当前位置: 仪器信息网 > 行业主题 > >

污染粒子

仪器信息网污染粒子专题为您整合污染粒子相关的最新文章,在污染粒子专题,您不仅可以免费浏览污染粒子的资讯, 同时您还可以浏览污染粒子的相关资料、解决方案,参与社区污染粒子话题讨论。

污染粒子相关的资讯

  • 复旦揭示沪大气污染粒子形成化学机制
    p  污染城市大气中的纳米微细粒子是怎样从不可胜数的空气分子形成的?最近,这件听起来无异于大海捞针的事情被复旦大学环境科学与工程系教授王琳和他的科研团队做成了。四年筹备,三年半实验与数据分析,两年持续观测,他们首次发现并证实了我国典型城市上海大气中的硫酸-二甲胺-水三元成核现象,揭示了我国典型城市上海大气污染纳米微细粒子形成,也就是所谓大气新粒子形成的化学机制,为我国大气颗粒物污染防治政策的制定提供了新的科学证据。/pp  在此之前,污染城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜。对于他们的发现,王琳给出了一个比喻:“这相当于我们从133倍于地球人口数的气体分子中找出了最关键的那2个,一个是硫酸分子,另一个是二甲胺分子,他们碰到一起,就可能发生大气新粒子形成事件了。”7月20日,研究结果以《中国典型超大城市的硫酸-二甲胺大气新粒子形成事件》(“Atmospheric New Particle Formation from Sulfuric Acid and Amines in a Chinese Megacity”)为题发表于国际顶级学术期刊《科学》(Science)。复旦大学环境科学与工程系博士生姚磊、芬兰赫尔辛基大学博士生奥尔加· 加尔马什(Olga Garmash)为共同第一作者,王琳为通讯作者。/pp  攻坚克难:挑战大气新粒子形成事件的“世界未解之谜”/pp  大气PM2.5污染是关系国计民生的重要议题。在大众观念中,工厂和汽车的尾气排放是造成PM2.5颗粒物污染的主要原因之一,“这是由人类活动或者自然活动所带来的大气颗粒物直接排放,我们的‘术语’称之为‘一次排放’。”王琳介绍说,除了“一次排放”,在空气当中,时常发生着的,还有颗粒物的“二次形成”。/pp  相较于“一次排放”,“二次形成”过程较为复杂。其形成过程大致分为两种:第一种过程指空气中的挥发性气体可通过化学反应生成饱和蒸气压较低的反应产物,这类物种会凝降在已有颗粒物的表面上,增加颗粒物的质量浓度 而另一种过程则会大幅增加颗粒物的数量浓度,大气中部分气体分子随机碰撞,通过分子间作用力或化学键而生成分子团簇,分子团簇的进一步生长则形成了纳米微细粒子,也就是大气新粒子,期间发生从气体到凝聚态的相变 这些纳米微细粒子的继续生长,则可以造成大气PM2.5污染。“‘二次形成’让大气中的颗粒物变得更‘重’、更‘多’,我们课题组目前主要关注变‘多’的过程,研究城市空气中的大气新粒子是怎么形成的。”王琳说。/pp  近年来,相对洁净大气中的大气新粒子形成事件的大气化学机制被逐渐建立。然而,城市大气因其成分的复杂性和多样性,其中的大气新粒子形成事件的特征与洁净大气中的该类事件有着显著区别。在大气新粒子的形成过程中,从小于1纳米的气态前体物分子到1-2纳米左右的分子团簇再到几个纳米的纳米微细粒子,质量和粒径都十分微小,其大气混合比更是在兆分之一以下,这给科研人员开展原位、实时的测量提出了极大的实验挑战。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201807/noimg/d331b5ae-e3db-4a6d-a4d9-06b481330ee8.jpg" title="图1.webp.jpg"//pp style="text-align: center "  图1.应用硝酸根试剂离子化学电离-飞行时间质谱技术所识别的大气痕量物种的质量亏损图。/pp  “通过测量3纳米以下颗粒物的浓度来判断大气新粒子形成事件是否发生已经很难了,还要想办法把与这一过程相关的气态前体物和分子团簇的化学组分测出来,再识别其中哪些分子和分子团簇对这一事件有着比较直接相关的贡献。”从测量到识别再到形成机制的推导,每一个步骤的推进都是一次“难上加难”的“拓荒”,因此城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜,是大气化学研究领域的难点之一。/pp  利用国际上最新发展的纳米颗粒物粒径放大技术,从2014年3月到2016年2月,王琳团队针对这一难题在上海开展了长达两年的连续大气观测。“我们就在复旦大学邯郸校区第四教学楼的楼顶做(实验),那里有一个环境系的大气超级观测站。”但这一技术还远远未发展到高度自动化的“黑箱”阶段,只有使用者对仪器有深入了解并积累了丰富的使用经验,才能在一定程度上保障测量数据的准确性和真实性。/pp  进行大气外场观测、成功捕获信息是研究“攻坚克难”的关键性“播种”环节,要想让种子“生根”“发芽”到最终“结果”,还需要持续不断的“浇灌”。/pp  “我们做了两年观测,其中在2015-2016年冬季还使用了包括飞行时间质谱在内的更多仪器设备,进行了加强观测,积累下来的数据少说也有几百个G了。”王琳说,数据分析、现象识别和信息甄别也是一项大工程。从2016年3月到2017年7月,他们和来自芬兰赫尔辛基大学的合作者一起,花了一年半的时间,才完成了对收集来的海量数据的系统整理和深入分析。/pp  功夫不负有心人,三年半的时间,王琳团队终于收获累累硕果:他们测得了上海城市大气中1-700 纳米区间大气颗粒物的粒径分布浓度,获得了大气新粒子的形成速率和成长速率 并应用大气常压界面-飞行时间质谱和硝酸根试剂离子化学电离-飞行时间质谱技术,测量了大气新粒子形成事件期间大气中性和带电分子团簇的化学组分。/pp  研究结果表明在我国典型城市上海大气新粒子的形成过程中,一个气体硫酸分子和一个二甲胺分子随机碰撞,通过氢键形成稳定的分子簇,分子簇通过与其他硫酸分子、二甲胺分子或其他硫酸-二甲胺团簇的碰撞继续生长 一定尺寸以后,其他物种(例如极低挥发性有机化合物)开始加入这个过程,并最终形成大气新粒子。/pp  研究中还观测到了世界各地大气外场观测中最高的硫酸二聚体质谱信号,并识别了多个关键硫酸-二甲胺分子团簇,所得的上海大气中新粒子形成速率与实验室中硫酸-二甲胺-水三元成核模拟实验所得的新粒子形成速率具有一致性。这是首次在外场观测中发现并证实硫酸-二甲胺-水三元成核机制可以用于解释我国典型城市大气中的大气新粒子形成事件。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201807/noimg/fb72a874-82a6-4501-aedb-5e1a5ec581db.jpg" title="图2.webp.jpg"//pp style="text-align: center "  图2. 外场观测所测得的大气新粒子形成速率与实验室模拟的对比。/pp  七年磨剑:坚守孕育大气污染防治的新希望/pp  据介绍,这一研究由复旦大学环境科学与工程系上海市大气颗粒物污染防治重点实验室、复旦大学大气科学研究院教授王琳团队与芬兰赫尔辛基大学教授马库· 库马拉(Markku Kulmala)团队、南京信息工程大学、上海市环境监测中心、上海市气象局、上海市环境科学研究院、美国飞行器公司(Aerodyne)合作完成。研究成果有望解释高污染城市大气中的大气新粒子形成事件,从而为我国的大气颗粒物污染尤其是大气颗粒物的二次形成提供潜在的防治措施,也有助于更好地理解我国的雾霾污染和更大尺度上的全球气候变化。/pp  “对我们的研究来说,环境相关性是至关重要的,自然环境中不可控的因素太多了,往往需要很长时间只能做一件事情。”从2014年3月项目正式启动,到2017年7月成果初显,王琳和他的团队一个项目做了三年半,实际上,这个项目花的时间远不止这么多。/pp  “我在美国做博士后的时候已经开始开展相关的课题了,那时候也预感到仪器设备的发展可能在近期会有一次突破,所以一直在等待机会。”2011年1月,王琳作为第一批“青年千人”扎根复旦,但在回复旦以前,他就开始为了这个项目四处忙碌。联系厂家、购置仪器、熟悉仪器的性能、熟练相关操作等准备工作并不简单,王琳说,相较于直接花在做实验上的时间,前期准备时间更长。/pp  在复旦的前七年时间里,王琳把一大半的精力都投在了这个项目上,但前几年的研究几乎看不到任何回报,很少有直接可见的文章产出。“我心里着急的很,但幸好复旦的科研环境还是比较宽松的,系里的前辈也都很支持我做这件事情,没有人掰着手指头数我发了几篇文章,催着我一定要出成果。”王琳很感激这种理解和支持:国家青年千人计划的启动资金资助、国家自然科学基金委的连续滚动支持、上海市各方同仁的通力合作、依托复旦大学而建的上海市大气颗粒物污染防治重点实验室五十多位同事共同打造的研究平台,让他做成了这件“拖得很久”又“很难做”的事情。/pp  “我们做环境研究的,讲究做出来的科研成果在真实环境中有应用,是在真正的环境中发生的过程,而不是一个只会在实验室中发生的科学实验。”这也是王琳及其团队坚持在成分复杂多样的城市大气中开展此项研究的原因。“我们的研究成果和每个人的日常生活息息相关。”/pp  王琳认为,在中国典型的城市环境中,除了加强对污染物一次排放的监测和管理,对污染物的二次形成也应予以同样程度的关注和重视。得益于此项研究中提出的化学机制,参与大气新粒子形成过程中的关键化学物种将得到更有针对性的控制,从而有望有效地降低空气中颗粒物的数量浓度,减轻我国的大气颗粒物污染。另外,从更大的维度来看,将这一机制运用于全球气候模式中,能够更好地模拟全球大气颗粒物乃至云凝结核的数目,更好地理解整个地球的气候变化趋势。/pp  谈及项目之后的发展,王琳说:“我们的研究还有很多值得进一步探索的地方,这个项目之后还会继续。”他希望,在现有的硫酸-二甲胺-水三元成核化学机制框架下,能进一步明确我国城市大气新粒子形成事件中的前体物主控因素,理解城市大气新粒子形成事件与雾霾形成的关系,从而助力国家推出更有针对性的污染防控措施。/p
  • 民进中央建议尽快制定细粒子污染物监测标准
    民进中央建议尽快制定细粒子污染物监测标准  改进大气环境质量评价体系  在正在召开的全国政协十一届四次会议上,民进中央提出提案建议,希望借鉴国际上空气质量监测评价的一些通行做法,对我国现行的空气质量标准和评价(API指数)体系进行修改完善。  大量研究表明,当前我国的大气污染结构已由过去的煤烟型污染转变为煤烟型和汽车尾气复合型污染,具体表现为二氧化硫、二氧化氮、挥发性有机物(VOC)、可吸入颗粒物(PM10)和细粒子(PM2.5)等多种污染物都以高浓度同时存在的污染状况。PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,肉眼无法看见,是导致黑肺和灰霾天的主要凶手。  早在上世纪90年代,中国就已有地方对PM2.5进行监测。数据显示,当时在广州等地的监测结果显示,4城市的PM2.5年均值为46~160微克/立方米,是美国标准值的3~10倍。进入2000年后,这一状况更为恶劣。环保部2009年撰写的《国家污染物环境健康风险名录》中显示:根据中国部分城市地区大气PM2.5近10余年的监测发现,北京等大城市PM2.5的质量浓度已经超过了100微克/立方米,是美国标准值的6倍。  民进中央认为,大量研究结果显示,灰霾天气的根本原因是由细粒子(PM2.5)污染造成的。城市空气质量等级通过可吸入颗粒物、二氧化硫和二氧化氮三项指标计算得到的空气污染指数来确定。由于计算API指数采用的大气颗粒物指标是PM10,并未将PM2.5纳入API指数中,这就难免有“灰霾常常有,空气照样优”的现象出现。  民进中央同时指出,由于我国的大气污染状况已由过去的煤烟型污染转变为煤烟、汽车尾气等复合污染,在主要控制煤烟型污染的背景下建立的环境空气质量标准及评价(API指数)体系,已很难真实反映出当前我国的大气环境质量状况及其对人体健康和生态等方面的影响。  据了解,在15年一次的《环境空气质量标准》修订中,环保部在征求各方意见后只对此设立了参考限值,并未纳入强制性限制。目前这一指标的监测并没有在国内全面进行,也没有公开相关数据。对此,民进中央建议,尽快制定PM2.5的空气质量标准,开展PM2.5常规监测 将PM2.5纳入空气质量评价(API指数)体系,以便更好地向社会公众反映我国当前的空气质量和灰霾天气 将地面大气臭氧纳入环境空气质量评价(API指数)体系 在控制煤烟型污染的同时加强机动车尾气的管理,适时调整提高我国现行《环境空气质量标准》中二氧化氮和大气臭氧的标准限值。
  • “大气细粒子和超细粒子的快速在线监测技术”通过验收
    12月1日,由中科院合肥物质科学研究院安徽光机所承担、北京大学等单位参加的国家863重大项目课题“大气细粒子和超细粒子的快速在线监测技术”在广东鹤山通过了863资源环境技术领域办公室组织的专家验收。  验收会上,来自中科院生态环境研究中心、北京大学、北京市环境保护监测中心、广东省环境监测中心站、中科院大连化物所、上海大学和华东理工大学等单位的专家听取了课题组长刘建国研究员关于课题工作总结及技术研制报告,并在位于鹤山市桃源镇的珠江三角洲大气超级监测站进行了实地考察,查看了课题组研制的双波长三通道气溶胶探测拉曼激光雷达、细粒子谱分析仪、大气OC/EC测定仪、以及振荡天平颗粒物质量浓度监测仪(PM10/PM2.5)等系列大气细粒子监测设备的运行情况。  验收专家组认为,“该课题在宽范围粒径谱的快速分析技术、稳定的场致电离电荷源技术、超高灵敏大气分子拉曼散射信号探测技术、以及OC/EC临界温度的精确选取等关键技术方面取得了突破,关键技术指标达到国外同类产品的先进水平。课题所取得的成果在珠江三角洲大气复合污染立体监测网络构建中发挥了重要作用,并参与了北京奥运会、上海世博会和广州亚运会的空气质量保障,具有显著的社会和环境效益”。  该课题是863重大项目“重点城市群大气复合污染综合防治技术与集成示范”中第一个通过验收的课题,已通过领域办中期检查和专家评审得到滚动支持,滚动课题“重要大气复合污染物快速在线和时空分布监测技术系统开发”已于年初通过实施方案论证,目前处于实施阶段。
  • TSI 激光粒子计数器系列全面升级
    AEROTRAK 手持式激光粒子计数器  型号9303 3通道基本型  TSI AeroTrak 9303 手持式激光粒子计数器给客户提供一款操作更加灵活、价格更加富有吸引力的高性能手持粒子计数器方便进行粒子污染物控制。9303采用的高耐磨注塑设计更加方便手持。仪器可同时显示3个粒径尺寸。中间通道用户可以从0.5, 1.0, 2.0或2.5mm之中选择 。  标准1年保修  型号9306 6通道标准型  9306提供6个粒径通道同时显示。3.7-inch彩色触摸屏和Mirosoft WindowsCE操作界面,使操作更方便,超大的10,000数据内存可通过USB接口或可通过USB接口或可选外置打印机直接输出,同时可连接温度/湿度探头(选件),并包含内部报警功能。  保修期延长为2年  AEROTRAK 便携式激光粒子计数器  型号9310/9510和型号9350/9550  TSI AeroTrak 9310和9510便携式激光粒子计数器给客户提供更加操作灵活功能更加强大的大流量的便携式粒子计数器方便进行粒子污染物控制。它们既可作为单机工作也可以组建厂房的监测系统。该几款仪器采用一体轻型化设计使移动和操作更加容易。直读式按键使操作更加简单。10,000个数据内存可通过屏幕显示并可通过 USB和Ethernet进行下载。  仪器可同时显示6个粒径尺寸。并支持声音报警功能。  标准的2年保修外,TSI提供全套的技术服务和支持。  AEROTRAK 典型应用:  洁净厂房内的颗粒物测试 空气粒子研究 暴露性评估 室内空气质量评估。也应用于过滤器性能测试 洁净度评价及污染物迁徙研究等。
  • 尘埃粒子计数器在电子行业的重要应用
    尘埃粒子计数器在电子行业中的应用广泛,尤其在半导体工厂和精密机械生产加工领域。以下是具体应用的详细介绍:了解更多尘埃粒子计数器产品详情→https://www.instrument.com.cn/show/C560877.html半导体工厂1. 晶圆制造洁净室环境监测:在晶圆制造过程中,极微小的尘埃粒子可能会导致电路短路或缺陷。尘埃粒子计数器用于实时监测洁净室内的空气质量,确保粒子浓度维持在极低水平。过程控制:在光刻、蚀刻和化学机械抛光等关键工艺中,空气中的颗粒物需要严格控制。尘埃粒子计数器用于监测这些工艺中的洁净度,确保产品质量。2. 封装测试测试环境洁净度:在半导体封装测试阶段,尘埃粒子计数器用于监控测试环境的洁净度,防止颗粒物对封装过程产生影响。设备维护:定期使用尘埃粒子计数器检查封装测试设备的内部洁净度,以预防设备故障和产品污染。精密机械生产加工1. 高精度机械零件制造制造环境监测:高精度机械零件的生产要求在洁净环境中进行。尘埃粒子计数器用于监控生产车间的空气质量,确保环境洁净度达到要求。加工过程监控:在车削、铣削和磨削等加工过程中,空气中的颗粒物可能会影响加工精度。通过使用尘埃粒子计数器,可以实时监测空气中的颗粒物浓度,保证加工过程的精度。2. 光学元件制造洁净室监测:光学元件(如镜头、棱镜)的制造过程中,对空气中的颗粒物有严格要求。尘埃粒子计数器用于监测洁净室的空气质量,确保光学元件在无尘环境下生产。质量控制:在光学元件的质量检测和组装过程中,使用尘埃粒子计数器监控环境洁净度,以避免颗粒物对产品表面造成污染。尘埃粒子计数器在电子行业中的广泛应用显著提升了生产环境的洁净度,确保了产品质量和生产效率。随着技术进步,尘埃粒子计数器将继续保障电子行业的高标准洁净生产。
  • 新疆立项研究颗粒物污染特征与来源
    新疆环境保护科学研究院申报的&ldquo 新疆典型区域颗粒物(PM2.5和PM10)水溶性离子污染特征与来源解析&rdquo 项目,日前获得自治区科技厅的批准立项。这意味着科研人员将开始对PM2.5和PM10的污染&ldquo 真凶&rdquo 进行调查和分析,并为城市防治这两种颗粒物污染提供重要的科学依据。  昨天,记者从新疆环境保护科学研究院了解到,该项目以新疆典型区域城市乌鲁木齐和昌吉为研究区,科研人员将对两城市的大气颗粒物(PM2.5和PM10)进行连续采样、分析,以获得两城市大气颗粒物水溶性粒子污染特征。
  • 哈希推出新型粒子计数器
    近期,哈希公司推出了一款新型在线、连续、免维护的粒子计数器。哈希ROC粒子计数器在石油分析中可提供实时的污染及条件信息以便进行更快的决策。该仪器适用于恶劣的环境,它可以分析多种类型的石油产品,并在高压和高温环境应用当中有特别的优势。哈希ROC粒子计数器  ROC粒子计数器设计采用了大流量路径最大限度地减少了在运行过程中的堵塞障碍,同时提供本地ISO代码显示每个液体粒子的计数通道和状态信息。并配备了一个长寿命的激光二极管,适用于24小时不间断的在线操作。附带的软件允许用户配置一台电脑,以适应特定的应用。  ROC粒子计数器适用于多种工业及移动应用,包括压力机和液压机、流体填充站、液压动力单元、回收站和零件测试站等。
  • 禾信质谱助力第七届大气细与超细粒子研讨会
    2013年10月10日由中国颗粒学会气溶胶专业委员会、中国科学院地球环境研究所和宁波诺丁汉大学共同主办的大气科学及污染控制技术国际会议暨第七届大气细与超细粒子研讨会在宁波诺丁汉大学顺利召开。来自中国大陆、香港、台湾与新加坡的众多国内外专家学者汇聚一堂,共同探讨大气细与超细粒子的新方向与新方法,灰霾的形成机理、细粒子的流行病学研究等方向已经成为该领域的研究热点。会议现场禾信公司宣传片亮相大会现场  禾信公司作为该会议赞助商,并特邀做了《在线单颗粒气溶胶质谱仪在大气污染源解析中的应用》的专题报告。在线单颗粒气溶胶质谱仪首先获得每一个颗粒物的正负离子成分信息和粒径大小。在线软件ART-2a根据颗粒物质谱特征对颗粒物进行分类。然后将时间、粒径、成分等信息进行合并,通过每一类的因子,调取源谱库进行源对比。最后获得源分配饼图等信息,可达1小时的高时间分辨率。利用在线源解析(质谱直接测量法)技术开展快速精准的在线源解析工作,能为政府及时了解污染现状及来源提供技术支撑 为重点城市、重点行业、重点企业的污染状况监测提供技术支撑 在AQI接近临界点时,为政府及时采取有效控制措施提供科学依据 为产业结构调整等治理措施提供科学依据 为环境管理部门检验治理成效提供技术支撑 为环保精细化管理提供科学依据 在环境应急、污染投诉排查时快速找到污染源。  关于广州禾信分析仪器有限公司  禾信公司成立于2004年,是集质谱仪器研发、制造、销售及技术服务为一体的国家级火炬计划重点高新技术企业。注册资金4000万元,场地6000平方米。  通过多年努力,掌握高分辨垂直引入式飞行时间质谱分析器、电喷雾离子源、电子轰击离子源、真空紫外光电离源、大气压基质辅助激光解析离子源、大气压差分真空接口、膜进样以及质谱专用高速数据采集卡等,具有自主知识产权的质谱核心技术和飞行时间质谱仪器全套装配工艺 通过ISO9001:2008质量管理体系认证。在国内率先实现质谱仪器产品自主正向开发。产品研发得到国家“863”计划、国家重大科学仪器设备开发专项、国家火炬计划以及多项省市级科技攻关重点项目的支持。  禾信公司向环境监测、气象、工业生产、医药等领域提供商品化质谱仪器以及技术服务。近年来,质谱仪器销售额连创新高实现数量级增长,入选2012年中国优秀创业投资项目。2012年实现首台质谱仪器出口美国。
  • NASA发布全球污染颗粒浓度地图 中国情况最严重
    流行病学家怀疑,空气中的某些污染颗粒,使得每年有多达数百万的人过早死亡。然而,在许多发展中国家,由于地表空气污染检测器的缺乏以及其他现实因素,我们无法得到关于这种污染颗粒的具体数据,哪怕是粗略的统计数字也很难估算。这些有问题的颗粒物,被称为细颗粒物(PM2.5),它的直径小于或等于2.5微米,约为人类头发丝的十分之一。这些小颗粒可以穿过人体正常的防御通道,渗透到肺部深处。  为了弥补地表PM2.5测量手段的缺失,环境学专家希望利用卫星来提供一个地球全景图。然而,卫星仪器通常很难实现近地面空气中细颗粒物的精确测量。问题就在于:大多数卫星仪器无法将那些浮于地表的和悬于大气层中的细颗粒物区分清楚。此外,云层也会遮挡卫星仪器的视角。还有明亮的陆地表面,诸如雪地,沙漠,和城市的一些中心区域,这些也极大妨碍了卫星仪器的观测。  然而,今年夏天,卫星的观测视野略微变得清晰。因此,最新一期《环境健康展望(Environmental Health Perspectives)》杂志得以发表首张PM2.5长期观测的全球地图。加拿大研究人员,来自达尔豪斯大学(Dalhousie University,该学校位于美丽的海港城市–哈里法斯,新斯科舍省)的Aaron van Donkelaar和Randall Martin将两台NASA卫星仪器监测仪器得到的气溶胶总量相加,并且与电脑模型计算出的气溶胶垂直分布量结合在一起,制作出了这张地图。     【图中:颜色由深蓝,浅蓝,到黄色,暗红,代表着PM2.5的浓度越来越高】  他们的地图,显示了2001年至2006年PM2.5的平均值。它为这种危害人类健康的细颗粒物研究,提供了一个迄今为止最全面的看法。然而,相对那些早已建立了完善地面监测网络的发达地区,这项新混合技术并没有给它们带来更为精确的污染指数测量结果。  不过,这张地图首次给一些发展中国家提供了PM2.5卫星测量数据,这些国家还从未有过对其空气污染水平的评估。  该图显示,从北非撒哈拉沙漠一直延伸到东亚的一大片区域,PM2.5污染指数相当严重。结合人口密度考量,它表明,全世界超过80%的人口正在呼吸着严重污染的空气,污染指数甚至超过了世界卫生组织给出的最小安全值,即每立方米10微克。美国PM2.5水平相对较低,不过中西部和东部一些中心区域的污染,依然清晰可见。  “我们还要继续完善这张地图,但它已经是一个了不起的飞跃,”该地图的缔造者之一,大气科学家马丁说道:“对于那些没有能力进行地表测量的地区,我们希望这些数据对他们能有所裨益。”  PM2.5健康影响的探讨  让我们深吸一口气。就算空气看起来纯净透明,可以肯定的是,你已经吸入了数以百万计的PM2.5颗粒。虽然这种颗粒人的肉眼不可见,但它在地球的大气层中却无处不在,而且它们的生成机制有自然因素,也有人为因素。研究人员仍在努力量化PM2.5自然与人为产生因素的精确百分比,显而易见的是,这两种来源都对新地图中的那些热点区域起到了推波助澜的作用。  比如说,大风在阿拉伯和撒哈拉沙漠区域卷起了大量沙尘。而在许多高度城市化的地区,比如中国东部和印度北部,有很多没有安装使用过滤装置的发电厂和工厂,它们在燃烧煤的过程中,产生了盈千累万的硫酸盐和烟尘微粒。机动车尾气也制造出相当多数量的硝酸盐和其他微粒。此外,还有农作物废弃物焚烧和柴油发动机燃烧产生的煤烟颗粒,科学家们称之为黑碳物质。  美国杨百翰大学的教授,流行病学家,及该领域世界领先的专家之一Arden Pope为我们解释道,城市空气中,人为产生的颗粒往往占据主导地位。人们天天呼吸着这些空气,同时这些粒子也让医学专家最为头疼。这是因为,较小的PM2.5颗粒可以穿透人体呼吸道的防御毛发状结构,也就是鼻腔中的鼻纤毛。这些鼻纤毛在人体结构中起到一个相当不错的,筛选较大颗粒的作用。  一些细小的颗粒能深达人体肺部,有些超细颗粒甚至可以渗透进血液,从而引发人体整个范围的疾病,包括哮喘,心血管疾病,支气管炎,等等等等。美国心脏协会估计,仅在美国,被PM2.5颗粒污染的空气就导致每年约60,000人死亡。  虽然我们已经知道,PM2.5是一类可以造成人类健康隐患的粒子,研究者们还未成功地筛选出,该为此负责任的特定类型粒子。Pope教授谈道:“哪些类型的粒子对人体最为有害,关于这个问题人们仍在争论不休,我们暂时还不明了,最具危害性的,到底是硫酸盐,硝酸盐,还是细微粉尘颗粒。“  现有的最大症结是:PM2.5中各种颗粒混杂,而且经常还产生新的混合粒子,卫星仪器和地面监测仪器很难去辨别解析出其中的单个粒子。  卫星技术引导PM2.5研究的未来  对于试图解决这一问题,和PM2.5其他未解谜团的研究者而言,这张新的地图,以及围绕它的相关研究,都将在未来引导他们的研究方向。比如,最基本的问题:全球各地,空气污染危及健康的具体人数到底是多少? 马丁说:“我们可以清楚地看到,为数不少的人们暴露在高浓度悬浮颗粒环境中,不过,到目前为止,还没有人去研究这在人类死亡和疾病中的关系。流行病学主要关注的还是发达国家,比如北美和欧洲。”  现在,有了这张地图和一些相关数据,流行病学家可以开始着手研究长期暴露在高浓度微粒的环境中,会给人类健康造成何种影响。尤其是,亚洲那些快速发展的城市,和北非一些沙尘区域,此项研究一向匮乏。这些新的信息对于美国或西欧一些地区也将大有裨益,那些区域长久以来都使用地表探测器的结果作为衡量空气质量的标准。  研究人员从多个仪器中采集数据,有装载在Terra卫星上的多角度成像光谱仪(MISR),还有Aqua和Terra卫星上的中等分辨率成像光谱仪(MODIS),此外,他们还使用一种化学输送模型,也即GEOS-Chem技术来绘制这张新地图。  然而,制作这张地图的研究人员强调,我们并不能从此地图得出关于全球各地区PM2.5的排放量水平的结论。来自马里兰州NASA戈达德航天中心(Goddard Space Flight Center),且参与发布这份报告的遥感专家Ralph Kahn对此进行了详细解释,尽管研究人员Aaron van Donkelaar通过应用数据融合技术,给我们提供了一个更为清晰的细微颗粒全球视野,可是,对于某些区域来讲,不确定的因素可能使它们的PM2.5预估值偏低了25%或更多。  为了提高对悬浮颗粒的了解,NASA的科学家们计划参加一系列的现场活动,以及众多的卫星飞行任务。以NASA戈达德航天中心为例,中心管理人员正致力于加强和扩大一个名为AERONET的全球网络,该网络将所有的地表颗粒监测器紧密相连。此外,今年的晚些时候,来自纽约戈达德太空研究所(GISS)的科学家们也将着手分析从Glory卫星接收到的第一份数据。该卫星携带了一种创新性仪器—偏光仪,它可以采用新的方式去测量细微颗粒特性,实现对现有空间气溶胶技术测量仪器的互补。  戈达德地球科学技术中心主管Raymond Hoff坦言:“要实现利用卫星技术测量空气污染的全部潜能,我们还有很多工作要做。”他最近在《空气与废物管理协会》学术期刊中发表了一系列详实论述,然后,他补充说道:“但是,这已经是我们迈出的重要一步。” ( 译言社翻译美国国家航空航天局
  • 监控半导体芯片生产中离子污染的神器——ICS 6000离子色谱
    监控半导体芯片生产中离子污染的神器——ICS 6000离子色谱 关注我们,更多干货和惊喜好礼 2020 半导体产业2020年注定是不平凡的一年,不仅仅是新冠的肆虐,也因为国内外贸易争端加剧,对某些中国企业是一大挑战,同时也是一大机遇,将刺激我国对于芯片等半导体产业的重视,同时赛默飞也将致力于帮助客户解决当中遇到的问题。 集成电路(Intergrated Circuit)又称芯片,是一种微型电子器件,是把电路(包括半导体装置、元件)小型化、并制造在半导体晶圆表面上形成的具有所需电路功能的微型结构。 在半导体行业中对离子的污染非常敏感感超过80%的制作工序都需要用到纯水,对于不同级别的生产线而言,对纯水的质量要求也不尽相同,限度跨度从ppt—ppb。 ASTM D5127-13 Standard Guide for Ultra-Pure Water Used in the Electronics and Semiconductor Industries 同时芯片的生产过程中会使用到很多试剂,如硫酸、氨水等,而这些试剂挥发到空气中会对芯片造成晶体缺陷、雾状缺陷等,因此: 监控环境空气和超纯水中离子的含量是非常必要的 你知道吗那么大家知道,空气中与超纯水中的杂质离子含量这么低,通过什么手段实现检测呢?赛默飞离子色谱ICS-6000选配AM模块通过大体积浓缩进样,可轻松实现如上要求,完全可以达到芯片生产过程中对环境与水的控制。 ICS 6000双系统,直接进样分析,可同时在线检测超纯水中痕量(50ppt)阴阳离子。 ICS 6000双系统 直接进样流路图1配置AS-HV以后的ICS 6000可实现大体积浓缩进样,从而进一步提高灵敏度降低检出限(20ppt),通过大定量环进样品,小定量环进标准品,也大大降低了痕量分析的操作门槛。 ICS 6000配备AS-HV 大小环进样流路图 2可选配IC Pure在线纯水机在线制备离子色谱分析过程中所需超纯水,从而给淋洗液提供更纯的水源。 IC Pure在线纯水机 3配备空气采样器由真空泵以恒定流速抽取环境空气,超纯水吸收空气中阴阳离子后上离子色谱检测。根据抽取时间与流速从而计算抽取空气体积,得出空气中离子含量。 空气采样器 那么实际效果如何呢?请看如下两张谱图: 常规阴离子谱图(1-10ppt) 常规阳离子谱图(20ppt)赛默飞离子色谱全流程解决方案ICS 6000高压离子色谱ICS-6000高压离子色谱是一款可实现阴阳离子同时分析的高压离子色谱系统,高压梯度提供了高分离度与高重复性。同时配有赛默飞独有耐高压Viper管线,独特的力矩设计,无需辅助工具,手动自如实现装卸,简单方便。 耗材监控识别功能自动识别并追踪 IC 耗材的安装时间、使用情况和性能指标。其可防止耗材安装错误,安排预防性维护时间,管理耗材使用情况,可同时监测多达 25 种不同耗材的 16 余项关键性能指标。从而可以根据产品性能指标和生产质量保证数据验证耗材的性能。 淋洗液自动发生器ICS-6000 配备RFIC-EG(淋洗液自动发生器),淋洗液发生灌以指定的浓度电解生成高纯度氢氧化钾(KOH)或甲磺酸(MSA)淋洗液。该设备的淋洗液与再生液仅要求使用高纯度去离子水即可,从而实现零系统空白。同时RFIC-EG 模块可控制等度或梯度条件,提供无与伦比的方法重现性和准确度。 DC温控ICS-6000温控系统分为上下两部分且可单独控温,上部分控制检测单元,下部分控制进样阀与色谱柱,温度全部覆盖,稳定性更佳。 ICS 6000 DC模块自 1975 年以来,我们一直致力于离子色谱(IC)技术的开发与创新,包括仪器、化学分离、抑制器和软件。作为业界领导者,我们通过分享已知信息努力为您的实验室提供支持,充当值得信赖的顾问,并提供您所需要的服务和支持。我们所做的一切支持并认可您和您的使命,确保世界更健康、更清洁、更安全。 Thermo Scientific™ Dionex™ ICS-6000 离子色谱仪 “码”上下载填写表单即刻获取【赛默飞ICS-6000 HPIC 高压离子色谱系统】 如需合作转载本文,请文末留言。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 可穿戴的光学粒子计数器 监测身边环境数据
    身在污染区域的人们,每天要忍受空气中超标的有害颗粒物,因此能够随时了解周围环境和空气质量,显得十分必要。可穿戴的智能环境监测设备 TZOA 旨在通过提供环境数据,提高人们对环境的认识以及帮助改善健康生活习惯。  TZOA 就像一个徽章,你可以把它别在衣服、鞋子、包包上,这个光学粒子计数器会为你搜集全市的空气环境质量数据,并在配套 app 上直观地显现。无需昂贵、复杂精密的仪器,身边的辐射、空气质量以及紫外线指标等环境信息都触手可得。  TZOA 会为你标出实时的污染区域和未污染区域,用户可以根据这些信息选择散步等户外运动的目的地和路线。当身处地环境污染等级提高,空气质量低下时,TZOA 将发出警告,并建议用户更换场所。当然 TZOA 也可以监测室内的数据,帮助你控制家里的空气质量。    对于 TZOA 的理念,设计者 Afshin Mehin 表示:我们希望设计一款可穿戴设备和 app ,从而让人们以新的方式认识身边的环境,并把空气当做弥足珍贵的资源来对待。  TZOA 还在 Kickstarter 众筹,目前已经获得了许多支持,有望于 2015 年的 8 月出货。不过,当你身处一个无论走到哪里都是重度污染的城市&hellip &hellip TZOA 就也帮不了你了。
  • 新品上线|尘埃粒子计数器自动判定净化级别,使用便利
    尘埃粒子计数器是一种用于测量空气中尘埃颗粒物浓度的仪器。它具有多种功能,在环境保护、工业卫生和质量控制等领域发挥着重要作用。 产品链接https://www.instrument.com.cn/netshow/SH104275/C309597.htm 首先,尘埃粒子计数器可以用于监测空气中的微粒数量。这些微粒可能来自各种来源,如工业排放、道路交通尾气、建筑粉尘等。通过测量微粒的数量和大小,可以了解空气的质量和污染程度。 其次,尘埃粒子计数器还可以用于评估和控制空气中的微粒污染。对于工业和实验室环境,微粒污染可能会对设备和产品的质量产生不良影响。尘埃粒子计数器可以监测和控制微粒污染水平,以保障生产过程和产品质量。 此外,尘埃粒子计数器还可以用于研究和评估空气污染对人类健康的影响。微粒污染被认为与多种健康问题有关,如呼吸系统疾病、心血管疾病等。通过监测和分析微粒的数量和性质,可以评估空气污染对人类健康的影响,为制定环境保护政策和措施提供科学依据。 总之,尘埃粒子计数器在环境保护、工业卫生和质量控制等领域发挥着重要作用。它可以监测和控制空气中的微粒污染,保障人们的健康和产品质量。
  • TSI 8220型手持式激光粒子计数器8月在中国上市
    美国TSI公司经过多年精心研制,推出当今性能最为优良的手持式激光粒子计数器,使这一类的仪器性能 俄功能有了一个巨大的突破。 AEROTRAK粒子计数器是TSI公司新开发的用于粒子计数测量的产品。它是全面的仪器,包括光度测量质量浓度,浓缩粒子计数,仪器表面浓度测量,TSI公司已准备了40年。典型应用于清洁房间检测,室内环境研究,人体暴露照射,室内空气质量,过滤测试,清除测试,品质确保和污染物研究。 AEROTRAK Model 8220粒子计数器是重2.2磅(1公斤)的手持式仪器,并可使用AC电源或锂离子电池。8220有一个0.1立方英尺/分(2.83行/毫米)的流速和6个可调整的范围。仪器可连接一个热敏打印机。大于100000个数据被储存并可通过TRAKPRO™ Data数据分析软件下载到PC机进行数据分析。 这个粒子计数器还可加载温度和湿度传感器,从而可以在一台仪器上同时获得多个参数
  • 赛克玛参加“第九届全国大气细及超细粒子技术研讨会”
    2016年7月25-29日由中国颗粒学会气溶胶专业委员会主办,国际空气与废弃物管理协会中国学会、北京粉体技术协会、中科院大气物理研究所协办,中国科学院地球环境研究所和盐城环保科技城承办的“第九届全国大气细及超细粒子技术研讨会及第十四届海峡两岸气溶胶技术研讨会”在江苏省盐城市举办。大会报告研讨会邀请了国内外和海峡两岸空气污染研究领域著名的科学家,与会者分享国际上最前沿的细粒子污染研究和控制技术。并就大气细及超细粒子物理化学特性及源解析、大气细及超细粒子测量与仪器分析、大气细及超细粒子污染及监测技术、大气细及超细粒子胶与人体健康等话题进行深刻讨论。北京赛克玛环保仪器有限公司针对细及超细粒子污染及监测展出Magee Aethalometer黑碳仪、Aethlabs 微型黑碳仪、台湾章嘉 在线气体与气溶胶成分监测仪、FAI 双通道颗粒物采样器,吸引大批专家和学者驻足观看,我公司工程师为大家详细讲解仪器的原理及应用情况,并做简单的操作演示。会间我公司代表针对黑碳的监测进行了“黑碳仪的国内应用”报告,获得了学者和专家的一致肯定。公司展位北京赛克玛环保仪器有限公司将以此次会议为契机,立足于国内外细粒子污染监测行业前沿,查找自身发展存在的不足,努力为用户提供一流的产品及运行维护等服务支持。
  • 尘埃粒子计数器净化级别自动判断|新品设计【恒美】
    点击了解更多→尘埃粒子计数器净化级别自动判断|新品设计【恒美】 尘埃粒子计数器是一种用于测量空气中尘埃粒子数量和尺寸分布的仪器,它对环境检测有着重要的帮助,尘埃粒子计数器可以实时监测空气中的尘埃粒子数量和尺寸分布。空气中的尘埃粒子是环境污染的重要指标之一,其含量和尺寸分布与大气污染和室内空气质量密切相关。通过尘埃粒子计数器的使用,可以及时了解空气中尘埃粒子的情况,评估空气质量状况,并采取相应措施改善环境。 尘埃粒子计数器对于室内环境评估尤为重要。室内空气中的尘埃粒子来源复杂,可能包括灰尘、细菌、花粉、宠物皮屑等。这些尘埃粒子对人体健康和舒适性有着直接的影响。通过尘埃粒子计数器的测量,可以评估室内空气质量,及时发现潜在的污染源,并采取相应的净化和改善措施,提供健康舒适的室内环境。 尘埃粒子计数器在职业卫生监测中起着重要作用。某些职业环境中存在着高浓度的尘埃粒子,如建筑工地、矿山、工厂车间等。这些尘埃粒子对工人的健康构成潜在威胁。通过尘埃粒子计数器的监测,可以了解职业环境中尘埃粒子的浓度和尺寸分布,评估工人的暴露情况,并采取相应的防护措施,保障工人的职业健康。
  • 多功能单细胞显微操作技术在病毒研究中的应用 ——在单病毒粒子--单细胞水平上研究病毒的感染
    病毒的感染研究通常是在大量细胞实验中进行的,一般要将许多培养细胞同时暴露于病毒中,这就使得研究单个病毒侵入事件和研究病毒在单个细胞之间的感染传播十分困难。多功能单细胞显微操作FluidFM技术通过温和的、微通道和力反馈控制的探针,将单个病毒粒子突破性的沉积在选定的单个细胞上,从而实现前所未有的控制,在单个病毒粒子--单个细胞水平上研究病毒感染。FluidFM技术可以帮助阐明关于毒性、病毒复制或宿主免疫应答的基本问题,从而促进新型抗病毒药物和疫苗的开发。放置单个病毒粒子单个病毒粒子可以被放置在您选择的细胞上的确切位置注入单个病毒粒子直接将单个病毒粒子注入特定细胞的细胞质或细胞核中测量生物量的变化测量细胞硬度的变化和单细胞力谱对感染细胞进行分离、提取和分析分离被感染的细胞,或进行单细胞活细胞提取,进而进行测序、质谱等分析观察和监测通过集成的成像系统和追踪软件对细胞进行长时间连续监测 FluidFM技术如何提升您的病毒学实验? 1. 在病毒感染方面获得全新的视角FluidFM技术为病毒学研究引入了新的实验可能性,允许在贴壁细胞培养中控制病毒粒子与您所选择的细胞进行的相互作用。这为我们提供了全新的视角:细胞进入和感染机制方面;细胞反应、病毒协同性和病毒生命周期阶段;增殖,扩散率和细胞间感染方面FluidFM操作病毒的工作原理 2. 量化宿主防御和病毒协同性通过在细胞上放置一定数量的病毒粒子,宿主细胞对病毒的防御就可以被量化。因此,可以研究感染概率、宿主防御的局限性以及病毒粒子之间的合作关系。1个病毒粒子通过FluidFM微管的空心悬臂准备放置。图片由苏黎世联邦理工学院P. Stiefel提供。4个病毒粒子沉积在一个选定的单细胞上。图片由苏黎世联邦理工学院P. Stiefel提供。 3. 监测病毒在细胞间传播FluidFM技术一体机集成了CO2和温度控制的活细胞模块,同时也集成了成像模块。这保证了受感染细胞的细胞培养环境,并与软件支持的自动追踪功能一起,允许长时间观察受感染或操纵受感染细胞。这使得我们可以详细了解病毒感染是如何从宿主细胞传播到邻近细胞乃至传播到其他培养细胞的。 4. 将单个受感染细胞导入正常培养基,或将单个正常细胞导入处理培养基轻柔地从贴壁或悬浮培养中取出单个细胞,以高的精度定位地将其放入另一个孔板中,这样的操作可以充分保证细胞的活力。使得将单个感染细胞引入健康培养基后的进一步研究成为可能。同样的方法也可以用于将健康细胞、耐药细胞或药物处理后的细胞放置于受感染的培养基中。分离单个细胞 5. 单细胞活细胞的提取,以便进一步分析FluidFM技术可以根据形态学或荧光标记从培养物中分离出单个细胞。在保持完全存活的情况下,这些感兴趣的细胞可以在新的培养皿中扩增,或进行进一步的蛋白质组学或转录组学分析。甚至可以进行单细胞活细胞检测,如Live-Seq、TOF等。 6. 从感染的单细胞中获得单细胞力谱FluidFM探针集成了力学反馈功能,允许定量的机械相互作用,可达pN别的力学分辨率。测量由单个细胞感染引起的生物物理变化,如硬度的变化,粘附力的变化,甚至质量的变化。因此,FluidFM可以将病毒在宿主细胞上引起的形态变化与机械变化联系起来。单个细胞从完全贴壁、融合的培养状态中被拽离出来,并记录单细胞力谱。视频由德国Würzburg大学医药与牙医科学院A. Sancho和J. Groll提供参考文献:[1]. Koehler, M., Petitjean, S.J.L., Yang, J., Aravamudhan, P., Somoulay, X., Lo Giudice, C., Poncin, M.A., Dumitru, A.C., Dermody, T.S. & Alsteens, D. Reovirus directly enganges integrin to recruit clathrin for entry into host cells. (2021) Nature communications, 12, 2149.[2]. J. Yang, J. Park, M. Koehler, J. Simpson, D. Luque, J.M. Rodriguez & D. Alsteens. Rotavirus Binding to Cell Surface Receptors Directly recruiting a-integrin. (2021). Advanced Nanobiomed Research.[3]. Guillaume-Gentil, O., Rey, T., Kiefer, P., Ibáñez, A. J., Steinhoff, R., Brönnimann, R., Dorwling-Carter, L., Zambelli, T., Zenobi, R., & Vorholt, J. A. (2017). Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. Analytical Chemistry, acs.analchem.7b00367.[4]. Guillaume-Gentil, O., Grindberg, R. V., Kooger, R., DorwlingCarter, L., Martinez, V., Ossola, D., Pilhofer, M., Zambelli, T., & Vorholt, J. A. (2016). Tunable Single-Cell Extraction for Molecular Analyses. Cell, 166(2), 506–516.[5]. Guillaume-Gentil, O., Zambelli, T., & Vorholt, J. A. (2014). Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on a Chip, 14(2), 402–414.[6]. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Dörig, P., Zambelli, T., & Vorholt, J. A. (2013). Force-controlled fluidic injection into single cell nuclei. Small, 9(11), 1904–1907.[7]. P. Stiefel, F.I. Schmidt, P. Dörig, P. Behr, T. Zambelli, J. A. Vorholt, and J. Mercer. Cooperative Vaccinia Infection Demonstrated at the Single-Cell Level Using FluidFM. Nano Letters, 2012.
  • 等离子体修饰碳纳米管在污染物处理方面取得进展
    低温等离子改性接枝是一种处理时间短、不产生化学污染、不破坏材料的整体体积结构、仅仅改变材料表面性能的处理技术。近年来,等离子体所“低温等离子体应用研究室”陈长伦、邵大冬、胡君、王祥科等所在的课题组利用低温等离子体技术对碳纳米管进行表面修饰改性组装,克服了碳纳米管的难溶性带来的制约等问题,大为提高了其实际应用程度。  该课题组在用低温等离子体技术对碳纳米管进行改性组装后,将其应用于环境污染物检测和治理研究方面,取得了一系列成果。  一是分别利用Ar/H2O,Ar/NH3,Ar/O2微波等离子体对碳纳米管进行表面处理,使其表面引入含氧、含氨基等功能基团,提高了碳纳米管的亲水性和分散性,使其可制备纳米溶液。这些经过处理的(表面修饰的)功能化材料对改善碳纳米管在生物、环境污染物吸附等方面,具有很好的应用前景。部分研究结果发表在Applied Physics Letter (2010, 96, 131504) Carbon (2010, 48, 939-948) The Journal of Physical Chemistry C (2009, 113, 7659-7665) Diamond & Related Materials (in press) 并受邀请在国际会议上做2次口头报告。  二是利用N2射频等离子体对碳纳米管表面进行活化处理,然后接枝上有机单体和天然高分子材料,制备碳纳米管/有机物复合材料。等离子体制备的复合材料表面具有各种功能基团,这些功能基团对持久性有机污染物(POPs)、有毒有害的重金属离子、放射性核素具有强的吸附、络合能力,因而提高了复合材料对污染物的吸附能力。部分研究结果发表在The Journal of Physical Chemistry B (2009, 113, 860-864) Chemosphere (2010, 79, 679-685) Plasma Processes and Polymers (in press,并被选为封面)。  三是碳纳米管由于尺度小,使其在吸附处理有机/无机污染物后,在回收和循环利用纳米材料方面具有很大的难度。采用传统的离心法需要高的转速,过滤法易导致过滤膜堵塞,如果吸附污染物的碳纳米管进入环境,会产生二次污染。针对上述问题,该课题组采用溶胶—凝胶法,首先在碳纳米管上组装上铁氧化物,然后利用N2射频等离子体对碳纳米管/铁氧化物表面进行活化处理,接枝上有机单体和天然大分子材料,制备出磁性多重复合纳米材料,该磁性复合纳米材料不仅具有高的吸附性能,且磁分离技术可以简单方便地把磁性复合纳米材料从溶液中分离出来,解决了固液分离的难题,同时可以大量的应用到实际工作中。部分相关研究成果发表在Environmental Science and Technology (2009,43,2362-2367) Journal of Hazard Material (2009,164, 923-928) Journal of Physical Chemistry B (jp-2009-11424k)。  该工作得到了国家自然科学基金,科技部973重大研究计划“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础”,中科院合肥物质科学研究院重大项目,合肥研究院人才项目和火花项目,中科院新型薄膜太阳能电池重点实验室基金等经费的支持。
  • 中国城市细颗粒物污染严重 长期危害甚于核辐射
    据环保部称,目前,我国城市大气环境质量较差,与世界卫生组织环境空气质量指导值有一定差距。  还有专家称,已经有科学数据证明,PM2.5与肺癌、哮喘等疾病发生密切相关。而PM2.5正是形成灰霾天气的元凶。  大气污染最严重国家之一  我国现行的空气质量标准编制于1982年,后又分别在1996年和2000年进行了修订。目前,我国大部分城市PM2.5浓度超过世界卫生组织规定第一阶段的排放标准。  按照我国《环境空气质量标准》的规定,每天监测和发布的主要有三项空气污染物指标:可吸入颗粒物、二氧化氮和二氧化硫。  这些指标的指数在0~50时为优,51~100时为良,100以上为污染。标准规定监测的“可吸入颗粒物”是指直径小于10微米的颗粒物,但不包括“个头更小”的、小于2.5微米的颗粒物(简称“细颗粒物”,又称PM2.5)。在上述三项污染指标中,可吸入颗粒物在空气污染中的比率最大,而细颗粒物又在可吸入颗粒物中占70%~80%。  当大量细颗粒物浮游在空中,大气能见度就会变小,天空看起来灰蒙蒙的,气象学把这一现象叫做“灰霾天”。而造成这种灰霾天的罪魁祸首就是细颗粒物。  据美国国家航空暨太空总署公布的一张世界空气质量地图显示,全球细颗粒物污染最高的地区是北非以及中国的华北、华东和华中全部,中国大部分地区细颗粒物平均浓度接近80微克/立方米,超出世界卫生组织规定的有关污染指标的8倍。  当前我国的空气污染防治面临前所未有的压力,特别是长三角、珠三角地区城市的空气环境质量仍不尽如人意,以臭氧、灰霾污染为特征的复合型污染日益显现。  中国环境科学院发表的一份研究报告说:“珠三角、长三江、京津冀、四川盆地和沈阳等地城市群,大气细颗粒物污染日益严重。”还有资料称,上海、广州、天津、深圳等城市灰霾天数占到了全年天数的30%~50%。中国已成为世界上大气污染最严重的国家之一。  国际通行的衡量空气污染的标准是测量每立方米空气中所含的悬浮微细粒子,世界卫生组织的标准是20微克。但中国只有1%的城市居民生活在40微克的标准以下,而有58%的城市居民生活在100微克标准以上的空气中。  灰霾带来的伤害有多大  按照世界气象组织的规定,当大气水平能见度小于10公里、相对湿度小于90%时,这样的天气情况为灰霾。  在环境空气质量(API指数)体系上,国际上的标准是监控二氧化硫、二氧化氮、臭氧、一氧化碳、可吸入颗粒物(PM10)、细粒子颗粒物(PM2.5、PM1)、能见度,而目前我国只是监控二氧化硫、二氧化氮、可吸入颗粒物。  PM2.5,是指直径小于、等于2.5微米(不到人的头发丝粗细的1/20)的颗粒物,也称为可吸入肺颗粒物。  在中国,可吸入颗粒物国家标准是年平均浓度每立方米空气100微克,是世界卫生组织标准的5倍。  医学研究表明,颗粒越小,对人体健康的危害越大。细粒子颗粒物十分微小,可以穿透呼吸道的防护结构,深入到支气管和肺部,直接影响肺的通气功能,诱发肺部硬化、哮喘和支气管炎,甚至导致心血管疾病。  细粒子颗粒物吸附在肺泡上很难脱落。而且,细粒子颗粒物还能携带空气中的病毒、细菌、放射性尘埃和重金属等物质,对呼吸系统、心血管、免疫系统、生育能力、神经系统和遗传等都有影响。  有专家发出警告,“灰霾的形成将会对各种传染疾病的流行起到推波助澜的作用,长期生活在这样的大气环境中,人的机体抵抗力也会大为减弱。”  还有专家警告说,一些毒性物质能渗入肺泡里溶解,一些不能吸收的毒性物质则粘在肺细胞的表面,而那些被溶解的毒性物质又将随着人的血液对人的器官包括心脏造成损害。如果同一部位反复发炎,就会有癌变的可能性。  人体每天需要呼吸15立方米的空气,住在城市里的人就相当于一个“吸尘器”和“过滤器”。长期下去,细粒子污染对身体的危害要比切尔诺贝利核辐射严重。  有研究表明,对整体人群的肺癌死亡率资料与大气总悬浮颗粒物年均浓度资料进行测算,结果显示,肺癌死亡率与9年前总悬浮颗粒物的灰色关联度最大,这意味着总悬浮颗粒物致肺癌的潜伏期为8年左右。  影响最大的是人类生理年龄的两端孩子和老人,在美国完成的一项历时8年的前瞻性研究发现,交通污染可显著阻碍儿童肺功能的发育。灰霾,对于体质较弱的老人来说,则意味着死亡。  在中国的许多大中型城市,几亿人口面临着与空气中的隐形杀手的亲密接触。  有资料称,我国呼吸系统和心脑血管疾病死亡的总平均损失寿命为18年,重度污染出现后的第六天呼吸系统疾病死亡率达到最高,而心血管系统疾病死亡则是滞后两天。  2004年,中国城市由于空气污染共造成近35.8万人死亡,约64万呼吸和循环系统病人住院,约25.6万新发慢性支气管炎病人,造成的经济损失高达1527.4亿元。  专家因此发出告诫,晨练的人们最好待在家里,灰霾天里锻炼和运动无疑是“挥刀自戕”,若要外出必须戴好口罩。
  • 抗生素污染怎么办?低温等离子体技术来帮忙
    p  废水排放中的抗生素污染一直是个令人头疼的难题。日前,中国科学院合肥物质科学研究院技术生物与农业工程研究所等研发出了一种低温等离子体废水处理技术,能够对诺氟沙星为代表的喹诺酮类抗生素进行降解处理。相关成果发表在最近的环境领域类专业期刊《光化层》上。/pp  该所研究员黄青课题组与企业合作,利用自行研制的医疗废水处理一体机产生臭氧,对诺氟沙星进行降解处理,并利用表面增强拉曼光谱分析降解产物,研究了其降解诺氟沙星的效率及机理。/pp  此前,黄青课题组提出利用低温等离子体技术处理降解诺氟沙星的方案,并且发现处理过程中臭氧降解作用效果明显。为此,他们进一步研究臭氧对诺氟沙星的降解机理。研究人员发现,等离子体产生的臭氧可以快速降解诺氟沙星,同时臭氧对诺氟沙星的氧化降解主要体现在脱氟反应、羧基团和喹诺酮基团的断裂。/pp  “低温等离子体产生臭氧经济实用、简便易行、绿色环保、无二次污染、实用性高,对开发高效废水处理技术、推广等离子体医疗废水处理技术的应用化发展有着重要意义,这项研究拓展了低温等离子体技术在环保领域的应用。”黄青透露,目前有关技术与设备正处于市场化推广阶段。/pp  据了解,制药工业、养殖业及医院排放的污废水其成分非常复杂,不仅包括各种难降解有机物、各类细菌和病毒,还包含大量的抗生素。这些含抗生素的废水由于不经处理或者处理不达标排放至环境水体中造成细菌耐药性增强,严重影响生态平衡,同时对人体健康造成潜在威胁和风险。因此,研发新的既绿色环保又高效的抗生素废水处理技术和设备迫在眉睫。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/983e1d88-7823-40c7-9efd-ca47300d206e.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多环境监测精彩资讯!/spanbr//p
  • 新品上市!TSI 全新AeroTrak®+便携式粒子计数器A100系列重磅发布!
    新品上市!New Prodcut LaunchTSI重磅宣布全新AeroTrak+便携式粒子计数器A100系列产品即日上市!无论是用于医药制造、半导体和电子制造,还是洁净室认证,此款仪器都能满足用户的特定需求,帮助识别潜在的环境污染源,并跟踪洁净室空间中颗粒物水平随时间的变化。至关重要的是,因为新修订的标准对数据完整性的要求,以及改善行业用户体验的自动化任务,指导了新仪器功能的方向,包括准确监测压缩气体(例如N2, CDA, Ar, 和 CO2)的能力。AeroTrak+便携式粒子计数器A100系列做到了这一点,同时让您快速启动和运行-帮助降低风险,降低成本,实现数据完整性,证明合规性,并通过可靠和值得信赖的技术改进来提供更低的拥有成本。 TSI AeroTrak+便携式粒子计数器A100系列无需手动操作,大大降低了用户人为错误几率,简化了对环境污染的监测。内置的配置和报告标准,可以满足驱动市场的标准,包括:ISO 14644-1:2015 – 洁净室及相关受控环境ISO 21501-4:2018 – 校准标准EU GMP Annex 1 (2008 和 2022) – 良好生产规范:无菌药品的生产中国 GMP一旦数据收集完成,无论您是在现场还是在办公室,都可以使用综合仪器报告功能轻松地将数据打印或导出为电子文件格式。“TSI很高兴能推出一款为用户量身设计的便携式式粒子计数器。” TSI产品管理和营销副总裁Ketan Mehta表示, “我们从大量的用户反馈中汲取经验,开发出了新款让用户的工作变得简单的测量仪器。”新品选型指南了解更多关于新产品的详细信息以及下载产品规格手册, 请点击
  • 四方光电在线粒子计数器在洁净室的创新应用
    四方光电在线粒子计数器在洁净室的创新应用在医药、电子、食品、航空航天、生物工程、精密加工等领域,相关生产作业过程中环境空气需要满足较高洁净度的要求,并符合相关行业标准,例如制药行业需要符合GMP标准。客户一般采用粒子计数器来针对作业环境进行检测,在国内相关检测设备需要符合国家计量总局颁布的JJF1190-2008《尘埃粒子计数器校准规范》规程的技术要求。  以往客户仅在项目验收时采用手持式粒子计数器针对作业厂区内相关区域进行洁净度检测,而工程验收合格投入使用后,则只会定期安排人工进行抽查巡检,这样的做法会带来一系列的问题。    传统手持式粒子计数器存在的问题及风险 1、增加了企业的洁净成本。人工监测将给洁净厂房带来额外的人员和设备,增加了洁净负荷。有些企业为了能够确保洁净室作业环境持续可靠,会连续不间断高功率运行FFU风机,这样做不仅会加快滤网、风机等的寿命消耗,也带来了能源的浪费。    2、 人工监测缺乏采样点和采样时间的固定性。在手工操作下,前后两次采样点的位置很难保证在同一点,采样的时间也不能保证在不同班次或日期的同一个相对或绝对时刻。因此,监测数据之间很难产生相对的联系,没有可比性,不利于判断系统运行的长期趋势。   3、定期检测无法覆盖所有污染超标风险。在生产过程中环境的情况往往是变化的,原材料的进出、人员的更换以及产品的变化都将对洁净室的洁净程度有所影响。往往在一个班次开始时环境是满足要求的,而在结束时发现粒子数超出了标准。由于人工监测无法提供连续监测数据,因此无法估计系统是在何时偏离了规定工况,更无法估计产品的质量情况。这就违背了保证洁净室空气质量,进而提高产品质量的初衷。    粒子计数器升级在线监测的必要性 1、标准对在线监测的要求。新版GMP在硬件要求方面,提高了部分生产条件的标准,增加了在线监测的要求,特别对悬浮粒子,也就是生产环境中的悬浮微粒的静态、动态监测,对浮游菌、沉降菌(生产环境中的微生物)和表面微生物的监测都作出了详细的规定。  2、实现智能自动控制,无需人工参与。在线粒子计数器,能够实时监测洁净室内悬浮颗粒的个数并及时报警;并具备能够与FFU风机等净化设备智能联动的功能,始终将环境内悬浮粒子个数维持在标准要求的较低范围内,这样做其能耗及设备损耗会控制在较低水平。  3、覆盖整个生产过程,降低污染风险。7*24小时的连续不间断监测,最大程度保证产品在全流程生产工序中免受污染,提升产品质量。    在线粒子计数器面临的挑战 1、连续不间断运行,对寿命的要求。传统手持式设备多采用气泵进行采样,而气泵的寿命一般仅有几千小时,而且成本较高,噪音较大。而且气泵在运行一段时间后会存在机械磨损,影响检测性能。  2、连续不间断运行,对数据稳定性和可靠性的要求。粒子计数器在长期运行的过程中,会由于光源的老化及采样气泵的磨损,导致测量准确度发生漂移。由于手持式粒子计数器可以在每次使用前采用调零器进行校准,而在线粒子计数器由于安装位置的局限,无法实现频繁的调零动作,这需要在线粒子计数器满足免维护的要求。  3、多点分布式安装,对设备系统及施工安装的要求。洁净室在线监测系统,是一套实时监测洁净区域洁净度的在线监控管理系统,对洁净室内的多个传感器进行管理。包括远程控制、数据储存、历史数据查询、数据分析和趋势图,当被监测区域一旦超出限定值系统将自动报警。    四方光电粒子计数器:洁净室在线监测终极解决方案 四方光电基于10年光散射技术的研究与创新,推出了激光粒子计数传感器PM5000S与PM3003NS,以及在线粒子计数器OPC-6500F和OPC-6303P,可广泛应用于医药行业、电子行业、食品卫生行业、光电工程及航空航天等。  1、使用寿命长,满足7*24小时连续监测。  四方光电在线粒子计数器OPC-6500F采用大流量涡轮风扇采样,相对气泵采样有更好的寿命表现,能够满足10年连续工作需求。 2、恒流采样,确保长期数据稳定性。  在线粒子计数器OPC-6303P内置超声波流量传感器,能够快速准确的监测采样流量,实时进行反馈调节,消除了气泵长时间运行后采样流量衰减的影响,保证在线粒子计数器在长期运行过程中的2.83L/min气泵恒流采样。  3、数据精准,与Lighthouse设备线性相关性R2>0.9。  为了验证在线粒子计数器是否能够满足实际应用需求,四方光电将样品送到韩国第三方测试机构进行了PM5000S与Lighthouse手持式粒子计数器委托对比测试,测试数据表明,PM5000S与Lighthouse线性相关系数R2=0.91,r=0.95 4、符合JJF 1190-2008尘埃粒子计数器校准规范。  四方光电粒子计数器检测性能符合国家计量总局颁布的JJF1190-2008《尘埃粒子计数器校准规范》规程的技术要求,同时我司也可以向企业用户提供核心粒子计数传感器及解决方案,协助客户通过整机的计量认证。    洁净室在线监测的实施办法 四方光电在线粒子计数器,能实时监测尘埃粒子数及其他环境参数(根据客户需求灵活定制),将受控环境中的多个测量区域进行分散式多点采样,集中式数据处理,能实现自动监测,并通过自主开发的上位机软件完成数据储存、分析、管理。  1、系统布点的方法。  在线粒子计数器的安装位置相对手持式粒子计数器的采样点更为灵活。首先需要确定关键区域,模拟实际生产过程(如药品灌装),在选定的关键区域内通过对各候选粒子采样点位的静态测量和动态测量结果,确定尘埃粒子计数器采样头的安装位置。  2、多点在线监测组网。  通过RS485通讯方式将洁净室内不同监测点的监测结果上传到中央处理单元,实时判断各点位的检测结果是否满足洁净室等级要求。并可在每个监测点设置屏幕,实时能够了解到各监测点的洁净度。RS485通讯采用两线制接线方式,其噪声抑制能力、数据传输速率、电缆可用长度及传输可靠性对比其他通讯方式,信号更加稳定可靠。  3、系统实现远程监控。  四方光电自主开发的监测系统软件,可实时监测和收集各点位的在线监测数据并及时进行分析处理,同时能够比对相关标准悬浮颗粒的限值,出现超出标准时及时报警。    四方光电企业介绍 四方光电股份有限公司2003年成立于“武汉 中国光谷”,占地20000+平方米,是一家专业从事气体传感器、气体分析仪器研发、生产和销售的高新技术企业。  公司开发了基于非分光红外(NDIR)、光散射探测(LSD)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)等原理的气体传感技术平台,形成了气体传感器、气体分析仪器两大类产业生态、几十款不同产品,广泛应用于国内外的家电、汽车、医疗、环保、工业、能源计量等领域。  四方光电是湖北省首批知识产权示范建设企业,建设有湖北省气体分析仪器仪表工程技术研究中心、湖北省企业技术中心,承担了国家重大科学仪器设备开发专项、工信部物联网发展专项等国家科技开发项目。截至2020年8月底,公司及子公司拥有101项境内外注册专利,其中国内99项,国外2项。发明专利共有33项(境内31项,境外2项)。公司及子公司四方仪器入选工信部2019年工业强基传感器“一条龙”应用计划示范企业。凭借长期的技术积淀、良好的产品性能及国际化视野,公司已取得多家国内外知名企业的认可,产品销往全国并出口到多个国家和地区。
  • 新型光敏纳米粒子可同时获得光电最佳性能
    宁志军博士展示喷涂了胶体量子点的薄膜实验样品。  加拿大研究人员设计并测试了一种新型固态、稳定的光敏纳米粒子&mdash &mdash 胶体量子点技术,该技术或将用于开发更为廉价、柔性的太阳能电池及更好的气体感应器、红外激光器、红外发光二极管。此项研究成果发表在最新一期《自然· 材料》上。  胶体量子点基于两种类型的半导体收集阳光:N型(富电子)和P型(乏电子)。但N型半导体材料暴露于空气中时,会与氧原子结合,失去其电子,转变成P型材料。  论文第一作者、多伦多大学电气与计算机工程系博士后宁志军在接受科技日报记者采访时说,其研究小组开发的新型胶体量子点技术,可使N型材料在暴露于空气中时,不与氧结合。同时维持稳定的N型和P型层,不仅能提高光的吸收效率,还打开了同时获得光捕获和电传导最佳性能的新型光电器件的大门,这也意味着可利用新技术开发出更复杂的气象卫星、遥控设备、卫星通信或污染检测仪。  宁志军称,这仅是此项材料创新研究的第一步,利用这种新材料可构建出新的器件结构。与普通硅材料电池相比,胶体量子点材料可在低温下合成,耗能低且工艺简单。这种溶液可处理的无机材料增强了电池的稳定性和便携性。研究发现,碘是兼备高效和空气稳定性的量子点太阳能电池的完美配体。  由于吸收光谱可达红外区域,这种N-P混合型新材料可吸收更多光能,从而使太阳能转换效率最高可达8%。改进性能还仅是这种新型量子点太阳能电池结构的开始,未来这些功能强劲的量子点可与油墨混合,喷涂或印刷到轻薄、柔软的屋面瓦表面,从而大大降低太阳能电力的成本,造福普通民众。  宁志军介绍,胶体量子点太阳能光伏技术在最近10年里已取得飞速发展,太阳能转换效率已从最初的0.1%提高到实验室条件下的10%左右。但要实现该技术的商业化,还需持续改进其绝对性能,或电力转换效率。
  • TSI公司参加第九届全国大气细及超细粒子技术研讨会 及第十四届海峡两岸气溶胶技术研讨会
    美国TSI公司参加了于2016年7月25–29日在江苏省盐城市举办的“第九届全国大气细及超细粒子技术研讨会及第十四届海峡两岸气溶胶技术研讨会”, 大气细及超细粒子研究是当前国内外大气气溶胶、大气环境和气候变化研究的前沿发展方向,同时由大气细及超细粒子带来的环境污染问题及其污染控制是国家和全国人民都关注的焦点。为进一步交流大气细及超细粒子领域的最新研究成果,会议主题为“大气细粒子污染控制新技术”,分享了国际上最前沿的细粒子污染研究和控制技术。 美国TSI公司针对大气超细粒子领域的测试需要,于会上展示了多种检测技术和设备,可适用于大气气溶胶、大气环境研究的不同应用和监测需求。美国TSI公司于展会上展示了新推出的3938E77 型1nm 扫描电迁移粒径谱仪(SMPS)被广泛用于测量1 微米以下的气溶胶粒径分布。选配3777 型纳米增强仪以及3086 型差分电迁移分析仪(1nm-DMA)组件后,SMPS 粒径谱仪能够测量的粒径范围扩展至1nm。3321 空气动力学粒径谱仪(APS™ ) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。TSI 3330型光学颗粒物粒径谱仪简单轻便,能够对颗粒物浓度和粒径谱分布进行快速和准确的测量。基于TSI公司40年气溶胶仪器设计的经验,本款产品使用120度光散射角收集散射光强度和精密的电子处理系统,从而得到高质量和高精度的数据。同时,TSI工厂严格的标定标准也确保仪器的精确性。该产品是广大环境研究机构和环境监测部门进行颗粒物监测分析和源解析的最佳仪器。更多信息,请关注美国TSI公司官方网站: www.tsi.com/cn 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 搭载质谱仪的“卡西尼”号探测器检测到神秘粒子
    p  近日,美国宇航局(NASA)的“卡西尼”号探测器还在继续产生着令人惊讶的发现,而早在一个多月前,这架探测器已经在任务结束后于土星大气中烧毁。来自“卡西尼”号探测器的新数据表明,土星的宏伟光环正在将微小的尘埃颗粒注入到行星的上层大气中,从而形成了一种复杂且意想不到的化学混合物。/pp  “卡西尼”号探测器上的一台质谱仪检测到这种奇特的化学物质——该探测器在最后的5个月里一直在土星和土星环之间环绕飞行。/pp  马里兰州劳雷尔市约翰· 霍普金斯大学应用物理实验室行星科学家Mark Perry说:“我们真的是中头彩了。”10月17日,他在犹他州普罗沃市召开的美国天文学会行星科学分部的一次会议上报告了这一发现。/pp  该项目科学家曾希望“卡西尼”号探测器的质谱仪能够在土星和土星环之间发现水分子的特征。在上世纪七八十年代,NASA的先驱者号探测器和旅行者号探测器在土星的最上层大气中发现了比预期更少的带电粒子。在这些数据的基础上,研究人员在1984年提出,脱离土星环的水分子——主要以冰的形式——起到催化剂的作用,将带电粒子从大气中分离出来。“卡西尼”号探测器的最后几个月给了科学家们第一次直接测试这个想法的机会。/pp  但吸引卡西尼团队的并不是突然出现的水的证据。质谱仪的数据揭示了一个巫师般存在的化学物质,其中包括甲烷,这种分子可能是一氧化碳和更复杂的分子。这些化学物质的浓度在土星的赤道和高海拔地区是最大的,这表明这些物质正在从土星环中脱落。/pp  “卡西尼”号探测器进入土星大气层的深度越深,测量值就愈发奇怪。Perry对与会者说,“卡西尼”号探测器以最近距离掠过土星表面揭示了大量的重分子。科学家还没有确定每种分子的类型,但很明显,除了水之外,还有很多其他分子。/pp  通过分析可能从土星环上脱落的物质的类型,Perry的研究小组得出结论,这些碎片必定是微小的尘埃颗粒的片段,这些颗粒的尺寸仅为1至10纳米,但相对较重。当这些粒子从土星环上落下并撞击“卡西尼”号探测器的质谱仪时,它们被粉碎成小碎片。/pp  这些粒子究竟是如何从土星环飘落到大气层的还有待观察。“我们有很多工作要做,以了解它们是如何到达那里的。”Perry说,“没有一个模型能预测到这一点。”/pp  在这些最后的俯冲过程中,“卡西尼”号探测器沿着土星的引力牵引,以每秒钟30公里的速度加速,这一速度超过了质谱仪设计所能承受的4倍之多。“这些速度比它所经历的任何时刻都要高。”Linda Spilker说,他是加利福尼亚州帕萨迪纳市喷气推进实验室的行星科学家,也是卡西尼项目科学家。/pp  在如此巨大的速度下,“卡西尼”号探测器所撞击的任何东西都会分裂成碎片。/pp  今年9月15日凌晨4时55分,数百名科学家见证了“卡西尼”号探测器在火焰中涅槃。“卡西尼”号探测器在土星的大气层中解体,这样做是为了防止探测器污染土星的卫星,包括土卫六和土卫二,这些卫星上可能存在生命迹象。/pp  “卡西尼”号探测器1997年10月15日发射升空,沿途造访过金星、地球、月球、小行星和木星,并于2004年抵达环土星轨道。近20年间,“卡西尼”探测任务大幅刷新了人类对土星的认识,包括它的复杂光环、类型多样的卫星体以及磁场环境等。它曾获得一系列重大发现,如土卫二存在全球性海洋、土卫六上存在液态甲烷海洋、在土卫二喷出的羽流中探测到氢等。/pp  与土星相伴的13年间,“卡西尼”号探测器曾发回大量数据资料,仅图像就差不多40万张。科学家依据这些信息,已发表了约4000篇科学论文。NASA还依据这些信息设计了前往木卫二的探测计划,以及未来十年间的其他太空探测项目。/pp  尽管“卡西尼”号探测器已经结束了自己的使命,但科学家表示未来仍有可能带来重大发现,例如,来自探测器的数据将有助于确定土星环的实际年龄及其磁场的持久性。/pp  (原标题:土星大气发现神秘粒子 卡西尼数据显示或来自土星环)/pp/p
  • TSI发布9001型洁净室凝聚核粒子计数器
    精密仪器领先制造商TSI公司很荣幸发布新款 AeroTrak 9001型洁净室凝聚核粒子计数器(CPC),电子制造商可通过此仪器准确监测洁净室制造工艺中的纳米级(100nm)颗粒物,实现提高产量的目的。 自1979年以来,由TSI制造的世界级凝聚核粒子计数器被全世界的国家和标准实验室使用。 AeroTrak 9001 洁净室 CPC采用了同样的技术,并专门ISO Class 1 和 Class 2环境中的纳米颗粒测量进行了优化,是市场上唯一一款水基、层流、高流量仪器,为客户提供可靠的关键环境监测。仪器具有创新、独特的三探头设计,能够提供极低的错误计数率,且能够通过自检保证仪器的正常运行。AeroTrak 9001型洁净室CPC 使用AeroTrak 79520型高压空气扩散器(HPD)配件,在高压压缩气体系统中测量颗粒物污染。 TSI受控环境总监Richard Remiarz说"AeroTrak 9001 CPC 是市场上第一款水基洁净室CPC,可7天24小时全时工作,6个月免维护,能够连续监测洁净室关键生产流程。" 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 柳江镉污染被指“捂盖子”十余日绕开春节
    广西柳江上游龙江河段镉污染来势汹汹。这几天,当地有关部门不但及时通报信息、以最快速度组织新水源,还全力稀释污染江水,甚至,柳州市委、市政府还发出了“打响柳江保卫战”的号召。尽管当地并未明言事态究竟如何,但种种迹象皆表明,柳江污染状况已是异常严峻。   无疑,柳江镉污染事件,又是一起极度恶劣的环保事件,因此,在其闯入舆论视线之后,获得高度关注就是很自然的事情。然而,让人尴尬无比的却是,这起肇始于1月15日的恶性环保事件,直到春节之后的1月26日才被公众广泛知晓,更多的信息才逐渐披露。也就是说,柳江镉污染事件,被捂了多日的“盖子”。  有意思的是,当地政府“捂盖子”的行为,直接让镉污染的阴影,绕开了春节。虽然不知道其这般行为,究竟是有意还是无意,但某种程度上,这种行为俨然一个黑色幽默:在锣鼓喧天、爆竹声声的时节里,镉污染的威胁却潜行在滔滔江水之中,与此同时,公众的知情权也一并被屏蔽。  不过,抛开春节这一特殊因素之外,当地政府在柳江镉污染事件中的种种表现,都是十分眼熟的。首先,能拖就拖。1月15日环保部门就发现的状况,1月18日才由河池方面通报给下游的柳州方面,而柳州方面到了1月26日才向外发布消息。其次,信息异常含混。一方面,当地政府说污染不影响水质;另一方面,却组织人手连夜开工,紧张寻找新的水源。还有,在柳江污染程度上,一会的表述是轻微污染,一会却又是非常严重,真实情况究竟如何,使人无所适从……  换言之,当地政府处置柳江镉污染事件的所作所为,并非个例,其目的无非在于掩人耳目,大事化小小事化了,从而不影响当地“形象”,不影响官员的官帽。然而,纸终究是包不住火的,柳江镉污染事件,虽然躲过了初一,但还是未能躲过十五,舆论的目光终究还是聚焦到了它的身上。  虽然就目前来看,当地政府处置柳江镉污染事件的力度,不可谓不大,但是,任谁联想到多日的“瞒报”举动之后,都难生出激赏之意,更多的时候,涌于心头的,是一股滑稽之感。假如,在第一时间就能及时上报,就能请求更高级别的指导,就能公开信息,何至于今天这般手足无措、惶恐不安?  可以肯定的是,在未来的日子里,柳江镉污染事件,注定要聚焦更多的目光。一则,在年味儿尚未消散的时候,见到这样一则消息,无疑是让人惊愕无比的;二则,公众早已对类似这种恶性环保事件,心生恶感。  因此,当地政府要想重新聚拢人心,唯有公开一条路可走。唯有坦诚地将真实信息及时告知大众,唯有打消“能瞒就瞒能拖就拖”的不切实际的想法,柳江镉污染所造成的阴云,方能尽早消散。(华商报)
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 思百吉旗下粒子监测系统公司(PMS)收购洁净室环境监测和控制服务商EMS
    近日,思百吉集团旗下粒子监测系统公司(Particle Measuring Systems, Inc. 简称“PMS”)宣布收购环境监测服务公司和EMS粒子解决方案有限公司及其母公司(统称EMS)。EMS成立于1988年,总部位于爱尔兰都柏林,是洁净室行业的领导者,为客户提供完整的洁净室监测和控制解决方案和服务,并确保从设计到过程控制的质量。PMS是洁净室和无菌生产环境污染监测和控制的市场领导者,该公司结合了一流的领域知识、技术和服务,成功满足了生命科学、半导体和电子终端市场的监管要求,并提高了客户的产品产量。为了实现长期可持续增长战略,2022年,思百吉集团不断调整优化企业结构,成立了思百吉科学(Spectris Scientific)与思百吉动力(Spectris Dynamics)两大业务平台。马尔文帕纳科(Malvern Panalytical)和粒子监测系统公司(PMS)组成Spectris Scientific部门,将更加聚焦于精密测量技术,结合行业领先的专业知识,为客户提供更高附加值的产品和服务。此次收购符合PMS的战略,即直接进入每个主要的地理市场,以先进的污染监测和控制解决方案为客户提供最佳支持和服务。而EMS在支持英国和爱尔兰的无菌制药和半导体客户方面拥有强大而悠久的成功记录。PMS已经与EMS合作了近30年,作为这些战略区域客户的独家销售和服务渠道。EMS对PMS业务的了解有望为客户和员工带来无缝集成体验。EMS董事总经理Dave Nolan表示:“在过去的30年里,EMS的发展令人欣慰,对于我们的组织来说,这是令人兴奋和自然的下一步,我期待着继续成为这个伟大团队的一员。”“我们一直在寻找方法,为客户提供更好的解决方案,同时保持我们强劲的增长轨迹,并被员工认可为首选雇主。” PMS临时总裁Mark Fleiner表示,“收购EMS有助于我们实现这些目标,同时也为这一战略地理区域的服务和解决方案的连续性做好准备。”
  • Picarro | 人为减排增强了大气新粒子生成:2022年北京冬奥会期间的观测证据
    随着工业化和城市化的快速发展,人类活动对环境的影响日益严重。其中,大气污染是人们最为关注的问题之一。为了改善大气质量,人们采取了各种措施,其中之一就是人为减排。人为减排对大气环境的影响以及机理也成为重要的研究方向,中国科学院大气物理研究所在2022年冬奥会举办之际,开展了相关研究。研究背景气溶胶颗粒对地球-大气系统具有深远的影响。作为对流层气溶胶的重要来源,新粒子生成(NPF)在云凝结核(CCN)形成中起着重要作用,并导致中国特大城市严重的雾霾事件。在受污染的大气中,NPF和参与成核的气态物质的行为尚不清楚。硫酸(SA)是清洁大气中参与成核的主要物质,其他气态前体物,例如氨、二甲胺(DMA)和二羧酸,会在污染环境中增强成核。由于气态前体和可凝蒸气丰富,成核机制在不同位置会有所不同。COVID 19封锁期间的研究表明,NPF事件的生成率(J3)和增长率(GR)的结果各不相同。在未来空气质量改善的情况下,大气NPF在污染大气中的行为仍不确定,需要进一步评估。2022年北京冬奥会为研究人为减排对中国特大城市成核和生长过程的影响提供了难得的机会。这项研究的重点是冬季奥运会前后NPF事件和气态前体的演变,以了解它们在雾霾形成中的作用并为未来制定污染减排政策提供信息。研究方法中国科学院大气物理研究所的研究团队于2022年1月1日-3月31日在北京2022年冬季奥运会主会场附近的北京IAP场地进行观测活动。该地点代表了典型的城市区域,与北京城市的平均颗粒物水平有很好的相关性。研究人员观测了气溶胶颗粒物的粒径分布、细颗粒物化学组成(有机物(OA)、硫酸盐(SO42-)、硝酸盐(NO3-)、铵(NH4+)和氯化物(chl))、气体物质浓度(O3、NO2、CO、SO2)、PM2.5质量浓度及气象参数(温度、相对湿度、辐射、海平面气压、风速和风向)以调查NPF事件及其气态前体的演变,了解不同时期气态前体在NPF和雾霾形成中的作用。NH3排放测量利用Picarro G1103氨气分析仪测量NH3浓度结论WOG和冬季残奥会(WPG)期间成核事件有所增强,NPF事件的频率( 52.4% 38.5% )高于Pre-WOG (25.0%)和Post-WOG(27.8%),这主要是由CS较低造成的。此外,WOG(6.4±4.1 cm-3s-1 )和WPG(6.1±2.9 cm-3s-1)期间的平均J3也高于Pre-WOG(5.6±2.9 cm-3s-1)和Post-WOG(5.7±3.1 cm-3s-1),而GR ( 2.3±1.8 nmh-1,2.7±1.4 nmh-1)略高于Pre-WOG (2.1±1.5 nm&sdot h-1)和Post-WOG (2.2±1.6 nm&sdot h-1)。研究发现,硫酸和氨浓度较低,WOG和WPG期间较高的J3可能是由较高的胺贡献的。log J3和SA之间的相关性,与CLOUD实验结果高度一致,表明胺增强了硫酸成核。进一步证明了上述结果。硫酸对GR3-7nm的贡献超过20%,在WOG和WPG期间,大气氧化能力大大增强,颗粒生长到10 nm以上时,有机化合物的贡献迅速增加。此外,还发现硝酸铵在NPF引发的雾霾事件中发挥着重要作用,其特点是WOG之后,NPF事件生长后期的硝酸盐产量高于WPG,建议采取措施控制NH3和NO2排放,以减少新粒子生成和生长造成的PM2.5污染。
  • BIOTRAK实时粒子计数器在INDUSTRIEPREIS工业竞赛中荣获奖项
    2013年INDUSTRIEPREIS工业竞赛:TSI 公司的BIOTRAK实时粒子计数器荣获奖项。  2013年4月9日,一家德国出版社&ldquo Huber Verlag fü r Neue Medien&rdquo 和另一家德国创新机构&ldquo Initiative Mittelstand&rdquo 联合举办了一场名为&ldquo Industriepreis&rdquo 的工业竞赛,该竞赛每年都会举办,在德国、澳大利亚和瑞士广为人知。在这场竞赛中,超过30位教授和专家组成权威的评判委员会,对14种不同种类的产品进行评选。&ldquo Industriepreis&rdquo 2013年的口号是&ldquo 为了发展更智能的工业&rdquo ,超过1200家公司参加了这个竞赛,共有14个大类。  TSI公司的BIOTRAK 实时粒子计数器是&ldquo 光学技术&rdquo 领域中的赢家。遴选委员会表示BIOTRAK是一项高科技、生态环保并具有经济社会价值的技术。BIOTRAK粒子计数器可实时检测粒子总数。传统的微生物空气采样和基于细菌的计数手段已被使用几十年,为微生物污染的检测提供了很多有价值的信息。BIOTRAK实时粒子计数器采用TSI公司获得专利的激光诱导荧光技术(LIF)来鉴定粒子的活性。简单来说,就是当微生物粒子被激光照射时,他们会被激活,并发出不同频率的光线。TSI公司的BIOTRAK实时粒子计数器同时集微生物检测、微粒总数检测和集成粒子检测功能于一体。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制