网涡结构专题为您整合涡结构相关的最新文章,在涡结构专题,您不仅可以免费浏览涡结构的资讯, 同时您还可以浏览涡结构的相关资料、解决方案,参与社区涡结构话题讨论。

涡结构相关的资讯

  • 【赛纳斯】再发Nature!我司技术团队揭示界面水分子结构
    北京时间12月2日0时,Nature刊发厦门大学化学化工学院李剑锋教授课题组题为“In situ Raman spectroscopy reveals the structure and dissociation of interfacial water”(《原位拉曼光谱揭示界面水分子结构和其解离过程》)的研究论文。通过与北京大学深圳研究生院潘锋教授课题组合作,他们揭示了钯单晶电极界面水分子构型及其在析氢反应中的核心机制,为提升电催化反应速率提供了一种新的策略,解开了界面水分子结构如何调控电催化反应这一科研难题。水是我们赖以生存的生命源泉,也是科学发展各个领域的重要角色。在可再生能源科学领域,水分子更是直接参与到众多重要的电催化反应之中。可是,处于电极/溶液界面的水分子,作为反应过程的重要研究对象,数目远远低于体相水分子,而电极电势的实时变化又将极大影响真实的反应进程,必须在电场控制的条件下进行原位研究才能如实获得相关信息。因此,关于界面水分子在电催化反应过程中的结构变化与作用机制的研究变得困难重重。李剑锋课题组利用原位表面增强拉曼光谱技术,在电催化析氢反应过程中,对钯单晶电极/溶液界面水分子的构型及其动态变化过程进行实时监测。他们发现,除了已知的含有氢键的水分子,界面上还有一类与阳离子键合的水分子。正是在阳离子和电极电势协同作用下,无序的水分子排布成更为有序的特殊结构,这种结构可以加速电极与水分子间的电荷转移,进而极大提升电催化反应析氢的速率,为指导绿色制氢提供新的理论途径。厦门大学化学化工学院博士毕业生王耀辉(现为厦门大学博士后)和郑世胜(厦门大学能源学院本科毕业生,现北京大学深圳研究生院博士生)为该研究工作的共同第 一作者,李剑锋教授和北京大学深圳研究生院的潘锋教授为共同通讯作者。
  • 颜宁等点评:AI 精准预测蛋白质结构,结构生物学何去何从?
    p style="text-indent: 2em "12 月 1 日,谷歌旗下的 DeepMind 公司宣布,其strong新一代 AlphaFold 人工智能系统/strong在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手,strong精确预测了蛋白质的三维结构/strong,strong准确性可与冷冻电子显微镜(cryo-EM)、核磁共振或 X 射线晶体学等实验技术相媲美。/strong/ppbr//pp style="text-indent: 2em "(详见《解决生物学 50 年来的重大挑战!生物界「AlphaGo」精准预测蛋白质结构》)这一消息引发了全球媒体关注,前 Genentech 首席执行官 Arthur D. Levinson 博士盛赞这一成就是strong「划时代的进步」/strong。/ppbr//pp style="text-indent: 2em "人工智能的「进击」对生物学、对其他学科会有什么影响?网络上有人提出:strongAI 都能解蛋白质结构了,结构生物学家是不是该失业了?/strong/ppbr//pp style="text-indent: 2em "《返朴》总编、结构生物学家颜宁特邀几位同仁对这一新闻各抒己见, 回答大家的疑问。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 558px height: 618px " src="https://img1.17img.cn/17img/images/202012/uepic/73bb911a-86ca-490b-a90a-f01fb76aa418.jpg" title="微信图片_20201204191414.jpg" alt="微信图片_20201204191414.jpg" width="558" height="618"//pp style="text-align: center text-indent: 2em "span style="font-size: 12px "by Asier Sanz | https://asiersanz.com//span/ppbr//pp style="text-align: center text-indent: 2em "strongAlphaFold2 是个大突破,但我们还有努力的方向/strong/ppbr//pp style="text-align: center text-indent: 2em "张阳/pp style="text-align: center text-indent: 2em "(ITASSER 创造者,美国密歇根大学教授)/ppbr//pp style="text-indent: 2em "AlphaFold2 显然是蛋白质结构预测领域的重大突破。这可能是从 1969 年第一篇 Journal of Molecular Biology 用比较建模方法预测蛋白质结构发表 51 年以来最大的突破。/ppbr//pp style="text-indent: 2em "这个领域过去 20 年来,进展一直比较缓慢,但最近几年,随着共同进化、接触图预测以及引入深度学习之后,很多软件,比如 I-TASSER 和 Rosetta 等,都有了很大进步。/ppbr//pp style="text-indent: 2em "就 I-TASSER 来讲,两年前在第 13 届 CASP(CASP13)时,它能够正确预测的非同源蛋白数目比其六年前在 CASP11 上提高了 5 倍。这次 CASP14 也比 CASP13 的预测能力提高了很多。但 AlphaFold2 这次比上次进步更大,和两年前的上一个版本相比, AlphaFold2 的主要变化是直接训练蛋白质结构的原子坐标,而不是用以往常用的、简化了的原子间距或者接触图。/ppbr//pp style="text-indent: 2em "传统上,蛋白质结构预测可以分成基于模板和从头预测,但是 AlphaFold2 只用同一种方法 —— 机器学习,对几乎所有的蛋白质都预测出了正确的拓扑学的结构,其中有大约 2/3 的蛋白质预测精度达到了结构生物学实验的测量精度。这说明,至少是在单结构域的蛋白结构,他们接近解决了这个问题。/ppbr//pp style="text-indent: 2em "谷歌这次为什么能够取得如此大的成功?/ppbr//pp style="text-indent: 2em "这首先与它们拥有强大的人力和计算资源有关。/ppbr//pp style="text-indent: 2em "计算机上,他们使用 TPU(据他们的宣传是比 GPU 快 15 倍),学术界的实验室只有 CPU 或者 GPU,而很多实验室都还没有 GPU。他们对媒体宣传中说 Alphafold2 最后只用相当于 100 个 GPU 的资源训练了两周就产生了最后的模型,学界大多数实验室都可以做到,这是不客观的。因为产生一个新的想法,到训练成功的模型,中间起码要反复测试重复 100 次甚至 1000 次。这就像吃了十个馒头的饿汉一 样,不能说吃了最后一个馒头吃饱了,就觉得只吃最后一个馒头就够了。/ppbr//pp style="text-indent: 2em "另外,他们可以高薪招聘大量专业人才,集中精力攻关一件事,不需要担心基金申请、教学和学生毕业论文等等。这些人力和计算资源上的差别是谷歌 DeepMind 这样的工业研究机构比起学术界在攻关科学或者工程问题上的最大优势。/ppbr//pp style="text-indent: 2em "当然,学术界在蛋白质结构预测这么多年的积累,也给 AlphaFold2 的成功奠定了基础。/ppbr//pp style="text-indent: 2em "我自己很高兴他们取得了这么大突破。这个工作首先证明了蛋白质结构预测问题是可以被解决的。这其实不是一个简单的问题,因为蛋白质结构和序列的复杂关系,常常让人们 —— 特别是做结构预测的人 —— 怀疑,蛋白质折叠这个问题是不是可解, 或者有没有唯一解。/ppbr//pp style="text-indent: 2em "我们在 15 年前的一篇 PNAS 论文中提到,用 PDB 库中的模板,在理论上可以解决 “单结构域蛋白质结构预测” 这个问题,但那是一个基于模板的传统解法, 难点是如何找到最好的模板。谷歌他们这次用「暴力」的机器学习,「暴力」地解决了这个问题。这个做法的成功会对很多相关领域都产生深远影响。/ppbr//pp style="text-indent: 2em "有人说这个 AlphaFold2 会让很多相关行业的人失业。我认为恰恰相反,它给很多领域提供了解决问题的新途径和新思维,因而会极大推动相关领域的发展,因此会产生更多更大的机会。即便是在蛋白质结构预测这个相对较小的领域,我们还有很多事情要做。/ppbr//pp style="text-indent: 2em "AlphaFold2 这次只有 2/3 的蛋白预测做到实验精度,还有 1/3 做不到,是否还有更快更好的途径来产生更高精度结构的算法?基于商业或其它考虑,我相信谷歌可能不会公开代码或 Server。/ppbr//pp style="text-indent: 2em "所以,最终可能还得学术界的同行共同努力,完善和推广这一技术,让其真正惠及生物医学研究以及普通公众的健康需求。/ppbr//pp style="text-align: center text-indent: 2em "strong共赢大于竞争/strong/ppbr//pp style="text-align: center text-indent: 2em "龚新奇/pp style="text-align: center text-indent: 2em "(中国人民大学数学科学研究院教授,清华大学北京结构生物学高精尖中心合作研究员)/ppbr//pp style="text-indent: 2em "2020 年第 14 届国际蛋白质结构预测竞赛(CASP14)共有 84 个常规(Regular)题目,其中有 14 个题目因为生物实验没给出确定结构等原因被取消或延缓,其他 70 个题目的单体和复合物蛋白质所含有的氨基酸个数从 73 到 2180 不等。/ppbr//pp style="text-indent: 2em "19 个国家的 215 个小组参加了 CASP14。最终,谷歌旗下 DeepMind 公司的人工智能系统 AlphaFold2 在 2018 年的 Alphafold 基础上迭代创新,超常发挥,一枝独秀,基本解决了「从氨基酸序列预测蛋白质结构」这个困扰人类 50 年的生物学第二遗传密码问题。/ppbr//pp style="text-indent: 2em "AlphaFold2 的成功表现在三个方面:/pp style="text-indent: 2em "1.不少结构的预测精确度跟实验晶体结构相当,可以替代晶体结构;br//pp style="text-indent: 2em "2.一些含有多个结构域的复杂超长的单链结构也达到了可以跟实验结构比较的程度;/pp style="text-indent: 2em "3.帮助解析了竞赛中涉及到的、实验多年没拿到的 X 射线晶体和 cryo-EM 冷冻电镜结构,比如 T1058 的膜蛋白是用了 Alphafold2 的预测模型之后,才跟原有晶体学数据综合成功解析了结构。br//pp style="text-indent: 2em "AlphaFold2 团队的 John Jumper 报告表明,他们使用了基于注意机制的神经网络,动态调整网络中节点的顺序和链接;依靠的是端到端的优化整体构建结构,而不是氨基酸距离;网络中内置了大量的序列、结构和宏基因组等多重比较信息;还依赖分子模拟软件优化去掉了原子的堆积碰撞。/ppbr//pp style="text-indent: 2em "在 AlphaFold2 的摘要作者名单里,交叉团队的 30 位作者中有 19 位都被标记为相同贡献的第一作者。他们将近 8 分钟的宣介视频,记录了团队成员在新冠疫情期间精诚合作、攻坚克难的宝贵场景。/ppbr//pp style="text-indent: 2em "CASP 组织者 John Moult 指出,计算下一步还有更困难的问题要解决:超大复合物结构、动态构象变化、蛋白质设计、药物设计等等。/ppbr//pp style="text-indent: 2em "除了我们蛋白质结构预测小同行对 AlphaFold2 的成功很欣喜之外,社会上还有多个不同方向的学术界、产业界和新闻界对它寄予了厚望。/ppbr//pp style="text-indent: 2em "在欣喜的同时,蛋白质结构预测小同行也有一些保留意见:/pp style="text-indent: 2em "1.工程化明显,依赖于强大的 GPU 计算资源和代码优化团队;br//pp style="text-indent: 2em "2.谷歌公司几乎可以收集全球所有网络信息,虽然看起来 AlphaFold2 的自动化程度很高,但他们在人工操作中使用了哪些信息值得关注;/pp style="text-indent: 2em "3.预测对了结构,但不等于明白了蛋白质折叠过程和原理。/ppbr//pp style="text-indent: 2em "strong生物实验科学家也有不少看法:/strong/pp style="text-indent: 2em "1.算出结构只是生物学规律发现的第一步;/pp style="text-indent: 2em "2.计算的多个 models 中,有时打分排序不准;/pp style="text-indent: 2em "3.开放 AlphaFold2 的 server 之后,使用效果不一定那么好;/pp style="text-indent: 2em "4.只是在已有蛋白质结构数据集上训练得到的模型,尚不能计算其它构象或其它类别的分子结构。/pbr/p style="text-indent: 2em "还有关心这个领域的其他方向的专家也提出了问题:怎么理解这个算法成功的原理?怎么跟原有的热力学、物理学等基本原理相融相通?/ppbr//pp style="text-align: center text-indent: 2em "我认为 AlphaFold2 是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;对生物学、数学和计算机学等学科而言,则会带来新的机遇。br/br/strong技术服务于科学探索,结构生物学早就进入新时代/strongbr/颜宁/pp style="text-align: center text-indent: 2em "(美国普林斯顿大学雪莉?蒂尔曼终身讲席教授,美国科学院外籍院士)/ppbr//pp style="text-indent: 2em "首先,简单说一下,什么是生物学里的「结构」。/pbr/p style="text-indent: 2em "用个不太恰当的类比:变形金刚。比如擎天柱是辆车还是个机器人,这就是不同的结构了,机器人能打架大车做运输,功能也不一样。而不同的汽车人组成成分可能差不多,都有合金、玻璃、橡胶,但是形态各异,特长也不一样。br/生物分子的组成成分和基本单元就那么几种,但是组装起来,不同的序列不同的结构,于是功能各异、五花八门。这个结构不是静止的,每一个生物大分子基本都像个小机器,比变形金刚更复杂、更变化多端。/ppbr//pp style="text-indent: 2em "因为结构决定了生物大分子的功能,所以解析高分辨率结构在过去几十年一直是理解生物大分子工作机理最有力的工具。但是一直以来,因为技术局限,对于绝大多数生物大分子的结构解析困难重重。所以,一批科学家另辟蹊径,试图在已有的知识基础上,绕开劳心劳力又劳财的实验步骤,从蛋白质的序列直接通过计算预测出它们精准的三维结构。/ppbr//pp style="text-indent: 2em "蛋白结构预测并不是一个新鲜学科,一直以来就是结构生物学的一个分支,很多科学家不断开发算法,希望根据序列预测出来的结构越来越准确。br/这个领域在过去十几年进步迅速,并且与实验结构生物学融合度越来越高。比如,自从进入电镜时代,看到一堆黑白灰的密度,如果其中某些部分没有同源结构,通过软件预测一个大致的结构模型,放到密度图里面做框架,再根据实验数据调整,已经是个常规操作。/ppbr//pp style="text-indent: 2em "这次人工智能赢得 CASP 的新闻亮点有两个,一是 AI,二是准确度高。这确实是突破,但是有了两年前的新闻(注:2018 年,DeepMind 开发的第一代 AlphaFold 首次参加 CASP 并且拔得头筹)做铺垫,现在这次委实是意料之中。br/至于衍生出来的所谓「结构生物学家都要失业了」的调侃 —— 如果你对结构生物学的理解还停留在 20 年前,那这么说也不是不行。但是结构生物学自身一直在发展着,一场冷冻电镜的分辨率革命更是令结构生物学不同往日了。br/我在 2015 年主持一个学术研讨会的时候曾经评论过:结构生物学的主语是生物学,是理解生命、是做出生物学发现。br/但是,在 X - 射线晶体学为主要手段的时代,获得大多数研究对象的结构本身太难了,于是很多研究者把「获得结构」本身作为了目标,让外行误以为结构生物学就是解结构。但我从进入这个领域之初,就被教育得明明白白:结构本身只是手段,它们是为了回答问题、做出发现。而电镜使得「发现」二字尤为突出。br/br/看到结构本身、知道你的研究对象长啥样,倒也可以称之为发现,但我刚刚说的「发现」,特指那些超乎想象的、通过结构才揭示出来的、自然界里神奇的存在或者令人叹为观止的机理。/pbr/p style="text-indent: 2em "我讲课最喜欢举的例子之一就是施一公组的剪接体结构。为啥呢?因为它集合了结构生物学发现里几乎所有的精彩要素和挑战。br/br/第一,在剪接体结构出来之前,有很多剪接体的组分甚至是未知的。不同于传统的结构生物学,先知道你要研究对象是啥,再吭哧吭哧地去把它们的结构解出来 —— 剪接体的电镜分析是看到了密度图之后,完全不晓得这是啥,需要通过质谱等手段去鉴定组分。我从 2015 年就预测:电镜与质谱组合,将会变成一个重要的生物学研究发现手段。在电镜时代,这样的例子越来越多。比如清华大学隋森芳老师组的那个巨大的藻胆体结构,靠质谱都不够了。为了搞明白组分,他们甚至先做了基因组测序。br/br/第二,几十上百个蛋白如何众星捧月地把那么几条貌似简单的 RNA 掰成与几个小小的金属离子配合的核酶反应中心,在茫茫碱基中,在正确的时间正确的地点牵线搭桥,剪掉 intron(内含子),连接 exon(外显子)?就为了这一「剪子」 一「钩针」,为了几毫秒的过程,这么个庞然大物的几十上百个组成部件却要分分合合,这个过程是真神奇。/ppbr//pp style="text-align: center text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/72bc97e7-d254-461b-b199-1156f73a37c8.jpg" title="微信图片_20201204191624.jpg" alt="微信图片_20201204191624.jpg"//pp style="text-align: center text-indent: 2em "span style="font-size: 12px "施一公实验室报道的首个酵母剪接体的结构/span/pp style="text-align: center text-indent: 2em "span style="font-size: 12px "(图源:生物化学经典教材 Lehninger Principles of Biochemistry(第七版)封面)/span/pp style="text-align: center text-indent: 2em "span style="font-size: 12px "br//span结构生物学目前的实验手段只能获得静止的 3D 照片,为了揭示这部电影,就要不断获得中间态的 3D 照片,帧数越多,电影越精准。但即便如此,这个过程中的动力学问题,简单说,就是变化速度,依旧不是现在的结构生物学实验手段可以揭示的,需要借助更多生物物理技术、计算生物学手段去探索。br/我自己的工作虽然没有剪接体那么酷炫,但是电压门控钠离子通道如何感受膜电势的变化,开门关门,就这么个过程,听着简单,我们死磕三年了,依旧束手无策。另外,我们今年发的两篇 PNAS 论文其实代表了结构生物学的另一个努力方向:在实验操作过程中对生物大分子施加外力(电场、磁场、各种长度的波......)。br/也许是受到我自身专业领域的局限,AlphaFold 迄今带给我的震撼还赶不上冷冻电镜的革命,后者将我们从技术挣扎中解放出来,可以专注于结构带来的生物学发现本身。br/br/AlphaFold 目前最成功的预测是针对单链分子,当然将来预测复合物的高精结构也应该不在话下。相比于对蛋白折叠的贡献,我倒是更希望 AI 能够助力 Molecular Dynamics Simulation(分子动力学模拟)。对结构生物学而言,这个领域才是亟需进步的。br/br/我个人认为生命是地球上最神奇的存在,那么多未知要探索,任何一次技术进步都是契机。该考虑的是如何把新技术为我所用,去问出、去探索更有意思的问题。br/最后,当 AI 能够成功预测我们正在孜孜以求的生物大分子动态、原位高分辨率结构的时候,那失业的一定不止是结构生物学家、或者生物学家了 :pbr/br/strong各抒己见/strong/pp style="text-indent: 2em "strongbr//strong根据现在披露的结果,AlphaFold2 已经基本达到实验解析结构的精度。前天 AlphaFold2 团队的报告展示了新冠病毒 SARS-COV-2 的预测结果,说明 RNA 聚合酶这么大的蛋白也能基本预测准确。/pbr/p style="text-indent: 2em "理论上,这会对结构生物学有很大冲击,尤其是以后单颗粒 cryo-EM 的实验方法上,是否还需要把分辨率做得那么高?低分辨率的电子密度图,甚至 SAXS 数据结合预测结果应该就能解决问题了。br/但是,现实中的冲击不会那么大。这是因为,AlphaFold2 模型的创新性非常高,其中结合的 2D transformer 和 3D equivariant transformer 都是 AI 领域的前沿技术,模型的训练难度很大。/pbr/p style="text-indent: 2em "DeepMind 的训练方法在学术界很难复现,估计学术界要花几年的时间才能跟上,因此短期内 AlphaFold2 对结构生物学的影响会比较有限。DeepMind 可能会和个别实验室合作,预测蛋白质结构。/pbr/p style="text-align: right text-indent: 2em "—— 龚海鹏(计算生物学家,清华大学结构生物学高精尖创新中心研究员)/pbr/br/p style="text-indent: 2em "AlphaFold 为结构生物学家提供了除晶体学、冷冻电镜、NMR 以外的另外一种手段,用于揭示生物大分子发挥作用的分子机制。/pbr/p style="text-align: right text-indent: 2em "—— 张鹏(结构生物学家,主要利用晶体学和冷冻电镜技术;中科院分子植物科学卓越创新中心研究员)/pbr/br/p style="text-indent: 2em "AlphaFold 目前还不能预测复杂的分子机器,主要是因为蛋白 - 蛋白相互作用非常复杂,存在极多的可能性。实验手段所揭示出来的蛋白 - 蛋白相互作用方式还只是冰山一角,更何况在不同生理条件和过程中的结构变化。因此,未来对有特定功能的、多个成分组成的、生物大分子复合体的结构解析,以及体内的结构分析,将成为结构生物学实验研究的主要内容。无论有没有 AlphaFold,结构生物学也正在朝这个方向发展。/pp style="text-indent: 2em "Rosetta(注:从头蛋白结构建模算法)也好,AI 也罢,结构预测都是基于已有的实验数据够大。没有足够的数据积累,这些基于统计和数据库的预测就无法实现。完全基于物理学和化学第一性原理的结构预测还没有出现。br/实验科学永远是探索未知的必要手段。新的软件算法应该是成为实验科学家的更有力工具,而不是取代实验科学。/ppbr//pbr/p style="text-align: left text-indent: 2em "—— 王宏伟(cryo-EM 专家,清华大学结构生物学高精尖创新中心执行主任,清华大学生命科学学院院长)br/br/br/br/ 最近两年,结构生物学领域经历了与围棋界类似的故事。Alphago Fan 版本时围棋界并不认为它能够战胜人类顶尖高手,可是 Alphago Lee 后整个围棋界甘拜下风,并且转向 AI 拜师学艺。2018 年 Alphafold 出现时,实验结构生物学领域认为被战胜的仅仅是传统的结构预测领域,2020 年 Alphafold2 之后,实验结构生物学领域应该开始思考如何与之共存以及如何「拜师学艺」了。/pp style="text-align: left text-indent: 2em "br/ 目前阶段人工智能在围棋上已经远远超过人类顶尖棋手,但是人类围棋比赛并未因此取消,如同汽车发明后奥林匹克仍然在进行田径比赛一样。原因之一是人工智能虽然超越了人类,但并未解决围棋的最终解。同样的道理,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。/pp style="text-align: left text-indent: 2em "br/ 实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。/pbr/p style="text-align: right text-indent: 2em "—— 周强(cryo-EM 专家,西湖大学生命科学学院特聘研究员)/ppbr//ppbr//pp style="text-indent: 2em "蛋白质体系越大,结构的解析越难仅依赖计算方法。Cryo-ET (冷冻电镜断层成像) 技术擅长解析体外难表达的大分子机器结构、细胞中的原位蛋白结构等复杂体系,因此很难被脱离实验手段的方法取代。目前,由于体系过于复杂,使用分子动力学模拟整颗病毒尚未实现,要模拟细菌、细胞、组织,还要很长的路要走。/ppbr//p
  • 拆机详解|红外体温计(耳温枪)结构原理 掌握正确使用要领
    p style="text-indent: 2em "本文首发在仪器信息网-仪器社区在疫情期特别上线的a href="https://bbs.instrument.com.cn/class_471.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "抗击新冠肺炎版块/span/a,为仪器信息网社区版友sc360xp(版友笔名:span style="color: rgb(0, 112, 192) "仪器信息网sc360xp/span)在其原创拆机文基础上编写,特此感谢。/pp style="text-align: center"a href="https://bbs.instrument.com.cn/class_471.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 500px height: 138px " src="https://img1.17img.cn/17img/images/202002/uepic/bd6efefb-f5ef-46b3-abca-8eb68a06d078.jpg" title="1.png" alt="1.png" width="500" height="138" border="0" vspace="0"//a/pp style="text-indent: 2em "目前临床上使用的体温计种类有水银体温计、电子体温计、红外线体温计。由于红外线体温计检测快速、非接触的优点,在抗击“COVID-19”病毒战役中普遍使用。/pp style="text-indent: 2em "红外线体温计有额温及耳温两种检测方式,又称额温枪及耳温枪。在公共场所,普遍使用非接触的额温枪,准确度稍差,受环境波动影响较大。耳温枪测量的准确度较高,但耳温枪使用时,其耳套要与被测人耳朵接触,在公共场所使用,需要频繁更换耳套。耳温枪更适合家庭测量体温使用。/pp style="text-indent: 2em " 额温枪及耳温枪的电路基本原理相同,只是在外形及算法上有所不同。有的厂家设计了二者通用产品。下面通过了解耳温枪结构原理,谈谈正确使用耳温枪的注意事项。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong一、测量耳温原理/strong/span/pp style="text-indent: 2em "人的大脑深部有一个叫下视丘的地方,它是人脑自主神经系统的主要管制中枢。主要功能是管制内分泌、维持新陈代谢正常、调节体温,并与饥饿、渴、性等生理活动有密切的关系。下视丘里面有一个支配人体恒温的“定点”(set-point)构造,是人体温度的中心点。当人体发烧时,也就是该“定点”温度接受一些循环在血流中的发炎性化学物质之后调高的结果,所以下视丘是人体体温最早上扬的地方。/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" width="450" height="443" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" style="border: 0px display: inline width: 450px height: 443px " vspace="0" title="" alt=""//pp style="text-indent: 2em "耳膜接近下视丘。下视丘得到颈动脉流血充分供应,而供应耳膜与供应下视丘的血流互有交通,因此耳膜温度可以及时反映出人体的温度变化,耳膜也是可以最早侦测到人体是否有发烧的地方。耳温枪用热电堆红外传感器检测耳膜6~15μm区域的红外辐射能量,转换为电信号送入专用MCU进行处理,对应的体温值由液晶屏显示出来。/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" width="450" height="330" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" style="border: 0px display: inline width: 450px height: 330px " vspace="0" title="" alt=""//pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong二、仪器简要情况/strong/span/pp style="text-indent: 2em "以前在TB上拍的,仪器有医疗器械注册文号,有厂家地址等,是正规产品,包邮才58元一只。现在,没有这个价位的产品出售了。/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" width="450" height="236" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" style="border: 0px display: inline width: 450px height: 236px " vspace="0" title="" alt=""//pp style="text-indent: 2em "仪器平时搁放在耳温枪座上,粉红色按钮是检测时扫描按钮。该仪器是非耳套更换型,耳温枪座只是一个搁仪器的机座,没有“博朗”那样的耳套存放功能。使用前,需用酒精棉擦拭耳筒清洁消毒。/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" width="450" height="232" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" style="border: 0px display: inline width: 450px height: 232px " vspace="0" title="" alt=""//pp style="text-indent: 2em "正面中间的按钮是开机按钮,兼读取存储数据、清零:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "耳筒对准耳道后,按下背面的扫描按钮,进行检测:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "体温正常,显示屏背景光为绿色。当体温接近发烧时(低烧),显示屏背景光为黄色:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "体温发烧,显示屏背景光为红色,蜂鸣器发出滴滴滴警告声讯。这种颜色光提醒设计比较实用:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "停止使用30秒钟后,自动关机,节约电池电量:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong三、拆机及电路元件/strong/span/pp style="text-indent: 2em "取下电池盖,使用两节7号电池,比较耐用:/pp style="text-align: center text-indent: 0em "img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "取下电池,看见电池仓中的电路板上12个触点,是耳温枪厂家调校用的:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" width="450" height="251" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" style="border: 0px display: inline width: 450px height: 251px " vspace="0" title="" alt=""//pp style="text-indent: 2em "卸掉电池仓中一颗固定螺丝,外壳是卡扣设计,比较容易分离开:/pp style="text-align: center text-indent: 0em "img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "下面是检测按钮,导电橡胶触点:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "电路结构,由于采用了专用MCU,使得仪器电路显得格外简单:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "这是检测头,内部热电堆传感器的电信号,用红白绿黑四根导线引出,焊接在电路板上:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "电路板左边的空位较多,说明这个是简化版,阉割了一些功能:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" style="border: 0px font-family: " microsoft="" font-size:="" white-space:="" background-color:="" display:="" width:="" height:="" vspace="0" title="" alt=""//pp style="text-indent: 2em "U2是存储器,采用低电压E2PROM--T24C02A(2K),用于存储10组体温检测数据:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "卸下电路板上的四颗固定螺丝,取下电路板:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "电路板背面,没有啥元件:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "仔细观察,电路板上的那些圆触点不是“装饰”,通向电路,是厂家生产时调校用:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "电路板上的L1、L2分别是绿、红LED,起到发出三色(绿、黄、红)背景灯作用:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "液晶显示板采用导电橡胶条连接;右边粉红色是开机按钮:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "先将检测头反时针旋转,然后向外拉出:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" width="450" height="175" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" style="border: 0px display: inline width: 450px height: 175px " vspace="0" title="" alt=""//pp style="text-indent: 2em "卸下检测头上的两颗固定螺丝,取出传感器组件(传感器装在金属管内):/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" width="450" height="182" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" style="border: 0px display: inline width: 450px height: 182px " vspace="0" title="" alt=""//pp style="text-indent: 2em "将热电堆传感器从金属管中取出,传感器外壳上有密封胶,取出时要特别小心:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" width="450" height="203" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" style="border: 0px display: inline width: 450px height: 203px " vspace="0" title="" alt=""//pp style="text-indent: 2em "传感器上没有标识(或被抹去),不知道型号:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" width="450" height="335" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" style="border: 0px display: inline width: 450px height: 335px " vspace="0" title="" alt=""//pp style="text-indent: 2em "安装传感器的金属管没有磁性,是铜质镀克罗米,它的作用是增大检测探头传感器的热容量,使检测数据稳定可靠:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "仪器“全家福”图片:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" width="450" height="337" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" style="border: 0px display: inline width: 450px height: 337px " vspace="0" title="" alt=""//pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong四、电路原理分析/strong/span/pp style="text-indent: 2em "根据拆机情况,绘出仪器电路结构示意框图如下:/pp style="text-align:center"img class="lazy" data-original="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" width="450" height="294" border="0" src="https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" style="border: 0px display: inline width: 450px height: 294px " vspace="0" title="" alt=""//pp style="text-indent: 2em "strong仪器工作原理:/strong/pp style="text-indent: 2em "热电堆传感器感受到耳膜上的热辐射后,产生微弱的电势信号。这个电信号送入专用MCU进行处理,其温度值由LCD显示出来。对应不同的温度值,显示绿(正常)、黄(低烧)、红(高烧)三种颜色的背光。检测到高烧时,蜂鸣器同时发出“滴滴滴”警告声讯。热电堆传感器中的热敏电阻,用于检测热电堆本身温度,供内置程序分析计算使用。/pp style="text-indent: 2em "由于耳温枪要吸收热源,为了达到稳定的热平衡,热电堆传感器要安装在热容量大的金属热容管上,减少温度快速变化的干扰。/pp style="text-indent: 2em "至于温度的原点,就必须要在厂内调校。调校的过程是,把耳温枪放入恒温槽,设定原点的温度,然后依据温升的程度,加以计算,得到正确的温度。所以,厂家在说明书中提示,一般保用期3年,过期应进行校核。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong五、正确使用耳温枪的注意事项/strong/span/pp style="text-indent: 2em "耳温枪使用看似简单,但许多人不能正常使用。需要注意以下问题。/pp style="text-indent: 2em "strong1、正常体温对于每个人来说都是独一无二的/strong,从34.7℃~38℃不等,取决于测量温度的部位和个体差异。世卫组织(WTO)提供的人体正常体温的参考数值是:/pp style="text-indent: 2em "耳内:35.8℃—38℃/pp style="text-indent: 2em "腋窝:34.7℃—37.3℃/pp style="text-indent: 2em "口腔:35.5℃—37.5℃/pp style="text-indent: 2em "直肠:36.6℃—38℃/pp style="text-indent: 2em "这个正常范围受到诸多因素的影响,比如体力劳动,昼夜变化,年龄增长。你可以为本人或家人在身体状况良好的情况下,在一天内多次测量体温来获得这一数据,以备需要时,作为判断发烧的参考数据。/pp style="text-indent: 2em "strong 2、耳温枪使用的温度环境/strong/pp style="text-indent: 2em "国家标准给出的耳温枪使用环境温度为16 ℃~35 ℃。当超过16 ℃~35 ℃使用范围,准确度没有得到有效验证,误差会较大。冬季一般应当在室内测量。/pp style="text-indent: 2em " 耳温枪是不知道标准温度的,就像数字相机不知道颜色坐标,必须作白平衡一样。耳温枪开机之后,会先测量环境温度作为基准温度;然后测量耳温。正规厂家的使用说明书上会告诉消费者,到别的温差大的房间取用耳温枪,要等大约30分钟、直到温度平衡稳定后,才能开机使用。人从温差大的外部环境回来,应滞留5分钟左右,与房间温度平衡后再测量。手持部分,必须离检测头越远越好。耳温枪使用时远离任何热源,不要在风扇口、空调下测量。除了温度变动因素,长时间手持仪器,被测人有中耳炎、耳屎、插入耳朵位置不准,电池电量不足等,也会影响准确度。/pp style="text-indent: 2em "3、由于耳温枪对于热辐射十分敏感的特点,要发挥耳温枪的正常测量功能,一定要仔细阅读使用说明书,正常操作。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em text-align: center "-------------------------------------------br style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "span style="font-family: arial, helvetica, sans-serif "strong style="margin: 0px padding: 0px "征稿活动:/strong“红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状)/span。让我们共同努力,携手抗“疫”!span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "(投稿或自荐邮箱:yanglz@instrument.com.cn)/span/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em "span style="margin: 0px padding: 0px color: rgb(0, 0, 0) font-family: arial, helvetica, sans-serif "更多红外体温检测仪技术与应用相关资讯点击关注以下专题:/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "a href="https://www.instrument.com.cn/zt/hwcwy" target="_blank" style="margin: 0px padding: 0px color: rgb(42, 123, 192) text-decoration-line: none background-color: rgb(255, 255, 255) !important "img src="https://img1.17img.cn/17img/images/202002/uepic/6214fb81-41dd-4869-b8d4-8361d93b54d2.jpg" title="3.png" alt="3.png" width="600" height="171" border="0" vspace="0" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 600px height: 171px "//a/p
  • 哈佛华人团队结合冷冻电镜和AlphaFold揭示核孔复合体精细结构 有望成为结构生物学新规范
    “我们通过冷冻电镜技术拿到了核孔复合体高分辨率的密度图。然后借助于 AlphaFold 结构预测,搭建出核孔复合体胞质环的精细模型。通过原子模型,为解释细胞核的运输机制,理解细胞生命活动的基本过程提供了重要的结构基础,同时也能为非常多相关的疾病提供重要的线索。”美国国家科学院院士、哈佛大学医学院生物化学及分子药理学教授团队表示。6 月 10 日,该课题组在 Science 上发表题为《核孔复合体胞质环的结构》的论文 [1]。图 | 相关论文(来源:Science)董颖、皮雄、彼得罗丰塔纳(Pietro Fontana)担任共同第一作者,吴皓担任通讯作者。图|吴皓(来源:吴皓个人主页)利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞中一个接近完整的结构对于在该研究中 AlphaFold 所起到的作用,董颖表示,此次解析的核孔复合体(NPC,nuclear pore complex)是真核生物中最大的膜蛋白复合物之一,它位于核膜上,介导核膜内外的物质转运。由于其分子量巨大,组成成分复杂,动态变化多样,这使得电镜解析图谱的分辨率很有限(6-7 埃),并且搭建分子模型困难重重。但是 AlphaFold 的出现很好地弥补或一定程度上解决了图谱分辨率不足的问题,它可以预测很多没有结构的蛋白亚基,从而补充解释蛋白复合物结构里缺失的结构单元的高分辨信息;还可以预测部分亚基相互作用界面,从而说明亚基作用的结构基础以及生物学意义。另一方面,AlphaFold 预测也并非万能,它给出了诸多的可能性之后,课题组也需要理性分析哪一种结果最为合理,最能解释得清楚相关生物学现象。论文共同作者皮雄表示:“AlphaFold 能够预测出相互作用的蛋白亚基,与我们通过冷冻电子显微学计算出来的比较相符,从而大大方便了我们确定相互作用的蛋白亚基,进而加速我们模型搭建的过程。”图 | 皮雄(来源:皮雄)据悉,核孔复合体是细胞质和细胞核之间双向物质运输的管道。该团队利用单颗粒低温冷冻电子显微镜和 AlphaFold 预测,确定了来自非洲爪蟾卵母细胞的核孔复合体胞质环的一个接近完整的结构。使用 AlphaFold 预测核孔蛋白的结构,并以突出的二级结构密度作为指导,将核孔蛋白的结构拟合到中等分辨率的图谱中。利用 AlphaFold 进行复杂的预测,还可以进一步建立或证实某些分子间的相互作用。课题组鉴定了 Nup358 的 5 个拷贝的结合模式,这是最大的核孔复合体亚基,具有 Phe-Gly 重复序列,并预测它包含一个线圈-线圈结构域,在一定条件下可能作为成核中心辅助核孔复合体形成。核孔复合物是真核细胞核膜中的分子管道,可以调节细胞核和胞质溶胶之间生物分子的进出口,脊椎动物核孔复合体的分子量约为 110 至 125 MDa,直径约为 120 nm。核孔复合体被分为四个主环:胞质侧的细胞质环(CR,cytoplasmic ring),核膜平面上的内环(Inner Ring, IR)和管腔环 (Luminal Ring, LR),以及面向细胞核的核环 (Nuclear Ring, NR)。每个环具有相似的八重对称,并由不同的核孔蛋白的多个副本组成。核孔复合体参与了许多生物过程,其功能障碍与越来越多的严重疾病有关。尽管在过去的 20 年里,许多团体进行了开创性的研究,但人们仍然缺乏对核孔复合体的组织、动态和复杂性的充分理解。图 | 董颖(来源:董颖)(来源:Science)预测核孔复合体中最大的蛋白 Nup358 具有 s-形球状结构域此次研究中,该团队使用非洲爪蟾卵母细胞,作为结构表征的模型系统,因为每个卵母细胞都有大量的NPC颗粒,因此这些颗粒可以在没有去垢剂提取的帮助下,在天然核膜上可视化。据悉,课题组使用单颗粒冷冻电子显微镜,来分析不同倾斜角度的数据并进行三维重建,之后用 AlphaFold 进行模型构建和结构预测,重建了 X.laevis NPC 的 6.9 和 6.7埃分辨率的全 CR 原聚体和一个核心区域,并使用 AlphaFold 预测了单个核孔蛋白的结构。对于任何模糊的亚基相互作用,该团队也预测了复杂的结构,这进一步指导了 CR 原聚物的模型拟合。他们将核孔蛋白或复杂结构置于 CR 密度中,以获得一个几乎完整的 CR 原子模型,由内部和外部 Y复合物、两个 Nup205 拷贝、两个 Nup214-Nup88-Nup62 复合物拷贝、一个 Nup155 和 5 个 Nup358 拷贝组成。值得注意的是,课题组预测了核孔复合体中最大的蛋白 Nup358 具有 s 形球状结构域,一个线圈结构域和一个含有苯丙氨酸-甘氨酸(FG)重复序列的 c 端区域,而先前显示形成的一个凝胶样的凝析相,可用于选择性物质通道。其中,四个 Nup358 拷贝夹在内部和外部 y 复合体周围以稳定 CR,第五个 Nup358 位于夹子簇的中心。另据悉,AlphaFold 还预测了一个同源低聚物,可能是 Nup358 的五聚体、卷曲螺旋结构,这可能为 Nup358 募集到核孔复合体提供亲合力,并降低 Nup358 在核孔复合体生物发生中凝聚的阈值。可以说,此次研究提供了一个整合的低温冷冻电子显微镜和结构预测的例子,可作为从中等分辨率密度图中、获得更精确的兆道尔顿蛋白复合物模型的新方法。该论文提出的更准确、以及几乎完整的 CR 模型,扩展了他们对NPC分子相互作用的理解,代表了向完整的NPC分子结构迈出的实质性一步,对NPC的功能、生物发生和调控具有影响。(来源:Science)有望成为结构生物学的规范该团队在论文中表示,几乎完整的 NPC CR 模型揭示了其内部的分子相互作用及其生物学意义。CR 组装的一个意想不到的方面是,他们观察到了 Nups 之间的组成和绑定模式的不对称性:其一,两个 Y 配合物之间的构象差异;其二,两个 Nup205 分子与 Y 配合物的结合模式不同;其三,两个 Nup214-Nup88-Nup62 配合物并排放置;其四,5 个 Nup358 配合物具有不同的结合模式。因此,这种不对称性是代表 CR 的基础状态、还是由放线菌素 D(Actinomycin D,ActD) 的结合引起的,以及它是否会是 NR、IR 或 LR 结构中的共同特征?这将是一个很有趣的问题。而研究人员的 X.laevis NPC 样本来自单倍体卵母细胞,这可能与体细胞中的核孔复合体有更大的不同。该团队认为,Nup358 的多个拷贝、及其低聚卷曲螺旋关联,解释了其在细胞质中卵发生过程中,作为NPC组装的关键驱动因素的作用,这不同于有丝分裂后和较慢的间期NPC组装。这一过程发生在内质网(ER,endoplasmic reticulum)的堆叠膜片上,称为环状膜层(AL,annulate lamellae),其苯丙氨酸-甘氨酸(FG,Phenylalanine-glycine)重复序列中的 Nup358复合物作为紧固件,从开始空间就可指导核孔复合体生物发生。这说明,Nup358 的低聚结构可能会降低 Nup358 复合体形成的阈值,从而有助于解释其在不同 Nups 中的成核作用。此外,课题组还提出了一种综合的方法,利用冷冻电子显微镜和 AlphaFold 结构预测的最新发展,从而带来了更精确的核孔复合体建模。在学界最近发表的论文或预印本论文中,也使用了类似的方法来确定核孔复合体的结构。AlphaFold 预测与传统结构建模不同,这是基于人工智能的建模方式。实现高分辨率的目标,是获得尽可能好的最佳模型。而在建模过程中,包含来自 AlphaFold 的信息,可能类似于该领域之前对立体化学约束所做的事情。随着复杂预测的能力更加普遍,该团队预计这种方法不仅有助于新结构的建模,而且有助于重新绘制以前的中分辨率低温电子显微镜图,成为结构生物学的规范。(来源:Science)董颖表示:“很多时候,我们采取科学的验证方式——用一系列生化实验对 AlphaFold 预测结果进行反向验证。我们利用人工智能,冷冻电镜与传统生物化学综合研究方式,推动了我们对复杂、动态的生物大分子的结构和功能的进一步理解。由此可见,AlphaFold 的出现给我们研究科学问题的方式也带来了革命性影响。我们在未来的科学研究中,只要大胆尝试,多方位思考,总能碰撞出美妙的火花!”担任论文共同作者的傅天民,目前在俄亥俄州立大学药学院,担任生物化学与药理学助理教授。其表示,该课题由他之前在吴皓教授实验室发起。他介绍了该研究的背后故事:2019 年初,吴皓教授与实验室的学生们,在佛罗里达参加美国生物化学与分子生物学年会。会后,吴老师带着学生们去吃火锅,饭桌上大家聊起结构生物学最重大的问题还有哪些,傅天民提出核孔复合物的结构是一个重要且没完全解决的问题,这个提议得到了吴皓教授的支持。回到波士顿后,王隆飞打算用酵母细胞来研究核孔复合物,傅天民则着手用非洲爪蟾的卵母细胞来研究。之所以选定爪蟾卵母细胞主要因为这类细胞易于获取,而且细胞核上有丰富的核孔复合物。后来,傅天民要去俄亥俄州立大学建立自已的实验室,课题转交给两个新来的博后董颖和 Pietro,他们两个紧密合作,克服了一系列技术难题,初步拿到了一些高质量的样品,收集了一些数据。随后,皮雄博士加入课题。皮雄博士和董颖博士通过大量的数据处理,为冷冻样品优化提供了正确的方向。最后通过大家几个月不懈的努力,利用进一步优化的高质量样品,收集了几万张冷冻电镜照片。最终皮雄博士通过冷冻电镜三维重构技术得到了高分辨率的密度图。Alex 利用 AI 结构预测对结构模型搭建起了重要作用。吴皓教授整个过程的支持、指导是课题得以成功的决定力量。董颖表示:“NPC是我进入吴老师实验室的第一个课题。现在回想起来整个研究经历都有些百感交集。当时我们‘白手起家,从零开始’。我从未接触过动物实验,我只能查找文献,自己摸索一切实验流程。中途可谓困难重重,我时常在解剖镜前解剖蛙卵,铺膜制样,一坐就是一整天。制样优化样品周期很长,我们寻找了各式各样的载网(因为不是所有载网在高角度拍摄的条件下都稳定),我做了很多载网稳定性的分析,光是优化样品就花了半年多。优化中途,陆续已有相关研究报道出现,当时我们整个团队几乎都要放弃。就在这时,皮雄博士通过大量的计算,得到了七埃左右分辨率的密度图。同时吴老师提议我们为模型搭建寻找新的切入点——恰逢AlphaFold横空出世,我们一不做二不休,立刻开启寻找冷冻电镜与AlphaFold对接的可能。”经过几个月没日没夜的计算、预测、模型搭建,课题组惊奇地发现新的研究方式带来了意想不到的研究结果。功夫不负有心人,最终他们非常有幸地与来自不同研究组的科学家们同台展示了研究结果。皮雄表示:“核孔复合体作为细胞生命活动的‘南天门’,严密调控着细胞的生命活动。作为一个功能如此复杂,形态巨大的复合体,它的精细结构是如此的严密和复杂。拿到它的精细结构也是非常困难。作为一个如此困难的课题,需要团队每个成员紧密合作,协同前进。每一部分工作都包含了团队每个成员的巨大努力。研究中,我主要负责冷冻电镜的数据处理,拿到高分辨率的核孔复合体的密度图,同时也参与了冷冻样品的优化。”(来源:Science)对于该成果的应用,董颖表示:“已经有相关研究报道说明NPC结构和功能的异常和许多疾病相关,例如神经退行性疾病阿尔兹海默症,介导了一些病毒如HIV的入侵,甚至会诱导一些癌症的发生。由于核孔复合体介导了很多重要物质的转运,其研究一直是近几年来科学界研究的一大热点。目前针对它的研究还处于相对基础的阶段,这主要受到它的复杂性,和动态性的局限。但就它推广到应用的可能性来讲,我认为只要我们能够把它‘看’得足够清楚,运动的原理理解的足够清楚,我们就有可能对它进行靶向药物设计,调节它的底物转运。给治疗人类疾病提供更多可能。最近几年来随着冷冻电镜技术和人工智能的进步,相信二者能共同推动其成为新兴药物靶点,逐步应用到疾病治疗。”对于后续计划,董颖表示:“我们队 NPC 的研究还只是冰山一角,后续有很多有趣的研究方向——现举几个例子:(1)由于核孔复合体底物众多,但出核和入核的底物的识别和转运机制如何?NPC 转运物质的孔道呈现有趣的胶状结构,这一结构高度动态,很可能在底物转运过程中发生相分离,我们可以借助单分子荧光标记来细化这些转录途径。(2)研究 NPC 的某些特定的活动状态,已经有研究报道酵母中可能存在多种 NPC 的状态和组装形式,这些结构组成具体参与了怎样的生物学功能还不清楚。(3)NPC 组装和解聚如何发生,特定组装状态下有哪些多辅助分子参与稳定其状态,这些我们可以联合质谱技术来鉴定新的作用亚基。”澳大利亚莫纳什大学药物科学研究所曹剑骏评价称,在本文中,该团队首先利用核孔复合体在非洲角蟾卵母的极高丰度这一特质,对天然膜环境中地核孔复合体进行直接观察,避免了可能存在人为纯化干扰。同时,课题组使用倾斜样品的方式,解决了膜蛋白样品在膜中的受限的角度分布,从而实现蛋白结构的三维重建。此过程中,该团队以令人敬佩的毅力手工选取了 20 万单颗粒样品,以实现整个核孔复合体的低分辨率(19 埃)结构,并集中于胞质环的局部结构解析得到中等分辨率(~7 埃)的电子云密度图。但这一分辨率依旧只能辨别大致的二级结构特征,而存在建模困难。因此,该团队尝试借助最新的 AlphaFold 基于序列的结构预测功能,由单个亚基、多亚基局部预测出发,实现整个胞质环的结构解析。该团队同时将基于 AlphaFold 的结果与传统的同源结构预测相对比,为蛋白结构工作者提供了一个优秀范例,展示了如何借助 AlphaFold 这一新工具解析未知蛋白结构。研究中,课题组同样也得到了核内环的信号,但是尚未得以解析,想来将来会由相应的工作面世,从而完备整个核孔复合物的结构信息。同时,该论文的蛋白结构分辨率受制于天然核孔结构的非均一性和单颗粒的人工手动筛选通量,而后者有希望得到 AI 辅助单颗粒筛选软件的帮助,从而解放研究人员双手实现以更多的单颗粒数据收集,最终有望解析出各类不同状态的核孔复合体结构,进一步阐述这一精妙的分子复合体的调节机制。-End-支持:Ren参考:1、Pietro Fontana et al., Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science (2022) DOI: 10.1126/science.abm9326
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
  • 两位诺奖得主回忆结构生物学发展史
    转载自Knowable Magazine "Structural biology: How proteins got their close-up"前言从细菌到人类,所有的生物都由细胞组成。细胞由四种大型生物分子构成:碳水化合物、脂肪、核酸(即DNA和RNA)和蛋白质。这些生命的重要组成部分小到肉眼无法观测,甚至用光学显微镜也难以成像。因此,尽管19世纪的科学家们知晓这些"隐形"分子的存在,也能够通过实验找出它们的化学成分,但科学家们却看不到它们:这些分子结构的任何细节始终是个谜题。这就是今天的主题:这些"隐形"分子是如何在20世纪被人们成功观测到的。 "许多基础的生物问题是非常容易解决的:只要能看到它们就行!" —理查德• 费曼这是一个漫长而艰辛的故事:关于开发能够解析生物分子结构的工具和技术,以及对这些分子结构的解析如何使我们能够理解它们的功能,并设计出阻止或加强其作用的药物。为了讲述这个故事,我们将重点放在蛋白质上:这些大分子参与了我们身体中几乎所有的化学过程:它们解读遗传密码、催化化学反应、并充当我们细胞的守门员。蛋白质由名为氨基酸的小分子链构成。了解这些链如何折叠成三维结构至关重要,因为正是蛋白质的三维形态决定了它们的功能。若要创建一个准确的蛋白质三维模型,我们需要知道组成该蛋白质的所有氨基酸中的所有原子在空间中的排列。 我们无法看到原子,因为它们比可见光的波长还要小。 为了探测这些原子,我们需要一种波长更短且穿透性极佳的波:这种波使我们能够同时对蛋白质内部和外部的原子进行观测。因此,今天的故事开始于德国的维尔茨堡大学城。在那里,伦琴发现了X射线。X射线的发现那是1895年,威廉• 伦琴正在实验室里工作。像他那一代的许多物理学家一样,他正在做阴极射线的实验:在一个叫做克鲁克司管的设备中产生的电子流。但与他同时代的人不同的是,伦琴注意到了一些意想不到的事情:离克鲁克司管相当远的一个屏幕在发光。伦琴认为,那个屏幕太远了,发光绝不可能是由阴极射线引起的。在接下来的几周里,他研究了这种发光的荧光,并意识到他发现了一种能够穿透固体物体的新型射线。 就在圣诞节前,他把他的妻子带到实验室,给她的手拍了一张照片。 在照片中,她的血肉消失了,但骨头和戒指都清晰可见。威廉• 伦琴因发现X射线于1901年获首届诺贝尔物理奖关于他的发现,伦琴写了一份的报告。1896年初,一份英文译本发表了在《自然》杂志上。"我们看到,一些剂能够穿透对紫外线、阳光或弧光不透明的黑色纸板。所以,研究其他物体能在多大程度上被同一个剂穿透是很有意义的。"该报告继续说道:"厚的木块仍然是透明的。两三厘米厚的松木板只吸收了很少的光线。一块15毫米厚的铝板仍然能够让X射线通过,但大大减少了发出的荧光。"伦琴的发现立即产生了影响。在几个月内,医生们就开始用X射线来拍摄骨折。人们为X射线写诗,奇妙的X射线也成为各大展览中的热点。1901年,伦琴因其发现被授予第一个诺贝尔物理学奖:这是本故事中授予科学家们的众多诺贝尔奖中的第一个。与此同时,在实验室里,物理学家们对X射线的性质感到困惑。它们究竟是波还是粒子?另一位德国物理学家马克斯• 冯• 劳厄推断,如果X射线是波,那么它们的波长可能与晶体中原子之间的规则空间相似,从而提供一种破译晶体结构的方法。马克斯• 冯• 劳厄因发现晶体中X射线的衍射现象获得1914年诺贝尔物理学奖这是一个非常重要的推断,它启蒙了X射线晶体学的发展,这种技术最终将使科学家们能够弄清蛋白质结晶的结构,但走到这一步却花了几十年。起初,X射线晶体学被应用于更小的分子。而在这之前,弄清楚该技术的原理也花费了很长的时间。X射线晶体学时代1912年夏天,数学家和物理学家威廉• 亨利• 布拉格和他的儿子,另一位物理学家劳伦斯• 布拉格在英国的海边度假时听闻了冯• 劳厄的一个讲座。 假期结束后,父子俩回到他们的大学,思考晶体对X射线的衍射问题。那年晚些时候,老布拉格给《自然》杂志写信。 他首先描述了通过发射X射线获得的显著效果。"...细小的X射线流在通过晶体后并被发射到照相板时,有了显著效果。在照相板上发现了一种奇怪的斑点排列,其中一些斑点与中心斑点相距甚远,以至于它们必须被解释为大角度的散射....."这些是被晶体中的原子散射的X射线,在胶片上形成了一个独特的斑点图案。"这些斑点的位置似乎取决于简单的数字关系,以及晶体对入射流的呈现方式。我发现,当晶体(锌闪石)被放置到入射光线平行于晶体中立方体的边缘时,斑点的位置可以通过以下简单规则预测。假设原子以矩形方式排列,相邻原子产生的斑点距离为NA,其中A是相邻原子之间的距离,而N是一个整数......"闪锌矿的X射线衍射照片布拉格父子找到的数学规则提供了一种解释X射线产生的衍射图案的方法,从而揭示了晶体中原子的排列。老布拉格设计了一种新的、更强大的方法来进行X射线衍射,发明了一种叫做X射线光谱仪的仪器。1914年,冯• 劳埃因其工作获得了诺贝尔奖。第二年,布拉格父子也得到了诺贝尔奖。当时只有25岁的小布拉格目前仍是最年轻的诺贝尔奖科学得主。布拉格父子的布拉格定律使科学家能够解析各种晶体的原子结构获1915年诺贝尔物理奖起初,布拉格的方法被应用于简单物质,如食盐、苯和糖分子,揭示了它们结构的秘密。许多科学家对像蛋白质结构这样复杂的东西能否用这种方法解析持怀疑态度。1936年,《生物化学年度评论》中讨论了X射线研究的进展。DOI: 10.1146/annurev.bi.05.070136.000431"对于像糖和氨基酸这样的晶体物质,晶体内分子和原子的排列是能被完全解析的;但对于像多糖和蛋白质这样的物质,其中原子的排列不太规则,同时缺乏共同的晶体外观,我们不能指望完全解析它们。"但几年后,即1939年,有人提出了一个更乐观的观点:作者指出,像X射线晶体学这样的技术,正在深刻地改变生物学。 当作者考虑到各种可能性时,他似乎相当兴奋。DOI: 10.1146/annurev.bi.08.070139.000553"生物学迅速成为了一门分子科学,站在物理学和化学的肩膀上,生物学的前景广阔,人们迫切地想知道生物学会将人类带向何方。生物分子的结构成为了学界的主流追求。这些分子中最重要的是蛋白质,而蛋白质的结构解析也是最激动人心的。"为了解决蛋白质问题,需要取得一些进展:寻找更好的蛋白质结晶方法,并用新的数学方法解析X射线的衍射图案;以及用计算机计算数据。 英国剑桥的科学家们正致力于应对所有这些挑战。1953年,X射线晶体学获得了巨大突破:它被用于解析一个极其重要的结构, 并不是蛋白质,而是DNA,詹姆斯• 沃森、弗朗西斯• 克里克和莫里斯• 威尔金斯为此获得了诺贝尔奖。因解析DNA分子结构,以及一些相关研究获1962年诺贝尔生理学或医学奖的三位得主约翰• 肯德鲁是沃森和克里克在剑桥的同事,作为一位非常积极的研究人员,他下决心解析肌红蛋白的结构。 肌红蛋白是在肌肉中储存氧的蛋白质。肯德鲁选择它的原因是尺寸:肌红蛋白并不大。 他的首要任务是培育适合被X射线解析的晶体。在尝试对马、鼠海豚、海豹、海豚、企鹅、乌龟和鲤鱼的肌红蛋白进行结晶后,他终于成功地培育出从抹香鲸肉中提取的肌红蛋白的美丽晶体。 鲸鱼肌肉细胞内部的含氧肌红蛋白(红色)以及肌动蛋白和肌球蛋白纤维(黄色和棕色)。大量的蛋白质结构现在已经被确定,这是一个曾经无法想象的成就--为生命的生物化学提供了关键的见解,也为新型药物设计和其他发明提供了素材。与此同时,肯德鲁的同事马克斯• 佩鲁兹开发了一种向蛋白质分子添加"重"原子的技术。这些重原子并不会改变蛋白质的结构,但它们为比较不同角度的X射线照片提供了一个参考框架。经过多年的工作,肯德鲁仍然不知道肌红蛋白中每一个原子的精确位置,但他拥有了足够的信息,使得他可以制作一个蛋白质的三维模型。 这个模型并不像DNA的双螺旋那样漂亮;它看起来更像一根扭曲的香肠。马克斯• 佩鲁兹(左)与约翰• 肯德鲁(右),因发现血红蛋白分子结构获1962年诺贝尔化学奖肯德鲁和他的肌红蛋白3D模型就在这个时候,理查德• 亨德森加入了这个小组。直到今天,亨德森仍然在剑桥从事蛋白质结构解析的工作,并以开拓新技术而闻名,我们稍后将听到这些技术。但那时他刚刚毕业,正在寻找一个博士生职位。他还记得从爱丁堡到剑桥参观实验室的情景:理查德• 亨德森(右)冷冻电镜三位开创者之一于2017年获诺贝尔化学奖理查德• 亨德森: "他们有一个开放日,也就是星期六上午,他们周末居然也在工作!而在我去过的其他实验室,科学家都回家了,积极性也不够高。所以我当时就想:“哦,这是个非常好的实验室”。亨德森加入了这个勤奋的剑桥团队。这项工作虽令人激动,但进展极慢。理查德• 亨德森: "在1959年,他们以非常高的分辨率得到了肌红蛋白的结构,1960年这项研究成果发表,之后的五年没有任何其他结构被发表,直到伦敦的皇家研究所发表了溶菌酶。然后在那之后,又过了三年才有了第三个结构。"难以相信科学家们花了这么久的时间,为什么进展如此缓慢?一开始,X射线晶体学家研究的小分子包含不到50个原子,例如苯和糖环。相比之下,肌红蛋白,一种相对较小的蛋白质,包含了超过1000个原子。为了弄清这么多原子的位置,科学家不得不拍摄数百张X光照片,测量每张照片中每个光点的强度,并进行繁琐的计算。这是一个对数据处理的巨大挑战。理查德• 亨德森:"在我的博士论文中,我拍摄了大约300张这样的照片,一开始我必须亲自测量它们:我得把胶片放在胶片扫描仪里,一束光沿着一排斑点移动,然后每隔三分钟,就能得到一张印有痕迹的纸,上面可能有40个斑点。这时我需要用尺子在纸上测量斑点被衍射的强度,然后再把这个数字打到电脑纸上。而这仅仅是一排斑点的工作量。"这是非常耗费时间的。研究人员逐渐渴望如何将这一过程的一部分自动化。他们发明了自动的X射线探测器和仪器,以加快斑点的测量。约翰• 肯德鲁意识到,解析一个结构所需的计算可以由计算机来完成。幸运的是,剑桥大学数学实验室刚刚建成了第一批具有存储程序的电子计算机。它们被称为EDSAC,肯德鲁便学习了如何为它们编程。随着更强大的计算机的出现,X射线晶体学家们开始使用借助计算进行结构解析。亨德森回忆说,在20世纪60年代,他们前往伦敦,使用帝国学院的IBM 7090。剑桥大学的团队每天可以使用这台计算机1个小时。最早的两台IBM7090之一理查德• 亨德森 :"于是,每天下午4点,一辆出租车就来了,带着一批研究人员和一箱箱打包好的电脑卡,送到剑桥的火车站。她们上了去伦敦的火车,上了地铁,在南肯辛顿站和帝国学院之间的隧道里带着所有这些沉重的盒子走上大约有一公里。然后从晚上7点到8点,剑桥大学的MRC程序在计算机上运行,操作程序的人大多数是被招募的年轻女性,在当时被我们称为 "计算机女孩",她们现在都是大师了。在当时,她们做的极其完美:数据会被打印好并带回来。第二天早上9点,每个研究员都会检视他们前一天的数据,并为下午4点的寄送工作做好准备"。罗莎琳• 富兰克林“DNA之母”世界公认的名誉诺奖得主难怪这是个缓慢的工作! 女士们不仅要携带着成箱的数据穿越伦敦,她们还要抽出时间去做X射线晶体学解析。在伦敦国王学院,罗莎琳• 富兰克林制作了DNA的X射线衍射图案。她的照片使沃森和克里克能够制作他们著名的模型。 在牛津,多萝西• 霍奇金解决了青霉素的结构,后来又研究了其他重要的医学分子,包括维生素B12和胰岛素。她于1964年获得了诺贝尔奖,该领域的另一个诺贝尔奖!多萝西• 霍奇金因解析青霉素、维生素B12等结构获1964年诺贝尔化学奖随着更多计算机的出现和计算能力的提高,更多的结构被解决了。计算机的持续进步是另一个主题,我们将回到这里。对结构生物学这一新领域的兴奋之情日渐高昂。一些科学家认为,最终他们甚至不需要X射线晶体学便能弄清蛋白质的结构。"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"那是在1965年在《生物化学年鉴》上被提出的。 当时的想法是,如果你知道展开的蛋白质链中的氨基酸序列,那么通过遵循原子和分子如何相互作用的简单规则,你可以算出蛋白质链将如何折叠起来。DOI: 10.1146/annurev.bi.34.070165.001335化学家克里斯蒂安• 安芬森在1972年的诺贝尔奖演讲中重复了这一主张。"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"这是一个有吸引力的想法。 如果可以用蛋白质折叠的规则对计算机进行编程,并输入氨基酸序列,那么结构可能在几天而不是几年内得到解决,为昂贵和耗时的实验方法提供一个替代方案。克里斯蒂安• 安芬森因对核糖核酸酶的研究获1972年诺贝尔化学奖但现在还不行。为了实现这样的目标,生物学家首先必须通过使用和改进X射线晶体学来解决更多蛋白质的结构。并通过发明新的方法来观察蛋白质。而这项工作将产生更多的诺贝尔奖。在1999年的最后几周,生物化学家罗杰• 科恩伯格终于抵达了他十多年工作的顶点:他在斯坦福同步辐射实验室成功解析出他一直在研究的蛋白质的结构。罗杰• 科恩伯格因对真核转录的分子基础所作的研究获得2006年诺贝尔化学奖罗杰• 科恩伯格: "一开始的时候,我们远远不清楚是否可以做到。当然,这是让我们从也许永远不会成功的恐惧中解脱出来的原因,也是对最终结果感到振奋的原因。"科恩伯格和他的团队已经解决了RNA聚合酶的结构。 这是一个巨大的成就,并且得到了另一个诺贝尔奖的认可。罗杰• 科恩伯格: "在我们解析这个结构的时候还是20年前,但迄今为止,这依然是通过X射线衍射法研究的最大和最具挑战性的结构。"RNA聚合酶可以说是生物学中最重要的蛋白质。 这是一个挑战,因为它不是一个单一的蛋白质。该团队研究了来自酵母的RNA聚合酶,它实际上是由12种蛋白质组成的。更重要的是,它是一个有活动部件的分子机器。罗杰• 科恩伯格:"RNA聚合酶实际上是在读取遗传信息。因此,它负责决定哪些信息将被储存在基因组的DNA中,以指导每个生物的活动能力。简单如病毒,或复杂如人类,没有生物体不依赖RNA聚合酶而生存。"为了解决RNA聚合酶的结构,科恩伯格和他的团队花了数年时间,为他们的蛋白质寻找合适的晶体和 "重 "原子。但这还不够。他们还需要更强烈的X射线束。罗杰• 科恩伯格: "X射线衍射的方法依赖于结构中各个原子的X射线光子散射--原子数量越多,为此必须记录的散射光子数量就越大。 如果光束强度太低,光子的数量就太少了,获得的信息也会因此不足。使用强度较高的光束,可以检测和记录更多的原子"。这一难题的解决方案便是同步加速器。同步加速器是一种粒子加速器,它以极高的速度推动电子束,这些高速电子发出的X射线比传统的X射线要亮几百万倍。它本质上是伦琴发现X射线时使用的克鲁克司管的一个升级版本。来自同步加速器的高强度X射线和不断提高的计算机能力相结合,使得像科恩伯格这样的科学家能够解决更复杂的蛋白质结构。2007年至2019年,当我在《自然》杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。但这是有限制的。X射线晶体学仍然很耗时,尽管不像早期那样耗时。 而且一些类型的蛋白质被证明很难或不可能结晶。冷冻电镜时代在世纪之交,一种新的技术进入了人们的视野。或者说,一种新的技术让科学家们对蛋白质有了新的认识。 该技术不使用X射线,而使用电子束。 这就是所谓的冷冻电镜。称之为冷冻,是因为蛋白质样品会被冻结。理查德• 亨德森是最早使用该技术的人之一。ThermoFisher Krios G4 冷冻透射电镜理查德• 亨德森: "当你照射任何东西时,无论是用X射线还是电子,除了得到一个美丽的图像外,分子实际上在被破坏,在一定的曝光后,分子已经失去了它的结构,所以在不得不因照射次数太多而停止之前,能得到的信息量是有限的,因为样品已经失活了。而事实证明,对于同样数量的有用信息,电子所造成的损害要比X射线小一千倍。"对于冷冻电镜,蛋白质不需要是一个晶体。相反,它被从细胞中分离出来,然后冷冻到液氮温度或以下。 冷冻有助于保护蛋白质免受辐射损害。亨德森将该技术应用于嵌入细胞膜的蛋白质。事实证明,这些大型蛋白质复合物极难通过X射线晶体学进行研究。 冷冻电镜变得非常流行。 在2000年代,科学家们谈到了一场 "冷冻电镜革命",许多人从X射线晶体学转向了这种新的、更快的技术。2017年,理查德-亨德森被授予诺贝尔奖。与X射线晶体学一样,随着计算能力的提高,冷冻电镜成为一个更强大的工具,使更多的数据能够更快地被分析出来。罗杰• 科恩伯格:"我们不能低估计算能力的非凡进步所做出的贡献。从这个角度来看,就RNA聚合酶而言,当我们在1999年底记录RNA聚合酶的X射线衍射以解决其结构时,需要在制造商提供给我们的特制计算机上进行一个多月的计算。今天,同样的计算可以在几分钟内在一台笔记本电脑上完成"。计算机一直是X射线晶体学和冷冻电镜成功的关键。 现在我们是否可以完全摒弃这些实验技术,而仅仅使用计算能力来预测蛋白质的结构?还记得克里斯蒂安• 安芬森在其诺贝尔演讲中提出的挑战吗?"...使预测蛋白质构象的想法更加现实。"AlphaFold的盛大登场为了预测一串氨基酸将如何折叠起来,科学家们使用了一个叫做"自由能"的概念。自由能使蛋白质不稳定。我们的想法是,氨基酸将以这样一种方式折叠起来,以使自由能最小化。理查德• 亨德森: "你可以通过能量最小化来做结构,最多可达60或70个氨基酸。所以美国西雅图的大卫• 贝克小组在这方面做得特别好。但是一旦你想尝试1000个氨基酸左右的蛋白质,答案就会迅速变得遥不可及。"因此,这项技术对于弄清一个蛋白质的一小部分,也许是一个重要的侧链,是有效的。但是对于有数百或数千个氨基酸的整个蛋白质,科学家们采用了不同的方法。他们并不是要求计算机从第一原理中找出结构,而是利用已知的蛋白质结构数据库训练一种算法。 这就是谷歌的人工智能实验室最近所做的,他们的蛋白质预测算法AlphaFold在2020年的一次比赛中超过了所有其他的算法。罗杰• 科恩伯格:"AlphaFold的基础确实来自于蛋白质结晶学的悠久历史和它的巨大成功,以及已经解析并存入蛋白质数据库的巨量的结构。AlphaFold的不同之处可能在于,其公司背景下大量的人工智能专家,这远远超出了任何个人学术研究者所能做到的,他们所拥有的计算能力,来自于分布在全球各地的顶级计算中心。从某种程度上说,他们除了将他们所拥有的资源用于解决一个经过充分研究的、现在看来已经解决的问题之外,也没做太多贡献嘛。科恩伯格当然认识到像AlphaFold这样的蛋白质预测程序在预测非常多的蛋白质结构方面的潜力,包括那些以前没有被解决的蛋白质。罗杰• 科恩伯格: "而如果预测的数量足够多,那么AlphaFold对生命科学,尤其是生物学的影响是深远的。"了解蛋白质的结构本身就很有启发性和满足感,但它也使我们能够设计出更好的药物,最近对新冠病毒的研究就表明了这一点。 称为蛋白酶的酶帮助病毒进行复制,其中也包括冠状病毒。所以它们一直是药物的靶点。罗杰• 科恩伯格: "针对蛋白酶的药物已经用X射线衍射法进行了改进,通过观察药物与其靶点的结合,然后看看如何改进药物的结构以获得对靶点的更好效果。"X射线晶体学和冷冻电镜已经非常成功,理查德• 亨德森认为我们已经接近解析所有蛋白质的结构了。理查德• 亨德森: "我们基本上已经通过实验确定了几乎所有蛋白质的结构--可能是其中的一半,可能是其中的四分之三。而如果不是你感兴趣的蛋白质,例如一个瞄准病毒的药物,就会有一些同源结构。"实验技术和人工智能的结合是否会如此成功,以至于让结构生物学家失业?亨德森记得,多年前科学家们有一长串他们想解决的蛋白质结构清单。理查德• 亨德森:"我记得我们年轻的时候,在会议上,每个人都在研究一种蛋白质,然后他们会说 ‘我们接下来应该研究什么?’ 每个人都会有自己的预期名单。我还记得我的名单,有核糖体、肌动蛋白、肌球蛋白、ATP酶、氧化还原酶、细菌素,所有这些结构都是几十年前解决的。所以现在如果你问人们什么结构,他们会告诉你他们正在研究的那个,但他们已经没有一个大的名单了。"现在他们已经把大多数蛋白质从名单上勾掉了,那么结构生物学家还能做什么?理查德• 亨德森: "一旦你知道了所有东西的结构,并且你已经有了一种激活剂或抑制剂的药物,之后你总是可以发明东西,尽管这个话题存在一些争议。有这样一个思路,即从所谓的发现科学到发明科学,在那里你为一些东西申请专利并开发一种新的化合物,这可能是一种新的蛋白质。"亨德森正在谈论的是合成生物学,这是一个相对较新的领域,在这个领域中,科学家们试图制造新型的氨基酸和蛋白质,对遗传密码进行设计,或从头开始构建简单的细胞。生物学家们似乎有很多乐观的看法。“分子生物学家孤军奋战的日子已经一去不复返了。实验室、研究团队和国家正在进行前所未有的合作,以解决那些紧迫的问题,从污染到能源到大流行。”这句振奋人心的话出自2021年的《生物物理学年度评论》。DOI: 10.1146/annurev-biophys-091720-102019随着基因编辑、结构解析等令人眼花缭乱的方法改进,以及AI计算的预测可靠性不断提高,科学家们完全有能力解决科学、健康和工业方面的许多重要问题。
  • 结构生物学:我们用一百年改变了什么?
    在近代生物学发展史上,有一个问题逐渐占据了科学家的视野:蛋白质、核酸、多糖… … 这些构成生命活动基础的大分子的微观结构是什么样的?解决这个问题满足的不仅仅是科学家们的好奇心,更重要的是对结构的认知将极大地帮助人类在分子层面理解复杂的生命活动,并据此设计出阻止或加强其作用的药物,特别是基于蛋白质结构的药物研发。我们现在知道目前解析生物大分子结构的主流实验手段是X射线晶体学和冷冻电镜,而AI又与这两种手段相辅相成。但在生物学发展早期,我们只能推测大分子的成分,窥见它们精巧而严密的运作机制,但对它们的结构细节一无所知,而结构的未知又影响了人类理解它们的功能。诺贝尔奖获得者费曼曾经半开玩笑地说:“许多基础的生物问题是非常容易解决的:只要能看到它们就行!"然而观测这些微小的分子以及它们那更加微小和复杂的空间结构谈何容易,实际上,这个问题直到今天也不能称得上完全解决。但几十年来,科学家们为此付出了巨大的努力并取得了可观的成果,并最终形成了结构生物学。这是一个漫长而艰难的故事,但也不乏有趣之处。01X射线晶体学的得与失1895年,威廉伦琴发现了X射线。这种具有穿透性的电磁波是19世纪最重要的物理学发现之一,对许多领域和学科都产生了深远的影响,不过这不是本文要讨论的重点,我们直接来看X射线是如何影响甚至可以说奠定了近代结构生物学的发展的。简单来说,人们发现极细的X射线流在穿过化合物晶体后,会在照相板呈现出一些具有规律的衍射图案,这些衍射图案是否有可能反映出了晶体的原子排列规律呢?经过几十年的探索,科学家们终于找到了通过数学规则,利用X射线衍射图案来推算晶体中原子排列的方法。这一技术,使得制备晶体→X射线衍射→推算结构的解析大分子结构的方式成为可能,X射线晶体学的时代开启了。X射线解析蛋白质结构的首例突破是在1960年。约翰与他的同事马克斯佩鲁兹””解析了第一个蛋白质——抹香鲸肌红蛋白的三维结构。与今天科学家们能解析的蛋白结构相比,肌红蛋白的结构较为简单,仅由8条α螺旋组成,且没有4级结构。但在当时,所有人都知道,一个新的时代开启了。蛋白质的折叠方式与空间构象对于蛋白质的功能有着决定性的作用。掌握了蛋白的三维结构,就掌握了开启和关闭蛋白功能的钥匙。在接下来的几十年里,一个又一个重要的蛋白质结构被解析出来,核糖体、肌动蛋白、ATP酶、氧化还原酶、RNA聚合酶… … 结构生物学的黄金时期一直持续到本世纪,以至于2006年诺贝尔化学奖获得者罗杰科恩伯格后来说“2007年至2019年,当我为Nature杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。”X射线晶体学并非完美,它的缺陷在这个过程中暴露出来。首先,想要获得一个相对完整的模型,就要获得分辨率足够高的能够得到清晰的X射线“照片”的蛋白晶体,另外,一次X射线穿透获得的是晶体某一角度的衍射图案,这对于计算蛋白质三维结构是远远不够的,需要多角度的几百张甚至成千上万张照片才能构建出一个蛋白质三维结构的雏形,并通过建模和修正得到最终的成品“模型”。这期间的工作量特别是数学部分无疑是巨大的,即使有计算机和更好的X射线设备的辅助计算,X射线晶体学仍然很耗时。还有一个问题是,一些类型的蛋白质被证明很难或不可能结晶,如何进行对于此类蛋白三维结构的探索呢?02冷冻电镜与传统的常温电镜不同,冷冻电镜通过将样品冷冻在一层非晶体的玻璃态冰膜中然后在低温下用电镜成像观察,从而得到结构。这个方法无疑不再对蛋白晶体有硬性要求,可以最大可能的观察到生物大分子的自然状态下。并且,由于样品制备时使用了瞬时冷冻的技术,与X射线晶体衍射学相比,冷冻电镜技术可以瞬时的捕捉到同个样品在不同状态下的近生理构象。不过,虽然这项技术发明得很早,但起初只能对于病毒等较大或具有高度对称性的结构进行解析。因为电镜用于轰击样品的电子具有高能量,无论是生物样品本身还是仪器都难以承受长时间的轰击,而有限次数的曝光得到的图像偏差过大,难以用于精细的结构生物学领域。为了降低电子对样品的损伤,冷冻电镜在低温下,采用了低剂量的图像采集方案,增强图像的信噪比。而近年来,直接电子检测相机的研发和飞速发展的图像处理算法的应用,使得冷冻电镜的分辨率得到了飞跃式的提升,这次分辨率的极大提升,被称为“第一次分辨率革命”。另一方面,随着电镜本身的技术发展,目前已经可以利用冷冻电镜技术观察到原子分辨率的信息,在300 kV冷冻电镜的帮助下,水分子的氢氧原子清晰可见,这就是近年来震撼了冷冻电镜学界的“第二次分辨率革命”。另外,200 kV的冷冻电镜也已经以高分辨解析、多功能用途而广泛安装使用。近年来,冷冻电镜逐渐成为了生物大分子解析的主流手段之一,但是一台冷冻电镜高昂的价格令许多科研工作者或药企研发人员望而却步。而为了使更多的科研工作者能在分辨率革命中受利,在诺贝尔化学奖得主Richard Henderson的呼吁和推动之下,更为“接地气”的100 kV冷冻电镜也被研发出来。100 kV的电镜打破了对于高电压的需求,在电镜整体设计上和相机选择上都以最高性价比的方案进行整合,相比之下较低的价格,使得100 kV的冷冻电镜成为了一台人人都有机会使用的冷冻电镜。03AI的未来?我们在文章最初说过,研究蛋白质和其他大分子的结构是为了了解其功能,并最终转化为改善人类健康和生命质量的应用成果。为了这个目标,科学家们利用X-射线晶体学和冷冻电镜技术解析了一个又一个蛋白的结构,而在无数量变的积累背后,是否有一项科学家们追求的质变存在呢?1965年,《生物化学年鉴》说"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"1972年,克里斯蒂安安芬森在诺贝尔奖演讲中说:"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"利用氨基酸序列直接预测蛋白空间构象是结构生物学家和分子生物学家们很早就有的渴望。虽然在过去的几十年中,科学家们一直致力于在实验室中用X射线或者冷冻电镜解析蛋白质结构,但科学家们并不会把“将一切存在的蛋白质用X-射线或者电子束打一遍”作为最终目标,掌握规律才是人类在科学探索中真正想要追求的东西。而AI的发展引出了这一目标成为现实的可能。经过深度学习的算法已经可以做到通过与已知结构的蛋白序列进行比较来预测目的蛋白的结构。尽管要真正解析未知蛋白的结构还言之过早,但诸如AlphaFold2等软件也的确为结构生物学的研究带来了不少便利。通过AlphaFold2等计算模拟的方法,与以冷冻电镜为代表的实验结构生物学相结合,两者相辅相成,为生物大分子结构解析,特别是药物发现领域带来了巨大的助力。04Structure Based Drug Design (SBDD)随着结构生物学的发展,人们对药物靶标蛋白的结构和功能的关系的了解越来越深入,逐渐形成了基于结构的药物设计策略,Structure Based Drug Design (SBDD)。1995年,罗氏基于SBDD开发了蛋白酶抑制剂Saquinavir,其抗逆转录病毒的功效可以配合其他药物治疗艾滋病。也使得基于结构的药物设计策略的潜力得到证实。之后,各类抗病毒、抗肿瘤、炎症等新药研发成功。时至今日,对靶标结构的认知和功能的预测几乎成为创新药开发中绕不过去的一环,以近年大热的难成药靶点KRAS为例,安进公司通过KRAS G12C突变体的GTP结合位点“口袋”研发出了首款抑制剂,而这只是结构生物学在药物开发中发挥基础作用的无数案例的一个。有越来越多的例子证明,结构中一些亚纳米级别的微小细节变化,为最终的药物成功与否带来了决定性的影响。相信在未来,技术的发展将带人类进一步认知生命活动中那微小而浩瀚,精密且复杂的分子世界,并为药物研发和疾病攻克带来更多启发和帮助。
  • 唐科奇团队最新成果:蛋白分子结构精确表征重大突破,分辨率超1000的新型离子结构解析技术
    近期,宁波大学质谱技术与应用研究院唐科奇院长课题组创新地通过高分辨率FAIMS和IMS-QTOF MS联用,装置的结构分辨率较国际当前水平提升了近1个数量级,实现结构分辨率(R)超1000,为生物分子结构的精确表征提供了新的研究利器。该成果发表在Anal. Chem. 2022, 94, 16, 6363–6370(链接:https://pubs.acs.org/doi/10.1021/acs.analchem.2c00805,Two Dimensional FAIMS-IMS Characterization of Peptide Conformers with Resolution Exceeding 1000),其中唐科奇教授、俞建成教授和高文清助理研究员为通讯作者,博士研究生李俊晖为第一作者,宁波大学质谱技术与应用研究院(高端质谱技术和临床应用浙江省工程研究中心)为第一署名单位。在研究过程中,课题组人员成功设计搭建了高分辨率的平板型高场非对称离子迁移谱(FAIMS)设备,并对FAIMS的分辨率、灵敏度、离子传输效率等重要特性进行研究,并将FAIMS平台与离子迁移谱-飞行时间质谱仪(IMS-QTOF MS)联用,搭建了超高分辨率的二维离子迁移谱质谱联用装置(FAIMS-IMS-QTOF MS)。通过一价的缓激肽离子测试表明,常规的IMS-QTOF MS仪器只能够发现4种离子异构体,而利用课题组搭建的FAIMS-IMS QTOF MS联用装置平台,结构分辨率则获得大幅度提升,可以分离20种以上的异构体。研究结果表明该装置成功获得了超1000的超高离子结构分辨率,较常规单一的FAIMS及IMS结构分辨技术提升了1-2个数量级,大幅度超过了当前国际商业化离子迁移谱质谱联用仪的结构分辨水平。该成果的成功将为生物分子结构的精确表征提供了新的利器。
  • 马秀良研究员就铁电拓扑结构研究接受Nature Index专访
    钙钛矿型铁电氧化物具有外场可控的极化,可作为信息存储和逻辑器件。拓扑极化结构自身的拓扑保护性,使其在信息处理、传输、存储等方面具有重要的应用价值。然而,铁电材料中的极化拓扑结构一般都包含本体对称性不允许的连续极化旋转。如何突破铁电极化与晶格应变的相互制约,实现极化反转与晶格应变的有效调控,获得有望用于超高密度信息存储的结构单元,是当今铁电材料领域面临的一个基础性科学难题。  2015年,马秀良研究团队利用具有亚埃尺度分辨能力的像差校正电子显微术,在超薄PbTiO3铁电薄膜中不仅发现通量全闭合畴结构及其新奇的原子构型图谱,而且观察到由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列(Science 2015)。在此基础上,美国伯克利国家实验室Ramesh院士领导的课题组发现了具有涡旋特征的通量全闭合结构(Nature 2016)以及与唐云龙博士合作发现了斯格明子晶格(Nature 2019)。最近,马秀良研究团队又相继在铁电材料中发现半子及半子晶格(Nature Materials 2020)以及周期性电极化波(Science Advances 2021)。  针对铁电拓扑结构目前的研究现状、未来发展方向、科学研究的原动力、电子显微技术的作用、物质结构的再认识、新材料的探索等诸多话题,2021年5月,马秀良研究员和Ramesh院士同时接受了自然指数(Nature Index)的视频专访。该访谈的简要内容于2021年7月1日刊登在《自然》(Nature)上。  2014年11月开始发布的自然指数(Nature Index)是依托于具有重要影响力的国际学术期刊,统计各高校、科研院所(国家)在国际上最具影响力的研究型学术期刊上发表论文信息的数据库。自然指数现已发展成为国际公认的,能够衡量机构、国家和地区在科学领域的高质量研究产出与合作情况的重要指标,在全球范围内具有一定的影响力。(a) 斯格明子中的三维极化示意图;(b)会聚型和发散型半子交替排列所形成的周期性半子晶格示意图。
  • 第四届化学和药物结构分析上海年会通知
    第四届化学和药物结构分析上海年会(CPSA Shanghai 2013)将于2013年4月24-27日在上海淳大万丽酒店举行。本届会议主题是“利用转化科学、监管效率和创新模式振兴医药研发”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。  CPSA上海2013年会大会主席是来自扬森药业的翁乃栋博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。会议将特邀全球制药巨头赛诺菲公司全球副总裁John Newton博士和宾夕法尼亚大学药理学专家Ian Blair教授做大会主题报告。  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。  会议日程概览:  2013年4月22日 卫星会议Workshop(地点:北京)  2013年4月24日 会前研讨会Workshops和欢迎晚宴  2013年4月25-26日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等  2013年4月27日 上海药物代谢动力学研讨会活动  会议注册费用:类别日期费用2013年1月22日前2013年1月23日-4月6日2013年4月6日以后4月24日Workshop注册费用640元800元1120元4月25-26日正式会议注册费用(教师和企业代表)1440元1728元2304元4月25-26日正式会议注册费(学生/博士后)640元800元1120元  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com  期待您的支持和参与。  如有疑问,请随时联系我们。  杨会娟老师  上海逸星商务咨询有限公司  CPSA Shanghai 2013年会组委会  电话:021-39152015  邮箱:star.yang@mice-partners.com  地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824
  • DNA结构发现者将拍卖诺奖奖牌 估价两千多万
    资料图:1962年诺贝尔生理学或医学奖得主、DNA双螺旋结构发现者之一、美国科学家詹姆斯· 沃森  中国日报网11月26日电(刘梦阳) 据美国有线电视新闻网(CNN)26日报道,1962年诺贝尔生理学或医学奖得主、DNA双螺旋结构发现者之一、美国科学家詹姆斯· 沃森将于12月4日拍卖其诺贝尔奖章,预估拍卖价将高达350万美元(约合人民币2148.8万元)。沃森是第一位拍卖诺贝尔奖章的在世诺贝尔奖得主,拍卖所得将捐给慈善机构或用以支持科学研究。  据悉,詹姆斯· 沃森现年85岁,他与弗朗西斯· 克里克以及莫里斯· 威尔金斯共同发现了DNA双螺旋结构,并成为1962诺贝尔生理学或医学得主。沃森当年的获奖演讲手稿,也将与他的这枚诺贝尔奖章一同在纽约克里斯蒂拍卖行拍卖。  克里斯蒂拍卖行在这次拍卖的宣言中称赞沃森道:&ldquo 他的贡献可与牛顿、达尔文和爱迪生相媲美,正是他对知识坚韧不拔的追求,人类才能有这改变历史的发现。&rdquo   沃森表示他打算将一部分拍卖所得为大学和他工作了一辈子的科研机构资助研究项目,他在声明中称:&ldquo 我希望能为冷泉港实验室、芝加哥大学和剑桥大学克莱尔学院多做些慈善贡献。这项拍卖意味着我也为保持思想火花与正义永存于学术环境做了我能做的事情。&rdquo   2013年,与沃森共享诺贝尔奖的另一位得主弗朗西斯· 克里克当年公开发表研究结果前数周向他儿子解释DNA结构的书信《生命的奥妙》公开拍卖,拍得606万美元(约合人民币3720.5万元),破了世界纪录,实拍价格超过了预估的3倍,成为拍卖史上拍价最高的书信。
  • 有机合成人的眼睛:NMR在结构确证中的应用策略
    核磁共振(NMR)在当今有机化合物结构解析中占有举足轻重的地位。大到复杂天然产物的结构鉴定,小到有机合成产物的结构表征,NMR的身影无处不在。毫不夸张地说,NMR就是有机合成人的眼睛。NMR技术博大精深,每个人掌握的水平也是良莠不齐,可能很多同学对NMR的应用还停留在看看化学位移,数数积分数值的层面上。以ChemDraw结果为标准研判NMR的同学请自行面壁。今天,借用魁北克大学Steven R. LaPlante课题组在Bioorg. Med. Chem. Lett.发表的文章帮大伙擦亮双眼,分享一下各种NMR技术在有机化合物结构解析中的应用策略。  作者开篇先举了两个药物研发领域中结构表征错误的例子。2012年,C&EN警告消费者博舒替尼(Bosutinib,1b)的错误异构体1a被在市面上出售,而该异构体是没有活性的。C&EN原文指出这两个化合物的质谱和元素分析是完全一样的,虽然两个化合物氢谱的芳环信号有所差异,但是如果不将这两个化合物对比分析很难发现问题。图片来源:Bioorg. Med. Chem. Lett.  另一个例子则是关于诱导肿瘤细胞凋亡的化合物TIC10。这个化合物于1973年和2013年被两个不同的公司申请了专利。随后当Scripps研究所人员在研究这个化合物时发现他们制备的化合物居然没有活性。经过仔细分析后发现,被两个公司先后申请专利的化合物2a没有活性,有活性的化合物是其异构体2b。这个例子也真够对得起BMCL作者给的这个化合物编号,虽然原文作者不是中国人。图片来源:Bioorg. Med. Chem. Lett.  咱们接下来就按照原文作者的思路学习一下什么情况下该用什么NMR实验鉴定结构。  区域异构(Regioisomerism)  有的反应由于不可控性会使得一些官能团以非常规形式连接到另一分子上从而产生区域异构体。这种情况下利用常规的LC-MS和1H NMR是很难进行有效区分的。这时应用HMQC(HSQC)和HMBC两种2D-NMR实验通常可以轻而易举地解决这种问题。如下图所示,作者随手给了一个应用HMBC鉴定区域异构体的例子。图片来源:Bioorg. Med. Chem. Lett.  当然,作者也提到了HMBC实验本身的一些不足,比如会有1JH,C和4JH,C信号的干扰,这有时会影响一些化合物的解析。分享一个我个人的经验吧:1JH,C信号结合HSQC谱很容易分辨,所以也有人管这个信号叫QC残留信号。对于4JH,C信号,当用核磁软件读取原始HMBC数据图时可以通过调整切面高度,比较信号强度等手段排除4JH,C信号的干扰。  另外,作者认为2D-NMR实验中的ROESY实验在判别区域异构体时也可以作为重要的依据,它可以提供分子内空间距离在5埃之内的氢原子信息。如下图所示,作者又举了一个例子。图片来源:Bioorg. Med. Chem. Lett.  同样,作者也提到了ROESY实验的一些缺点,主要是会有一些假信号的干扰。说到这,再跟大伙分享一个自己的实战经验吧:ROESY实验确实方便,一下子能获得分子所有氢原子之间的空间关系。ROESY谱中有相关信号的两个氢原子位置相近这毋庸置疑,但是ROESY谱中没有相关信号的两个氢原子不一定空间距离远。对于这种有疑问的氢原子需要做1D-NOE差谱来最终给出结论。[此处可以有掌声]  几何异构(Geometric Isomerism)  几何异构体(E/Z)常见于各种含双键化合物当中。通常,大家可以通过双键上两个氢原子的耦合常数进行判断,cis构型的耦合常数大约在3-13 Hz,trans构型的耦合常数大约在12-20 Hz。基础知识稍微扎实点的同学都是知道这些考点的。可是,当双键上的氢原子和其他原子存在耦合时,图谱变得复杂,耦合常数很难准确读出。作者提示咱们,可以尝试选择性去耦氢谱读出耦合常数,具体的例子见下图,蓝色图谱是选择性去耦之后的氢谱。图片来源:Bioorg. Med. Chem. Lett.  看完作者举的图,我想到一个简单粗暴方法,换机器呗(混过网吧的同学肯定懂的),400 MHz测的不行就换600 MHz,要不换800 MHz,还有1G的呢,备不住过两年听着更像U盘了,2G、4G、8G,神马都有。  旋转异构/阻转异构(Rotamers/Atropisomers)  在某些分子中,一些特殊因素可以限制单键的自由旋转或者环的自由翻转,这就产生了旋转异构体或阻转异构体。遇到这种情况,作者提供了常见的解决办法:换溶剂、变温度以及ROESY。作者以三级酰胺的NMR变温实验和ROESY实验为例介绍了这种旋转异构体的NMR信号特点。  图片来源:Bioorg. Med. Chem. Lett.  N-烷基化和O-烷基化(N- vs. O-Alkylation)  当分子中的氮原子和氧原子都可被烷基化时,我们需要对产物的烷基化位点进行分辨。除去之前提到的ROSEY、HBMC或HSQC实验可以用于解析烷基化位点以外,碳谱中的化学位移值也可以很容易地鉴定出产物的烷基化位置。这个简单也常见,咱就不多说了。图片来源:Bioorg. Med. Chem. Lett.  立体化学异构体(Stereoisomerism)  确定手性分子的绝对构型一直以来都是富有挑战性的。作者也承认X射线单晶衍射技术无疑是最合适的手段,但是ROESY实验在很大程度上能够给出化合物的相对立体构型。作者以化合物9为例,利用ROESY谱相关信号的强弱解析了该化合物的相对立体构型。图片来源:Bioorg. Med. Chem. Lett.  文末,作者总结了一个超级实用的表格告诉大家什么情况应该用哪种NMR技术。图片来源:Bioorg. Med. Chem. Lett.  绝对的实用干货,适用于大多数有机合成初学者,同学们可以多多转发,拯救更多被NMR困扰的小伙伴们。我们更欢迎各位整日以鉴定结构为业的植化/天然药化大牛们也来分享自己的宝贵经验。  最后,本人安利两本书吧,绝对是学习结构解析的经典教材。英语阅读无障碍,喜欢原汁原味的同学请看原著 能够接受翻译版本的同学就看药明康德分析部译的这个中文版吧。图片来自网络
  • 冷冻电镜:结构生物学研究的利器——访中国科学院生物物理所朱平研究员
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。  在这项研究当中,朱平研究员长期从事冷冻电镜三维重构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。  日前,仪器信息网编辑特别采访了从事冷冻电镜(注:下文提到的冷冻电镜特指300kV和200kV场发射冷冻透射电子显微镜)应用研究的朱平研究员,请他为我们介绍了自己与冷冻电镜结缘的故事,以及冷冻电镜的特点和应用情况,希望使广大网友能对冷冻电镜有更多的了解。中国科学院生物物理所朱平研究员  因对三维重构技术的喜爱,与冷冻电镜结缘  Instrument:朱老师,您好!首先请您为我们介绍一下您和冷冻电镜结缘的故事。  朱平:其实我并不是生物专业出身,我的本科是在浙江大学学习金属材料热处理,1990年毕业后,我被保送到西安交通大学断裂疲劳国家重点实验室读硕士研究生,博士研究生期间又到清华大学机械系开始学习焊接专业,研究焊接接头断口分析,当时有一个很热门的研究方向是断裂表面的分形研究,断裂表面的分形维数和断裂性能被认为是密切相关的。开始我们只是做断口轮廓线的分形研究,但发现由于断裂表面不是各向同性的,不同的方向可能会对应不同的分形维数,所以我们就尝试利用扫描电镜立体对照相方法将断裂表面三维形貌重构出来,来研究断裂面的二维分形维数。  博士毕业后我在清华做了一年讲师,由于对电镜三维重构比较感兴趣,我就据此联系国外的进一步研究机会。恰好这时美国佛罗里达州立大学一个研究艾滋病毒结构的实验室需要做电镜三维重构的人员,于是我就将在材料研究中积累的关于电镜和三维重构的知识转到了对生物样品的研究,从而有机会开始接触冷冻电镜。  Instrument:到美国佛罗里达州立大学后,您主要开展了哪些方面的研究工作?  朱平:当时,我所在的实验室是比较早开始艾滋病毒表面包膜蛋白结构重构研究的单位。开始我们只是想通过电镜技术来研究艾滋病毒表面很重要的一个包膜蛋白gp120的结构。后来,研究者发现虽然不同的艾滋病毒抗体具有毒株特异性,但有几种抗体它们对于多种艾滋病毒都有中和活性,所以我们也开始研究这些广谱中和抗体的结构特点。  在最初的研究中,我们主要利用普通电镜,通过负染色方法研究表达纯化出来的艾滋病毒表面包膜蛋白gp120以及它们与不同的中和抗体形成的复合物的结构。后来我们的研究发现这些包膜蛋白在真实病毒表面的三维结构及分布对艾滋病毒的感染非常重要,所以就转向研究整个艾滋病毒颗粒及表面蛋白的三维结构。我们是最早将电子断层成像方法应用于艾滋病毒三维结构重构的研究组,并利用负染色电子断层成像方法获得了艾滋病毒表面的包膜蛋白的一个高清晰三聚体结构和分布图,发在美国科学院院刊上。由于负染色法对病毒结构影响很大,虽然观察到了艾滋病毒表面的gp120蛋白的结构为三聚体,但同时结构信息损失也很多。所以之后我们逐渐开始采用冷冻电镜电子断层成像法来开展研究,并做出了一个艾滋病毒冷冻电镜三维重构图像,于2006年在Nature上发表了一篇文章,也产生了较大影响。  Instrument:2008年您以&ldquo 百人计划&rdquo 身份加入到生物物理所生物大分子国家重点实验室,请问促使您回国发展以及加入生物物理所的原因主要有哪些?  朱平:在美国待了几年后,我也有了回国工作的念头,于是就开始和国内的相关研究单位联系。结构生物学研究是生物物理所的传统优势研究学科,所里也非常看好冷冻电镜在结构生物学研究方面的发展前景,已经在采购相应的设备,可以说这里有一个非常好的平台。  回国后,我们依然做一些艾滋病毒及疫苗的研究工作,同时也开展一些其他病毒的研究,如高对称性病毒的高分辨结构解析等。  另外,回国后我参加了以&ldquo 千人计划&rdquo 身份回国的许瑞明老师主持的科技部的一个&ldquo 973&rdquo 项目,其中我负责的一个课题就是利用冷冻电镜研究染色质的结构。后来,李国红老师回国,我们一起开始做染色质的冷冻电镜三维重构研究。  冷冻电镜是结构生物学研究的重要手段,但入门和上手都有一定难度  Instrument:请问和普通电镜技术相比,冷冻电镜在生物研究当中有哪些特点和优势?  朱平:普通电镜主要用于观察样品形貌,要看到原子分辨率的细节很难做到 另外制样方法如染色、固定等对样品的结构破坏很严重。而冷冻电镜可以将样品瞬间冻成玻璃态,冷冻速度平均可达以几万摄氏度每秒,这样样品所有的结构细节则都被保留下来。但是由于没有经过染色,直接观察样品的衬度就会差很多,所以需要三维重构来慢慢挖掘它的结构信息。  另外,结构生物学研究当中最常用的方法蛋白质晶体学的一个很大的瓶颈就是样品结晶,如将蛋白质产生结晶,需要各种各样的条件 此外在生物体中蛋白质往往不是单独起作用,而是多个蛋白质结合到一起的超大分子复合体,这样的超大分子复合物要长晶体就更难。但冷冻电镜不需要长晶体,直接将样品冰冻即可进行分析。300kV Titan Krios场发射冷冻透射电子显微镜  Instrument:目前,国际上冷冻电镜研究的热点主要集中在哪些方面?  朱平:这两年冷冻电镜的应用主要集中在结构生物学研究,分析的样品类型从病毒、核糖体扩展到了其它蛋白。冷冻电镜三维重构早期比较多的应用是病毒分析,因为病毒结构比较对称,可以得到比较高的分辨率。近年来,随着仪器硬件及软件性能的提升,冷冻电镜结构解析的分辨率越来越高,现在我们可以做到近原子级别的分辨率。对于一些不对称的样品也能获得比较高的分辨率,所以冷冻电镜三维重构在其它蛋白质的结构分析研究上也比较热。  Instrument:冷冻电镜技术应用的难点有哪些?要让冷冻电镜更好的在科学研究当中发挥作用,需要哪些积累?  朱平:冷冻电镜的操作程序比较多,入门和上手都有一定的难度。先从制样来说,单冷冻这一步,就有许多的玄机在其中。冻的冰层太厚,电子束穿不过去,冰层太薄又会被完全蒸发 而冷冻的速度如果慢了就会形成冰晶,冰晶遇到电子束发生衍射,我们就无法观察到样品 此外,环境的变化,如空气的温度和湿度变化,甚至每次使用的滤纸如果不同都会对制样效果有影响。  在照片的拍摄中,要调节好电镜的状态,掌握照相的细节,这样才能拿出一张好的二维冷冻电镜照片。如,电子束照射在样品表面时,如果调节不好很可能就把样品轰坏了。所以需要调焦,找准位置,然后慢慢放大。得到好的二维照片后,接着还有一大堆的图像处理工作。  当然现在软件自动化程度更高了,仪器的操作也比以前容易了。比如制样,有专门的制样设备,通过计算机控制温度、湿度、滤纸吸收的时间长短,使制样的可重复性高了很多。不过要使用好电镜,还是有许多的经验在其中。北京大学丁明孝老师正在组织国内优秀的专家撰写一部电镜实验操作手册,虽然这本书以普通电镜为主,但其中至少会有一章来介绍冷冻电镜的基本情况,以及如何使用好冷冻电镜,希望更多的人了解这一技术。  Instrument:请问目前我国冷冻电镜的研究和应用水平怎么样?  朱平:近年来,为推动我国生物学快速发展,国家不断加大投资力度。一方面引进了不少人才,另外在仪器配置方面,我国不少单位已经或将要建设国际一流的冷冻电镜设备平台,如清华大学、生物物理所、北京大学、上海生命科学研究院等。  其实十几年前,我们就有很多优秀的电镜人才,只是国家没有这么大的投入。就是在&ldquo 小米加步枪&rdquo 的条件下,他们也做的非常好。现在我们的高端电镜配置已在世界前列,但人才依然是最重要的,目前国内在冷冻电镜研究方面确实也没有那么多的人才,希望有更多的年轻人被培养出来。  科学的竞争也很残酷,团队合作才能走得更快更远  Instrument:最后,请问对于在高水平期刊上发表文章,您有哪些心得体会,以及团队合作在科学研究当中的重要性。  朱平:一是要有好的项目,好的科学问题 二要有好的设备 三要有好的团队 最后还要坚持。首先要敢于挑战科学难题,另外也要敢于面对挑战中的困难,要耐得住性子去做,要有长时间做不出来的准备。我们这个项目,前后花了5年时间,期间遇到了很多的困难。  在30nm染色质结构解析研究中,不同的研究组分工合作,发挥各自的特长也是我们这个项目的重要特点。在我们的研究当中,染色质样品的组装非常重要,我们需要均一的样品,否则电镜状态再好,再会调节操作和计算处理,也无法获取样品真正的结构信息。  我对组装染色质样品没有太多的经验,而李国红老师长期从事30nm染色质及表观遗传调控方面的研究,但冷冻电镜三维重构也需要一个较为长期的积累和经验,面对30nm染色质这么一个复杂的超大分子复合体,其结构解析有很多技术上的困难和挑战,若要让李老师重头来学电镜也不是很容易的事。还有许瑞明老师参加了我们很多的项目讨论,给了我们很多的鼓励,这也很重要。  科学的竞争也很残酷,我们知道世界上还有其他的团队也在做同样的研究,而我们能够先做出来,一个重要的因素就是我们是几个团队一起在做。采访编辑:秦丽娟  附录:朱平研究员个人简历  1986.9-1990.6 浙江大学 学士  1990.9-1993.6 西安交通大学 硕士  1993.9-1997.6 清华大学 博士  1997.7-1998.12清华大学 讲师  1999.3-2008.5 美国佛罗里达州立大学生物系 博士后、助理研究员、副研究员(Non tenure-track faculty系列)  2008.6-至今  中国科学院生物物理研究所课题组长、&ldquo 百人计划&rdquo 研究员
  • 《RISE大招》无机材料之结构分析和结晶度分析
    《RISE大招》前情回顾:这是一个荡气回肠的相遇、相知、相恋、相爱的故事。本系列前两集讲述了RISE从传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机相鉴定和金属夹杂分析的武功路数,相信大家对RISE电镜-拉曼一体化系统已经有了基本了解。(然而小编还是无比体贴的放上了前两集链接:点击下列文字即可快速阅读)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!科研无涯,却无需苦作舟。路即在此,英雄闻声而至。话不多说,今天呢,接着上次的招式,给大家讲讲RISE在无机材料结构分析和结晶度分析上的套路。无机材料之结构分析对于无机材料来说,经常会碰到同分异构的情况。但是仅仅通过扫描电镜和能谱,我们只能得到形貌和成分数据,而没有办法对样品进行准确的结构分析。而结构作为物质的基本特性,极大的影响着热、力、光、电、磁等性能,因此也是微区表征不容忽视的方面。而目前在SEM系统中,能够进行结构表征的也只有EBSD,但是前提依然是要有严格的样品制备,局限性很大。而成分相同结构不同的同分异构材料的拉曼光谱,往往表现出较大的差异,因此拉曼光谱分析手段是很好的表征结构的手段。因此,通过SEM+EDS+Raman (RISE) 的综合分析手段,我们就可以对同分异构材料进行全面准确的形貌、成分和结构分析。 如下图,试样为TiO2粉末,TiO2有锐钛矿和金红石两种结构,并且两者表现出完全不同的拉曼光谱特征。因此在RISE系统中通过拉曼光谱的面扫描分析,可以轻易的区分出蓝色区域为锐钛矿结构,红色区域为金红石结构。再例如下图,通过EDS数据知道电镜分析区域为Sm2O3 ,然后在此基础上进行拉曼面分布分析。虽然试样并不平整,完全不够EBSD的测试要求,但是RISE系统依然可以发现其中红色区域为立方结构的Sm2O3 ,蓝色区域为单斜结构的Sm2O3 。无机材料之结晶度分析对于无机材料来说,结晶度也是重要的参数。目前能够很好的表征结晶情况的主要是XRD,并且是基于宏观分析,能在微区尺度对结晶度进行表征的手段则很少。而无机晶体材料的结晶度却会对特征拉曼峰产生较大的影响。结晶度程度高,特征拉曼峰高而尖锐;反之,若结晶度低,则特征峰会变宽。因此,可以通过特征拉曼峰的宽度来对结晶度进行评判。由此可见,原位一体化的RISE对微区领域的结晶度分析提供了新的途径。如下图,用SEM-FIB双束电镜在硅表面进行图形加工。由于Ga+离子的注入效应、热效应等会使加工区域的硅产生一定程度上的非晶化。仅凭形貌是无法知道非晶化程度的。而在此区域用RISE进行拉曼面扫描,并用每一个测试点的Si的特征拉曼峰的半高宽为依据进行RISE成像,红色区域为半高宽较窄,蓝色区域为半高宽较宽。由此形成的RISE图像,对于研究FIB加工产生的非晶化一目了然。RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好的帮助您的科研分析而生。除了切实突破并解决了传统扫描电镜分析能力薄弱的问题,针对传统意义上的电镜-拉曼联用系统的种种分析弊端,RISE系统采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。 故事刚开始,我们已相遇,还有相知、相恋、相爱̷̷跑远了,下面请收看“下集预告”:《RISE大招》下集看点:无机材料之微量元素分析、取向分析、取向应力分析。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!
  • 第五届化学和药物结构分析上海年会通知
    尊敬的同仁:  第五届化学和药物结构分析上海年会(CPSA Shanghai 2014)将于2014年4月16-19日在上海淳大万丽酒店举行。本届会议主题是&ldquo 个性化药物新时代:药物研发的创新方法&rdquo 。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。  CPSA上海2014年会大会主席是来自诺华中国的张继跃博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了&ldquo CPSA 青年科学家优秀奖&rdquo 和&ldquo 创新奖&rdquo 两个奖项。&ldquo CPSA 青年科学家优秀奖&rdquo 主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。  会议日程概览:  2014年4月16日 会前研讨会Workshops和欢迎晚宴  2014年4月17-18日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等  2014年4月19日 上海药物代谢动力学研讨会活动  会议注册费用:类别日期费用2014年1月22日前2014年1月23日-4月6日2014年4月6日以后4月16日Workshop注册费用700元900元1200元4月17-18日正式会议注册费用(教师和企业代表)1700元2100元2800元4月17-18日正式会议注册费(学生/博士)800元1100元1400元  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com。  期待您的支持和参与。  如有疑问,请随时联系我们。  杨老师  电话:021-39152015-801  邮箱:star.yang@mice-partners.com  地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824  上海逸星商务咨询有限公司  CPSA Shanghai 2014年会组委会  二零一三年十二月十二日
  • 结构生物学领域迎来“不结晶”革命
    如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。  在英国剑桥市一座钢结构建筑深处的地下室里,一场大规模的“叛乱”正在上演。  一个约3米高的庞大金属箱正通过消失在屋顶上的橙色粗电缆,静悄悄地发射兆兆字节的数据。这是全球最先进的冷冻电子显微镜之一:一台利用电子束为冷冻的生物分子成像并揭秘其分子形状的设备。英国医学研究委员会分子生物学实验室(LMB)结构生物学家Sjors Scheres像个矮子一样站在这台价值500万英镑(合770万美元)的设备旁边介绍说,这台显微镜非常敏感,以至于一个叫喊声就能毁掉试验。  在全球实验室中,类似这样的冷冻电镜正影响着结构生物学领域。过去3年里,它们揭示了制造蛋白的核糖体细节,而这些发现正在以飞快的速度发表于顶级期刊。结构生物学家们毫不夸张地认为,他们的领域正处于一场革命当中:冷冻电镜能快速创建那些抗拒X射线结晶学和其他方法的分子的高分辨率模型。与此同时,利用此前技术获得诺贝尔奖的实验室正争先恐后地学习这种“新贵”方法。  挑战“王者”  当1973年生物学家Richard Henderson到LMB研究一种被称为菌视紫红质的蛋白时,利用光能量推动质子穿过细胞膜的X射线结晶学是毫无疑问的“王者”。Henderson和他的同事Nigel Unwin利用这种蛋白制成二维晶体,但它们并不适合X射线衍射。因此,两人决定尝试电子显微镜。  当时,电子显微镜用于研究被重金属染色剂处理过的病毒或组织切片。一束电子被射向样品,其中挣脱开来的电子被探测到并用于描绘它们所撞入的材料结构。这种方法产生了烟草病菌的首幅清晰图像,但染色剂使观察单个蛋白变得困难,更不用说X射线所能揭示的原子水平上的细节。  在一个关键步骤中,当Henderson和 Unwin利用电子显微镜对菌视紫红质的晶片进行成像时,他们省略了染色剂,相反把晶体放在金属网格上,以便使蛋白凸显出来。“你能看到蛋白中的原子。”和Unwin在1975年发表了菌视紫红质结构的Henderson介绍说。“这是一个巨大的进步。”美国加州大学旧金山分校细胞生物学家David Agard表示,“这就是说,利用电子显微镜研究蛋白结构将成为可能。”  冷冻电镜领域在上世纪八九十年代得到发展。一个关键进步是将液态乙烷用于瞬间冻结溶液中的蛋白并使其保持静止。不过,通常情况下,这种技术仍然只能将蛋白结构解析到10埃(1埃相当于1纳米的十分之一)的分辨率——与X射线晶体学超过4埃的模型相比并没有竞争力,并且远远无法满足将这些结构用于药物设计的要求。当诸如美国国立卫生研究院等资助者把上亿美元投资到野心勃勃的晶体学项目时,对冷冻电镜的资助远远落后于此。  1997年,当Henderson参加关于3D电子显微镜的年度高登研究会议时,一位同事在开幕式上发表了颇有挑衅意味的声明:冷冻电镜是一种“小生境”方法,不可能取代X射线晶体学。不过,Henderson能看到一个不同的未来,并且在随后的演讲中进行了反驳。“当时我说,我们应当让冷冻电镜在全球统治所有结构学方法。”他回忆道。  革命从此开始  此后第二年,Henderson、Agard和其他冷冻电镜的狂热支持者有条不紊地实现了各种技术改善,尤其是找到了感知电子的更好方法。在数码相机风靡世界很久之后,很多电子显微镜专家仍然偏好过时的胶片,因为它能比数字传感器更高效地记录电子。不过,和显微镜生产厂商一道,研究人员开发出远超胶片和数码相机探测器的新一代直接电子探测器。  这些从2012年左右获得应用的探测器,能以每秒几十帧的速率捕捉单一分子的速射图像。与此同时,诸如Scheres等研究人员编写了复杂的软件程序,将上千幅2D图像转变成在很多情况下可与晶体学解析的分子图像质量相媲美的3D模型。  冷冻电镜适合能忍受电子轰击而不会四处晃动的稳定、大型分子,因此通常由几十个蛋白制成的分子机器是很好的目标。而研究证明,没有什么比由RNA相互缠绕支撑的核糖体更加合适了。通过X射线晶体学解析核糖体结构的方法,让3位化学家获得了2009年诺贝尔化学奖。过去几年里,不同的研究团队迅速发表了来自众多生物体的核糖体冷冻电镜结构,包括首个人类核糖体高分辨率模型。在由分享了2009年诺贝尔奖的Venki Ramakrishnan领导的LMB实验室,X射线晶体学在很大程度上变得无人问津。他认为,对于大型分子来说,“冷冻电镜将大幅取代晶体学技术的预测是可靠的”。  今年5月,加拿大多伦多大学结构生物学家John Rubinstein和他的同事利用约10万幅冷冻电镜图像,创建了一种名为V-ATPase、形状类似转子的酶的“分子影片”。V-ATPase通过燃烧三磷酸腺苷(ATP)推动质子进出细胞液泡。“我们看到的是一切事情都在灵活进行。”Rubinstein说,“它在弯曲、扭动和变形。”在他看来,这种酶的灵活性能帮助其高效传递ATP释放的能量。  统治结构生物学领域  像任何新兴领域一样,冷冻电镜领域也有着成长的烦恼。一些专家担心,竞相利用此项技术的研究人员会产生有问题的结果。2013年发表的一种艾滋病病毒表面蛋白的结构,便受到科学家的质疑。他们认为,用于构建模型的图像是白噪声。从那以后,虽然其他团队产生的X射线和冷冻电镜模型对原始模型提出了挑战,但这些研究人员一直坚守他们的成果。  今年6月,在高登会议上,想要更多质量控制的研究人员通过一项决议,督促各期刊为审稿人提供关于冷冻电镜结构如何被创建的细节资料。  成本也会减缓此项技术的扩散。据Scheres估算,LMB每天花费约3000英镑运行其冷冻电镜设备,还要加上1000英镑的电费。大部分电费是由储存和处理图像所需的计算机产生的。“对于很多实验室来说,这是一项很高的开支。”  为了让冷冻电镜的使用更加便利,一些资助者建立了研究人员能预定时间的共享设备。霍华德休斯医学研究所(HHMI)在其弗吉尼亚州珍利亚农场校区运营着一个对HHMI资助的研究人员开放的冷冻电镜实验室。在英国,由政府和惠康基金会资助的一台全国性冷冻电镜设备,今年在牛津附近的迪德科特开始运行。“人们想要了解冷冻电镜,已成为当下的一股浪潮。”帮助建立上述设备的伦敦大学伯克贝克学院结构生物学家Helen Saibil表示。  追赶这一浪潮的还有纽约洛克菲勒大学生物物理学家Rod MacKinnon。他因确定了特定离子通道的晶体结构而共同分享了2003年诺贝尔化学奖,但如今却在深入研究冷冻电镜。“我正处在学习曲线的陡坡上,而这总是令我兴奋不已。”MacKinnon希望利用冷冻电镜研究离子通道是如何打开和关闭的。  当Henderson在1997年反驳说冷冻电镜将统治结构生物学世界时,他或许是在口是心非。但将近20年以后,他的预言已不像当时看上去的那么夸张。“如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。”Henderson说,“我们或许已经成功了一半。”
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 一种新型拉胀结构的可调面内力学性能研究
    拉胀超材料是20世纪90年代起迅速发展起来的一类功能和结构一体化的多孔材料。与常规材料不同,拉胀超材料承受单轴拉伸(压缩)载荷时,在与载荷垂直的方向发生膨胀(收缩)而表现出负泊松比效应。由于这种特殊的变形,拉胀超材料相较于传统多孔材料具有更优越的性能,如超常弹性常数、抗压痕性、抗冲击性、抗断裂韧性、渗透可变性以及能量吸收性能等。此外,拉胀超材料还表现出曲面同向性的独特物理性能。手性拉胀结构是一种典型的二维拉胀蜂窝结构,其元胞结构由中心圆环和与之相切的肋杆组成,根据切点数目的不同,手性拉胀材料可分为三节点、四节点和六节点结构。手性拉胀结构在变形时其形状可以平稳改变,且具有优异的面外力学性能,在制备柔性器件和吸能装置领域具有很大的潜力。但是在较大形变下,这些常规的手性结构极难实现其他泊松比值,通常其拉胀性能也会迅速衰减。有研究发现,将手性拉胀结构中心圆环替换成桁架(即missing rib type auxetics)结构可在大形变下保持更加稳定的负泊松比效应,且有望用于更多的工程应用中。但目前多数的研究都是聚焦在静态力学性能的变化及机理探索,而实际应用中,拉胀材料既要承受静态载荷也要承受动态载荷,在这些条件下,手性材料的断裂韧性、抗疲劳性、吸收能量等性能研究鲜有报道。图1.(a)标准型ATMr拉胀结构;(b)增强型ATMr拉胀结构近日西南石油大学朱一林和江松辉、广西大学卢福聪以及南京工业大学任鑫提出了一种新型的拉胀结构并对其在静态载荷以及动态载荷下可调节的负泊松比及刚度进行了研究并分析。这种增强型ATMr(anti-tera-missing rib)拉胀结构,由4个最小重复单元构成,重复单元则是由2个曲折纽带包围着作为加固元素的中心1个正方形组成,如图1(b)。为了确定可调的力学性能并为实际应用提供指导,研究团队基于卡氏定理建立了小变形机制下的力学模型。模拟结果表明,通过调整结构的几何形状,可以得到在−1到0范围内的泊松比值。通过分析泊松比和相对密度随几何参数的变化规律,发现这种增强型ATMr结构比非拉胀结构具有更高的刚度和更低的相对密度。有限元分析结果与理论推导结果吻合度很高。另外, 针对大应变范围下负泊松比的变化进行了研究并揭示了该结构的拉胀变形机制。结果发现,其拉胀性能主要来自于中心的旋转和外围纽带的弯曲,其可调的负泊松比可通过结构参数的调整获得,且不同的结构参数产生不同的旋转有效性。 图2 不同结构参数(q=1.5/2.5/3.5)下有效泊松比与应变的关系图3 数值计算分析和实验分析的等效泊松比范围. 左:标准型ATMr拉胀结构 右: 增强型ATMr拉胀结构此外,研究团队通过实验和数值模拟验证了所提出的结构应用于非线性基材实现可控拉胀的可行性:利用微尺度3D打印机(nanoArchP150,摩方精密)制备了具有增强型ATMr结构单元的哑铃状样条,样条最薄处截面尺寸为0.15mm×1.0mm。经过实验分析,非线性弹性材料具有与线性弹性材料相近的拉胀性能,如图4所示。图4. 线性(实线)和非线性(虚线)弹性材料的有效泊松比值得注意的是,此研究工作中对新型结构进行了动态和静态负载实验分析,这些都将在实际工程应用中具有理论指导意义。研究成果以题为“A novel enhanced anti-tetra-missing rib auxetic structure with tailorable in-plane mechanical properties”发表在《Engineering Structures》期刊上。
  • 那些神奇脑洞,再次惊艳了我们!—— “微世界之光”全国大学生微结构摄影大赛
    微结构大赛艺术创新组作品着重于对所拍摄图片的学术背景、艺术美化效果和寓意等的重点考察,虽然已经见识过不少历届优秀作品,但是看到本届获奖作品后,还是令人直呼脑洞大开,确确实实再一次被惊艳到了。2018年6月至10月,历时四个多月,第四届“微世界之光—新时代与新材料”全国大学生微结构摄影大赛终于落下帷幕,本届大赛共收到了来自28所高校、研究院所的230余幅作品,经过一轮轮严格的资格审查、专家遴选以及激烈的网络投票,最终角逐出20幅艺术创新组作品和8幅技术创新组作品进入决赛环节。10月21日,第四届全国大学生微结构摄影大赛决赛暨“材料显微结构表征技术”学术论坛在南昌大学举办,最终进入大赛决赛的28位参赛选手对各自参赛作品进行了7分钟的介绍,经过四个多小时的答辩评审,本次大赛最终决出艺术创新组特等奖1名、二等奖5名、三等奖14名,技术创新组一等奖4名、二等奖4名,大赛主办方为获奖选手现场颁发了丰厚的现金奖励! 第四届全国大学生微结构摄影大赛决赛现场本次微结构摄影大赛也受到了TESCAN公司的大力支持,作为电子显微领域联用创新技术及“微分析综合解决方案”引领者,TESCAN作为冠名赞助商之一倾情赞助了本次微结构大赛。更令人惊喜的是,本次大赛艺术创新组特等奖作品“石墙上的舞者”及二等奖作品“腐草为萤”、“地月之吻”等均采用TESCAN扫描电子显微镜拍摄。大赛艺术创新组作品着重于对所拍摄图片的学术背景、艺术美化效果和寓意等的重点考察,虽然已经见识过不少历届优秀作品,但是看到本届获奖作品后,还是令人直呼脑洞大开,确确实实再一次被惊艳到了。那么本次大赛中到底有哪些采用TESCAN扫描电子显微镜拍摄的令人惊奇的脑洞作品呢?一起来看看吧~作品《石墙上的舞者》作者:张建飞 导师:王波 西安交通大学 一缕轻柔的阳光顺着石墙洒落在这女子身上,她鸭蛋脸面,俊眼修眉,粉面上一点朱唇,神色间意气风发,一袭墨黑淡雅长裙,红发侧披如瀑,素颜清雅面庞淡然笑;她张开双臂,纤足轻点,衣决飘飘,宛若仙子一般,在阳光下旋转、跳跃。此刻,她是自由的,她冲破这象征着世俗与偏见的石墙,拥抱阳光,翩翩起舞。生命中有许许多多有形无形的石墙,它很坚硬,因为它代表着名利、世俗和心底的恐惧,打破它吧,寻找真正的自我。( 在盯着右侧这张原始电镜图片长达几个小时之后,我还是没有看出来有丝毫“在石墙上翩翩起舞的女郎”的影子...不就是不同灰度的成分衬度么......求留言区真相,难道我是一个人。。。) 原图材料:碳化硅-环氧树脂复合材料样品在常温、高真空的环境中,借助钨灯丝扫描电子显微镜使用背散射电子对碳化硅-环氧树脂复合材料断口进行拍摄。如图所示,穿插于图中的亮白色网格线为β-SiC相,经过原位碳热还原反应得到的多孔SiC完整保留了松木的多孔结构,在复合材料中形成连续的导热网络和承载骨架;填充在SiC之间的暗灰色部分为环氧树脂,碳化硅和环氧树脂界面结合紧密,结构完整有序。环氧树脂的内部有一些不规则的阴影和亮线,这是由于环氧树脂断裂所致。作品《腐草为萤》作者:张念、邵杭婷 导师:李明 上海交通大学 《礼记月令》:“季夏之月.腐草为萤.”在古代人们认为是草腐烂后化为了萤火虫,在盈盈的黑夜里发光,从春日里的盎然生机,到黑暗中的星星之火,这也许就是一场重生吧。“作品名字”从一片绿意盎然的颜色,经过岁月热情的炙烤,逐渐融化,重生,像黑夜里的萤火虫,渺小而温暖,又像石岩上青苔里窜出的小花,倔强又美好。这或许就是生命的过程吧。初如一片稚嫩的绿荫,在慵懒的暖风里成长,随着时间的车轮碾过,伤痕累累,却终究不会臣服于苦难,化为夜里的萤火,化作峭壁的野花,经过沉淀,换了一种新的姿态,更好的存在。 (...夜里的萤火?峭壁的野花?......为什么我只看到了“某种材料”的边缘形貌。。。) 原图材料:Ni的石墨片此图为扫描电镜下观察到的镀覆Ni的石墨片的边缘形貌。通过此图可以看出,石墨片的镀层较均匀,未出现明显包覆不周的现象。 作品《地月之吻》作者:何丹阳 导师:曹丽云 陕西科技大学 宇宙浩瀚,星汉灿烂。从陆地到太空,这是探索,更是长征。在寥廓而深邃的宇宙中,温文尔雅的“地才子”和聘聘婷婷的“月佳人”时而窃窃私语,时而深情对望,上演了一段浪漫且饱含中国韵味的“地月童话”。 作品描述:仰望星空,北斗环绕,嫦娥伴月,神州起航,天舟穿梭。让“地月”擦出爱的火花,为持续的改变点赞,向未知的寰宇继续进发!( 看到这里,就突然明白了为什么我只能做一只“技术汪”了。。。)原图材料:MoSi2-ZrB2复合粉末图中的近似球形粉末呈现出明暗相间的纹理脉络,白灰两相分别为ZrB2相(白)与MoSi2相(灰),且白色相犹如粒粒白珍珠镶嵌在灰色相中,错落有致,呈现出材料之美。(更多作品请详见全国大学生微结构摄影大赛官网或大赛微信网络投票通道。)更多详情内容,请关注“TESCAN公司”微信公众号。
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 蛋白质结构预测哪家强?两大国际团队同日在顶刊开源代码
    蛋白质是生命的物质基础,每个蛋白质的氨基酸链扭曲、折叠、缠绕成复杂的结构,想要破解这种结构通常需要花很长的时间,甚至难以完成。截至目前,约有10万个蛋白质的结构已经用实验方法得到了解析,但这在已经测序的数10亿计的蛋白质中只占了很小一部分。  但“看清”蛋白的结构和人类的很多疾病机理、药物研发等等息息相关。在蛋白质结构解析的几十年历史中,X射线晶体学、核磁共振波谱学(NMR)、冷冻电镜(Cryo-SEM)技术纷纷发挥了巨大的贡献,但这些技术在科学界看来,都有着劳心劳力又价格高昂的缺点。  如何简单地通过蛋白质的氨基酸序列来预测其形状?如何能解答这一问题,了解生命运作方式的将打开截然不同的一扇窗。这种设想提出的50多年后,谷歌旗下人工智能公司DeepMind在去年12月的国际蛋白质结构预测竞赛CASP上投下重磅,他们开发的基于神经网络的新模型AlphaFold2击败了其他选手,在预测准确性方面达到接近人类实验结果,让整个结构生物学界震惊。北京时间7月15日,DeepMind团队在顶级学术期刊《自然》(Nature)以“加快评审文章”(Accelerated Article Preview)形式在线发表了一篇题为“Highly accurate protein structure prediction with AlphaFold”的论文,全面详述了半年前造成轰动的这一模型,并首次对外分享开源代码。该论文于今年5月11日提交,7月12日被接收。  DeepMind团队提供了一份声明,公司创始人兼首席执行官Demis Hassabis在声明中表示,去年在CASP14大会上我们揭晓了一个可以将蛋白质3D结构预测精确到原子水平的全新AlphaFold系统,此后我们承诺会分享我们的方法,并为科学共同体提供广泛、免费的获取途径。  “今天我们迈出了承诺的第一步,在《自然》期刊上分享AlphaFold的开源代码,并发表了系统的完整方法论,详尽细致说明AlphaFold是如何做到精确预测蛋白质3D结构的。作为一家致力于推动科学进步的公司,我们期待看到我们的方法将为科学界启发出什么其他新的研究方法,也期待很快能和大家分享更多我们的新进展。”Hassabis表示。值得一提的是,就在同一天,另一顶级期刊《科学》(Science)也在线发表了另一预测蛋白质结构的研究文章,题为“Accurate prediction of protein structures and interactions using a three-track neural network”。  来自华盛顿大学、哈佛大学、德克萨斯大学西南医学中心等团队的研究人员开发了新的深度学习工具RoseTTAFold,其拥有媲美AlphaFold2的蛋白质结构预测超高准确度,而且更快、所需计算机处理能力更低。同样,研究团队也对外分享了开源代码。该论文提交于6月7日,7月7日被接收。  清华大学生命科学学院院长、高精尖中心执行主任王宏伟表示,“高质量结构预测的源代码开放对整个科学界尤其是结构生物学领域的促进作用必然是巨大的。”他评价道,对于DeepMind这样一家商业公司来说,“团队愿意向公众分享代码,是一个新型科研范式的突破,将整体上有利于人类更好地探索未知。”  预测蛋白质结构,接近实验室测量  50多年前,科学家们就设想用计算机预测蛋白质结构。近年来,共同演化、接触图预测、深度机器学习等技术的引入,一些实验室的算法精度有了很大程度的提高。  曾经开发出Alphago、战胜人类顶尖棋手的DeepMind团队是其中的佼佼者,其团队的强大和资源雄厚是一般实验室无法企及的。2020年12月1日,他们在生物领域展现出实力,在两年一度的权威蛋白质结构预测评估竞赛(CASP)中用AlphaFold2击败其他参赛团队。  CASP是由马里兰大学John Moult教授等人于1994年组织。竞赛使用的是最新解决且尚未在蛋白质数据库(PDB)中存放或公开披露的结构,结构生物学家们利用X射线晶体学、核磁共振波谱学、冷冻电镜的方法,把这些蛋白质的结构解析出来。做蛋白质结构预测的团队则利用计算机程序来预测它们的结构。最后由独立的科学家团队则把计算机预测的模型和实验室的结构对照,分析不同计算机算法的预测结果。这是一种“双盲”测试,长期以来一直是评价结构预测准确性的金标准。  去年的CASP14共有84个常规题目,其中有14题因为生物实验没给出确定结构等原因被取消或延缓,其他70个题目的单体和复合物蛋白质所含有的氨基酸个数从73到2180不等。  19个国家的215个小组参加了CASP14。DeepMind公司的AlphaFold2预测的大部分结构达到了空前的准确度,不仅与实验方法不相上下,还远超解析新蛋白质结构的其他方法。将实验方法得到的蛋白质结构叠加在AlphaFold2的结构上,组成蛋白质主链骨架的叠加原子之间的距离中位数(95%的覆盖率)为0.96埃(0.096纳米)。成绩排第二的方法只能达到2.8埃的准确度。  AlphaFold2的神经网络能在几分钟内预测出一个典型蛋白质的结构,还能预测较大蛋白质(比如一个含有2180个氨基酸、无同源结构的蛋白质)的结构。该模型能根据每个氨基酸对其预测可靠性进行精确预估,方便研究人员使用其预测结果。  AlphaFold2最终被Moult评价道,“在某种意义上,问题已经解决了”。  值得一提的是,在最新发布的论文中,DeepMind还简化了AlphaFold2。AlphaFold的首席研究员John Jumper说,“这个网络需要几天的计算时间来生成CASP的一些蛋白质的结构,而开源版本的速度要快16倍。根据蛋白质的大小,它可以在几分钟到几小时内生成结构。”  受AlphaFold2的启发,华盛顿大学医学院生物化学家、蛋白质设计研究所所长David Baker等人开发了RoseTTaFold。华盛顿大学医学院官网对该研究的介绍称,在高精度的蛋白质结构预测方面,Baker等人“在很大程度上重现了DeepMind团队的表现。”  相较于AlphaFold2只解决了单个蛋白质的结构,RoseTTaFold不仅适用于简单的蛋白质,也适用于蛋白质复合物。据介绍,RoseTTaFold利用深度学习技术,根据有限信息准确、快速地预测蛋白质结构。从结构上来看,RoseTTAFold 是一个三轨(three-track)神经网络,它可以兼顾蛋白质序列的模式、氨基酸如何相互作用以及蛋白质可能的三维结构。在这种结构中,一维、二维、三维信息来回流动,使得网络能够集中推理蛋白质的化学部分与它的折叠结构。巴塞尔大学的计算结构生物学家Torsten Schwede对《科学》杂志说,许多生物功能依赖于蛋白质之间的相互作用。“直接从序列信息中处理蛋白质-蛋白质复合物的能力使其对生物医学研究中的许多问题极具吸引力。”  Baker同时坦言,AlphaFold2的结构更加准确。但是根特大学的结构生物学家Savvas Savvides说,Bake实验室的方法更好地捕捉到了“蛋白质结构的本质和特性”,比如识别从蛋白质侧面伸出的原子串,这些特征是蛋白质之间相互作用的关键。  纽约大学医学院的细胞和结构生物学家Gira Bhabha说,两种方法都很有效。她表示,“DeepMind和Baker实验室的进展都是惊人的,将改变我们利用蛋白质结构预测推进生物学的方式。”  开源代码,如何促进整个科学界?  相比于去年年底带来的震撼,这次外界更感兴趣的是上述两支团队开源代码这一动作。  此前的6月中旬,在Baker实验室发布RoseTTAFold预印本三天之后,DeepMind的Hassabis在推特上表示,AlphaFold2的细节正在接受一份出版物的审查,公司将“为科学界提供广泛的免费访问”。  而从6月1日开始,Baker等人已经开始挑战他们的方法,让研究人员发送来他们最令人困惑的蛋白质序列。加州大学旧金山分校的结构生物物理学家David Agard的研究小组发送了一组没有已知类似蛋白质的氨基酸序列,几个小时内,他的团队就得到了一个蛋白质模型,“这可能为我们节省了一年的工作。”Agard说。  除了免费提供RoseTTaFold的代码外,Baker团队还建立了一个服务器,研究人员可以插入蛋白质序列并得到预测的结构。贝克说,自从上个月推出以来,该服务器已经预测了大约500人提交的5000多种蛋白质的结构。  不过,上述两支团队的源代码都是免费的,但也有观点认为,对于没有技术专长的研究人员来说,它可能还不是特别有用。不过,DeepMind的科学人工智能负责人Pushmeet Kohli表示,DeepMind已经与一些选定的研究人员和组织合作,以预测特定的目标,其中包括总部位于瑞士日内瓦的非营利组织“Drugs for ignored Diseases”。“在这个领域,我们还有很多想做的事情。”  Hassabis提到,去年在CASP14大会上我们揭晓了一个可以将蛋白质3D结构预测精确到原子水平的全新AlphaFold系统,此后我们承诺会分享我们的方法,并为科学共同体提供广泛、免费的获取途径。“今天我们迈出了承诺的第一步,在《自然》期刊上分享AlphaFold的开源代码,并发表了系统的完整方法论,详尽细致说明AlphaFold是如何做到精确预测蛋白质3D结构的。作为一家致力于推动科学进步的公司,我们期待看到我们的方法将为科学界启发出什么其他新的研究方法,也期待很快能和大家分享更多我们的新进展。”  DeepMind团队认为,这一精准的预测算法可以让蛋白质结构解析技术跟上基因组革命的发展步伐。  Baker团队也提到,“我们希望这个新工具将继续造福整个研究界。”  中国科学院合肥物质科学研究院强磁场科学中心研究员谢灿对澎湃新闻(www.thepaper.cn)记者表示,“总的来说,对学术界来肯定是好事,肯定会促进结构生物学和相关领域的发展。在承认学术贡献的基础上的开放和共享,本来就应该是学术研究最基本的要求。”  结构生物学是谢灿的“老本行”,“我当年花了8年的时间去解析一个蛋白的晶体结构,我能切身体会如果有一个精准预测蛋白结构的算法出现,对结构生物学家意味着什么。”  但他认为,不必要担忧这些算法的出现会让结构生物学家失业,在技术迭代之下,结构生物学这些年受到的冲击太多了,“而事实上,只不过是某一个领域某一个技术在某一个历史阶段更容易出工作出成绩。”谢灿认为,无论再精准的预测,终究也只是预测,“AlphaFold2不是实验,同样也需要实验去证实。”  王宏伟在AlphaFold2刚出现之时也曾评价道,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。
  • 第六届化学和药物结构分析上海年会会议通知
    CPSA上海2015会议通知  尊敬的同仁:  第六届化学和药物结构分析上海年会(CPSA Shanghai 2015)将于2015年4月15-17日在上海淳大万丽酒店举行。本届会议主题是&ldquo 穿针引线:共享跨学科科学技术,助推项目规划&rdquo 。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2014年已经在美国连续举办十六年。  CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。  CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。  CPSA上海2015年会大会主席是来自杨森制药的Philip Timmerman博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。  其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:  1、液质、气质分析平台的新进展   2、代谢组学的检测平台新进展   3、体内小分子代谢标志物的检测研究进展   4、质谱分析与肿瘤等疾病诊断  此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了&ldquo CPSA 青年科学家优秀奖&rdquo 和&ldquo 创新奖&rdquo 两个奖项。&ldquo CPSA 青年科学家优秀奖&rdquo 主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询:http://www.cpsa-shanghai.com/2014/yse_info.shtml。  会议日程概览:  2015年4月15日 会前研讨会Workshops和欢迎晚宴  2015年4月16-17日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等  2015年4月18日 上海药物代谢动力学研讨会活动  会议注册费用:类别日期费用2015年1月22日前2015年1月23日-4月6日2015年4月6日以后4月15日Workshop注册费用700元900元1200元4月16-17日正式会议注册费用(教师和企业代表)1700元2100元2800元4月16-17日正式会议注册费(学生/博士)800元1100元1400元  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com。  期待您的支持和参与。  如有疑问,请随时联系我们:  杨老师  电话:021-39152015  邮箱:info@mice-partners.com  地址:上海市嘉定区万镇路1177弄22号602室,邮编:201824  附:注册表  Registration Form注册表注册类别2015年1月22日前2015年1月22日-4月2日2015年4月2日后4月15日Workshop注册费用700元900元1200元4月16-17日正式会议注册费用(教师和企业代表)1700元2100元2800元4月16-17日正式会议注册费(学生/博士)800元1100元1400元  请完整填写此表后,连同付款凭证一起发邮件至:star.yang@mice-partners.com  Your Information参与人员信息  Mr. Mrs. Ms.  First Name Middle Initial Last Name  Institution/Company:  Address: Postal Code:  E-mail Address:  Telephone: Mobile:  如需发票,请注明发票抬头:  Conference Registration会议注册费用:  备注:  l 参会注册报名已实际收到会务费为准。  付款账户信息:  账户全称:上海逸星商务咨询有限公司  开户银行:上海银行曹安支行  银行账号: 31661203001254927  如有疑问,请联系:  杨老师  电话:021-39152015  邮箱:info@mice-partners.com
  • 见证用户成就 | 3D 金字塔结构,有效提高钠离子电池负极材料稳定性
    大家好,我是李欣研,来自电子科技大学的一名博士生,导师陈俊松教授。我的主要研究方向是新能源二次电池,很荣幸能获得飞纳电镜的这次评奖,这次我获奖的文章是 Efficient Stress Dissipation in Well-Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium Storage。 本篇文章主要聚焦在改善钠离子电池负极合金材料由于体积膨胀带来的稳定性差的问题,我们这篇文章有以下几个亮点: 亮点一: SbSn 二元合金具有独特的 3D 金字塔结构,它在充分展现合金型负极材料高容量特点的同时拥有较好的循环稳定性。 SbSn 纳米阵列的SEM 电镜图(飞纳电镜拍摄,侧视图) 亮点二: 利用密度泛函理论计算证明了与单金属相比,该二元合金提供了更高的Na+ 扩散效率,并且退火后形成的&ldquo 合金胶&rdquo 有效增强了导电基底和 SbSn 之间相互作用,从而避免了活性物质从集流体上脱落,保证了二者之间的稳定接触。 基于 DFT(密度泛函理论)理论计算:a) Sb-SbCu、Sn-SnCu 和 SbSn-SbSnCu 三种含 Na 迁移路径的模型;b) 不同迁移模型中 Na 扩散的能量;c) Sb-SbCu、Sn-SnCu 和 SbSn-SbSnCu 的态密度。 虚线表示 d 波段中心在每一个系统;d) SbCu、SnCu、SbSnCu、Cu 的几何优化模型及其对应的结合能。 亮点三: 基于有限元分析表明当前三角形几何形状能够提供更短的 Na+ 扩散路径,使其在吸附更多钠离子的同时具有较小的浓度梯度和更均匀的应力分布,这将有利于高倍率下的充放电性能以及对 Na+合金/去合金过程中所产生的结构应力的即时消散。我们通过组分和结构的调整实现了较好的循环稳定性和倍率性能。 对相同底部长度和高度下不同形状的 Na+ 离子浓度和应力分布进行了有限元分析;a) Na+ 离子浓度分布 b) 三种形状的应力分布;c) 底部角落最大局部应力的放大图;d) 三种形态的分布;e) 平均 Na+ 离子浓度的对比;f) 三种形状的局部最大应力对比 其中,比较重要的形貌表征就是通过飞钠电镜实现的,它将我们合成的三角形貌很好地呈现了出来,通过拍摄正面和截面的图像,我们可以看到生长的合金由一个个小的三角形组成,并且排列的非常整齐。 SbSn 纳米阵列的合成过程示意图 SbSn 纳米阵列的 SEM 图(飞纳电镜拍摄):俯视图(b,c)和侧视图(d,e) 由于合金胶是在集流体和活性物质底部,所以表征起来有一定的困难,飞钠电镜能谱 Mapping 测试和截面测样功能,使得这一问题得到了很好的解决。 SbSn 纳米阵列结构的能谱面扫 Mapping 结果 最后,感谢我们科研团队老师和同学们的指导与帮助,也非常感谢飞钠电镜的技术支持。
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。
  • 冷冻电子显微学与结构生物学
    冷冻电子显微学近年来在电子显微镜的硬件设备及结构解析的软件算法等方面取得了多个重要的技术突破, 正在成为结构生物学研究的重要技术手段, 为越来越多的生物学研究者所重视. 冷冻电子显微学的技术特点决定了它所具备的一些独特优势和发展方向, 同时作为一个正在迅速发展的科学技术领域, 需要多学科的交叉促进.   近期来自清华大学生科院的王宏伟发文介绍了冷冻电子显微学的研究现状及面临的技术挑战, 并提出未来可能实现结构生物学与细胞生物学不同尺度的研究在冷冻电子显微学技术上融合的新方法.  结构生物学是 20 世纪后半叶, 尤其是在 80~90年代蓬勃发展起来的重要学科. 通过对生物大分子(蛋白质、核酸及其复合体)的三维空间结构的测定, 结构生物学可以在微观尺度上精确地描述复杂生物大分子的形状, 原子与分子组合方式, 及其表面带电、亲疏水等物理性质, 从而为生物大分子发挥生物学功能的机理提供关键的解释. 进入 21 世纪以来, 结构生物学研究的技术手段日益成熟, 在现代生物学研究的各个分支领域中均发挥着重要的作用. 至今为止, 国际蛋白质结构数据库中的结构数据已经超过 100000, 其中绝大部分结构由 X 射线晶体学及核磁共振波谱学解析而来.   近年来, 技术的进步使得结构生物学新的研究手段取得了长足的进展. 2013 年 12 月份发表在Nature 上的利用冷冻电子显微学解析获得 TRPV1 原子分辨率结构的两篇文章, 在结构生物学领域造成了巨大的反响. 美国加州大学旧金山分校的程亦凡研究组与 Julius 研究组合作, 利用冷冻电子显微学技术首次获得了 300 kD膜蛋白 TRPV1的 3.4 Å 分辨率的三维结构, 并建立了该分子的原子模型.  其实在过去的几年间, 已经有若干工作报道了利用冷冻电子显微学解析病毒、蛋白酶体复合物、核糖体等近原子分辨率模型. 这些工作的里程碑式意义在于: 高分辨率结构解析过程不需要生长三维晶体, 样品用量非常少, 而且可以在短时间内同时获得多个复合体状态的三维结构. 短短一年里, 冷冻电子显微学技术作为直接解析生物大分子原子分辨率结构的技术手段受到人们的广泛关注.  事实上, 电子显微学是结构生物学研究中的老兵. 该技术自从 20 世纪 50~60 年代以来, 一直在研究细胞、 亚细胞及生物大分子结构的研究中扮演着独特的角色, 揭示了很多重要的细胞内精细结构. 在研究生物大分子的结构方面, 该技术采取与 X 射线晶体学及核磁共振波谱学迥然不同的原理, 在过去的几十年里逐渐建立了成熟的图像处理及分析算法, 成为结构研究的一种独特技术手段. 近 10 年来, 该领域的日臻成熟以及科研团队的扩大更快地催生了冷冻电子显微学成像技术与结构解析技术的革命性突破. 自从 2008 年以来, 冷冻电子显微学已经连续获得多种生物大分子复合体的原子分辨率结构, 而且高分辨率结构的解析速度正在呈现迅速上涨的趋势。  冷冻电子显微学从 20 世纪中叶开始, 经历了 80年代到 90 年代的技术方法建立时期, 21 世纪初的技术成熟期, 在过去的两年里发生了革命性的技术进步, 进入了快速发展期. 结构生物学和细胞生物学研究者如何抓住这个契机, 如何尽快适应新的局面, 掌握新的技术, 充分发挥该技术的优势从而更加更深入地研究生命现象, 将是未来几年里的一个主题. 数学、物理学、计算机科学、材料科学、化学等众多领域的研究者们必将在未来冷冻电子显微学的新技术新方法的开发中发挥重要的作用, 成为该技术的进一步完善与成熟的重要力量.  冷冻电子显微学领域研究者们则需要以主动开放的态度吸引其他领域研究者的合作, 并积极迎接来自更多领域研究者的挑战, 保持并发展自己的技术特长, 站在技术发展的制高点上选准研究方向, 始终在冷冻电子显微学的技术前沿上开疆拓土.  原文检索:  王宏伟. 冷冻电子显微学在结构生物学研究中的现状与展望. 中国科学: 生命科学, 2014, 44: 1020&ndash 1028  Wang H W. Current status and future perspective of cryo-electron microscopy in structural biology. SCIENTIA SINICA Vitae, 2014, 44: 1020&ndash 1028 doi: 0.1360/052014-140
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • 有机结构解析难?RISE显微镜给你新方法
    《RISE大招》有机材料分析篇来了!上期小编带大家了解了TESCAN RISE拉曼-电镜一体化系统在碳材料中的新应用,收获了很多老师们的关注。今天,继续带大家走进RISE有机材料分析,阅读完记得右上角点击分享喔?在扫描电镜分析中,有机物的分析一直是一个难题。现在随着电镜低电压的能力越来越强,已经能解决有机物的荷电以及电子束辐照损伤问题,对形貌的表征不再是难事。但是对有机物除形貌之外的分析依然是个难题,因为能谱的元素分析功能对有机物的表征起不了太大作用。而拉曼光谱是除了红外光谱以外,另一个可以很好地进行有机结构解析的表征手段。因此RISE拉曼-电镜一体化系统相比一般的SEM系统,对有机物的分析能力就有了极大的拓展。有机物的结构分析主要是碳骨架结构和特殊官能团的解析。碳结构的表征在上期已经详述,是拉曼最为优势的领域之一;而特殊官能团也可通过其对应的拉曼指纹峰来进行指示。不同特殊官能团对应不同拉曼指纹峰有机材料的分析如下图,试样为聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的共混膜。如果是用传统电镜观察,可以凭借经验,根据形貌来大致区分两者,但是这仅仅是依靠经验判断,并无有效的证据。除此之外,EDS等附件并不能确切的给出区分两相的有力数据。而用RISE分析却有了明显的进步,在观察到的区域可以进行拉曼光谱面扫描。PMMA和PS虽然都是有机材料,不过碳骨架结构和部分官能团的结构却有着较大的差异。PMMA化学式是-[CH2C(CH3)(COOCH3)]n-,PS为(C8H8) n。聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的化学结构式PMMA有特征的C=O结构、CH3伸缩振动,而PS有特征的苯环的环呼吸振动、苯环内碳原子的非对称振动、苯环C-H的伸缩振动。这些振动对应的拉曼峰分别位于1727cm-1、2951cm-1、1000cm-1、1600cm-1、3052cm-1,这些峰即可作为两项的特征峰轻易的将两项进行区分。通过拉曼特征峰轻易区分PMMA和PS此外,很多有机物都有特征性的骨架结构和官能团,这些均可作为拉曼光谱的特征峰用RISE进行分析。有机物中特征骨架结构和官能团对应特征拉曼峰再比如,RISE也可轻易区分下图有机物中的聚羟基丁酸酯(红色)和聚乳酸(蓝色)。通过拉曼特征峰区分聚羟基丁酸酯(红色)和聚乳酸(蓝色)生命科学的分析在生命科学研究领域中也经常需要用到扫描电镜,尤其是染色的细胞切片组织通过扫描电镜观察,可以通过形貌衬度判断细胞内部结构。然而除了形貌照片之外,没有更多的分析数据也困扰着这一类方向的研究。然而RISE技术仍可以在此基础上进行进一步的拓展,很多生命试样的特征结构也都有特征的物质组成,比如特征的蛋白、脂类等等,还是可以由特征的有机物及其对应的特征拉曼光谱作为指纹标记。如下图,可以将细胞切片组织在形貌的基础上进行RISE表征,进一步区分出细胞核、细胞间隙和高浓度磷脂。通过RISE技术表征细胞切片组织中不同物质再比如下图,试样为眼虫细胞。在获得SEM图像之后再通过拉曼光谱获得RISE图像,可以进一步分析出其中的叶绿体、蛋白质、细胞核、副淀粉等物质。眼虫细胞中不同物质的RISE表征分析医工交叉目前学科交叉是科学研究的发展趋势,其中医工交叉也是备受关注的方向。医工交叉的科学研究中有大量的新材料和仿生材料,这也是仅靠传统SEM系统无法完全表征清楚的。而RISE系统在这方面就大有了用武之地。如下图,某仿生材料,用户除了关心其形貌特征外,也关心其中的胶原和矿化胶原的分布。其特征峰主要在627cm-1、1601cm-1,其特征峰强度分布如图,除此之外还有420-460cm-1、2938-2941cm-1等其他特征峰,可以进行更加细微结构的判断。最终得到了胶原和矿化胶原,以及细微结构不同的(矿化)胶原的分布图和电镜形貌混合的RISE图像。仿生材料中胶原及不同细微结构的矿化胶原分布分析 食品安全食品安全及其相关领域已经成为大众非常关心的问题以及检测领域遇到的新问题,比如三聚氰胺奶粉、苏丹红等问题。然后可惜的是在食品安全及相关领域,用户更关系的是化学结构分析而非形貌和元素成分,因此扫描电镜很难在此领域的检测上发挥作用。如下图,某品牌婴儿奶粉,对其中部分区域进行RISE成像,发现其中的空气液泡、脂类、磷酸、胡萝卜素、蛋白质、胆固醇、甘油三酯等物质的分别。婴儿奶粉中不同物质的RISE表征分析RISE拉曼-电镜一体化系统相比一般的扫描电镜系统,对有机物的分析能力有了极大的拓展,通过有机物的碳骨架结构和特殊官能团对应的拉曼指纹峰来进行指示,结合形貌表征,从而实现对于有机材料的结构解析。更多应用案例,请继续关注我们的专题分享。《RISE大招》系列下期将带大家开启RISE二维材料分析 关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信“TESCAN公司”,更多精彩资讯↓ 观看RISE分析全系列,请戳:“拉曼-电镜-能谱 +”,SEM Plus带你玩转无机材料分析“高碳材料带来低碳生活,TESCAN带你了解 “神器”的神奇
  • 中科院院士:科研结构问题亟待关注
    图片来源:百度图片  前些日子看到有关部门发布的科技工作的一些统计报告,若干数据引起了我的注意,因事关我国科研工作的结构即研究与试验发展(研发)工作的结构,同我国今后研发系统的健康发展和科学技术创新发展有重要关系,于是想提出来作一点讨论。  国际学术界越来越多地认识到科学、工程学和技术的进步对国家和全球经济增长的重要作用,认识到研发布局和经费投入对经济发展不仅具有长期效益,而且对近期甚至当前经济竞争都具有极重要的现实意义。  二次大战结束以来,对研发系统和研发工作结构各要素的统计分析研究备受重视,近年来研发和创新的关系也日益受到关注。发达国家的研发强度(研发经费支出占国内生产总值的百分比)、各类研发活动的投资强度及其相互关系等有关要素,是在科学与技术发展的内在规律、科学技术与市场的互动以及政府的调控共同作用下逐步形成发展的。后发国家常常参考发达国家的经验规律,从本国国情出发来发展自己的研发系统。由于研发对于经济增长的关键作用,人们渐渐把研发强度和各类研发工作比例等作为比较和衡量一个国家研发系统状况的关键指标,甚至作为分析创新能力的基础。  我国改革开放特别是最近十多年以来科学和技术的发展为国际所瞩目,研发强度于2013年首次突破2%,研发总投入居世界七强(美、中、日、德、韩、法、英)第二。但有两个问题值得引起我们关注。  首先是基础与应用研究占比再创新低。在我国研发总投入每年大幅增长的同时, 基础研究与应用研究总经费也有大幅增加,但它们在研发总投入中的占比却多年来持续下降,同国际上形成鲜明对照。  1998~2006年期间,我国基础研究占比在5.2%~6.0%间徘徊,2007年起降至4.7%左右至今(2013年,发布统计结果通常晚一年)。应用研究占比在1998~2004年间平均20%,随后两年下跌至17%,新一轮下滑以2007年的13.3%开始,直至2013年的新低10.7%,这给人的印象很是强烈。我国研发强度的新纪录相当于美国上世纪50年代中期水平,同美日韩比较目前基础研究占比是其26%~38%,应用研究占比是其50%~56%。在成功的前进中看到我们的短板。  其次是企业研发的&ldquo 研&rdquo 继续走向低谷。企业在全国研发总投入中所占比例2000年前低于50%,本世纪起一路上升直到2013年的74.6%。我国研发强度从2000年的1%上升到目前的2%,不能不说企业发挥了重要作用。企业的投入主要用于其自身的研发工作,少量用于同高等院校和科研机构的合作,而政府也拨部分经费给企业,国内外情况相似。企业2013年实际使用的研发经费占全国76.6%,其研发工作的结构是基础研究占0.1%,应用研究占2.7%(基础和应用研究合占2.8%),试验发展占97.1%。据有关统计,2004~2006年期间我国企业研发的基础研究与应用研究合占10.8%~8.4%,自2008年开始降到3%以下。手边有国外资料可比较的是美国,其2011年企业研发中基础研究占4.4%,应用研究占16%,其余为试验发展。不难看出两国差别不小。  各发达国家企业研发投入在全国研发总投入中都占比很高,因而企业各类研发工作投入经折算成全国同类研发工作中所占比例会明显放大。折算结果,我国2013年企业基础研究投入占全国同类研究投入的1.7%,应用研究投入占到20% 而美国2011年企业基础研究投入占全国同类研究投入的21.1%,应用研究投入占到57.3%。两国的差别更为醒目。  单从研发投入数据,看不出我国存在的&ldquo 科技经济两张皮&rdquo 或&ldquo 科研与经济脱节&rdquo 问题,因为无论全国研发总投入还是企业研发总投入中试验发展工作投入都占绝对主导地位,分别为86.2%和97.1%,远远高于世界其他国家,而试验发展工作是科学技术研发同经济社会发展联系最紧密最直接的工作。我国基础研究投入和应用研究投入(合计占研发总投入的15.4%)远远低于其他国家,对&ldquo 两张皮&rdquo 和&ldquo 脱节&rdquo 问题显然还要做深层次的分析,才能对症下药。  近年来我国科研经费大幅增长,基础研究经费也大幅增长,这是有目共睹的。2005年研发总经费2450亿元,2013年11847亿元是2005年的4.8倍,这是世界上难见的高速度。那么为何基础研究和应用研究投入占比却一路下滑?因为缺乏有关数据资料,对其中的缘由个人难以说清,只能做些推测。  一个原因可能是某种引导的结果,企业大幅加大研发的试验发展投入,这是第一大研发部门因而对全国研发结构产生影响 政府研究机构也加大试验发展的投入,其占比从2005年的54.3%增加到2013年的58%,这是研发支出第二大部门也有相当影响 高等院校在同一时期占比则从2005年的25%降到2013年的12.6%,虽然是我国的第三大研发系统,但其总研发支出远小于前两个部门,因此其变化对整个研发结构影响不显著。  另一个原因可能是政府财政的投入有所不足,从有关资料看,我国研发总投入中的政府投入(2013年国家财政科学技术支出6184.9亿元,其中投入科研和发展工作2500.6亿元,这是两个概念)占比从2005年的26.3%降至2013年的21.1%(政府财政投入2013年2501亿元是2005年644亿元的3.9倍,增幅也很大,但低于研发全国总投入增幅),而基础研究与应用研究特别是基础研究主要依赖政府财政拨款。手边仅有美国2011年数据可资比较,其政府投入占全国研发总投入的29.6%。  基础研究投入占比偏低在我国长期以来屡屡是科技界的热点问题,全国两会也不乏改善的呼声,因为基础研究关系科学和技术发展的根本。可以认为1982年中央决策设立国家自然科学基金使得基础研究在我国政府开始有了正式管理的资助机构和渠道,因为我们难以忘记周恩来总理上世纪70年代初期还得批示别把开展自然科学理论研究的建议当作&ldquo 浮云&rdquo 。今天我国科学研究在国际上受到令国人兴奋的关注和重视及其一定的影响力,是在度过了上世纪80~90年代人才断层的困境后取得的,教育事业和国家科学基金的发展以及政府采取的其他措施培养了几乎是整整一代新人(还有海归)成为我国当今科研的主力,这才使我们有了今天的底气。  过去很少提加强应用研究,从目前实际情况看已不能不为此大声疾呼了。国外企业界不仅把应用研究看作是为了特定的、公认的需求去获取新知识,而且要通过研究去发现同产品、过程、服务等特定商业目的有关的新的科学知识和技术,这同企业的创新发展息息相关。据美国国家基金会分析,该国企业界乐于向基础研究投资是基于有助于培养人才,吸引和留住杰出人才,吸引外界的知识以及加强创新能力等多方面的考虑,我们需要这样宽阔的眼光。我全国研发人员总数2013年为353.3万人,企业占77.6%为274万人,这支生力军如进一步适当加强关注应用研究,也许大大有助于解决常常议论的把某些产业从大做强的目标。当然,企业研发如何安排各类研发活动要由企业按照自身的发展战略来自主决策。  当今,我们正处于建设创新型国家的重要阶段,科学和技术的创新更受到广泛期待,首先要为促进国家社会经济发展多作贡献,又要为全人类的知识宝库增添中国人的智慧结晶。为此,加强基础研究和应用研究是很紧迫的使命。  研发工作包含了多种类型的科学技术活动,其产出也是多元化的,有的是新的技术、材料、装置、系统、方法、设计、原型和过程,有的是传播交流新的理论、观点和发现的论文,因此对研发工作要实行分类指导、分类管理和分类评价,一刀切的办法是行不通的,基础研究和一部分应用研究产出主要表现为论文,另一部分应用研究和试验发展工作的产出则主要不在于发表论文。有时对教学、科研和研发人员业绩评价标准的争论是没有顾及科研和教学活动的多元性,导致挫伤人员的积极性。我也想强调,2013年我国以基础和应用研究为主发表23万余篇SCI论文位居世界第二,这是可喜的成绩 如果停留在1998年的不足2万篇排名第十二,我们将情何以堪!  屏蔽此推广内容  我们还不是科学技术强国,通过基础和应用研究夯实我国的科学基础至关重要,从国际评估组对我国某些重点领域的评估总是强调其不如人意的原因为缺乏高端人才和缺乏基础研究,这就反映了我们的问题所在,而高端人才不能引进就也得通过基础研究来造就。谈到同国际的差距,诺贝尔自然科学奖也许可以说是我们的心结,虽不要盲目将其视为衡量科学和技术发展水准的唯一重要标志,却也决不是不屑一顾的事实,它一定程度上同国家的科学积累和长期传统有关。试看原先同清朝后期一样落后的日本,经过明治维新后80年左右的发展出现第一个本土诺贝尔奖得主,到100年左右开始出现较多诺奖得主直至当今的较为密集的态势,这说明即使近代科学发展原本比欧美远远滞后的国家,稳定发展教育和科学技术数十年就能有所突破。按理我国从现在起到&ldquo 第一个百年&rdquo 的前后有望实现诺奖的突破,当前已有类似量级的工作开始出现 而到&ldquo 第二个百年&rdquo 前后会有更多突破应该不是奢望。  突破不是坐等来的,我们要在基础研究和应用研究上再使把劲为实现突破铺平前进的道路,目前科技界的共识是奋力提高我国科研的普遍质量水平是当务之急,高科学价值和高技术价值的科技成果必然带来高的国际影响力。而现今当我国奋力推进经济转型走向高端之际应积极重视从基础研究和应用研究开拓高端创新的源泉,这一观念的转变对我国经济发展具有变革性意义。进一步加强对基础研究和应用研究的投入,并把发展和加强基础研究作为国家需求,鼓励科学家充分发挥自己的想象力去探索求得新知识新发现新理论新技术。  (作者系中国科学院地质与地球物理研究所研究员,中国科学院院士 孙枢)
  • 科学家成功操控任意纳米结构,可用于夜视技术和医学检测等领域
    “我们证实了利用硅基光学超表面通过三次谐波在红外成像上的潜力,为通过非线性硅基纳米光子学来研发下一代红外成像技术迈出了重要一步。”英国诺丁汉特伦特大学教授徐雷表示。图 | 徐雷(来源:徐雷)当前,刚好也是光学超表面研究,从理论向应用转向的一个过程,因此本次成果非常及时。同时,在本次课题的理论设计上,徐雷等人利用连续体中的束缚态概念,来实现任意品质因子纳米结构的操控,这为降低光源强度依赖性提供了很好的思路。首先,本次成果可被用于夜视技术,从而集可见光、以及红外光成像于一体,利用普通的硅基探测器直接实现高性能的夜间红外探测。其次,本次成果可被用于医学检测,通过将红外光转到到可见光波段,根据光学探测蛋白质结合和构象变化、药物分子与靶标分子之间的相互作用等,从而在检测端口实现对于红外光背底噪声的完全抑制,进而助力于提高医学检测的灵敏度和性能。再次,本次成果可被用于食品检测和国防安全,即结合非线性超表面、以及可调谐非线性超表面,有望实现红外波段的超分辨成像技术。(来源:Opto-Electronic Advances)让红外图像转换为可见光一直以来,红外探测被广泛用于各个领域,比如通过测量材料对红外辐射的吸收,可以提供关于分子结构和化学键的信息,故在医学诊断、视频质量控制、环境监测、夜视和安全等领域都有着很大潜力。红外探测的不断创新和发展,将有望推动其在医疗、食品、环保和安防等方面的应用。然而,红外探测技术的当前挑战在于:红外探测器大部分基于热探测器,尽管成本较低但是速度较慢,而且灵敏度不足,严重限制了其性能。半导体探测器作为另一种选择,虽然具有高灵敏度的优势,但其常常需特殊冷却、以及复杂的处理工艺,要么就是需要极低温度来维持适当的性能水平。这些技术难题限制了红外成像系统的灵活性和可靠性,影响了其在各种应用场景下的性能。因此,红外成像领域迫切需要创新性解决方案,以克服当前技术的局限性。而这可能涉及新型材料的研发、更高效探测器技术的研发、以及新型冷却和处理方法的研发。过去十多年中,由亚波长尺度介质谐振器组成光学超表面结构,受到广泛关注。这种结构可以增强光电磁场的局域效应。通过巧妙设计这些结构,就能调控入射光的相位、振幅、偏振以及近场光局域的程度。同时,光学超表面具有高度的灵活性和功能性,并已经在光学领域取得许多新成果,例如替代传统光学元件的透镜、棱镜和偏振器,这不仅减小了传统光学系统的体积,还能带来性能的提高。通过非线性过程,可以实现红外光的频率转换,为将红外转换为可见光提供手段。这样一来,只需使用普通且廉价的硅基探测器,就能实现红外成像。此外,不同的非线性混频过程可以提高能量利用效率,为实现高效红外成像系统提供可能性。而对于超表面来说,它在微型化、灵活性和轻量化方面展现出的独特潜力,更是为实现新一代红外成像技术提供了很好的平台。以上,也是徐雷团队本次课题的出发点。研究中,他们利用结合非线性光学超表面的方法,通过非线性光学这一过程,可以让红外图像转换为可见光,从而让普通硅基探测器直接探测红外图像成为可能。(来源:Opto-Electronic Advances)当亲眼看到绿光的时候......据介绍,徐雷对于成像技术和非线性光学一直充满兴趣。此前在澳洲工作时,他就曾与当时的合作者使用二次谐波和频过程实现红外探测。在当时,他们是第一个开展该类尝试的科研团队。自 2016 年起,徐雷开始深入研究非线性纳米光子学。彼时,Mie 共振机制和理论,在纳米光子学领域的发展越来越快,这不仅为各种体系的应用提供了框架,还能为预测光的传播特性带来指导。期间,徐雷积累了不少关于非线性纳米光子学方面的知识。2020 年 9 月,他来到英国诺丁汉特伦特大学,与该校的莫赫森拉赫曼尼(Mohsen Rahmani)教授以及应翠凤讲师,共同组建了先进光学与光子学实验室。“Rahmani 教授偏重于样品加工,他对于材料领域以及相关应用的研究有着很深的功底。应翠凤女士则在纳米光学和生物探测上具有很丰富的经验。我们仨的技能正好互为补充、各有所长。”徐雷表示。在研究材料属性、结构设计、以及 Mie 共振等手段,在实现非线性光场增强和光场的操控之后,他们三位以及博士生郑泽开始考虑如何将非线性光学与解决实际问题相结合,随后不久启动了本次课题。结构材料与参数设计,是摆在面前的第一个问题。要想最终实现应用化,必须从非线性材料的角度,考虑后期器件的集成化。鉴于硅材料本身具有良好的非线性效应,再加上硅的加工工艺相对成熟,于是他们选择硅作为研究材料。原因在于:这样不仅能够考虑到非线性效应,还能充分利用硅的加工工艺,从而加工复杂的结构,进而增强红外光到可见光的转化效率。证明上述方案的可行性之后,他们开始进入实验阶段。由于徐雷自身的研究方向,介于理论与实验之间。因此,他一般会在实验前先进行理论模拟。但是,实验并非一帆风顺,尤其是最初得到的信号与预期不符。徐雷说:“可能大部分人会在这时候觉得比较受挫。但是,这些看似不成功的实验数据,实际上是我最感兴趣的部分,因为它们或许可以指出理论和实验上的待改善之处。”在他看来,如果所有实验结果都和理论预期保持一致,反而并不是最好的。科学史上的很多关键性进步,都是基于一些失败的实验数据启发而来。举例来说,他们在最初设计器件结构时,曾尝试通过高品质因子的结构来实现光局域增强。然而,实验结果显示高品质因子并非最佳选择。这种意外的实验结果,也促使他们进一步完善理论模型、以及改进实验方案,进而也引发了他们对于使用连续光和超快光,在成像以及传感上的思考,并为研发红外成像技术带来了一定启发。(来源:Opto-Electronic Advances)同时,完成本次课题组的过程,也是徐雷培养自己第一个博士生的过程。这名博士生便是前面提到的郑泽。研究中,师生之间形成了互相学习的良好互动。徐雷也有意识地让郑泽更多地参与光路搭建,以培养独立设计实验的能力。“尤其重要的是,我一直注重培养他的科研自信心,鼓励他提出独立的想法,以及相信自己的能力。”徐雷说。搭建非线性测试系统的时候,郑泽是第一次涉足这类系统的搭建。当他第一次看到非线性信号产生,并能亲眼看到绿光的时候,郑泽的兴奋之情感染了整个实验室。徐雷说:“作为导师,看到他如此投入和满足的表情,让我和 Mohsen 教授还有应翠凤女士都感到无比欣慰。”在三位老师以及郑泽的努力之下,本次成果显示了硅基光学超表面在非线性纳米光子学领域的应用前景,这不仅为非线性光学的实际应用提供了新思路,也为后续开展更深入的研究奠定了基础。最终,相关论文以《谐振硅膜超表面的三次谐波产生与成像》(Third-harmonic generation and imaging with resonant Si membrane metasurface)为题发在 Opto-Electronic Advances(IF 14.1)。郑泽是第一作者,英国诺丁汉特伦特大学的徐雷教授和莫赫森拉赫曼尼(Mohsen Rahmani)教授担任共同通讯作者。图 | 相关论文(来源:Opto-Electronic Advances)接下来,他们将在理论方面继续深入发掘,以期增强红外光的转换效率,同时不断压缩红外成像对于光源能量的要求。同时,也将重点考虑器件的集成化和多功能性、探索如何将图像信号处理和光谱信息提取等功能结合起来、以及如何利用超表面实现多功能成像芯片器件,从而更好地走向应用。徐雷继续表示:“另外,我想提到一点的是,每个人的技能不一样,对事物的看法不一样。有时一个纯实验工作者随口的一句话,可能会激发理论工作者的重要灵感。”而一个纯理论的学者,可能也会为实验方案起到画龙点睛的作用。就以数学研究和物理研究为例:物理中有很多不同的现象和机制。但是,一个数学家可能不会去关注不同的现象,而是直接从公式上看到各个现象和机制的关联之处。同时,这些关联往往也是实现物理突破的关键点。“有时候我们以为的非专业人士,反而给出更深刻的见解。因此,和不同知识背景的人合作,对于科研来说非常重要。”徐雷最后表示。
  • 新品 | Zygo发布“上视”结构的立式激光干涉仪
    ZYGO出新产品啦Vertical Test Station VTS“上视”结构的立式激光干涉仪!____菲索式激光干涉仪,测试时最常见为卧式配置;具有结构简单,附件少;测试适用性,灵活性好的优点。在很多场合,立式配置也很常见;立式测样具有样品装夹效率高,结构更稳定,抗振性更好的优势,非常适用于光学生产时在现场使用。ZYGO VTS 立式激光干涉仪,采用主机在下的“上视”配置,整体重心配置更加合理,稳定,装夹样品效率更高。VTS 系统整合了气浮抗振系统,以及1um分辨率,1米行程的Z轴导轨;配合ZYGO专利QPSI抗振移相技术,基于Mx软件,用于测试球面面形及曲率半径参数。___“上视”配置还有一个特殊优势,样品在夹具支撑下,得益于样品自身重力,可以保证球面干涉腔的良好“复位”性,如上图。基于这一良好位置复现特点,“上视”配置干涉仪能以类似经典“辨识样板光圈”的方式,通过比对样品和“样板”的POWER差异,高效测试曲率半径。如以上公式,先测试标准样板,尽量调整到“零”条纹;然后保持机构与夹具稳定不变,更换为样品,放置于夹具支撑之上。直接测试样品面形;基于两次测试的POWER差异,就能计算出样品相对于样板的“曲率半径误差”。这一测试,类似于经典的“样板光圈法”,将曲率半径绝对测量过程,转变为基于样板的相对测量,极大地提高了曲率半径测试效率。联系我们:https://www.instrument.com.cn/netshow/SH102493/关于翟柯翟柯(简称:ZYGO)是阿美特克集团超精密测量部门成员,专业设计与制造精密测量仪器和光学系统,基于光学干涉原理的计量检测系统能够在纳米甚至亚纳米范围内测量部件形貌和光学波面,产品广泛用于半导体、光学制造通讯、航天、汽车制造和消费电子等生产及科研领域。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制