当前位置: 仪器信息网 > 行业主题 > >

五氯酚钠

仪器信息网五氯酚钠专题为您整合五氯酚钠相关的最新文章,在五氯酚钠专题,您不仅可以免费浏览五氯酚钠的资讯, 同时您还可以浏览五氯酚钠的相关资料、解决方案,参与社区五氯酚钠话题讨论。

五氯酚钠相关的资讯

  • 【预警】五氯酚酸钠又超标了!
    近期,北京市市场监督管理局网站发布的关于2021年食品安全监督抽检信息的公告(2021年第2期)显示,该局组织抽检了12类食品1449批次样品,其中不合格样品15批次中含有2批猪肉、牛肉中五氯酚酸钠不符合国家相关规定。维德维康市场部对2020年国家及部分省级市场监督管理局(北京、山东、四川、河南省等等市场监督管理局)网站通告的动物性食品中兽药残留不合格项目统计发现,五氯酚酸钠在猪肉、猪肝、禽肉、牛羊肉、水产品等多种样本中都有检出。【五氯酚酸钠】五氯酚酸钠,又名五氯酚钠,易溶于水、醇、丙酮,不溶于苯,有臭味。它属于有机氯农药,常被用作除草剂或者杀菌剂。养殖户曾把它作为杀螺剂,用于鱼塘虾塘的消毒,消杀福寿螺、钉螺。五氯酚酸钠对蚂蟥、蟛蜞、果树害虫,真菌、细菌等也有杀灭功能,还可作为木材防腐和农业除草剂,用途广泛。五氯酚酸钠具有较高的水溶性,容易以水为载体广泛地扩散,对水源和土壤中造成污染,经环境积累进入饲料用植物中,通过食物链蓄积在动物体内,残留在动物性食品中。五氯酚钠通过食物链进入人畜体内分解为五氯酚,五氯酚具有有机氯和酚的毒性,能抑制生物代谢过程中氧化磷酸化作用,长期摄入这类物质,会对人体的肝、肾及中枢神经系统造成损害。《食品动物中禁止使用的药品及其他化合物清单》(农业农村部公告 第250号)中规定,食品动物中禁止使用五氯酚酸钠(动物性食品中不得检出)。【动物性食品中五氯酚钠残留量的测定标准】GB 29708-2013《食品安全国家标准 动物性食品中五氯酚钠残留量的测定 气相色谱-质谱法》(本标准适用于猪的肌肉、肝脏和肾脏及鸡的肌肉和肝脏组织中五氯酚钠残留量的检测,检测限为0.25 μg/kg,定量限:肌肉组织中为0.5 μg/kg,肝脏和肾脏组织中为1 μg/kg) GB 23200.92-2016 《食品安全国家标准 动物源性食品中五氯酚残留量的测定 液相色谱-质谱法》(本标准适用于猪肝、猪肾、猪肉、牛奶、鱼肉、虾、蟹等动物源性食品中五氯酚残留的测定,定量限为1 μg/kg)【五氯酚酸钠快速检测方案】五氯酚酸钠酶联免疫试剂盒检测样本:猪肉、鸡肉、鸭肉、牛肉、羊肉、鸡胗、猪肝、饲料原料检测限:1 μg/kg(ppb)五氯酚酸钠快速检测卡检测样本:猪肉、鸡肉、鱼肉、虾肉检测限:5 μg/kg(ppb)
  • 解决方案丨牛奶中五氯酚残留量的测定
    五氯酚(PCP)通常以其钠盐(NaPCP)的形式存在,即五氯酚钠,可用作落叶树休眠期喷射剂,以防治褐腐病,也用作除草或杀虫剂、触杀型灭生性除草剂。其进入人体的方式主要通过长期、低剂量的饮食接触,可能会对人体的肝、肾及中枢神经系统造成损害。2019年12月27日,五氯酚钠被列入食品中禁止使用的药物及其他化合物清单,标准要求不得检出,所以,对于食品中五氯酚钠的监测是必要的。五氯酚钠常用的检测标准为GB 23200.92-2016《动物源性食品中五氯酚残留量的测定 液相色谱-质谱法》。本文参考上述标准,样品中的五氯酚残留用碱性乙腈水溶液提取,使用MAX固相萃取柱经睿科SPEVA全自动样品净化浓缩仪一键进行净化和浓缩,复溶后用液相色谱-串联质谱仪检测。在1.0 ug/kg的加标水平下,回收率在81.6%-84.3%之间,RSD值小于5%。本方案回收率高,精密度好,能够很好地运用于牛奶中五氯酚残留量的测定。仪器和耗材1.仪器睿科SPEVA全自动样品净化浓缩仪Agilent 1290Ⅱ/6470高效液相色谱-串联质谱仪SPEVA全自动样品净化浓缩仪2.耗材MAX强阴离子交换固相萃取柱(60mg/3mL)3.试剂甲醇(色谱纯)甲酸(色谱纯)乙腈(色谱纯)浓氨水(分析纯)乙腈-水溶液(7+3):准确量取70mL乙腈和 30mL水,混合摇匀。5%氨水-乙腈-水溶液:准确量取 5 mL 浓氨水,转移入100mL容量瓶,用乙腈-水溶液(7+3)定容至刻度,混合均匀。5%氨水甲醇溶液:量取5mL浓氨水,转移入 100 mL容量瓶,用甲醇定容至刻度,混合均匀。8%甲酸甲醇溶液:量取8mL甲酸,转移入100mL容量瓶,用甲醇定容至刻度,混合均匀。2%甲酸甲醇水溶液:取25mL 8%甲酸甲醇溶液,转移入100mL容量瓶,用水定容至刻度,混合均匀。样品制备称取牛奶试样2g(精确到0.01 g),置于50 mL离心管中,加入10mL 5%氨水-乙腈-水溶液,旋涡混合1 min,超声提取5min,于4℃、10000 r/min条件下离心5min,收集上清液于上样管中,待净化。1.净化依次用7mL甲醇和7mL水活化固相萃取柱,将提取溶液转入经过预处理的MAX柱中,以1.0 ml/min的流速使样品溶液全部通过固相萃取柱,弃去流出液。依次用4mL 5%氨化甲醇、4mL甲醇、2mL 2%甲酸-甲醇-水溶液淋洗柱子,弃去流出液。淋洗液完全通过小柱后,用氮气吹干固相萃取柱5min。用9 mL 8%甲酸甲醇溶液洗脱,洗脱液用试管收集,于40℃水浴条件下氮吹浓缩至1mL,用水定容至2mL,混匀。溶液以0.22µ m有机滤膜过滤,供测定。固相萃取和浓缩方法如下所示。2.固相萃取净化条件液质检测条件1.液相条件2.液相梯度洗脱条件3.质谱仪器参数4.MRM参数结果与讨论为了验证该方法的回收率,本实验取2g牛奶样品,加入五氯酚标准品进行加标回收验证(n=6),添加水平为1ug/kg。同时制备5份经提取、净化和浓缩的空白试样,加入适量标准品,配制成浓度为0.5μg/L、1.0μg/L、1.5μg/L、2.0μg/L、5.0μg/L的基质校正曲线进行定量。实验数据如表-2所示。加标回收率在81.6%-84.3%之间,RSD值控制在5%以内。说明该方案能够很好地运用于牛奶中五氯酚残留量的测定。表-2.样品加标回收率及RSD值(n=6)总结本解决方案操作方便,集样品净化和浓缩一体,回收率高,稳定性好,符合GB 23200.92-2016《动物源性食品中五氯酚残留量的测定 液相色谱-质谱法》的质控要求。睿科SPEVA全自动样品净化浓缩仪将高通量固相萃取与高通量氮吹进行一体结合,可同时进行8通道样品净化,支持样品架/收集架/柱架/柱插杆自动识别,氮吹浓缩自带通道红外定容,兼容常规SPE柱模式、大体积上样模式、枪头上样模式和膜萃取模式,一机多用,真正为批量前处理提供帮助。
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
  • 中国科学家将纳米技术用于纱窗 可过滤雾霾
    外媒称,谁要是能找到过滤掉空气中细颗粒污染物的办法就太好了。其次是,至少不让这些污染物进入人们的肺。  美国《华尔街日报》网站2月27日报道称,第一个目标很难实现。但美国斯坦福大学的研究人员找到一个吸引人的办法来达到第二个目标。利用纳米技术,他们研发出一种低成本滤网,能捕获空气中的微小颗粒,同时基本保持透明。  科学家希望,有朝一日可以把这项技术用在纱窗上,在允许光线和空气通过的同时,改善室内空气质量。一个额外的好处是,这项技术实施起来无需能源、昂贵的设备和管道支架等。  一些研究人员来自中国,这并非巧合。中国的快速工业化导致严重的空气污染。斯坦福大学材料科学教授、论文作者之一崔屹说,在回国期间,雾霾强度让他震惊。  报道称,科学家的目标是直径在2.5微米以下的颗粒物。这些看不见的颗粒物小到足以深入肺部,损害健康。这类物质是工厂、燃煤发电厂、机动车和供热系统释放的尘埃、烟尘、有机和无机液体的混合物。  一些汽车和飞机已经在使用由极微小纤维制造的滤网。纤维上的微小气孔可捕获颗粒物。净化水过滤器也使用纳米技术。  崔博士的实验室研究过把这类技术用于制造更好的电池和更保暖衣物的可能性,这次又把焦点对准把聚丙烯腈&mdash 一种常用于手术手套的材料&mdash 纺成直径为头发丝千分之一粗细的极微小纤维,然后将纤维制成薄膜,覆盖在纱网上。  研究人员2014年夏天在北京一个空气质量糟糕的日子检测了他们的发明,发现它能捕获99%的颗粒物(尘埃、煤尘和其他对肺部有害的颗粒),同时保持77%的透明度。崔博士说,相比之下,普通纱窗的透明度为80%至85%。在测量了吸收率后,科学家估计,在重污染情况下,这样的纱窗可以连续300多个小时捕获空气中的颗粒物。最终滤网变得不透明。这是滤网上积满颗粒物的信号。颗粒物粘得太牢,无法冲洗掉。崔博士说,滤网要足够便宜,简单扔掉就行。科学家正在研究一种方法来实现这一点,比如一种纳米纤维敷料,可以覆盖在普通纱窗上,用完后再剥下来。
  • 化学式情人节:“钠妹妹”和“氯哥哥”
    一提&ldquo 氢氦锂铍硼&rdquo ,你会不会就条件反射地接上&ldquo 碳氮氧氟氖&rdquo ?高中化学元素性质和方程式这些年来耗费了多少学生的脑细胞!近日,一条漫画科普帖在微信热传,复旦大三学生方方创作的化学故事漫画巧妙地将元素知识镶嵌其中,以钠元素的神奇历险故事,将各个元素的特性和常见化学反应做了个概述。创作者介绍这套漫画的故事情节主要是按照高中化学教材编写的,旨在和高中生一起,从另一个角度看待平时所学的化学知识。  &ldquo 钠妹妹&rdquo 串起元素知识  学化学时,元素的性质和各种化学方程式曾让不少人头疼。如今复旦大学化学系大三学生方方创作的钠MM(妹妹)的故事用一种生动形象的形式把这样一个化学记忆难题给解决了。  故事围绕一个住在煤油中的钠MM和她的男友氯GG(哥哥)展开。讲述了化学性质活泼的钠在离开煤油的保护后,与氯相遇并芳心相许,随后二者在爱情道路上历经种种考验&mdash 他们遇到水分子大军,被迫分离,然后钠MM又遇到了强劲的情敌银小姐&hellip &hellip 经历一番波折后,钠MM终于和氯GG踏上了一段神奇的旅程,他们遇到了许多元素,发生了一系列神奇的故事。  故事用钠MM遭遇的各种考验,将元素周期表中的元素及其化学性质做了一个简单的概述。可爱的漫画,加上生动形象的故事情节,让这些化学知识变得通俗易记。  趣味漫画诠释高中化学  为什么会选择这样的视角来讲述一个化学世界的故事?方方告诉记者,因为化学是自己擅长和熟悉的领域,而且她在高中化学的学习过程当中有时会冒出一些奇思妙想,并且有一套属于自己的理解方法,因此想用漫画的形式将自己的见解呈现出来。  &ldquo 我的大学辅导员曾做过高中化学教育,在一次聊天中,他谈到高中生刚学化学的时候,很多人反映那些化学元素的性质、化学反应方程式很难记忆和理解。我们就探讨是不是可以换一种直观、生动的方式来重新诠释高中化学知识,让学生更容易接受。&rdquo 方方说。因为十分喜欢画画,她的辅导员就建议可以用画画的形式将自己对化学知识的理解呈现出来。  &ldquo 我高中的化学老师很棒,他教课时并非照本宣科,而是有自己的一套理解体系。授课中他会把他对化学独到的见解传授给我们。例如他常常告诉我们化学就是说文解字  讲解乙烷的构象时,会加上动作,声情并茂地说,这个张牙舞爪的乙烷啊&hellip &hellip 因此,化学老师的方法给了我许多启发,我就想,可从另一个角度去理解和记忆化学知识,而不是单纯地死记硬背。&rdquo 她说。  方方介绍,目前的故事情节主要是按照高中化学教材来编写的,以钠的神奇经历把高中所有的元素知识都串起来。她说高中化学基础主要有两条线,一条是元素的性质,一条是理论和概念,钠MM的故事主要是讲前者,目前该系列讲到第9期,讲完这一系列,她准备再用一个系列讲讲高中化学理论知识。  &ldquo 这一系列的漫画主要希望面对高中生进行化学科普。漫画在我的公众号ChemisArt上推出后,就有不少良性互动。我希望这个平台能让更多人参与进来,看看大家尤其是正在学高中化学的中学生的反馈如何,以便决定下一步该怎么走。&rdquo
  • 【瑞士步琦】喷雾干燥技术制备裸 siRNA 干粉吸入剂
    喷雾干燥技术制备裸 siRNA 干粉吸入剂自从 RNA 干扰(RNAi)在 20 多年前被发现以来,利用这种基因沉默机制来治疗疾病引起了科学家的关注。小干扰 RNA(siRNA) 是一类双链 RNA 分子,长度为 20-25 个碱基对,类似于 miRNA,并且在 RNAi 途径内操作。它干扰了表达与互补的核苷酸序列的特定基因的转录后降解的 mRNA,从而防止翻译。因此它们可以被设计成沉默任何特定蛋白质的表达,通过 RNA 干扰沉默基因治疗各种呼吸系统疾病,这已在动物和临床研究中得到了广泛的研究。siRNA 是一种亲水性、带负电荷的大分子,不能穿透生物膜,需要一个递送载体来促进细胞摄取,以便 siRNA 在细胞中发挥其基因沉默作用。在许多体内研究中,siRNA 与递送载体结合,并通过静脉给药,递送载体可保护 siRNA 免受核酸酶降解和血清蛋白结合。对于呼吸系统的局部效应,吸入是一种有利的给药途径。在酶活性最低的作用位点可以实现高药物浓度,其非侵入性提高了患者的依从性并降低了总治疗成本。肺部给药带来的另一个吸引点是,可能不需要专门的给药载体,而且裸 siRNA 可获得令人满意的基因沉默效果,这一点已在一些研究中得到证实。但关于 siRNA 的研究中,使用液体气溶胶的研究相对较多,干粉可吸入制剂研究较为有限,本篇文献中科学家重点研究了将裸 siRNA 以及和不同分散载体如甘露醇和L-亮氨酸通过喷雾干燥进行制剂来考察 siRNA 制备干粉可吸入制剂的可能性。 1实验材料和方法表1 显示采用超纯水溶解制备甘露醇、L-亮氨酸、 HSDNA 和 siRNA 水溶液,所有溶液的总溶质浓度均为 1.5% w/v。仪器参数:BUCHI Mini Spray Dryer B-290 & B-296 形成闭环模式加热温度80℃,吸气率为90%(干燥气流约35m3/h),进料速率 1.4ml/min,雾化气体流量 742L/h。双流体喷嘴,喷冒孔径 1.5mm。料液进行雾化干燥,得到的干燥粉末通过旋风分离器收集到玻璃小瓶中,粉末样品收集后室温下保存在带硅胶的干燥器中。将各粉体通过凝胶阻滞试验、粒度检测、SEM、XPS、PXRD 和 HPLC 等方式进行物理化学表征。▲ BUCHI 喷雾干燥仪 B-290 & 296 2结果表2 通过激光衍射测量粉末的粒度,2% siRNA 的体积直径较大,范围为 2.6-8.0um,可见随着配方中 L-亮氨酸含量的增加,粉末的粒径减小。▲ BUCHI Mini Spray Dry B-290 & 296图1 采用凝胶阻滞试验检测喷雾干燥后 siRNA 的结构完整性。所有三种粉体中的 siRNA 均保持完整,喷雾干燥后未观察到降解。图2 采用 HPLC 色谱检测结果与凝胶阻滞测定结果一致,从喷雾干燥后造粒粉体中获得的 siRNA 光谱和喷雾干燥前的相应料液中获得的光谱几乎相同(峰重叠)。图3 通过 SEM 观察粉体形态,无亮氨酸粉末显示相对光滑的表面球形,随着亮氨酸的增加,颗粒表面变粗糙,球形变差。当含有甘露醇和L-亮氨酸等质量制剂时,颗粒坍缩,失去球形。 3结论在这项研究中,香港大学和悉尼大学的科学家首次使用喷雾干燥技术将 siRNA 的裸形式配制成可吸入的干粉。研究了 siRNA 与甘露醇和 L-亮氨酸共混合后进行喷雾干燥造粒,过去没有 siRNA 载量 >2% w/w 的吸入型 siRNA 粉剂(含递送载体)的报道。同时 siRNA 经喷雾干燥后,即使没有通常用于络合或封装保护的 siRNA 的递送载体,也能成功保持其完整性;siRNA 粉末呈结晶状,残余水分低,这是稳定配方的关键特征,但含水量都在 5%以下,说明喷雾干燥具有良好的工艺可行性。最后掺入 L-亮氨酸富集在颗粒表面,显著促进了粉末的分散性,改善了 siRNA 粉末的雾化效果。并通过X射线光电子能谱检测,结果表明,L-亮氨酸在颗粒表面富集,作为分散增强剂,能够有效促进粉末的分散。再检测的不同 siRNA 配方中,含 50% w/w L-亮氨酸的 siRNA 表现出最佳的空气动力学性能,其高发射分数(EF)约为 80%,适度的细颗粒分数(FPF)约为 45%,对于干粉吸入剂具有很好实际参考意义。更重要的是,通过凝胶阻滞试验和 HPLC 评估,成功地保留了 siRNA 的完整性,确保了药物的活性!使用瑞士步琦喷雾干燥技术,可以轻松获得 1-5um 粒径的粉末颗粒,同时瑞士步琦提供低温条件下温和干燥生物制剂样品的多种解决方案,全新喷雾干燥仪 S-300 具有样品温度多重监控和保护工艺设计,保护您的珍贵样品,如需咨询相关内容更多干燥产品信息,请联系我们! 4文献来源Inhaled powder formulation of naked siRNA using spray drying technology with L-leucine as dispersion enhancer
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 独家专访|顾景凯教授畅谈小分子药物与纳米药物的药代动力学发展与挑战
    2002年SCIEX发布4000 QTRAP®系统产品时,首次将QTRAP®质谱推向市场,该质谱技术是一种将三重四极杆串联质谱与线性离子阱质谱高度结合的复合技术,可同时高灵敏地进行有机物的定量定性分析,目前已广泛应用于药物研发的各个阶段,同时也应用于蛋白、多肽的分析,是药物定性定量的分析利器。  2022年是SCIEX QTRAP®质谱进入中国的第20个年头,吉林大学顾景凯教授是QTRAP®质谱在中国的首批用户之一。作为药物研发领域的资深专家,顾教授不仅见证了“中国创新药物”市场突飞猛进的发展,也感受到QTRAP®质谱分析技术助力药物研发时的强劲推力。  药物分析贯穿药物从研发到上市乃至整个药物的生命周期,为药物研发和应用的全链条提供关键的技术和方法。随着纳米科技的迅速发展,纳米药物在疾病的早期诊断、预防和治疗等方面发挥出越来越重要的作用。为适应纳米药物相关的物理、化学及生物学特性,各种分离分析技术得以开发应用,那么当前纳米药物成分分析的常用方法有哪些?高分子药用辅料体内分析又面临哪些难题与挑战?未来纳米药代动力学研究的发展趋势如何?带着这些问题,仪器信息网特别采访了吉林大学顾景凯教授,与他进行了深入的交流。  吉林大学 顾景凯教授  相辅相成:仪器技术革命加速药物分析发展  2021年生物学界公布了一项重要研究进展,人工智能(AI)技术已能精准预测上万对蛋白质的三维结构,其工作量及效率远超多年来该领域科学研究者人力工作的总和。消息一经公布便引发全球关注,该进展也随之被顶级期刊Science、Nature评选为年度技术之一。这一现象背后,反映的是人类科学研究的革命、科学探索的迭代升级,都离不开科学技术/仪器技术的精进。  20世纪70年代,气相色谱、液相色谱、电化学分析和毛细管电泳分析等先进的仪器分析技术逐渐被用于药物及其制剂的常规杂质检查和定量分析。进入80年代后,为了适应新药研发,满足生物样品分析量少、药物浓度低等要求,各种微量和超微量分离分析技术得以开发应用。其中,最常用的分析方法有免疫测定法、气相色谱法、高效液相色谱法、高效毛细管电泳法及各种联用技术如气相色谱-质谱联用,液相色谱-质谱联用等。“90年代我们使用气相色谱法开展小分子药物分析,当时离子源技术不过关,联用质谱技术发展还不成熟,对现在来说司空见惯的肽、蛋白质、糖、核苷酸等化合物分析,在当时简直是不可思议的事。我最早是在1995年用热喷雾液相色谱-单四极杆质谱(LC-MS)开展药物分析研究,当时的仪器只能做全扫描和SIM(选择离子检测模式)。由于当时质谱技术分析化合物时的灵敏度与选择性不够高,致使药物的定性和定量分析研究工作进展非常有限。1997年以后,我开始全面接触基于大气压离子源(API,包括ESI与APCI)的液相色谱-串联质谱联用技术(LC-MS/MS),那时候全国医药口的LC-MS/MS还仅是个位数,当时我就察觉到,如果能利用结合了强大液相色谱分离能力及质谱的高选择性、高通量和高灵敏度的LC-MS技术替代传统方法去开展药物代谢和药代动力学的研究工作,也许一周就能完成当时传统分析方法三年的工作量。而且,LC-MS/MS技术从通量、灵敏度、定性和定量等各方面可以把研究结果提高几个数量级,所以我真切感受到技术革命带来的最大变化是研究者可以利用技术创新完成原来做不到的事情。近三十年间,我见证着质谱仪器相关技术的更新发展,我的研究内容也随之不断拓展和延伸,从最初的小分子药物向如今非常火热的大分子、高分子以及纳米药物逐步扩展”,顾景凯说道。  近几十年,药物分析技术的发展也从体外到体内,从小样本到高通量,从人工到自动化,由单一技术到联用技术。随着医学和生命科学的迅速发展,药物分析科学也呈现出多学科交叉融合的特点及优势,在此基础上发展起来的一系列质谱技术、超微量分析手段,被广泛用于新药研发、药品生产和临床应用的每个环节。  高分子药用辅料及其PEG化药物的定性与定量分析方法的创新突破  纳米药物的核心是药物的纳米化技术,包括药物的直接纳米化和纳米载药系统。纳米给药系统是对药物进行靶向递释、降低药物毒副作用的新手段。随着聚合物纳米载体在设计、合成方面不断取得进展,聚合物纳米材料在纳米给药系统中得到了广泛的应用。  聚乙二醇(Polyethyleneglycol, PEG)是美国食品药品管理局(FDA)认证的无毒、无害且具有良好生物相容性的生物医用高分子材料,常用作与亲水端来修饰药物和纳米制剂。聚乙二醇化(PEG化)是一种将聚乙二醇聚合物以共价方式连接到治疗药物上的技术,具有增加药物水溶性、降低毒性、延长药物循环半衰期以及减少酶降解作用提高生物利用度等优点。但对于PEG这类分子量不唯一,且呈多分散性的高分子聚合物,常用的质谱定量分析方法要实现精准定量还存在多方面的挑战。顾景凯团队近期在国际上率先公开发表了关于PEG、单价与多价态PEG化前体药物及代谢产物定性定量分析的文章,是高分子聚合物全轮廓定量与定性分析领域的一大突破,目前该方法已成功获得中国发明专利授权。  相比于单一直链型PEG,多价PEG化小分子药物可以大大提高载药量。然而,其体内动态释药规律及药代动力学过程也要比单一直链型PEG化药物要复杂的多。多价PEG化小分子药物除了围绕PEG化药物、PEG及游离药物等部分外还要同时考察不同价态PEG化药物的体内变化规律。随之而来对分析检测方法的考验更加严峻,基于此顾景凯团队利用SCIEX的高效液相色谱-四极杆串联飞行时间质谱技术,采用TripleTOF质谱的全谱分析模式(TOF-MS与MSAll),先通过高效液相色谱将样本中的多价PEG化药及其体内不同形态代谢产物的混合物进行分组分离,使同一组内的同分异构体或同系衍生物具有相同的液相保留行为,再通过质谱选取共有特征性碎片实现各组分的绝对定量,意即在全扫描模式下,所有待测物在Q1中全通过,在Q2过程中经适宜的碰撞能(CE)将待测物打碎,TOF质量分析器扫描通过的全部子离子,获得所有碎片的精确质量信息,然后进行定性与定量分析。  正如上文介绍的,顾景凯团队提出创新性分析方法,突破了串联质谱所无法全轮廓定量分析高分子药用辅料或PEG化药物的技术难题,使高分子聚合物或药物的全轮廓定量分析成为可能。当前越来越多的研究表明,许多过去被普遍认为是无活性的聚合物纳米材料可能具有某些活性或毒性。因此,建立针对聚合物纳米材料的体内定量分析方法,全面、深入地研究聚合物纳米材料的体内命运具有非常重要的药理学与毒理学意义。  直面高灵敏度定量定性分析挑战: SCIEX QTRAP®质谱大显身手  药代动力学是定量研究药物在生物体内吸收、分布、代谢和排泄的动态变化规律, 并阐明不同部位药物浓度与时间关系的科学。由于药代动力学的硬性要求,其对仪器的灵敏度、选择性以及分析通量等方面都提出非常高的要求。  “曲普瑞林是由十个氨基酸组成的合成肽,用于治疗激素反应性癌症,比如前列腺癌和乳腺癌,当前该药物已在市场上广泛应用。对于多肽类药物分析来说,由于其与内源性肽和蛋白质的质荷比相近的非常多,背景化学干扰非常强,所以对这类药物分析存在两大挑战,即灵敏度和选择性。通常使用三重四极杆串联质谱进行常规分析时,尽管利用了前端固相萃取净化,高效液相色谱分离以及MRM(多重反应监测技术)母离子选择性极高的分析手段,我们仍然发现有很强的背景干扰,并且信噪比达不到药代动力学的准确定量要求。由于QTRAP® 质谱是将三重四极杆串联质谱技术与线性离子阱质谱技术高度结合的复合技术,所以我们引进了QTRAP® 质谱技术,在四极杆选择、打碎的基础上,利用线性离子阱再次裂解即可获得选择性很高的孙离子。由于离子阱同时具有很强的离子富集功能,这时利用孙离子进行定量分析,就可以大幅度地提高灵敏度,我印象中提高了十几倍,因此成功地满足了药代动力学的定量要求。我们利用 QTRAP® 6500系统成功建立了多肽药物曲普瑞林的分析方法,这让我印象非常深刻。“顾景凯介绍道。  顾教授与研究生同SCIEX QTRAP质谱合影照片  推进超低浓度、超强干扰药物分析与纳米药代动力学:串联质谱与差分离子淌度大有可为  “不仅如此,我们还曾开发了一种选择性好、灵敏度和分析通量高的利马前列素分析方法。利马前列素临床使用剂量极低,用于后天性腰椎管狭窄症的给药剂量为5μg,达峰浓度(Cmax )仅为1.2 pg/mL,这要求利马前列素的定量下限至少达到0 .1~0 .2 pg/mL。同时,体内存在数十倍于利马前列素达峰浓度的内源性化学背景干扰,可以说该药物体内分析面临着以上“瓶颈”问题。  “基于此,我们的分析方法是通过液相色谱、SelexION™差分离子淌度(DMS)和SCIEX QTRAP® 6500系统三维度分离分析相结合的策略,可降低对液相色谱分离度的要求,缩短了分析时间,提高分析通量,有效避免基质中内源物干扰,减少必需萃取次数,缩短了样品处理时间,在国内率先成功地完成了利马前列腺素片的人体BE评价研究工作。“顾景凯介绍说。  ”这是国际上首次采用DMS-MS/MS实现了如此低药物浓度的准确定量分析,并且我们依照国家药品监督管理局药品审评中心相关技术指南的要求,前后共完成了7500个生物样品的分析,这也是差分离子淌度技术首次用于如此多的生物样品分析评价工作。“顾景凯补充道。  顾景凯也坦言,当前纳米给药系统的研究进展,国内已处于国际前沿,并且个别领域是国际领先。纳米药物载体的设计属于纳米药物产业上游,发展非常迅速,但针对纳米药物的药代动力学研究,国内外相对来说,是严重滞后纳米药物的设计与制备的,当前药物分析技术的能力远远达不到对纳米给药系统体内命运精准评价所提出的要求,目前主要还是主要依靠下游的药效或毒性评价来间接反映其体内命运,这严重制约了纳米药物的临床转化成功率。下一步需要通过新型的分离与分析手段,进一步推进纳米药代动力学研究的进程。  对于下一步的研究计划,顾景凯表示,当前团队研究方向主要有三方面,一是多糖类药物的分析 二是mRNA、LNP疫苗不同形态的体内准确分析 三是高分子药用辅料准确定量和定性分析。此外其团队也在开展基于药代动力学性质的前体药物设计合成,目前作为主要参与单位的前体药物已经上市,同时还有两个作为负责单位的前体药物处于IND研究阶段。
  • 生态环境部:氢氟碳化物管控将纳入国内法律法规体系
    在2021年7月26日生态环境部例行新闻发布会上,生态环境部新闻发言人刘友宾就氢氟碳化物(HFCs)管控回答记者提问时表示,中国将把HFCs管控纳入国内法律法规体系。 南方都市报记者:据了解,中国日前正式接受了《〈蒙特利尔议定书〉基加利修正案》,并将于9月15日生效。请问我国接下来在履行修正案和氢氟碳化物管控方面有哪些安排?   刘友宾:2021年4月16日,国家主席习近平在出席中法德领导人视频峰会时,正式对外宣布中国已决定接受《〈蒙特利尔议定书〉基加利修正案》(以下简称《基加利修正案》),加强氢氟碳化物(HFCs)等非二氧化碳温室气体管控,开启了中国履行《蒙特利尔议定书》和应对气候变化行动的历史新篇章。2021年6月17日,中国常驻联合国代表团向联合国秘书长交存了中国政府接受《基加利修正案》的接受书。该修正案将于2021年9月15日对我国生效(暂不适用于香港特别行政区)。HFCs是消耗臭氧层物质(ODS)的常用替代品,虽然本身不是ODS,但HFCs是温室气体。《基加利修正案》的实施,将对保护臭氧层和应对气候变化带来显著的环境效益,作为发展中的大国,我国在未来《基加利修正案》实施过程中,将付出艰辛的努力。但同时也给产业发展带来了新的契机。作为国际社会负责任一员,我们将严格履行国际承诺,与各缔约方开展务实、透明、深入的国际合作,为全球环境治理贡献力量。   一是将HFCs管控纳入国内法律法规体系。修订《消耗臭氧层物质管理条例》,启动调整《中国受控消耗臭氧层物质清单》和《中国进出口受控消耗臭氧层物质名录》,将HFCs纳入法律法规和《蒙特利尔议定书》履约工作管控范围。二是将HFCs削减计划纳入《中国逐步淘汰消耗臭氧层物质国家方案》。开展HFCs数据收集分析和行业调研,研究提出HFCs未来实施削减的领域和路线图、政策管理措施。   三是建立和实施HFCs进出口许可证制度。联合有关部委启动HFCs进出口商品编码工作,开展国家消耗臭氧层物质进出口审批系统的增容改造,将HFCs纳入审批系统。   四是研究出台三氟甲烷(HFC-23)管控政策。《基加利修正案》共管控物质18种,其中17种作为商品生产和使用,HFC-23是化工工艺过程中无意排放的副产物。我们将按照要求,研究制定HFC-23管控政策,规范和指导相关企业的HFC-23控排工作。
  • 丹纳赫Q2销售额58亿美元 暂不考虑拆分PALL业务
    Q2大事件:  7月2日,丹纳赫宣布完成集团拆分,从Q3开始丹纳赫财务报表将只涵盖四个业务领域:生命科学(LifeSciences),诊断(Diagnostics),牙科(Dental),环境及应用解决方案(Environmental& Applied Solutions)。而其他工业业务将归入(Fortive Corporation)。(Q2的财务数据依然涵盖所有业务领域)。此外,丹纳赫中国区总部搬迁至上海虹桥商务区。全球业务概览: 丹纳赫Q2销售额58亿美元,增长16.5%,有机增长2%。如果分New Danaher和Fortive来看,前者有机增长3%,而后者销售额略微下滑。 整体毛利率54.4%,营业利润率仅为17.9%。每股收益EPS为1.25美元。按业务部门Life Sciences – 销售额增长5%Beckman LS – 实现8%高速增长,驱动主要来自北美和中国市场对流式细胞仪的强劲需求,而流式细胞仪产品线的业绩增长则最主要来自几年前收购的中国公司赛景相关技术产品CytoFLEXLeica – 2-3%销售额增长,主要来自两款新产品对业绩的贡献(DVM6数字显微镜和M530神经外科显微镜)SCIEX – 增长5%,制药、食品和环境检测市场增长强劲,尤其是在中国市场Pall – 增长5%,其中Pall LS实现双位数增长,主要由来自生物制药行业的需求推动,而Pall Industrial则出现单位数下滑Molecular Devices – 此次财报并未提及Diagnostics – 销售额增长2%Beckman Dx – 增长1-2%Radimeter – 增长4%左右,中国和西欧市场表现抢眼Dental – 销售额增长4%,设备和耗材均平稳增长,中国地区继续保持双位数高速增长Environmental – 销售额增长6%Hach – 6%增长,美国、西欧和中国市场均表现抢眼,在线监测解决方案有不错业绩表现Trojan – 8%增长ChemTreat – 2%增长Industrial Technologies – 销售额下滑1%按地域美国 – 业绩与去年同期持平西欧 – 3-5%增长日本 – Q2业绩有所下滑中国/印度/拉美/俄罗斯等高增长市场 – 整体5-7%增长中国业绩:  整体实现双位数增长,其中Dental,Life Science中的Beckman,SCIEX,Pall LS,以及Environmental中的Hach增速可观。其他业务据公开信息尚无法判断。特别关注:  丹纳赫总裁兼首席执行官Thomas P. Joyce、特别提到,虽然Pall Industrial业务与Life Science行业没有直接关系,但目前依然会将其与Pall Life Science作为一个整体运营,并持续评估,短时间内不会将Industrial部门从Pall中拆分出来。(注:拆分并非剥离出售)
  • Nature:无糖也不健康,三氯蔗糖降低免疫细胞活性,抑制免疫反应
    三氯蔗糖,是一种常见的人造甜味剂,比糖甜约600倍,常用于饮料和食品中。与其他代糖一样,它的安全性仍然尚未完全了解。 2023年3月15日,英国弗朗西斯克里克研究所的研究人员在国际顶级期刊Nature上发表了一篇题为" The dietary sweetener sucralose is a negative modulator of T cell-mediated responses "的研究论文。该研究表明,高剂量的三氯蔗糖会限制小鼠T细胞增殖和分化,从而降低免疫细胞活性,喂食高剂量三氯蔗糖的小鼠,对癌症或感染反应时激活T细胞的能力较差。 重要的是,如果这一发现在人类身上得到证实,那么就可以利用三氯蔗糖抑制免疫反应的能力,治疗人类的自身免疫性疾病,例如,1型糖尿病和类风湿性关节炎等。图1 研究成果(图源:Nature) 在该研究中,研究人员测试了三氯蔗糖对小鼠免疫系统的影响,给小鼠服食高剂量的三氯蔗糖,这一剂量高于正常人类饮食中的量,接近欧洲和美国食品安全当局推荐的最大量,相当于人类每天喝10灌含三氯蔗糖的碳酸饮料。研究发现,高剂量的三氯蔗糖会限制小鼠T细胞增殖和分化,从而降低免疫细胞活性。 从机制上讲,三氯蔗糖会影响T细胞的膜顺序,同时降低T细胞受体信号传导和细胞内钙释放的效率。喂食高剂量三氯蔗糖的小鼠,对癌症或感染反应时激活T细胞的能力较差,对其他类型的免疫细胞没有影响。 研究人员表示,在日常饮食中,人们不必过于担心,因为在日常食物中很难摄取到实验中的三氯蔗糖水平。相反,如果这一发现在人类身上得到证实,那就有希望开发一种治疗人类自身免疫性疾病的方法,即在人类身上使用更高治疗剂量的三氯蔗糖,有助于减轻过度活跃的T细胞的有害影响。 研究人员还表示,我们观察到的对免疫系统的影响似乎是可逆的,我们认为三氯蔗糖是否可用于改善自身免疫等疾病,尤其是在联合疗法中,可能值得研究。 下一步,研究人员现计划进行试验,以测试三氯蔗糖是否对人类有类似的作用。不仅如此,三氯蔗糖可以通过影响肠道菌群来影响人类健康。 2022年8月19日,魏茨曼科学研究所的研究人员在Cell上发表了一篇题为" Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance "的研究论文。研究发现,人造甜味剂,尤其是三氯蔗糖,在人体内并不是惰性的,它们会影响人体肠道微生物,从而改变人体血糖水平。 此外,三氯蔗糖还增加心血管疾病风险。2022年9月7日,世卫组织、巴黎大学的研究人员在《英国医学杂志》(BMJ)上发表了一篇题为" Artificial sweeteners and risk of cardiovascular diseases:results from the prospective NutriNet-Santé cohort "的研究论文。研究表明,人造甜味剂总摄入量与心血管疾病风险增加9%相关,与脑血管疾病风险的增加更显著,高18%。 对人造甜味剂分类研究发现,阿斯巴甜的摄入与脑血管事件风险增加17%相关,乙酰磺胺酸钾和三氯蔗糖与冠心病风险增加40%和31%相关。其中,三氯蔗糖与冠心病风险显著相关。综上,研究表明,人造甜味剂不是糖的健康和安全替代品。
  • 五香驴肉潜规则:以狐狸肉冒充驴肉是常态
    “出售貉子肉,用途很广,看您有头脑没头脑。”  这是《第一财经(微博)日报》记者在河北秦皇岛“立海貉子肉厂”的公司网站上看到的一句话。  据该公司网站介绍,“大量出售貉子肉、白条(扒皮去内脏)、混肉(肋排和胸脯肉腿肉的混肉)、全腿肉,跟狗肉一样全瘦肉,是猪牛羊肉、狗肉的最佳的替代品,可做肉松、肉丸子、香肠、腌制品等等。”  位于山东省的临沂信通特种肉加工厂在其公司网站“貉子肉产品详情”中也介绍,主营产品有狐狸肉、貉子肉、水貂肉,产品可做香肠、肉干、肉串、罐头、熟食等。  2013年12月28日,山东省禹城市公安部门对外宣布,经检测,涉嫌五香驴肉掺假的德州福聚德食品有限公司产品检出狐狸肉成分,目前厂家老板已被警方刑拘。  12月30日,山东省食品药品监督管理局发出紧急通知,停止销售德州福聚德食品有限公司五香驴肉产品。这个问题驴肉最早是在济南市沃尔玛超市发现的。  记者从一家毛皮协会了解到,尽管在养殖、肉类加工和餐饮行业,貂肉、貉肉、狐狸肉充当其它的肉类来卖早已是行业的秘密,但大家对此都讳莫如深,很是默契。  “这事你就不要再继续追了。”一家毛皮协会的负责人对记者说。  目前,销售貂肉、貉肉、狐狸肉等“特种肉类”的厂家多集中的山东、河北、吉林等毛皮动物养殖区。  “这些肉大多进了肉联厂和大小餐馆,充当其它的肉卖。”记者在河北省昌黎县采访时,一家养殖场的负责人对记者说。  记者查询多个厂家的信息发现,每吨貉子肉的销售价格在4000元上下,而市场上每吨猪肉的销售价格约8000元,每吨牛肉、羊肉的销售价格分别约16000元、18000元。也就是说,用貉子肉充当猪牛羊肉,利润空间十分可观。  这位养殖场的负责人告诉记者,“每只貉子养殖成本约200元。貉子剥了皮之后,一张貉子皮可卖500元左右。剩下的肉要么打碎做饲料再喂给貉子吃,要么就等着人来收,送肉联厂。”2013年,这家养殖场出栏了10万只狐狸和貉子。  而在素有“中国养貉之乡”的整个昌黎县,每年狐狸、貉子、水貂的养殖数量都在1200万只以上,其中,很大部分的貂肉、貉肉、狐狸肉,或保鲜、或冷冻、或加工成熟食后,被销往全国各地。  据中国食品土畜进出口商会此前发布的《中国毛皮产业现状与发展趋势报告》介绍,目前,我国的毛皮动物养殖区分散、地域跨度大。养殖区分布在山东、辽宁、河北、黑龙江、吉林、江苏、内蒙古等14个省(自治区、直辖市),主要养殖区集中在山东、辽宁、河北、黑龙江和吉林境内。  截至2011年8月,全国养殖水貂3455.79万只、狐狸1309.4万只、貉子1990.81万只、獭兔500万只。  据记者了解,从毛皮动物养殖、毛皮生产加工、毛皮贸易和零售,以及由此带动的饲料、兽药、机械、加工等行业,在许多地方已经形成了完整的产业链和利益链。  从1956年到2008年,中国的毛皮动物养殖产业共创造价值2500亿元。2010年,中国毛皮行业总产值426.8亿元人民币,其中出口额为128亿元人民币,国内零售额为300亿元人民币,整个毛皮产业从业人员近700万人。中国一跃成为毛皮动物(狐、貉、貂、獭兔等)养殖与裘皮加工大国。  当然,上述的统计并没有将“特种肉类”的销售、加工人员和产值计算在内。  据记者了解,沃尔玛“五香驴肉”事件发生后,沃尔玛表示将在济南市全面召回所售商品。为了表示对顾客的歉意,沃尔玛对购买过该商品的顾客给予合理的补偿,同时表示将积极配合工商及食药监部门对此事的进一步调查,并将采取法律行动追究相关责任方的法律责任。  事件发生后,沃尔玛中国立即成立了由沃尔玛中国总裁兼首席执行官高福澜(Greg Foran)领导,由沃尔玛中国首席合规官骆启德(Rob Chester)牵头负责,由合规、法律、采购等多个部门组成的工作小组。  高福澜对记者表示,此事对沃尔玛来说是“深刻的教训”。12月31日,沃尔玛宣布将尚未列入国家相关标准要求的DNA的检测正式纳入易掺假的肉制品抽检,包括牛肉、羊肉、驴肉、鹿肉等肉制品。  中国连锁经营协会此前发布的《食品安全责任溯源制度研究报告》也建议,建立“尽职免责”的“责任溯源”司法体制,改变目前行政追责分段管理的模式,真正形成从终端到源头的倒逼机制,提高我国的食品安全管理水平。文章转载自:一财网
  • 春节中的化学:烟花何以五彩缤纷
    一、爆竹中的化学  中国民间有&ldquo 开门爆竹&rdquo 一说。即在新的一年春节到来之际,家家户户开门的第一件事就是燃放爆竹,以&ldquo 噼里啪啦&rdquo 的爆竹声除旧迎新。春节燃放爆竹的同时,民间还喜欢放烟花。烟花没有爆竹清脆的声响,但却有变幻无穷、色彩纷呈的图案。绚丽多彩的烟花与声声爆竹相辉映,将节日的夜空装点得热闹非凡。  我国人民燃放烟花爆竹已有二千多年历史。每逢喜庆日子,人们为了增加节日的欢乐气氛,燃放烟花爆竹。  爆竹的主要成分是什么?烟花在空中爆炸时,为什么会绽放出五彩缤纷的火花?燃放烟花爆竹可以增加节日的喜庆气氛,但是近几年来,我国许多大、中城市相继做出禁止燃放烟花爆竹的决定。这是为什么呢?  爆竹的主要成分是黑火药,含有硫磺、木炭粉、硝酸钾,有的还含有氯酸钾。制作烟花时是在火药中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色,所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  当烟花爆竹点燃后,木炭粉、硫磺粉、金属粉末等在氧化剂的作用下,迅速燃烧,产生二氧化碳、一氧化碳、二氧化硫、一氧化氮、二氧化氮等气体及金属氧化物的粉尘,同时产生大量光和热、而引起鞭炮爆炸。纸屑、烟尘及有害气体伴随着响声及火光,四处飞扬,使燃放现场硝烟弥漫,硫氧化物、氮氧化物、碳氧化物等严重污染空气。这些气体对人的呼吸道及眼睛都有刺激作用。燃放鞭炮不仅污染空气,飞扬的纸屑、烟尘落在地面上,还会影响清洁卫生。同时爆炸声如雷贯耳,据测定单个闪光雷爆炸时,其噪声至少在130分贝(dbA)以上,成为噪声公害。此外,每逢春节,由于燃放鞭炮而引起火灾,炸伤手臂、面部或眼睛的事故屡见不鲜。因此,禁止燃放烟花爆竹,对于保护环境,维护人民的正常生活秩序,都是十分有利的。  二、五彩缤纷的烟花  过春节时,家家户户都喜欢烟花。烟花是由筒壳体(纸、塑料、薄金属片等材料制成),烟火剂,封口物质,附件(如尾翼底座、横担、轴、杆),点火装置(如引线、擦火板、电点火头等)组成。它利用烟火剂燃烧或爆炸时产生的光、色、音响、气动、发烟等效应,使烟花成为一种供观赏品。  烟花是在火药(主要成分为硫黄、炭粉、硝酸钾等)中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色(即&ldquo 焰色反应&rdquo ),所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  除了金属和金属化合物外,人们还会在烟花里加入不同剂量的氧化剂、助光剂和黏合剂。氧化剂在燃烧时会产生大量氧气,起到助燃和使烟花颜色更加鲜艳的作用 助光剂能大大提高烟花的亮度 黏合剂则用来将粉末状的化合物组成大小不一的光剂颗粒。如果把这些颗粒按一定的规则排列,就可以制成不同图案的烟花。如&ldquo 向阳花&rdquo 中间一圈放上发黄色光的颗粒,周围放上发绿色光的颗粒,到天空爆炸后,就会形成一朵绿叶扶衬的向日葵,美丽极了。  烟花的颜色是由于不同金属灼烧,发生焰色反应颜色不同造成的。烟花是利用各种金属粉末在高热中燃烧而构成各种夺目的色彩的。使用不同金属就能产生不同效果,发出不同颜色的光芒  焰色反应:  钠(Na):黄 锂(Li):紫红 钾(K):浅紫 铷(Rb):紫  铯(Cs):紫红 钙(Ca):砖红色 锶(Sr):洋红 铜(Cu):绿  钡(Ba):黄绿  烟花爆竹的种类  按燃烧效果不同,可将烟花产品分为以下十类:  (1)喷花类:燃放时以喷射火苗、火花为主的产品   (2)旋转类:燃放时烟花主体自身旋转的产品  (3)升空类:燃放时,由定向器定向升空的产品   (4)吐珠类:从同一筒体有规律地发射多珠的产品   (5)线香类:用装饰纸或薄纸筒裹装烟火药或在铁丝、竹杆、纸片上涂敷烟火药形成的线香状产品   (6)地面礼花类:放置在地面,从筒体内发射并在空中爆发出焰药效果的产品   (7)烟雾类:产生烟雾效果为主的产品   (8)造型玩具类:产品外壳制成多种形状,燃烧时或燃烧后能模仿所造形象或动作的产品   (9)小礼花弹类(直径不大于38mm):弹体从发射管中发射到空中后,能爆发出各种花型图案或其他效果的产品。
  • 奔跑吧,analytica China—仪器信息网探仪之旅携千份大奖重磅登场
    p style="text-align: justify text-indent: 2em "2018年10月31日-11月2日,第九届慕尼黑上海分析生化展于上海新国际博览中心盛大召开。展会聚焦分析、诊断、生化技术和实验室技术,创新与深度齐飞,琳琅丰富的精彩活动让观众们目不暇接。但若你想边走边逛赢大奖,在“奔跑吧,兄弟”式的体验中,零距离领略仪器名企的魅力,那么由仪器信息网主办的“开启analytica China探仪之旅,赢精美礼品——走进仪器信息网品牌合作伙伴”活动(下简称探仪之旅)则绝对不容错过。/pp style="text-align: center text-indent: 0em "strongimg title="微信图片_20181031213552.jpg" alt="微信图片_20181031213552.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/ec995861-9f2c-4450-871f-3496e40ea773.jpg"/ /strong/pp style="text-align: center text-indent: 0em "strong参与者了解活动详情/strong/pp style="text-align: center text-indent: 0em "strongimg title="111.jpg" alt="111.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/b8dd1e71-d569-44b6-83f4-6f618bf50408.jpg"/ /strong/pp style="text-align: center text-indent: 0em "strong探仪之旅39家仪器厂商全名单/strong/pp style="text-align: justify text-indent: 2em "探仪之旅是仪器信息网助力第九届慕尼黑上海分析生化展的热势,联合安东帕、莱伯泰科、赛多利斯、海光、普兰德等业界39家知名仪器厂商,在展会期间推出的特色主题活动。活动有三大特色:/pp style="text-align: justify text-indent: 2em "strong特色之一,奖品丰厚/strong/pp style="text-align: justify text-indent: 2em "活动共设立特等奖、一等奖、二等奖、三等奖四类大奖,奖品种类多达数十种,1000余份。从爱美爱生活的手机照片打印机,到提升生活品质的加湿器,从电子控最爱的蓝牙耳机和键盘,到背包、雨伞、毛绒玩具,你的想象力有多大,活动的奖品就有多丰富。/pp style="text-align: center text-indent: 0em "strongimg title="initpintu_副本.jpg" alt="initpintu_副本.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/29814031-05f6-4c03-8b20-729be7d767d2.jpg"/ /strong/pp style="text-align: center text-indent: 2em "strong部分仪器厂商展位执行任务掠影/strong/pp style="text-align: center text-indent: 0em "strong img title="微信图片_20181031213536.jpg" alt="微信图片_20181031213536.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/81cc2b06-ea10-4c8a-965d-f7522610bb44.jpg"//strong/pp style="text-align: center text-indent: 2em "strong抽奖现场/strong/pp style="text-align: justify text-indent: 2em "strong特色之二,形式新奇有趣/strong/pp style="text-align: justify text-indent: 2em "探仪之旅采用任务驱动的类游戏模式,参与活动的用户第一步要前往仪器信息网展位E3.3724或有活动桌牌的厂商展位领取路线图,根据线路指引,到有红色或蓝色表示的展位完成指定任务。与展品合影发表微报道、关注厂商官方微信、完成厂商布置的指定任务,三个任务中只需完成任一任务即可获得印章一枚。集满10个以上厂商的印章,即可前往仪器信息网展台在仪器信息网APP上扫码抽奖(中奖率100%),集满20个以上印章的用户可获得额外礼品1份。/pp style="text-align: justify text-indent: 2em "strong特色之三,搭鹊桥,仪器厂商、用户心连心/strong/pp style="text-align: justify text-indent: 2em "通过活动充分促进仪器信息网用户与仪器厂商之间的互动交流,让用户在趣味盎然的有奖活动中,加深对仪器厂商产品特色和企业亮点的了解,也让仪器厂商了解第一手的用户需求。/pp style="text-align: center text-indent: 0em "img title="IMG_2927.JPG" alt="IMG_2927.JPG" src="https://img1.17img.cn/17img/images/201810/uepic/58cfaff4-5c1a-43f4-9ff6-e49c1e4925d6.jpg"/ /pp style="text-align: center text-indent: 0em "strong获奖观众与仪器信息网会务人员合影/strong/pp style="text-align: justify text-indent: 2em "活动得到了广大参会观众的积极参与和热烈响应,各个小分队迅速集结,在展会现场掀起逛展位、集印章、赢好礼的热潮,首日的参与人数已达数百人。“开展探仪之旅就好像亲身参与“奔跑吧,兄弟”一样,活动不仅有趣而且有意义,让我在获得了精美奖品之余,更对不同厂家的仪器有了更深入的了解。”一名获奖女士说出了参与活动观众们的心声。/pp style="text-align: justify text-indent: 2em "是不是为没有赶上活动而懊恼不已?不用后悔,不用伤心,探仪之旅一共将持续两天,11月1日,精彩活动继续,探仪之旅在仪器信息网展位(E3.3724),静候新成员的加盟。特别注意:探仪之旅仅有一名的特等奖品尚未抽出,无大奖,不集印,新的展会一天,让analytica China奔跑起来!更多关于展会现场的精彩活动和先锋报道,a style="color: rgb(0, 176, 240) text-decoration: underline " href="https://www.instrument.com.cn/zt/ac2018" target="_self"span style="color: rgb(0, 176, 240) "第九届慕尼黑上海分析生化展专题/span/a将为您持续呈现。/pp style="text-align: justify text-indent: 2em "strong仪器信息网精彩活动预告:/strong/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "仪器信息网仪友会暨仪器采购交流会 /span/strong/pp style="text-align: justify text-indent: 2em "strong主办单位:/strong仪器信息网(www.instrument.com.cn)、我要测网(www.woyaoce.cn)/pp style="text-align: justify text-indent: 2em "strong时间:/strong2018年11月1日上午(9:30-12:00)/pp style="text-align: justify text-indent: 2em "strong地点:/strong上海新国际博览中心E4 M25 会议室/p
  • 科学岛团队开发出一种纳米口袋自动捕获目标物分子的SERS方法
    近日,中国科学院合肥物质院健康所杨良保研究员课题组开发了一种AgNP/MoS2纳米“口袋”自动捕获目标物分子的表面增强拉曼光谱方法,可实现部分化学反应过程的高灵敏长时间动态监测。相关成果发表在分析化学顶刊 Analytical Chemistry 上,并且被选为当期正封面(图1)。   表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保研究员团队一直从事SERS方面的研究,在之前的研究基础上(DOI:10.1021/jacs.1c02169),团队在大面积单层纳米粒子膜上覆盖了二维材料MoS2(图2),制备成AgNP/MoS2纳米“口袋”,将其覆盖在待测目标物分子之上,采用多物理场模型的有限元模拟方法,分析了AgNP/MoS2纳米“口袋”结构在溶液和空气中的电场增强分布和溶液蒸发的动态过程。研究表明,该纳米“口袋”不仅具有高密度的热点,还具有主动捕获分子的能力,与单层Ag NP膜相比,覆盖MoS2后减缓了溶液的蒸发,延长了SERS检测的窗口期,同时进一步增强了电场。该结构可以实现长达8分钟的高灵敏度、高稳定性的SERS动态检测。此外,该结构还可用于检测抗肿瘤药物和监测血清中次黄嘌呤的结构变化。相关方法有望更多地应用于生物系统中物质转化或其他化学反应动力学的现场监测。   该工作的第一作者为健康所2019级博士生陈思雨、2018级博士生葛美红以及博士后翁士瑞。该项研究受到中国科学院科研仪器装备开发项目、国家自然科学基金、安徽省自然科学研究项目等资助。图1 Analytical Chemistry的正封面图2 (上) 通过在液液界面组装大面积单层纳米粒子膜(下)在大面积单层纳米粒子膜覆盖二维材料MoS2,形成的AgNP/MoS2纳米“口袋”
  • AFM vs. STM 分子级别分辨率成像技术
    如果你已经看过我上一篇介绍低电流STM成像的短文[i],那么那些HOPG上钴和镍八乙基卟啉(CoOEP 和NiOEP)自组装二维晶格子的高分辨STM图像一定会令你印象深刻。Roger也是一样,在看到那些图片之后,他向我建议可以尝试使用Cypher AFM的轻敲模式(调幅AC模式)来代替STM观察CoOEP的 晶格,因为我们知道Cypher AFM在空气中的成像质量相当稳定。当我把这个想法告诉Kerry Hipps教授时,他第一反应是“这不可能!”。我接着跟他说: “我非常确定这个是可行的。” 好吧,我承认我的倔强和执着,所以无论如何,我都要尝试一下这个“疯狂”的想法。我选择了一个尖锐,敏捷,硬度中等,悬臂为硅材料的镀金探针(FS-1500AuD探针)。 它的针尖半径为Rtip = 10± 2 nm,空气中的共振频率为fair≈1.5MHz,弹性系数为k≈6N / m。您也可以在我们的探针库找到它.当我将针尖接近样品表面时,样品表面的苯基辛烷薄层会立即吸附在探针悬臂上(见图1)。在这样一种气相-液相混合振荡介质中,针尖的共振频率会立即降到0.66 MHz。这种情况下的溶液需要大约10分钟之后才达到平衡,而在此之后,即使探针在表面移动也不会再次影响到溶液的稳定性。图1. 苯基辛烷/ HOPG界面处干涉条纹的时间序列图像。这些图像是通过Cypher ES顶视光学系统捕获的。当溶液吸附到AFM悬臂上时,苯基辛烷弯月面起到衍射器的作用而产生出干涉条纹。由于BlueDrive出色的光热激发稳定性,在平衡溶液中调谐悬臂后,我能够将自由驱动振幅和设定点分别稳定在~1.44 nm(90 mV)和~0.34 nm(21 mV)[iii] 。瞧瞧图2中的图像,CoOEP晶格渐渐在视野中显现出来,这里观察到的的~1.4 nm的晶格的分子间距和预期的理论值一摸一样!我向 Hipps教授展示了这组图片,他不得不惊叹地说一句 “Wow!”图2. 低振幅轻敲模式下CoOEP的分子晶格分辨率图像。 (A)扫描边长为100 nm。 (B)沿(A)中的白线的截面,从中可以清楚的观察到CoOEP分子有规则间隔。 (C)扫描边长为100nm 的3D图像。将图2继续放大后(见图3),我确信自己可以在一部分相位图中看到卟啉环结构。您可能会注意到的是,相比上一篇短文中的STM图像,这里的测量结果似乎对样品表面的污染更加敏感。我们可以看到样品表面上有一些无定形的团聚物,这些污染物会和扫描过程中的针尖相互作用,使扫描的图像发生了一些变化。这意味着在AFM测量之前,您务必对样品表面,探针和探针支架进行全方位的清洁。图3.在轻敲模式下CoOEP晶格的AFM放大图像。 (A)扫描边长为20纳米的形貌图。 (B)扫描边长为20纳米的相位图。注意卟啉环结构在图像的上部清晰可见。这些数据让我想起了纽卡斯尔大学的Rob Atkin教授,诺丁汉大学的Peter Beton教授和南京大学的王欣然教授曾经发表的一些关于使用Cypher 在大气环境下进行的AFM的研究 [iv-vi]。这里我来具体介绍一下这些研究的成果。第一项研究[iv]阐明了在恒电位控制偏压下石墨(HOPG)表面的离子液体(EMIm + TFSI-)的纳米结构(见图4A)。此外,施加的偏压在开路电位附近有规律地变化,同时分子Stern层作为偏压的函数(以及离子组分的函数,例如Li +和Cl-)进行了重新整合。第二项研究[v]主要集中在观察吸附在六方氮化硼(hBN)和其他样品表面上的5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的超分子结构,及分析该吸附现象对TCPP分子的光电子特性的影响。图4B显示了hBN上TCPP的正方晶格结构。第三项研究[vi]探讨了HOPG和hBN上高流动性的二辛基苯并噻吩并苯并噻吩(C8-BTBT)的少层二维分子晶体的范德瓦尔外延结构,这种材料可用于实现有机场效晶体管。图4C显示了在hBN上生长的C8-BTBT晶格的高分辨率形貌。图4. 2D分子晶格的AFM成像。 (A)吸附在HOPG基片上的纯EMIm + TFSI-Stern层的相位图 扫描边长为30nm,在块体EMIm + TFSI-离子液体中成像(参见参考文献[iv])。 (B)组装在hBN基片上的TCPP的正方晶格的形貌图像 扫描边长为50nm,在空气中成像(参见参考文献[v])。 (C)在hBN基片上生长的C8-BTBT晶格的形貌图像 扫描边长为10nm,在空气中成像(参见参考文献[vi])。References[i] April Current Amplifiers Bring May Ultra-Low-Current STM[ii] Learn more about Cypher here: https://www.oxford-instruments.com/products/atomic-force-microscopy-systems-afm/asylum-research/highresolution-fast-scanning-afm.[iii] (a) Learn more about blueDrive at https://afm.oxinst.com/bluedrive and athttps://pdfs.semanticscholar.org/e807/9171fb282e6340f6813a0f6b8cee8b4bae74.pdf. (b) A. Labuda, K. Kobayashi,Y. Miyahara, and P. Grütter, Retrofitting an atomic force microscope withphotothermal excitation for a clean cantilever response in low Qenvironments, Review of Scientific Instruments, 2012 83, 053703.https://aip.scitation.org/doi/abs/10.1063/1.4712286.[iv] A. Elbourne, S. McDonald, K. Vo?chovsky, F. Endres, G. G. Warr, and R.Atkin, Nanostructure of the Ionic Liquid–Graphite Stern Layer, ACS Nano,2015, 9(7), 7608–7620. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b02921.[v] V. V. Korolkov, S. A. Svatek, A. Summerfield, J. Kerfoot, L. Yang, T. Taniguchi,K. Watanabe, N. R. Champness, N. A. Besley, and P. H. Beton, van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional PorphyrinArrays on Boron Nitride, ACS Nano, 2015, 9(10), 10347–10355.https://pubs.acs.org/doi/10.1021/acsnano.5b04443.[vi] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y.Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B.Xu & X. Wang, Two-dimensional quasi-freestanding molecular crystals forhigh-performance organic field-effect transistors, Nature Communications,2014, 5:5162, 1–7. https://www.nature.com/articles/ncomms6162.*转载文章前请与牛津仪器联系,未获许可谢绝转载,谢谢。
  • 镇江研制叶绿素铜钠检测方法
    从江苏镇江检验检疫局得知,由该局综合技术中心研制的叶绿素铜钠的液相色谱串接质谱联用仪检测方法(LC-MS/MS)可定性定量检测橄榄油中叶绿素铜钠含量,此检测方法开了全国先河。  目前,该局所属国家级食品添加剂及调味品检测重点实验室已经完成来自北京、广东、浙江、苏州、南京等地送检样品37份,经检测均未发现异常。  针对近期台湾橄榄油中涉嫌非法添加叶绿素铜钠的事件,镇江局积极应对,充分发挥国家级重点实验室的研究和技术优势,承担全国进口橄榄油中叶绿素铜钠含量的本底调查工作,接受任务后,镇江局组织科研人员经过48小时刻苦攻关,开发研制出液质联用仪(LC-MS/SM)检测方法,可准确检测橄榄油中叶绿素铜钠的含量。目前,该检测方法已申请国家发明专利。
  • Nature Methods:冷冻电镜解析高分辨率RNA结构
    作为强大的结构解析工具,冷冻电镜在解析蛋白质结构中具有超强能力。RNA作为另外一种生物大分子,在生命活动中发挥着与蛋白质同等关键的作用,解析它们的三维结构也是科学家们持久探索的问题。但RNA由于分子量小,柔性大等因素,无论是依靠冷冻电镜还是其他结构解析手段,这一目的在往日很难实现。近日,哈佛大学廖茂富博士和尹鹏博士合作,利用ROCK技术改造RNA,赋能冷冻电镜技术,解析了多种RNA的高分辨结构,进一步扩展了冷冻电镜技术的应用场景,也为揭示RNA参与的生命活动,以及围绕RNA的药物开发,打开了全新局面。作为遗传分子DNA的姊妹,RNA支持着我们生活的世界。进化生物学家曾提出假设,认为在DNA和它所编码的蛋白质出现之前,RNA就已经存在并具有自我复制功能。而现代科学发现,只有不到3%的人类基因组被转录成信使RNA(mRNA)分子,并在后续被翻译成蛋白质。相比之下,82%的基因组被转录成具有其他未知功能的RNA分子。为了了解单个RNA分子的功能,在原子和分子键的层面上对其三维结构进行解析是极其必要的。通过对DNA和蛋白质分子进行结晶处理,研究人员已经可以通过X射线晶体学方法或核磁共振方法进行常规的结构研究。然而,由于RNA的分子构成和结构柔性特点,它们往往难以结晶,因此这些需要结晶的方法并不适用于解析RNA分子的结构。 近日,哈佛大学韦斯生物启发工程研究所(Wyss)的尹鹏博士和哈佛大学医学院(HMS)的廖茂富博士合作完成了一项研究,报告了一种对RNA分子进行结构研究的新技术"ROCK"。该技术可以将多个相同的RNA分子组装成一个高度组织化的结构,大大降低单个RNA分子的灵活性,并使其分子量成倍增加。应用于具有不同大小和功能的知名模型RNA作为基准,该团队表明ROCK技术能够将冷冻电镜 (cryo-EM) 方法应用在包含RNA亚基的生物大分子的结构解析上。他们的研究结果发表在《自然-方法》上。 与廖茂富博士一起领导这项研究的尹鹏博士说:「ROCK技术正在打破目前针对RNA进行结构研究的限制,使RNA分子的近原子级分辨率结构得以揭示,这一过程往往难以甚至无法用传统的方法实现。我们期望这一进展能为基础研究和药物开发的许多领域注入活力,包括正在蓬勃发展的RNA疗法。」获得对RNA的控制权 尹鹏博士的研究团队开发了多种方法,包括DNA砖块和DNA折纸术,这些方法使DNA和RNA分子能够根据不同的规则和需求进行自我组装,从而形成超大分子。他们假设,这种策略也能够将自然存在的RNA分子组装成高度有序的环形复合物,通过将特定分子连接在一起的方式,对柔性进行限制。许多RNA以复杂但可预测的方式折叠,在小片段之间进行碱基配对交互。其结果往往会将稳定的 "核心 "和 "茎环 "向圆环外侧凸出。 在ROCK技术(通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)中,目的RNA被设计成通过吻式发夹序列(红色)自组装成一个封闭的同源环,这些序列定位在在功能非必要的外周螺旋上(蓝色)。在确定了可编辑的非必要外周螺旋后,连接吻式发夹模体和目的RNA核心的螺旋的长度被计算优化。带有目的RNA的多个单独亚基的RNA构建体被转录、组装,通过凝胶电泳纯化,并通过冷冻电镜进行结构解析。 「在我们的方法中,我们构建了吻式发夹,可以将同一RNA两个拷贝的不同外围茎环连接起来,使之形成一个整体稳定的环,其中包含了目的RNA的多个拷贝。我们推测,这些高阶环可以通过冷冻电镜进行高分辨率结构解析,该技术已首次成功应用于RNA分子的结构解析。」 —刘迪,第一作者 描绘稳定的RNA 在冷冻电镜方法中,许多生物大分子的单一颗粒在低温下被瞬间冻结,以阻止它们的运动。随后,在电子显微镜和计算算法的帮助下,对颗粒各个方向的二维表面投影进行比较,以重建其三维结构,实现生物大分子的可视化。彭和刘与廖和他的前研究生弗朗索瓦塞洛(François Thélot)博士合作进行了该工作,后者是该研究的另一位第一作者。廖和他的团队在冷冻电镜领域、以及对特定蛋白质形成的单颗粒的实验和计算分析中做出了重要贡献。 廖茂富说:「与传统方法相比,冷冻电镜在解析包括蛋白质、DNA和RNA在内的生物分子的高分辨率结构细节方面有很大的优势,但是大多数RNA的小分子量和高柔性使其结构难以解析。我们组装RNA多聚体的新方法同时解决了这两个问题,通过增加RNA的分子量,并降低其柔性,我们的方法为基于冷冻电镜方法解析RNA结构这一领域打开了大门。」由于整合了RNA纳米技术和冷冻电镜方法,该团队将这一复合技术命名为"ROCK" (RNA oligomerization-enabled cryo-EM via installing kissing loops, 通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)。 为了证实ROCK技术的可行性,该团队将研究聚焦于四膜虫(一种单细胞生物)的大内含子RNA和固氮弧菌(一种固氮细菌)的小内含子RNA,以及FMN核糖开关。内含子RNA是散布在新转录RNA序列中的非编码RNA序列,必须被 "剪接"出来才能形成成熟RNA。FMN核糖开关存在于一些细菌RNA中,这些细菌会参与由维生素B2衍生的黄素代谢物的生物合成。在与RNA结合后,黄素单核苷酸(FMN)将切换其三维构象,并抑制其母RNA的合成。 在对四膜虫 I 组内含子的结构解析过程中,研究人员收集了约十万张ROCK技术处理的单颗粒冷冻电镜图像,通过一系列计算分析步骤重建了其结构,整体分辨率达到了2.98Å,结构核心的分辨率达到了2.85Å。最终的模型提供了四膜虫 I 组内含子的详细视图,包括之前未知的外围结构域(以土黄色和紫色显示),它们构成了围绕核心的条带。 研究小组称,他们将四膜虫 I 组内含子组装成一个环状结构,使样品更加均匀,并能够利用组装结构的对称性来进行计算。虽然数据采集两的规模并不大,但ROCK技术的优势使研究小组能够以前所未有的分辨率解析该结构。RNA的核心结构以2.85Å的分辨率解析,揭示了核苷酸碱基和糖骨架结构的详细特征。研究小组还称如果没有ROCK技术加持,在当前的资源条件下,他们不可能做到这一点。 冷冻电镜还能够捕捉不同构象的分子。研究小组通过将ROCK方法应用于固氮弧菌内含子RNA和FMN核糖开关结构解析中,确定了固氮弧菌内含子在其自我剪切过程中的不同构象,揭示了FMN核糖开关配体结合部位的相对刚性的构象。 这项研究生动演示了RNA纳米技术如何推动着其他学科的发展。将天然状态的RNA分子结构进行可视化,对理解不同细胞类型、组织和生物体的生物及病理过程产生巨大的影响,甚至能够实现新的药物开发方法。 相关文献摘要高分辨率的结构研究对于理解各种RNA的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,利用单颗粒冷冻电镜(cryo-EM)对纯RNA结构进行高效的结构测定。即ROCK技术(通过安装吻式发夹实现RNA寡聚化的冷冻电镜技术): 将吻式发夹序列安装到RNA的非必要功能茎上,使其自组装成具有多倍分子量和降低结构柔性的同源封闭环。ROCK技术能够以2.98 Å的整体分辨率(核心部分为2.85 Å)对四膜虫 I 组内含子进行冷冻电镜三维重构,以建立完整的RNA模型,包括以前未知的外围域。ROCK技术被进一步地应用于两个较小的RNA: 固氮弧菌 I 组内含子和FMN核糖开关,揭示了前者的构象变化和后者的结合配体。ROCK技术有望大大促进冷冻电镜在RNA结构研究中的应用。评论来源:Science Dailyhttps://www.news-medical.net/news/20220503/New-method-enables-the-structural-analysis-of-RNA-molecules.aspx文献来源:Nature Methodshttps://www.nature.com/articles/s41592-022-01455-w#citeas水木未来视界丨iss. 18
  • 近红外光谱法预测双氯芬酸钠球包衣的载药量和释放速率
    与高效液相色谱法(HPLC)等更传统的方法相比,这种研究人员所描述的新方法具有在线和实时监测的优点。《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》杂志上的一项新研究探讨了将双氯芬酸钠球体作为给药系统时,双氯芬酸钠的药物载量和包衣过程中的释放率。该研究通过使用近红外(NIR)光谱技术,不仅对药物负载和释放率进行了监测,还对二者进行了实时在线预测。双氯芬酸在屏幕上展示|图片来源:© JoyImage -stock.adobe.com这项研究由13位来自山东大学和山东SMA制药有限公司的研究人员共同合作完成(均位于中国山东)。他们在报告中首先介绍了近年来制药行业如何将过程分析技术(PAT)越来越多地纳入到生产实践中,无论是使用近红外光谱、拉曼光谱还是光学相干断层扫描(OCT),PAT都被誉为药品生产过程中在线实时监测所不可或缺的工具。双氯芬酸钠肠溶片在美国通常以Voltaren的商品名处方,其也以凝胶形式提供。它是一种非甾体抗炎药(NSAID),用于缓解关节炎,提供抗炎、镇痛和解热作用(根据美国专利申请号5,000,000),美国食品药品监督管理局(FDA)。与此同时,山东的研究小组报告称,双氯芬酸钠微球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放速率,流化床包衣广泛用于工业生产。双氯芬酸钠肠溶片是美国常用的处方药,其品牌名称为 Voltaren,也有凝胶剂型提供。根据美国食品和药物管理局(FDA)的规定,这是一种非甾体抗炎药(NSAID),用于缓解关节炎,具有消炎、镇痛和解热作用。与此同时,山东的研究团队报告称,双氯芬酸钠球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放率,且流化床包衣技术已广泛应用于工业生产中。流化床喷涂是将功能聚合物与涂层分散体喷涂在一起,一般会形成均匀的薄膜涂层。它具有传热传质快、气相固相接触面积大、温度梯度小等优点。研究人员说,作为过程中的一环,对药物负载量和释放率(双氯芬酸钠的关键质量属性(CQAs))的测试和分析可确保给药系统的安全性和有效性,但离线方法耗时过长,影响分析测试效率。在这一应用中,使用近红外光谱的实时在线预测模型具有很强的抗干扰性,进而允许将蔗糖球以不同的投料量引入实验。研究人员说,这种设计将证明模型的稳健性。近红外光谱用于在存在干扰物质的情况下需要进行多组分分子振动分析的场合。近红外光谱由在中红外区域中发现的基本分子吸收的泛音和组合带组成。近红外光谱通常由非特异性和分辨差的重叠振动带组成。尽管存在这些明显的光谱限制,但化学计量学数学数据处理的使用可用于校准定量分析的定性。在流化床涂层过程中使用了带有漫反射模块和高温外部探头的微型近红外光谱仪。据说这次实验的结果是成功的,研究小组发现它能够验证模型的分析能力。因此,作者建议在这一领域开展进一步研究,为智能化的现代药物生产过程提供更多科学依据。参考文献(1) Sun, Z. Zhang, K. Lin, B. et al. Real-Time In-Line Prediction of Drug Loading and Release Rate in the Coating Process of Diclofenac Sodium Spheres Based on Near Infrared Spectroscopy. Spectrochim. Acta, Part A 2023, 301, 122952. DOI: 10.1016/j.saa.2023.122952(2) Voltaren® (diclofenac sodium enteric-coated tablets) – Tablets of 75 mg – Rx only – Prescribing Information. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019201s038lbl.pdf (accessed 2023-09-07).(3) Voltaren Arthritis Pain Relief Gel & Dietary Supplements | Voltaren. https://www.voltarengel.com/ (accessed 2023-09-07).
  • 你选用的奶粉符合新标准吗? —电位滴定法测奶粉中氯含量
    一、背景介绍氯是婴幼儿奶粉中重要的矿物质,有维持体液矿物质平衡以及酸碱平衡的作用。氯的缺乏会使食欲受到影响,能量以及蛋白质的利用率下降;氯过高会导致机体细胞缺氧、肿胀,影响婴儿健康生长。婴幼儿奶粉作为婴幼儿摄入氯离子的重要来源,其含量是判别奶粉品质的重要指标。GB 10765-2021《食品安全国家标准 婴儿配方食品》、GB 10766-2021《食品安全国家标准 较大婴儿配方食品》、GB 10767-2021《食品安全国家标准 幼儿配方食品》,均于2021-02-22发布,于2023-02-22实施。 标准每100kJ每100kcal检测方法最小值最|大值最小值最|大值GB10765-202112mg38mg50159mgGB 5009.44GB10766-2021无特别说明52mg无特别说明218mgGB10767-2021无特别说明52mg无特别说明218mg 上述新标准均对氯含量均有限值要求,故我们需要对奶粉中氯含量进行检测。下面我们将具体介绍氯含量检测的标准要求、测试方法、具体测试过程及结果。 二、检测标准简介 GB 5009.44-2016《食品安全国家标准 食品中氯化物的测定》于2016-08-31发布,于2017-03-01实施。● 本标准代替GB 5413.24-2010《食品安全国家标准 婴幼儿食品和乳品中氯的测定》、GB/T 12457-2008《食品中氯化钠的测定》、GB/T 15667-1995《水果、蔬菜及其制品 氯化物含量的测定》、GB/T 9695.8-2008《肉与肉制品 氯化物含量的测定》、GB/T 22427.12-2008《淀粉及其衍生物氯化物测定》,以及GB/T 5009.44-2003《肉与肉制品卫生标准的分析方法》中“14.2食盐”的测定。● 本标准规定了食品中氯化物含量的电位滴定法、佛尔哈德法(间接沉淀滴定法)、银量法(摩尔法或直接滴定法)测定方法。● 本标准的电位滴定法适用于各类食品中氯化物的测定。● 本标准的佛尔哈德法(间接沉淀滴定法)和银量法(摩尔法或直接滴定法)不适用于深颜色食品中氯化物的测定。 三、氯含量测定方法(1)试液制备:精确称取称取奶粉50.0211g,用温水溶解,水浴沸腾15分钟。超声20分钟。冷却至室温后,依次加入2mL沉淀剂1和2mL沉淀剂2,每次加后摇匀。用纯水定容1L,摇匀,静置30分钟。用滤纸抽滤,弃去最初滤液。 图1 奶粉中氯化物含量滴定曲线 (2)测定:准确移取10mL滤液放入滴定杯,加入5mL硝酸(1+3)和50mL丙酮,置于电位滴定仪上,用硝酸银滴定剂滴定至终点,同时做空白试验。 三、注意事项1、实验需用丙酮做溶剂,建议使用981121银滴定电极(聚四氟乙烯外壳)。2、电位滴定法适用于各类食品氯化物的测定,不受颜色干扰。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 颜宁组Science再发文 首次报道钠通道近原子分辨率结构
    p  2月10日,清华大学医学院颜宁研究组在《科学》(Science)在线发表题为《真核生物电压门控钠离子通道的近原子分辨率三维结构》(Structure of a eukaryotic voltage-gated sodium channel at near atomic resolution)的研究长文,在世界上首次报道了真核生物电压门控钠离子通道(以下简称“钠通道”)的3.8埃分辨率的冷冻电镜结构,为理解其作用机制和相关疾病致病机理奠定了基础。/pp  清华大学生命学院五年级博士生申怀宗、医学院副研究员周强、医学院博士后潘孝敬、生命学院二年级博士生李张强和生命学院五年级博士生吴建平为该文章共同第一作者。通讯作者是清华大学医学院拜耳讲席教授以及霍华德休斯医学研究院国际青年科学家颜宁。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201702/insimg/cf1e15e9-bab0-49ad-9048-f7b30195c3a0.jpg" title="untitled_副本.jpg"//pp style="text-align: center "真核生物电压门控钠离子通道的拓扑图和三维电镜结构。/pp  strong重要性/strong/pp  上世纪四五十年代,英国科学家霍奇金和赫胥黎发现了动作电位 之后发现电压门控钠离子通道(Nav通道)引发动作电位,而电压门控钾离子通道(Kv通道)则终结动作电位,恢复至静息状态。自此科学界展开了针对钠通道方方面面延续至今的系统研究 可以说,对钠通道的研究构成了过去60多年电生理研究的重要基石。/pp  钠通道是所有动物中电信号的主要启动键,而电信号则是神经活动和肌肉收缩等一系列生理过程的控制基础。在人体中,一共有九种已知的电压门控钠离子通道亚型,在不同的器官和生理过程中发挥作用。钠通道的异常会导致一系列与神经、肌肉和心血管相关的疾病,特别是癫痫、心律失常和持续性疼痛或者无法感知痛觉等 迄今已经在人体的九种钠通道蛋白中发现了一千多个与已知疾病相关的点突变。此外,钠通道也是许多局部麻醉剂以及自然界中大量的神经毒素的直接靶点,许多蛇毒、蝎毒、蜘蛛毒素等,都是作用于钠离子通道而产生不良后果。/pp  钠通道是诸多国际制药公司的研究靶点,有着巨大的制药前景。获取钠通道的精细三维结构对于理解其工作机理以及制药至关重要。/pp  strong技术难度/strong/pp  除了作为膜蛋白通常具有的技术难度之外,对于真核钠通道高分辨率三维结构的解析还存在着几道额外的很难逾越的“路障”。/pp  首先,获取蛋白样品难。真核生物钠离子通道蛋白全长包含约2000个氨基酸,很难对其像电压门控钾离子通道那样进行大量的体外重组表达 内源钠通道通常含量极低,很难像电压门控钙离子通道那样从生物组织直接纯化出足够的用于结构解析的高质量蛋白样品。/pp  其次,钠通道是由一条肽链折叠而成,具有假四次对称特征。与同源四聚体的钾通道相比,钠通道很难结晶或者利用冷冻电镜技术获取结构 它们又不像钙通道那样与辅助亚基形成较大分子量的稳定复合体,从而增大了利用电镜技术解析结构的难度。/pp  最后,真核钠通道包含有比较多的柔性区域,还存在着多种多样的翻译后修饰,这都对其结构解析构成很大挑战。/pp  也因此,对于真核钠通道的结构生物学研究远远滞后于早在2003年即获得首个晶体结构的电压门控钾离子通道。包括欧美英日在内的全球数十个研究团队都在紧锣密鼓攻坚,力图获得首个真核钠通道的高分辨率结构。/pp  strong突破点/strong/pp  在最新的《科学》论文中,颜宁研究组成功地克服了以上的层层瓶颈,获得了性质良好的蛋白样品,并利用单颗粒冷冻电镜的方法,重构出了可以清晰分辨绝大多数侧链的真核生物钠离子通道(命名为NavPaS)的三维结构。研究组利用电镜技术,同时反其道而行之,放弃了对于大分子量蛋白的追求,而利用序列分析选取长度最短的真核钠离子通道,成功利用重组技术获得了表达量较高、性质稳定均一的美洲蟑螂(电生理重要模式生物之一)的钠通道蛋白。该结构的解析为理解钠通道的离子选择性、电压依赖的激活与失活特性、配体抑制机理提供了重要的分子基础,为解释过去60多年的大量实验数据提供了结构模板,并为基于结构的分子配体开发奠定了基础。/pp  strong十年铸剑/strong/pp  值得一提的是,颜宁自2007年在清华大学医学院建立实验室伊始即开始了针对电压门控钠离子和钙离子通道的结构生物学攻坚,并于2012年在《自然》报道了来自一种海洋细菌的钠离子通道NavRh处于失活状态的晶体结构。此后,课题组又在国际上首次报道了真核生物电压门控钙离子通道Cav1.1的高分辨率结构,为理解相关生理过程(包括但不限于肌肉收缩偶联过程)的分子机理打下了重要基础。历经十年,颜宁实验室解析了真核电压门控钠离子通道的结构。至此,所有经典的电压门控阳离子通道都有了三维结构模板,而其中由单链折叠而成的真核钙离子和钠离子通道结构都是颜宁实验室率先获得,奠定了其团队在该领域的国际领先地位。/pp  本研究获得了清华大学冷冻电镜平台雷建林博士、李小梅和李晓敏的大力支持,数据采集于清华大学于2009年购置的Titan Krios冷冻电镜。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。科技部、基金委、生命科学联合中心-清华大学、生物膜与膜生物工程国家重点实验室为本研究提供了经费支持。本研究还获得了清华大学医学院和生命学院肖百龙、熊巍、陶庆华、塞西莉亚· 卡捏莎(Cecilia Canessa)等实验室的帮助。/ppbr//p
  • 中科院开发痕量生物分子分离的纳米孔聚合物微球新技术
    p   近日,中科院理化技术研究所研究员王树涛团队与大连化学物理研究所研究员梁鑫淼团队合作,开发出一种具有亲水/疏水异质纳米孔的聚合物微球。该微球能在不同极性的溶剂中选择性吸附生物分子,进而从复杂样品中高效地分离出痕量的糖肽。相关研究成果发表于《先进材料》,研究工作得到了国家自然科学基金杰出青年基金、中组部国家“万人计划”领军人才项目和北京市科委计划项目等资金的大力支持。/pp  目前高分子多孔材料已广泛地应用于分离领域,传统的高分子多孔材料具有均质的组成或孔隙,例如聚苯乙烯多孔微球,这些材料往往很难从复杂的样品中分离出痕量的目标分子。为了实现选择性分离,通常需要对这些材料表面进行功能基团的修饰。然而,这些修饰仅仅是在分子尺度,往往造成在材料表面的修饰密度低、不均匀等各种问题,难以消除含量较高的背景分子的非特异性吸附。在临床上,痕量疾病标志物分子的分离和检测意义重大,例如与阿尔茨海默氏症紧密相关的内源性糖肽的分离。/pp  该工作是在乳液界面聚合的研究基础上取得的又一新进展。王树涛团队前期发展的乳液界面聚合策略,实现了拓扑结构和化学组成可调的两亲性Janus微球材料的可控制备,这些两亲性的Janus微球可用于油水乳液的高效分离。同时,这种界面聚合的方法还可以拓展到二维Janus膜材料的制备上。/pp  王树涛表示,这种具有亲水/疏水异质纳米孔的微球为开发新型的生物分子分离材料提供了新的思路,有望应用于生物分子分离及后续的临床诊断等领域。该工作一经发表便得到了国内外同行及媒体的广泛关注。/ppbr//p
  • 认监委实验室能力验证“粉丝、粉条产品中的铝元素含量测试”开始报名
    关于邀请参加2013 年国家认监委实验室能力验证计划“粉丝、粉条产品中的铝元素含量测试”的通知  各有关单位:  为加强重点领域实验室检测能力建设,在一些社会热点和重点关注的领域验证并提升实验室的检测水平,国家认监委决定,2013 年继续组织开展重点领域实验室的能力验证工作。受国家认监委的委托,中国计量科学研究院承担了“粉丝、粉条产品中的铝元素含量测试”(项目编号:CNCA-13-B10)的实施和协调工作。  根据国家认监委通知(国认实函[2013]12 号)的要求,为使此次能力验证工作更有序、顺利的开展,现将有关事项通知如下:  一、开展本次实验室检测能力验证工作的目的是了解该检测领域的整体水平,本次实验室检测能力验证的结果是实验室在相关领域检测能力的客观反映。取得满意结果的实验室,国家认监委将建议有关部门在相应领域指定、授权、委托检验任务时,优先选用 在2014 年度接受资质认定(计量认证、验收、授权)和认可评审时,免于对该项目的现场考核。  二、邀请具有本次能力验证计划相关项目检测能力,并通过了相应的实验室认可或计量认证/审查认可验收(授权)的实验室参加此次能力验证活动。欢迎凡具有食品中铝元素检测能力的社会实验室积极参加本次能力验证活动。  三、本次能力验证计划为B 类项目,报名参加此次能力验证的实验室需向项目承担单位交纳能力验证成本费用壹仟元(1000 元)。检测结果离群或可疑的实验室可有一次补测机会,但需交纳补测费用壹仟元(1000 元)。  四、为保证此次能力验证计划的顺利进行,请各实验室于2013 年6 月1 日前在能力验证提供者网站上完成报名程序(网址:http://www.ncrm.org.cn)。报名需要进行网站注册,在“能力验证”专栏下载报名表,填写相关信息,并将盖章后的报名表扫描件上传。请报名实验室务必于2013 年6 月15 日前将款项寄交下列帐户:  户名:中国计量科学研究院  开户行:交通银行北京和平里支行  帐号: 110060224018010008693  汇款请注明:“ CNCA-13-B10 能力验证费”, 汇款后请在http://www.ncrm.org.cn“能力验证”专栏相应条目处填写汇款及发票信息。  五、更为详尽的内容可在我单位网站上查询:http://www.ncrm.org.cn  各单位在参加能力验证过程中如遇到问题,请及时与我单位或认监委实验室与检测监管部联系。  中国计量科学研究院联系人姓名:韦超、赵博  联络地址:北京市朝阳区北三环东路18 号 中国计量科学研究院化学所  联系电话/手机:010-64524783/13520220444、010-64524721/13311065387  E-mail:weichao@nim.ac.cn、zhaobo@nim.ac.cn  国家认监委实验室部联系人:郭栋  电话:010-82262733  Email:guod@cnca.gov.cn  附件:CNCA-13-B10报名表.doc
  • 新品速递| 酚汀(酚丁)、酚酞及其酯类衍生物或类似物上架
    国家市场监督管理总局发布关于打击食品中非法添加酚汀(酚丁)、酚酞及其脂类衍生物或类似物违法行为的通知,加强了对食品中非法添加的监管。由于酚汀(酚丁)、酚酞及其酯类衍生物或类似物与酚酞具有相同/相似的核心药效团和临床功效,具有类似属性和危害性,因此,添加有上述物质的食品有对人体产生毒副作用的风险,影响人体健康,甚至可危害生命。根据《食品安全法》,食品不得添加药物,而该类原料也从未获得批准作为食品添加剂或新食品原料,以及保健食品原料,因此,在食品中检出酚汀(酚丁)、酚酞及其酯类衍生物或类似物(如4-氯双醋酚丁),均属于非法添加。部分相关产品:了解更多产品或需要定制服务,请联系我们关于我们天津阿尔塔科技有限公司成立于2011年,是国内领先的具有专业研发及生产能力的国产标准品企业,公司坚守“精于科技创新,保障人民健康安全生活”的企业愿景,秉持”致力于成为标准品第一品牌”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,精于标准品科技创新,创造绿色健康品质生活,真正实现From Medicare to Healthcare。
  • TKI德可纳利参加第三届植物分子育种国际会议(ICPMB)
    本司TKI德可纳利科技集团于2010年9月6日至9月9日参加位于北京的第三届植物分子育种国际会议(ICPMB),欢迎社会各界人士参加。 会议地点: 北京国际会议中心(BICC) 展览地点: 北京国际会议中心(BICC)2楼展位号:02 地址: 北京市朝阳区北辰东路8号 展会时间: 2010年9月6日~9月9日 8:00 ~ 17:35 美国SPEX-中国独家总代理德可纳利科技集团, 我们的使命是提供优质产品,最佳服务及专业知识;SPEX Sampleprep的设备是提供很多分析技术关键的前处理研磨,包括XRF.AA..ICP。并应用于尖端科技,科研制药,遗传学,基因各蛋白质组学,高分子材料,纳米,机械合金,超导等领域。 最先进生化科技、生命科学和纳米科学的前处理和进样之设备仪器,划世纪研究: 组织均貭化、細胞裂解、农药残留前处理、DNA、RNA、蛋白质、提取 1991年在阿尔卑斯发现的5300年前的冰人的骨头碎片进行前处理 俄罗斯沙皇尼古拉斯二世遗体的DNA检测 美国航天局(美国航天局)对研磨月球和火星岩石土壤 - 解开外太空生命之谜 911恐怖袭击,2003年大海啸遇难者确认
  • 揭秘基因检测全过程 一份生物标本的广州之旅
    ■您知道吗?  同种类型的肿瘤患者,选择相同药物进行化疗,有的人有效无害,有的人无效有害。  ■您了解吗?  每个人的身体都住着一名“医生”,它就是基因。基因是会“说话”的,通过基因检测,它会告诉我们,每名肿瘤患者最佳的化疗药物搭配。  为解开肿瘤患者的身体密码,以量身制造肿瘤患者的化疗方案,目前,包括四川大学华西医院、成都市第二人民医院等市内部分医院均与专业机构开展“基因检测”。正是有了这项技术,肿瘤患者的治疗从传统循证医学时代跨入个体化治疗时代。  上周五,一份生物标本开始了它的“旅行”,从成都市第二人民医院出发,前往广州接受“基因检测”。成都商报记者全程跟随这份标本,揭秘基因检测的全过程。昨日,这份生物标本已完成使命,基因检测报告已抵达成都市第二人民医院,院方将据此为病人制定出个体化的化疗方案。  揭秘 标本制造  成都:我是这样“出生”的  姓名:乳腺恶性肿瘤石蜡切片 大小:8微米  选择肿瘤标本  我是一份生物标本,当然这只是我现在的身份。当我还没有看到这个世界时,我只是潜伏在患者身体内的肿瘤组织里。患者曾素英今年46岁,前不久,她摸到乳腺内有包块,经成都市第二人民医院检查,我的踪迹被曝光了。  上周的一天,我听到手术器械撞击的声音。突然,一道亮光射进来,我第一次看到外面世界,医生正在“摩拳擦掌”,他们成功切除她的乳腺肿瘤,我也随之被取了出来。  这个肿瘤直径有5公分大小,而我就是最严重的一部分,直径1.5厘米,也成为生物标本的“最佳人选”。  制造“生物标本”  为了让我这个“坏分子”不再活跃,医生将我泡进固定液,其实就是福尔马林,减少我的生物活性,固定性质。  接下来,我来到医院的病理科。经过活检,我的性质是恶性。为了让医生更客观地为患者选择化疗方案,我将要前往广州进行“基因检测”。  为了符合检验标准,我在病理科进行了一次“变身”。我先被送入了脱水机,让身体变得干爽。检验人员向我滴入了石蜡固化,如此一来,我才能够更好被切割。  我的身体实在太热了,只有躺在冷冻台上等待切割,检验人员调好了8微米的厚度,将我整整切成了15片。由于非常薄,我那一张张卷着的身体被放入空漂仪。在纯净水里飘啊飘,我的身体这才舒展开来,被放入特制的玻片中,装入样本运输盒。  接下来,我坐上了飞机,目的地:广州。  揭秘 检验室  广州:我是这样“旅游”的  第1站 标本室—生物标本的“档案馆”  经过两个多小时的飞行,当我再次看到亮光时,已经到了一千多公里外的广州。在益善医学检验所里,第一站是标本室。工作人员再次核对了我的身份信息,并给我贴上了标签。  在这里,我认识了不少朋友。它们,有的和我一样制成石蜡切片或还浸泡在福尔马林中,有的则是放在冰柜中的血液……大家来自全国各地。  这间标本室其实就是个特殊的“档案馆”,这里有持续不断的电力供应系统,长年保持适宜的室内温度和湿度。通过档案柜以及-20℃冰箱和超低温-70℃冰箱,保存着三万余份不同类型的检测剩余标本。  工作人员称,这些标本有的是石蜡切片,有的是全血,有的是肿瘤组织。它们被永久保存的意义在于,患者如果还想进行更多项的检测,可以继续使用它们 如果以后肿瘤复发,它们将与新肿瘤组织进行对比,找出医学根据。  第2站:处理室—生物标本的“更衣室”  接下来,我便进入了正式的检测过程。这里的每个检验室都分成内外两间,外面是缓冲间,始终处于正压状态,这就意味着检验室外面的空气无法进入到其中。工作人员在这里更换工作服,每个检验室都有属于自己的工作服,并通过不同的颜色区分。检验室间的服装不能共用,以免造成检验室间的交叉污染。  瞧了瞧新鲜后,我被送入了标本处理室,在这里,我将脱掉外衣,将身体中的DNA显露出来。只见工作人员用透明液溶解了我的石蜡外衣,再用仪器将我打碎成匀浆。最后,他们通过“柱膜法”让DNA依附在膜上,被挑选出来,而其他的杂质和细胞成分将被洗脱掉。  第3站:扩增室—DNA的“复印室”  通过“更衣室”获得的DNA量是有限的,更大量的DNA才能满足检测需求。怎么办呢?办公楼里有复印室,检验室内也有类似的DNA的“复印室”。工作人员便在扩增室内对DNA进行扩增,通过仪器可以将提取的DNA拷贝扩增到10亿倍。  同时,工作人员在试剂室内进行试剂的准备。根据检验项目不同,工作人员取不同的试剂进行检验。  第4站:分析室—DNA的“演讲台”  历经磨难,我马上就要达到此行的最终目的了。在分析室,我的DNA开始“演讲”,它能够显示出我与其他朋友间的不同之处,从而指导医生用药。经过临床诊断的生物芯片平台——液相芯片技术平台,由检验人员同时解读多个靶标的检测结果,向外界宣布我的基因特征。  五天后,我的这份检测报告抵达成都市第二人民医院,医生依据检测结果,为患者选择个体化的药物方案。  专家解读  生物专家:开创“个体化治疗”时代  据益善医学检验所的许嘉森博士介绍,传统的肿瘤治疗是按“同病同治”的模式进行。临床治疗效果在不断告诉我们,对某些患者有效的药物方案,用在另一些患者身上却可能无效。由于无法了解患者自身特异性,甄别患者间的差异,经常出现这样的现象:患者在接受某一药物方案一段时间后,没有效果或毒副作用很大,只能更换其他药物方案,再治疗一段时间,如果依旧无效,那只能再次更换方案。  大量的临床研究表明,肿瘤靶标是识别患者个体差异的重要依据。通过检测这些靶标,可以识别相同肿瘤发生部位、病理类型及病期的不同患者间存在的差异。  个体化治疗根据患者的分子基因特异性选择药物方案,具有明显优势:大幅提高治疗效果,延长患者的生存期 避免因不适用药物带来的毒副作用 避免因反复尝试不同药物带来的时间及金钱浪费。  目前,基因检测已运用到制药、治疗和预防易患疾病等领域。然而,由于开展基因检测技术的投入太高,绝大部分医院都没有单独开展基因检测,而是送往专业的基因检测机构来进行。  医学专家:基因“说出”患者的差异  据成都市第二人民医院乳腺外科主任黄有成介绍,乳腺癌的常用方案有14种,每种就有2-3种药物搭配。如果不开展基因检测,医生将根据经验和患者的经济水平来选择药物,如果这类化疗药物对大多数乳腺癌患者有效,则首要考虑这类药物。化疗疗程为6个周期,每个周期有21天,患者在化疗过程中,医生会根据患者的有效和毒副作用情况,来进行药物更换。  昨日,由成都送往广州进行基因检测的报告已抵达成都。在患者曾素英的报告中,检验人员根据医生要求,对其6个点位基因进行检验后发现,她使用蒽环类化疗药物最有效,而氟类化疗药物不仅无效甚至有较强的毒副作用。  “然而,每个患者其实是有差异的,这种差异就是需要基因来说话”。黄主任出示另一位患者的基因检测报告,与曾素英报告作对比:两名患者为同样组织类型的乳腺癌,而后者使用蒽环类化疗药物无效且有害。  黄主任称,如果这名患者没有进行基因检测,医生会根据临床经验,对其使用蒽环类药物,结果不仅无效,还会造成心脏中毒,导致心肌炎、心肌缺血等心脏功能损害。同时,它与其他化疗药物搭配,与其副作用叠加,会加重肝肾功能损害。  “这种对比体现出基因检测的优势。”黄主任称,自从去年市二医院成立乳腺外科后,该科一直在倡导基因检测,90%以上的乳腺癌患者均会选用这种方法,得到个体化优化治疗。  名词解释  关键词1 基因  DNA分子上的一个功能片断,是遗传信息的基本单位,是决定一切生物物种最基本的因子 基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和调控者。  关键词2 靶标检测  靶标是识别患者个体差异的重要依据。通过检测这些靶标,可以识别相同肿瘤发生部位、病理类型及病期的不同患者间存在的差异。靶标检测是个体化治疗的瞄准器,是实施肿瘤个体化治疗的前提和基础。
  • 大连化物所等利用超高场固体核磁共振技术揭示伽玛型氧化鋁表面五配位铝性质
    近日,中国科学院大连化学物理研究所固体核磁共振及催化化学创新特区研究组研究员侯广进团队与美国高场实验室博士甘哲宏等合作,在超高场(1.5GHz)固体核磁共振(NMR)技术应用于固体材料表面结构表征研究中取得新进展。  氧化铝是重要的催化剂和催化剂载体,其表面的五配位铝被称为“Super-five”。五配位铝在金属活性中心分散,γ-Al2O3烧结相变,以及醇脱水反应中都起到关键作用。γ-Al2O3结晶度低,其表面五配位铝仅占总铝含量的3%左右,因此难以实现表面五配位铝的结构表征。目前,所有关于五配位铝的结构特征均是基于理论计算推测得到。  本研究中,得益于超高场条件下显著提高的27Al NMR灵敏度和分辨率,科研团队采用高场多核、多维固体核磁共振技术,直接实验观测到五配位铝相关空间结构信息,首次揭示了γ-Al2O3表面的五配位铝以聚集态形式存在,且在水的作用下易于发生结构重构。  科研人员制备了富含五配位铝的无定形氧化铝纳米片(Al2O3-NS)与γ-Al2O3进行对比研究,借助超高场27Al MAS NMR对Al2O3-NS和γ-Al2O3的铝物种分别进行定量分析。研究通过超高场的27Al-27Al DQ双量子相关实验,以及高场多核、多维固体核磁共振技术发现,γ-Al2O3表面与Al2O3-NS的不同配位铝物种的Al(n)-O-Al(n)链接方式相同,且表面羟基分布及铝与羟基的链接方式也十分相似,进而表明γ-Al2O3表面存在一层富含五配位铝的无定形结构。该研究有助于进一步剖析γ-Al2O3在金属分散、催化剂烧结等应用方面的“构-效”关系。  相关研究成果以Nature of Five-coordinated Al in γ-Al2O3 Revealed by Ultra-high Field Solid-state NMR为题,发表在ACS Central Science上,并被选为内封面论文。研究工作得到国家自然科学基金、国家重点研发计划、辽宁省“兴辽英才计划”、大连市青年科技之星等项目的支持。  论文链接 大连化物所等利用超高场固体核磁共振技术揭示伽玛型氧化鋁表面五配位铝性质
  • 广州将炒货纳入监测计划 涵盖铝、滑石粉等
    昨日,媒体报道了上海媒体曝光炒货工厂违规添加工业滑石粉和明矾等问题。广州市质监局昨日回复称,2012年共对464批炒货产品进行监督抽查和风险监测,项目涵盖铝、滑石粉和二氧化硫残留量。  目前未发现有人为添加工业级滑石粉、明矾和焦亚硫酸钠等非食用物质的违法行为。但有5家企业6个批次瓜子产品二氧化硫残留量不合格,均为使用不合格瓜子原料导致,已责令企业整改。  广州市质监指出,已经将炒货食品列入2013年广州市食品风险监测计划,检测项目涵盖铝、滑石粉和二氧化硫残留量。另外将开展炒货生产企业原材料专项整治,进一步规范企业原材料管理。
  • DNA提取仪新突破:三分钟快速提取DNA
    用棉签从口中取出唾液后,新研发的设备可在几分钟内从中提取DNA,以供染色体分型分析和基因组测序。  华盛顿大学的工程师联合NanoFacture公司研发出新的DNA提取设备,相比于传统方法,它能以更高效、环境更友好的简单方式从流体样本中提取人体DNA。  领导这项研究的华盛顿大学机械工程副教授JaeHyun Chung 称,提取DNA是非常复杂的一件事,当了解到目前可供使用的DNA提取设备时,您会感觉DNA提取如同是用建筑起重机收集人体头发那般复杂。而具有灵活特性的新设备从技术水平上克服了上述障碍,有望为医院和实验室提供更加轻松的方法从人体流体样本中提取DNA,以备基因组测序、疾病诊断和法医调查之需。  该设备的供应商NanoFacture公司(华盛顿大学经营的)与韩国制造商KNR Systems上月签署合同,旨在推进这一盒状的小设备进入大批生产阶段,并最终将提供给医院和诊所。在DNA提取设备研发领域内,华盛顿大学Chung教授领导的研究小组发挥了领军角色,研发了目前还处于知识产权申请阶段的、DNA提取设备应用的新技术。  从体液分离DNA是一个繁琐过程,已成为制约科学家推进基因组测序(尤其在疾病预防和治疗领域)的瓶颈,而从市场前景上看,仅DNA制备这一领域就能创下每年约30亿美元的营销额。  传统方法利用离心机旋转和分离DNA分子,或者利用微型过滤器从流体样本中抽提,不过这些方法要需要20〜 30分钟才能完成,并在提取过程中使用过多的有毒化合物。  威斯康星大学的工程师研制出能侵入流体样本(唾液、痰液或血液)的显微探针,通过在液体中施加电场,该微型探针在表面上吸附着DNA体积大小的颗粒,而那些体积较大的颗粒因击中探针尖端而被弹开。采用这一技术,需要两、三分钟就可分离和提纯DNA分子。正如Chung所说,这一简单的流程避开了传统方法的所有步骤。  这一手持设备能快速清理4个不同的人体流体样本,不过该技术能扩展到单次处理96个样本这一大规模处理的标准。该微型探针称为微探针或纳米探针,在华盛顿大学微型制造工厂中被设计和制造。Chung称,技术员每年能生产多达100万个探针,这是决定DNA新设备大规模供应可行性的关键点。  Chung实验室的工程师利用相同的探针技术还设计出一个铅笔大小的设备,它可以被病人带回家或者分发给海外执行军事任务的人员。病人可以擦拭自己的脸颊,收集唾液样本,然后当场处理自己的DNA,并送回医院和实验室以供分析。Chung称,这些都是朝着基因组测序用于疾病预防和治疗的方向进行的积极努力。  华盛顿大学获得5万美元的商业资助后于2008年启动了这项研究,并在随后的时期内,研究人员收到了来自美国国家科学基金会(National Science Foundation)和美国国立卫生研究院(National Institutes of Health)的总额约200万美元的资金。
  • 使用超高效聚合物色谱(APC)系统对肝素钠进行快速高分辨率分析
    应用优势:与常规GPC分析相比,可大大缩短肝素钠的分析时间可对肝素钠进行快速监测,从而能提早发现产品开发和质控过程中的变化肝素作为抗凝血剂,从1935年正式应用于临床治疗至今已有近80年历史。目前,肝素仍是世界上最有效和临床用量最大的抗凝血药物,并被世界多个国收入国家《药典》。在中国,肝素类药品不仅得以顺利进入国家基本医保目录,而且还是为数不多的价格上调药品。此外,肝素还是惟一进入我国国家基本药物目录的抗凝血药。源于其下游产品肝素类药物市场迅速扩容并保持高速增长的趋势,国际市场对肝素原料药的需求十分强劲。尤其是质量符合美国FDA认证或欧盟CEP认证标准的肝素原料药产品,已呈现供不应求的局面,成为全球下游生产企业争夺的重要资源。近期肝素安全事件曝光之后,肝素钠原料药的质量得到全球肝素类药物企业的高度关注,市场监管力度一浪高过一浪。肝素原料药检测标准的提高、成本的提高及在环保达标和节能减排方面越来越严的要求让企业倍感压力。本应用纪要比较了基于ACQUITY APC超高效聚合物色谱系统的分离与基于常规GPC的分离,并应用了配有亚3 μm杂化颗粒技术色谱柱的低扩散系统,用以加快分析速度,提高分辨率。这些技术的综合使用能够更稳定、更精确、更快速地测定肝素的分子量参数。肝素钠分析:生产力的突破沃特世解决方案ACQUITY APC超高效聚合物色谱系统ACQUITY APC AQ色谱柱带GPC选项的Empower 3色谱数据软件实验条件:ACQUITY APC系统条件:检测器: ACQUITY RI(示差检测器)RI流通池: 35 ℃流动相: 100 mMol的醋酸铵水溶液流速: 0.6 mL/min色谱柱: ACQUITY APC AQ 200埃柱,4.6×150 mm柱温: 35 ℃样品稀释剂: 醋酸铵水溶液进样量: 10 μL数据处理软件:Empower 3色谱数据软件样品:5 mg/mL肝素钠结果与讨论:沃特世ACQUITY APC(Advanced Polymer Chromatography)超高效聚合物色谱系统是基于体积排阻色谱分离基本原理的突破性技术产品,以前所未有的分析速度为您提供更详尽的聚合物材料信息。ACQUITY APC可缩短运行时间,有助于对肝素原料和生产工艺过程进行监测,从而促进肝素钠的开发并加快产品上市进程。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少。此外,低扩散性APC系统与支持更高流速和背压的稳定亚3 μm APC色谱柱技术相结合,能提高对肝素样品的分辨率,并使分析时间缩短至原来的1/7。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制