当前位置: 仪器信息网 > 行业主题 > >

吸附表征

仪器信息网吸附表征专题为您整合吸附表征相关的最新文章,在吸附表征专题,您不仅可以免费浏览吸附表征的资讯, 同时您还可以浏览吸附表征的相关资料、解决方案,参与社区吸附表征话题讨论。

吸附表征相关的资讯

  • 大昌华嘉成功举办“吸附表征技术的新进展”研讨会
    大昌华嘉公司于2013年4月24日在浙江大学(玉泉校区)成功举办的&ldquo 吸附表征技术的新进展&rdquo 研讨会。会议邀请BEL公司海外销售经理Joji Sonoda博士介绍最新的吸附表征技术进展,大昌华嘉吸附产品经理樊润将同步翻译。Joji Sonoda博士详细讲解多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统最新的相关应用,以及吸附过程分析仪如何测试等压吸附线和等温吸附线,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。
  • “吸附表征技术在催化领域的新进展”研讨会 - 福州站
    近年来,随着我国经济的高速发展,分析催化所面临的机遇、挑战及未来发展方向变得尤为重要。大昌华嘉公司借此机会于2016年4月15日在福州怡山大酒店举办关于“吸附表征技术在催化领域的新进展”研讨会。探讨和交流材料领域中的催化科学与技术!研讨会将介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并将介绍粒度粒形及XRF技术在催化领域的相关应用。欢迎各位专家莅临交流和指导。会议信息时间: 2016年4月15日上午9:00-16:00地点:怡山大酒店 (福州市鼓楼区工业路577路)内容:- 吸附表征技术在催化领域的应用- 粒度粒形在催化领域的应用- XRF在催化领域的应用 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac Inc.公司非常注重技术创新,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其不断超越自我,推陈出新,独领风骚。帕纳科是全球X射线荧光光谱分析仪器及软件的主要供应商之一。分析仪器主要应用于科学的研究和发展、工业过程控制以及半导体材料的物性测量领域。可为客户提供量身定制的无损分析解决方案,用以分析表征广泛的产品,例如石化产品、塑料和聚合物、环境、医药、采矿、建筑材料、研究与教育、金属、食品和化妆品等多个行业领域。大昌华嘉商业(中国)有限公司服务电话:400 821 0778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn扫描关注“大昌华嘉科学仪器部”公众号
  • 介孔材料物理吸附表征应用的网络在线讲座将于10月29日午夜举行
    美国时间2014年10月29日下午1点30分(北京时间2014年10月30日凌晨1点30分)美国康塔仪器公司将在WEBINAR举行介孔材料物理吸附表征的应用的在线讲座,主讲人为美国康塔仪器公司首席科学家,应用技术支持经理Matthias Thommes博士。 在目前的应用领域以及一些新的领域中,纳米多孔材料的技术表征分析已日趋重要。各种纳米材料的应用例如分子筛,需要更深层次的孔结构表征分析。在催化领域,对孔结构的详细分析(例如孔径,孔径分布,孔容,以及孔结构的内部联系)尤为重要。 气体吸附是分析粉体材料和多孔材料的表征,孔径,孔径分布的最普遍的方法。尽管在过去的20年间,物理吸附表征已经取得了重大进展,但多孔纳米材料表征分析仍将会带来新的挑战。实际上,在最近几年的主要进展在介孔分子筛,它们表现出在微孔(孔隙宽度小于2 nm),介孔(2-50 nm)和大孔(大于50纳米)之间达到多级孔结构的适度平衡。 微介孔内部的互相连通方便了流体在主要分布在微孔中的活性部位之间的有效转移,这将会给催化剂应用带来成倍的效益。 我们很乐意与您一起分享介孔材料的吸附表征技术分析,我们将在WEBINAR上举行在线讲座,您只需点击以下链接,用邮箱注册获得初始密码之后即可登录。 https://attendee.gotowebinar.com/register/2090965813006139649 虽然时间已在午夜,欢迎有志者积极注册参加!
  • 大昌华嘉即将于浙江大学举办“吸附表征技术的新进展”研讨会
    大昌华嘉公司将于2013年4月24日在浙江大学(玉泉校区)举办的&ldquo 吸附表征技术的新进展&rdquo 研讨会。会议邀请BEL公司海外销售经理Joji Sonoda博士介绍最新的吸附表征技术进展,大昌华嘉吸附产品经理樊润将同步翻译。Joji Sonoda博士将会详细讲解多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统最新的相关应用,以及吸附过程分析仪如何测试等压吸附线和等温吸附线,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 大昌华嘉商业(中国)有限公司市场部2013-4-10会议日程:时间: 2013年4月24日上午9:00-11:30地点: 浙江大学 玉泉校区 邵科楼会议室:211室 08:30 &ndash 08:45报到 08:45 &ndash 09:00大昌华嘉商业(中国)有限公司致辞 樊润 产品经理09:00 &ndash 10:00全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸高精度容量法吸附仪Belsorp-Max结合低温冷浴槽的应用吸附过程分析仪Belsorp-PVT测试等压吸附线和等温吸附线等Joji Sonoda博士, BEL樊润, DKSH10:00 &ndash 10:20茶歇 10:20 &ndash 11:30多组分气体竞争吸附用于CO2捕集和煤层气采集;MOF选择性吸附C2H2和CO2等气体吸附和XRD同步测试,气体吸附同SAXS的同步测试, 吸附过程中柔性分子孔洞变化低温化学吸附用于TPR和脉冲化学吸附,精确测定Pt/CeO2催化剂纳克级吸附测量系统 BELQCM, 采用石英晶体微天平Joji Sonoda博士, BEL樊润, DKSH11:30 &ndash 现场答疑Joji Sonoda博士, BEL樊润, DKSH回执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:谷丰 13918227315 电话: 400 821 0778 电子邮箱: ins.cn@dksh.com
  • 大昌华嘉即将于福州举办“吸附表征技术在催化领域的新进展”研讨会
    大昌华嘉公司将于2013年6月7日在福州饭店举办&ldquo 吸附表征技术在催化领域的新进展&rdquo 研讨会。 会议邀请到Gifu大学Pro. Yoshihiro SUGI讲解择形催化技术及BEL公司Joji Sonoda博士介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用,大昌华嘉吸附产品经理樊润将同步翻译。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 附Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. 大昌华嘉商业(中国)有限公司市场部2013-5-10会议日程:时间: 2013年6月7日上午9:00-17:00地点: 福州大饭店 斗东路1号 左海园 08:30 &ndash 08:45报到 08:45 &ndash 09:00大昌华嘉商业(中国)有限公司致辞 樊润 产品经理09:00 &ndash 10:00Zeolite: Shape-selective catalysis in confined channelsPro. Yoshihiro SUGI,Gifu大学10:00 &ndash 10:20茶歇 10:20 &ndash 11:50全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸高精度容量法吸附仪Belsorp-Max结合低温冷浴槽的应用吸附过程分析仪Belsorp-PVT测试等压吸附线和等温吸附线等Joji Sonoda博士,BEL樊润,DKSH12:00 &ndash 13:00午餐 13:00 &ndash 15:00多组分气体竞争吸附用于CO2捕集和煤层气采集;MOF选择性吸附C2H2和CO2等气体吸附和XRD同步测试,气体吸附同SAXS的同步测试, 吸附过程中柔性分子孔洞变化低温化学吸附用于TPR和脉冲化学吸附,精确测定Pt/CeO2催化剂纳克级吸附测量系统 BELQCM, 采用石英晶体微天平Joji Sonoda博士,BEL樊润,DKSH15:00 &ndash 16:00麦奇克激光粒度粒形分析系统樊润,DKSH16:00 &ndash 现场答疑Joji Sonoda博士,BEL樊润,DKSH 回执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:汪培 15201888935 电话: 400 821 0778 电子邮箱: ins.cn@dksh.com
  • 国仪精测新品发布!打造吸附表征仪器行业领导品牌
    6月17日, 国仪精测成功举办“为国造仪,精测世界”——2022系列新品发布会,面向气体吸附领域发布了高性能微孔分析仪Ultra Sorb、蒸汽吸附仪S-Sorb、高温高压气体吸附仪H-Sorb升级版、动态法比表面积测试仪F-Sorb CES直管升级版四款重磅新品。四款新品均是高品质、高精度、高可靠性及高性价比的一流科研设备,引领气体吸附行业发展潮流!国仪精测新品发布1+1>2 !全力打造国际一流吸附表征仪器会上,国仪量子董事长贺羽介绍了国仪精测的发展历程。国仪量子以量子精密测量技术为核心,致力于振兴国产高端科学仪器产业。2021年,国仪量子秉承“为国造仪”的初心,聚焦科学仪器主航道,瞄准物性测量仪器领域精准布局,携手北京金埃谱,双方共同出资成立新公司——国仪精测,致力于成为吸附表征仪器行业的全球领导者。在全面吸纳金埃谱原有优势技术的基础上,国仪量子注入资金和研发资源,全面提升产品性能及品质,无论从硬件选型还是软件交互上,向国际知名品牌看齐,实现测试结果的高精度和仪器的高性价比;为打造中国制造的高端产品,实现进口品牌的高水平国产化替代贡献力量。国仪量子董事长贺羽致辞应用广泛,气体吸附分析技术赋能各行各业发布会邀请了多位气体吸附领域的专家学者,为观众讲解气体吸附仪的行业应用。河北工业大学能源与环保材料研究所所长梁广川教授在《比表面积控制对磷酸铁锂材料性能影响分析》报告中分享了比表面控制对磷酸铁锂性能的影响。讨论了比表面积的理论指标及控制因素,论述了比表面积对磷酸铁锂的加工性能、电化学指标等因素的影响因素,并结合扫描电子显微成像、X射线衍射等分析手段,论述了比表面积指标控制的关键作用。高性能锂电池的研发,不仅与电池的制造工艺水平相关,更与所选择的电池材料本身的理化性质紧密相关,比表面积大小以及孔径分布都对锂电池的电化学性能起着至关重要的影响。梁广川教授分享报告深圳职业技术学院霍夫曼先进材料研究院院长助理王浩副教授分享了他在高稳定性MOFs材料的孔径调控及其在轻烃吸附分离领域的应用的最新进展。研究基于前过渡态金属的高稳MOFs材料出发,利用拓扑学原理及网筑化学基本原则,通过无机结构单元和有机配体设计,精细调控材料的孔结构及孔表面功能性,进而优化材料的吸附分离性能,开发出了综合性能优异、应用前景良好的吸附剂材料,探究了其吸附分离机理及构效关系。并期待国仪精测为用户提供更优质的产品。王浩副教授分享报告极致性能!带来更好的测试精度和用户体验国仪精测总经理夏攀在会上发布了四款全新产品:高性能微孔分析仪Ultra Sorb、蒸汽吸附仪S-Sorb、高温高压气体吸附仪H-Sorb升级版、动态法比表面积测试仪F-Sorb CES直管升级版。基于国仪精测强大的技术创新能力,四款新品均具有极致的测试性能、丰富的使用功能、友好的交互软件,可为用户提供极致的使用体验,满足多领域的测试需求。国仪精测总经理夏攀发布新品高性能微孔分析仪Ultra Sorb聚焦于微孔材料的表面特性表征,设备在不锈钢管路基础上,突破性设计VCR金属面密封样品管,提升气体管路的整体密封性,具有高真空长时间可保持性、极低的系统漏气率控温精度高、高通量等独特优势。系统漏气率低至1x10-11Pa.m3/s, P/Po低至1x10-9准确测定,让极限0.35nm微孔分析成为可能。可广泛应用于环保、燃料电池、医药和催化等行业。蒸气吸附仪S-Sorb是测定水和有机蒸气等温吸附曲线的设备,可测试材料对水蒸气、有机蒸汽及各种气体的吸脱附量、吸脱附速度等参数。该设备使用不锈钢管路通过VCR接口连接,提升管路真空度。核心系统器件125℃下恒温,具有耐压耐腐蚀型蒸汽发生器,系统漏气率低至1x10-11Pa.m3/s 。可广泛应用于食品、药品和水净化等行业。高温高压气体吸附仪H-Sorb主要是在高温高压场景下使用静态容量法进行材料吸附量的测试,可以测试分析吸脱附等温线、Langmuir模型回归等温线、PCT曲线、吸脱附动力学曲线、吸氢及放氢压力平台、TPD程序升温脱附、吸放氢循环试验和吉布斯超临界吸附等。具备高度集成的测试系统,可实现高精度宽温控温,高压下系统漏气率仍低至1x10-10Pa.m3/s。设备可以应用在煤层气、页岩气和储氢材料等行业。动态法比表面积测试仪F-Sorb采用动态色谱法测试原理,可以通过直接对比法、单点和多点BET快速测试样品的比表面积。设备测试效率高;独有的直管样品管,易安装、易装样、易清洗;配备全自动步进电机,实现精准流量调节。可广泛应用于锂电池、陶瓷、医药等粉末材料的生产质检中。四款新品无论从硬件选型还是软件交互上,都在向国际知名品牌看齐,可实现测试结果的高精度和仪器的高性价比。这为打造中国制造的高端仪器产品,实现进口品牌的高水平国产化替代打下了坚实基础。未来,国仪精测将聚焦技术核心,聚合优势资源,聚集优秀人才,继续深耕气体吸附领域,以更极致的产品,服务锂电池材料、医药、储氢材料、石油化工、煤炭开采、陶瓷、土壤、环保等高增长行业,打造吸附表征仪器行业国际知名的民族品牌。
  • 大昌华嘉公司即将在广州举办“吸附表征技术在催化领域的新进展”研讨会
    大昌华嘉公司将于2013年6月6日在广州中山大学举办的&ldquo 吸附表征技术在催化领域的新进展&rdquo 研讨会。 会议邀请到Gifu大学Pro. Yoshihiro SUGI讲解择形催化技术,BEL公司Joji Sonoda博士详细介绍物理吸附,蒸汽吸附表征技术方面的新应用,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用,大昌华嘉吸附产品经理樊润将同步翻译。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 附Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. 大昌华嘉商业(中国)有限公司市场部2013-5-10 会议日程:时间: 2013年6月6日上午9:00-17:00地点: 中山大学 08:30 &ndash 08:45报到 08:45 &ndash 09:00大昌华嘉商业(中国)有限公司致辞 樊润 产品经理09:00 &ndash 10:00Zeolite: Shape-selective catalysis in confined channelsPro. Yoshihiro SUGI,Gifu大学10:00 &ndash 10:20茶歇 10:20 &ndash 11:50全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸高精度容量法吸附仪Belsorp-Max结合低温冷浴槽的应用吸附过程分析仪Belsorp-PVT测试等压吸附线和等温吸附线等Joji Sonoda博士,BEL樊润,DKSH12:00 &ndash 13:00午餐 13:00 &ndash 15:00多组分气体竞争吸附用于CO2捕集和煤层气采集;MOF选择性吸附C2H2和CO2等气体吸附和XRD同步测试,气体吸附同SAXS的同步测试, 吸附过程中柔性分子孔洞变化纳克级吸附测量系统 BELQCM, 采用石英晶体微天平Joji Sonoda博士,BEL樊润,DKSH15:00 &ndash 16:00麦奇克激光粒度粒形分析系统樊润,DKSH16:00 &ndash 现场答疑Joji Sonoda博士,BEL樊润,DKSH 回执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:程忠强 15902040221, 吴世伟 13925001662电话: 400 821 0778; 电子邮箱: ins.cn@dksh.com
  • 大昌华嘉即将于四川绵阳举办“粉末的流动行为和多孔材料吸附表征的新进展”研讨会
    大昌华嘉公司将于2013年3月26日在四川绵阳举办&ldquo 粉末的流动行为和多孔材料吸附表征的新进展&rdquo 研讨会。 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 美国麦奇克旗下的拜尔有限公司(Bel)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 会议日程: 时间:2013年3月26日(周二)上午8点30分-下午16点地点:四川绵阳九龙宾馆青海厅会议室:青海厅 08:15 &ndash 08:30报到 08:30 &ndash 09:00大昌华嘉商业(中国)有限公司致辞皮大刚 经理, DKSH09:00 &ndash 10:30多组分吸附,高压吸附,痕量气体吸附在储能材料等多孔材料领域的新应用樊润 产品经理, DKSH10:30 &ndash 10:40茶歇 10:40 &ndash 11:20粉末流动性质及行为特点Dr. Fu Materials Scientist, Freeman11:20 &ndash 12:20粉末流动性质的具体应用Dr. Fu Materials Scientist, Freeman12:20 &ndash 13:30午餐 13:30 &ndash 14:50现场仪器操作及软件演示Dr. Fu Materials Scientist, Freeman14:50 &ndash 15:00茶歇 15:00 &ndash 16:00现场答疑Dr. Fu Materials Scientist, Freeman 回 执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:江小姐电话:028-8676 1111;传真:028-8676 1122电子邮箱:winnie.xl.jiang@dksh.com
  • 美国康塔仪器Autosorb-IQ成功入选美国国家标准与技术研究院吸附表征与实验设备实验室
    美国康塔仪器公司Autosorb-IQ全自动气体吸附分析仪成功入选美国国家标准与技术研究院(NIST)吸附表征与实验设备 (FACT, Facility for Adsorbent Characterization and Testing)实验室。众多康塔仪器也将继续服务于FACT实验室的研究与相关培训。FACT 将在Autosorb-IQ 基础上建立一个先进的表征吸附材料的研究中心。 不断优化新能源材料的性能,在美国新能源领域具有重要战略意义。借助于康塔仪器,科学家可以更好的了解影响材料性能的表面物性。康塔仪器非常乐于作为FACT的核心设备继续服务于美国能源领域的研究。 FACT的宗旨是在高级能源技术领域创建一个材料表征的权威技术、技能和专业知识的中心,以支持美国在该领域的绝对领先水平。FACT通过DOE项目致力于研究吸附质材料,如二氧化碳,碳氢化合物以及其他吸附质材料。作为一个卓越的中心平台,FACT会和政府,学术界以及商业组织在吸附材料表征领域中齐力合作。ARPA-E是建立在2007年 “在美国竞争法(The America Competes Act)”下面的一个部门。ARPA-E的宗旨是减少美国对外国能源的依赖,减少温室气体的排放,提高能源效率,以及确保美国能在先进能源技术中保持领先。建立于1901年的美国国家标准与技术研究院 (NIST,National Institute of Standards and Technology))的宗旨是促进美国创新和产业竞争力,提高科学测量,标准及技术。NIST致力于科学测量,信息技术,种子研究及纳米材料。FACT是美国国家标准与技术研究院 (NIST)与能源高级研究计划署(ARPA-E)跨部门合作项目。FACT作为 独立的设施用于测量气体吸附特性的准确性和可重复性。它提供了一个测试台,研发测试吸附材料表征的标准物,建立在线吸附材料表征的数据库,提供精确的测试以及验证设施。Autosorb iQ美国康塔仪器公司在材料表征实验仪器上有着卓越地位。在过去的45年里,康塔仪器的科学家致力于发展气体吸附,比表面积,密度以及多孔测量仪器。康塔仪器公司的科学家们齐心协作,致力于研究粉粒和多孔材料的表征。详情请访问www.quantachrome.com.cn或联系 800-810-0515美国康塔仪器公司北京代表处
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。  验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。  该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 颗粒表征技术-气体吸附法技术研讨会正式拉开帷幕
    比表面和孔隙度是确定材料质量和性质的两个重要参数,作为世界上第一家将自动表面分析仪、压汞仪投放市场的公司,美国麦克仪器一直致力于为颗粒表征行业提供更高效、更准确的气体吸附分析仪。如何用气体吸附法获得需求的实验结果?从实验报告你能得到什么?如何确定分析条件?2012年3月13日,麦克默瑞提克(上海)仪器有限公司&ldquo 颗粒表征技术-气体吸附法&rdquo 技术研讨会将为您解答。 麦克默瑞提克(上海)仪器有限公司应用部经理钟华博士将为你解读气体吸附技术的最新研究成果,和您交流比表面分析技术的宝贵经验,更有最新推出交互式分析软件MicroActive和大家分享。欢迎各位莅临指导。日期:3月13日时间:下午2:00重点讲解:ASAP 2020地点:中山大学材料科学研究所会议室(广州市新港西路135号材料科学研究所会议室)厂家简介: 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。自1962年成立以来,美国麦克仪器公司因其在比表面积与孔隙度分析、压汞分析技术、沉降式粒度表征、各种密度测试,化学吸附分析与微型催化反应研究众多领域技术研究的前沿性及创新性,始终保持着细微颗粒分析仪器领域的世界领先地位。
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.3)上得到了很好的显示。在 P/P0 = 0.3,298K 时,HKUST-1 的水容量为 512 cm3/g STP (41wt.%),表明水捕集技术在相对湿度较低的环境中具有潜在的应用前景。在 P/P0 =0.90,298K 时 ,HKUST-1 的水容量为 648 cm3/g STP (52wt.%),超过了传统的水吸附剂,如氧化铝和沸石。另一方面,MIL-101 的水分主要来源于较高的相对湿度,P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。
  • 国仪精测高温高压吸附仪在储氢材料表征中大显身手
    氢能因其可再生、易获得、热值高、无污染等诸多优良特性,被视为未来清洁能源的重要来源。目前,储运是氢能发展的关键技术难点,低温液化和高压存储因安全、经济等因素无法大面积推广。01 储氢材料 固态储氢是利用固体材料对氢气的物理吸附和化学反应作用,将氢能储存在固体中,是一个兼具安全,高效和高密度的储运方案,得到众多材料研究者的青睐,国仪精测作为储氢材料性能评价设备的供应商,深切感受到了行业的蓬勃发展。储氢材料储氢材料的性能表征主要包括热力学性能和动力学性能,PCT曲线是热力学性能的主要表征手段,可以体现储氢材料的吸放氢量,吸放氢压力,滞后特性等。以下列两组PCT曲线为例:图1图2图1为稀土合金LaNi5的PCT曲线,LaNi5理论上一个晶胞中最多储存8个氢原子,但一般认为实际储存数量不会大于6个;当储存数量为6个时,理论吸氢量为1.37%,与实验结果相符;图示LaNi5有明显的滞后效应,有学者认为是氢原子的半径大于La Ni原子构成的多面体间隙半径,吸氢后引起多面体畸变所造成;LaNi5是发现较早的储氢材料,且因其吸放氢速率快,压力较低,而得到了广泛的研究。图2为镁基储氢材料的一种,如图示吸放氢平台压力低且恒定,吸氢量高,无滞后效应,因此镁基储氢材料在近些年达到了快速的发展。 02 PCT吸附速率曲线 PCT曲线也可以以时间为横坐标,吸附量为纵坐标,从动力学角度评价材料的吸氢速率。图3图4图3为PCT曲线绘制时同时得到的单点平衡速率图;如果单纯评价材料饱和吸氢时间,通常的实验方法是直接充压至最高压力状态(例如:20Mp),通过等温线走势判断饱和吸氢时间,如图4所示。 03 循环实验 循环实验是表征储氢材料耐用性的重要方法。图5图6多次循环后,图谱的重复性越高,说明材料的耐用性越好;如图5所示的10次重复实验,最大吸氢量基本一致;循环实验一直是储氢材料表征的难点,在高温高压工作环境下,为了降低实验误差,操作者往往采取增大取样量的做法,但循环实验的脱附过程,是无法累计进行的,需尽量控制取样量以达到完全脱附的状态。为了平衡这一矛盾需求,需要仪器在管路腔体设计、管路气密性、温度控制均一性、压力读取精度、气体投气量控制(如图6),高温高压气体行为修正等各方面做到精准处理。04 TPD脱附实验最后我们介绍TPD脱附实验在储氢材料评价中的应用。 图7TPD曲线可以直观反映材料的脱附温度和活性点位数量;如图7显示,为了排除仪器性能因素对测试结果的影响,通常做法是在TPD脱附曲线中同时记录升温速率。因为高压状态下,温度的微小波动也会对测试结果造成显著影响,所以升温速率和温度精度都需要得到精确控制。注:以上所有图谱均由北京国仪精测技术有限公司自主研发高温高压吸附仪V-Sorb 2600 PCT测试完成。氢能发展任重道远,国仪与您携手共进!
  • 颗粒表征分析技术研讨会7月22日在南京大学举办
    美国麦克仪器公司Micromeritics Instrument Corporation自1962年成立以来,一直致力于发展创新细微颗粒的表征技术,在细微颗粒表征仪器领域内始终处于世界领先地位。麦克仪器公司在中国已有32年的商务历史,并于2011年成立了独资进出口商贸公司麦克默瑞提克(上海)仪器有限公司。 为了答谢中国支持和信任美国麦克仪器公司产品的新老朋友,麦克默瑞提克(上海)仪器有限公司将邀请美国Jeff Kenvin博士与Jacek Jagiello博士等专家于2011年7月22日(周五)上午8:30在南京大学唐仲英楼B501举办最新物理吸附和化学吸附表征技术及DFT模型的技术讲座。 麦克默瑞提克(上海)仪器有限公司期待并欢迎您的光临!
  • 高压吸附在页岩气开发中的应用暨多孔材料表征分析技术 研讨会在广州成功举行
    2014年6月23日, 美国康塔仪器公司与中科院广州地球化学研究所联合举办的<高压吸附在页岩气开发中的应用暨多孔材料表征分析技术研讨会>在中科院地化所成功召开。由来自中科院地化所、华南理工大学、中山大学等各个领域和行业近50名专业人士参加了此次研讨会。会后,多名专家高度评价了此次研讨会,并表达了对美国康塔仪器公司的专业仪器和专业精神的高度认可。美国康塔仪器公司中国区经理杨正红先生作为此次研讨会的主讲嘉宾,针对现阶段高压吸附分析仪在页岩气分析中的最新应用,CH4和CO2等的隔离和储存,以及过剩吸附现象等相关问题做了深入探讨。页岩中的干酪根对CH4的形成、富集起着至关重要的作用。如何在页岩样品处理中不破坏干酪根,在高压吸附测定如何计算绝对吸附量?对这些难题,杨经理提出了自己的看法,并与中科院地化所彭平安院士进行了探讨。美国康塔仪器公司的多站高压吸附分析仪iSorb HP 系列杨正红先生根据用户的要求,还针对气体吸附分析仪器在分析固体材料比表面和孔径分布过程中,如何“算得准”和如何 “测得准”做了深入浅出的剖析讲解。针对现阶段在气体吸附分析中常见的误区,包括微孔材料BET计算中的选点问题, BJH脱附曲线中的假峰问题,及如何选择孔分析模型等等进行了逐一解析,得到了大家广泛认可,并引起强烈共鸣。 对于如何确保比表面和孔径分析能够”算得准”,美国康塔仪器公司提供了目前最先进的专家级分析软件,拥有世界上最全面的包括BET、Langmuir、t-plot、BJH、SF、HK等经典方法在内的分析模型,以及最先进的密度函数理论(包括NLDFT和QSDFT)DFT核心文件就多达30项,同时软件提供了灵活便捷的操作方式,既可以满足高端科研工作的全部需求,也能适应一般的比表面测量需求。美国康塔仪器公司的权威产品Autosorb-iQ 系列全自动气体吸附分析仪由于气体吸附分析仪是由真空系统,电控系统和机械系统综合构成的非常复杂的分析仪器,而不是简单的测量仪器,因此“算得准”的前提是”测得准”。针对如何能够测出可靠的吸附等温线,杨正红经理以美国康塔仪器公司荣誉出品的Autosorb-IQ高端气体吸附分析仪为例,从仪器的硬件设计角度做了全面剖析。 在长达6个小时的研讨会上,中科院院士,有机地球化学家彭平安先生全天参加了此次会议,并与杨正红先生合影留念。彭平安院士(右)参加了全天的研讨会,并与杨正红总经理合影留念
  • 材料表征“一站式”课堂:近20类表征技术云端讲解,免费报名中
    材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。2020年12月15-16日,仪器信息网(instrument.com.cn)将线上举办“2020年材料表征与检测技术”主题网络研讨会,两天的会议将汇集9位材料表征技术领域知名专家和9位知名仪器企业资深应用专家,为大家详细讲解材料表征检测常用的近20类检测技术及应用。旨在为材料研究工作者提供广泛材料表征检测技术的“一站式”云端学习平台。两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能分析等四个专场,,以线上报告分享、在线网友答疑互动形式,针对材料科学常用表征及分析检测技术进行探讨。会议时间:12月15-16日会议形式:线上直播,免费参会参会对象:材料学科研、材料领域研究开发、检测技术工作者等报名方式:报名链接https://www.instrument.com.cn/webinar/meetings/CLBZFX2020/扫码报名内容摘要专场设置讲解技术成分分析色谱、质谱、电子探针、X射线荧光光谱(XRF)、热脱附表面与界面分析拉曼光谱、光电子能谱(XPS)、扫描探针显微技术(SPM)结构形貌分析聚焦离子束-电子束双束电镜、电子背散射衍射(EBSD)、X射线衍射(XRD)热性能分析热重分析(TGA)、差热分析、差示扫描量热(DSC)、热分析联用技术报告嘉宾成分分析专场(12月15日上午)国家钢铁材料测试中心高级工程师孙晓飞分享题目:X射线荧光光谱在高温合金成分检测中的应用日本电子产品经理胡晋生分享题目:电子探针的分析特点和国内市场情况介绍赛默飞世尔科技(中国)有限公司应用工程师佘晓萌分享题目:X射线荧光光谱仪在镀层样品分析中的应用沃特世科技(上海)有限公司高级应用工程师李欣蔚分享题目:不同色谱、质谱手段应对成分解析挑战的思路分享---善用小工具、实现大效用玛珂思仪器技术支持经理张兵分享题目:热脱附在材料散发及异味物质监测中的应用与相关法规介绍表面与界面分析专场(12月15日下午)中山大学研究员陈建分享题目:电催化还原反应中的表面吸附调控及其原位拉曼研究中国科学院化学研究所副研究员刘芬分享题目:XPS技术及在材料表界面分析中的应用北京师范大学教授级高工吴正龙分享题目:光电子能谱(XPS)中复杂谱峰的解析岛津企业管理(中国)有限公司产品应用专家陈强分享题目:SPM——表面分析与界面观测布鲁克资深应用科学家孙万新分享题目:基于扫描探针技术在表面及界面进行纳米尺度物理性质定量表征结构形貌分析专场(12月16日上午)中国科学院上海硅酸盐研究所研究员曾毅分享题目:电子背散射衍射标定方法研究中国科学院上海硅酸盐研究所研究员程国峰分享题目:Rietveld结构精修原理与应用赛默飞世尔科技(中国)有限公司应用工程师居威材分享题目:赛默飞K-Alpha光学实时XRD技术及应用介绍日本电子应用工程师席得圣分享题目:聚焦离子束-电子束双束设备JIB-4700F介绍热性能分析专场(12月16日下午)中国科学技术大学高级工程师丁延伟分享题目:热分析技术在材料研究领域应用中的常见问题分析中国科学院上海硅酸盐研究所助理研究员陶冶分享题目:薄膜材料的热物性测量南京大学胡文兵教授课题组成员陈咏萱分享题目:示差扫描量热法DSC技术进展及其在高分子材料表征中的应用梅特勒-托利多技术专家陈成鑫分享题目:于细微处见学问-热分析坩埚的选择和应用
  • 大昌华嘉材料表征技术的新进展和实际操作应用 - 北京站
    大昌华嘉公司将于2016年4月14日在北京丽亭华苑酒店举办的“材料表征技术的新进展和实际操作应用”研讨会。 研讨会将邀请MicrotracBEL海外经理Yung YongSang介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并结合仪器的数据处理进行详细解读数据,以及粒度粒形的相关应用,欢迎各位专家莅临交流和指导。会议信息时间: 2016年 4月14日上午9:00-17:00 地点: 北京市海淀区知春路25号(地铁10号线知春路站F 口) 表面吸附技术专家美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 粒度仪领航者美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪/颗粒图像分析仪 -- 美国麦奇克(Microtrac)公司 纳米颗粒跟踪分析仪/快速颗粒电位滴定仪 -- 德国Particle Metrix公司 比表面及孔隙度分析仪/化学吸附仪 -- 日本麦奇克拜尔(MicrotracBEL)公司 视频光学接触角测量仪、表面/界面张力仪 -- 瑞典百欧林(Biolin)公司 堆密度计 -- 英国康普利(Copley)公司 密度计/旋光仪/折光仪/糖度仪 -- 美国鲁道夫(Rudolph)公司 全自动氨基酸分析仪 -- 英国百康(Biochrom)公司 元素分析仪、TOC总有机碳分析仪、快速氮测定仪 -- 德国Elementar公司 薄层色谱扫描仪、点样仪 -- 德国Biostep公司 水份活度仪 -- 瑞士Novasina公司 火焰光度计/氯离子分析仪 -- 英国Sherwood公司 能量色散型X射线荧光光谱仪 -- 荷兰帕纳科(PANalytical)公司 标准油 -- 加拿大SCP SCIENCE / CONOSTAN公司样品前处理, 所有AA、ICP以及XRF所使用的耗材,标液,试剂 -- 加拿大SCP SCIENCE / CONOSTAN公司凯氏定氮仪 -- 德国贝尔(Behr)公司 全自动化学反应器/量热仪 -- 瑞士Systag公司大昌华嘉商业(中国)有限公司科学仪器部地址:上海市虹梅路1535号星联科研大厦2幢605-607单元[200233] 电话:4008210778/4006683886 传真:021-33678466 E-Mail:ins.cn@dksh.com
  • 杨正红:氮吸附仪表征药物超低比表面积的技术突破
    p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020年版中国药典,增加了0991比表面积测定法,并将于2020年12月30日起正式实施。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为毕业于药学院并从事气体吸附比表面和孔径分析20余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展。/spanspan style="font-family: 宋体, SimSun text-indent: 2em " /span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 80) font-size: 18px "strongspan style="color: rgb(0, 176, 80) font-family: 宋体, SimSun "一、中国药典2020版要求在相对压力P/Psub0/sub为0.05-0.3范围内至少进行3个压力点的测试,且BET方程相关系数需大于0.9975/span/strong/span/h1p style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "1、有关BET比表面积的测量和计算:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "首先需要明确的是,BET比表面积是通过多层吸附理论(BET方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/Psub0/sub0.05-0.3的范围内,吸附曲线在这里进入平台区(图1)。BET理论恰恰需要这个阶段的吸附数据来计算比表面积。完整的BET报告必须包括比表面值、回归曲线、相关系数和C常数(C值,图2)。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/31a57e2c-4f93-4cd4-89eb-10ed26bc5031.jpg" title="0000.png" alt="0000.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "2、有关BET计算的P/Psub0/sub取点:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品和药用材料的研发成功,已经开始应用多微孔的纳米载体材料控制药物缓释速度,而这些材料的多层吸附区域会前移,也就是可能到P/Psub0/sub为0.01~0.15的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET计算结果可靠性的标准应该是C值大于0和回归系数大于0.9999。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(延伸阅读:杨正红:《物理吸附100问》化工出版社,2016年)/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "3、有关BET方程相关系数:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "回归曲线的相关系数R=0.9975是对吸附等温线测定质量的过于粗放的低端要求,来源于20年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET差5%不算差”的说法,由此,按允许偏差± 5计算:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "R = (1+0.0500)x (1-0.0500)= 0.997500/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "由于BET的计算是取自多层吸附已经完成,孔中的毛细管凝聚尚未发生的平缓线性阶段数据,这显然是一个到达极限的最低标准。以这么低的标准去进行比表面测定的质量控制,实际上等于没有控制。目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过± 2,这意味着:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "R = (1+0.0200)x (1-0.0200)= 0.999600/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "也就是说,R值不应该低于0.9996。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "如果按常规质检要求,重复性允许偏差± 1计算,则对R值的最低要求为:/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "R = (1+0.0100)x (1-0.0100)= 0.999900/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "即回归曲线的相关系数不小于四个9(R 0.9999)。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun " /span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px "二、表征超低比表面积的技术突破/span/strong/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "由于真空体积法气体吸附分析仪等温线测定依据的是理想气体方程,影响结果的主要因素不外乎温度、压力和体积。当样品的吸附量远大于这些因素引起的误差时,温度、压力和体积的波动或精度误差(仪器的本底噪音)可以被忽略不计,但是当药品这样的小表面材料所能吸附样品总量不足以克服本底噪音时,就带来了测试结果的不稳定性,甚至测不出来。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "为了解决超低比表面材料的质量控制的痛点问题,我们专门开发设计了iPore 400,该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括:/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/2260669a-9557-4d2e-b89a-72e7994aee06.jpg" title="111.png" alt="111.png"//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(1) 全域自动恒温系统:拥有双路进气预热管路及包括12个静音风扇组成的高精度恒温系统(图4),可根据需要在35-50℃之间设定恒定温度。系统实时显示全区域气路和歧管的温度,避免环境因素带来的误差。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "a) 内部整体恒温,可在35-50℃之间设置:真空体积法是通过压力传感器读取压力的变化而计算吸附量的,其准确性和有效精度对温度变化极其敏感,尤其在微孔和超低比表面分析中。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "b) 0.02℃温控精度:三个温度传感器,实时显示各区域温度。高精度和高稳定的全恒温控制,可将压力变化控制在0.05%以内,远小于传感器本身的不确定度(0.1%),可彻底避免因环境温度变化造成的分析误差。可根据地区需要和数据对比需要调节恒定温度。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "c) 进气预热恒温: 由于涉及安全管理问题,大多数实验室气瓶置于室外,造成吸附气进气温度与室温或仪器内温差距巨大,定量注气失准。该系统消灭了地区差别和早晚温差对钢瓶气造成的误差,尤其为锂电材料,药物材料,膜材料的等小比表面质量控制带来福音。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "d) 新型电磁阀:常规电磁阀的发热问题由来已久,严重影响气体定量和压力读数的准确性,该问题在超低比表面和微孔分析时尤为突出。为解决这一问题所开发的带有自锁功能的电磁阀,无需持续供电便可保持开启或关闭状态,发热量等效为零,消除了电磁阀工作中发热引起的测量误差,极大地提升了分析性能。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(2) 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持过程中死体积恒定。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "【专利号:ZL 2019 885784.5】/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "真空体积法物理吸附是在一个密闭空间进行的。自由空间是系统中吸附质分子传递、扩散的区域,如果要精确计算样品的物理吸附量,死体积值是准确采集数据的基础。因为真空体积法的测量基础是压力,吸附量的计算基础是理想气体状态方程,所以吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。 系统死体积越小,对压力变化的灵敏度越高,吸附量计算越准确。换句话说,在同样的条件下,系统死体积越小,则仪器测量精度越高。由于在氮吸附分析过程中,液氮是不断挥发的,所以为保证精确计算吸附量,要对死体积进行控制、测量或校准。/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/9d9ab2a1-3a09-482c-b996-a84f2e8565d1.jpg" title="222.png" alt="222.png"//span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "(3)32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。转换精度就是分辨率的大小,因此要获得高精度的模/数转换结果,首先要保证选择有足够分辨率的ADC,同时还必须与外接电路的配置匹配有关。iPore系列不仅采用32位模数转换,而且采用拥有自主知识产权的32位电路设计和制造,从系统上保证了压力传感器精度的进一步提升(见表1)。/span/pp style="text-align: center text-indent: 0em "strongspan style="font-family: 宋体, SimSun "表1 ADC芯片转换精度与压力分辨率关系(以1000Torr传感器为例)/span/strong/ptable border="1" cellspacing="0" style="border: none" align="center"tbodytr class="firstRow"td width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-family: 黑体 font-size: 14px"ADC转换位数/span/strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-family: 黑体 font-size: 14px"16 Bit/span/strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-family: 黑体 font-size: 14px"24 Bit/span/strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-family: 黑体 font-size: 14px"32 Bit/span/strongstrong/strong/p/td/trtrtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-family: 黑体 font-size: 14px"ADC有效位数/span/strongstrong /strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"15 Bit/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"20 Bit/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"28 Bit/span/p/td/trtrtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-family: 黑体 font-size: 14px"压力最小分辨率/span/strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"2 Pa/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"0.0079 Pa/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"0.00003 Pa/span/p/td/trtrtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-family: 黑体 font-size: 14px"压力有效分辨率/span/strongstrong/strong/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"4 Pa/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"0.12 Pa/span/p/tdtd width="142" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style=" font-family:宋体 font-size:14px"0.0039 Pa/span/p/td/trtrtd width="568" valign="top" colspan="4" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style=" font-family:宋体 font-size:14px"*ADCspan style="font-family:宋体"有效位数是指可靠的转换值/span/span/p/td/tr/tbody/tablep style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "这些新技术的采用,带来了意想不到的突破。它不仅可以用氮吸附测定0.005 msup2/sup/g左右的比表面积,大大超越了常规氮吸附的比表面下限极值(0.01msup2/sup/g),而且可以测得微量吸附下的孔径分布(图6)。/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/4eb6833c-d410-482b-9d03-8f85c54cd03d.jpg" title="444.png"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/1dbb2a52-49ba-426e-a862-cd25a827530c.jpg" title="555.png"//ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px "strongspan style="font-family: 宋体, SimSun color: rgb(0, 176, 80) "三、突破性吸附技术对制药行业的应用意义/span/strong/span/h1p style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "1. 超低比表面样品测定的重复性、重现性和稳定性:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221± 0.013msup2/sup/g,氪吸附)的重复性偏差(表2)。结果表明,iPore 400的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET比表面测定长期重复性达到空前水平!/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "iPore 400可以配置6个独立的分析站(图4),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6个站BET测定结果具有高度的一致性,重现性偏差同样优于1%(表3)。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-align: center "strongspan style="font-family: 黑体 font-size: 14px"span style="font-family:黑体"表/span/span/strongstrongspan style="font-family: 黑体 font-size: 14px"3 /span/strongstrongspan style="font-family: 黑体 font-size: 14px" /span/strongstrongspan style="font-family: 黑体 font-size: 14px"span style="font-family:黑体"低比表面石墨样品比表面平行测定实验(/span/span/strongstrongspan style="font-family: 黑体 color: rgb(255, 0, 0) font-size: 14px"span style="font-family:黑体"红色/span/span/strongstrongspan style="font-family: 黑体 font-size: 14px"span style="font-family:黑体"数据是/span12次测量结果的标准差)/span/strong/ptable border="0" cellspacing="0" style="margin-left: 7px border: none" align="center"tbodytr style="height:22px" class="firstRow"td width="176" valign="center" nowrap="" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px "br//tdtd valign="center" nowrap="" colspan="6" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"BET比表面值(m/span/strongstrongsupspan style="font-family: 黑体 font-size: 15px vertical-align: super"2/span/sup/strongstrongspan style="font-family: 黑体 font-size: 15px"/g), R 0.9999/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"六站测定重现性/span/strongstrong/strong/p/td/trtr style="height:19px"td width="73" valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"测定次数/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"站号/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"1/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"2/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"3/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"4/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"5/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"6/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"strongspan style="font-family: 黑体 font-size: 15px"RSD/span/strongstrong/strong/p/td/trtr style="height:19px"td width="73" valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"span style="font-family: 宋体 font-size: 15px"1/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family: 宋体 font-size: 15px"定投气量测试/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8781 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8880 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8940 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8825 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8878 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8800 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.54%/span/p/td/trtr style="height:19px"td width="73" valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:center"span style="font-family: 宋体 font-size: 15px"2/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-family: 宋体 font-size: 15px"定压测试/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8767 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8760 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8747 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8747 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8744 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.8816 /span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.25%/span/p/td/trtr style="height:19px"td width="176" valign="center" nowrap="" colspan="2" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-family: 黑体 font-size: 15px"同站测定重现性,RSD/span/strongstrong/strong/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.07%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.60%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.96%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.39%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.67%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"span style="font-family: 宋体 font-size: 15px"0.08%/span/p/tdtd valign="center" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style=" text-align:right"strongspan style="font-family: 宋体 color: rgb(255, 0, 0) font-size: 15px"0.61%/span/strongstrong/strong/p/td/tr/tbody/tablep style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "我们用这些新技术对薄膜超低比表面积进行了重复性测定,得到了相当出色的结果 (BET = 0.0307msup2/sup/g)。这为解决超滤膜和纳滤膜的纳米孔分析奠定了基础(图7)。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/0e898529-e557-42aa-8499-f7f6d3993be8.jpg" title="666.png" alt="666.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "2. 超高比表面样品测定的重复性:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "共价有机框架聚合物(COF)是一种低密度、高比表面、易于修饰改性和功能化的新型人工合成材料。在问世的短短十余年之间,就在气体储存与分离、非均相催化、储能材料、光电、传感以及药物传递等领域展现出优异的应用前景,并且已经发展成为一种纳米药物载体。常规气体吸附法比表面容易测定的范围是5~500 msup2/sup/g之间。因为吸附量巨大,需要长时间的平衡条件,比表面大于1000 msup2/sup/g 的样品重复性控制并不容易做到。为此,对比表面大于2000msup2/sup/g的COF样品比表面进行了长期稳定性测定,结果重复性优于0.07%(图8)! /span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "3. 能力验证——新技术对超低比表面样品测定重复性的重要性:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "为了比较新技术和现有技术在超低比表面应用中的区别,我们用一种极低比表面的金属氧化物对仪器性能进一步进行了验证,并与其它品牌的测试结果进行了比较(图8)。结果表明,新技术不仅两次测定(图8a和b)相关系数都在0.9999以上,而且BET比表面和吸脱附等温线都能很好地重复;而一旦关闭死体积恒定功能,虽然BET =0 .032并且相关系数(R=0.9987)依然满足药典0991要求(图8c),但其数据质量已经迅速下降,脱附等温线已经发生变形,说明这些采用的新技术相辅相成,缺一不可。而没有这些技术的常规氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图8d)。/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/f6863e5f-cd33-488a-97c4-55f51653c09e.jpg" title="a.png"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202008/uepic/69859a06-d2f0-4879-9371-d8406940d9b3.jpg" title="b.png"//pp style="margin-top: 0px margin-bottom: 0px text-indent: 2em "span style=" font-family:黑体 font-size:12px"aspan style="font-family:黑体"和/spanspan style="font-family:Times New Roman"b/spanspan style="font-family:黑体":/spanspan style="font-family:Times New Roman"iPore 400/spanspan style="font-family:黑体"两次测定的结果,比表面积值可以完全重复;/span/span/pp style="margin-top: 0px margin-bottom: 0px text-indent: 2em "span style=" font-family:黑体 font-size:12px"cspan style="font-family:黑体":/spanspan style="font-family:Times New Roman"iPore 400/spanspan style="font-family:黑体"关闭死体积恒定功能的结果,可见/spanspan style="font-family:Times New Roman"BET/spanspan style="font-family:黑体"回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ; /span/span/pp style="margin-top: 0px margin-bottom: 0px text-indent: 2em "span style=" font-family:黑体 font-size:12px"dspan style="font-family:黑体":其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线/span/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "4. 在标准“介孔仪器”配置上实现氪吸附:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "药品多为有机化合物,比表面值一般都很低。新版中国药典0991指出,对于比表面积小于 0.2msup2/sup/g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr吸附一般至少需要配备10torr的高精密压力传感器以及分子泵,以分辨P/Psub0/sub在10sup-5/sup~10sup-4/sup的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 msup2/sup的绝对表面积计算。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "但是,一般的氪吸附的应用需要配置分子泵和10torr压力传感器,这给企业带来了额外的成本负担。而新技术的突破可以在标准配置(机械泵和1000torr压力传感器)的条件下满足氪吸附的应用要求,P/Psub0/sub下限达到可重复的10sup-5/sup(图9),为医药企业节约了检测投资成本!/span/pp style="text-align:center"span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/ad65b4cb-6898-4bbf-8553-8afc66f8b0c1.jpg" title="c.png" alt="c.png"//span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "5. 用氮吸附完全替代氪吸附:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "其实,在77.4K的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/Psub0/sub?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET方法中,假设吸附质相完全浸润)?在77K的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nmsup2/sup (15.2 Å sup2/sup),但通常会用较大的横截面面积值,甚至高达0.236 nmsup2/sup(23.6 Å 2)。采用较多的横截面积值是0.202 nmsup2/sup(20.2 Å sup2/sup)。除此之外,氪气的成本是氮气的240倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。因此,理化联科气体吸附分析技术上的突破带来了药企行业应用的巨大突破,氮吸附已经成功地实现了氪吸附领域的超低比表面积测定(图6~8)。我们用氮吸附成功测定的极限样品是0.0047msup2/sup/g,这意味着只有当试样比表面小于0.005msup2/sup/g时,才需要氪吸附,而这样的样品凤毛麟角。也就是说,一台全部采用上述新技术的仪器可以全部满足药企各种比表面的测定需求。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "6. 建立超滤膜孔径(纳米孔)评价的新方法:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "滤膜孔径评价的经典方法是气体渗透法(即毛细管流动法),但这种方法的适用范围是20nm~500μm。超滤膜是一种孔径范围为1-20nm的纳米孔过滤膜,其范围恰恰在气体渗透法能力之外。该膜的孔径范围虽然被气体吸附法所覆盖,但由于膜的吸附量过低,常规的气体吸附法无法实现测定。国外曾经建立起了液氩温度下氪吸附测量膜孔径的方法,但无论仪器、耗材及方法都很难向工厂推广。制药行业中膜技术应用存在的技术瓶颈亟待解决,需要建立快速可行的超滤膜孔径评价方法。实际上,电池隔膜和电子薄膜也存在类似问题。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "气体吸附技术在精度控制上的突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图6右)。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "7. 突破传统“介孔仪器”,实现微介孔样品的氮吸附微孔测定:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "新的气体吸附技术标准使1000torr传感器的分辨率提高到了10torr级别,仪器的密封性使机械泵抽空效率发挥到极致。以氮吸附替代氪吸附,以传统介孔仪器成功测定微孔(图10),不仅节约了用户购买仪器的成本,而且降低了用户使用成本;不仅将比表面测定的重复性提高一个数量级,而且微孔分析的重复性也得到充分保障,对MOF/COF样品的研究开发将起到推动作用。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c02cabde-81b1-42d3-a7f5-5b064c381921.jpg" title="d.png" alt="d.png"//pp style="text-align: justify text-indent: 2em "strongspan style="font-family: 宋体, SimSun "8. 气凝胶较大介孔和边际大孔的孔径分析取得突破:/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "气体吸附法介孔孔径分析的经典方法是BJH法,它是基于以毛细管凝聚理论为基础的KELVIN公式。其基本概念是,当压力增加时,气体先在小孔中凝结, 然后才是大孔。因此,孔径与压力有对应关系。但是,当孔径大于10nm以后(对应P/Psub0/sub=0.90),压力上升0.05(P/Psub0/sub=0.95),对应的孔径已经是20nm了,并且呈指数上升。如:P/Psub0/sub=0.98对应50nm,而0.99则已经是100nm了。因此,虽然ISO15901-2指出气体吸附法的孔径测定上限是100nm,但实际上很少有人能做到30nm以上去,因为压力传感器必须能够密集分辨和探知百万分之一的压力变化,这大大超出了常规压力传感器0.15% 分辨率的标称值。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "气凝胶是一种新型低密度多孔纳米材料,具有独特的纳米级多孔及三维网络结构,同时具有极低的密度(3 500kg/msup3/sup)、高比表面积(200 1000msup2/sup/g)和高孔隙率(孔隙率高达 80 99.8%,孔径典型尺寸为 1 100nm),从而表现出独特的光学、热学、声学及电学性能,具有广阔的应用前景。在医药领域,气凝胶被用于药物可控释放体系。但是,其孔径分布分析却遇到麻烦,因为压汞仪的高压会破环样品的孔结构。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "致病微生物在多孔氧化铝膜上生长不易受到限制,因此氧化铝膜常用于药物敏感性实验(DST)了解病原微生物对各种抗生素的敏感程度或耐受程度来指导临床用药。与气凝胶相反,膜的单位吸附量极低,但孔径可能达到100nm以上。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "由表1可知,32位电路新技术可以极大地提高压力传感器的分辨率,至少可分辨3.9*10sup-8/sup的相对压力变化,因此,我们尝试对气凝胶和氧化铝膜进行孔径分布分析。利用精细投气控制新技术,0.99以上的设点间隔达到0.0002的密度,最高吸附点达到了0.9980(对应孔径559nm),在测试方法上取得新的突破,为建立气凝胶和氧化铝膜孔径分析的新方法奠定了坚实的基础(图11)。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px text-indent: 0em "span style="color: rgb(0, 176, 80) font-family: 宋体, SimSun font-size: 18px "四、总结/span/h1p style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "工欲善其事,必先利其器!/span/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "利用气体吸附分析仪进行比表面积质量控制分析时,经常碰到如下问题:不同厂家仪器之间数据不一致;同一型号在不同地域或不同海拔的数据不一致;同一台仪器在白天晚上或春夏秋冬的数据不一致;同一台仪器长期稳定性不好。这些现象已经成为长期困扰行业质量控制的头疼问题。气体吸附分析技术的突破不仅彻底攻克了这个难题,而且使超低比表面分析达到高稳定性、高重复性、高效率;随之产生的功能性扩展,无论用氮吸附代替氪吸附,还是孔径分布测定向介孔两端范围延伸拓展,都为中国企业全面贯彻中国药典0991带来了超高性价比的惊喜!/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/6ca5abfe-f2ab-4486-9fa5-bb34c06304c5.jpg" title="e.png" alt="e.png"//pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "气体吸附分析技术的突破,为全面贯彻药典新规和GB/T 19587-2017标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,提供了性能全面优化的可涵盖各种药用试品的分析仪器,也为下一代物理吸附分析仪的发展方向树立了新的标杆,建立了新的标准。/span/pp style="text-align: justify text-indent: 2em "strongspan style="font-family:宋体, SimSun"作者简介:/span/strong/pp style="text-align: center "span style="font-family: 宋体, SimSun "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b5946e97-b5e2-4749-8815-3ebd6df36529.jpg" title="f_看图王(1).jpg" alt="f_看图王(1).jpg"//span/ppspan style="font-family: 宋体, SimSun "(注:本文由杨正红老师供稿,不代表仪器信息网本网观点)/span/p
  • 新材料表征技术研究专题研讨会在京召开
    仪器信息网讯 2011年11月1日,大昌华嘉商业(中国)有限公司(以下简称:大昌华嘉)与清华大学化学系徐柏庆教授课题组联合举办的新材料表征技术研究专题研讨会在清华大学化学馆301报告厅召开;30余位业内的专家学者出席了会议,仪器信息网作为特邀媒体亦参会。会议现场  本次会议分为上下两场,主题分别为“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。 大昌华嘉公司科技事业部产品经理严秀英女士与樊润先生分别主持会议  大昌华嘉是一家总部位于瑞士的全球性企业,2009年收益总额高达86亿瑞士法郎,在亚太、欧洲和美洲地区的35个国家有560个营业网点,自2002年至今,大昌华嘉在全球已拥有22000名专业员工。其中,大昌华嘉科学仪器部分为市场、销售、维修及应用4个部门,其仪器设备产品主要应用领域包括材料科学、物理性质、化学反应、化学分析和食品分析等。  此外,大昌华嘉目前在中国已有49名员工,并设立了11个办事处,拥有超过20000名中国客户;同时大昌华嘉为众多的中国客户专门在上海建立了应用开发实验室,还积极参与或组织各种相关的会议展览、用户培训等活动。美国麦奇克有限公司副总裁 Mr. Paul Cloake  Mr. Paul Cloake首先介绍到,自Leeds & Northrup研究所成功推出第一台商用激光粒度分析仪(Microtrac Model 7991)到现在,麦奇克几经坎坷,但是公司一直致力于颗粒表征方面的科技创新和仪器开发。2000年,Microtrac正式成立Microtrac Inc.;2003年,公司隆重推出Microtrac S3500系列激光粒分析仪;2004年推出全新设计的干粉递送系统Turbotrac;2005年,Microtrac S3500系列仪器全面升级;2007年,公司在仪器中引进Zetatrac和蓝波技术等。  随后,Mr.Paul Cloake主要谈到了激光散射技术的原理和最新的技术进展,并特别提到了采用三激光技术的激光粒分析仪S3500、S3500SI及其相应的图像分析软件。S3500系列激光粒分析仪采用固定位置的三激光固体光源设计及“Bluewave” 技术,配合双接受透镜,可以实时大角度的接受颗粒的衍射/散射光信号(0-165度),信号稳定,重复性好。在S3500的基础上,2011年麦奇克公司推出了S3500SI激光粒度粒形分析仪,实现了一台仪器具有两种技术(静态激光衍射法和动态图像分析法)能同时测量12种粒径和14种粒形的参数。  最后,Mr.Paul Cloake还讲到,麦奇克公司凭借其在激光衍射/散射技术和颗粒表征方面的独到见解,开发了最新一代Nanotrac Wave 纳米粒度及Zeta电位分析仪。该款仪器采用先进的“Y”型光纤探针光路设计和先进的动态光背散射技术,融纳米颗粒的力度分布和Zeta电位测量于一体,操作简单,测量迅速,结果准确可靠,重现性好。Mr. Paul Cloake 给大家介绍仪器的操作及维护技巧  研讨会下半场,日本Gifu大学的Yoshihiro SUGI教授和日本拜尔公司的Keita Tsuji博士分别给参会人员作了有关介孔分子筛的合成、表征和催化及吸附技术最新进展等方面的精彩报告。日本Gifu大学 Yoshihiro SUGI 教授  Yoshihiro SUGI教授从微孔、介孔材料谈起,介绍了不同材料的划分区域及其相关的应用情况,并向大家展示了不同种类分子筛的孔径大小和结构模型。随后介绍了以CTMABr和TEAOH为模板合成具有β沸石结构单元的介孔硅铝分子筛的过程,并对所合成的材料进行了X射线衍射(XRD)、核磁(NMR)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等多方面的性能表征,结果表明,所合成的材料具有很好的耐热性及稳定的机械加工性能等优良的特性。最后Yoshihiro SUGI教授通过维他命E的合成形象说明了介孔材料在催化方面所表现出的高活性和高选择性。日本拜尔有限公司 Keita Tsuji 博士  日本拜尔成立于1988年,是一家研究生产容量法/重量法气体吸附分析仪的专业制造厂商。其产品主要包括比表面和孔隙分析仪、化学吸附仪、金属分散度分析仪等一系列高品质的仪器。  Keita Tsuji博士结合日本拜尔多款表面吸附产品,在报告中介绍了表面吸附技术的最新进展。例如,日本拜尔BELSORP-max是一款高性能容量法气体吸附仪,可以实现原位脱气功能,在极宽的压力范围内对被测多孔材料进行吸附/脱附等温线分析。同时,针对近年来低温吸附要求越来越多的情况,日本拜尔开发的BELCryo低温控制系统,配合BELSORP系列吸附仪器的使用,可以将相关的应用领域延伸至极低的温度范围,为吸附表征打开了一扇通往低温方向的大门。  此外,Keita Tsuji博士重点讲到,日本拜尔吸附仪产品与X射线衍射技术(XRD)相结合可实现结构和数据两方面信息的同时检测;还有如果BELCAT 系列程序升温化学吸附仪选配CATCryo低温控制装置,可以增加低温化学吸附功能,控温范围能从-100℃到1100℃。与会代表与Keita Tsuji 博士沟通交流
  • 大昌华嘉将召开最新颗粒表征技术研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月1日在清华大学化学馆301报告厅与清华大学化学系徐柏庆教授课题组联合举办“最新颗粒表征技术研讨会”和“β亚基介孔分子筛的合成,表征及催化学术讲座”。此次会议分为上下午两场,大昌华嘉公司特邀请美国麦奇克公司副总裁Mr. Paul Cloake介绍动态激光在纳米技术上的最新应用及日本Pro. Yoshihiro SUGI讲解β亚基介孔分子筛的合成,表征及催化,并在现场演示最新激光粒度粒形分析仪,Zeta电位及纳米粒度分析仪的操作及维护技巧,欢迎您届时光临。大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis,Ecomaterials.SEMINAR ARRANGEMENTS CHECK LIST本次会议初步议程如下:Conference 1 会场一 (8:30-12:20)Time / 时间Content / 内容CIP / 主持人8:45-9:00Registration / 会议注册 9:00-9:20DKSH Presentation / 大昌华嘉公司介绍Sinndy Yan严秀英 经理9:20-10:30Laser Diffraction and Image Analysis光散射与图像分析原理及应用 Paul Cloake 副总裁10:30-10:50Coffee Break茶歇 10:50-11:50Dynamic Light Scattering – latest advances with probe technology动态激光散射在纳米上的应用Paul Cloake 副总裁11:50-12:20Question / 仪器展示及问题讨论Sinndy Yan严秀英 经理12:20-13:20Lunch午餐 Conference 2 会场二 (13:30-17:30)13:30-14:00DKSH Presentation / 大昌华嘉公司介绍Rain Fan樊润 经理14:00-15:10Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,β亚基介孔分子筛的合成,表征及催化Yoshihiro SUGI 教授Keita Tsuji博士15:10-15:30Coffee Break茶歇 15:30-16:30Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysisβ亚基介孔分子筛的合成,表征及催化Pro.Yoshihiro SUGIDr.Keita Tsuji16:30-17:30Discussion /问题讨论Rain Fan樊润 经理17:30End / 结束 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。联系方式:地 址:北京市光华路7号汉威大厦西区26层电 话:010- 6561 3988 联系人:张媛 13301217002王卫华13810747749樊润 13901255059传 真:021- 6561 0278电子邮件:Helen.zhang@dksh.com 备注:化学馆的具体地点在清华大学西北部理学院的正北面(从清华西北门进入往东200-300米路北即到)。西北门禁止没有清华车证的私家车出入,开车的客户可以从西门或者南门进入。 回 执姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议:会场1 会场2
  • 大昌华嘉将于天津举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月2日上午在联合研究大厦材料化学系四楼会议室与南开大学天津大学联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。此次会议分为两个部分,第一部分:日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,后一部分是郝昌德经理介绍美国麦奇克公司的动态激光在纳米技术上的最新应用,欢迎您届时光临。大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis,Ecomaterials.SEMINAR ARRANGEMENTS CHECK LIST本次会议初步议程如下:联合研究大厦材料化学系四楼会议室Conference 会场一 (8:30-12:20)Time / 时间Content / 内容CIP / 主持人8:30-8:45Registration / 会议注册 8:45-9:00DKSH Presentation / 大昌华嘉公司介绍樊润 经理9:00-10:10Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化Yoshihiro SUGI 教授Keita Tsuji博士10:10-10:30Discusssion,Coffee Break讨论,茶歇 10:30-11:30Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化Yoshihiro SUGI 教授Keita Tsuji博士11:30-12:30Laser Diffraction and Image Analysis光散射与图像分析原理及应用;Dynamic Light Scattering &ndash latest advances with probe technology动态激光散射在纳米上的应用郝昌德 经理12:30-Lunch午餐 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。联系方式:地 址:北京市光华路7号汉威大厦西区26层电 话:010- 6561 3988 联系人:樊润 13901255059张媛 13301217002 传 真:010- 6561 0278电子邮件:Rain.fan@dksh.comHelen.zhang@dksh.com 大昌华嘉商业(中国)有限公司 2011年9月23日 回 执姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议:会场
  • 大昌华嘉将于北京举办亚基介孔分子筛的合成表征及催化研讨会
    大昌华嘉商业(中国)有限公司将于2011年11月1日在清华大学化学馆301报告厅与清华大学化学系徐柏庆教授课题组联合举办 &ldquo &beta 亚基介孔分子筛的合成,表征及催化学术讲座&rdquo 。此次会议分为上下午两场,上午是大昌华嘉公司特邀请美国麦奇克公司副总裁Mr. Paul Cloake介绍动态激光在纳米技术上的最新应用,下午是日本Pro. Yoshihiro SUGI讲解&beta 亚基介孔分子筛的合成,表征及催化,欢迎您届时光临。大昌华嘉商业(中国)有限公司科技事业部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。大昌华嘉在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。日本拜尔有限公司(Bel Japan,Inc.)是一家研究生产容量法和重量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。Yoshihiro SUGI教授简介:Yoshihiro SUGI, Faculty of Engineering, Gifu UniversityAwards:1994 Prize for Distinguished Patent Applications, Agency of Science and Technology1995 JPI Prize for Distinguished Papers.1996 Prize for Distinguished Patent Applications, Agency of Science and Technology2003 The Best Article of the Month, BCSJ #5, 2003.2009 The Japan Petroleum Institute AwardMajor Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis,Ecomaterials.SEMINAR ARRANGEMENTS CHECK LIST本次会议初步议程如下:清华大学化学馆301报告厅Conference 1 会场一 (8:30-12:20)Time / 时间Content / 内容CIP / 主持人8:45-9:00Registration / 会议注册 9:00-9:20DKSH Presentation / 大昌华嘉公司介绍Sinndy Yan严秀英 经理9:20-10:30Laser Diffraction and Image Analysis光散射与图像分析原理及应用 Paul Cloake 副总裁10:30-10:50Coffee Break茶歇 10:50-11:50Dynamic Light Scattering &ndash latest advances with probe technology动态激光散射在纳米上的应用Paul Cloake 副总裁11:50-12:20Question / 仪器展示及问题讨论Sinndy Yan严秀英 经理12:20-13:20Lunch午餐 Conference 2 会场二 (13:30-17:30)13:30-14:00DKSH Presentation / 大昌华嘉公司介绍Rain Fan樊润 经理14:00-15:10Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis,&beta 亚基介孔分子筛的合成,表征及催化Yoshihiro SUGI 教授Keita Tsuji博士15:10-15:30Coffee Break茶歇 15:30-16:30Mesoporous Zeolite with Beta Zeolite Subunit: Synthesis, Characterization and Catalysis&beta 亚基介孔分子筛的合成,表征及催化Pro.Yoshihiro SUGIDr.Keita Tsuji16:30-17:30Discussion /问题讨论Rain Fan樊润 经理17:30End / 结束 本次会议内容丰富多彩,主办单位将向与会者赠送精美礼品。为便于会务安排,请将参会回执于10月25日前传真或发送电子邮件至大昌华嘉公司。联系方式:地 址:北京市光华路7号汉威大厦西区26层电 话:010- 6561 3988 联系人:张媛 13301217002王卫华13810747749樊润 13901255059传 真:010- 6561 0278电子邮件:Helen.zhang@dksh.com 备注:化学馆的具体地点在清华大学西北部理学院的正北面(从清华西北门进入往东200-300米路北即到)。西北门禁止没有清华车证的私家车出入,开车的客户可以从西门或者南门进入。回 执姓名 单位 地址 电话 手机 E-mail 邮编 参加人数 我希望参加以下会议:会场1 会场2
  • 塞塔拉姆——流动脉冲吸附微量热系统用于材料原位表征
    p  strong仪器信息网讯/strong 量热法是一种直接测量吸附热的方法,该方法不依赖于物理模型的建立。然而,想要获取精确的吸附热数据,量热测量要求有足够高的灵敏度。塞塔拉姆建立的流动脉冲吸附微量热系统不仅测量的灵敏度高,而且能够与比表面积分析仪(BET)联用,实现物质吸附热的原位测量。/pp  目前,塞塔拉姆已经与合肥微尺度物质科学国家实验室合作,并将流动脉冲吸附微量热系统应用于粉末催化剂吸附过程的研究,并发表题为《A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts》的文章。/pp  在视频中,塞塔拉姆曾洪宇对塞塔拉姆的Sensys Evo DSC和独有的卡尔文3D量热技术进行了介绍,并阐述了Sensys Evo原位联用流动脉冲吸附微量热系统在实验分析、质量控制等方面的应用。/pp  具体视频如下:/ppscript src="https://p.bokecc.com/player?vid=D3422C9E99F8CFE89C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//p
  • 颗粒表征技术-气体吸附法技术研讨会广州站圆满结束
    3月13日下午, 麦克默瑞提克(上海)仪器有限公司颗粒粉体-气体吸附法技术研讨会广州站圆满结束,该会议汇集了中山大学、华南理工大学、广州地化所、暨南大学等知名大学用户参加,会议持续了2个半小时,主要对气体吸附基础理论为广大用户做了详细的讲解,并针对美国麦克仪器最新软件MicroActive做了详细的介绍,公司应用部经理钟华博士现场为广大用户解疑,受到广大用户的欢迎。很多用户纷纷表示希望以后能多多举办此类的活动,能与用户面对面沟通,帮助用户解决实际应用问题,并期待下一次活动的举办。
  • 许人良:颗粒表征领域的十年回顾与展望
    颗粒表征行业过去十数年间从各类表征技术的发展、各工业领域内更广泛的应用、各项技术的标准化程度的提高与普及、新款仪器的问世,到许多商家公司的变更,是本行业半个世纪前随着激光与微电子行业的问世而跨入现代化进程以来变化最明显的。颗粒表征技术的发展回顾现代颗粒表征技术的初始化发端于延伸传统的筛分、光学显微镜、与沉降法粒度测量的下限。那些用于表征10微米以上颗粒的技术,特别是应用于固体颗粒的颗粒表征仪器商业化可以说是早已完成了。近十几年来主要是一些技术细节的进一步改进与应用的进一步推广,例如在3D打印、能量储存(锂离子电池)、药物等很多行业。这方面的最大变化是各类技术的国际标准化、国内标准化与行业标准化的建立与普及,以及各类有证(标准)的国家级与行业参考颗粒物质(RM),包括单分散粒径RM、多分散粒径RM、计数RM、表面积RM、Zeta电位RM等的可利用性。迄今为止国际标准化组织仅颗粒表征技术委员会(ISO TC 24)就已有61个国际标准、1个技术规范、3个技术报告。中国国家标准化管理委员会的颗粒表征与分检及筛网标准化委员会专委会(TC 168)也已有60个国家标准。这些技术在过去十数年内的持续改进发展与一些新技术的问世,主要来自于纳米科学技术发展的推动与将测量粒径下限进一步下推与测量样品浓度上推的需求。表征技术与仪器本身的发展也受益于其他行业的新技术,例如3D打印、光刻与微机电系统已被用于生产颗粒表征仪器的过程;不断发展的各类光源、光导纤维、CCD、CMOS、光电探测器阵列都已成为现代化颗粒表征仪器的一部分。某些测量技术例如传统的库尔特原理(电阻法),进一步扩展了测量的动态范围与测量下限、数值化的脉冲记录可使同一测量除了计数与颗粒体积测定以外,也可用以测定颗粒形状或追踪样品的动态变化。基于同样原理的可调谐电阻脉冲传感法使用在可伸展薄膜上的小孔测量纳米级颗粒,已成功地用于病毒研究,包括新冠病毒研究;利用纳米碳管、3D打印以及小至10纳米的电极,整个电阻法测量可在微芯片上完成。英国科学家在2006年发明的、基于追踪激光照射下悬浮液内纳米颗粒运动的颗粒示踪法是近十年来发展最迅速的基于数量测定的纳米颗粒粒径测定新技术。这个可以包含计数、电泳迁移率测定与荧光分析的新技术可与动态光散射互补,如果能够进一步增宽测量粒径与浓度的动态范围,则一定可以有更广泛的应用前景。传统的动态光散射已突破稀溶液和90度散射角测量的局限,利用光学纤维进行后向散射、多角散射测量,以及多角度整体分析已逐渐成为通例。随着计算机能力的进一步扩展与数据传输速度的提高,动态范围高达1012与采样速度快达10纳秒的芯片相关器或软件相关器取代了传统相关器。越来越多的相关函数反演算法使这一已沉寂了很多年的领域又活跃了起来。打破测量必须在静止液体中进行的限制,在分馏设备的出口处测量在流动液体中单分散分馏成分的动态光散射也取得了可喜的进展。中国科学家在2012年发明的,以CCD或CMOS作为探测器,同时测量动态光散射时间与空间相关性的超快速图像动态光散射方法,利用系综平均取代扩散平均,弥补了传统动态光散射费时、信噪比低的缺点,可以在瞬间(快达1微秒的两幅帧)测出颗粒的平均粒径,已成功地在数秒钟内实时测量了金颗粒的成长。这一测量速度还将随着帧传输速率的增加进一步提高。另一个可注意到的变化是电泳光散射测量zeta电位技术的进一步发展,例如直流与交流电场混用以排除测量中电渗的影响、使用透明电极以测量极高浓度样品中颗粒的zeta电位、用大规模并行相位分析光散射测量蛋白质的电泳、用对称测量增加分辨率等。Zeta电位测量的应用与数据解释也为更多的用户理解与接受。随着越来越多行业对颗粒形状表征的需求,动态图像法,特别是取样方法与图像分析算法与软件也是活跃的热点。颗粒表征仪器企业的并购整合这十几年来最引人注目的可能是颗粒表征仪器行业内商家的整合。据不完全统计,从2000年至今,至少有13家公司的所有权发生了变化,有的是集团内整合,有的是国际兼并,有的是国内并购。随着现代化颗粒表征技术第一代研发人员由于年龄原因的退出、公司所有权变化后的人事变动、以及很多成熟技术的黑盒子化,提供用户支持的第一线应用人员甚至总部的应用支持人员对科学技术知识掌握的深度与广度打了很多折扣,有些人对自己公司的产品知其然而不知其所以然,市场上的竞争也经常脱离应有的科学技术基础。中国颗粒表征领域的发展可喜的是中国颗粒表征领域的发展,无论是对技术的推进(激光粒度法中的很多新型光学设计、图像动态光散射、各类矩阵反演算法等)、应用的普及化(全球最大的激光粒度仪与质控气体吸附表面分析仪的用户群体)、标准化程度(全球数一数二的与颗粒有关的国家标准与颗粒标准物质的类型与数量)、商业化的活跃程度(具有最多业内商家的国家)都随着中国国力的增强与现代化的发展而走在前沿。中国颗粒表征企业也开始进行国际并购,销售渠道越来越宽。颗粒表征技术未来展望展望下一个十年,颗粒表征技术在现有的基础上会在各级标准化的促进下得到更广泛的应用,云数据计算与共享会逐渐推广,表征技术不再限于单参数测量而是在单一测量、或同时测量中得到多个参数,或同一参数在不同条件下测量后对数据进行整体分析。更多的注意力会放在气溶胶、气泡动态测量与在线测量;各类数据挖掘法会用于动态图像法中的图形辨识以用来测量更小与更浓的样品;激光粒度仪将不再局限于球形模型而开始对实际样品尝试非球形模型。作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引4700以上、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。
  • 大昌华嘉“吸附仪在新材料上的应用”全国巡讲
    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。  在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。  日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。     会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。  物理吸附同步连接XRD、GC、磁悬浮天平  化学吸附仪链接质谱、红外、低温脉冲和TPR  高压吸附仪在储氢材料的应用
  • BET是比表面及孔径吸附的缩写吗
    BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。1983年,三位科学家对Langmuir 理论进行修正,提出著名的BET理论,其正式名称是多分子层吸附理论,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。多分子层吸附理论所采用的模型的基本假设是:一、固体表面是均匀的,发生多层吸附;二、除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。该理论放弃了单分子吸附层的观点,认为在物理吸附中,固体与气体间的吸附是依靠分子间引力而发生的;而且已被吸附的分子仍有引力,因此在第一吸附层之上还可以吸附第二层,第三层,… … 也就是多分子层吸附。从多分子层吸附理论得到的BET吸附等温式,可用于测试颗粒的比表面积、孔容、孔径分布以及氮气吸附脱附曲线。运用 BET方法的物理吸附等温线对吸附表面积进行测定,主要包含两个步骤:第一步,做出BET图,从中导出单层吸附量;第二步,根据单层吸附量计算比表面积。由于BET 法适合大部分样品,被广泛应用于许多多孔及无孔材料BET面积α的确定。其最大优势是考虑到了由样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别。BET吸附等温式是行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET吸附等温式建立起来的。但BET 法并不适用于所有样品,因此按介孔材料的分析方法分析微孔材料时,由物理吸附分析仪自动生成的BET 比表面值是错误的。ISO9277-2010 和 IUPAC都对含微孔材料的BET比表面分析方法及判断BET 结果的方法做出了规定。
  • 2011广州多孔材料表征分析技术研讨会圆满举行
    2011年5月25日,由美国康塔仪器公司主办,华南理工大学承办“2011多孔材料表征分析技术研讨会”在广州华南理工大学五山校区顺利召开,近八十位业内人士参加了此次大会。  本次大会围绕“吸附理论”、“气体吸附法测量比表面与孔径大小” 、“如何正确应用BET理论计算比表面”、“非定域密度函数理论在孔径分析中的应用”、“化学吸附仪器在催化剂活性表征中的应用”、“压汞法在孔径分析中的应用”等议题展开培训和讨论,旨在为积极应对材料发展的各种挑战献计献策,尤其是新能源材料。  与会者对报告反响热烈,认为研讨会涉及内容正是他们迫切需要的,解决了他们在科研中长期困惑的问题,为今后把握正确分析方法指明了方向。研讨会延长至晚上6时余才得以结束。
  • 新品发布 | Autosorb 6x00 系列全自动气体吸附分析仪
    继去年 9 月隆重推出 Autosorb 6100 全自动气体吸附分析仪以来,Autosorb 6X00 系列仪器进一步壮大。现安东帕重磅推出集物理吸附和化学吸附功能于一体的 Autosorb 6200和 Autosorb 6300 全自动气体吸附分析仪。Autosorb 6x00 系列是多功能的全自动气体吸附分析仪,配置灵活,满足用户对材料气体吸附表征的多重需求。可用于表征诸如颗粒、粉末和薄膜等多孔材料的比表面积,孔容和孔径分布,评价功能材料对气体、蒸汽的吸附性能,还可以用于静态、动态化学吸附测试,对催化剂的活性表面积、金属分散度以及酸性位强度等进行全面表征。Autosorb 6200 具有物理吸附和化学吸附功能,除了基本的 6100 的配置外还搭配一个1100℃ 的加热炉,用于化学吸附功能。因此,这款仪器除了可用于测试比表面积和孔径分布外,还可进行静态化学吸附的测试。Autosorb 6300 是这3款中具有最高配置的一款仪器,它集合了全面的物理吸附和静态、动态化学吸附功能,能够非常全面的对催化剂产品进行表征。此外,6300 使用的是PFE 材质的密封材料,相比其他两种型号它具有更高的耐化学性质,因此在吸附气体的使用上您有更广泛的选择。优势点制造精密√ 歧管系统一体成形保证更优的气密性√ 歧管温度精确可控,温度波动小于0.05 °C,提高传感器稳定性√ TruZone - 自动液位控制技术,样品区无温度梯度功能多样√ 多达 3 个分析站,内置 6 个 PID 自动控温脱气站√ 可实现三个样品在三种不同温度下对于三种不同气体的吸附测试√ 3L 杜瓦可进行超 90 小时的测试,加热炉最高可升温至1100°C,二者可在几分钟内快速切换操作简便√ DoseWizard 功能,有效提高测试速度√ PowderProtect 功能,有效防止粉尘吸入,污染仪器内部管路√ 新一代 Kaomi 软件,操作更简便配置多样√ 根据物理吸附/化学吸附应用,有 3 种仪器型号可供选择√ 具有多达 8+ 种配置,包括如分析站的数量和传感器类型,选配蒸汽吸附功能、控温配件、TCD、定量环或质谱等,满足多样化测试需求√ 提供 7+ 种模块化升级部件,满足后续使用需求售后保障√ 符合超过 20个 ASTM, DIN, 和 ISO 标准√ 提供 3 年质保√ 随时获得安东帕应用专家和售后专员的帮助
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制