当前位置: 仪器信息网 > 行业主题 > >

物体

仪器信息网物体专题为您整合物体相关的最新文章,在物体专题,您不仅可以免费浏览物体的资讯, 同时您还可以浏览物体的相关资料、解决方案,参与社区物体话题讨论。

物体相关的资讯

  • 精确测量纳米级物体温度有新招
    日常生活中通常是用温度计接触物体来测量其温度,然而,测量比人发丝的宽度要小1000倍的纳米级物体的温度,却是一个非常棘手的任务。现在,英国埃克塞特大学和伦敦大学学院的研究小组开发出一种方法,可在纳米级物体的表面温度与周围环境有所不同时,通过分析它们在空气中紧张的运动即布朗运动,来准确测量其温度。该研究成果发表在最新一期的《自然· 纳米技术》上。  1827年,苏格兰植物学家罗伯特· 布朗发现水中的花粉及其他悬浮的微小颗粒不停地做不规则的曲线运动,称为布朗运动。人们长期都不解其中原理。50年后,J· 德耳索提出,这些微小颗粒是受到周围分子的不平衡碰撞而导致的运动。这在后来得到爱因斯坦的研究证明。布朗运动也就成为分子运动论和统计力学发展的基础。  当温度升高,液体分子的运动越剧烈,同一瞬间来自各个不同方向的液体分子对颗粒撞击力就越大,小颗粒的运动状态改变也就越快。故温度越高,布朗运动越明显。由此,该研究小组发现,纳米级物体的表面温度可以通过分析其布朗运动而确定。  埃克塞特大学天文学系量子信息理论家珍妮特· 安德斯博士说:&ldquo 这种运动是由与空气碰撞的分子引发的。研究发现这种碰撞的影响携带了物体表面温度的信息,通过观察其布朗运动,可识别这些信息和推断温度。&rdquo   据每日科学网、物理学家组织网近日报道,研究人员捕获在激光束中的玻璃纳米球,令其悬浮在空气中后加热至融化,借此观察这些纳米级物体的升温。这种技术甚至可以辨别穿过微小球体表面的不同温度。  伦敦大学学院詹姆斯· 米伦博士说:&ldquo 在纳米尺度,与空气碰撞的分子有很大的不同。通过测量纳米粒子和周围空气之间能量如何转移,我们学到了很多。&rdquo   对于许多纳米技术设备,精确了解其温度尤为必要,因为它们的运作在很大程度上依赖于温度。这项发现也有助于目前正努力把大的物体引入量子叠加态的研究。未来其可进一步影响大气中气溶胶的研究,并为控制环境平衡过程的研究打开了一扇门。
  • 英媒展示电子显微镜下微小物体的“惊人”照片
    英国科学家近日用电子显微镜获得了木蚁、人体组织、生锈铁钉等多种微小物体的电子显微照相图。这些图片把微小的物体放大了很多倍,让人们真真切切地感受到了微小物体的“惊人模样”。  他们把微小的木蚁放在微型芯片上,用彩色电子显微镜扫描出了放大22倍后的小木蚁的“惊人”图片。据悉,木蚁是一种“社会性”生物,在它们的物种群中扮演着血红林蚁(Formica sanguinea)“仆人”的角色。科学家们用先进的科技设备给这些微小物体留下了很多“特写镜头”,其中有些物体甚至被放大了2200万倍,这些图片不仅能让人们亲自目睹“神秘的”微观世界,也给人们带来了不少“惊人的意外”。  据悉,伦敦《科学》杂志的作者布兰登布罗(Brandon Broll)收集了多种微小物体,包括动物、人体、草本等物体的电子显微照相图,并将其编撰成了一本书。这本书凝聚了超过30多名显微镜工作者的成果,他们用功能强大的电子放大器和电脑给我们“呈现”出了极其微小而令人难以置信的“真实世界”。布兰登.布罗表示:“这本书将使读者看到仅用裸眼所无法看到的微小物体的真实世界,里面包含了203张电子显微照相图,而这也正是这本书值得一看的原因所在。”据悉,这本书将由Firefly Books出版社于本月底出版。  下面的图片包括了女性的紧身衣、人类舌头的表面、蝴蝶翅膀的美丽条纹、生锈的钉子、用剃须刀片切下的一截人类头发等“惊人”的图片。下面就让我们来看看这些微小物体的“惊人”照片。受精后的雌性血红林蚁侵占了木蚁的巢,“偷窃”了木蚁的蛹,而蛹的“木蚁妈妈”则不得不为这个新的“王后”服务微小的房屋尘埃被放大了115倍之后的图片,我们可以从图中看出,房屋尘埃中包含了猫的毛、一些合成羊毛纤维、花粉粒以及一些植物和昆虫尼龙交错相连而形成了维可牢(Velcro,一种尼龙搭扣的商标名称)硅芯片的电子显微照相图卷烟纸的电子显微照相图人类精子的电子显微照相图人类皮肤表面的“惊人的”眼睫毛,被放大了50倍“坐立在”木莓上的蝴蝶的卵被放大了160倍之后的一只苍蝇的头一株花椰菜的“头部”一只头虱正抓住人类的一根头发被放大了600倍之后的生锈的铁钉
  • 智慧消防:实时监控物体升温情况,实现早期的火灾预警!
    随着物联网技术的发达,智慧消防的概念也是越来越被大众熟知。智慧消防中最关键的一个环节就是“未雨绸缪”——室内环境中,着火的过程一般需要经历物体温度先升高,冒出烟雾,再起明火。所以,一个新思路是:通过物体温度异常报警功能,实现早期的火灾预警。火灾给企业带来的危害众所周知,起火情况若未能及早发现或迅速扑灭,会给公司带来严重的财务、环境和商业危机,也会给社会带来灾难。火灾所导致的严重后果,让许多公司尽力优先考虑预防和缓解潜在火灾。大多数现行消防系统将重心放在起火后的遏制,这往往不是最有效的解决办法。储存设施的监测FLIR固定安装式红外热像仪火灾是由热量快速增加和累积引起的。随着物体的温度持续上升,物体最终会突然起火,加快燃烧,导致火势迅速蔓延。但是,如果部署一台固定安装式红外热像仪瞄准目标区域,那么就可以监测温度,在目标起火之前发现升温情况。FLIR固定安装式红外热像仪能以每秒高达60次的频率捕捉实时温度数据,以便在起火之前发现快速升温区域。这些智能红外热像仪可利用内置软件圈出关注区域(ROI)并向用户报告该区域的温度MIN值、平均值和MAX值。可使用热像仪对实时数据进行内部分析以报告危险情况,也可将热像仪连接至其它设备(如可编程逻辑控制器和电脑)以实施其它火灾预防措施。部分公司选择,通过将定制早期火灾探测解决方案与FLIR自动化热像仪相结合,制定更先进的解决方案。这些系统可以在发现升温的早期征兆时发出报警,使公司能够挽救大量资产或关闭有发生灾难性故障趋势的设备。FLIR红外热像仪的分析和报警软件FLIR推出一系列固定安装式智能热像仪,内置具有分析和报警功能的软件。通过在简单易用的基于网络的配置窗口中利用框中的测量形状(如测温点、方框或自定义绘图区)配置至多10个关注区域(ROI)监测资产。设置报警参数和响应的条件,如数据采集输出类型。利用标准通讯协议,包括RTSP、MQTT、RESTful API、MODBUS TCP & Master、以太网IP和FTP等,将FLIR智能热像仪集成到各种控制过程中。用于持续监测和安全监控的FLIR AX8红外热像仪和FLIR A615机器视觉热像仪FLIR红外热像仪可按需定制除了智能热像仪,FLIR还推出一系列能通过GigE Vision和RTSP等通讯协议传输温度线性数据或辐射测量数据的自动化热像仪。这些红外热像仪利用Cognex Designer Pro、NI Software、Pleora Ebus、Teledyne和Spinaker SDK等软件判读图像。红外探测器阵列可靠地、可重复地生成320×240或640×480分辨率可选的无损数据,在-40℃至2000℃温度范围内精度可达±2℃。FLIR红外热像仪可根据您的应用需求进行定制:当需要更改视场角时,可选择手动或自动调焦或更换镜头。得益于独特的压缩辐射测量输出,这些热像仪能有效避免处理器超负荷。此外,内置可见光数码相机镜头和LED照明灯与红外热像仪镜头相结合,能实现系统增值。
  • 日本研发出精密测量运动物体形状的技术
    日本产业技术综合研究所8月2日宣布,该所的一个研究小组发明了一项精密测量运动物体形状的新技术,可用于运动姿态研究和材料分析等领域。  研究小组将边长5毫米至1厘米的大量方格图案光标投影到被拍摄物体上,利用每秒可拍摄2000帧画面的摄像机对身体部位的位置关系进行三维立体测量。利用这种新方法,可以掌握数万个测量点的位置关系,对人体运动时衣服褶皱和肌肉外形的变化都能精确测量,对于球体撞击墙壁时发生的形状变化也可以立体测量。  研究小组带头人佐川立昌说,这一技术有望在开发运动类数码游戏和分析运动员的肢体活动状态等领域得到应用。
  • 微型显微镜实现放大物体新革命:可放进口袋
    据国外媒体9日报道,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,但这种开创性新型显微镜的作用可没有大打折扣。这种装置叫Foldscope,可提供2000多倍的放大效果,有望彻底改变放大物体的方式。  一种可能彻底改变物体放大方式的新型显微镜已在秘鲁亚马逊雨林进行测试。这张照片显示,几只蚂蚁在显微镜下保护一只水蜡虫。  这种装置叫Foldscope,可提供2000多倍的放大效果,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,或许会彻底改变物体放大的方式。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  美国加利福尼亚州洛杉矶市野外生物学家波梅兰茨(照片显示)测试了微型显微镜Foldscope。  照片显示,一只蜘蛛感染冬虫夏草。这种寄生真菌取代了蜘蛛体内的组织。  在这张用手机拍摄的照片中,100美元纸币的纤维清晰可见。  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。  这张用微型显微镜Foldscope拍摄的照片展示了一株马利筋草的绚烂细节。美国野外生物学家艾伦-波梅兰茨对它进行了试验。他在秘鲁亚马逊雨林中停留一个月,用这种微型显微镜捕捉到一系列惊人照片。这位25岁科学家用它拍摄了一组照片,展示了一只被感染的蜘蛛和一片被虫瘿覆盖的叶子。其他照片还展示了一朵花瓣的细胞和一只未知螨虫的放大图像。  美国加利福尼亚州洛杉矶市的波梅兰茨表示:“使它成为革命性工具的是它探测致病因素或研究未知物种的方式。还有一点就是它的售价不到1美元。这使它可以得到广泛使用,或许适用于数百万人,例如孩子、医护人员和野外生物学家等。有时我们在野外根本不知道我们要观察什么,直到很晚的时候才明白这一点。”  这位科学家说:“在有些情况下,你回到实验室,想获得一些不同于野外的发现,例如收集更多信息或进行更多的观察。但微型显微镜Foldscope使你在野外就可直接研究目标,然后你可以带它们回实验室,开展更加细致的科研工作。”  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。该装置的尺寸是70毫米乘20毫米,重量仅0.3盎司(约合8.5克)。相比之下,一部传统显微镜却重达512盎司(约合15公斤)。  不到10分钟内,可将一张平面纸组装成微型显微镜Foldscope。使用者可用折纸方法将它制作而成。这种微型显微镜是加利福尼亚州斯坦福大学生物工程系普拉卡什实验室一个研究小组的智慧结晶。  波梅兰茨说:“微型显微镜Foldscope并不能替代可提供更高分辨率、更强大的传统显微镜。但后者有很多缺点,例如很大,又昂贵,还只能在实验室内使用。微型显微镜Foldscope被设计成一种便携式工具,可随时随地使用,让你及时近距离观察微观世界。我认为它不会取代传统显微镜,却毫无疑问,它会弥补传统显微镜的不足。大多数孩子从未用过传统显微镜,所以微型显微镜Foldscope可帮助贫穷地区的学生探索微观世界和科学。”
  • 科学家发明最小光学扳子 可操控微观物体
    图中所示的是利用光学扳子捕获和旋转人类平滑肌细胞。这种扳子可以精确操控最小的物体  据国外媒体报道,利用激光能够对微观颗粒施加推力和拉力的性质,美国科学家研制出世界上最小的扳子(光学扳子)。这种扳子可以精确操控最小的物体——从活细胞和DNA到在生物学和物理学研究中使用的微观马达和电机。  这种基于激光的技术早已应用在“光镊”当中。虽然光镊可以沿着直线来回移动微观物体,但是却不能够扭转物体。来自美国阿斯顿德克萨斯大学的研究者表示,这种新型的光学扳子可以在任意方向上扭转物体,而不需要移动任何光学部件。  主管该研究的科学家Samarendra Mohanty说:“虽然光学镊子在生物医学和微流控技术领域非常有用,但是当进行深层次的作业时,它没有光学扳子的操控性和功能性强。”  在这种新型的装置中,光纤中的激光束首先俘获物体并把它放置在适当的位置,然后通过精细调节光纤,激光束就能够对物体施加一个非常小的扭转力,该扭转力可以产生沿任意旋转轴和任意方向的旋转,这取决于光纤的定位。
  • 用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。官网:https://www.bmftec.cn/links/10
  • 英科学家发现可降解二噁英毒性的生物体
    近日英国曼彻斯特大学的科学家们获得了一项长达15年研究的重大突破成果,他们希望这一结果将促进研发对危险空气污染物,例如多氯联苯 (PCBs) 和二氧(杂)芑进行去毒的有效方法。这项发表在期刊《自然》上的研究细节描述了某些生物体是如何降低污染物的毒素。  某些生物体可以清除危险空气污染物,例如多氯联苯(PCBs) 和二氧(杂)芑(二恶英)。    曼彻斯特大学生物技术研究所的研究小组调查了某些自然生物体是如何降低毒素水平并缩短严重污染物的寿命。  大卫里斯教授解释称:&ldquo 我们已经知道某些最毒的污染物包含卤原子,而大多数生物系统并不知道如何处理这些分子。然而,某些生物体可以利用维生素B12移除这些卤原子。我们的研究已经能够确定它们利用维生素的方式与我们所知的大不相同。&rdquo   &ldquo 对这个去毒作用的创新过程的细节描述意味着我们现在能够复制这一过程。我们希望可以更快更有效的研发新的方法移除世界上存在的某些最大的毒素。&rdquo   这项突破性进展花费了里斯教授15年的科研时间,欧洲科学研究委员会(ERC)的资金赞助使得这一切变为可能。这项研究面临的最大困难在于培养足够多的自然生物体以研究它们是如何将污染物去毒化。曼彻斯特大学生物技术研究所的研究小组通过对其它快速增长的生物体进行基因改造,最终获得了关键的蛋白质。然后他们使用X射线晶体学三维研究卤原子是如何被移除的。  这项研究的主要驱动力量是调查对抗释放至环境里的有害分子的方法,很多产生于污染物或者家庭垃圾的焚烧。随着这些分子的浓度上升,它们的存在对环境和人类都造成了潜在的威胁。目前已经采取了相关措施以限制污染物的排放,例如20世纪70年代美国禁止多氯联苯的使用,这一禁令在2001年波及全世界。里斯教授表示:&ldquo 除了与污染物的毒素和寿命作斗争,我们还有信心我们的研究发现将帮助研发筛选环境或者食物样本的更好的方法。&rdquo
  • 安图生物体外诊断产业园新建项目已投产,试剂年产能可达30亿人份
    1月28日,兔年首个工作日,河南省迎来了第七期“三个一批”项目建设活动,数千个项目集中签约、开工、投产。其中郑州市聚焦先进制造业、战略性新兴产业、数字经济 、“两新一重”、社会民生等重点领域,共谋划第七期“三个一批”项目303个,总投资3068.4亿元。实探安图生物 新投产项目,试剂年产能可达30亿人份大河财立方记者在位于郑州经开区第十五大街的安图生物体外诊断产业园了解到,该产业园新建项目已于今日全部建成投产。“此次建成投产项目,是安图生物体外诊断产业园建设项目的一部分,总建筑面积7.5万平方米,其中试剂生产车间建筑面积约3.2万平方米,包括试剂制备、灌装、组装等车间,拥有国内最先进的体外诊断试剂生产环境。”安图生物 副总经理李彬告诉大河财立方记者,该项目引入国际先进的现代化生产设备,建有全自动磁微粒化学发光、微生物平板和新冠抗原生产线,具备了30亿人份试剂的年产能规模。据了解,安图生物体外诊断产业园共分三期,总占地251亩,总建筑面积72万平方米,总投资逾50亿元,主要建设体外诊断试剂和仪器研发中心、现代化制造中心、全国最大立体冷藏成品库等设施。目前,一期项目已全部建成投产,二期项目将于今年下半年投产,三期项目主体建筑已全部封顶,进入装修阶段。李彬表示,安图生物体外诊断产业园全面建成后将具备150亿元产能规模,将成为我国最大的体外诊断产业基地之一,也将为公司持续发展奠定坚实的基础。郑州第七期303个“三个一批”项目出炉据介绍,作为我省重点建设项目,安图生物体外诊断产业园开工以来得到各级政府的高度关注和支持,被纳入全省“白名单”项目。省市区相关领导多次来现场调研、了解进度,及时解决项目建设中遇到的各种困难和问题,使得产业园建设高效顺利推进。“三个一批”活动启动以来,郑州市牢固树立“项目为王”理念,建立党政主要领导齐抓共管的高位统筹推进机制,多措并举创环境、育链条、优服务、促达产,较好地实现了以项目建设强投资、扩内需、补短板、调结构、聚人才、惠民生的互促多赢,为稳增长、促发展积蓄了强大动能。截至2022年底,全省开展“三个一批”活动6期,郑州市共承办主会场5次,累计入选项目983个,总投资10099.6亿元,项目数量和投资额均位居全省第一。其中,集中签约项目182个、集中开工项目475个、投产达效项目326个。1月26日,郑州市市长何雄接受媒体专访时表示,在“三个一批”项目建设中,郑州市紧盯签约落地率、项目开工率、投资完成率“三率”,坚持精准招商、集群引领、创新服务、强化保障“四步联动”,构建了以项目建设为引擎助推高质量发展的新格局。下一步,郑州将聚焦“当好国家队、提升国际化、引领现代化河南建设”和实施“十大战略”目标要求,深入践行“项目为王”理念,坚持滚动开展“三个一批”项目建设活动,坚持工作、资金、要素、服务跟着项目走,打好政策“组合拳”,注入投资“强心剂”,全力服务保障“三个一批”项目建设提速增效,为全市经济高质量发展和国家中心城市现代化建设提供有力支撑
  • “眼见不一定为实”?岛津工业CT带你了解物体内部信息
    如何利用工业CT获取物体的内部结构信息? 对于这个问题,我们通过一种电子器件的CT图像来说明。 大家都知道电子钟表上有个重要零件叫晶振,而搭过电路的人都知道:晶振,除了用在电子钟表上,还可以用在很多地方,比如,低头族挚爱的智能手机上、智能化程度越来越高的汽车上等等。 晶振是什么? 晶振是让一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定、精确的单频振荡的电子器件。虽然形状多种多样,但是外形简洁大气,例如图1。 图1 普通晶振(SPXO,左)和带有温度补偿电路的晶振(TCXO,右) 在简单的外壳下,它们内部是什么样子?工业CT可以让你略知一二。 晶振内部结构? 图2 图1 SPXO的透视图像(平放俯视) 图3 红色虚线部分的放大透视图像(侧面) 图4 图1 TCXO的透视图像(平放俯视) 图5 红色虚线部分的放大透视图像(侧面) SPXO和TCXO虽然外观相似,但是因为器件性能不同,所以透视图中可看到TCXO明显比SPXO结构复杂些。TCXO中,石英片有罩子,而且震荡电路IC在石英片外罩的下面。透视图上只能看到位置关系,具体样貌无法获知。 那么来看看晶振的CT图像。图6~图10是图1中SPXO的CT图像。 图6就是SPXO的MPR图像。MPR是任意断面图像的简称。断面3是断面1中绿色亮线的截面图像,断面4是断面2中绿色亮线的界面图像。CT图像中,断面1中可见石英片的CT图,断面3中可见导电胶和胶体中气泡的图像,断面4中可见震荡电路IC的绑定点图像。 图6 图2中红框部分的CT断面图像 晶振中的石英片是什么样子呢? 下图就是图6 断面1中的石英片的样子。 图7 图6断面1中石英片的图像 MPR图像怎么看? 有的小伙伴可能说:MPR图像不容易看懂啊!那么可以看看处理后的3维效果图——图8和图9。图8就是SPXO的内部三维图像,图9是石英片下面的震荡电路IC的三维图像。图8 图2的三维图像 图9 震荡电路IC的三维图像 图10 对震荡电路IC中焊点的缺陷分析 除了直观的图形数据,还可以利用分析软件量化分析焊点的缺陷(VGStudio MAX)。那么图1中的TCXO里的石英片和震荡电路IC又是什么样的呢? 图12 图1TCXO的石英片 图13 图1TCXO石英片外罩下的震荡电路IC 图像中可见,TCXO的石英片被罩子罩住,震荡电路IC隐藏在罩子下面。如果没有CT的帮助,估计我们只能把TCXO的器件外壳打开才能看到里面的状态。 外形相似的SPXO和TCXO,原来内部差别如此之大。 最后,看看为我们拍出CT图像的仪器——岛津微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus。 岛津微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus 岛津的CT,除了晶振这种简单器件,大至车用铝压铸件,小到碳纤维,都能够轻松拍摄出清晰的图像。关键是,拍摄对象不需要做任何特殊处理,在原有状态下即可获取内部结构信息,这也是CT存在的最大意义。
  • 美研制出生物体与电子设备相结合的湿度传感器
    研究人员将真菌孢子与石墨烯量子点结合在一起,制造出了一种极其微小的生物机器人。  &ldquo 这是一个令人着迷的设备,你可以说它是一个传感器,也可以说它是一个类似于机械战警般的生物机器人。&rdquo 美国伊利诺伊大学芝加哥分校的科研人员日前将真菌所产生的孢子与石墨烯量子点结合在了一起,制造出了一种极其微小的生物机器人。该装置有望用于环境监测、食品安全等领域。相关论文发表在自然出版集团旗下的《科学报告》期刊上。  随着纳米技术的发展,制造出肉眼不可见的微型机器人已经成为一件可能的事情,将生物体与无生命的机器相结合也成为解决问题的一个备选方案。新研制出的这种装置主要由孢子和石墨烯量子点组成,研究人员首先从细菌中提取孢子,再将石墨烯量子点放置在孢子的表面,而后在孢子两侧各贴上一个电极。这样,当孢子周围的湿度下降时,孢子就会收缩,其中的水分会被压出。由于孢子缩小后体积变小,两侧的量子点会紧靠在一起,电极的导电性也会立即发生变化,从而达到了监测湿度的目的。研究人员将这个设备称为&ldquo 纳米电子机器人设备(NERD)&rdquo 。  该研究论文第一作者、伊利诺伊大学芝加哥分校副教授维卡斯· 贝瑞说:&ldquo 在湿度发生改变的那一刻,我们就能立即得到一个清晰准确的反馈。这个反应速度比目前最先进的人造吸水聚合物制成的传感器快10倍以上。而且与人造传感器相比,这种生物传感器在极端低压以及极低湿度下具有更加出色的灵敏度。&rdquo   物理学家组织网近日报道称,目前常见的湿度传感器的灵敏度随着湿度的增加而逐渐增强,而NERD的灵敏度在低湿度情况下反而更加灵敏。这种传感器能够适应各种环境,甚至是真空,这在防腐或食品质量监测领域有重要应用前景。对于运行在太空中的设备而言,这些传感器同样非常重要,因为在这些地方湿度的变化是预示泄漏的一个重要信号。  贝瑞说:&ldquo 这种传感器具有广泛的应用前景,此类研究为人们探索生物体与电子及机械设备的结合提供了一个新的角度。&rdquo
  • 《Smart Materials and Structures》:用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。
  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 镜头聚焦!更便捷 更安全|纽迈清醒小动物体成分分析仪PRO版新品首发!
    2023年9月6日,第二十届北京分析测试学术报告会暨展览会(BECIA 2023)在中国国际展览中心(顺义馆)隆重开幕。千余位资深专家、723家仪器企业、万余人参会观展,共聚行业盛会!纽迈分析作为一家深耕低场核磁领域20年的国产品牌,已多次参加北京分析测试展,本次展会于E3馆E3076展台展示了多款产品,其中包括MesoMR系列、PQ001系列、MacroMR系列等,其中新品首发的QMR06-060H/090H-PRO清醒小动物体成分分析仪更是吸引了众多观展嘉宾、行业媒体及业界同行的关注。QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。新品PRO版 全新升级只为满足您的需求点击查看新品介绍视频BECIA 2023是全球分析科学与生化技术的博览盛会,汇聚了来自世界各地的专业人士和领军企业,为分享分析检测技术、产品、经验和创新提供了宝贵的机会。纽迈分析作为国产低场核磁领域的佼佼者,借此机会展示了在生命科学、能源岩土、食品农业等领域的创新成就,同时也收获了来自行业及客户的认可和赞誉。在未来的发展中,纽迈分析将继续面向世界前沿、面向市场需求,不断推出更加优质的产品和服务,为推动国产低场磁共振行业的发展做出更大的贡献。
  • 3D面积测试系统 | 满足不规则物体面积的自动检测需求
    3D面积测试系统 3D面积测试系统为实验室提供了一个先进的测量平台,用于快速、准确地计算不规则物体的面积,包括任意面积、外表面积、内表面积、液体面积、体积等,开拓了自动化计算面积的新模式。复杂样品轻松测量,任意面积一扫即得01产 品 展示02知识产权针对3D面积测定仪,上海汇像信息技术有限公司已取得多项具有业界标杆意义的权威证书,其中包括但不限于《发明专利证书》、《计算机软件著作权登记证书》、《上海市计量测试技术研究院华东国家计量测试中心校准证书》等多项荣誉证书。专利证书软件著作校准证书03参 与 标 准GB/T 材料表面积的测量高光谱成像三维面积测量法QC/T 紧固件镀层表面积计算方法T/SLIA 001-2019食品接触材料及制品、饰品表面积的测定三维模型重建法GBT 38009-2019眼镜架镍析出量的技术要求和测量方法计量技术规范两项发表论文多篇数据对比活动多次全国多家计量机构提供CNAS校准支持04合 作 机 构、持续更新中......• 国内外著名第三方权威检测机构:SGS通标标准技术服务有限公司、Intertek天祥集团、德国莱茵TÜV集团、TÜV南德意志集团、必维国际检验集团、华测检测认证集团、东莞市中鼎检测技术有限公司等。 • 国家质检机构:上海质检院、深圳计量院、山东质检院、浙江方圆检测集团、广州质检院等、南京质检院、新疆质检院、宁夏质检院; • 国家海关机构:广东海关、常州海关、宁波海关、上海海关、北京海关等; • 国际知名企业:宜家家居IKEA、周大福珠宝、浙江小商品城集团等; 05产 品 特 点• 批量测量根据样品大小,可一次同时检测30-50个样品批量选取样品测量• 自带软件处理完全针对检测检验行业需求定制开发,系统自带软件直接检测,无需切换自带软件进行处理• 任意面积计算根据标准的不同要求,鼠标轻松选取标准所需的接触面积鼠标轻松选取接触面积• 多种输出模式实现对检测结果的多种输出方式,例如:Excel、PDF报告导出报告导出06应 用 领 域目前3D面积测定仪已广泛应用于食品接触材料、药品包装材料、工艺品、日用品、纺织品、工业零部件、玩具、婴儿用品、医疗用品、首饰饰品等。 07配 套 产 品智能显像仪——采用光学原理的仪器,对于透明材料、反光材料、黑色材料会产生吸光效应,检测前须进行前处理。智能显像仪• 使用方法1.置入样品→2.自动处理→3.处理完成• 产品特点干净卫生、不粘手改变传统手摇罐式显像剂喷雾方式,更卫生、高效、方便触摸屏智能控制自动调节速度、处理时间、操作过程全程监控• 配合3D面积测定仪使用上海汇像信息技术有限公司领先的实验室自动化智能化系统供应商上海汇像始终坚持将人工智能技术与检验检测技术相融合,致力于为生物化学,医疗医药及安全检验检测提供领先的实验室自动动化智能化综合解决方案,产品范围涵盖从食品安全、药品安全、到生命科学领域的智能机器人工作站系统、全流程检验检测实验室自动化、智能化整合系统以及配套自动化、智能化仪器设备及相关耗材等。我们立志成为全球最为领先的生命健康自动化、智能化解决方案提供商、立志让世界每一个人都享受健康安全品质的生活,立志为业界提供最好的技术、产品与服务。
  • 中教金源参与起草国标《纳米技术 纳米物体表征用测量技术矩阵》正式发布
    国家标准《纳米技术 纳米物体表征用测量技术矩阵》由TC279(全国纳米技术标准化技术委员会)归口上报及执行,主管部门为中国科学院。2021-12-31日由 国家纳米科学中心 、华测检测认证集团股份有限公司 、北京中教金源科技有限公司 等,起草的国家标准《纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法成功发布,并于2022-07-01起正式实施。 主要起草人为: 张东慧 、葛广路 、申屠献忠 、蔡春水 、周素红 、郭延军 、刘伟丽 、蔡金 、王新伟 、常怀秋 、徐鹏 、朱晓阳 、高峡 、高原 、田国兰 、黄生宏 、冀代雨 、高洁 。北京中教金源科技有限公司是以实验仪器研发和生产的高新技术企业、中关村高新技术企业,注册于北京国际企业孵化中心(IBI)、中关村科技园丰台园科创中心,实资注册1200万元。中教金源产品以实验室仪器、实验光源、光电仪器、光电化学、催化微反、电池储能测试等系统开发为主,服务中国科研和教育事业,产品质量铸金,技术创新立源。 中教金源,与全国各高校研究所建立了长久的合作关系。2010年以来,采用中教金源仪器,发表的SCI文章千余篇,尤其在客户化定制及系统搭建上满足了不同的实验需求。部分客户:中国科学院化学研究所、国家纳米中心、北京大学、上海交通大学、南京大学、中国石油大学、重庆大学、华南理工大学、中山大学、武汉大学、兰州大学、中国科学院新疆理化所、哈尔滨工业大学、黑龙江大学等千余家单位、研究院所。   产品主要应用:实验室科学研究、化学研究、工业催化、光电化学、光电测试分析、生物研究、催化表征、光化学及光催化、光降解污染物、光降解有害物、光聚合、光电转换、光致变色、太阳能电池研究、电池储能测试等领域。
  • 沃特世公司推出新型生物体液氨基酸分析系统 - 基于超高效液相色谱UPLC的解决方
    沃特世公司推出新型生物体液氨基酸分析系统 - 基于超高效液相色谱UPLC的解决方案第一台基于超高效液相色谱的系统用于尿液和血浆中氨基酸的定量分析新奥尔良 –2008年3月3日 – 沃特世公司(股票代码:WAT)于2008年3月2日至6日在行业内最大的年度展会匹茨堡大会上推出MassTrak™ AAA Solution 氨基酸解决方案,用于临床研究中尿液和血浆生理学氨基酸的分析。MassTrak AAA Solution 氨基酸分析解决方案使用超高效液相色谱,是为可靠再现的氨基酸分析而优化的完整解决方案。沃特世(Waters) MassTrak Amino Acid Analysis (AAA) Solution 氨基酸分析解决方案是第一台带有紫外/可见检测的超高效液相色谱(UPLC)系统,结合沃特世公司ACQUITY UPLC 技术和沃特世公司专利AccQTag™ 衍生化学品,在研究设定范畴内分析尿液和血浆样品中的氨基酸。该系统被预先配置所要求的仪器、方法、化学品、流动相、标准样品和消耗品,并可以在35分钟之内分离多至四十二种氨基酸。MassTrak AAA Solution 氨基酸分析解决方案的推出标志着沃特世公司坚定不移迎接临床研究实验室各种挑战的决心。沃特世公司在匹茨堡大会展位# 2639号展示新型超效氨基酸分析系统。如欲获取更多关于沃特世公司在大会上的活动信息,请浏览网站 www.waters.com/pittcon。 关于沃特世公司(www.waters.com)50年来,沃特世公司(美国纽约股票交易代码WAT)在全球范围内,通过传递实用,可持续发展的创新技术,为实验室依赖型单位和组织,在人体保健,环境管理,食品安全和水质分析领域建立商业优势。潜心钻研相互关联的整合分离科学,实验室信息管理,质谱和热分析技术,拥有专家水平的客户服务团队, 沃特世技术突破和实验室解决方案为用户的成功提供了持久的平台。2007年,沃特世公司年销售额14.7亿美元,5000名员工,为全球客户努力推进科学发现并保障卓越性能。Waters, MassTrak, ACQUITY, UltraPerformance LC, UPLC 和 AccQTag是沃特世公司商标。Pittcon 是匹茨堡分析化学和应用光谱学大会的注册商标。 媒体查询, 请联络:沃特世科技(上海)有限公司蔡卓尔小姐电话:+86 21 68794052 传真:+86 21 68794588Email:joy_cai@waters.com 网址:www.waters.com www.waterschina.com
  • 医科学生用X射线成像技术拍摄的物体
    利用X身线拍摄到的玩具象     利用X身线拍摄到的汉堡     利用X身线拍摄到的芭比娃娃     利用X身线拍摄到的烤面包机  据英国媒体5月4日报道,44岁的康奈尔大学医科学生Satre Stuelke运用高科技X射线成像技术拍摄到了一些神奇的照片。该人用一台GE 4-位医用扫描仪扫描诸如芭比娃娃、汉堡和游戏机手柄等物品,然后用一个叫Osirix的电脑软件处理。
  • 小仪器参透物体内部“大数据”
    记者6月26日从中国工程物理研究院材料研究所获悉,国内首台小型短波长X射线应力无损分析仪由该所研制成功,并应用于装备制造、国防军工等领域。  用于材料检测的应力分析设备,是提高精密制造水平的关键设备。与传统表面应力分析仪不同,该分析仪采用波长为0.2埃的短波长X射线,可穿透50毫米铝当量的金属材料,在无损的情况下对材料内部应力分布情况进行定量分析,与同类型的中子衍射、同步辐射装置等大型装置相比,其造价低廉、使用方便。  攻关中研究团队采用特殊的X射线光路设计,避免了X射线强度衰减难题,以自主研发的高精度的测角仪、欧拉环等设备,实现了晶格参数微小变化的准确测量,其应力测量误差小于20兆帕。作为填补国内空白的小型应力无损分析设备,其总质量仅为400千克,外形仅1.3米× 1.3米× 2米与家用冰箱大小类似,并可根据需求定制形成固定式、移动式、便携式产品。  目前,该设备部组件及整机可靠性、安全性等相关指标已通过权威机构检定,并获得中国、美国及欧洲发明专利10余项,研究团队还开发了拥有自主知识产权的自动控制和应力分析软件。其问世后已在铁路轨道交通零件制造、发动机单晶叶片检测和部分国防产品开发中实现广泛应用,并取得良好效果。
  • 美研究称生命始于史无前例的巨大生物体
    大约在30亿年前,地球上只有一个名为“最后普遍共同祖先(LUCA)”的生物。它形态庞大,是一种史无前例的巨大生物,填充了地球上的所有海洋。随后它分裂为三个部分,最终诞生了今天地球上所有生命的祖先。  科学家最新的研究成果显示,LUCA是早期生命努力生存的结果。  在数百万年的时间内,LUCA试图将海洋转变为全球基因交换工厂。试图努力存活下来的细胞在无竞争环境下相互交换有用物质,有效地创造出覆盖全球的巨大生物。  约29亿年前,LUCA分裂成三种不同的生命形态:单细胞细菌、原始细菌以及能够演变为动物和植物的更为复杂的真核细胞。要想知道在分裂之前发生了什么很困难。那个时代几乎没有留下任何化石遗迹,任何能追溯到那个年代的基因可能均已发生无法辨认的变异。  伊利诺伊大学厄巴纳-尚佩恩分校的古斯塔沃卡埃塔诺-阿诺勒说,要描绘LUCA的样貌并不存在什么无法克服的困难。尽管基因序列的变化十分迅速,但基因编码形成蛋白质的三维结构却更能经受得住时间的考验。他说,如果现存所有生物都产生一种大致结构相同的蛋白质,那么在LUCA中存在这种蛋白质结构的可能性就很大。他将这种结构称作活化石,并且指出由于蛋白质功能非常依赖其结构,这些活化石能够告诉我们LUCA能做什么。  为重建LUCA能够产生的蛋白质集合,卡埃塔诺-阿诺勒在一个包含420种现代生物蛋白质的数据库中搜索,寻找全部类别蛋白质共同具有的结构。根据他寻找到的结构,只有5%至11%的结构具有普遍性,这意味着它们保存了足够多源于LUCA的结构。  德国奥斯纳布吕克大学的阿芒米尔基贾尼安说:“有充分论述支持(这种巨大生物)共享基因、酶和代谢物。”在只能生存在混合族群中的微生物族群里还能看到这种基因交换系统的痕迹。
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • KBr溴化钾人工晶体是如何生长的?
    据2020年6月19日本司动态新闻发布关于KBr溴化钾人工晶体的概念是什么?受到很多大咖的关注。借此要求我司会履行为大咖们续写关于溴化钾相关知识,为大咖们在选择仪器或者仪器耗材时做好准备。 今天恒创小编深入解读一下KBr溴化钾人工晶体生长过程是怎样的呢? 所谓生长,对于生物体而言,就是一个从小到大,从幼稚到成熟的过程。生物体生长需要养料,需要空气、阳光等环境。同样,对于“晶体的生长”,也是一个晶体从小到大的不断变化的过程,也需要养料(原料)和合适的环境,如生长炉、合适的温度等。 不同的生物体的生存环境、生长发育各不相同,同样,对于晶体而言,不同的晶体有不同的生长过程,需要不同的生长条件,有相应的不同的晶体生长技术和方法,其晶体生长的过程和要求也有所不同。 下面,我们将以提拉法晶体生长为例,介绍晶体生长的过程。 提拉法是一种从熔融原料中生长晶体的方法,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。提拉法生长晶体的过程大致分为多晶料烧结(含称料、混料、烧料、二次烧结等)、提拉晶体(含化料、下籽晶、放肩、生长等)以及晶体出炉几个步骤。对于上述晶体生长的概念和过程,您可以在后面的页面后找到详细的描述。
  • 活体生物光学成像技术的应用
    作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。1、在体监测肿瘤的生长和转移利用在体生物光学成像技术,通过荧光素酶或绿色荧光蛋白标记肿瘤细胞,可以实时监测被标记肿瘤细胞在生物体内生长、转移、对药物的反应等生理和病理活动,揭示肿瘤发生发展的细胞和分子机制。Contag 等[1] 将荧光素酶和绿色荧光蛋白作为报告基因,对肿瘤细胞进行活体成像,探讨了使用报告基因在细胞分子水平研究肿瘤的前景,并指出在体生物光学成像技术具有较高的灵敏度,尤其在监测肿瘤细胞的生长方面具有较大优势。Yang等[2,3] 首先利用光学成像系统对表达绿色荧光蛋白的肿瘤实现了实时非侵入性成像,记录了肿瘤的转移过程,开辟了在整体水平上无创、在体、实时跟踪肿瘤发生、发展和转移等生物学行为的崭新领域。Jenkins 等[4] 将标记了荧光素酶基因的人类前列腺癌细胞注射到小鼠体内,利用在体生物光学成像系统,实时、在体监测了前列腺癌细胞化疗后的复发和转移情况。基于绿色荧光蛋白的在体生物光学成像也在肺癌、大肠癌、前列腺癌、胰腺癌、黑色素瘤、脑胶质瘤和乳腺癌等多种肿瘤的生长转移等研究中得到了越来越广泛的应用[2,3,5,6]。2、在体监测基因治疗中的基因表达随着后基因组时代的到来和人们对疾病发生发展机制的深入了解,在基因水平上治疗肿瘤、心血管疾病、AIDS 和分子遗传病等恶性疾病已经得到国内外研究人员越来越广泛的关注。如何客观地检测基因治疗的临床疗效判断终点,有效监测转基因在生物体内的传送,并定量检测基因治疗的转基因表达,已经成为基因治疗应用的关键所在。通过荧光素酶或绿色荧光蛋白等报告基因,在体生物光学成像技术能够进行基因表达的准确定位和定量分析,在整体水平上无创、实时、定量地检测转基因的时空表达[7]。McCaffrey 等[8] 将荧光素酶标记在靶基因上,应用siRNA 及shRNA 减弱了小鼠转染的荧光素酶的表达,在活体动物体内首次实时观察到siRNA 对特异靶基因表达的阻断作用。以病毒[9,10](如腺病毒及腺相关病毒等) 作载体,将荧光素酶基因或绿色荧光蛋白等作为报告基因加入载体,采用在体生物光学成像,能够实时观察病毒在动物体内的侵染活动,获取病毒侵染部位等相关信息。3、揭示机体的生理病理改变过程目前,在体生物光学成像技术已成功应用于干细胞移植、肿瘤免疫、毒血症、风湿性关节炎、皮炎等发病机制的研究中,可以实时监测生物机体的生理病理改变过程,具有重要的临床意义。应用转基因鼠,Wang等[11] 将荧光素酶基因转导于人类造血干细胞(Hematopoietic stem cells,HSC) 中,并将其植入脾及骨髓,利用在体生物光学成像技术,揭示了HSC 在小鼠骨髓腔中植活、增殖等动态信息,实时监测HSC 的后代在小鼠体内的生长等。Kim等[12] 将荧光素酶基因转染于神经前体细胞(Neuralprogenitor cell,NPC),并注射入小鼠脑梗模型中,在体生物光学成像系统显示神经前体细胞迅速游走聚集至梗塞病灶处。风湿性关节炎和类风湿性关节炎的动物模型研究表明: 荧光报告基因在患关节炎的关节局部产生荧光信号,在健康组织周围未见荧光信号,能够动态观测关节炎的发生和发展,对关节炎疾病的治疗具有重要意义。另外,在体生物光学成像技术在生物大分子间相互作用及细胞凋亡的研究中也取得了一定进展。Paulmurugan 等[13] 将胰岛素样生长因子与胰岛素样生长因子结合蛋白分别用绿色荧光蛋白及Renilla 荧光素酶基因融合,研究它们之间在活体小动物体内的相互作用。4、药物的筛选和评价目前,转基因动物模型已大量应用于病理研究、药物研发、药物筛选和药物评价等领域。 通过体外基因转染或直接注射等手段,将荧光素酶或绿色荧光蛋白等报告基因标记在生物体内的任何细胞(如肿瘤细胞、造血细胞等) 上,采用在体生物光学成像技术对其示踪,了解细胞在生物体内的转移规律,不仅能够检测转基因动物体内的基因表达或内源性基因的活性和功能,而且能够对药物筛选及疗效进行评价。Zhang 等[14] 利用转基因鼠,研究可诱导的NO 合成酶在急慢性免疫反应中的作用,并以此对多种化合物进行抗免疫反应的测试和筛选。肺癌、前列腺癌、黑色素瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌和脑癌的原位GFP 肿瘤的整体荧光成像模型已经建立[15],利用转移鼠和血管鼠实现了抗肿瘤生长转移和血管生成的在体药物筛选和评价(http://www.metamouse.com)。基于绿色荧光蛋白的在体荧光成像揭示了肿瘤发生发展的细胞和分子机制,非侵入性在体评价抗肿瘤药物的疗效[1]。参考文献1、 Contag C H,Jenkins D,Contag P R,Negrin R S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia,2000,2(1-2): 41~522、 Yang M,Baranov E,Jiang P,Sun F X,Li X M,Li L. Whole-body optical imaging of green fluorescent protein expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America,2000,97(3): 1206~12113、 Yang M,Baranov E,Wang J W,Jiang P,Wang X,Sun F X. Direct external imaging of nascent cancer,tumor progression,angiogenesis,and metastasis on internal organs in the fluorescent orthotopic model. Proceedings of the National Academy of Sciences of the United States of America,2002,99(6): 3824~38294、 Jenkins D E,Yu S F,Hornig Y S,Purchio T,Contag P R. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clinical and Experimental Metastasis,2003,20(8): 745~7565、 Hasegawa S,Yang M,Chishima T,Miyagi Y,Shimada H,Moossa A R. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Therapy,2000,7(10): 1336~13406、 Bouvet M,Wang J W,Nardin S R,Yang M,Baranov E,Jiang P. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pan creatic cancer orthotopic model. Cancer Research,2002,62(5): 1534~15407、 Vassaux G,Groot-Wassink T. In vivo noninvasive imaging for gene therapy. Journal of Biomedicine and Biotechnology,2003,2003(2): 92~1018、 McCaffrey A P,Meuse L,Pham T T,Conklin D S,Hannon G J,Kay M A. RNA interference in adult mice. Nature,2002,418(6893): 38~399、 Sato M,Johnson M,Zhang L Q,Zhang B,Le K,Gambhir S S. Optimization of adenoviral vectors to direct highly amplied prostate-specific expression for imaging and genetherapy. Molecular Therapy,2003,8(5): 726~73710、 Tseng J C,Levin B,Hunado A,Yee H,de Castro I P,Jimenez M. Systemic tumor targeting and killing by Sindbis viral vectors. Nature Biotechnology,2004,22(1): 70~7711、 Wang X,Rosol M,Ge S,Peterson D,McNamara G,Pollack H. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood,2003,102(10): 3478~348212、 Kim D E,Schellingerhout D,Ishii K,Shah K,Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke,2004,35(4): 952~95713、 Paulmurugan R,Gambhir S S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Analytical Chemistry,2003,75(7): l584~158914、 Zhang N,Weber A,Li B,Lyons R,Contag P R,Purchio A F. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. The Journal of Immunology,2003,170(12):6307~631915、 Hoffman R M. Green fluorescent protein imaging of tumour growth,metastasis,and angiogenesis in mouse models. The Lancet Oncology,2002,3(9): 546~556
  • 科学家发明体内DNA合成可视化新技术
    瑞士苏黎士大学的研究人员研发了一种新物质,可用来标记和观察动物体内的DNA合成过程。该技术的应用为药物研发提供了新策略。相关研究论文于12月5日在线发表在美国《国家科学院院刊》(PNAS)上。  详细了解动物体内DNA和蛋白质等大分子合成是理解生物系统和设计疾病治疗策略的必要条件。通常,通过人工合成小分子标记物掺入生物体自身合成过程来达到可视化DNA合成的目的。但是,直到现在该方法有一个重大的局限性:标记物具有毒性并导致细胞死亡。内森利德基(Nathan Luedtke)领导的小组研发了一种叫“F-ara-Edu”的核苷。用它来替换胸腺嘧啶脱氧核苷,标记DNA对生物体基因组功能几乎没有影响,毒性也大为降低,检测也更灵敏。  利德基表示,通过可视化新DNA的合成,就能够鉴定病毒感染和肿瘤增长的位点。这将引领药物研发新策略。(科学网 任春晓/编译)  相关仪器及方法:热型质谱仪  完成人:内森利德基课题组  实验室:瑞士苏黎士大学有机化学研究所  更多阅读  PNAS发表论文摘要(英文)
  • 北航文力课题组《Nature Communications》:基于超精密3D打印柔性传感的软体机器人
    人们经常向往能够拥有魔法,以实现各种神奇的操作比如隔空操控、隔空取物,即在不主动触碰某个物体的情况下,用类似意念的超能力操控物体移动,多用于神话科幻电影或小说。正所谓,科技来源于想象,想象力是推动人类走向物种最顶端的原动力。而当科技发展到一定程度时,这种对于超能力的向往、对神奇操作的想象有时也会成为现实。2022年8月26日,国际顶级期刊《自然通讯》(Nature Communications)报道了北京航空航天大学机械工程及自动化学院仿生机器人研究团队文力课题组在软体机器人交互控制领域取得的最新进展。 操作人员通过裸手不仅能够实现对具有大量自由度的软体机器人的非接触控制,而且可以完成各类复杂的操作。能够将复杂的软体机器人的运动控制变得大众可及,得益于北京航空航天大学研究团队最新提出的基于双模态智能传感界面的软体机器人非接触交互示教方法。在该研究中,基于研究团队所研发多模态柔性传感界面,示教者在不接触软体机器人、无任何穿戴设备的情况下利用裸手交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。其主要原理是,利用“隔空”条件下交互界面与人手表面电荷产生的静电感应,将人手和软体机器人之间的距离信号转换为传感信号,进而“诱导”机器人的运动。这类基于多模态柔性感知的非接触的示教方法可以显著拓展人类与软体机器人的交互方式。该论文第一作者为北京航空航天大学机械工程及自动化学院博士研究生刘文博,朵有宁、刘嘉琦、袁菲阳为共同第一作者,文力教授为论文通讯作者。中国科学院北京纳米能源与系统研究所与清华大学计算机系为本研究的合作单位。瞄准领域痛点问题软体机器人是一种新型柔软机器人,能够适应各种非结构化环境。由于软体材料的自由度可以根据需求自由变化,因此软体机器人有着极高的灵活性,并且软体机器人与生俱来的高度适应性,使其在与人类互动方面同传统的刚性机器人相比更具安全优势,在生物工程、救灾救援、医疗领域有着很大的应用前景,受到越来越多的关注。然而,由于目前软件机器人在建模和编程方面存在一定挑战,使得非专业人员在使用软件机器人实现特定动作及执行特定任务时常常面临一些不容忽视的困难。交互式示教方法能够高效、灵活地引导软机器人实现对应的运动,这将有助于软体机器人在室内、生产线和其它非结构化环境中的应用。攻克两大研究挑战在传统刚性机器人上常用到的拖拽示教的方式,并不能很好地应用于软体机器人,其主要是由于软体机器人顺应性高、具有无限自由度的自身特性。因此,直接进行“拖拽”会使软体机器人产生很大的被动变形。如果想检测这些被动变形,则需要在软体机器人上布置大量传感器。在解决软体机器人示教交互问题上,目前面临着两大挑战。(1)一种柔性多模态智能传感器-能够在适应软体机器人大变形的前提下,对多种环境信息(距离、压力以及材质等)做出响应。(2)一种友好的无需编程的软体机器人示教系统-能够简单高效地将人的指令传递给软体机器人。挑战一:多模态柔性传感器由于操作人员在与软体机器人交互过程中可能产生多种信号,且传感器需适应软体机器人自身柔软的特性,因此用于人机交互的传感器应具有检测多模态信号、柔软可变形等特点。课题组基于摩擦纳米发电机原理和液态金属的压阻效应提出了一种能够对非接触信号和接触信号进行实时感知和解耦的柔性双模态智能传感器(flexible bimodal smart skin, FBSS)。该传感器结构上主要包括柔性介电层、柔性电极层、激励层、液态金属图案和封装层组成。该团队利用新型微立体面投影光刻技术(nanoArch S140,摩方精密)实现了柔性介电层表面微型金字塔模具的3D打印,该传感器自身具有较强的柔性和可拉伸性。图1. 接触/非接触柔性双模态智能传感器(FBSS)的设计与传感原理。(a)传感器将不同功能层堆叠在一起。包括柔性介电层(青色)、柔性电极层(灰色)、刺激层(浅黄色)、液态金属(黑色)和封装层(橙色)。(b)柔性介电层顶部微金字塔结构的电子显微镜图像。该金字塔型微结构一方面可以有效介电层的表面积,增加表面电荷量进而提高非接触传感的灵敏度;另一方面可以减少外力作用在液态金属腔道上的面积增加压强促进液态金属腔道变形,进而提高接触传感的灵敏度。(c)印刷在硅胶材料层上的液态金属材料的光学显微镜图像。(d) FBSS可被弯曲,展示了其柔性。(e)样机可被拉伸(最大拉伸率为58.4%)。(f)样机的接触/非接触传感机制:i)柔性介电层(灰色)和外部物体(红色)在接触几次后,由于电子亲和性不同,产生了等密度的负电荷和正电荷。ii)当外部物体接近柔性介电层时,自由电子被驱动并从大地流向柔性电极。iii)外部物体开始接触FBSS,电子转移量增加,液态金属电阻增加。iv)外部物体与FBSS完全接触,转移的电子数和液态金属的电阻都达到最大值。v)随着外界压力的释放,电子从柔性电极(灰色)回流到大地,液态金属的电阻减小。vi)随着外部物体(红色)与FBSS分离,回流电子增多,液态金属的电阻恢复到初始状态。研究团队对柔性双模态智能传感器进行了系统的实验测试,研究结果表明,该传感器可以灵敏地检测外界物体与传感之间的距离以及接触压力,并且能够实时解耦这两种模态。此外该传感器利用不同材质得失电子能力的差异性,还可以对接触物体的材质进行检测。最后,实验研究表明该传感器具有一定环境抗干扰能力以及良好的稳定性和耐久性。研究团队所提出的柔性双模态智能传感器可以有效地检测外部物体的接近和接触信息,比如高速下落的网球,在整个过程传感器可以实时感知和区分网球的接近和击中传感器的逐个阶段。此外,该传感器还可以检测一个羽毛的飘落过程:随着羽毛逐渐接近,传感器输出的非接触信号逐渐增加。该柔性双模态智能传感器还能够感知人手的接近和按压信号,无需在手上增加任何外接设备:研究人员将该传感器连接进入LED灯控制电路,利用人手的接近信号控制控制红色LED灯亮度,接触信号控制蓝色LED灯亮度。图2. FBSS接触和非接触传感特性的表征结果。(a, b)网球从FBSS上方落下(下落距离200mm)的高速相机图像和接触、非接触输出信号。(c, d)人手指按压FBSS时的场景和接触、非接触输出信号。当检测到的非接触信号超过一个阈值时,红色发光二极管点亮;当手指按压FBSS时,蓝色LED点亮。在此基础上,课题组人员尝试将多模态柔性传感器与一些简单的软体机器人结合,实现了软体机器人与环境、与人的初步交互。将柔性多模态智能传感器放置在一段软体驱动器末端,通过人手能够实现非接触地直接控制驱动器的弯曲和收缩。这给人一种魔法般的体验;将柔性多模态传感器与气动折纸结构软体手结合,即使软体手完全埋进沙子依旧能够感知附近玩具昆虫的接近信息,并对其进行精准地抓取;柔性多模态智能传感器与气动驱动软体手爪结合,亦可实现运动路径上目标物体的搜寻与抓取:随着软体手爪逐渐靠近目标物,传感器输出的非接触信号逐渐增加,当超过一定阈值时系统判定为软体抓手找到了目标物并进行抓取,抓取过程中传感器输出的接近信号开始逐渐增加,最终实现了对目标物体的成功抓捕。图3. 自驱动软体机器人被人和环境的非接触信号触发。气动三自由度软体机械臂被人手的接近信号触发实现(a)弯曲和(b)缩短。(c)装有FBSS的气动软体折纸机器人成功检测并抓住玩具昆虫。(d)一个装备有FBSS的软体抓手自主搜索、检测和抓取塑料圆柱体物体,(e)在这个过程中接触和非接触信号随时间变化的结果。挑战二:针对软体机器人的示教交互方式基于多模态柔性传感器,课题组针对10自由度(软体臂主体由9根波纹管式气动驱动器组成,末端有一气动软体手)气动软体机械臂提出了一种非接触示教交互方式:利用人手的接近信号进行非接触控制,软体机械臂运动的步长大小对应非接触信号的大小,人手的按压信号用于控制末端软体手的开合。无需额外的穿戴设备,操作人员通过裸手即可与软体机械臂进行交互。同时,为了实现对软体机器人复杂姿态的控制,研究团队另辟蹊径,提出了“变换传感器位置&示教”的方法。在传感器的背部以及软体机器人上放置小的圆形磁铁,利用磁力快速改变传感器在软体机器人上的位置,从而实现对软体机器人各个驱动段的位姿控制。为简单验证上述示教控制系统的可行性,课题组人员控制软体机械臂进行二维、三维空间物体抓取任务。其重复过程能够很好地对示教过程进行复现。这种示教方式能够有效地捕捉并抓取空间内高、中、低大范围内的目标物体。由于交互控制系统能够完整地记录示教交互过程的控制步长数据,操作人员可以对复现过程的速度进行控制,并且根据用户的需求做出相应的调节。此外,研究人员还在软体机械臂每一段末端和贴附传感器的弧形片上安装了小磁片,便于交互过程中传感器位置的切换。该方法通过简单、快速地更换传感器的位置,实现了对每一段的高效交互控制,最终实现了整个软体复杂位姿的简单控制。图4. 基于“传感器换位与示教”方法交互式示教软体机械臂实现复杂运动。FBSS I和FBSS II随时间变化的非接触和接触信号的归一化结果。每个图中的红色和蓝色箭头表示用户正在将FBSS从一个位置移动到另一个位置,以便与软体机械臂的不同位置进行交互。(a)示教者使用“传感器换位与示教”方法操纵软体臂实现二维空间运动。(b) 使用“传感器换位与示教”方法操纵软体臂实现复杂三维空间运动。除了简单的控制软体机器人完成空间物体的抓取任务以外,还可以与软体机器人进行无接触的互动教学,从而实现更加复杂、更具挑战性的任务。例如,将一根水彩笔安装软体臂末端,通过示教方式“教会”软体机械臂在迷宫中行走;通过示教方式操作软体机械臂进行咽拭子采样。为更好地展现软体机械臂的灵活性和示教交互方式的效果,课题组人员在软体机械臂和目标物之间放置一块障碍物,通过示教方式,“教会”软体机械臂越过障碍并成功抓取一朵花。图5. 交互式示教自驱动软机器人潜在应用的展示。(a)示教软体机械臂走迷宫的实验场景。(b, c)软体机械臂走迷宫实验中示教和复现的轨迹。(d)走迷宫实验示教过程中的信号曲线。咽拭子采集实验示教过程的(e)实验场景和(f)信号曲线。(g)交互式示教软体机械臂越过障碍物并成功抓取花朵。研究团队提出一种基于多模态柔性传感的软体机器人的“非接触示教”方法。基于所研发多模态柔性传感界面,示教者利用裸手可以无接触地、交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。这类基于多模态柔性感知的非接触的示教方法可以扩展人类与软体机器人交互方式。这种简单、高效、友好的非接触交互示教方式,为软体机器人在非结构化环境中的交互控制提供了一种新的范式。图6. 软体机器人非接触交互示教概念图:人们通过非接触示教的方式轻松控制软体机器人在非结构化环境中作业。
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。  首创“旋转真三维”显示系统  真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。  刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。  刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。  探索计算机图形学新领域  “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。  他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”  力拓技术应用的崭新境界  这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。  “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 遥遥领先!从华为“显微镜”看手机和科学仪器的“合体”
    华为手机上的仪器:“显微镜”10月8日消息,根据美国商标和专利局近日公示的技术专利,华为公司获得了一项手机显微镜技术专利,镜头与被拍摄物体的距离保持0.5毫米左右,可以放大20-400倍。OPPO 此前曾在Find X3 Pro 手机中引入了“显微镜”功能,可以实现60 倍放大。华为公司于2021年提交了这项专利申请,提供了更丰富的显微镜应用场景。华为提交该专利期间仍处于疫情期间,在专利描述中特别介绍了识别拍摄对象细菌数量、提供卫生建议等等。在此简要介绍下该专利原理如下:电子设备上配有2个基础组件,一个是普通相机,而另一个是微距相机,该微距相机采用平场消色差微型物镜,光学分辨率为2.Math.m。1. 首先常规相机拍摄:该相机可识别物体的场景和类别,在示例中可以区分食物、手或餐桌。2. 再使用微距相机(Microscopic Camera)进行微观拍摄:接下来相机需要切换到显微镜模式,拍摄此前照片场景中的某个物体。显微镜模式的作用是揭示此前图像中的微观信息,可以显示细菌的种类和数量情况,这种微观视图为了解物体的卫生状况提供了宝贵的见解。3. 判断卫生情况:设备会根据普通摄像头的场景信息和显微摄像头的微观信息进行综合分析,此步骤对于准确确定物体的卫生状况至关重要。4. 智能提示:该技术可以通过文本、语音、振动或指示器等方式提供相关信息,详细描述对象的卫生情况,并提供改进和适当的卫生措施建议等等。华为在专利中还概述了多个应用场景:食品安全保证:您在家准备晚餐,可以用于确保要切的蔬菜是干净的。厨房用具维护:可以关心厨房用具的清洁度,例如咖啡机或微波炉。个人卫生评估:可以确保个人卫生,尤其是手部清洁。餐桌清洁度:您正在举办晚宴,并希望确保您的餐桌一尘不染。儿童玩具检查:您关心孩子玩具的清洁度。宠物卫生监测:您希望确保宠物生活空间的清洁度。遥遥领先,很快华为用户就能使用上一台最高能放大400倍的手机显微镜了。如此便携的神奇仪器,列文虎克老兄也得羡慕的“流口水”吧?超级便携的手机光谱仪法国公司GoyaLab推出了一款可以将任何智能手机或平板电脑变成超紧凑且功能强大的手持式光谱仪的设备GoSpectro,它的价格只有400多美元。简单来说,GoSpectro是一只可以安装在手机镜头上的分光镜。但是手机装上配套的APP后,二者就合体为一台紧凑却功能强大的便携式光谱仪。GoSpectro在整个可见光范围(400 nm-750 nm)上都很灵敏,光谱分辨率小于10nm,再现性为1nm。这种革命性的器件能够以紧凑性对光源进行光谱表征以及发射、透射或反射的测量光谱。它是在不同设置下和不同场景下测量光谱的理想伴侣,特别是在野外、户外等环境下更为适用。应用场景:珠宝行业:免提分析 纳米尺度测量 宝石分析、储存以及数据导出 无人眼疲劳检测。物证鉴定:便携式阅读器防伪标签(荧光墨水)、证物的实时验证。……虽然GoSpectro的参数及应用还远远比不上实验室中常见的光谱仪,但他的出现似乎在向这个世界宣告:科学仪器的手机时代已经来临。可以嵌入手机的光谱传感器在华为“显微镜”和GoSpectro光谱仪走入大家视野的同时,来自埃因霍芬理工大学(Technische Universiteit Eindhoven,以下简称:TU/e)的研究团队开发了一种新型近红外(NIR)光谱传感器,该传感器易于制造,并且尺寸与智能手机中的传感器相当,可用于工业过程监测及农业相关应用。这一突破性的研究成果已发表于Nature期刊。TU/e团队 图源Mantispectra官网“这项开发成本很低,因为我们可以批量生产众多传感器,并且目前已做好开展实际应用的准备。”该研究的共同第一作者、TU/e应用物理系光子和半导体纳米物理研究组的博士研究员Kaylee Hakkel说道,“该传感器芯片尺寸很小,甚至未来可以嵌入智能手机中。”图源Mantispectra官网这项研究的共同第一作者Maurangelo Petruzzella表示:“我们现在有基于该项技术的完整开发套件——SpectraPod,很多公司和研究团队利用它来构建应用程序。最棒的是,该传感器未来甚至可以在智能手机中普及,这意味着人们可以在家里用它来监测食物质量或健康状况。”开发套件SpectraPod 图源Mantispectra官网相比“手机外设”GoSpectro光谱仪,TU/e的芯片更趋近于“手机即仪器”理念的实现。“便携”是科学仪器行业近些年来公认的发展趋势之一,色谱、光谱、质谱等仪器的便携版已屡见不鲜。同时,随着传感器技术的发展,“便携仪器”的定义范围也在无限缩小。相信有一天,我们一定会见到更多品类手机仪器的诞生。
  • 3D数字化+AR技术,打造线上购鞋新体验
    近年来,随着线上购物的不断发展以及3D数字化/VR技术应用的普及,国内外各大电商平台及品牌网站陆续将新型技术完美融入电商经营产品展示中,以一种“轻量级、绚丽的”方式提升购物体验。本期,小编将分享一则美国3D艺术家使用3D数字化和AR技术为海外运动鞋服品牌打造线上3D展示平台的案例。案例背景海外运动鞋服品牌ROCKDEEP希望在其品牌网站上实现商品3D模型全景展示、部分定制设计和AR试穿的展示模式,让消费者能够通过智能手机轻松选购商品,增强客户的在线购物体验。为此,ROCKDEEP品牌聘请了经验丰富的 3D 艺术家 Logan Hamilton Davis 来完成这项工作。Logan 专注于游戏、可视化和互动媒体,他曾为 Yahoo News、DC Comics 以及各种营销和视频游戏公司设计 3D 模型。传统摄影测量方式打造在线3D/AR 展示平台,Logan需要先创建ROCKDEEP 彩色运动鞋的数字模型。Logan曾尝试使用传统摄影测量的方式进行创建鞋子的3D模型,但制作过程非常艰难,且建模效果也无法满足网站线上产品展示的应用需求,主要体现为以下几点:需要拍摄大量建模所需要的照片,费时费力,效率低下;通过2D图形进行3D模型的数据拼接,难度较大;得到的3D模型有许多的噪声和块状物,精度差;Tips:这里的传统摄影测量方式是指照片建模,一种通过相机等设备对物体进行采集照片,经计算机进行图形图像处理以及三维计算,从而全自动生成被拍摄物体的三维模型的技术。为此,Logan开始寻找一种更加快速和高效的方式来为他的客户创建高质量的3D数据文件,最终他找到了先临三维高精度3D扫描仪,使用3D扫描技术来帮助他完成这些工作。3D数字化解决方案3D扫描实物为了使工作流程更加顺畅和高效,Logan使用先临三维EinScan Pro 系列多功能手持3D扫描仪搭配纹理模块及工业模块对ROCKDEEP最新推出的“Mother Africa”运动鞋进行扫描,几分钟内就获取了高质量彩色纹理3D模型,高清细腻的模型数据还原运动鞋真实本色。“EinScan Pro 系列多功能手持3D扫描仪的功能给我留下了深刻的印象。引导式流程设计,简单易用,指导我完成了整个过程,并且没有遇到任何问题。我使用特征拼接模式,然后将鞋子放在转台进行扫描,抓取了鞋子的各项三维数据,这些数据在软件中自动拼接后,得到完整的彩色三维模型。”-Logan Hamilton Davis模型数据优化Logan 将扫描获取的模型数据导入Blender三维设计软件后,对运动鞋模型细节进行优化,力图让3D模型还原实物球鞋的色彩和质感。线上场景应用最后,Logan将制作完成的3D模型最终将上传至 ROCKDEEP 品牌官网,并进行多种场景的应用。3D模型展示在商品详情页中,将向消费者展示更加直观的 3D 商品模型,使消费者可以全方位浏览查看商品细节。个性化定制创建个性化设计定制器,将运动鞋的每个部件按结构分开,提供不同颜色、材料,让用户可以根据自己的风格、喜好进行组合搭配,设计出一双属于自己的运动鞋。AR试鞋该项目将与AR技术结合,推出AR 虚拟试鞋功能,支持消费者通过手机移动端试穿 ROCKDEEP 品牌鞋履,为消费者开启了全新的消费升级体验。其他创意应用除此之外,Logan还利用获取的3D模型制作了创意概念视频,用于媒体门户平台的宣传推广。"EinScan的应用范围(从艺术到工业)和不同的扫描模式(固定与自由手持)令我印象深刻。工业模块和纹理模块满足了我所需要的所有额外功能。相比其他扫描仪品牌,EinScan的价格更接地气。我被EinScan捕捉到的细节和使用时的便利性所震撼。EinScan的工作成果对我来说是现象级的。"-Logan Hamilton Davis随着人们生活水平的提高,消费能力和审美观念的提升,消费者对鞋的选择呈现出个性化与多样化的趋势。为此,近年来各大品牌,融合3D数字化在内的多项技术,推出AR虚拟试穿、3D模型全景展示、视频体验、Flash动画等方式,增强消费者对产品的实际感受,提升消费满意度,打造消费者与品牌商的双赢。END本文图片均源于ROCKDEEP品牌官方INS
  • 深圳先进院开发出相控阵全息声镊在体操控细胞新技术
    “隔空取物”是人类的梦想。这种科幻超能力现被超声科技实现并可望用于治病救人。近日,中国科学院深圳先进技术研究院研究员郑海荣团队开发出一种相控阵全息声镊操控技术,在生物体及血流中实现了对含气囊细菌群的无创精准操控和高效富集,在动物模型中实现了肿瘤靶向治疗应用。相关研究成果以In-vivo programmable acoustic manipulation of genetically engineered bacteria为题,发表在《自然-通讯》(Nature Communications)上。该相控阵全息声镊系统基于高密度面阵列换能器产生可调谐三维体声波,通过对空间声场在活体血管内等复杂环境中的时空精准调控,在活体血管内等复杂环境中操控了含气囊细菌团簇,使其精准地移动到目标区域并发挥治疗功能,有望为肿瘤的靶向给药和细胞治疗等提供理想手段。光、声、电、磁等经典物理手段是实现“隔空取物”非接触操控物体的可能途径。光镊操控技术于2018年获得诺贝尔物理学奖,在微纳尺度颗粒操控上展示出精准优势,但存在对非透明生物体穿透深度有限的问题;磁镊一般需要磁性颗粒的结合,易导致细胞活性受影响。相较而言,基于高频声波梯度声场设计的声镊技术是一种通过声波与目标物体相互作用产生辐射力以实现非接触操控物体的方法,在非透明生物体系中具有作用力大、穿透性强、操控通量高等优势。基于空间体波的相控阵全息声镊具有声场时空动态调控能力且实验架构灵活,是生物体等复杂环境内实现对目标进行靶向操控的理想手段。      郑海荣带领的深圳先进院医学成像团队,经过十多年声操控技术积累,基于超声辐射力作用原理,利用高密度二维平面阵列和多通道可编程电子系统,结合空间声场调制、超声成像和时间反演算法,提出并构建了可编程相控阵全息声镊理论、技术和仪器体系,为生物体等复杂环境下的精准声操控奠定了基础(图1)。该团队分析不同声对比系数粒子受到的声辐射力,完成初步的理论验证;模拟活体组织环境,利用时间反演矫正声波畸变,构建复杂环境中精准声操控的模型;交替发射超声成像与操控脉冲,实现非透明介质中超声成像实时引导的三维声镊。该团队继续在相控阵全息声镊领域深耕,推动了二维高密度超声阵列的微型化以及融合显微成像,初步实现了细胞、微生物等的离体三维声操控验证,进一步结合基因编辑等技术,推进了可编程相控阵全息声镊在各领域的关键应用。该工作推动相控阵全息声镊高精度高通量操控技术取得了生物医学应用的突破,实现了在体声操控细菌对于实体肿瘤的靶向治疗(图2)。     从理论研究层面,该团队提出了复杂声场环境中声辐射力离散表达与计算理论,解决了复杂声场的任意结构微粒受力量化表征的问题,并探究了复杂环境中空间声场作用下操控目标的动力学行为。从工程研发层面,该团队通过长期的技术探索与积累,攻克了高密度声镊换能器研发中声场设计和制造工艺等难题,研制了二维高密度超声换能器阵列,利用全息元素构建和时间复用的方法,结合多通道高精度时间反演超声激励,实现了强梯度声场生成和复杂声场的时空动态调控。从生物医学应用层面,该团队利用基因编辑技术,在细菌细胞中产生了亚微米气体囊泡,提升了细菌的超声敏感性,增强了其受到的声辐射力,使得含气囊细菌可以克服流体拉力,驱使它们在焦点区域聚集形成团簇(图3)。     当工程菌被聚集成团簇后,通过电子控制声束沿着预设可编程的轨迹移动,如在分叉微流腔中的细菌团簇可以选择性地通过分叉口,或在无边界条件下沿着字母A形进行移动,或同时操控两个团簇沿着矩形路径移动。整个团簇的轨迹与预设路径匹配。利用全息声元素构架法,阵列可以产生具有不同拓扑电荷的聚焦涡旋。当预设的拓扑荷数发生变化时,含气囊细菌团簇所显示的涡旋场模式随之发生变化。由于角动量的存在,团簇可以围绕涡旋中心连续旋转。     生物体组织结构复杂易引起声波畸变,且高速血流的存在阻碍了血管内的声操控。该团队结合相控阵全息声镊与显微成像,构建动物模型,实现了在活体动物水平通过电子控制声束对含气囊工程细菌进行可编程操控。在小鼠尾静脉注射工程菌后,该研究利用小鼠透明背脊皮翼视窗模型进行观察,打开相控阵全息声镊,使得工程菌在声束焦点处聚集。研究通过对含气囊工程菌和普通大肠杆菌分别在小鼠背部浅表血管中进行声捕获比较发现,只有含气囊工程菌可以被捕捉在聚焦声束中心,并在血管中形成簇状。进一步,研究在不同直径的血管也尝试对含气囊工程菌进行声捕捉。进一步,通过电子偏转声束,研究实现了含气囊工程菌的体内声操控。在声镊操控下,含气囊工程菌可以沿着血管前后移动,还可以选择性地穿过血管分叉。声镊可以同时操控两个工程菌团簇在同一条血管中,将其彼此靠近或远离。上述研究表明,相控阵全息声镊系统操控含气囊细菌团簇的运动可严格按照程序设置进行,展示出优异的时空操控精度,使这些细菌能够逆流或按需流动到活小鼠的预设血管中。     进一步,高通量相控阵全息声镊操控技术可以显著提高肿瘤中工程细菌的聚集效率,并结合细菌的肿瘤杀死活性,抑制了肿瘤的生长速度,延长了荷瘤小鼠的生存期(图4)。     本研究证明了相控阵全息声镊仪器系统可以作为活体内非接触精准操控细胞的新工具。以相控阵全息声镊为手段,功能细胞及细胞球为载体,在免疫细胞治疗、组织工程、靶向给药等方面颇有应用前景。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院和深圳市科技创新委员会等的支持。 图1.相控阵全息声镊系统示意图(Research,2021)图2.相控阵全息声镊系统在体操控细胞示意图(Nature Communications,2023)     图3.声聚集基因编辑细菌和普通细菌对比图4.声操控基因编辑细菌治疗肿瘤实验
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制