当前位置: 仪器信息网 > 行业主题 > >

物理过程

仪器信息网物理过程专题为您整合物理过程相关的最新文章,在物理过程专题,您不仅可以免费浏览物理过程的资讯, 同时您还可以浏览物理过程的相关资料、解决方案,参与社区物理过程话题讨论。

物理过程相关的资讯

  • 医疗污水处理过程中的微生物检测标准及方法解析
    为什么需要如此重视医疗污水和城镇污水监管工作呢?美国PM Gundy的研究团队曾在《Survival of Coronaviruses in Water and Wastewater》一文中指出,水体中的有机物和悬浮固体可以吸附冠状病毒,为病毒的存活提供了保护。同时,从污水流向的我们不难看出,粪便最终排到了污水处理厂,这些可能携带新型冠状病毒的废水,在污水处理中形成携带病毒的气溶胶,从而形成了气溶胶传播的环境,使污水处理人员成为感染风险较大的群体,对阻止疫情传播有很大的影响。因此,医疗机构、污水处理机构及环境监测部门,都是控制病毒通过污水传播的关键。 目前,为有效防止新型冠状病毒通过粪便和污水扩散传播,生态环境部门要求对要接收新型冠状病毒感染的肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)、相关临时隔离场所及研究机构,严格执行《医疗机构水污染物排放标准》,并参照《医院污水处理技术指南》、《医院污水处理工程技术规范》和《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》等有关要求,对污水和废弃物进行分类收集和处理,确保稳定达标排放;同时,地方生态环境部门要督促城镇污水处理厂切实加强消毒工作,结合实际,采取投加消毒剂或臭氧、紫外线消毒等措施,确保出水粪大肠菌群数指标达到《城镇污水处理厂污染物排放标准》要求。 通过对比以上标准发现,在这些污水处理过程中,粪大肠菌群数是评判污水处理是否合格的关键微生物指标。研究表明,污水中粪大肠菌群数量与肠道致病菌数量存在相关关系,当污水中粪大肠菌群数超过1174个/L时,即可在污水中检出病原菌,因此将粪大肠菌群数作为特征指示性指标对这些微生物进行控制。 根据检测方法、应用领域和污染情况的不同,各标准中对粪大肠菌群数的限量也不同(表1)。目前,可用于检测水体中粪大肠菌群数的方法有4种,分别是多管发酵法、膜过滤法和快速荧光检测法、酶底物法,其中前三种认可度较高,且使用较广泛。 1 膜过滤法 膜过滤法是目前最常用于水体中粪大肠菌群数检测的一种标准方法,也是《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》中的指导方法,可于地表水、地下水、生活污水、工业废水及医疗污水等样本的检测。 该方法使样品通过孔径为0.45μm的滤膜过滤,细菌被截留在滤膜上,然后将滤膜置于MFC选择性培养基上,在特定的温度(44.5℃)下培养24h,胆盐三号可抑制革兰氏阳性菌的生长,粪大肠菌群能生长并发酵乳糖产酸使指示剂变色,通过颜色判断是否产酸,并通过对呈蓝色或蓝绿色的菌落进行计数,从而测定样品中粪大肠菌群浓度。 膜过滤法的关键在于样品前处理,需借助抽滤装置才可完成,使微生物被截留在无菌滤膜上,并通过物理的方式进行富集,以保证粪大肠菌以菌落形态被检出。目前,市面上已有较为成熟、有效的的水中膜过滤装置,可用于水体中微生物前处理操作。专为水质样品前处理、富集等操作设计;结构精巧,配合精密抽滤泵,保证良好的抽滤效果;不锈钢材质,可高温高压灭菌,避免交叉污染;直抽直排,防止废液倒吸。 2 多管发酵法 多管发酵法又称最大可能数(most probable number,MPN)法或稀释培养计数法,该方法是用于检测地表水、地下水、生活污水和工业废水中粪大肠菌群的测定中粪大肠菌群数的一种标准方法。 该方法是一种基于泊松分布的间接计数法,利用统计学原理,根据一定体积不同稀释度样品经培养后产生的目标微生物阳性数,查表估算一定体积样品中目标微生物存在的数量(即单位体积存在目标微生物的最大可能数)。 采用多管发酵法时,先将样品加入含乳糖蛋白胨培养基的试管中,37℃初发酵富集培养,大肠菌群在培养基中生长繁殖分解乳糖产酸产气,产生的酸使溴甲酚紫指示剂由紫色变为黄色,产生的气体进入倒管(杜氏小管)中,指示产气。然后再44.5℃复发酵培养,培养基中的胆盐三号可抑制革兰氏阳性菌的生长,最后产气的细菌确定为是粪大肠菌群。最后通过查MPN表,即可得出粪大肠菌群浓度值。 实验小贴士 该方法在操作过程中,根据样品检出限的不同,可选择12管法(检出限为3MPN/L)或15管法(检出限为3MPN/L)进行实验,因此需要大量使用试管和液体培养基(每个样品需准备12或15支试管)。若检测样品量较大时,建议可采用培养基分液器来降低工作量。可用于生理盐水、液体及半固体培养基自动分装;1L溶液分装到100个MPN法试管中,最快仅需2分钟;微电脑系统与精密泵体联合控制,分装精度高;分装量、分装速度、分装时间、停顿时间、分装次数等参数可自由设定。 采用自动微生物试剂分液器进行实验用品准备,不仅能实现准确的连续分装,还可在保证进度的同时,大大降低工作量。 3 快速荧光检测法 快速荧光检测法是一种利用ATP荧光原理与微生物特性相结合的快速检测方法,虽然该方法暂未被纳入国家标准中,但由于其操作方便,检测与培养时间短(仅为膜过滤法、多管发酵法的1/3),目前被很多大型企业作为内部微生物自检的一种重要手段。通过与对应的采样、增菌拭子配合使用,可快速检测水体中粪大肠菌群数量。 快速荧光检测法是在荧光素酶(lueiferase)和Mg2+的作用下,荧光素(lueiferin)与ATP发生腺苷酰化反应后被活化,活化的荧光素与荧光素酶相结合,形成了荧光素-AMP复合体焦磷酸(PPi)。该复合物在氧化作用下,产生荧光信号。通过ATP检测液检测微生物ATP的发光量,达到检测细菌的目的。该方法现已获得AOAC研究机构的检测方法性能担保认证。 目前,杭州大微已开发了DW-ES800型微生物实时检测系统,该系统基于ATP荧光快速检测法,采用双模块设计,实现对水体中粪大肠菌群、大肠菌群、大肠杆菌、细菌总数等多种微生物的检测和计数。耗时短:培养时间短(定性8小时,定量1~8小时),检测时间仅需15秒范围广:细菌总数、大肠杆菌、总大肠菌群、粪大肠菌群等多种微生物效率高:双培养通道,可同时培养不同温度微生物易操作:五步即可完成(增菌拭子采样→培养→转移→检测拭子激活→检测)可将RLU值转换为CFU值 4 酶底物法 酶底物法是检测水体中大肠菌群、粪大肠菌群和大肠埃希氏菌的一种标准方法。该方法是利用在特定温度下培养特定的时间,总大肠菌群、粪大肠菌群、大肠埃希氏菌能产生特定的β-半乳糖苷酶将选择性培养基中的无色底物邻硝基苯-β-D-吡喃半乳糖苷(ONPG)分解为邻硝基酚(ONP),呈黄色反应;且大肠埃希氏菌同时又能产生β-葡萄糖醛酸酶将选择性培养基中的4-甲基伞形酮-β-D-葡萄糖醛酸苷(MUG)分解为4-甲基伞形酮,在紫外灯照射下呈荧光反应。统计阳性反应出现数量,查MPN表,再除以接种样品的稀释度。计算相应水样中总大肠菌群、粪大肠菌群、大肠埃希氏菌的浓度值。由于操作起来较为繁琐,工作量巨大,故在日常检测中很少被使用。
  • 网络讲座预告:如何采用荧光技术优化水处理过程、检测水质?
    主题:如何采用荧光技术优化水处理过程、检测水质?时间1:7月24日21:30-22:30报名:https://www2.gotomeeting.com/register/809694562时间2:7月25日09:30-10:30 报名:https://www2.gotomeeting.com/register/908386226简介:如果您正面临如何进行水处理过程的优化,或希望在线快速检测水中的化学物质,那就不能错过这个课程。HORIBA的Aqualog同步-三维荧光光谱仪可以在短时间内进行多种的化学物质检测,而这些化学物质正是饮用水、污水、循环利用水、工业废水中的重要指标。适合对象:环境、水质领域研究者主讲人: Dr. Adam Gilmore HORIBA Scientific更多在线课程、培训信息及资料下载,请访问光谱学院:www.horibaopticalschool.com关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 整合子及其携带的基因盒在污水处理过程中的研究获进展
    p 抗生素抗性基因(ARGs)在全球范围内的传播对人类的健康构成严重的威胁。作为一种新型的污染物,抗性基因已成为国际研究的热点。抗性基因的水平转移在推动抗性基因的扩散过程中起着关键的作用。整合子(integron)作为基因捕获系统,可以整合外源基因到基因盒中,是抗性基因水平转移的重要分子元件。长期以来关于抗性基因的研究主要集中于抗性基因总体的丰度和多样性,而很少考虑其所在的位置。位于整合子上面的抗性基因可以通过基因水平转移进入其他的物种包括对人类健康有害的致病菌,因此,对此类抗性基因的研究与人类的健康更加密切。/pp  中国科学院城市环境研究所城市土壤与生物地球化学组朱永官科研团队通过克隆文库和高通量测序分析了不同污水处理厂污水处理过程中一类、二类和三类整合子的丰度,以及相应的基因盒中的抗性基因的多样性。研究发现一类整合子在污水处理中最为常见,而且其丰度随着污水处理进程而降低。在进水中一类整合子基因盒多样性最高,而在污泥中三类整合子基因盒多样性最高。一类整合子中多数基因盒阵列是首次发现。在一类整合子中,大部分基因盒携带抗氨基糖苷类和β-内酰胺类的抗性基因,然而三类整合子基因盒则主要携带β-内酰胺类的抗性基因。此外,在污水处理厂中检测到一个核心的持续存在的抗性基因盒库贯穿于整个污水处理过程,表明这些抗性基因具有更高扩散进入环境的潜在可能性。/pp  该研究成果为研究污水处理对整合子动态变化影响提供了新的视角,强调了监测整合子携带的抗性基因的必要性。相关论文“Impact of wastewatertreatment on the prevalence of integrons and genetic diversity of integron genecassettes”已在线发表于国际微生物学杂志Applied and Environmental Microbiology。该论文由博士生安新丽等人完成,通讯作者为研究员苏建强。/pp  该研究得到国家自然科学基金和城市环境所青年人才领域前沿项目资助。/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/201812/uepic/4e695498-9783-4173-8847-dfe881be4625.jpg" title="W020181211526291403494.jpg" alt="W020181211526291403494.jpg"/ /pp style="text-align: center "污水处理过程中基因盒的持久性和多样性/ppbr//p
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。  阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。  在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。  这项工作得到了国家自然科学基金委、科技部和中科院的资助。 图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm  图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图  图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 步琦网络讲堂-加速环境监测前处理过程圆满成功!
    2012年2月23日下午14::00-16:00我们召开了步琦网络讲堂--加速环境监测前处理过程这次网络会议邀请到了Susanne Feifel (化学硕士 (德国魏恩施蒂芬应用科技大学应用科学大学) 市场营销硕士 自1995年始在BUCHI任职)出任主讲人主题讲座的内容包括:-土壤/棕色地带/沉淀物/下水道污物中的杀虫剂,PAH,PCB,PFC,TPH,阻燃剂,二噁英/呋喃,氮等-水/废水中的杀虫剂,PAH,PCB,TPH,阻燃剂,氮,COD等-空气监测中德二噁英/呋喃和其他POPs等-废弃物/危险废弃物中的PAH,PCB,邻苯二甲酸盐,阻燃剂,重金属等-电子废弃物中的阻燃剂,铅和镉等-食品/饲料中的杀虫剂,PAH,PCB,PFC,阻燃剂,二噁英/呋喃,重金属等感谢各位的大力参与使这次网络讲堂圆满顺利!我公司将在四月份举办另外一场网络课堂,请大家届时留意!谢谢!如有什么问题,也可以与我公司联系联系人:陆小姐 电话:021-62803366-127 电子邮件:lu.y@buchi.com.cn
  • 哈希水质监测仪器在工业用水和废水处理过程中应用研讨会成功举办
    近日,哈希水质监测仪器在工业用水和废水处理过程中应用研讨会成功举办,包括工业用水和废水处理等相关行业的项目经理、设计工程师、现场维护人员在内的三百多位注册用户共同聚焦水质监测仪器在工业用水和废水处理过程中的应用探讨,就水质监测仪器发展前景、水质监测仪器技术在产业中的应用等热点问题进行了深入探讨。  水资源越来越宝贵,这已经被许多行业和领域所共识。流程工业和装配工业中,水起着重要的作用,从工业加工介质到能量动力的传输,水充当着重要的角色。合格的水质是工业过程顺利操作运行的保证,对水质进行及时准确的监测,是保证水处理过程的重要手段。工业用水水质监测,范围非常广。HACH公司作为世界一流的水质分析与监测的专业厂商,不仅能够为广大用户提供性能优良的水质分析监测用的仪器,也能根据不同领域不同行业的特点,为用户提供水质监测的技术解决方案。  此次研讨会,主要探讨的内容有1、进厂原水的质量监测2、冷却水/循环水监测3、热电及蒸汽用水  监测4、工艺物料用水监测5、工业污水的处理与中水回用,用户可以充分了解HACH公司产品范围/仪器  应用特点/工艺过程中水质监测的解决方案概况。同时,对于用户日常工作中所遇到的一些水质检测问题,也可以通过在线平台交流意见,集大家智慧解决问题。
  • "小贝开讲"之检验科和实验室中高感染性生物样品前处理过程中的气溶胶安全防范
    时间:2020年2月20日 14:00 - 15:00内容简介:样品前处理过程和样品误操作中产生的气溶胶很容易被忽略,但是却同样具有污染性。课程从气溶胶的危害、产生原理、可疑污染实验场所到样品灭活、气溶胶污染处理和使用离心机过程中减少气溶胶产生的可行操作等方面进行了全面讲解。主讲人简介:霍德华,贝克曼库尔特生命科学市场部副总监,超过15年生命科学实验室及仪器行业技术支持经验,曾协助和指导国内外多个实验室搭建不同的技术应用平台,现主管离心机、自动化、颗粒分析等多条产品线。
  • 2004年太赫兹物理及超快过程国际研讨会在上海召开
    2004年5月11日,“太赫兹物理及超快过程”国际研讨会在上海召开,来自国内外专家学者汇聚上海。  在上海召开的“太赫兹物理及超快过程”国际研讨会上,中国科学院上海微系统与信息技术研究所所长封松林正在做大会致辞。    中科院上海微系统与信息技术研究所的曹俊诚研究员正在介绍我国太赫兹技术研究的相关情况。  太赫兹(THz)频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的THz产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的THz空隙。近年来由于自由电子激光器和超快技术的发展,为THz脉冲的产生提供了稳定、可靠的激发光源,使THz辐射的物理机理、检测技术和应用技术研究得到蓬勃发展。THz技术之所以引起人们广泛的关注,是由于物质的THz光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,它在物体成像、环境监测、医疗诊断、射电天文、宽带移动通讯、尤其是在卫星通讯和军用雷达等方面具有重大的科学价值和广阔的应用前景。THz技术被认为是改变未来世界的十大技术之一。  由于THz电磁波的重大应用前景,美国等发达国家投入了大量资金和人力开展研究。目前,世界上约有100多个研究机构,陆续开展了本领域的科学研究工作。如:美国Rensselaer理工学院,美国麻省理工学院,加拿大国家研究院等。许多微波及光学的研究所都把研究重心转到THz领域。  我国国家科技部、自然科学基金委、中科院也对THz研究给予了高度的关注,先后在“973”计划、基础研究重大项目前期研究专项、基金委重大项目做了相关项目的安排。中科院上海微系统与信息技术研究所、中科院物理研究所、中科院紫金山天文台、上海交通大学、首都师大、中国电子科大、中科院应用物理所、西安光机所、西安理工大学以及中山大学等是国内较早开展THz研究的单位。中科院上海微系统与信息技术研究所自2001年已把THz研究列为中科院知识创新工程项目。目前在有关THz物理与器件研究方面,他们已获得多项十分有意义的成果。其中曹俊诚研究员等关于THz辐射在低维半导体中吸收方面的研究工作,被认为是THz非线性动力学这个凝聚态物理界被广泛关注的领域取得的重要进展。研究结果发表在2003年12月的《美国物理评论快报》上。
  • 美国康塔仪器公司物理吸附理论及应用 研讨会在中科院过程所举行
    美国康塔仪器公司多年来一直致力于多孔材料表征的理论探索及应用发展,并以提高广大用户的应用及理论分析水平为己任。本着公司的一贯宗旨,康塔仪器公司于2010年12月9日与中国科学院过程工程研究所合作举办了物理吸附用户交流会。会上,美国康塔仪器公司应用专家张哲泠女士与科学院有关院所及在京部分高校的老师同学针对吸附理论及数据判定、分析方法展开了详细的讨论,获得广大用户的一致好评。北京大学的参会老师表示:&ldquo 张博士的培训讲座很切合实际需求,让我们获益匪浅!&rdquo 希望此类讲座能够继续举办。为满足广大科学工作者对物理吸附理论解析的需求,美国康塔仪器公司近期将连续举办研讨会,请关注康塔公司官方中文网站的有关信息。请访问www.quantachrome-china.com
  • 康塔仪器与中科院过程所交流IUPAC物理吸附新规范
    2015年11月30日,美国康塔仪器中国区总经理杨正红造访中国科学院过程工程研究所,与五十多位专家学者、研究人员一起,就“气体吸附法测定比表面及孔径分布技术进展”进行了技术交流。杨总详细阐述了8月份国际化学领域权威的国际纯粹与应用化学联合会(IUPAC)所公布的物理吸附分析新规范。 IUPAC物理吸附新规范将是随后制定新的比表面积、孔径分析的ISO、ASTM标准的最重要的科学基础。美国康塔仪器公司的首席科学家Matthias Thommes博士作为第一起草人,在这份规范的制定中做出了主要贡献。中科院过程工程研究所研究方向为多相反应与分离过程中的新理论、新技术、新方法,重点解决生化、资源环境、材料、能源等领域中的共性、关键性问题,开发新材料、新工艺和新设备,使之工程化、工业化。结合新规范,双方就气体吸附法比表面及孔径分布技术从理论到应用进行了深入交流。 在研讨会上,杨总提出“分析的关键是测得准、算得准,那么,如何做到呢?”这个命题。算得准,要求透彻掌握理论,并了解其工作原理;测得准,需要选择最合适的设备,并熟练操控。不同的吸附理论,都有其适用范围。BET理论的适用范围如何?含微孔样品的BET比表面计算需要注意什么?气体吸附法测量孔径分布测试,经典方法的局限在哪儿?氩吸附和CO2吸附的各自的用武之地何在?为什么评估微孔材料比表面的气体探针推荐选择氩气?如何选择恰当的孔分布计算模型?为什么越来越多的人开始青睐NLDFT和QSDFT方法? 本次交流会,杨总和各位专家针对上述问题畅所欲言、交流心得,彼此都获益良多。 IUPAC新规范 简介:近30年来,随着新的材料如各种有序介孔分子筛、微孔分子筛、金属-有机框架(MOFs)等不断地被合成得到,原有的规范已经不能满足现今科研的要求。新规范中,吸附等温线的类型由原来的6类增加了2种亚分支、现在共有8种吸附等温线,完善了微孔和介孔的类型;脱附迟滞环的类型也增加了2种。 图2 新的吸附等温线和脱附迟滞类型 对于孔道吸附的表征,Ar(87K)的分析条件被确立为表面有活性基团的微孔分子筛、金属-有机框架材料、微孔氧化物的唯一推荐方法,因为Ar分子具备下列好处:1. 球形分子,截面积确定,比表面积分析比N2更加准确;2. Ar没有四级矩,吸附起始压力高,有利于气体分子在微孔中的扩散,分析速度大大加快。 该规范还推荐了CO2(273 K)方法分析碳材料的微孔孔径分布、Kr(77 K)方法分析超低比表面积样品的比表面积值的方法等。此外,DFT方法被推荐于分析微孔、介孔材料的孔径分布。 美国康塔仪器已经对此规范推出了相应的解决方案,各种配置可以全方位的支持N2(77 K)、Ar(87 K)、CO2 (273 K)、Kr(77 K)等条件的分析,完善的DFT模型可以对应各种分析条件的微孔、介孔孔径分析。
  • 中科院高能物理所磁体研制过程实现完全国产化
    近日,中国科学院高能物理研究所高场超导磁体团队研制的全国产超导二极实验磁体,在新一轮性能测试实验中取得重要进展,该磁体在4.2K下两个孔径内实现超过12特斯拉(T,Tesla)磁场强度,达到超导线材临界性能的85%以上。该磁体从结构设计,超导材料、电缆及磁体的制备,到相关的装备与测试平台,均基于国内自主技术路线,并实现了完全国产化。目前,加速器超导磁体的最高场强记录为欧洲核子研究中心(CERN)保持的16T无孔径二极实验磁体,以及美国费米实验室(Fermilab)于2020年创造的14T单孔径二极实验磁体。12T双孔径的性能指标,居于国际前列,且该磁体是迄今国际上唯一一个采用不同超导材料组合线圈结构达到12T二极场强的磁体,也是加速器高场超导磁体自主核心技术发展的关键进展。CERN大型强子对撞机高亮度升级(HL-LHC)原项目负责人、意大利米兰大学物理系教授Lucio Rossi等对该工作给予积极评价。高场超导磁体提供的强磁场可以实现高能量带电粒子束流的轨迹及尺寸控制,是基础物理研究、先进核聚变能源技术以及高能量粒子加速器建设的核心需求。欧美未来十年高能物理发展战略中均把高场超导磁体技术列为优先发展的关键核心技术之一;国内外正在开展的热核聚变实验堆计划也依赖高场超导磁体技术。同时,性能大幅提升的下一代高场超导磁体技术,有望在高精度医疗、低损耗电力及交通系统等民生领域得到广泛的应用,助推我国国民健康的发展、碳中和目标的实现以及相关高科技产业群的形成。研究工作得到中科院战略性先导科技专项(B类)“下一代高场超导磁体关键科学与技术”、国家重点研发计划“变革性技术关键科学问题”重点专项的支持。自主路线超导二极磁体场强达到12特斯拉
  • 在茶叶前处理过程的“七十二变”中,找到zui爱的处理手段
    茶叶我国茶叶历史非常悠久,到现在最少也有数千年的历史了。我国也是属于茶叶大国,由此我们可以知道我国茶叶的品种绝对是非常的多。那对于茶叶有所了解的人都知道,我国茶叶主要分为六大类,也就是红茶、绿茶、黑茶、白茶、黄茶和青茶(乌龙茶)。人们一直离不开茶叶,不仅因为茶叶口感好、味道浓韵,更因为茶叶有着特殊的功效,有利于人们的身心健康。 茶叶具备这么多功效,与茶叶所蕴含的成分有关,茶叶本身含有咖啡jian、单宁、茶多酚、蛋白质、碳水化合物、游离氨基酸、叶绿素、胡萝卜素、维生素A原、维生素B、C、E以及无机盐、微量元素等400多种成分。近年来,中国茶产业快速发展,一二三产业融合推进,呈现出良好的发展势头。目前,全国有茶园面积约4400万亩,茶叶年产量约260万吨,分别占世界的60%和45%,稳居shi界第yi位。所产茶叶中,每年有10%以上出口,每年出口额16亿美元左右。因此,茶叶的质量把控就显得尤为重要,那么茶叶中的农残如何测定?又分别有哪些方法?今天就一起来看看吧: 样品处理首先,我们需要将样品处理成粉末状,利于接下来的分析:接下来就是具体的前处理了。在此,我们的技术人员为大家提供了三种前处理手段,大家可以根据自己的实际情况与具体的分析要求自行选用: QuEChERS处理SPE处理GPC处理小贴士1、以上前处理涉及浓缩温度与浓缩程度可根据实际情况与目标物性质自行调整2、饮茶虽好,也不能过量哦
  • 多个世界首创,我国在荧光相关光谱单分子技术领域取得领先——访中国科学院生物物理研究所研究员黄韶辉
    荧光相关光谱(Fluorescence correlation spectroscopy,FCS)是一种对荧光强度随时间的规律性涨落进行自相关和交相关分析,从而对导致信号涨落的物理(自由扩散等)、化学(分子互作等)和光物理(单线态-三线态循环等)进行定量分析的荧光光谱技术。近年来,随着理论和仪器的不断发展,荧光相关光谱在生物学、医学、化学、材料学、光物理学、微纳科学等领域得到越来越广泛的应用。那么,如今我国荧光相关光谱技术发展到什么阶段了?与国外技术相比,我国的技术处在什么水平?带着这些问题,仪器信息网专门视频采访到了中国科学院生物物理研究所(以下简称中科院生物物理所)研究员黄韶辉。黄韶辉:1998年获堪萨斯大学生物化学、细胞和分子生物学博士学位,1998-2001年在康乃尔大学应用和工程物理学院从事博士后研究,2002-2009年任麻省大学医学院研究助理教授,2009-2013年任宾夕法尼亚大学环境医学研究所研究员兼肺成像和形态学中心主任。 2014年以中科院“引进杰出技术人才”(技术百人)回国,任中科院生物物理研究所研究员、中国科学院大学岗位教授、博士生导师。历任美国国立卫生研究院、中国国家自然科学基金委、广东省公益研究和能力建设基金、粤港澳科技创新合作等科研项目负责人。因缘际会,确定技术转化方向黄韶辉博士在国外的科研工作一直开发荧光显微镜和荧光光谱学新方法和新技术以解决生物学研究的科学问题,期间对科研仪器产生了浓厚的兴趣。2014年借“中科院技术百人”的人才计划,黄韶辉回到了中科院生物物理所开始从事科研仪器的产业化工作。在谈到选择单分子荧光技术的原因时,他表示:“这是我在康奈尔做博士后时导师发明的一种技术——荧光相关光谱,通过研究荧光信号在时间上的相互关系来揭示荧光信号规律性变化背后的物理、化学和光物理过程。当时我觉得这个技术的应用非常广泛,因此借着回国的机会将它进行技术转化,使其应用于基础研究和药物研发领域。”从技术走向产品,从产品走向市场回国后为了真正将荧光相关光谱单分子技术从技术变成产品,从产品走向市场。黄韶辉用了三年的时间进行基础性工作,终于在2017年的广东中山成立了产业化公司——中科奥辉,随后实现了从技术到产品的蜕变。在这个过程中需要克服两个困难:一个是产品工程化,另一个是技术推广。“一个实验室技术并不是天然就可以成为一个产品,它需要进行工程优化,不断提高产品稳定性和可靠性;第二个是要让产品能够被客户所接受,这就需要做技术推广、示范应用等等一系列工作才能将产品推向市场。” 黄韶辉表示。通过六年不断地努力,黄韶辉团队成功研发出全球首台小型化桌面式荧光相关光谱仪,相较于国外竞争对手蔡司、PicoQuant和ISS开发的基于荧光显微镜的FCS产品,它更适合在实验室桌面环境中使用,这也是该产品最主要的优势。CorTector SX100 荧光相关光谱仪(点击查看)应用领域既要广度又要深度单分子荧光相关光谱仪的应用领域十分广泛,主要有两个方面:一个是基础科研领域,另一个是药物研发领域。“目前已发表相关学术论文超过13000篇,主要应用在基础科研领域,包括生物学、医学、化学、材料学和光物理学,因为它的特点就是研究荧光信号与时间的相互关系。荧光信号与时间能够发生相互关系的过程包括:物理过程,比如分子或纳米颗粒的自由扩散;化学过程,比如分子间相互作用;光物理过程,比如单线态-三线态循环。所以它的应用在基础领域的研究范围是非常广的。” 黄韶辉这样说,“接下来我们的应用领域是药物研发,因为所有的药物研发仪器,包括医疗器械最早的前身都是科研设备,是科学家为了解决一个特定的科学问题而研制出来的。”在谈到未来发展路径时,黄韶辉表示,公司发展的下一个目标是与大型药企合作,将荧光相关光谱单分子技术用于药物筛选。未来将单分子荧光技术转化为一个超灵敏的医疗检测设备,比如说阿尔兹海默症疾病标记物的超灵敏检测。拓展领先客户群体,展现国产高端科研仪器价值黄韶辉认为,从2017年产业化到如今,最重要的是思维的转变。“在做产业化工作之前,我一直是科学家,从事了20多年的基础研究,最近这6年多给我一个主要体验就是真正把我从一个科学家的思维转变到一个经营产品、经营公司的思维。”与此同时,经过六年多的发展,黄韶辉团队的产品价格呈现稳步上升的趋势,“我们做的是一个高端光学仪器,我们第一代产品的终端客户价是120万,第二代产品的终端客户价发展到了150万,去年我们第三代产品的终端客户价已经达到了180万。”黄韶辉介绍说。不仅如此,优质的客户群体也是这些年黄韶辉团队实现技术产业化的重要指标,是国产高端仪器价值的最好展现。黄韶辉说:“不管是国内还是国外,我们都发展了排在全世界研究领域前十的用户群体,比如说我们的首批客户,前四个客户都是国外知名用户:美国国立卫生研究院、阿斯利康制药公司、加州大学旧金山分校、麻省大学医学院。疫情发生后,我们把焦点聚焦到国内,目前的客户包括清华大学、北京大学、中国科学技术大学、复旦大学、浙江大学医学院、澳门大学和中科院的很多院所,这些也是可以排到国内大学或者研究所前十位的学术机构。”为了改变大家对国产仪器价格低、技术落后的刻板印象,黄韶辉团队以持有“世界上最先进单分子荧光技术”的姿态进入市场,与世界领先企业展开竞争。用户群体从国外企业到国外领先科研机构,再到国内领先科研机构,展现出了国产高端科研仪器的价值。国产替代要有,持续创新也要有目前,荧光相关光谱单分子技术属于世界先进技术,黄韶辉团队通过这项技术研制了世界首款桌面式荧光相关光谱单分子分析仪。黄韶辉表示:“我们确实做了全世界第一个基于溶液样品的桌面式单分子荧光商业科研仪器,经过了科技部下属机构的查新认证。所以我觉得科研仪器除了要实现国产替代,也要在创新性领域做出贡献。”发展国产科学仪器,“观念”和“政策”两手都要抓如何更好的发展国产科学仪器,黄韶辉表示最重要的是“给机会”:“对于一个产品来说需要有广泛的用户来不断的使用并提出各种改进意见,只有在使用过程中才能真正做出好仪器。”第二点则是要有一些政策上的支持,要将政策支持落到实处。随着人们对国产化科学仪器关注度的增加,未来将有越来越多的国产企业出现在大家的视野中。国产科学仪器企业的发展,需要企业家的情怀、技术的创新、用户的支持、政策的落实,缺一不可。国产科学仪器行业未来的发展让我们拭目以待!完整访谈视频如下关于中科奥辉:中科奥辉响应国家规划发展智能制造和健康医药战略新兴产业的政策引导,成立于粤港澳大湾区几何中心---中山翠亨新区,依托中科院生物物理研究所黄韶辉博士(中科院“引进杰出技术人才”)团队的核心技术和唐山启奥科技股份有限公司的资金、技术、管理和销售资源,致力于成为掌握核心硬科技的国际一流高端精密仪器智能制造公司。公司自主研发的全球首创桌面式荧光相关光谱单分子分析仪CorTectorTM SX100,2018、2020年连续获广东省高新技术产品认定,并在2019年入选中科院首批国产仪器推荐目录。公司以现有研究技术和公共服务平台为基础,为高校研究院及其他创新企业提供服务业务,包括显微成像与光谱整合系统搭建、分析测试服务、医疗器械产品委托生产与注册及医疗器械及科研设备研发制造公共服务四大服务板块。
  • W玻色子质量:新物理隐藏在精确测量中
    费米实验室的对撞机探测器记录了1985年至2011年间由Tevatron对撞机产生的高能粒子碰撞情况。来自23个国家54个机构的约400名科学家仍在研究该实验收集的大量数据。图片来源:费米实验室4月7日,《科学》以封面文章的形式刊发一项重要成果:美国费米实验室对撞机探测器(CDF)合作组的389位科学家,共同完成了迄今为止对W玻色子质量的最精确测量,其精度达到了前所未有的0.01%。这一令全球实验与理论物理学家们振奋和激动的结果,可能将挑战粒子物理学的“标准模型”。在中国科学院理论物理研究所研究员于江浩看来,比结果更重要的是,这是“实验物理学家坚持在旧的金矿中挖掘、‘十年磨一剑’终于淘得的金子”。“旧的实验设备仍有获得新发现的能力和优势,只要坚持在正确的方向上,依然可以做出领先世界的成果。”于江浩告诉《中国科学报》。标准模型之上的追求基本粒子之间存在4种基本的相互作用:引力、电磁力、强力和弱力,每种相互作用都是由某一种媒介粒子传递的,它们被称为玻色子。在标准模型里,W玻色子就是一种传递弱力的媒介粒子。这里的W就是weak(弱)的缩写。2012年,著名的“上帝粒子”希格斯粒子的发现,标志着标准模型取得了极大的成功。标准模型也被称为粒子物理学的基本理论模型。“但是,标准模型不能解释什么是暗物质、什么是暗能量,也不能解释宇宙中物质与反物质的不对称。因此,它只是一定能量标度下的有效理论,也就是说必定存在更加普适的理论,这是粒子物理学所要追求的目标。”北京大学物理学院技术物理系研究员李强告诉《中国科学报》。也因此,寻找超出标准模型预言的“新”物理现象成为众多物理学家毕生追求的目标。李强进一步解释,寻找新物理通常有“直接”和“间接”两种途径,测量W玻色子的质量属于后者。通过精确测量W玻色子质量,科学家可以以之检验标准模型的自洽性,提供揭示可能的新物理迹象的重要途径。于江浩介绍,W玻色子质量是标准模型的重要基本参数,W玻色子质量的精确测量本身十分有意义。W玻色子质量经常被选为标准模型理论计算的输入参数,很多物理过程的预言敏感依赖于W玻色子质量的输入值。基于粒子物理标准模型的高度可预言性,W玻色子质量的改变牵一发而动全身,会影响到已有物理测量的自洽性。“W玻色子质量的精确测量是间接探测新粒子的一种手段,如果对其质量测量十分精确,就可能检测到某些新粒子、新物理产生的影响。”于江浩说。“最精确的测量”“我们知道,W玻色子的质量十分重要,因为其直接影响了原子核弱衰变,以及太阳中轻核聚变的速率。如果其质量远轻于80倍的质子质量,那么太阳的寿命就会比现在短很多,甚至可能已燃烧殆尽。”于江浩表示。W玻色子的质量精度是如何一步步提高的?1983年,研究人员在欧洲核子中心的SPS质子反质子对撞机上发现了W玻色子,第一次测量显示其质量为80.4GeV(10亿电子伏特)左右,误差为0.8。美国费米实验室的Tevatron质子反质子对撞机基于部分结果数据,在2012年公布结果,误差为0.016。从上世纪90年代开始,欧洲核子中心的大型正负电子对撞机持续改进W玻色子的质量测量精度,在2013年将误差缩至0.033。2010年以来,欧洲核子中心的大型强子对撞机实验持续开展W玻色子的质量测量工作,但精度提高得并不多。“W玻色子的质量精确测量是所有对撞机实验上的旗舰式课题, 需要对探测器、物理对象重建、软件计算、理论预言等有很深刻的理解和掌控。”李强表示。直到近日,美国费米实验室CDF合作组分析了对撞机在2002年至2011年间第二轮运行时的所有数据,得到了W玻色子质量目前最精确的测量(80.4335 +- 0.0094 GeV),其精度达到了前所未有的0.01%。“这是非常精确的结果。”于江浩介绍,需要对实验误差(比如丢失能量等的测量精度)进行进一步控制,同时大大降低部分子分布函数的误差等——这直接影响横向动量的分布——计算到很高的精度,这些CDF都做到了。于江浩进一步表示,虽然此次测量结果与2012年的测量结果相比偏离不大,但是由于误差的极大压低,测量的结果比标准模型的预期结果(80.357 +- 0.006 GeV)偏离高了7个标准偏差。“在粒子物理领域,通常高于5个标准偏差就意味着确信和现有理论不符合,这是这个实验结果让很多人激动的原因。”于江浩说。偏差是如何产生的?于江浩说,这一偏差有可能是超出标准模型的新物理引起的,但是由于这一偏差体现在W玻色子质量的高阶修正上,新物理的效应只是间接体现,因此无法直接敲定是何种新物理。此外,实验的系统误差、部分子分布函数因子化误差、非微扰的理论输入的模型依赖依然存在;标准模型的预期主要是来自于电弱整体拟合,这一理论拟合也许存在偏差。“所以虽然偏离达到7个标准偏差,对其是否是新物理的贡献仍需持谨慎态度,需要通过减小实验和理论误差以及其他实验比如LHC来进一步验证,以确定是否是由新物理导致的,并且从相关新物理的直接寻找来排除一部分可能的新物理。”于江浩表示。“旧矿”淘得真“金子”这是在一台已经拆除的仪器上作出的成果。事实上,2011年,Tevatron实验装置在关闭后逐渐被拆除,很多实验物理学家投入到了新仪器LHC的怀抱,希望在新的金矿中淘金。于江浩曾于2012年访问费米实验室,参观了即将拆解的实验装置。他问道,“CDF实验组成员还剩多少?”“很大一部分都去做LHC物理的分析了,只有少量实验物理学家还在整理目前的数据。”费米实验室科研人员有些“悲壮”地告诉他。而10年之后,CDF的研究结果“一鸣惊人”。这也让于江浩意识到,还是有一部分物理学家选择继续在旧的金矿中挖掘,终于淘得金子,真的是“十年磨一剑”。这种坚持,连同实验和理论物理学家紧密无私合作的科学精神,都非常值得学习。目前,我国也有一些科学家在LHC和未来对撞机的多玻色子物理研究上作出了一系列重要的原创性贡献。李强介绍,2012年,我国科学家首先提出高能环形正负电子对撞机方案(CEPC)。环形对撞机造价较低,却能在240GeV能区达到更高的亮度,并能产生大量W、Z粒子来精确检验标准模型。因此,环形对撞机对于研究希格斯粒子与精确检验标准模型更具优势。未来,CEPC与欧洲核子中心未来环形对撞机的项目,均计划在91GeV的对撞能量(Z pole)以及W玻色子对的质量阈值附近取数,用于电弱物理的精确测量,将大大改进W玻色子质量测量精度。“我希望自己能坚持在一个领域做到极致。”于江浩一直记得著名W玻色子理论研究工作者、美国密歇根州立大学教授袁简鹏告诉他的话——“一个理论家等到退休的时候,一定要能留下比较坚实的工作,而不应该一直盲目追逐热点。”相关论文信息:https://doi.org/10.1126/science.abk1781
  • Eppendorf推出新型瓶口分液器,简化液体处理过程
    p  液体处理实验室产品厂商Eppendorf在之前的基础上,改进了产品在质量与技术上的相关细节,并开发了新型号的瓶口分液器Varispenser 2和Varispenser 2x。基础之前产品的理念,新产品几乎完全避免了由残留带来的损失。新产品保证了组件与腐蚀性液体接触时的高稳定性,使用Varispenser 2和Varispenser 2x适用于几乎所有实验室。可配附件包括易于组装的干燥管、滤器或一个可灵活更换的排液管。所有产品都配备了额外的适配器,使得新产品可以与实验室中所有标准的GL 45螺纹产品相匹配。/pp  Varispenser 2x椭圆的外形以及滑块和阀门的新设计强调了现代性,同时也确保了最理想的操作。/ppbr//p
  • Detelogy在蔬菜水果中农药残留检测前处理过程的具体应用
    农药残留,是农药使用后一个时期内没有被分解而残留于生物体、收获物、土壤、水体、大气中的微量农药原体、有毒代谢物、降解物和杂质的总称。施用于作物上的农药,有的分解速度快,失去毒性,有的稳定不易分解,残留部分通过环境、食物链最终传递给人和牲畜。残留的农药在人体内代谢速度慢,累积时间长,对人和生物危害极大,针对这个情况国家对农药的施用都进行严格的管理,并对食品中农药残留容许量作了规定。本方案以GB 23200.113-2018的 QuEChERS前处理方法作为参考,适用于蔬菜、水果、食用菌中的农药残留的检测。Tips净化时对于颜色较深的试样,15 mL塑料离心管中加入885 mg 硫酸镁以及150 mg PSA及15 mgGCB,去除色素的效果会更好。处理氧乐果,甲胺磷,乙酰甲胺磷等性质不稳定的项目时,要注意把控氮吹程度,氮吹过干会导致回收率偏低。所用的Detelogy前处理智能设备* 高通量,兼容多种规格的样品管。* 三维立体振荡技术,进行高动能无死角撞击或摩擦,完成均质提取。* 智能安全防护,提供安全的实验条件。* 7寸智能控制终端,实时显示运行转速和时间,随时启停。* 兼容性强,可容纳多种规格的样品管。* 小巧极简机身,节省存放空间,主机低重心设计,运行噪声低。* 转速可调,圆周式涡旋振荡,支持六段连续变速。* 智能终端控制,实时显示转速和运行时间,随时启停。* 高通量、兼容性强,支持64位样品同时进行浓缩。* 针追随式氮吹,水浴可视窗具备照明功能,配备智能快插排水口。* 氮吹通道灵活组合,多路供气保障平行性。* 智能终端,具备氮吹延时和延时压力功能。
  • 十种物理气相沉积(PVD)技术盘点
    薄膜沉积是半导体制造工艺中的一个非常重要的技术,其是一连串涉及原子的吸附、吸附原子在表面扩散及在适当的位置下聚结,以渐渐形成薄膜并成长的过程。在一个新晶圆投资建设中,晶圆厂80%的投资用于购买设备。其中,薄膜沉积设备是晶圆制造的核心步骤之一,占据着约25%的比重。薄膜沉积工艺主要分为物理气相沉积和化学气相沉积两类。物理气相沉积(Physical Vapour Deposition,PVD)技术指在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积原理可大致分为蒸发镀膜、溅射镀膜和离子镀,具体又包含有MBE等各种镀膜技术。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。随着技术的发展,PVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍各种PVD技术。真空蒸发镀膜技术真空蒸发(Vacuum Evaporation) 镀膜是在真空条件下,用蒸发器加热蒸发物质,使之升华,蒸发粒子流直接射向基片,并在基片上沉积形成固态薄膜,或加热蒸发镀膜材料的真空镀膜方法。其物理过程为:采用几种能源方式转换成热能,加热镀料使之蒸发或升华,成为具有一定能量(0.1~0.3eV) 的气态粒子(原子、分子或原子团);离开镀料表面,具有相当运动速度的气态粒子以基本上无碰撞的直线飞行输运到基体表面;到达基体表面的气态粒子凝聚形核生长成固相薄膜;组成薄膜的原子重组排列或产生化学键合。电子束蒸镀技术电子束蒸镀(Electron Beam Evaporation)是物理气相沉积的一种。与传统蒸镀方式不同,电子束蒸镀利用电磁场的配合可以精准地实现利用高能电子轰击坩埚内靶材,使之融化进而沉积在基片上。电子束蒸镀常用来制备Al、CO、Ni、Fe的合金或氧化物膜,SiO2、ZrO2膜,抗腐蚀和耐高温氧化膜。电子束蒸镀与利用电阻进行蒸镀最大的优势在于:可以为待蒸发的物质提供更高的热量,因此蒸镀的速率也更快;电子束定位准确,可以避免坩埚材料的蒸发和污染。但是由于蒸镀过程中需要持续水冷,对能量的利用率不高;而且由于高能电子可能带来的二次电子可能使残余的气体分子电离,也有可能带来污染。此外,大多数的化合物薄膜在被高能电子轰击时会发生分解,这影响了薄膜的成分和结构溅射镀膜技术溅射镀膜技术是用离子轰击靶材表面,把靶材的原子被击出的现象称为溅射。溅射产生的原子沉积在基体表面成膜称为溅射镀膜。通常是利用气体放电产生气体电离,其正离子在电场作用下高速轰击阴极靶体,击出阴极靶体原子或分子,飞向被镀基体表面沉积成薄膜。射频溅射技术射频溅射是溅射镀膜技术的一种。用交流电源代替直流电源就构成了交流溅射系统,由于常用的交流电源的频率在射频段,如13.56MHz,所以称为射频溅镀。在直流射频装置中,如果使用绝缘材料靶,轰击靶面的正离子会在靶面上累积,使其带正电,靶电位从而上升,使得电极间的电场逐渐变小,直至辉光放电熄灭和溅射停止。所以直流溅射装置不能用来溅射沉积绝缘介质薄膜。磁控溅射技术磁控溅射技术属于PVD(物理气相沉积)技术的一种,是制备薄膜材料的重要方法之一。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并在衬底上沉积成膜的方法。磁控溅射设备使得镀膜厚度及均匀性可控,且制备的薄膜致密性好、粘结力强及纯净度高。该技术已经成为制备各种功能薄膜的重要手段。离子镀膜技术离子镀是在真空蒸发镀和溅射镀膜的基础上发展起来的一种镀膜新技术,将各种气体放电方式引入到气相沉积领域,整个气相沉积过程都是在等离子体中进行,其中包括磁控溅射离子镀、反应离子镀、空心阴极放电离子镀(空心阴极蒸镀法)、多弧离子镀(阴极电弧离子镀)等。离子镀大大提高了膜层粒子能量,可以获得更优异性能的膜层,扩大了“薄膜”的应用领域。是一项发展迅速、受人青睐的新技术。广义来讲,离子镀膜的特点是:镀膜时,工件(基片)带负偏压,工件始终受高能离子的轰击。形成膜层的膜基结合力好、膜层的绕镀性好、膜层组织可控参数多、膜层粒子总体能量高,容易进行反应沉积,可以在较低温度下获得化合物膜层。多弧离子镀(MAIP)多弧离子镀是采用电弧放电的方法,在固体的阴极靶材上直接蒸发金属,蒸发物是从阴极弧光辉点放出的阴极物质的离子,从而在基材表面沉积成为薄膜的方法。多弧离子镀与一般的离子镀有着很大的区别。多弧离子镀采用的是弧光放电,而并不是传统离子镀的辉光放电进行沉积。简单的说,多弧离子镀的原理就是把阴极靶作为蒸发源,通过靶与阳极壳体之间的弧光放电,使靶材蒸发,从而在空间中形成等离子体,对基体进行沉积。分子束外延(MBE)分子束外延(MBE)是新发展起来的外延制膜方法,是一种在晶体基片上生长高质量的晶体薄膜的新技术。在超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。该技术的优点是:使用的衬底温度低,膜层生长速率慢,束流强度易于精确控制,膜层组分和掺杂浓度可随源的变化而迅速调整。用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子显微结构材料。分子束外延不仅可用来制备现有的大部分器件,而且也可以制备许多新器件,包括其它方法难以实现的,如借助原子尺度膜厚控制而制备的超晶格结构高电子迁移率晶体管和多量子阱型激光二极管等。我们在公车上看到的车站预告板,在体育场看到的超大显示屏,其发光元件就是由分子束外延制造的。脉冲激光沉积(PLD)脉冲激光沉积(Pulsed Laser Deposition,PLD),也被称为脉冲激光烧蚀(pulsed laser ablation,PLA),是一种利用激光对物体进行轰击,然后将轰击出来的物质沉淀在不同的衬底上,得到沉淀或者薄膜的一种手段。由脉冲激光沉积技术的原理、特点可知,它是一种极具发展潜力的薄膜制备技术。随着辅助设备和工艺的进一步优化,将在半导体薄膜、超晶格、超导、生物涂层等功能薄膜的制备方面发挥重要的作用;并能加快薄膜生长机理的研究和提高薄膜的应用水平,加速材料科学和凝聚态物理学的研究进程。同时也为新型薄膜的制备提供了一种行之有效的方法。激光分子束外延(L-MBE)激光分子束外延技术(L-MBE)是近年来发展起来的一项新型薄膜制备技术,是将分子束外延技术与脉冲激光沉积技术的有机结合,在分子束外延条件下激光蒸发镀膜的技术。L- MBE结合了PLD的高瞬时沉积速率(不需要考虑成分挥发时的热平衡问题等等)及MBE的实时检测功能,是一种改良的MBE方法。近年来,薄膜技术和薄膜材料的发展突飞猛进,成果显著,在原有基础上,相继出现了离子束增强沉积技术、电火花沉积技术、电子束物理气相沉积技术和多层喷射沉积技术等。目前,芯片制造过程中关键的PVD设备主要包括硬掩膜(Hard Mask )PVD设备、铜互联(CuBS)PVD 以及铝衬垫(Al PAD)PVD,主要使用溅射镀膜技术。目前,主流物理气相沉积厂商包括,北方华创、合肥科晶、中科科仪、SPTS、ULVAC、Applied Materials、Optorun、那诺-马斯特、IHI Corporation、Lam Research、Semicore Equipment、Veeco Instruments、Oerlikon Balzers、Mustang Vacuum Systems、Singulus Technologies、KurtJ.Lesker、博远微纳、汇成真空、佛欣真空、北京丹普、九鼎精密、意力博通、CHA Industries、Angstrom Engineering、Denton Vacuum、Mantis、沈阳科学仪器有限公司等。更多仪器请查看以下专场【物理气相沉积】、【激光脉冲沉积】、【分子束外延】。
  • 聚焦生物物理与人类健康——第十九届中国暨国际生物物理大会盛大开幕
    仪器信息网讯 2021年7月24日,第十九届中国暨国际生物物理大会在安徽合肥盛大开幕。本次大会由中国生物物理学会与中国科学院生物物理研究所联合主办,中国科学技术大学协办,会议吸引千余位来自全国高校、科研院所及仪器企业代表前来参会。中国科学院饶子和院士、杜江峰院士、施蕴渝院士、隋森芳院士、阎锡蕴院士、卞修武院士、董晨院士出席大会开幕式。开幕式现场大会开幕式由中国科学院生物物理研究所张宏研究员主持,杜江峰院士、饶子和院士和中国科学院生物物理研究所所长许瑞明教授为大会开幕式致辞。杜江峰院士为开幕式致辞杜江峰院士讲到,中国科学技术大学是中国科学院所属的一种前沿科学和高新技术为主,建有理学和特色文科的综合性科技大学。我们始终坚持实施全院办校首次结合的办学方针,紧紧围绕着国家的战略需求,高起点宽口径培养新兴边缘交叉学科的尖端科技人才、创新人才,创新成果不断涌现。中国科学技术大学与我国的生物物理学同生共长,1958年建校时,就建立国内高校第一个生物物理系,六十多年来,为国家培养了一大批生物物理学优秀人才。 许瑞明教授为开幕式致辞许瑞明教授讲到,我国要实现高水平科技自立自强,归根结底要靠高水平创新人才。本次大会汇聚了多位杰出学术带头人,吸引了众多青年科技工作者,相信本次大会一定会为为各位同行提供增强次学术交流平台,为新理论新思想的分享提供一个开放平台,促进国际间学术交流引发深层次的思想交流。我国科技实力正在从量的积累迈向质的飞跃,从点的突破迈向系统能力提升,科技创新取得新的历史性成就,相信未来会有更多的科技工作者在此平台上,面向世界科技前沿,面向国家重大需求,面向人民生命健康,把握大势,抢占先机,肩负起时代赋予的重任,努力实现高水平科技治理自强。饶子和院士为开幕式致辞饶子和院士讲到,生物物理学这样一个学科非常重要,它在推动生命科学发展、推动人类健康发展、推动历史发展中扮演着重要角色。近些年来,生物物理学取得了一系列突破,比如AlphaFold,当然,这也是建立在我们前期积累的大量数据的基础之上。二十年前,是结构分析生物学,而现在结构细胞生物学时代已经到来。开幕式上,揭晓了第七届贝时璋杰出贡献奖和第七届贝时璋青年生物物理学家奖获得者,并进行颁奖仪式。第七届贝时璋杰出贡献奖获得者是中国科学技术大学教授、中国科学院施蕴渝院士,第七届贝时璋青年生物物理学家奖获得者分别为北京大学黄小帅教授和上海科技大学王权博士。饶子和、杜江峰两位院士为获奖者颁奖阎锡蕴院士、张宏研究员为获奖者颁奖开幕式后,清华大学隋森芳院士、上海交通大学董晨院士和中国科学院分子细胞科学卓越创新中心李劲松研究员三位嘉宾作了首日的大会报告。隋森芳院士 清华大学报告题目:《Structure studies of gigantic supramolecular complexes by cryo-EM》隋森芳院士讲到,冷冻电镜技术时当今生命科学的前沿热点技术之一,近年在Cell、Science、Nature的年度十大科学突破评选中,冷冻电镜因把生命科学推进到原子水平而连续当选。冷冻电镜在结构生物学面临的挑战:分辨率尽可能高、颗粒尽可能小、颗粒尽可能大、颗粒不均一、尽可能原位测量。隋森芳院士讲了其实验室所做的光合蛋白质及其的冷冻电镜研究。董晨院士 上海交通大学报告题目:《IL-17家族细胞因子在黏膜炎症与疾病的功能机制》董晨院士讲到,生物物理学既有物理,也有生物,物理比较“骨感”,生物比较“丰满”,因此带来了免疫生物学在该领域的研究方向。在进化过程中,IL-17家族细胞因子在进化中是非常悠久的存在,也比较保守,IL-17家族包括六个成员:IL-17A到IL-17F。IL-17是研究的最多也是最具代表性的成员,其受体也是一个相对独立的细胞因子受体家族,有5个家族成员。董晨院士详细介绍了IL-17家族细胞因子在黏膜炎症与疾病的功能机制。李劲松研究员 中国科学院分子细胞科学卓越创新中心报告题目:《类精子干细胞介导的遗传改造》哺乳动物单倍体胚胎干细胞是从单倍体囊胚中建立的细胞系,该细胞具有二倍体胚胎干细胞的所有特性,包括无限增殖能力、基因表达模式、分化潜能等。单倍体干细胞因为只含有一套遗传物质,为在细胞中开展高通量正反向遗传筛选提供了新的工具。另外,携带精子遗传物质的孤雄单倍体该细胞可以替代精子通过卵子注射高效产生半克隆小鼠(因此又称为类精子干细胞),可作为载体将基因编辑器通过“受精”带到胚胎中,为研究胚胎发育和细胞命运决定提供新的遗传学工具。李劲松研究员介绍了其实验室类精子干细胞相关研究及基因组标签计划。开幕式前一天,膜生物学与人类健康、环境与健康、单分子动态结构、基于冷冻电镜的新技术及应用等多场主题研讨会议提前预热,近70位不同领域的专家进行了精彩的报告分享。此外,大会还专门设置了高中生卓越论坛,4位高中生带来了他们的研究分享。部分讲者照片接下来的2天,还将有二十余场分论坛,百余为报告嘉宾带来精彩的分享,敬请关注仪器信息网后续相关报道。后记:生物物理学是生命科学和物理的重要分支学科和领域之一,可以阐明 生物在一定的空间、时间内有关物质 、能量与信息的运动规律,对于生命科学、医学、农业、工业等各个领域具有重要意义。本届生物物理大会的主题聚焦在生物物理与人类健康,强调了生物物理领域的创新发展对人类健康的重要影响。多位院士和百余名国内外优秀学者和业界领袖齐聚合肥,分享交流科技创新发展的最前沿技术,演讲内容覆盖面十分广泛,对于生物物理学科、生命科学领域的发展具有重要的推动作用。此外,本次会议令人感受深刻的一点是特别设置了高中生卓越论坛和青年科研生涯规划系列讲座,充分体现了会议主办方对于青少年和青年学生培养工作的重视。高中学生自信地展示他们的想象力和创新精神,在科学研究的道路上已经开始接收专业的训练,体现了我国当代高中生所具备的综合素质和科研能力。正如本次青年论坛评委所言,在仍以分数为主导,以高考作为绝大多数高中阶段教学的导向的背景下,仍有这样的科学爱好者参与科学研究,是我国中学科学教育的希望和风采。
  • 科技部成立国家创新调查制度咨询专家组
    各有关单位:  按照《中共中央 国务院关于深化科技体制改革 加快国家创新体系建设的意见》关于建立国家创新调查制度的要求,为促进创新调查工作重大事项决策的科学化、民主化、规范化,科技部决定成立国家创新调查制度咨询专家组,负责对建立国家创新调查制度的顶层设计、重点任务部署、创新活动统计调查方案制定和创新监测评价报告等提供咨询和建议,并接受委托开展政策调研和战略研究等相关工作。  在国家创新调查制度工作组成员单位推荐的基础上,科技部聘任王元等16名同志为咨询专家组专家(名单见附件)。请各有关单位积极配合和支持咨询专家组的工作。  附件:国家创新调查制度咨询专家组专家名单  组 长:王 元 中国科学技术发展战略研究院 常务副院长  副组长:齐 让 全国政协人口资源环境委员会 副主任  穆荣平 中科院科技政策与管理科学研究所 所长  成 员:(按姓氏笔划排序)  马名杰 发展研究中心技术经济研究部 副部长  王 毅 中科院科技政策与管理科学研究所 副所长  王忠明 中国民(私)营经济研究会 常务副会长  邓璇玲 中国船舶工业行业协会 副秘书长  何 平 北京师范大学 教授  何 颖 中国电子信息产业发展研究院 所长  宋卫国 中国科学技术发展战略研究院 研究员  姜培学 清华大学工程热物理所 所长  柳卸林 中国科学院大学 教授  赵彦云 中国人民大学统计学院 教授  梁 正 清华大学公共管理学院 副教授  阎 宏 中国建筑材料集团有限公司 部门副主任  察志敏 国家统计局甘肃调查总队 副总队长  科 技 部  2014年10月17日
  • 离开实验室的材料科学:AI正将新材料的发现过程提速200倍
    p style="text-indent: 2em "span style="text-indent: 2em "几百年来,人们一直是通过反复试验或者靠运气和偶然发现新材料。现在,科学家们正在使用人工智能来加速这一过程。/span/pp style="text-indent: 2em margin-bottom: 5px "最近,西北大学的研究人员用AI来解决如何生成新的金属玻璃混合物的问题。这比起在实验室进行实验快了200倍。/pp style="text-indent: 2em "科学家们正在构建由数千种化合物组成的数据库,以便用算法来预测哪些化合物的组合会形成有趣的新材料。还有人用AI来分析已发表的论文挖据“材料配方”以产生新材料。/pp style="text-indent: 2em "过去,科学家和建筑工人们只能将材料混合在一起看看能形成什么。比如,水泥就是这样被发现的。随着时间的推移,他们学习了各种化合物的物理特性,但大部分知识仍然只是基于直觉。/pp style="text-indent: 2em "“如果你问为什么日本水淬钢用于制作刀具最好,我觉得谁都回答不了,”美国国家标准与技术研究院材料基因倡导小组的主任James Warren说,“对于这种内部结构与迷人外表之间的关系,它们只有一种根据经验而来的理解。”/pp style="text-indent: 2em "Warren说,我们现在可以利用数据库和计算机来快速确定是什么让材料变得更坚固或更轻,而不是凭经验,这有可能变革整个行业。此外,原本发现一种材料并将其整合成产的时间可能需要超过20年,加速这一过程势必会使我们获得更好的手机电池和屏幕,更好的用于火箭的合金材料,以及更好的健康设备传感器。/pp style="text-indent: 2em "“任何事情只要是由物质造成的,我们就可以改进。”沃伦说。/pp style="text-indent: 2em "正如Warren所说,为了理解新材料是如何制造的,我们可以把材料科学家想象成厨师。假设你有鸡蛋,并且你喜欢有嚼头的食物,这些就是你想要的菜肴的特点,但你该怎么做呢?为了创建一个蛋白和蛋黄都结实的结构,你需要一个配方,其中包含根据你想要的结果处理鸡蛋的步骤,比如煮老一点。/pp style="text-indent: 2em "材料科学使用相同的概念:如果一位科学家想要某些材料特性(比如说,轻便又坚韧),她会寻找可以产生这些特性的物理和化学结构,以及需要通过哪种处理过程,比如对金属进行熔化或捶打,来创造这样的结构。/pp style="text-indent: 2em "建立“材料云”数据库,虽不完美但已为科学家们创造了捷径/pp style="text-indent: 2em "数据库和计算技术可以帮助人们找到答案。“我们对材料进行量子力学级别的计算,这种计算非常复杂,因此我们可以在实验室中合成一种可能的新材料之前,就用计算机预测出它的属性。”西北大学材料科学家Chris Wolverton说,他主管开放量子材料数据库。其他主要数据库包括材料项目和材料云。数据库还不完整,但数据量一直在增长,并且已经从中找到了令人兴奋的发现。/pp style="text-indent: 2em "瑞士洛桑联邦理工大学研究员Nicola Marzari利用数据库查找可剥离的3D材料,以创建仅有一层的2D材料。比如,被炒得沸沸扬扬的石墨烯,它由单层石墨(也就是铅笔芯的材料)组成。像石墨烯一样,这些2D材料可以具有非凡的特性,如强度,而这在其3D形态中是不存在的。/pp style="text-indent: 2em "Marzari的团队用算法筛选来自多个数据库的信息。他上个月在《自然纳米技术杂志》上发表的文章中写到,该算法在超过100,000种材料中,最终发现可以剥离成一层的材料大约有2,000种。/pp style="text-indent: 2em "Marzari管理的“材料云”是一个材料“宝藏”,因为许多材料具有可以改善电子设备的特性,有些可以很好地传导电力,有些可以将热量转化为水,有些可以吸收太阳能:它们可以用于计算机或电池中的半导体,因此Marzari团队的下一步就是密切研究这些可能的特性。/pp style="text-indent: 2em "Marzari的工作是科学家如何使用数据库来预测哪些化合物可能会产生令人兴奋的新材料的一个例子。然而,这些预测仍需要在实验室中得到证实。并且Marzari仍然需要给他的算法定义某些规则,比如寻找弱化学键。AI可以创建一条捷径:科学家可以告诉AI他们想要创造的东西,比如超强材料,而不是编制特定的规则,然后AI会告诉科学家生成新材料最佳实验方法。/pp style="text-indent: 2em "Wolverton和他在西北大学的团队在本月出版的Science Advances杂志上的一篇论文中描述了AI 的运用。研究人员渴望研制新的金属玻璃(非晶态合金),这种玻璃比金属或玻璃更结实,但硬度却更低,未来可以用于改进手机和航天器。/pp style="text-indent: 2em "斯坦福大学SLAC国家加速器实验室的共同研究者Apurva Mehta说,他们使用的AI方法与人们学习新语言的方式类似。语言学习的其中一种方法是坐下来记住所有的语法规则。“但另一种学习方法就是靠经验和听别人说话,”Mehta说。/pp style="text-indent: 2em "他们的做法是把两者组合起来。首先,研究人员浏览尽可能多的已发表的论文,了解如何制作不同类型的金属玻璃。接下来,他们将这些“语法规则”提供给机器学习算法。然后该算法学会自己预测哪些元素的组合会创造一种新的金属玻璃形式,这类似于通过去法国居住来改善法语,而不是无休止地背词性变化表。Mehta的团队随后在实验室中检验了机器学习系统给出的建议。/pp style="text-indent: 2em "科学家一次可以合成和测试数千种材料。但即使以这样的速度,盲目尝试每种可能的组合还是很浪费时间。“他们不能把整个元素周期表都拿来做尝试,”Wolverton说,所以AI的作用是“为他们提供几个入手点”。/pp style="text-indent: 2em "AI的结果并不完美,还不能给出更进一步的建议,比如所需元素的确切比例,但科学家们确实能够用AI的结果生成新的金属玻璃。另外,测试AI给出的结果意味着他们现在有更多的数据可以反馈给算法,所以每次重新预测都会变得更智能。/pp style="text-indent: 2em "创建一份“食谱”或材料配方集/pp style="text-indent: 2em "使用AI的另一种方式是创建一个“食谱”或材料配方集。在去年年底发表的两篇论文中,麻省理工学院的科学家开发了一种机器学习系统,可以扫描学术论文,找出哪些论文包含制作某种材料的说明。它检测出哪些段落包含“配方”的准确率高达99%,并且该段落中找出原话的准确度有86%。/pp style="text-indent: 2em "麻省理工学院团队现在正在对AI系统进行更精确的训练。他们希望为整个科学界创建这种“食谱”数据库,但他们需要与这些学术论文的出版商合作,以确保其收集不违反任何协议。最终,团队还希望能够训练系统阅读论文,然后自行制作新的“食谱”。/pp style="text-indent: 2em "麻省理工学院材料科学家及共同研究者Elsa Olivetti:“我们的其中一个目标是对于已经发现的材料,找到更有效,更低成本的生成方法。另一个目标是,对于计算机预测出的化合物,我们能否提出一系列更好的方法来生成它?”/pp style="text-indent: 2em "挑战:模型预测考虑不到现实因素/pp style="text-indent: 2em "人工智能和材料科学的未来看起来很有前景,但依然存在挑战。首先,计算机无法预测一切。“这些预测本身就有错误,并且经常是在简化的材料模型基础上预测,而不考虑真实情况”,EPFL的Marzari说。有各种各样的环境因素会影响化合物的行为,比如温度和湿度,大多数模型没有考虑这些因素。/pp style="text-indent: 2em "Wolverton认为另一个问题是我们仍然没有足够多的的所有化合物的数据资料,缺乏数据意味着算法不会很智能。也就是说,他和Mehta现在希望在除金属玻璃以外的其他类型的材料上使用他们的方法。他们希望有一天,生成新材料不再需要由人来做实验,而只是AI和机器人就够了。“我们可以创建一个真正完全自主的系统,”Wolverton说,“没有任何人参与的系统。”/p
  • 拉曼光谱助力物理材料领域的深入研究——访中山大学测试中心陈建研究员
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  拉曼光谱是物质的非弹性散射光谱,能够提供丰富的材料结构信息,已经成为研究材料物理性质,鉴别材料成分的基本手段,同时也是必不可少的一种有力工具。而作为科研级拉曼光谱仪的使用“大户”,物理材料领域的研究一直代表着拉曼光谱应用的前沿和高端,当然其对仪器性能的要求也相对较高,甚至很多时候要求仪器达到“极致”的状态。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  拉曼光谱在材料领域的应用现状如何?目前的研究还存在哪些问题?物理材料领域的研究对拉曼光谱仪有哪些特殊要求?日前,仪器信息网特别采访了中山大学测试中心陈建研究员。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/bd510805-463b-4fc6-aadc-237ac0d9f4a4.jpg" title="陈建 (1).jpg" alt="陈建 (1).jpg"//pp style="text-align: center "strong中山大学测试中心陈建研究员/strong/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "走进陈建研究员的办公室,墙壁上的一张张照片,我们不仅看到了陈建研究员年轻时的身影,更看到了中国拉曼光谱研究和应用群体发展壮大的历史轨迹。而我们的采访,也是从寻找这些照片中的年轻身影和历史踪迹展开… … /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/24b5ca4f-d2d8-47ca-9247-0db29f23bcfd.jpg" title="图片展.jpg" alt="图片展.jpg"//pp style="text-align: center "strong办公室墙壁上的照片展/strong/pp strong span style="color: rgb(255, 0, 0) "他的研究工作一直在追求“极致”/span/strong/ppstrongspan style="color: rgb(255, 0, 0) "/span/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f8d2ec5d-b2bf-4a40-8002-923d81754957.jpg" title="图片历史仪器.jpg" alt="图片历史仪器.jpg"//pp style="text-align: center "strongICORS94的广州卫星会议期间展出的拉曼光谱仪/strong/pp  谈到当初仪器的选择及购置,陈建研究员给我们讲了一个很长的故事。从本科研究生阶段的Jobin-Yvon U1000,到刚工作时的Spex 1403激光拉曼光谱仪,陈建说,一直非常期望能用上先进的拉曼光谱仪。1994年在中山大学召开的ICORS94广州卫星会议期间的仪器展,刚工作没多久的陈建与雷尼绍的拉曼光谱仪有了第一次的交集。鉴于初次谋面的好印象,之后的时间里便有了更多的接触和了解,特别是纳米金刚石的石墨化效应研究遇到信号极弱难题的时候,雷尼绍拉曼光谱仪的“高灵敏度”给了他很多帮助。据悉,该研究成果在国际著名学术期刊Applied Physics Letter和Angewandte Chemie International Edition上发表,首次报道了纳米金刚石粉末在惰性气氛下的石墨化效应以及石墨化温度,深入研究了纳米金刚石的热效应,引起国内外研究学者的高度重视(1999-2005年)。/pp  经过缜密的调研,陈建实验室于2005年购置了inVia Basis拉曼光谱仪(514 nm、785 nm);2012年,升级了633 nm波长的激光器和Streamline+SHR3D快速成像。之后,陈建研究员的研究工作“如鱼得水”,克服了一个个科研难题。据介绍,基于这台仪器,陈建研究员在拉曼光谱法研究聚合物分子链的动态运动过程方面开展了一系列的工作,包括拉曼光谱法研究PTT分子链的松弛运动及冷结晶动力学、CRM技术研究PS/PMMA双层薄膜体系中分子链的扩散现象、拉曼Mapping成像法研究PS/HDPE共混体系的相态结构等。/pp  2006-2018年,陈建对一维纳米材料(包括WOx、CdS、MoOsub3/sub、ZnO、TiOsub2/sub等)进行了系统的研究,开拓了单根一维纳米材料光电特性和结构相变的新方向。此外,他还搭建了拉曼光谱及光电气敏综合测试平台、拉曼光谱原位电化学反应机理测试平台等,研究了表面等离子体共振效应在光-电-热协同催化的应用及机理;据悉未来,陈建的研究方向将聚焦表面等离子体共振光谱和二维材料的结构与性能研究。/pp  陈建研究员实验室的这台拉曼光谱仪目前一天运转八小时,一年的样本量接近3000个,其中对校外服务的比例大约为10%,正常样本的测试时段一般都要排到半个月甚至一个月之后。陈建说,“测试中心的工作主要是做测试,对仪器的灵敏度、重复性、稳定性、可靠性要求都比较高。更重要的是,要求仪器每天都正常运转,所以结实耐用最关键。”他说,从2005年到现在,除了激光器因寿命原因换过几个以外,其他的,包括滤光片都没有换过。而且,这十几年下来,仪器的灵敏度跟刚购置的时候没有太大的变化。对实验室这台仪器的皮实程度,陈建表示还是非常满意的。当然,这也与管理过程中的细心呵护密不可分。据悉,鉴于科研的需求,2018年,实验室又购置了inVia Qontor,配置了325 nm、532 nm、633 nm、785 nm激光器和各种成像功能(SL+SHR3D+Rapide+LiveTrack),以及高低温与催化原位池,这台仪器将于近期安装。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/SH100480/C270408.htm" target="_blank"img style="max-width: 100% max-height: 100% width: 450px height: 334px " src="https://img1.17img.cn/17img/images/201908/uepic/31ad3603-d27f-4574-be1f-51a50aee896f.jpg" title="仪器展.jpg" alt="仪器展.jpg" width="450" height="334" border="0" vspace="0"//a/pp style="text-align: center "strong陈建研究员实验室中的拉曼光谱仪/strong/pp  采访过程中,我们聆听到许多拉曼光谱的相关故事,同时也感受到了陈建研究员严谨治学的态度。他对拉曼仪器及技术“了如指掌”,他愿意做困难的样品,他对自动化程度特别高的仪器并不是特别喜欢,反而偏爱手动将仪器调整到“极致”的状态,这些对陈建而言,是非常愉快而有意义的事情。/pp  谈到当前拉曼光谱领域的研究,陈建说,虽然我国拉曼光谱相关研究群体比较大,涉及的领域也非常广,但是目前更多的是将拉曼光谱仪作为一个可选的表征手段,真正进行深入研究的却比较少。陈建认为,拉曼光谱在物理材料领域的应用就要追求“极致”,一方面是研究的深入程度,另一方面仪器性能条件也要调整到最佳。“只有这样才能创新性的解决科研中的难题,而不只是单纯的应用表征。”/ppspan style="color: rgb(255, 0, 0) "strong  物理材料领域的研究对拉曼光谱仪提出更高要求/strong/span/pp  近年来,拉曼光谱的研究如火如荼,物理材料、生命科学、化学等各个领域都成绩斐然。而鉴于各领域研究的深入,拉曼光谱的各种新技术也层出不穷:追求极致空间分辨率的AFM-Raman(TERS);实现形貌、微观与成分结构原位分析与成像的SEM-Raman;用于活细胞原位控制与测试的光镍技术;各种拉曼成像技术,如激光实时聚焦成像极大扩展了拉曼成像的样品范围,适合各种表面不规则样品和动态变化的样品等。说起近几年的新技术,陈建如数家珍。/pp  物理与材料领域一直是高端拉曼光谱仪的“大户”,对仪器性能的要求也相对较高。据陈建介绍,该领域需要测量波数更低、灵敏度更高、成像速度更快、空间分辨率更高的拉曼光谱技术。而随着新材料的出现和检测手段的更新,拉曼光谱中的物理参量及其相关的知识也在不断的扩充和加深,比如由于分形结构、无序结构深入研究的需要出现了耦合系数,多壁纳米管(如碳)研究的基础上又给出了另一个新的参量—反转系数;鉴于材料,特别是二维材料结构、性能等方面的研究需求,联用技术在物理材料领域的应用需求也越来越明显。/pp  不过,针对当前物理与材料领域的研究需求,陈建也分析了几点局限性:“由于拉曼光谱信号比较弱,灵敏度还需要进一步提升,成像速度还需再加快,荧光还需要想办法抑制或避免,新的时间分辨拉曼、CARS、SRS等技术虽然已经有一些解决方案,但受限于复杂的技术和高昂的成本,目前还未能普及。”/pp  而对于国内外的研究差别,陈建指出,目前国外在拉曼理论以及利用相干和受激拉曼散射、时间分辨拉曼散射进行材料相关研究的比较多,但国内相对还较少。/pp  span style="color: rgb(255, 0, 0) "strong国家教育投资或将促进拉曼光谱市场快速增长/strong/span/pp  在过去的20多年里,中国拉曼光谱的研究群体持续增长,拉曼光谱仪的普及程度也在逐渐提高。陈建说,“我硕士毕业刚来中山大学的时候,拉曼光谱的普及程度还非常低,大部分的学生都没听说过拉曼光谱。而现在,走在校园里,十个理工科学生里面就有两三个对拉曼光谱有所了解。”据悉,目前陈建依然坚持在教学一线,教授研究生、本科生的拉曼光谱选修课,普及拉曼光谱知识。/pp  “中国在拉曼光谱技术开发和应用方面做了很多工作,可以说2017年我国的拉曼光谱进入了一个黄金时段,物理、化学、材料、环境等各行各业都得到广泛的研究和应用,可谓百花齐放、蓬勃发展。未来,在临床医学、制药、生命科学、司法鉴定等领域会有更大的发展空间。”/pp  对于拉曼光谱仪的市场,陈建评价说,最近几年我们国家经济增长比较快,国家对教育的投入也很大。根据日前公布的2019年高校年度预算来看,今年共有8所高校登上“百亿俱乐部”。按照我们国家的国情而言,这些预算中很大一部分会用于设备的购置和人才引进。而在常规的设备很多都已经购置过的情况下,拉曼光谱等新仪器有望迎来比较快的增长。/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  后记:/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  1990-2019,回忆过去的29年,陈建和拉曼光谱有着“千丝万缕的联系”。陈建笑称拉曼光谱是他最亲密的伙伴,甚至比陪伴家人的时间都要长。其实,从陈建办公室的布局,我们就能感受到拉曼光谱在其生活中的分量:办公室进门右手边的房间放置的是inVia拉曼光谱仪 左手边是陈建的办公室兼书房,书架上拉曼光谱相关的中英文书籍和文献一应俱全 而正对门口的房间留给了即将入驻的新的拉曼光谱仪inVia Qontor。也许是兴趣与爱好使然,但更多的应该是这许多年与拉曼光谱朝夕相伴的研究与探索,才成就了陈建今天的学识以及在行业中的地位。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  据悉,在他的带领下,中山大学在拉曼光谱方面也有很强的创新性,敢为人先,目前已经累计购置了10余台相关的产品。其中,光电材料与技术国家重点实验室(大学城)拥有全球第一台AFM-Raman-SEM联用系统;材料学院拥有全球第一台实现193 nm的micro-PL成像的拉曼系统;环境学院拥有全国第一台与激光扫描共聚焦显微镜联用的拉曼系统。/span/p
  • 大运会在全国首创三个检测方法 创立国际赛事食源性兴奋剂检测的成都标准
    8月7日,成都大运会服务保障专场新闻发布会召开。会上,大运会执委会保障部专职副部长尹建表示:“我们坚决防范食品安全事故,大运会食品安全工作坚持底线思维,强化从田间到餐桌全过程的监管。”大运会执委会保障部专职副部长 尹建 据尹建介绍,为保障大运食品安全,首先是强化风险的防控,建立国家省市的专家队伍,进行菜单食品的配方审查以及食品生产的风险研判,也预先发现并处置了风险100项。其次是强化源头控制,建立了对20个养殖基地、34个种植基地以及61个食品生产企业的驻点监管。再是强化检验检测,全国首创自主研发了三个检测方法,对食材食品安全包括食源性兴奋剂检验检测的合格率是达到了100%。最后是强化溯源管理,开展驻点监管。“我们组建了328人的食品安全监管团队,在各场馆场所进行驻点的监管,每天都做好了食品安全的巡查、食品留样和抽样检测工作。目前为止,我们没有发生食品安全的事件以及食源性兴奋剂的事件。”尹建说到。 值得一提的是,本次大运会在全国首创的这三个检测方法,创立了国际赛事食源性兴奋剂检测的成都标准。此检测方法,对55项食源性兴奋剂的有关物质共61项全项目的指标检测都可以开展,节约检测人力物力可以达到70%以上,形成可以复制和可以借鉴的成都标准。
  • 新品上市 | 让您感受“魔幻”般的实验过程
    为什么选择MagicFlux 1000?实验室理化检测分析化学是一个多步过程,其中样品前处理是一个十分重要的步骤。据统计,以色谱和质谱为核心的检测流程中,约60%的时间花在样品前处理上,同时前处理产生误差最大,占到整体检测误差的约30%。传统SPE的困扰1:传统萃取柱具有不可避免的流速差异,易造成误差2:填料溶胀和收缩造成“沟渠效应”,影响回收率和重复性3:传统萃取柱有堵塞风险,无法真正实现无人值守经典固相萃取流程示意图固相萃取小柱示意图针对复杂的样品前处理过程,普敦科技全新推出MagicFlux1000 全自动固相萃取系统,提供多种萃取剂依次萃取净化解决方案。让您感受“魔幻”般的实验过程~产品特点MagicFlux 1000采用分散固相萃取技术,摒弃了装填柱式的固相萃取柱。1:采用全新一代提取技术,专用于小分子物质的提取;非装填柱,无需控制流速2:采用移液设计,抛弃泵、阀、接头和管路等复杂系统,稳定性、一致性好3:模块化设计,轻松实现全自动运行,消除了人为干扰因素磁性固相萃取流程示意图产品亮点应用领域更多产品详情可联系普敦科技:400-860-3855将有技术人员与您沟通
  • 大连理工大学丁洪斌教授LIBS团队:核聚变材料LIBS应用及激光烧蚀物理研究
    p style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/821177f3-2142-4819-9378-ab6673f8650e.jpg" title="1.png" alt="1.png"//pp  span style="color: rgb(0, 112, 192) "strong一、大连理工大学丁洪斌教授LIBS团队风采/strong/span/pp  团队由strong丁洪斌教授、李聪副教授、海然讲师/strong为核心成员,目前有高级工程师1人,工程师2人,在读博士生13人、国际留学生4人、在读硕士生7人。团队依托于大连理工大学物理学院、等离子体物理国家重点学科、中俄白等离子体科学研究中心、三束材料改性教育部重点实验室,致力于磁约束核聚变壁材料LIBS应用研究和激光烧蚀基本物理研究。在国内外重要学术杂志发表论文近百篇,已授权国家发明专利14项。团队负责承担了国家重大ITER专项、国家重点研发计划、国家自然科学基金、国际重大合作(中德)基金等项目。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/2788bbd6-0b13-4d86-9e78-551d841ae153.jpg" title="2_副本.png" alt="2_副本.png"//pp strong span style="color: rgb(0, 112, 192) "二、相关研究成果及研究最新进展/span/strong/pp  strong1.磁约束核聚变壁材料LIBS应用研究/strong/pp  磁约束聚变能是最具有潜力的清洁安全能源之一,磁约束聚变等离子体与第一壁相互作用(PWI)所引发的壁刻蚀及燃料杂质再沉积是制约磁约束聚变装置长脉冲高约束模式运行的关键问题,也是将来实现聚变能发电必须解决的关键问题。/pp  课题组首次建立的全超导大型托卡马克EAST原位LIBS壁诊断系统已成功应用于EAST第一壁元素的实时在线检测,这是国际上首次将LIBS技术用于具有偏滤器位形的大型托卡马克聚变装置。课题组还在德国于利希研究中心TEXTOR托卡马克、荷兰基础能源研究所Magnum-PSI直线等离子体装置开展了LIBS原位系统研发及PWI研究工作。在LIBS壁诊断机理及关键技术研究上,取得了一批具有特色的创新成果。此外与中核集团HL-2A/2M托卡马克、德国马普学会的世界上最大的仿星器Wendelstein 7-X合作的LIBS壁诊断研究合作项目也正在开展中。研制的LIBS关键壁诊断技术对将来开展ITER高参数长脉冲运行下的壁原位诊断具有重要意义。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/9aca8804-fa8b-49e9-ba08-ac574bc5323a.jpg" title="3.jpg" alt="3.jpg"//pp  strong2.激光烧蚀基本物理过程研究/strong/pp  团队针对激光烧蚀基本物理过程,系统开展了背景气压、氛围气体、磁场环境、激光波长、激光脉宽等实验条件对LIBS光谱及激光烧蚀等离子体的时空演化的影响的实验研究。发展了基于DP-LIBS、Ps-LIBS、Fs-LIBS等先进诊断技术,可在高真空、强磁场等严酷环境下对固体样品进行远程在线、高灵敏度、高空间分辨定量分析。通过LIBS与飞行时间质谱方法相结合系统研究了激光烧蚀不同靶材(金属到非金属,低Z到高Z,化合物到合金材料)等离子体中不同电荷态离子、原子、分子等多物种膨胀过程中的时空演化规律。探索空间约束、辉光放电、磁场约束等LIBS信号增强应用技术。激光烧蚀理论研究方面,团队自主开发了激光烧蚀流体动力学数值模拟程序,已获批软件著作权两项。这些工作对深入理解激光烧蚀基本物理过程,提高LIBS的定量化水平具有重要的意义。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/b15b2d2a-f0de-401e-81a1-37288a33ccfe.jpg" title="4_副本.png" alt="4_副本.png"//pp  span style="color: rgb(0, 112, 192) "strong三、发表LIBS相关研究论文/strong/span/pp  1. Ran Hai, Xianglei Mao, George C.-Y. Chan, Richard E. Russo, Hongbin Ding, Vassilia Zorba, Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation, Spectrochimica Acta Part B, 148, 2018: 92–98./pp  2. J. Oelmann, N. Gierse, Cong Li, S. Brezinsek, M. Zlobinski, B. Turan, S. Haas, Ch. Linsmeier, Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 144:38–45./pp  3. D. Zhao, Cong Li (并列一作), Z. Hu, C. Feng, Q. Xiao, R. Hai, P. Liu, L. Sun, D. Wu, C. Fu, J. Liu, N. Farid, F. Ding, G. Luo, L. Wang, H. Ding, Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak, Review of Scientific Instruments, 2018, 89:073501./pp  4. P. Liu, D. Zhao, L. Sun, C. Fu, J. Liu, Cong Li, R. Hai, C. Fu, Z. Hu, Z. Sun, J. Hu, J. Chen, Y. Liang, G. Luo, H. Ding, EAST team, In situ diagnosis of Li-wall conditioning and H/D co-deposition on the first wall of EAST using laser-induced breakdown spectroscopy, Plasma Physics and Controlled Fusion, 2018, 60:085019./pp  5. D. Zhao, Cong Li, Y. Wang, Z. Wang, L. Gao, Z. Hu, J. Wu, G. Luo, H. Ding, Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device, Plasma Science and Technology, 2018, 20:014022./pp  6. Dongye Zhao, Niels Gierse, Julian Wegner, Georg Pretzler, Jannis Oelmann, Sebastijan Brezinsek, Yunfeng Liang, Olaf Neubauer, Marcin Rasinski, Christian Linsmeier, Hongbin Ding, Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target, Nuclear Inst, and Methods in Physics Research B, 418, 2018: 54–59./pp  7. Ping Liu, Jiamin Liu, Ding Wu, Liying Sun, Ran Hai, Hongbin Ding, Study of Spark Discharge Assisted to Enhancement of Laser-Induced Breakdown Spectroscopic Detection for Metal Materials, Plasma Chem Plasma Process, 2018, 38:803–816./pp  8. Z. Hu, N. Gierse, Cong Li, J. Oelmann, D. Zhao, M. Tokar, X. Jiang, D. Nicolai, J. Wu, F. Ding, S. Brezinsek, H. Ding, G. Luo, Ch. Linsmeier, Laser induced ablation spectroscopy for in situ characterization of the first wall on EAST tokamak, Fusion Engineering and Design, 2018, 135:95–101./pp  9. Ding Wu, Liying Sun, Ping Liu, Ran Hai, Hongbin Ding, Enhancement of Laser-Induced Breakdown Spectroscopic Signals in a Liquid Jet with Glow Discharge, Applied Spectroscopy, 2018, 72: 225–233./pp  10. Cailong FU, Qi WANG and Hongbin DING, Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application, Plasma Sci. Technol., 2018, 20: 085501./pp  11. Cong Li, N. Gierse, J. Oelmann, S. Brezinsek, M. Rasinski, C. P. Dhard, T. Sunn Pedersen, R. Kö nig, Y. Liang, H. Ding, Ch. Linsmeier, the W7-X team, Laser-induced breakdown spectroscopy for Wendelstein 7-X stellarator limiter tile analysis, Physica Scripta, 2017, T170:014004./pp  12. Cong Li, Yong Wang, Xingwei Wu, Hongyue Li, Jiansheng Hu, Junling Chen, Guang-Nan Luo, Hongbin Ding, Compositions and chemical states on the co-deposition layer of lithiated tungsten of plasma-facing components of EAST, Nuclear Materials and Energy, 2017, 12: 1209–1213./pp  13. Ping Liu, Ding Wu, Liying Sun, Ran Hai, Jiamin Liu, Hongbin Ding, Magnetic field selective enhancement of Li I lines comparing Li II line in laser ablated lithium plasma at 10?2 mbar air ambient gas, Spectrochimica Acta Part B Atomic Spectroscopy, 2017, 137: 77–84./pp  14. Ping Liu, Ding Wu, Liying Sun, Dongye Zhao, Rai Hai, Cong Li, Hongbin Ding, Zhenhua Hu, Liang Wang, Jiansheng Hu, Junlin Chen, Guangnan. Luo and EAST team, Laser-induced breakdown spectroscopy to monitor ion cyclotron range of frequency wall cleaning Li/D co-deposition in EAST tokamak, Fusion Engineering and design, 2017, 118: 98–103./pp  15. Ding Wu, Lei Zhang, Ping Liu, Liying Sun, Ran Hai, Hongbin Ding, Diagnosis of laser produced tungsten plasma using optical spectroscopy combined to time-of-flight mass spectroscopy, Spectrochimica Acta Part B Atomic Spectroscopy, 2017, 137: 70–76./pp  16. Zhenhua Hu, N. Gierse, Cong Li, Ping Liu, Dongye Zhao, Liying Sun, J. Oelmann, Dirk Nicolai, Ding Wu, Jing Wu, Hongmin Mao, Fang Ding, S. Brezinsek, Yunfeng Liang, Hongbin Ding, Guang-Nan Luo, C. Linsmeier and EAST team, Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS, Physica Scripta, 2017, T170: 014046./pp  17. Zhenhua HU, Cong LI, Qingmei XIAO, Ping LIU, Fang DING, Hongmin MAO, Jing WU, Dongye ZHAO, Hongbin DING, Guang-Nan LUO and EAST team, Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST, Plasma Science and Technology, 2017, 19: 025502./pp  18. M. Imran, J. Shi, D. Zhao, Q. Wang, Y. Wang, Cong Li, R. Hai, H. Sattar, Z. Mu, W. Wang, G. Luo, G. E. Remnev, H. Ding, Preparation and characterization of a tungsten coating layer on CuCrZr alloy for the plasma facing components of the EAST, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2017, 21:277–288./pp  19. Cong Li, Chun-Lei Feng, Hassan Yousefi Oderji, Guang-Nan Luo, Hong-Bin Ding, Review of LIBS application in nuclear fusion technology, Frontiers of Physics, 2016, 11: 114214./pp  20. Hassan Youse? Oderji, Nazar Farid, Liying Sun, Cailong Fu, Hongbin Ding, Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions, Spectrochimica Acta Part B, 2016, 122: 1–8./pp  21. Wu Ding, Liu Ping, Sun, Liying, Hai Ran, Ding Hongbin, Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air, Plasma Science and Technology, 2016, 18: 364–369./pp  22. N.Gierse ,T.Schildt, H.G.Esser, G. Sergienko, S.Brezinsek, M. Freisinger, D.Zhao, H.Ding, A.Terra, U. Samm, Ch. Linsmeier, Quartz Crystal Microbalances (QMBs) for quantitative picosecond laser-material-interaction investigations – Part I: Technical considerations, Spectrochimica Acta Part B, 2016, 126: 79–83./pp  23. Laizhong Cai, Jianbao Wang, Ting Wu, Xiaoxiao Zeng, Ran Hai, Hongbin Ding, Characterized the pattern of the material deposition in the HL-2A tokamak, Journal of Nuclear Materials, 2016, 485: 67–73./pp  24. Cong Li, Dongye Zhao, Zhenhua Hu, Xingwei Wu, Guang-Nan Luo, Jiansheng Hu, Hongbin Ding, Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy, Journal of Nuclear Materials, 2015, 463: 915–918./pp  25. Cong LI, Dongye ZHAO, Xingwei WU, Hongbin DING, Spatial Resolution Measurements of C, Si and Mo Using LIBS for Diagnostics of Plasma Facing Materials in a Fusion Devic, Plasma Science and Technology, 2015, 17: 638–643./pp  26. Ran Hai, Ping Liu, Ding Wu, Qingmei Xiao, Liying Sun, Hongbin Ding, Effect of steady magnetic field on laser-induced breakdown spectroscopic characterization of EAST-like wall materials, Journal of Nuclear Materials, 2015, 463: 927–930./pp  27. Qingmei Xiao, Ran Hai, Hongbin Ding, A. Huber, V. Philipps, N. Gierse, G. Sergienko, In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: Dependence on the magnetic field strength, Journal of Nuclear Materials, 2015, 463: 911–914./pp  28. Ping Liu, Hai Ran, Ding Wu, Qingmei Xiao, Liying Sun, Hongbin Ding, The Enhanced Effect of Optical Emission from Laser Induced Breakdown Spectroscopy of an Al-Li Alloy in the Presence of Magnetic Field Confinement, Plasma Science and Technology, 2015, 17: 687–692./pp  29. N. Farid, S.S. Harilal, O. El-Atwani, H. Ding and A. Hassanein, Experimental simulation of materials degradation of plasma facing components using lasers, Nuclear Fusion, 2014, 54: 012002./pp  30. N. Farid, S. S. Harilal, H. Ding, A. Hassanein, Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures, Journal of Applied Physics, 2014, 115: 033107./pp  31. Cong Li, Xingwei Wu, Chenfei Zhang, Hongbin Ding, Jiansheng Hu, Guang-Nan Luo, In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy, Journal of Nuclear Materials, 2014, 452: 10–15./pp  32. Cong Li, Xingwei Wu, Chenfei Zhang, Hongbin Ding, G. De Temmerman, H.J. van der Meiden, Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy, Fusion Engineering and Design, 2014, 89: 949–954./pp  33. Ran Hai, Ping Liu, Ding Wu, Hongbin Ding, Jing Wu, Guang-Nan Luo, Collinear double-pulse laser-induced breakdown spectroscopy as an in-situ diagnostic tool for wall composition in fusion devices, Fusion Engineering and Design, 2014, 89: 2435–2439./pp  34. Ran Hai, Xingwei Wu, Yu Xin, Ping Liu, Ding Wu, Hongbin Ding, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, Journal of Nuclear Materials, 2014, 447: 9–14./pp  35. Qingmei Xiao, Alexander Huber, Volker Philipps, Gennady Sergienko, Niels Gierse, Philippe Mertens, Ran Hai, Hongbin Ding, Analysis and removal of ITER relevant materials and deposits by laser ablation, Journal of Nuclear Materials, 2014, 455: 180–184./pp  36. Qingmei Xiao, Cong Li, Ran Hai, Lei Zhang, Chunlei Feng, Yan Zhou, Longwen Yan, Xuru Duan, and Hongbin Ding, High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy, Review of Scientific Instruments, 2014, 85: 053511./pp  37. S. S. Harilal, N. Farid, J. R. Freeman, P. K. Diwakar, N. L. LaHaye, A. Hassanein, Background gas collisional effects on expanding fs and ns laser ablation plumes, Applied Physics A, 2014, 117: 319–326./pp  38. Nazar Farid, Dongye Zhao, H.Y. Oderji, Hongbin Ding, Cracking and damage behavior of tungsten under ELM’s like energy loads using millisecond laser pulses, Journal of Nuclear Materials, 2014, 463: 241–245./pp  39. Dongye Zhao, Nazar Farid, Ran Hai, Ding Wu, Hongbin Ding, Diagnostics of first wall materials in a magnetically confined fusion device by polarization-resolved laser-induced breakdown spectroscopy, Plasma Science and Technology, 2014, 16: 149–154./pp  40. 吴鼎,海然,刘平,刘佳宏,丁洪斌,基于激光诱导击穿光谱地沟油鉴别的初步探究,科学通报,2014,59:2071–2076./pp  41. Ran Hai, Nazar Farid, Dongye Zhao, Lei Zhang, Jiahong Liu, Hongbin Ding, Jing Wu, Guang-Nan Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak , Spectrochimica Acta Part B, 2013, 87: 147–152./pp  42. Nazar Farid, Cong Li, Hongbei Wang, Hongbin Ding, Laser-induced breakdown spectroscopic characterization of tungsten plasma using the first, second, and third harmonics of an Nd:YAG laser, Journal of Nuclear Materials, 2013, 433: 80–85./pp  43. Nazar Farid, Hongbei Wang, Cong Li, Xingwei Wu, Hassan Yousefi Oderji, Hongbin Ding, Guang-Nan Luo, Effect of background gases at reduced pressures on the laser treated surface morphology, spectral emission and characteristics parameters of laser produced Mo plasmas, Journal of Nuclear Materials, 2013, 438: 183–189./pp  44. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, Dynamics of ultrafast laser plasma expansion in the presence of an ambient, Applied Physics Letters, 2013, 103: 191112./pp  45. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, Kinetics of ion and prompt electron emission from laser-produced plasma, Physics of Plasmas, 2013, 20: 073114./pp  46. Ran Hai, Cong Li, Hongbei Wang, Hongbin Ding, Haishan Zhuo, Jing Wu, Guang-Nan Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, Journal of Nuclear Materials, 2013, 438: S1168–S1171./pp  47. Ran Hai, Qingmei Xiao, Lei Zhang, Hongbin Ding, Yan Zhou, Longwen Yan, Characterization and removal of co-deposition on the first mirror of HL-2A by excimer laser cleaning, Journal of Nuclear Materials, 2013, 436: 118–122./pp  48. Q. Xiao, A. Huber, G. Sergienko, B. Schweer, Ph. Mertens, A. Kubina,V. Philipps, H. Ding, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Engineering and Design, 2013, 88: 1813–1817./pp  49. S. S. Harilal, N. Farid, A. Hassanein, and V. M. Kozhevin, Dynamics of femtosecond laser produced tungsten nanoparticle plumes, Journal of Applied Physics, 2013, 114: 203302./pp  50. H.J. van der Meiden, M. A. van den Berg, S. Brons, H. Ding, H.J.N. van Eck, M.H.J. ’t Hoen, J. Karhunen, T.M. de Kruif, M. Laan, C. Li, A. Lissovski, T.W. Morgan, P. Paris, K. Piip, M.J. van de Pol, R. Scannell, J. Scholten, P.H.M. Smeets, C. Spork, P.A. Zeijlmans van Emmichoven, R. Zoomers and G. De Temmerman, Laser-based diagnostics applications for plasma-surface interaction studies, Journal of Instrumentation, 2013, 8: C11011./p
  • 增加使用废金属将如何影响质量控制过程
    2011年10月,一项新的欧盟指令改变了金属回收行业。针对欧盟委员会开展的研究,制定了与废金属息息相关的具体准则的指令,以确定何时不再将废铁、废钢和废铝归类为废弃物,且何时可将其用作炼钢厂、铸造厂、铝精炼厂的原料。使用废金属代替原材料可解决一些环境问题,包括开采矿石的费用、开采难度的增加问题,以及如何处理大量废金属的问题。与使用原材料相比,进行废金属回炉的过程所消耗的能量更少,且最终释放的温室气体CO2也更少。 该指令的核心是确保废弃物符合金属生产行业技术要求,包括遵守关于危险材料的现行法律。“废弃物终端”的废金属必须经受一个回收过程,使铁、钢和铝不含有害物质,且非金属化合物含量低。为达到非废弃物标准,回收厂需提供关于经处理金属的质量信息,并确保建立健全的质量管理体系。实施废弃物终端废金属的质量体系必须根据客户规范、行业规范或适合钢厂或铸造厂直接使用的标准对废铁、废钢和废铝进行分级。对于钢铁,如果外来杂质为有色金属、可燃非金属材料、非导电材料和残留物(如灰尘或污泥),则杂质总量不得超过2%(按重量计)。关于铝的标准亦类似,但杂质总量不得超过5%(按重量计)。 回收厂的质量管理体系必须包括以下内容: - 控制适合加工且分类为非废料的废弃物类型。- 监控关于去除物质的处理过程(即ELV处理过程)- 监控废金属质量,包括取样和分析- 来自客户(铸造厂和金属加工厂)的反馈- 保存监控结果的记录- 系统审查和员工培训。 使用OE750分析废金属OE750为日立分析仪器推出的革*命性新型OES火花光谱仪。OE750具有同类仪器中的最*佳检测性能,能为废金属回收厂提供价格合理的金属分析。 例如,OE750可提供最*低检出限,能检测铁、钢和铝中的所有痕量元素。其可检测钢中含量范围在0.5ppm内的锌元素,还可检测铸铁中含量范围低于10ppm的硼和铅元素。OE750使用方便快捷,且体积小巧、坚固耐用,可确保其能轻松投入金属回收过程,并有助于满足废弃物终端金属的回收要求。 了解更多信息… … 如需了解关于OE750如何帮助您满足废弃物终端金属回收要求的更多信息,请联系我们安排样机演示。
  • 制药用水过程中为什么会用到余氯和硬度检测仪?
    制药用水需要用到余氯分析仪和硬度分析仪,是因为这两个仪器可以帮助制药企业监测和控制水质,确保水质符合制药标准,从而保证产品质量和安全。 具体原因如下: 一、在线余氯分析仪的应用:在制药用水处理过程中,需要进行消毒处理,以杀灭水中的细菌和病毒,确保水质符合制药标准。而消毒剂中的余氯含量是衡量消毒效果的重要指标之一。余氯分析仪可以快速、准确地测量水中的余氯含量,以判断消毒效果是否达标。如果余氯含量过高或过低,都会影响消毒效果和水质安全,因此需要根据水质情况和消毒剂的种类和浓度,选择合适的余氯分析仪进行监测和控制。 杰普公司专门针对不同行业研发出几款在线余氯分析仪:1、innoCon 6800CL电极法余氯专为水处理和工业过程监测而设计,搭配innoS ens 710电极、PA-711流通槽可测量水中余氯浓度。采用先进的非膜式恒电压电极,无须更换膜片和药剂,灵敏度高,性能稳定,维护简单。 2、PACON 2500 比色法余氯是一款测量精确,高性价比且低维护的仪器,可对余氯进行在线连续监测。采用DPD比色法检测余氯的浓度,自动加入试剂比色测量,适用于加氯消毒过程中的余氯测量和饮用水管网余氯浓度的监测。 3、innoCon 6501CL余氯一款经济款在线余氯检测仪专为水处理和工业过程监测而设计,搭配innoSens 710/720电极和PA-711流通槽可 测量水中余氯的浓度。中/英文菜单,自动温度补偿功能,多种安装方式,标配4-20mA/RS485 Modbus及多种控制 功能输出。 二、在线硬度分析仪的应用:在制药用水处理过程中,水的硬度是一个重要的指标,因为硬度高的水会影响制药工艺和产品质量。例如,硬度高的水会与某些药品发生反,影响药品的纯度和稳定性。硬度分析仪可以快速、准确地测量水中的硬度值,以判断水质是否符合制药标准。如果水的硬度值过高,需要采相应的处理措施,例如使用软化剂或反渗透设备,以降低水的硬度值。综上所述,余氯分析仪和硬度分析仪在制药用水处理过程中的应用非常重要,可以帮助制药企业监测和控制水质,确保水质符合制药标准,从而保证产品质量和安全。 杰普公司在线硬度分析仪在国内外制药行业的应用也有着不错的占有率。 1、PACON 5000在线硬度检测仪是一款结构紧凑、易于操作且精准度高的水质分析仪器,用于对水质残留硬度的自动在线检测以及水软化过程的质量控制。此系统根据滴定比色原理对可选择的报警值进行控制,通过消光法提供精准的测量值读数,多种功能保证了实时操作的可靠性。低维护和低试剂消耗,可长时间连续运行,是制药厂的常用的产品。 2、 PACON 4800在线水质硬度分析仪采用滴定比色法原理,是用于水软化系统和反渗透保护的入门级选择。选择碱度试剂可测量总碱度。典型应用:软化水、反渗透、锅炉水、洗衣房、地下水、冷却塔、制药用水、制程用水、饮料/食品产品。 3、 PACON 4600是JENSPRIMA公司推出的新款的报警仪,可以根据您的要求提供可靠的分析。通过选择不同硬度试剂(或碱度试剂)来确定所需的报警点。在固定的时间间隔内测量和控制报警点,如果测量值超过报警值,触点信号将传递至控制器。广泛用于需要控制的再生触发和对锅炉房冷凝水再循环的监控。典型应用:软化水、反渗透、锅炉水、循环水、自来水、制程用水软化器的再生自动控制。同时杰普公司海推出InnoCon 6800H双通道硬度控制器,搭配PACON 5000/PACON 4800在线硬度分析仪可自动在线监测2个软化器出水,极大程度的降低了客户的采购成本。
  • 使用TOC分析进行工艺过程控制的新趋势
    工艺过程控制和资产保护测量最终排放时的有机物负荷对于法规合规性至关重要。与此同时,在流动点和处理工艺过程中监测有机物含量也已成为过程控制和资产优化的有效做法。例如,城市污水处理厂对流入的污水进行碳监测有助于加强生物处理,从而优化工艺过程控制和实时做出过程决策的能力。toc分析作为一种提高水处理设备耐用性的工具正在获得认可。随着工业和中水回用,工厂越来越多地使用过滤膜来处理废水,可以使用toc分析仪来快速检测高有机负荷,从而限制结垢并进行水处理效率评估。此外,许多工厂正在将生物处理和膜过滤合并到称为膜生物反应器(mbr)的工艺中。mbr进水中的直接碳监测使工厂能够优化生物处理并保护膜免受有机物污染。最佳食物与微生物的比例市政工厂按照多个步骤处理流入的废水。初级处理需要物理分离,通过筛选和沉淀提取固体。在这种初级处理之后,工厂通常使用二级生物处理工艺来限制进水废水的有机物含量。[7]该工艺通常取决于在活性污泥中使用好氧细菌来帮助分解水中的有机化合物。经常通过传统bod测试测量细菌的“食物”——有机分子。[3]为确保处理过程中有机物和微生物的适当平衡,工厂使用称为食物与微生物(f:m)比率的通用参数。[2]f:m比值低的系统意味着“食物”不足,并导致负责分解有机分子的微生物没有足够的“食物”去分解。相反,在高f:m比值的系统中,微生物可能会因有机物负荷过高而无法胜任分解工作,这会导致有机污染物无法有效祛除。为了最大限度地提高生物质的健康状况并确保有机污染物的祛除,工厂以最佳f:m比值运行是关键。与传统的需氧量测试不同,toc分析仪直接测量废水中所含的碳量,从而使操作员能够准确地定量分析f:m比值中的“食物”。bod5测试的五天响应时间通常不足以快速进行工艺调整,尤其是在有机物负荷波动的工厂中。为了加快对流入废水中有机物负荷波动作出响应的时间,许多工厂正在转向toc分析,这种分析无需危险化学品即可提供快速分析。利用toc分析进行快速工艺调整,同时直接测量进入系统的碳,可使工厂维持最佳f:m比值,确保生物处理能正常运行。超滤(uf)和反渗透(ro)膜优化能够直接快速检测有机碳也使得toc分析成为污水处理厂膜保护的可靠工具,尤其是在水源有限的地区。这些缺水地区已经开始使用超滤(uf)和反渗透(ro)膜来处理废水以供再利用。[5] [6]在膜过滤中,受污染的水通过半透膜输送,该膜将悬浮固体和大分子量化合物从工业废水中分离出来。然而,水流中大量的有机污染物通常会聚集在膜表面上导致有机物污染,并且一些化合物会导致膜损坏。膜污染的增加导致穿过膜的液体通量减少,降低了处理的有效性。虽然增加跨膜压力(tmp)以维持适当的跨结垢膜通量可能是有效的[5],但这往往会导致能源成本的增加。修理或更换污损的膜会限制废水处理厂的操作能力,也会增加成本。尽管反冲和原位清洗(cip)策略是常规应用,但对于处理碳含量高的水的膜通常需要频繁的清理周期。[5]这不仅会导致停机时间增加和清洗化学品的成本增加,还会缩短膜的使用寿命。为了保证膜的使用寿命并以最高效率正常运行,工厂直接跟踪膜上游水中有机物含量是有益处的。虽然传统的需氧量测试可以提供污染物含量的间接指示,但toc分析可更简单地提供有关废水碳含量的即时数据。使工厂可以调整流量,以保护膜,同时评估处理效果,并确定上游的工艺波动。膜前后水的在线toc分析提供了跨膜的碳含量和萃取效率随时间变化的实时数据。通过从需氧量转向toc分析,许多工厂发现通过保护运行设备可以提高经济效益。膜生物反应器(mbr)优化膜生物反应器(mbr)系统是一种在市政和工业废水处理厂中都受到关注的处理工艺。该工艺结合了生物处理和过滤膜,以限制废水中有机物的数量。mbr系统的优点是比传统的生物处理占地面积小得多,病原体去除能力提高以及更高等级的污水。类似于传统的生物处理,mbr系统中的废水最初引入带有活性污泥的曝气池。在引入浸没在水中的膜之前,污泥中的微生物开始分解样品中的有机污染物(微滤或超滤)。[4]水通过膜供给,这不仅提取额外的污染物,而且排斥在生物处理工艺中产生的任何固体。这种生物处理和浸没式过滤膜的混合,通常会产生比单一工艺更清洁的出水。与其他膜过滤系统一样,结垢可能是mbr系统需要考虑的一个重要因素。[5]它们可能会堵塞并且产生淤泥,这需要增加停机时间和进行维护。mbr系统与传统生物处理一样,依赖于维持最佳的f:m比值以确保有效去除有机物。优化f:m比值是一种有效的方法,有助于减轻任何与mbr膜相关的风险。通过在一致的基础上以最佳f:m比值运行,工厂可以保证生物质[4]的健康并限制可能导致膜污染的有机物。尽管f:m比值的有机物含量传统上以bod5进行测量,但工厂现在正在转换为在线toc分析仪,以高速、直接测量水中的碳含量。[1]通过促进立即对工艺作出决策,操作员可以维持最佳f:m比值,从而降低成本和对污染膜的维护工作量。toc能够快速直接分析碳含量的能力正在推动有机物分析通过排放法规合规性,并通过工艺控制和设备保护降低成本。[3]结论目前,bod5是最常用的工业废水有机污染物参数。尽管它存在精度和许多其他问题,但它已被纳入全球废水法规。虽然cod测试更快、更精确,但它需要使用和处置剧毒化学品。toc分析仪能够在几分钟内生成快速准确的数据,因此越来越受欢迎。与bod5和cod测试不同,toc分析仪直接测量有机物含量,而不是通过测量需氧量来间接确定有机物含量。许多监管机构现在看到了最先进技术(如toc)的价值。目前,美国已授权工厂在进行长期相关性研究获得批准的情况下,使用toc代替bod。测试方法转变的一个例子是欧盟,由于缺乏有毒化学物质,欧盟不再推荐bod5,而是将重点放在toc上。随着欧洲废弃过时的测试方法,其他国家开始意识到监测工艺转型和改变法规的好处。随着技术的进步,世界各地的管理机构将继续在法规中引入更准确和精确的参数。在全球工业增长持续扩张过程中准确监测废水的必要性从未如此重要。toc在法规监测、资产保护和工艺控制方面的能力使得工厂朝着示范性监测的未来发展。原文英文版于2021年4月发表在https://www.azosensors.com/article.aspx?articleid=2188,作者:amanda scott(sievers分析仪全球产品经理),本文有所修改。◆ ◆ ◆联系我们,了解更多!参考文献1. “bottling company uses sievers innovox online toc analyzer to optimize membrane bioreactor wastewater system” suez water technologies and solutions https://www.suezwatertechnologies.com/node/17082. “introduction to activated sludge.” wisconsin department of natural resources. december 2010 https://dnr.wi.gov/regulations/opcert/documents/wwsgactsludgeintro.pdf3. assman, celine, et al. “online total organic carbon (toc) monitoring for water and wastewater treatment plants processes and operations optimization.” drinking water engineering and science. august 2017 https://www.researchgate.net/publication/318976763_online_total_organic_carbon_toc_monitoring_for_water_and_wastewater_treatment_plants_processes_and_operations_optimization4. bengtson, harlan h. “biological wastewater treatment processes iii: mbr processes.” ced engineering https://www.cedengineering.com/userfiles/02%20%20biological%20wwtp%20iii%20%20membrane%20bioreactor.pdf5. muro, claudia, et al. “membrane separation process in wastewater treatment of food industry.” institute technology of to luca http://cdn.intechweb.org/pdfs/29163.pdf6. shon, h.k et al. “membrane technology for organic removal in wastewater.” faculty of engineering, university of technology, sydney australia, dec 2007 https://pdfs.semanticscholar.org/0818/e843ada017587afdc653a438fe45801b6614.pdf (d)7. toit, wynand du. “use of total organic carbon on a wastewater treatment plant.” tshwane university of technology, september 2006 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.8456&rep=rep1&type=pdf
  • 睿科:饮用水水质检测的难点与突破集中在这一过程
    生活饮用水的质量直接关系我国国民的日常用水安全,相关水质检测在保证生活饮用水的质量和饮水安全方面具有至关重要的现实意义,主要涉及到饮用水水源地水质及饮用水水质的检测。饮用水水源地包括河流、湖泊、水库、地下水等。为加强饮用水源地保护,生态环境部颁布了《全国集中式饮用水水源地环境保护专项行动方案》,对全国338个地级以上城市、2862个县级行政单位所在城镇的所有在用集中式生活饮用水水源地及乡镇集中式生活饮用水水源地定期开展监测,进一步加强对于饮用水水源地水质监测与管理。近年来,生活饮用水的质量越来越受到国家的关注,微塑料等新型污染物也在饮用水中被检出,严重威胁人们的身体健康。《GB 5749-2006 生活饮用水卫生标准》修订版(征求意见稿)也于近日正式发布,该标准实施13年来首次迎来更新,旨在为进一步提高饮用水的健康水平提供保障。为了帮助相关用户学习、了解生活饮用水水质检测与分析的最新技术及应用情况,本网特别制作了“饮用水及水源地水质检测与分析”专题,并邀请睿科集团股份有限公司应用工程师李艳萍就相关问题进行了讨论。睿科应用工程师李艳萍标准修订:新增几类新型持久性有机污染物饮用水水质与人类生命健康息息相关,因此对于水质安全的把控十分重要。我国对于饮用水相关检测标准的制定,不同用途的水质要求有相对应的标准,如GB 5749-2006《生活饮用水卫生标准》、GB 3838-2002《地表水环境质量标准》和GB/T 14848-2017《地下水质量标准》。虽然政府对于饮用水常规项目和有机污染物项目等的检测有完善的标准,国家也在不断推进和完善标准的制定,但随着我国工业化的飞速发展,饮用水中新型污染物种类的增加、新兴有机污染物无相应的检测标准等问题逐渐暴露;且国家标准、地方标准和行业标准间还存在项目不统一、交叉重复等问题。而对于目前饮用水及水源地水质检测项目中值得特别关注的项目,李艳萍认为,饮用水中有机物指标、农药指标和消毒副产物指标仍然是大家较为关注的检测项目。今年7月份发布的新版《生活饮用水卫生标准》强制性国家标准(征求意见稿),其中新增的全氟辛酸、全氟辛烷磺酸这类新型持久性有机污染物也备受大家关注。而今后的饮用水水质检测,可能结合城乡饮用水的水质、供水情况和不同检测目标物质的性质来制定不同的标准,从而进行更为细化的检测,不断完善对饮用水水质的要求。样品前处理仍是检测难点 未来发展方向为自动化、高通量在饮用水水质检测过程中,样品前处理过程至关重要,它直接影响到分析结果的准确性和重现性。目前,水质检测的难点主要还是集中在前处理过程中。比如对于半挥发性有机物的检测,需要注意萃取的过程,也要控制好氮吹浓缩的条件,否则会造成测试结果数据波动较大、回收率相对较低等情况;而对于塑化剂的检测,应避免使用含有塑化剂的耗材和设备,并进行空白基底的扣除,否则得出的回收率会偏高。李艳萍认为,未来在饮用水的检测方面,可能会更加倾向于使用自动化设备进行高通量的前处理,让大体积样品的富集、净化和浓缩等过程更为省时省力。睿科集团股份有限公司作为一家专注于大健康领域的专业化、综合性集团公司,不仅从事实验室前处理自动化设备的研发与制造,而且为客户提供实验室分析仪器配件、相关耗材以及检测项目的完整解决方案。对于饮用水水质的检测,睿科参考相关标准,并根据自身仪器特点,为客户提供《水中半挥发性有机物的测定》、《水中微囊藻毒素的测定》、《水中总硬度的测定》和《水中高锰酸盐指数的测定》等解决方案。同时,我们与科研机构积极合作,在水中抗生素、全氟化合物、亚硝胺等污染物的检测中,也提供了准确、便捷、可靠的前处理解决方案。从前处理到理化分析 多品类产品助力饮用水水质检测对于自动化的前处理设备,睿科有集固相萃取与定量浓缩于一体的ASPE Ultra系列全自动固相萃取仪,该设备可自动完成大体积水样的过滤、活化、上样、淋洗、干燥、洗脱、浓缩转溶、定容等操作,高度自动化,无需人员值守,适用于各种水质检测的前处理过程。对于样品量较大的客户,睿科也有高通量的Fotector Plus全自动固相萃取仪,该仪器最多可连续处理60个样品,批量完成水样的富集、淋洗、干燥和洗脱等过程。睿科Fotector Plus高通量全自动固相萃取仪在浓缩方面,用户有大体积浓缩仪和小体积浓缩仪可选。睿科EVA 80全自动氮吹浓缩仪采用氮吹针自动追随液面设计,具有氮气消耗少、浓缩效率高、通量高等特点;而MPE真空平行浓缩仪针对液液萃取后的大体积浓缩液,采用真空负压浓缩的方式,基于水浴平台和精准真空控制体系设计,避免溶液中目标物在低真空度下与溶剂共沸而损失,保证实验结果准确性的同时,大大提高了实验效率。睿科EVA 80高通量全自动平行浓缩仪在饮用水理化检测方面,睿科Auto Titra 08全自动滴定仪在高锰酸盐指数和总硬度项目上提供了助力。该仪器模拟人工滴定进行仿生设计,具有一体化设计美观、自动化程度高、准确度高等特点,能够满足颜色滴定项目的要求。此外,在耗材产品方面,睿科也有固相萃取小柱供客户选择,填料规格种类齐全,性能优异,能够保证高回收率和良好的重现性。更多关于饮用水及水源地水质检测的内容,点击图片进入专题查看:
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 中央财政设立国家科技成果转化引导基金
    关于印发《国家科技成果转化引导基金管理暂行办法》的通知财教[2011]289号  国务院各部委、各直属机构,新疆生产建设兵团,各省(自治区、直辖市、计划单列市)财政厅(局)、科技厅(委、局),有关单位:  为贯彻落实《国家中长期科学和技术发展规划纲要》,加速推动科技成果转化与应用,引导社会力量和地方政府加大科技成果转化投入,中央财政设立国家科技成果转化引导基金(以下简称转化基金)。为规范转化基金管理,我们制定了《国家科技成果转化引导基金管理暂行办法》。现予印发,请遵照执行。  财政部  二0一一年七月四日  附件:国家科技成果转化引导基金管理暂行办法  第一章 总则  第一条为贯彻落实《国家中长期科学和技术发展规划纲要》,加速推动科技成果转化与应用,引导社会力量和地方政府加大科技成果转化投入,中央财政设立国家科技成果转化引导基金(以下简称转化基金)。为规范转化基金的管理,制定本办法。  第二条转化基金主要用于支持转化利用财政资金形成的科技成果,包括国家(行业、部门)科技计划(专项、项目)、地方科技计划(专项、项目)及其它由事业单位产生的新技术、新产品、新工艺、新材料、新装置及其系统等。  第三条转化基金的资金来源为中央财政拨款、投资收益和社会捐赠。  第四条转化基金的支持方式包括设立创业投资子基金、贷款风险补偿和绩效奖励等。  第五条转化基金遵循引导性、间接性、非营利性和市场化原则。  第二章 科技成果转化项目库  第六条科技部、财政部建立国家科技成果转化项目库(以下简称成果库),为科技成果转化提供信息支持。  应用型国家科技计划项目(课题)完成单位应当向成果库提交成果信息。  行业、部门、地方科技计划(专项、项目)产生的科技成果,分别经相关主管部门和省、自治区、直辖市、计划单列市(以下简称省级)科技部门审核推荐后可进入成果库 部门和地方所属事业单位产生的其它科技成果,分别经相关主管部门和省级科技部门审核推荐进入成果库。  第七条成果库的建设和运行实行统筹规划、分层管理、开放共享、动态调整。鼓励部门、行业、地方参与成果库的建设。  第八条成果库中的科技成果摘要信息,除涉及国家安全、重大社会公共利益和商业秘密外,向社会公开。  第三章 设立创业投资子基金  第九条转化基金与符合条件的投资机构共同发起设立创业投资子基金(以下简称子基金),为转化科技成果的企业提供股权投资。科技部负责按规定批准发起设立子基金。  鼓励地方创业投资引导性基金参与发起设立子基金。  第十条转化基金不作为子基金的第一大股东或出资人,对子基金的参股比例为子基金总额的20%-30%,其余资金由投资机构依法募集。  第十一条子基金应以不低于转化基金出资额三倍的资金投资于转化成果库中科技成果的企业,其他投资方向应符合国家重点支持的高新技术领域。  第十二条子基金不得从事贷款或股票(投资企业上市除外)、期货、房地产、证券投资基金、企业债券、金融衍生品等投资,也不得用于赞助、捐赠等支出。待投资金应当存放银行或购买国债。  第十三条子基金存续期一般不超过8年。鼓励其他投资者购买转化基金在子基金中的股权。  第十四条子基金应当在科技部、财政部招标选择的银行开设托管账户。存续期内产生的股权转让、分红、清算等资金应进入子基金托管账户,不得循环投资。  第十五条子基金应当委托投资管理公司或管理团队进行管理。  第十六条转化基金向子基金派出代表,对子基金行使出资人职责。  第十七条子基金存续期结束时,年平均收益达到一定要求的,投资管理公司或管理团队可提取一定比例的业绩提成。子基金出资各方按照出资比例或相关协议约定获取投资收益,并可将部分收益奖励投资管理公司或管理团队。  第十八条子基金应当在投资人协议和子基金章程中载明本章规定的相关事项。  第四章 贷款风险补偿  第十九条科技部、财政部招标确定合作银行,对合作银行符合下列条件的贷款(以下简称成果转化贷款),可由转化基金给予一定的风险补偿:  (一)向年销售额3亿元以下的科技型中小企业发放用于转化成果库中科技成果的贷款   (二)上述贷款的期限为1年期(含1年)以上。  (三)贷款发生地省级政府出资共同开展成果转化贷款风险补偿。  第二十条合作银行应制定和公布成果转化贷款的条件、标准和程序,在符合贷款条件的前提下,降低贷款成本、提高工作效率。  第二十一条合作银行省级分支机构汇总当地成果转化贷款项目报同级科技部门、财政部门共同审核后,由合作银行总行按年度汇总报送科技部。科技部提出贷款风险补偿建议报送财政部。  第二十二条年度风险补偿额按照合作银行当年的成果转化贷款额进行核定,补偿比例不超过贷款额的2%。  第二十三条合作银行应加强对成果转化贷款的审核、管理和监督。  第五章 绩效奖励  第二十四条对于为转化科技成果做出突出贡献的企业、科研机构、高等院校和科技中介服务机构,转化基金可给予一次性资金奖励。  第二十五条绩效奖励对象所转化的成果应同时符合以下条件:  (一)属于本办法第二条规定的科技成果   (二)在培育战略性新兴产业和支撑当前国家重点行业、关键领域发展中发挥了重要作用   (三)未曾获得中央和地方财政用于科技成果转化方面的资金支持。  第二十六条绩效奖励项目由有关部门和省级科技部门、财政部门向科技部、财政部推荐。  第二十七条科技部、财政部组织专家或委托中介机构对申请绩效奖励的项目的经济和社会效益进行评价,科技部依据评价结果提出绩效奖励对象和额度的建议报送财政部。  第二十八条绩效奖励资金应当分别用于以下方面:  (一)获奖企业的研究开发活动   (二)获奖科研机构、高等院校的研究开发、成果转移转化活动   (三)获奖科技中介服务机构的技术转移活动   (四)获奖单位对创造科技成果和提供技术服务的科研人员的奖励。  第六章 组织管理和监督  第二十九条科技部、财政部组织成立转化基金专家咨询委员会,为转化基金提供咨询。咨询委员由科技、管理、法律、金融、投资、财务等领域的专家担任。  第三十条科技部、财政部共同委托具备条件的机构负责转化基金的日常管理工作,并进行指导、监督和组织评价。  第三十一条受托管理机构应当建立适应转化基金管理和工作需要的人员队伍、内部组织机构、管理制度和风险控制机制等。  第三十二条转化基金实施过程中涉及信息提供的单位,应当保证所提供信息的真实性,并对信息虚假导致的后果承担责任。  第三十三条转化基金建立公示制度。  第七章 附则  第三十四条科技部、财政部根据本办法制定转化基金相关实施细则。  第三十五条地方可以参照本办法设立科技成果转化引导基金。  第三十六条本办法由财政部、科技部负责解释。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制