当前位置: 仪器信息网 > 行业主题 > >

涡轮机

仪器信息网涡轮机专题为您整合涡轮机相关的最新文章,在涡轮机专题,您不仅可以免费浏览涡轮机的资讯, 同时您还可以浏览涡轮机的相关资料、解决方案,参与社区涡轮机话题讨论。

涡轮机相关的论坛

  • 【分享】涡轮机和离心机有什么不同

    离心机:是利用离心力,分离液体与固体颗粒或液体与液体的混合物中各组分的机械。 适用范围: 1、将悬浮液中的固体颗粒与液体分开。 2、将乳浊液中两种密度不同,又互不相溶的液体分开,例如从牛奶中分离出奶油。 3、用于排除湿固体中的液体,例如用洗衣机甩干湿衣服。 4、分离不同密度的气体混合物(特殊的超速管式分离机)。 5、对固体颗粒按密度或粒度进行分级(沉降离心机),利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点。 涡轮机:利用流体冲击叶轮转动而产生动力的发动机,按流体的不同而分为汽轮机、燃气轮机和水轮机,广泛用做发电、航空、航海等的动力机。 涡轮机是如何工作的? 涡轮增压器实际上是一种气体压缩机,通过压缩气体来增加进气量。它是利用高温高压的气体惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由管道送来的蒸汽,使之增压进入汽缸。蒸汽推动转子高速旋转,带动发电机或者其他设备工作。 离心机依靠高速旋转的离心力来分离比重不同的物体,而涡轮机依靠流体的膨胀来做功。

  • 涡轮机润滑油静电放电的危害化

    涡轮机润滑油静电放电的危害化(1)静电放电引起润滑油局部燃烧,温度超过1100度(2)快速流动的润滑油,必然有气泡或者油中含有空气a在高压区域挤爆,b摩擦副,弯管紊流区等区域挤爆,c.配合静电,润滑油系统发生多次,多面积,局部燃烧,胶质油泥等大面积产生。(3)静电只有放电以后,大量胶质产生,结合自身氧化,高温热裂解,润滑油系统大量油泥胶质产生了。(5) 大量加速产生的油泥胶质,粘附在轴瓦表面,引起温度升高。产生的漆膜破坏轴瓦间隙,引起振动。(6) 导致伺服阀前置滤芯堵塞,供油压力不足。(7) 伺服阀线轴等部件,粘附沉积的漆膜等引起伺服阀的卡阻,引起跳机

  • 热机械疲劳试验机fts

    热机械疲劳(TMF)系统可模拟机械疲劳和热循环的复合效果,通常在燃气涡轮机和类似设备的运行过程中会出现这种情况。可提供完全一体化的TMF系统,以复制大多数艰苦的工作条件,例如:紧急停止落地式涡轮机或激活喷射式涡轮机的加力燃烧室。作为世界领先的一体式TMF试验解决方案供应商,英斯特朗系统在许多国家得到广泛应用。热机械疲劳系统以普通的电液伺服疲劳试验系统为基础。热机械疲劳试验系统还可设计成更先进的系统。全自动英斯特朗TMF试验软件包符合ASTM E 2368和最近颁布的ISO 12111标准的相关要求。包含四个阶段:稳定热应力测量验证TMF试验最新数字型RF感应加热产品和强制冷却外壳技术,结合最新Eurotherm温度控制器中简单易用的双PID功能,可实现高达1100℃的精确温度周期变化,其加热率可超过50℃/秒、冷却率超过25℃/秒。功能特点完全可调式线圈和引伸计定位系统水冷夹具的模块化设计及可互换头可进行各种试样的试验。AlignPRO为全角度和同心调整提供完全预加载的载荷传感器。专门设计的高温精确引伸计试样冷却选择:自然冷却或强制冷却,内部冷却或外部冷却互锁安全屏高级热电偶监控系统与软件异型线圈设计,以符合试样的几何形状和材料要求一揽子解决方案用的19"机架式控制器[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303130800120355_1872_1602049_3.png[/img]

  • 2013年计划-涡轮机油模拟性能检测

    项目编号:PT-oil-2013-18报名日期:2012-12-13——2013-5-30实施日期:2013-6-8——2013-7-20项目状态:报名中联系方式: 邓可、郭武电话:0532-86900315、13853226544、13969680757传真:0532-869009630-060邮箱:oil-pt@vip.163.com地址:青岛市黄岛区黄河东路99号详细内容: 对应CNAS-AL06的领域代码:210.01对应CNAS-AL07的PT子领域:物理性能可能涉及的测试/测量方法:GB/T 12579、ASTM D892备注:非认可。报名者少于30个取消。

  • 润滑油成分分析

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37745.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=Verdana, Arial, Tahoma][color=#333333] 润滑油是设备的血液,在摩擦部件中起着降低摩擦、减轻磨损的重要作用,同时,润滑油还能润滑机械设备运动部件、清除污染物、密封防漏等,对机械平稳正常工作形成保护,机械设备的“健康状况”和“使用寿命”等重要信息都可以从在用润滑油的质量、润滑油状态分析中获得。在投入使用前,需要对润滑油进行专业的项目检测,并生成专业的检测报告,下面为大家介绍一下润滑油检测的相关知识[/color][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]润滑油成分分析报告 1.制定机构:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,标准编号:GB11120-201,标准名称:涡轮机油,实施日期:2012.6.01,内容简介:该标准规定了在电站涡轮机润滑和控制系统,包括蒸汽轮机、水轮机、燃气轮机和具有公共润滑系统的燃气/蒸汽联合循环涡轮机中使用的涡轮机油的技术指标也适用于其他工业或船舶用途的涡轮机驱动装置的润滑 2.指定机构:国家技术监督局,标准编号:GB12691-1990,标准名称:空气压缩机油,实施日期:1991.11.01,内容简介:系统使用的涡轮机油。 3.制定结构:国家技术监督局,标准编号:GB13895-1992,标准名称:重负荷车辆齿轮油GL-5(适用于下高速冲击负荷,高速低扭矩和低速高扭矩干那个况下使用的车辆齿轮),实施日期:1993.11.1,内容简介:该标准规定了一精致矿物油,合成有或一者混合油为基础油、加入多种添加剂配制而成的重负荷车辆齿轮油的技术条件。

  • 润滑油成分分析

    [sub]点击链接查看更多:[url=https://www.woyaoce.cn/service/info-37745.html]https://www.woyaoce.cn/service/info-37745.html?[/url][font=&][size=16px][color=#333333]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=Verdana, Arial, Tahoma][color=#333333] 润滑油是设备的血液,在摩擦部件中起着降低摩擦、减轻磨损的重要作用,同时,润滑油还能润滑机械设备运动部件、清除污染物、密封防漏等,对机械平稳正常工作形成保护,机械设备的“健康状况”和“使用寿命”等重要信息都可以从在用润滑油的质量、润滑油状态分析中获得。在投入使用前,需要对润滑油进行专业的项目检测,并生成专业的检测报告,下面为大家介绍一下润滑油检测的相关知识[/color][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]润滑油成分分析报告 1.制定机构:中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会,标准编号:GB11120-201,标准名称:涡轮机油,实施日期:2012.6.01,内容简介:该标准规定了在电站涡轮机润滑和控制系统,包括蒸汽轮机、水轮机、燃气轮机和具有公共润滑系统的燃气/蒸汽联合循环涡轮机中使用的涡轮机油的技术指标也适用于其他工业或船舶用途的涡轮机驱动装置的润滑 2.指定机构:国家技术监督局,标准编号:GB12691-1990,标准名称:空气压缩机油,实施日期:1991.11.01,内容简介:系统使用的涡轮机油。 3.制定结构:国家技术监督局,标准编号:GB13895-1992,标准名称:重负荷车辆齿轮油GL-5(适用于下高速冲击负荷,高速低扭矩和低速高扭矩干那个况下使用的车辆齿轮),实施日期:1993.11.1,内容简介:该标准规定了一精致矿物油,合成有或一者混合油为基础油、加入多种添加剂配制而成的重负荷车辆齿轮油的技术条件。[/sub]

  • 涡轮泵挂彩了?记一次质谱故障

    安捷伦5975C,昨天下午仪器在待机情况下涡轮泵和前级泵都停下来了,离子源和四级杆温度也降下来了,由于临近下班时才发现,于是先把仪器关机今天早上上班再检查。起初以为是哪里大漏导致真空达不到,仪器自己放空了。先是检查前级泵泵油,油位在最低位以上,泵油颜色也正常,接口也很紧,应该没什么问题。接着想要打开质谱真空仓检查,发现侧板还吸得挺紧的(感觉不太像是大漏吧),拧松放空阀卸掉真空(放空完顺手拧紧),打开侧板发现真空仓里面有些细小的金属粉末,立马意识到情况不妙,这是哪里来的呢?!先用镜头纸小心将颗粒物清扫出真空仓外吧,OMG!!!我的分子涡轮泵发生什么事了?!先上图吧,那个伤心。。。http://ng1.17img.cn/bbsfiles/images/2015/05/201505122122_545756_2905367_3.jpg请问各位版友,涡轮泵的扇叶是打到哪里了吗?怎么会打成这样?真空仓里面的金属粉应该是扇叶上磨出来的吧?仪器上次维护清洗离子源是去年的12月底,一直正常使用没什么问题,怎么突然就这样了?现在的情况是这样,我把真空仓清理干净试着重新开机,前级泵运行正常能把侧板吸住,仪器也有自检(嘀一声),但是涡轮泵没有运转,速度一直都是0.1,然后大概5分钟之后,涡轮泵长时间没有启动,仪器自动把前级泵也关闭了。这种情况感觉涡轮泵应该是挂彩了吧,下午联系了安捷伦的工程师也说可能是涡轮泵坏了,请大家帮忙分析一下故障的原因吧,仪器应该是06-08年买的(具体记不清了),期间也没坏过什么部件。前级泵和涡轮泵都是普法的,上一张涡轮泵外观图http://ng1.17img.cn/bbsfiles/images/2015/05/201505122221_545765_2905367_3.jpg还有联系了安捷伦维修报价,G3170-67000 New-HiPACE 80 Turbo Pump Service Kit 3万3千多(不含税),这个价格怎样,有没有被坑了?

  • 涡轮泵挂彩了?记一次质谱故障

    涡轮泵挂彩了?记一次质谱故障

    安捷伦5975C,昨天下午仪器在待机情况下涡轮泵和前级泵都停下来了,离子源和四级杆温度也降下来了,由于下班时才发现,于是先把仪器关机今早上班再检查。起初以为是哪里大漏导致真空达不到,仪器自己放空了。先是检查前级泵泵油,油位在最低线以上,泵油颜色也正常,真空接口也很紧,应该没什么问题。接着想要打开质谱真空仓检查,发现侧板还吸得挺紧的(感觉不太像是大漏吧),拧松放空阀卸掉真空(放空完顺手拧紧),打开侧板发现真空仓里面有些细小的金属粉末,立马意识到情况不妙了,这是哪里来的呢?!还是先用镜头纸小心将颗粒物清扫出真空仓外吧,OMG!!!我的分子涡轮泵发生什么事了?!先上图吧,那个伤心。。。http://ng1.17img.cn/bbsfiles/images/2015/05/201505122122_545756_2905367_3.jpg 请问各位版友,涡轮泵的扇叶是打到哪里了吗?怎么会打成这样?惨不忍睹啊!真空仓里面的金属粉应该是扇叶上磨出来的吧?仪器上次维护清洗离子源是去年的12月底,期间一直正常使用没什么问题,怎么突然就这样了? 现在情况是这样的,我把真空仓清理干净试着重新开机,前级泵运行正常能把侧板吸住,仪器也有自检(嘀一声),但是涡轮泵没有运转,速度一直都是0.1,然后大概5分钟之后,涡轮泵长时间没有启动,仪器自动把前级泵也关闭了。这种情况感觉涡轮泵应该是挂彩了吧,下午联系了安捷伦的工程师也说可能是涡轮泵坏了,请大家帮忙分析一下故障的原因吧,仪器应该是06-08年买的(具体记不清了),期间也没坏过什么部件。前级泵和涡轮泵都是普发的,上一张涡轮泵外观图http://ng1.17img.cn/bbsfiles/images/2015/05/201505122221_545765_2905367_3.jpg还有联系了安捷伦维修报价,G3170-67000 New-HiPACE 80 Turbo Pump Service Kit 3万3千多(不含税),这个价格怎样,有没有被坑了?

  • 【求助】文献ASTM D 1322及IP 57

    小弟求助两篇文献,ASTM D 1322煤油和航空涡轮机燃料烟点的标准试验方法,另一篇是IP 57,哪位有啊,急需啊,谢谢!!

  • 分子涡轮泵坏了,如何搞?

    一台热电Trace1300 的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url],分子涡轮泵坏了,坏的过程经历几个阶段,请大神解疑答惑。1. 第一次是做样分析的时候,质谱端Vacuum灯一直闪烁,发现分子涡轮泵和机械泵均停止了工作。然后我把质谱端电源断开后再通电,分子涡轮泵和机械泵均恢复正常,真空度一会就达到60mtor。2. 正常工作一个星期左右,质谱端Vacuum灯又一直闪烁,发现分子涡轮泵和机械泵再次停止了工作。这次我放空关机后,把机械泵泵油更换新的,换下来的泵油也就一点点黄。然后再正常开机,分子涡轮泵和机械泵均恢复正常,抽完真空后,真空度也达到约60mtor。3.正常工作约2天左右,质谱端Vacuum灯又一直闪烁,发现分子涡轮泵和机械泵还是停止了工作。这次没辙了,也不敢再断电重启MS,直接关机待修了。呼唤厂家工程师上门。昨天开机后,机械泵启动几分钟后停止工作,分子涡轮泵一直不工作了。请问,这个分子涡轮泵故障的原因有哪些?换一个新的要10多万大洋[img]https://simg.instrument.com.cn/bbs/images/default/em09509.gif[/img]急急急!

  • 分子涡轮泵问题

    安捷伦7500仪器, 上午仪器声音异常。 重新点火后好转 ,中午仪器稳定时出现直接转shut down 状态。提示涡轮泵time out , 真空度too high。 之后重启仪器,涡轮泵不工作,转速2%上不去。。 难道真的是涡轮泵挂掉了、、 还有没有其他原因呢? 查看哪些参数可以找找原因?

  • 气质分子涡轮泵停止了。

    昨天做样是好好的,今天想做样时发现分子涡轮泵停止转动了。很奇怪?重启仪器分子涡轮泵工作,当真空到达一定值之后,Fore pressure值越来越大?难道是分子涡轮泵坏掉了?有没有遇到类似问题的?

  • 请问一下涡轮泵的价格!

    向大家请教一下,一般在电镜上用的涡轮泵大概是什么价格?有用国产的嘛?特别是用剑桥/LEO系列的朋友,你们的真空系统用的是涡轮泵吧?是否都需要用机械泵做前级泵?[em54]

  • 气质分子涡轮泵不转了,求帮忙看看是不是分子涡轮泵真的坏了

    最近我单位气质分子涡轮泵不转了,请大家帮忙看是否分子涡轮泵坏了。我们的仪器是安捷伦5975C,于2009年11月安装的,平时都是开机状态,于今年7月25日实验楼电的问题,直接被关机了(我们有配UPS,不知为什么中午下班3小时怎么,电源和仪器都关机了),不过7月25日维护一下仪器进样口,抽真空一天后,仪器调谐正常,并且于7月30日和8月1日运行检测样品还正常,可是于昨天发现分子涡轮泵不转,前级泵开机2分钟左右后也停止不动了,四级杆和离子源的温度也都上不去了,打800问了,说可能分子涡轮泵坏了,需要更换8万多元啊!

  • 【求助】关于分子涡轮泵的问题求助

    最近要评估GC/MS,厂家在分子涡轮泵这快有很大争议,请高手帮忙指点迷津!我们是做RoHS的实验室,有厂家说配制70L/S的分子涡轮泵就可以了,有厂家说要配制255L/S的分子涡轮泵,由于本身2种型号的分子涡轮泵价格差异不少,也想请问下各位你们在使用的仪器用的哪种分子涡轮泵呢?非常感谢

  • 涡轮分子泵的工作原理

    涡轮分子泵是高或者超高真空泵,可以提供无油的超高真空度,因此是质谱仪的重要组成部分,想要更好的使用质谱仪,就不得不了解涡轮分子泵工作原理的基础及合适的(前级)泵的择。第一台涡轮分子泵是在1955年发明的。当时,Willi Becker博士在Arthur Pfeiffer Vakuumtechnik GmbH(现在的Pfeiffer Vacuum)已经任职13年,担任技术实验室负责人。他关注的问题是如何防止扩散泵中的油回流到泵壳中。为此,他将一个旋转风扇轮作为挡板。通过这种方式,气体粒子沿压力梯度方向流动,没有明显的传导损失。在这相反方向,倒流的油分子被旋转的风扇轮反射。这阻止了分子到达高真空一侧。在进一步的研究中,贝克尔博士注意到,这种设计不仅减少了扩散泵油回流的问题,同时还产生了较低的总压力。然后,他应用了一个转子-定子组合和多个串联的泵级。在这种设计中,他使用了左右两侧对称流模式--一个由皮带驱动的转子,速度达到16,000转/分钟。该泵重62公斤,抽速为900立方米/小时,在1956年获得专利,是今天所有涡轮分子泵的先驱。1958年,在比利时纳穆尔举行的国际真空大会上,该泵首次被展示。如果没有这项发明,我们的现代生活将是不可想象的--因为没有涡轮分子泵,半导体生产的许多制造步骤以及无数的真空镀膜工艺将不可能实现。[img]https://file.jgvogel.cn/134/upload/resources/image/323927.jpeg?x-oss-process=image/resize,w_700,h_700[/img]* 威利-贝克尔博士,1958年在阿瑟-普发真空技术有限公司(今天的普发真空)的实验室里[color=#222222]工作原理和压缩比[/color]涡轮分子泵是如何工作的?从快速旋转的叶片到被抽气的气体分子的动量转移是转子和定子叶片排列的泵送作用的基本原理,如图1。[img]https://file.jgvogel.cn/134/upload/resources/image/323928.jpeg?x-oss-process=image/resize,w_700,h_700[/img] 图1 涡轮分子泵的工作原理[color=#222222]撞击到叶片上的分子被吸附在那里,并在短时间内再次离开叶片。叶片速度v被叠加到分子热运动速度c。分子热运动速度c是分子离开泵的速度。分子流动必须在泵中占主导地位。否则,叶片传递的速度分量将通过与其他分子的碰撞而丢失。因此,平均自由路径T必须大于通道高度h。在泵送气体的过程中,动能泵中会出现背压,导致倒流。S[/color] [font=&][color=#222222]0 [/color][/font] [color=#222222]表示没有前级压力的抽速。它随着前级压力的增加而减少,在最大压缩比K时达到0值。[/color]压缩比K0,可以根据Gaede来估计。对于视觉密集型叶片结构,Gaede的公式适用。[img]https://file.jgvogel.cn/134/upload/resources/image/323929.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图2 转子和定子叶片的排列方式Gaede的公式[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323930.png?x-oss-process=image/resize,w_700,h_700[/img][/align]其中: p[size=11px]V[/size] = 前级真空压力 p[size=11px]A[/size] = 吸气压力 v = 叶片速度[font=微软雅黑, &][size=14px] = 平均分子热运动速度[/size][/font] L = 通道长度 h = 通道高度 g = 用于指定平均冲击距离的系数,是通道高度的倍数(1g3)在图中用v-cos α替换公式v,用b替换L,用t-sin α替换h,我们可以得到[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]根据Gaede的估计,假设叶片是视觉密集的,因此满足cos α = t/b的条件(见图1)。对于较大的叶片间距,这意味着压缩量减少。[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font][font=微软雅黑, &][size=14px]几何比率取自图1。因子g在1到3之间[2]。K[size=11px]0 [/size]因此,随着叶片速度v和 [/size][/font][font=微软雅黑, &][size=14px] aaan的增加呈指数增长。[/size][/font][font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]R 是通用气体常数。T 是热力学温度和。M 是分子质量。因此,氮气的压缩比要比氢气的压缩比高得多。抽气速度的计算抽气速度S [size=11px]0 [/size]与吸气面积A和叶片的平均圆周速度v,即旋转速度成正比。如果考虑到叶片角度α,就可以得到这个结果。[img]https://file.jgvogel.cn/134/upload/resources/image/323931.png?x-oss-process=image/resize,w_700,h_700[/img][font=微软雅黑, &][size=14px][color=#222222]图3 的Y轴上画出了以[/color][i]l[/i][color=#222222]s[/color][font=&]-1[/font][color=#222222] cm-2为单位的比抽速,X轴上画出了循环频率f和叶片的外半径(Ra)和内半径(Ri)的平均叶片速度v=π-f-(Ra+Ri) 。从X轴上的一个选定点垂直向上移动,与曲线的交点显示了该速度下泵SA的最大特征泵送速度。乘以输入盘的叶片面积:[i]A[/i]=(Ra2-Ri2)π ,就可以得到抽气速度。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/323932.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图3 涡轮泵的具体泵送速度[img]https://file.jgvogel.cn/134/upload/resources/image/323933.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4|泵送速度是相对分子量的函数[color=#222222]图3中输入的点是根据所示的Pfeiffer Vacuum泵的测量值确定的。远高于曲线的点在实际上是不可能的。以这种方式确定的泵送速度还不能说明轻质气体的数值,例如氢气(图4)。如果涡轮分子泵是为低极限压力而设计的,就会使用不同叶片角度的泵级,并对氢气的最大泵速进行分级优化。这样就能同时为氢气(约1000)和氮气提供足够的压缩比的泵。由于空气中的氮气分压很高,压缩比应该在10的9次方左右。对于由转子和定子盘组成的纯涡轮分子泵,由于其分子流的要求,前级真空压力需要达到约10[/color][font=&][color=#222222]-2[/color][/font][color=#222222] hPa(图5)。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/323934.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图5|抽速与抽气压力的关系[img]https://file.jgvogel.cn/134/upload/resources/image/323935.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图6|霍尔韦克级的工作原理[color=#222222]霍尔韦克级的特殊功能[/color]Holweck级(图6)是一个多级Gaede分子泵,有一个螺旋形的泵通道。由于转子的旋转,进入泵通道的气体分子在泵通道的牵引方向上得到一个速度。由于转子和分离分隔Holweck级的挡板之间存在间隙,因此会出现回流损失。为了尽量减少回流,间隙的宽度必须保持较小。圆柱形套筒(1)被用作霍尔韦克平台的转子,它在定子(2)的螺旋通道中旋转。如果定子被安排在转子的外部和内部,两个霍尔韦克级可以很容易地被整合到一个泵中。这样,被泵送的气体颗粒首先通过转子外侧的定子通道,然后再通过转子内侧的定子通道向上输送。从那里,它们通过一个收集通道,到达前级泵。现代涡轮分子泵有时有几个这样的"折叠式"霍尔韦克级,其泵送速度S [size=11px]0[/size]是相同的。[font=微软雅黑, &][size=14px] [/size][/font]这里,b - h是通道的横截面,v - cos α是通道方向的速度分量。随着通道长度L和速度v - cos α[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323936.png?x-oss-process=image/resize,w_700,h_700[/img][/align]压缩比就会增加。[img]https://file.jgvogel.cn/134/upload/resources/image/323937.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图7|纯涡轮分子泵和涡轮拖动泵的压缩比今天,涡轮泵配备了Holweck级,是为了使极限压力在0.5-5hpa之间,以隔膜泵为前级建立起涡轮分子泵系统,这些被称为涡轮拖动泵。由于涡轮泵的高压缩比,只需要很小的泵送速度就可以为Holweck级产生低的本底压力。因此,排气通道--特别是通道高度和到转子的间隙--可以保持得非常小,分子流可以保持在1 hPa范围内。氮气的压缩比同时增加了所需的10的3次方数量级。在图9中,我们可以看到压缩比曲线向更高压力的方向移动了大约10的2次方。在为高气体吞吐量而设计的涡轮分子泵中,在气体吞吐量、前真空兼容性和颗粒容忍度之间做出了妥协。在这种情况下,Holweck级的间隙距离尺寸要大一些。[img]https://file.jgvogel.cn/134/upload/resources/image/323938.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图9|纯涡轮分子泵和涡轮拖动泵对氢气的压缩比[font=&]选择正确的前级泵[/font]涡轮分子泵和前级泵的压缩在获得最低的压力范围方面起着重要作用。这对于氢气等轻质气体来说尤其如此。在以前的超高真空应用中,前级泵已经能够提供10-2hPa左右的低压。涡轮分子泵的压缩比可以在此基础上确定。旋片泵、多级罗茨泵或泵站等前级泵可以提供这样的低前级压力。尽管旋片泵是比较经济的选择,但当涡轮泵关闭时,有油倒流的风险,特别是在错误操作的情况下。干式前级泵甚至泵站,能产生很低的前级真空,其价格要高得多,而且需要相对较大的空间,这在许多应用中是一个不利因素。这里最理想的解决方案是使用一个小型的、低成本的干式前级泵。大多数涡轮分子泵是全能型的。除了良好的压缩性能,它们还提供大的泵送速度和高的气体吞吐量。然而,在极少数超高真空应用中,高气体吞吐量根本没有发挥任何作用。相反,泵送速度和对轻质气体的出色压缩比才是最重要的。涡轮分子泵的霍尔韦克级为最大压缩值进行了优化,这不可避免地减少了泵的气体吞吐量。然而,这对上述应用来说是次要的。然而,备用泵和涡轮分子泵的总压缩比的很大一部分可以转移到涡轮泵上的事实是非常有利的。因此,带有压缩优化的霍尔韦克级的涡轮分子泵可以在明显高于前级压力的情况下排气,以达到相同的极限压力。因此,在使用带有压缩优化的霍尔韦克级的涡轮分子泵时,一个小型隔膜泵就足以产生超高真空(见图9,表1)。[font=微软雅黑, &][size=14px][font=&][img]https://file.jgvogel.cn/134/upload/resources/image/323939.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/font][/size][/font][font=&][/font][font=微软雅黑, &][size=14px][font=&]表1|使用Hipace300H和不同的前级泵所能达到的极限压力[/font][/size][/font] [img]https://file.jgvogel.cn/134/upload/resources/image/323940.gif?x-oss-process=image/resize,w_700,h_700[/img][align=left]这种优化的涡轮分子泵具有很高的真空兼容性,因此隔膜泵毫无疑问仍然可以在间歇模式下运行。只有当前级的真空压力达到一个不允许的高值时,才需要开启它。众多的应用表明,隔膜泵的运行时间不到总时间的10%。除了由此带来的能源节约外,前级泵较低的热辐射和最终在实验室中几乎无噪音的运行也不应被低估。[/align][align=left]此外,为了保持极低的压力(见图9和表1),通常连接在涡轮分子泵下游的离子捕集泵就不再需要了。[/align][align=left]因此,通过现代涡轮分子泵中Holweck级的智能互连,可以大大增加压缩比,特别是对轻质气体。简单、小型的前级泵可用于在低UHV范围内产生非常低的压力。与过去使用的选择相比,这是一个非常大的优势。然而,同样重要的是指出这些解决方案的局限性。高压缩比的涡轮泵不太适合大气体负荷。[/align]激光平衡技术[img]https://file.jgvogel.cn/134/upload/resources/image/323941.jpeg?x-oss-process=image/resize,w_700,h_700[/img]2021年,Pfeiffer真空公司已经推出了激光平衡技术。最后,小析姐分享给大家几个涡轮分子泵在使用小tips:1、为防止涡轮分子泵返油,开机前先将前级泵抽至2托,然后再启动涡轮分子泵。2、在涡轮分子泵与前级泵之间可串入一只挡油阱以防止机械泵油蒸汽的返油。3、不能在前级泵工作时(前级管路接通)和真空室处于真空状态时将涡轮分子泵停掉,否则将会使油蒸汽迅速从前级管路返流到泵的清洁端。4、选择系统前级泵大小时,应使涡轮分子泵的前级泵保持在分子流状态下。5、不能让涡轮分子泵在低于额定工作转速下运行。6、分子泵入口应装设防护网,以免异物进入泵内损坏转子和定子叶片。7、规范使用涡轮分子泵,可有效提升真空泵的使用效率,延长使用寿命

  • 涡轮分子泵运转时需要注意的问题8

    5、操作程序  由于涡轮分子泵的种类和型号是多种多样的,每种泵的操作方式由制造厂家提供,涡轮分子泵的操作最简单、最便宜的方法是同时启动涡轮分子泵和前级泵,当涡轮分子泵加速到正常转速时,同时也预抽完了该系统,在此初始高压强预抽阶段,油蒸汽的返流是不可能的。因为这时系统内气体处于粘滞流或层流状态,排出气体的密度大,可阻挡任何碳氢化合物的分子向涡轮分子泵方向返流。当达到分子流态时,涡轮分子泵已进入正常速度运转,在泵高压缩比的情况下运转时,就可防止了油蒸汽的返流。  涡轮分子泵的前级泵由一个电纽开关控制,两泵可同时启动和停车。  在某些快速循环的系统中,也没有足够的时间,使涡轮分子泵在每一个循环周期内,由于时间短来不及达到正常的运转速度。在这种情况下,就不能随工作循环去周期性地开启涡轮分子泵。此时涡轮分子泵就不得不连续的运转,前级泵粗抽真空室,很快就能达到涡轮分子泵的启动压力,就可以很快打开主阀,涡轮分子泵可以在相对高的压力下工作(节约了时间)也可使粗抽管道返流降到最低程度。

  • 涡轮流量计最佳安装方法

    涡轮流量计最佳安装方法为了确保涡轮流量计的测量准确,必须正确地选择安装位置和方法涡轮流量计对直管段的要求:流量计必须水平安装在管道上(管道倾斜在50以内),安装时流量计轴线应与管道轴线同心,流向要一致。流量计上游管道长度应有不小于2D的等径直管段,如果安装场所充许建议上游直管段为20D、下游为5D。涡轮流量计对配管的要求:流量计安装点的上下游配管的内径与流量计内径相同。涡轮流量计对旁通管的要求:为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。涡轮流量计对外部环境的要求:流量计最好安装在室内,必须要安装在室外时,一定要采用防晒、防雨.防雷措施,以免影响使用寿命。涡轮流量计对介质中含有杂质的要求:为了保证流量计的使用寿命,应在流量计的直管段前安装过滤器。涡轮流量计的安装场所:流量计应安装在便于维修,无强电磁干扰与热辐射的场所涡轮流量计对安装焊接的要求:用户另配一对标准法兰焊在前后管道上。不允许带流量计焊接!安装流量计前应严格清除管道中焊渣等脏物,最好用等径的管道(或旁通管)代替流量计进行吹扫管道。以确保在使用过程中流量计不受损坏。安装流量计时,法兰间的密封垫片不能凹入管道内。涡轮流量计接地的要求:流量计应可靠接地,不能与强电系统地线共用。涡轮流量计对于防爆型产品的要求:为了仪表安全正常使用,应复核防爆型流量计的使用环境是否与用户防爆要求规定相符,且安装使用过程中,应严格遵守国家防爆型产品使用要求,用户不得自行更改防爆系统的连接方式,不得随意打开仪表。选型在规定的流量范围内,防止超速运行,以保证获得理想准确度和保证正常使用寿命。安装流量计前应清理管道内杂物:碎片、焊渣、石块、粉尘等推荐在上游安装5微米筛孔的过滤器用于阻挡液滴和沙粒。流量计投运时应缓慢地先开启前阀门,后开启后阀门,防止瞬间气流冲击而损害涡轮。加润滑油应按告示牌操作,加油的次数依气质洁净程度而定,通常每年2-3次。由于试压、吹扫管道或排气造成涡轮超速运转,以及涡轮在反向流中运转都会可能使流量计损坏。流量计运行时不允许随意打开前.后盖,更动内部有关参数,否则将影响流量计的正常运行。小心安装垫片,确保没有突出物进入管道,以防止干扰正常的流量测量。流量计在标定时要在流量计取压口上采集压力。

  • 【讨论】ABsciex仪器的分子涡轮泵使用

    最近发现API4000的分子涡轮泵Q0和Q3的涡轮泵又发热了,温度在60℃左右。不知道大家的仪器分子涡轮泵的都有多少度啊?温度过高都怎么处理的啊?前面我也遇到温度比较高的情况。基本上涡轮泵的温度较高,多半是由于仪器真空度不够,分子涡轮泵负荷过重导致的。处理方法:1、更换机械泵泵油,提高一级真空度,使涡轮泵的负荷降低,使用时间也可以延长; 2、清洗或更换机械泵与四级杆之间的密封圈,及涡轮泵与四级杆间的密封圈,增加气密性,提高真空度; 3、物理冷却,除了用空调降低室温,可用风扇吹吹,降低温度,涡轮泵的使用时间也可以延长。不知道大家都怎么处理这类问题啊?交流交流。

  • 涡轮泵不转求解

    可能原因求分析爱德华的泵,疑惑:低温会造成分子涡轮泵停转吗?目前室温10度左右晚上会更低,可能接近0度,涡轮泵启动温度有要求吗?

  • 【求助】分子涡轮泵声音狂大....急!

    一台LC1100MSD的液质,停摆有半年了。上次出现提示真空问题。 今天开机,突然出现质谱内分子涡轮泵声音狂大。很吓人的那种。赶紧关机了。 大家说说有可能是什么原因呢?

  • 分子涡轮泵价格多少

    气质联用用了不到一年,分子涡轮泵坏了,请教一下版友一个分子涡轮泵大概价值多少,让我有个心理准备http://simg.instrument.com.cn/bbs/images/brow/em09509.gif

  • 有人会修安捷伦的分子涡轮泵吗?

    安捷伦分子涡轮泵是哪个厂家生产的?在国内有维修人员吗?有现货也行,5975C分子涡轮泵坏了,标准泵,07年买的仪器问了安捷伦,居然现货都没有,国外订货要2周,急用

  • 分子涡轮泵的维护

    今天在上报仪器配件计划时,想起去年1月份单位进的Agilent 6890GC 5975MSD仪出现的一起故障。当时该机上电启动后,表头压力一直降不下来,涡轮泵转速显示零点几,就依次检查机械泵,泵油,放空口,柱子,各接口密封,未发现异常,因该机从安装到这次故障不到2年,当时没有怀疑涡轮泵会出问题,就又反复检查,仍没发现问题,就联系厂家,后来厂家维修工程师说是涡轮泵故障,无法修复,只能更换,要7万块,事后被领导狠狠剋一顿,扣了奖金。现在想来,这事故来的很突然,没有征兆,让人疑惑。平时使用中,因一周一次分析,我们就一周连续开机3天,停4天。一般的检查维护就按教程执行和记录,不知学友们有否这方面的经验给予指导?

  • 涡轮流量计常见问题及处理

    涡轮流量计常见问题及处理

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501121615_532010_2940874_3.jpg涡轮流量计不记流量了怎么处理?如果通电有显示,有可能是叶轮掉了。建议返厂检修。涡轮流量计输出一般与什么链接?一般由三个形式的连接;1:PLC你的主控系统2:记录仪(无纸/有纸均可)3:积算仪 (适合无显示的流量计涡轮流量计的叶轮转速过快对轴和轴承有什么影响,还有想加大流量计量程上限需要怎么改动叶轮?涡轮流量计的叶轮有一个适用流速范围。在这个流速范围的1/3以下轴和轴承的影响明显,超过适用流速 1/3后轴和轴承的影响随流速增加而逐渐线性加大,到适用流速上限时超出精度要求,再加大轴和轴承的影响明显上升。自己改叶轮很难,最好联系厂家。涡轮流量计的重复性是什么意思?流量计有两个指标,一个是准确度,一个是重复性。重复性就是指连续几次校验同一流量段的数值差值比,重复性越高说明流量计稳定性越好 在涡轮流量计中有个术语叫“零点漂移”,请问这个事什么意思? 仪表充分预热后,在输入使输出为零信号,周围环境和输入不变的情况下,输出偏离零位的现象称零点漂移,零点漂移主要是由于温度引起的,就是流量值应该为0的时候,流量计输出的不是为0,可以通过流量积算仪进行设定。 涡轮流量计本身显示不存在零点漂移问题(输出的电流信号有可能漂移),因为涡轮必须旋转切割磁力线,才能产生流量脉冲,进入运算显示出来。如果停输后还有流量,原因可能是:1、下游阀门没有关严,导致小流量测量。2、现场有电磁干扰出现误信号,正常测量时不宜察觉 涡轮流量计如何接线?[/

  • 提示涡轮分子泵转速不对

    早上开机点火后,提示涡轮分子泵转速不在要求范围内,自动熄火。我把截取锥和采样锥都重新安装后,重新点火,发现点火瞬间发生噼里啪啦的声音,还闪了几下,之后仪器正常运行。请问这是正常现象吗?是什么原因导致涡轮分子泵转速不对的,谢谢!

  • 液质联用的涡轮分子泵可以频繁开关吗?

    我用的气质联用仪比较多一点,知道MS的分子涡轮泵不能频繁开和关,否则容易损坏涡轮分子泵。最近在用液质,是API-2000的串联三重四级杆的LCMSMS,上次仪器出状况的时候,AB SCIEX工程师过来维修的时候,可能因为维修需要,工程师一会儿开MS电源,一会儿关电源,来回好几次,我知道MS电源同时也管着两个涡轮分子泵的电源,这样不会造成对涡轮泵的损坏吗?但是机械泵是一直开着的,我有问过一下工程师,他说机械泵一直开着,可以开关MS电源。有木有液质高手给我解解疑惑呀?我个人的见解是,只要关了MS电源后,涡轮泵静止下来没有转动了,再开启MS电源抽真空应该是没事的,大家是什么看法?讨论一下

  • 如何提高涡轮流量计的计量准确性

    涡轮流量计是一种速度式流量计,利用气体推动流量计叶轮转动,叶轮旋转的速度与流体体积流量成正比,根据电磁感应原理,利用磁敏传感器从同步转动的叶轮上感应出与流体体积流量成正比的脉冲信号,经运算处理得出体积流量。其测量精度较高,准确度等级可达到1.0级、1.5级;流量计结构紧凑轻巧,安装维护方便,前后直管段要求较低,可用于中、高压计量。但是,涡轮流量计同样存在以下缺点:有可动部件,易于损坏,关键件轴承易磨损,抗脏污能力差,对介质的干净程度要求较高,难以长期保持校准特性,需要定期校验。造成误差的原因有:计量表自身质量问题,设计选型不合理,安装不到位,运行中维护保养不当等。那么,如何控制涡轮流量计的误差呢? 正确确定流量计使用的场所及规格。 由于涡轮流量计涡轮惯性的存在,在流量波动频繁的场合不宜使用,否则会降低计量精度。要比较准确地估计用气量的峰谷值和介质的压力情况,正确确定流量计的规格。 涡轮流量计安装要求 1.气体涡轮流量计前必须安装过滤器;应保持过滤器畅通,若发现过滤器堵塞(可凭过滤器进出压差来判断)时,应及时对过滤器进行清洗,若未配差压计的每月清洗一次。 2.要保证直管段的要求,尤其是表前有缩径或半开阀门的情况。 3.安装时,密封垫不得突入管道中,流量计与管路轴线目测不得有明显偏差,不得产生安装应力。4.安装时一定要清扫干净管道内的所有杂质,以防轴承和涡轮卡死。只有了解了每一款流量计的原理及使用特性,才能选择合适的测量仪表,在生产中发挥出极致的功效。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制