当前位置: 仪器信息网 > 行业主题 > >

五种二元酸

仪器信息网五种二元酸专题为您整合五种二元酸相关的最新文章,在五种二元酸专题,您不仅可以免费浏览五种二元酸的资讯, 同时您还可以浏览五种二元酸的相关资料、解决方案,参与社区五种二元酸话题讨论。

五种二元酸相关的论坛

  • 豉香型白酒中二元酸二乙酯的检测问题!

    哪位版友做过豉香型白酒中二元酸二乙酯的检测?标准还用内标法,十四醇做内标!现在手里没有内标,直接用外标做。这几个目标物响应值本来就低 ,加上干扰根本就很难测得结果!不知道有没有做过的版友有成果的经验分享一下?谢谢!

  • 电位滴定仪滴定二元酸

    实验室要用自动电位滴定仪测定对苯二甲酸,有个疑问,对苯二甲酸是二元酸,对于滴定电位的突变点,不知道是否达到反应终点而且对于弱酸HA而言,是否出现突变就表示反应已经完全?是否还有HA的存在呢?

  • 【讨论】有谁用电位滴定仪做过二元酸???

    有谁用电位滴定仪做过二元酸(如硫酸),大家共同探讨一下,我这段时间在做硫酸,但是第一个终点突跃不大,滴定误差比较大,我用的是DL53电位滴定仪,有没有做着方面的老师,欢迎和我探讨.

  • 十三碳二元酸的气相色谱法

    [color=#444444]十三碳二元酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法,不想甲酯化,查了说能用HP-INNOWAX直接做,那用什么溶剂来溶解呢,怎么做?如果要甲酯化,那又要怎么做?[/color]

  • 有没有用液相色谱检测过二元有机酸的

    [color=#444444]请问各位有没有用液相色谱检测过像丁二酸,戊二酸这种二元有机酸的?用的是什么柱子和检测器呢?我在文献上也看到过几篇检测这种二元酸的文献,我使用的流动相,柱温检测器条件都和文献相同,只有柱子不一样,但是最后分离效果不好,会不会是我用的C18反相色谱柱就是不适合检测这种物质呢?现在设想的解决办法是流动相的水相使用低浓度磷酸溶液调节pH,如果这样也不行暂时就想不到其他办法了。真心希望各位牛人能给些指导和建议[/color]

  • 【求助】谁做过液相紫外检测二元羧酸_铜络合物的分析?

    最近,在210nm,C18柱,甲醇-磷酸缓冲溶液体系下,用液相测定醋酸中二元酸,二元酸无法测定.想用二元羧酸_铜络合物间接测定,但是没有做过,不知哪位做过的大侠帮帮忙,或者做过此类分析的指点一下!http://simg.instrument.com.cn/bbs/images/brow/em09509.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09509.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09509.gif

  • 有机溶剂+水二元溶液粘度模型(低温下)

    已知某种有机溶剂和水的混合物在多种浓度和多种温度下的粘度比如说,二甲基亚砜(DMSO)+水的二元溶液,在温度为20度,15度,10度,0度,-10度,-15度,-30度,-45度,-50度,-55度,-60度,DMSO的摩尔分数从0.1到0.8范围内处于不冻结状态(即液体)的粘度数据均已知我想用一种粘度模型去拟合这些数据查阅了相关的文献,发现现有的二元溶液(有机溶剂+水,或者是有机溶剂+有机溶剂)的模型都是用在常温或较高温度的(因为在算二元溶液的粘度的时候需要用到两种组分各自的粘度,而在较低温度下,有机溶剂和水单独存在时都已经冻结)。我现在有DMSO和水各自在冻结点以上的粘度与温度的关系式,那么在算低温下的时候,能不能用公式直接外推啊?

  • 【资料】无机酸知多少

    [color=#DC143C]无机酸[/color]无机酸inorganic acid;mineral acid综述  又称矿酸,是无机化合物的酸类的总称。  无机酸,简单的是能解离出氢离子的物质。(相对应的是有机酸,他们之间最大的不同点就是一个是有机物,另一个是无机物。都具有酸性。有机酸很多用来做成有机酯,或缩聚成高分子。无机酸大多用来提供氢离子。)[编辑本段]无机酸分类  一、按组成分  1、含氧酸  有:正酸、原酸、偏酸、亚酸、次酸、高酸、连酸、过氧酸、同多酸、杂多酸、代酸(取代氧原子,如硫代硫酸)、取代酸(取代羟基,如卤磺酸)等  2、无氧酸  3、络合酸  4、过氧化氢等不含其它原子的酸  5、混酸及超酸  二、按电离程度分  强酸(Ka≥1)和弱酸(Ka<1)  三、按酸中所含的可电离的氢离子数目的多少分  一元酸(如HNO3)、二元酸(如H2SO4)、三元酸(如H3PO4)、四元酸(如H4P2O7)、五元酸(如H5IO6)……  二元酸,三元酸等合称多元酸

  • 【分享】二元和四元的区别

    二元和四元的区别通常来讲,二元指二元高压溶剂输送系统,四元指四元低压溶剂输送系统。二元高压是有两个高压输液泵,分别输送一种流动相,实现梯度洗脱,也就是所谓的泵后混合;四元低压是由一个高压输液泵,通过时间比例阀次序选择不同流动相而实现梯度洗脱,就是通常所说的泵前混合。二元高压形成的梯度比例,是依靠两个输液泵来计量,远比时间比例阀依靠时间分配更为准确,特别是两相比例相差较大时,所以高压梯度具有更高的梯度精度。我们知道在梯度洗脱中,梯度延迟体积非常重要,特别是复杂样品的分析,低的延迟体积具有更快的梯度响应时间,能够实现更好的样本在同个色谱柱上的分辨率。二元高压的延迟体积是从混合器后开始计算的,而四元低压是从比例阀混合部分开始计算的,多出了泵死体积、泵到比例阀的管线和泵到混合器的管线,所以四元低压的梯度延迟梯度较二元高压要大,梯度响应慢。我们知道流动相都会溶解一定的气体,二元高压是泵后混合,气体的溶解度随压力的增大而增大,所以二元高压混合不会产生气泡。当然有时我们会看到检测器明显有气泡产生的噪音,那是由于流动相流出色谱柱后,压力降低,气体从流动相中溢出产生的气泡,一般可以在流通池后增加一定的反压就可以解决。而四元低压是泵前混合,是在常压下进行的,由于两种液体混合,会降低气体在混合溶液中的溶解度,所以通常会有气泡产生(除非流动相预先经过严格脱气处理),这就是为什么四元低压一般都要配在线脱气机的主要原因。二元高压同四元相比唯一的不足,就是数量上的差别,二元高压只能同时使用两种流动相,而四元低压同时可以使用四种流动相。但通常的样品分离,两种流动相的梯度洗脱足可以解决问题,即使有三种流动相色谱条件,使用两种流动相调整梯度条件也足可以实现。

  • 【讨论】二元泵和四元泵在实际应用中的区别

    二元泵和四元泵在实际应用中的区别。 二元有两个泵,高压混合,对气泡不敏感  四元只一个泵,低压混合,对气泡较敏感,须配在线脱气机 二元高压混合和四元低压混合的一个重大区别就是前者进入输液泵后立即进行混合,而后者是进泵以后慢慢混合,有的还要过一混合器,混合不但置后,而且效果明显不如前者。  高压梯度现在很多都可以用一个泵来控制另一个泵,而低压梯度往往需要一个梯度控制系统。  几元泵,分为高压混合和低压混合。高压混合又叫泵后混合,几元泵就是几个泵;低压混合又叫泵前混合,其实就是一个泵,几元就是安装几路电磁阀。

  • 一些溶剂与水形成的二元共沸物

    一些溶剂与水形成的二元共沸物溶剂沸点/℃共沸点/℃含水量/%溶剂沸点/℃共沸点/℃含水量/%氯仿61.256.12.5甲苯110.585.020四氯化碳77.066.04.0正丙醇97.287.728.8苯80.469.28.8异丁醇108.489.988.2丙烯腈78.070.013.0二甲苯137-40.592.037.5二氯乙烷83.772.019.5正丁醇117.792.237.5乙腈82.076.016.0吡啶[/td

  • 【分享】【基础知识普及】二元泵与四元泵的区别

    电脑里面找出来的,分享一下~我们平时用得多的是二元泵~ 通常来讲,二元指二元高压溶剂输送系统,四元指四元低压溶剂输送系统。二元高压是有两个高压输液泵,分别输送一种流动相,实现梯度洗脱,也就是所谓的泵后混合;四元低压是由一个高压输液泵,通过时间比例阀次序选择不同流动相而实现梯度洗脱,就是通常所说的泵前混合。 二元高压形成的梯度比例,是依靠两个输液泵来计量,远比时间比例阀依靠时间分配更为准确,特别是两相比例相差较大时,所以高压梯度具有更高的梯度精度。 我们知道在梯度洗脱中,梯度延迟体积非常重要,特别是复杂样品的分析,低的延迟体积具有更快的梯度响应时间,能够实现更好的样本在同个色谱柱上的分辨率。二元高压的延迟体积是从混合器后开始计算的,而四元低压是从比例阀混合部分开始计算的,多出了泵死体积、泵到比例阀的管线和泵到混合器的管线,所以四元低压的梯度延迟梯度较二元高压要大,梯度响应慢。 我们知道流动相都会溶解一定的气体,二元高压是泵后混合,气体的溶解度随压力的增大而增大,所以二元高压混合不会产生气泡。当然有时我们会看到检测器明显有气泡产生的噪音,那是由于流动相流出色谱柱后,压力降低,气体从流动相中溢出产生的气泡,一般可以在流通池后增加一定的反压就可以解决。而四元低压是泵前混合,是在常压下进行的,由于两种液体混合,会降低气体在混合溶液中的溶解度,所以通常会有气泡产生(除非流动相预先经过严格脱气处理),这就是为什么四元低压一般都要配在线脱气机的主要原因。 二元高压同四元相比唯一的不足,就是数量上的差别,二元高压只能同时使用两种流动相,而四元低压同时可以使用四种流动相。但通常的样品分离,两种流动相的梯度洗脱足可以解决问题,即使有三种流动相色谱条件,使用两种流动相调整梯度条件也足可以实现。

  • 【每日一贴普及知识】己二酸 adipic acid

    【每日一贴普及知识】己二酸 adipic acid

    http://ng1.17img.cn/bbsfiles/images/2013/09/201309050934_462464_1060664_3.jpg性状: 己二酸是白色晶体或结晶性粉末,基本无气味,略有葡萄似香气(另有说:有骨头烧焦的气味 )己二酸 溶解性 微溶于水,易溶于酒精、乙醚等大多数有机溶剂。 己二酸在水中的溶解度随温度变化较大,当溶液温度由28℃升至78℃时,其溶解度可增大20倍。15℃时溶解度为1.44g/100mL;25℃时溶解度为2.3g/100mL;100℃时溶解度为160g/100mL。 己二酸是白色结晶型固体。易溶于醇、醚可溶于丙酮,微溶于环己烷和苯。当己二酸中氧气质量含量高于14%时易产生静电引起着火。己二酸粉尘在空气中爆炸的质量含量范围为3.9%-7.9%。己二酸是脂肪族二元酸中最有应用价值的二元酸,能够发生成盐反应、酯化反应、酰胺化反应等并能与二元胺或二元醇缩聚成高分子聚合物等。制备: 1.1937年,美国杜邦公司用硝酸氧化环己醇(由苯酚加氢制得),首先实现了己二酸的工业化生产。进入60年代,工业上逐步改用环己烷氧化法,即先由环己烷制中间产物环己酮和环己醇混合物(即酮醇油,又称KA油),然后再进行KA油的硝酸或空气氧化。 2.由糠醛脱羰成呋喃,加氢成四氢呋喃,再在高温高压下与一氧化碳作用而得。 3.由己二胺水解而得。质量标准:FAO/WHO,1999 1.含量(干基计) 996.%-101.0% 2.Pb(原子吸收法) ≤2mg/kg 3.熔程 151.5-154℃ 4.灼烧残渣 ≤20mg/kg 5.水分(GT-321) ≤0.2%用途:用途一 主要用作尼龙66和工程塑料的原料,也用于生产各种酯类产品,还用作聚氨基甲酸酯弹性体的原料 用途二 用作化学试剂,也用于塑料及有机合成 用途三 有机合成、助焊剂,制树脂,塑料。 用途四 首要用作是作尼龙66和工程塑料的原料。其次是用于生产各种酯类产品,用作增塑剂和高级润滑剂。此外,己二酸还用作聚氨基甲酸酯弹性体的原料,各种食品和饮料的酸化剂,其作用有时胜过柠檬酸和酒石酸。己二酸也是医药、酵母提纯、杀虫剂、粘合剂、合成革、合成染料和香料的原料。 用途五 己二酸酸味柔和且持久,在较大的浓度范围内Ph值变化较小,是较好的Ph值调节剂。可用于果冻粉和固体饮料粉,最大使用量分别为0.15g/kg和0.01g/kg。 危害:健康危害 对眼睛、皮肤、粘膜和上呼吸道有刺激作用。目前,在工业使用中未见职业性损害的报告。毒理学资料及环境行为 急性毒性:LD50:1900 mg/kg(小鼠经口);280 mg/kg(小鼠皮下)鉴别:应符合下图红外谱图http://ng1.17img.cn/bbsfiles/images/2013/09/201309050957_462477_1060664_3.jpg含量分析:在250ml具玻塞的锥形烧瓶中,移入精确称取的试样约3g,加甲醇50mL,于蒸气浴上小心加热溶解,冷却,加酚酞试液(TS-167)数滴,用1mol/L氢氧化钠滴定至微红色终点并维持30s。同时作空白试验,每mL 1mol/L氢氧化钠相当于己二酸73.07mg。资料来源于网络及《食品添加剂手册第三版》

  • 【求助】如何用二元泵实现国标的液相色谱条件

    【求助】如何用二元泵实现国标的液相色谱条件

    http://ng1.17img.cn/bbsfiles/images/2011/05/201105182007_294782_1630080_3.jpg上面是一国标方法,采用梯度洗脱,流动相见表,但我们的液相是二元泵,只有将乙酸胺加入到水相当中,如果是等度洗脱还好,但这个国标的方法采用的梯度,如果将乙酸胺加入到水相当中,梯度洗脱时,乙酸胺的比例及浓度就会不断变化,从国标的方法可以看出乙酸胺的比例及浓度一直维持不变,请问各位高手,这个国标方法如何在二元泵实现?

  • 2015版《化妆品安全技术规范》防晒剂检验方法 苯基苯并咪唑磺酸等15种组分-二元梯度法

    2015版《化妆品安全技术规范》防晒剂检验方法 苯基苯并咪唑磺酸等15种组分-二元梯度法

    [align=center][b]2015版《化妆品安全技术规范》防晒剂检验方法[/b][/align][align=center][b]苯基苯并咪唑磺酸等15种组分-二元梯度法[/b][/align][align=center][b] [/b][/align]在2015版《化妆品安全技术规范》防晒剂检验方法中,第一法对15种防晒剂的分析为三元梯度方法,此法要求仪器配备三元泵,且四氢呋喃会对PEEK基材的管路和仪器有溶胀作用,所以该方法在实际操作上会受到一定的限制;而第二法将15种防晒剂分为两组,在不同流动相条件下分别检测,较为费时费力,且前12种防晒剂峰未能达到基线分离。基于以上情况,本次实验采用二元梯度方法,对15种防晒剂标准品进行同时分析,既可在常规二元泵系统进行实验,也可免去分组分析的繁琐。本实验混合标准溶液按照《化妆品安全技术规范》配制,分别使用资生堂CAPCELLPAK C[sub]18[/sub] MG S5 4.6 mm i.d. × 250 mm和CAPCELL PAK C[sub]18[/sub] MGII S5 4.6 mm i.d.× 250 mm色谱柱进行分析,结果如图1和图2所示,两款色谱柱在二元梯度条件下均可使15种防晒剂峰实现基线分离。[img=,690,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_01_2222981_3.png[/img][img=,690,366]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_02_2222981_3.png[/img]1:苯基苯并咪唑磺酸; 2:二苯酮-4和二苯酮-5; 3:对氨基苯甲酸; 4:二苯酮-3; 5:对甲氧基肉桂酸异戊酯6:4-甲基苄亚基樟脑; 7:PABA乙基己酯; 8:丁基甲氧基二苯甲酰基甲烷; 9:奥克立林;10:甲氧基肉桂酸乙基己酯; 12’:峰12的同分异构体; 11:水杨酸乙基己酯; 12:胡莫柳酯;13:乙基己基三嗪酮; 14:亚甲基双-苯并三唑基四甲基丁基酚; 15:双-乙基己氧苯酚甲氧苯基三嗪(按出峰顺序)[img=,629,207]http://ng1.17img.cn/bbsfiles/images/2017/08/201708230913_03_2222981_3.png[/img]

  • 【原创大赛】二元溶液吸附方程验证汇集

    【原创大赛】二元溶液吸附方程验证汇集

    请阅览附件……………………为了方便大家查看,帮楼主贴出内容………………………… 二元溶液吸附方程验证汇集 Daichaozheng通常认为在溶液中的吸附是多层吸附的,但是多层吸附与van der Waals作用能与分子间有效距离六次方成反比这一原理是矛盾的。原因是吸附剂表面生成的van der Waals作用能其力度不足以克服“第二层分子”的热运动。因此溶液吸附不会是多层吸附。运用统计力学方法,在均一位势模型和理想势阱点阵模型基础上,考虑分子之间van der Waals作用能和溶液吸附过程的顶替效应可以推导出二元溶液单分子层吸附方程为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091006_382640_2961690_3.jpg在第三届科学仪器网络原创大赛 “二元溶液体系吸附方程的验证”一文中,作者计算了苯胺、苯酚、环己醇、正丁醇、正己酸、正戊醇、正戊酸在六种炭吸附剂上的吸附数据。四十二组数据计算值与实验值的均方差在0.008-0.047之间。为了更充分的考察公式(1)、(2)的适应性,作者采用了更多的文献数据进一步进行验证。今汇集如下。在18℃的恒温条件下,用骨炭从水溶液中吸附醋酸。在不同的醋酸平衡浓度下,每公斤骨炭中吸附醋酸量 与溶液中醋酸的摩尔浓度 的关系如表1所示:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382642_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382643_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382644_2961690_3.jpg从公式(5)可以看到,溶液浓度的改变引起分子间环境的变化,从而导致分子之间势能场的变化,最终影响吸附过程的焓变。公式(5)表示的是一摩尔吸附值从溶液态进入吸附态这一过程的焓变的量,这也是吸附剂表面吸附吸附质时van der Waals作用能所作的净功。物理吸附是一个可逆的动态平衡过程,平衡时物质在吸附剂表面的化学位与在溶液中的化学位相等。从道理上讲,只有吸附的作用能大于分子的动能才能形成稳定的吸附层。由公式(5)可以看出,随着溶质浓度的改变,血炭从水溶液中吸附正丁醇van der Waals作用能作的净功在4.1868*984J/mol到4.1868*1258.6J/mol之间。根据理论,分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091010_382646_2961690_3.jpgJ/mol,在室温情况下(300K)分子的平均动能大约为4.1868*450 J/mol。这个数值小于吸附过程的焓变。如果设想吸附是单层的,这个吸附过程是可以进行的;作一个粗放的估计如果形成多层吸附,根据van der Waals作用能公式,第二层与吸附剂表面有效距离增加一倍,吸附过程焓变只能及第一层的1/64,也就大约是在4.1868*11J/mol 到4.1868*20 J/mol之间。这个数值远小于分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091009_382645_2961690_3.jpg J/mol(4.1868*450j/mol)。因此吸附剂的表面依靠van der Waals作用能是不能够约束住溶质分子形成第二吸附层的。至于第三层、第四层则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382648_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382649_2961690_3.jpg硅胶可以从水溶液中吸附碱金属离子,表3则列出了硅胶自水溶液中吸附无机碱计算值与实验值的比较。计算采用的公式为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091012_382650_2961690_3.jpg从计算结果可见,对于不同的碱金属离子有不同的A,B 值,但是不管是Li+、Na+ 、 K+还是NH4+,每吸附一个碱金属离子就要从硅胶表面顶替下来七个水分子。 带电荷的离子型化合物,由于电荷同性相排斥的原理,形成多层吸附则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091013_382651_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382653_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382654_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208101148_382997_1688674_3.jpg 图6 一氧化碳在木炭上吸附量计算值与实验值的比较http://ng1.17img.cn/bbsfiles/images/2012/08/201208091027_382656_2961690_3.jpg计算的数值。 图6表示一氧化碳在木炭上吸附量计算值与实验值的比较。由图可见二元溶液单分子层吸附方程(1)在 p=0 的情况下也可以很好地描述气体的吸附过程。 结论:通过对van der Waals作用能的分析,解释了在溶液吸附只能形成单分子层吸附的原因。在过去推导的溶液吸附方程的基础上,拟合了多组吸附质、吸附剂的实验数据,得到良好结果。证明了溶液单分子吸附理论成立。所推导的溶液吸附公式成立。 参考文献 戴朝政,卢佩章,色谱 ,1994年第3期 戴朝政,第三届科学仪器网络原创大赛,二元溶液体系吸附方程的验证 赛冷LG,兰吉PW,加布里桑CD著,傅献彩等译。物理化学习题集,北京:人民教育出版社,1959:299。 严继民,张启元,高敬综。吸附与凝聚固体的表面与孔。北京:科学出版社。1986:93 段世铎,谭逸玲。界面化学。北京:高等教育出版社,1990:107 顾惕人编,傅鹰选集。北京:冶金工业出版社,1990:41

  • 到底二元泵好呢,还是四元泵好?

    到底二元泵好呢,还是四元泵好?

    2”的纯数字的角度比较,肯定是不能客观反映两种泵孰优孰劣的。但在更深一步了解两种泵的原理结构以后,我们一般更倾向于认为二元泵要优于四元泵,原因是二元泵是基于高压混合的方式,在流动相混合的时候更不容易产生气泡,压力更稳定。如下图:http://ng1.17img.cn/bbsfiles/images/2015/12/201512291752_579891_708_3.png泵A(Pump Head A)和泵B(Pump HeaB)出来的流动相在混合器(Mixing Chamber)里面混合的时候,都是处于高压状态,这时候,流动相对气体溶解度较高,气体不容易从流动相中析出成气泡,导致压力波动,流速不准,基线波动等种种问题。而四元泵的混合,是采取在泵前用比例阀(Gradient Proportion Valve)来混合的方式,混合时流动相处于常压的状态,这时候,流动相对气体的溶解度较低,如果流动相中溶解的气体比较多的话,在混合时就可能有小气泡形成,导致压力波动等种种问题。气泡永远是液相色谱的天敌。http://ng1.17img.cn/bbsfiles/images/2015/12/201512291753_579892_708_3.png所以说,四元泵一定要配脱气机,先对流动相进行在线脱气,才能用比例阀进行混合,要不然很容易产生气泡。而二元泵可以不用配脱气机就能在线混合,运行梯度方法。二元泵优于四元泵可不单单局限于高压混合的方式,下面我们一起看看二元泵到底还"好在哪里"?混合精确性从上面的介绍可以看到,两种泵的混合方式是完全不一样的。二元泵相当的直观,通过分别控制两个泵的流速,就能够准确控制两种流动相的比例。比如在1ml/min的流速下,要达到A:B两种流动相70/30的混合比例,那就设置A泵流速0.7ml/min,B泵流速0.3ml/min就可以了。当然这些都是系统和软件自动完成的。只要做到泵流速准确,比例就能准确。而四元泵通过比例阀来控制混合比例,那比例阀又是如何工作的呢?这可能知道的人就不多了。一般来说,比例阀是通过控制入口通道分别打开时间的长短来控制混合比例的。举个例子可能更容易理解,仍然是A:B两种流动相70/30的混合比例。为了达到这个效果,B、C、D三个通道都关闭,A通道打开7ms,这时候进入系统的都是A;然后,A、C、D关闭,B通道打开3ms,这时候进入系统的都是B。这样就得到了70/30的流动相的比例。大家能感觉出来,进入系统的流动相其实是一段A、一段B这样的。如果是四种流动相同时混合,出来的效果可能就是下面这个样子。http://ng1.17img.cn/bbsfiles/images/2015/12/201512291755_579893_708_3.png这种通过时间控制的方式,在某个流动相比例比较低的时候,相对可能产生的误差会比较大。延迟体积二元泵流动相混合后,经过混合器(Mixing Chamber)、压力传感器(Pressure sensor)、阻尼器(Damper),冲洗阀(Purge Valve),然后进入进样器。反观四元泵,流动相混合后要经过整个泵头(包括主动入口阀、两个泵腔、出口阀、管路等等),才能到达进样器。(关于泵的具体构造,我们日后再聊)。一般来说,我们把流动相从混合开始,最后到达柱头这段体积叫延迟体积(delay volume)。流动相梯度的变化要到色谱柱头,才能够对分离产生影响,所以有一定的延迟。延迟体积越大,梯度的变化到达柱头的时间越长,直接导致分析时间越长。关于延迟体积,我们以后会专门来一篇文章具体解释和分析。但现在我们可以看到,二元泵的设计,先天地决定了,其延迟体积远小于四元泵。这就决定了在色谱分析时间要求很短的梯度方法中,比如各种小粒径的色谱柱的快速分析方法,都采用二元泵。不同品牌、类型的液相之间的延迟体积差异,是方法转移后出现结果跟以前不一样了的最大的原因之一。关于这一点,请关注我们的关于方法转移的后续文章。检测器基线稳定性 由于四元泵采取的用时间控制比例的混合方式,直接导致不同流动相是一段一段地进入后面的进样器、色谱柱,甚至是检测器。假设仍然是A/B混合,如果在检测波长254nm下面,A/B都是没有任何吸收的,就算A/B没有混合地特别均匀,基线仍然是平稳的。但是,如果检测波长低到210nm,这时候A有了一点点吸收,B仍然没有吸收,或者A/B流动相吸收不一样。这样一段A、一段B的流动相经过流通池,基线肯定也是上下波动的。当然,四元泵也可以像二元泵后面在泵后面加上一个混合器,但是本来就比较大的延迟体积,将变得更加不可忍受。二元泵的混合方式决定了流动相的均匀程度要优于四元泵,在低波长检测的一些方法的时候,这种优势会直接导致基线稳定性要由于四元泵系统。四元泵逆袭看了这一大片的论述,你是否觉得二元泵已经在于四元泵的竞争中完全胜出了呢?事情总不是这么想当然,反而四元泵使用地更加普遍。四元泵的相对优势,主要有几点:http://ng1.17img.cn/bbsfiles/images/2015/12/201512291757_579894_708_3.png1. 便宜啊。四元泵只需要一个泵头就能运行梯度条件,注定成本和定价都由于二元泵。在运行方法条件不是很苛刻的时候,四元泵能达到跟二元泵一样的分析效果,而价格可能要便宜30%以上。2. 还是便宜啊。后期的维修保养成本便宜,两个泵头的二元泵,基本单向阀、密封圈等等数量直接翻倍,故障率和维修成本肯定高于四元泵。3. 方便啊。因为相对便宜,所以市场保养量大,导致N多的标准方法都是在四元泵系统下开发的,很多方法拿下来就能直接用。如果你用二元泵,不好意思,有时候方法转移起来可能会碰到一些问题。4. 回到最初我们讲的,毕竟四还是大于二的。在偶尔碰到一些要求三相混合的分(qi)析(pa)方法,二元泵就直接悲剧了。说简单点,冲柱子都不用换瓶子。所以,下次碰到别人问你这个问题的时候,你该知道如何专业地回答了吧。【来源:色谱学堂】

  • 气相二元曲线与直线的区别

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]操作中,曲线那里有二元曲线跟直线的选择,这两者有什么区别呢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制