当前位置: 仪器信息网 > 行业主题 > >

吸附过程

仪器信息网吸附过程专题为您整合吸附过程相关的最新文章,在吸附过程专题,您不仅可以免费浏览吸附过程的资讯, 同时您还可以浏览吸附过程的相关资料、解决方案,参与社区吸附过程话题讨论。

吸附过程相关的论坛

  • 吸附过程中的溢流现象

    吸附过程中的溢流现象 负载的金属催化剂广泛应用于化学工业和石油化工中,金属较容易高分散于载体表面是此类催化剂的最主要的特征。金属分散度的测定是表征此类催化剂的一个重要方面。氢的化学吸附,脱附及滴定广泛应用于负载金属催化剂的比表面积的测定,从而计算出金属晶粒大小。但是在氢吸附过程中发生的氢溢流,往往干扰负载型金属催化剂的活性比表面积的测定,从而造成化学计量上的困难。若催化反应中存在溢流现象,则催化剂表面的活性中心的数目难以获知,因此,转化频率因子的计算无从谈起。

  • 【转帖】吸附质氮气气源中的气体杂质对吸附过程的影响

    对于99.995%的高纯吸附载气和吸附质气体,其中的主要杂质气体为水份。假设气源气体中水份的含量为0.004%,则样品处在-195.8℃、30ml/min的流速中120min内停留在粉末表面的水的量为 0.14ml(标况下的体积),而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水蒸汽的量为:0.12 ml(标况),与实际停留在粉末表面的水量相当,材料表面已经被水分饱和;如果不吹扫处理继续测试,那测试结果将不可能正确。对于色谱法孔径测试需要测试三四十个分压点,影响更是显著,若分压点之间不做吹扫处理,最后得到的结果将不是固体材料本身对氮分子的吸附了,而是包覆了水分子的颗粒对氮分子的吸附了,孔隙也早已被高沸点易吸附气体杂质H2O、CO2饱和。 要消除吸附质气源中的气体杂质H2O、CO2等的影响, 可采用冷阱气体净化装置,冷阱是消除高沸点气体杂质的有效方式;比表面仪配备的冷阱,使本会被样 品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10-17Pa,达到超高纯气体状态; 3H-2000系列比表面仪是国内唯一配备冷阱的比表面仪器,这也是该系列仪器能够取得高精度和高分辨率的因素之一。

  • 【求助】四氯化碳在硅酸镁吸附过程中挥发对石油类测定结果有多大影响?

    我最近刚刚开始做水中的石油类测定,水样经四氯化碳萃取后还要经硅酸镁层析吸附后得到的才是石油类。但是层析吸附的过程太慢,要三四十分钟。四氯化碳又是易挥发溶剂,在这个过程中四氯化碳应该会有一定程度的挥发,我认为挥发对测定结果会有很大的影响。我的看法正确吗?如果是的话,有什么办法可以减少这种影响呢?

  • 气体吸附法比表面积及孔径分布(孔隙度)测试中,对测试过程和结果会产生非常重要的影响的因素

    气体吸附法比表面积及孔径分布(孔隙度)测试中,有几个因素对测试过程和结果会产生非常重要的影响。对测试结果的有效分析需考虑这些因素。这些因素包括:样品处理条件,吸附质气体特性,测试方法的不同等,以下分别进行详细介绍。样品处理条件由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。吸附质气体特性气体吸附法比表面积及孔径分布分析测试中,对吸附质气体最基本要求是其化学性质稳定,被吸附过程中不会对样品本身的性能和表面吸附特性产生任何影响,且必须是可逆的物理吸附。氮气是最常用的吸附质,实践表明,绝大多数物质的测定选择氮气作为吸附质,测试的结果准确性和重复性都很理想。对于含有微孔类的样品,若微孔尺度非常小,基本接近氮气分子的直径时,一方面氮气的分子很难或根本无法进入微孔内,导致吸附不完全;另一方面,气体分子在与其直径相当的孔内吸附特性非常复杂,受很多额外因素影响,因此吸附量大小不能完全反应样品表面积的大小。对于这类样品,一般采用分子直径更小的氩气或氪气来作为吸附质,以利于样品的吸附和保证测试结果的有效性。测试方法因素不同的测试方法对测试结果也会有很大的影响,不同的测试方法有着各自的优缺点。连续流动法中,由于采用的是“对比”的原理,相比容量法,能有效降低样品处理对测试结果的影响。通过对比的方法,在某种程度上,标准样品和被测样品由于处理的不完善导致的误差可以抵消掉,前提是两种样品的表面结构和吸附特性相近似,处理条件相同。这对于用于产品质量现场控制目的的检测非常有价值,减少样品处理时间,可以大大提高检测效率。如果用同样的物质作为标准样品和被测样品,由于表面结构和吸附特性近似,比表面积测试结果就会对样品处理条件不敏感,换句话说就是误差被抵消掉。因此连续流动法非常适合产品质量现场检测。相反,容量法可以说对样品处理非常敏感,因其采用的是绝对的吸附量测定原理,任何的表面不洁净或其它影响吸附质吸附过程的因素都会对测定结果产品直接的影响。

  • BET测试中,吸附不正常

    分子筛或fcc催化剂在吸附过程中,吸附量不是逐步增多,而是在一个点或两个点之后,逐步下降,一般是什么原因造成的,求助高手。发现这种现象后,有时停止分析再重新分析就正常了。

  • 吸附、吸收和解吸之间到底有什么不同?

    adsorption,absorption,desorption单看这三个英文单词就知道这三种现象之前存在关联却又各不相同。吸附(sorption)描述的是吸收(absorption)和吸附(adsorption)的动作——脱附(desorption)是一种与吸附相反的动作。吸附和吸收是化学和生物学科当中一种非常重要的过程。因此当我们考虑分离方案的时候,尤其是在使用气相色谱法和液相色谱法时,我们有必要弄清楚这些过程并理解他们之间的差异。吸附和吸收的一个最主要区别在于,一个是表面处理而另一个是本体处理。吸附——发生在基质的表面。吸收——指的是一种物质进入到另一种物质的主体或者体积内部,比如说气体被液体所吸收。Adsorption吸附吸附是一种表面过程,表示气体或者液体在另外一种液体或者固体表面形成的积累现象。我们可以根据吸附质(化学物质所吸附的基质)和吸附剂分子之间的相互作用强度进一步解释何为吸附现象。物理吸附——物理吸附也称范德华吸附(Van der Waals),它是由吸附质和吸附剂分子间作用力所引起,此力也称作范德华力。化学吸附——化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。化学吸附过程所涉及的能量比物理吸附过程要多。这两种吸附作用的差异性主要体现在分子之间相互作用所产生的结合能大小的差异。Absorption吸收吸收是涉及固体、液体或气体的整体性质的现象。吸收所描述的是原子或者分子经由材料表面进入到材料体内的一种现象。和吸附现象类似的是,吸收也存在物理吸收和化学吸收两种情况。物理吸收——指的是溶解的气体与溶剂或溶剂中某种成分并不发生任何化学反应的吸收过程。此时,溶解了的气体所产生的平衡蒸汽压与溶质及溶剂的性质、体系的温度、压力和浓度有关。化学吸收——指的是当原子或者分子被吸收时所发生的化学反应。一个典型的例子就是当硫化氢从沼气流取出并转化成固体硫。Desorption解吸解吸是吸收的逆过程,又称气提或汽提,是将吸收的气体与吸收剂分开的操作。解吸是一种物质被另外一种物质释放的过程,或者也可以理解为一种物质从另外一种物质的表面或者穿过其表面而被释放出来的过程。当均衡情况发生改变时,解吸现象就会发生。想象一下,有一罐与周围环境相平衡的水,进入并离开这罐水的空气的量是相同的——水中氧气的浓度是恒定不变的。如果水温升高,水的平衡和溶解性发生变化,那么水中的氧气会被释放出来,因此水中氧气的含量降低。Adsorption and Desorption in Chromatography色谱法当中的吸附与解吸现象吸附和解吸是色谱法中的主要操作过程。通过待分离样本与固定相之间发生的吸附和解吸速率来实现样本的分离。如果色谱柱的条件有利于分子的吸附,那么分子就会附着在固定相上面,从而实现了与其他样本化学物质的分离。当色谱柱的条件有利于解吸,那么就会发生与吸附相反的现象——化学物质就会进入流动相当中。

  • 【原创大赛】二元溶液吸附方程验证汇集

    【原创大赛】二元溶液吸附方程验证汇集

    请阅览附件……………………为了方便大家查看,帮楼主贴出内容………………………… 二元溶液吸附方程验证汇集 Daichaozheng通常认为在溶液中的吸附是多层吸附的,但是多层吸附与van der Waals作用能与分子间有效距离六次方成反比这一原理是矛盾的。原因是吸附剂表面生成的van der Waals作用能其力度不足以克服“第二层分子”的热运动。因此溶液吸附不会是多层吸附。运用统计力学方法,在均一位势模型和理想势阱点阵模型基础上,考虑分子之间van der Waals作用能和溶液吸附过程的顶替效应可以推导出二元溶液单分子层吸附方程为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091006_382640_2961690_3.jpg在第三届科学仪器网络原创大赛 “二元溶液体系吸附方程的验证”一文中,作者计算了苯胺、苯酚、环己醇、正丁醇、正己酸、正戊醇、正戊酸在六种炭吸附剂上的吸附数据。四十二组数据计算值与实验值的均方差在0.008-0.047之间。为了更充分的考察公式(1)、(2)的适应性,作者采用了更多的文献数据进一步进行验证。今汇集如下。在18℃的恒温条件下,用骨炭从水溶液中吸附醋酸。在不同的醋酸平衡浓度下,每公斤骨炭中吸附醋酸量 与溶液中醋酸的摩尔浓度 的关系如表1所示:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382642_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382643_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091007_382644_2961690_3.jpg从公式(5)可以看到,溶液浓度的改变引起分子间环境的变化,从而导致分子之间势能场的变化,最终影响吸附过程的焓变。公式(5)表示的是一摩尔吸附值从溶液态进入吸附态这一过程的焓变的量,这也是吸附剂表面吸附吸附质时van der Waals作用能所作的净功。物理吸附是一个可逆的动态平衡过程,平衡时物质在吸附剂表面的化学位与在溶液中的化学位相等。从道理上讲,只有吸附的作用能大于分子的动能才能形成稳定的吸附层。由公式(5)可以看出,随着溶质浓度的改变,血炭从水溶液中吸附正丁醇van der Waals作用能作的净功在4.1868*984J/mol到4.1868*1258.6J/mol之间。根据理论,分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091010_382646_2961690_3.jpgJ/mol,在室温情况下(300K)分子的平均动能大约为4.1868*450 J/mol。这个数值小于吸附过程的焓变。如果设想吸附是单层的,这个吸附过程是可以进行的;作一个粗放的估计如果形成多层吸附,根据van der Waals作用能公式,第二层与吸附剂表面有效距离增加一倍,吸附过程焓变只能及第一层的1/64,也就大约是在4.1868*11J/mol 到4.1868*20 J/mol之间。这个数值远小于分子的平均动能为http://ng1.17img.cn/bbsfiles/images/2012/08/201208091009_382645_2961690_3.jpg J/mol(4.1868*450j/mol)。因此吸附剂的表面依靠van der Waals作用能是不能够约束住溶质分子形成第二吸附层的。至于第三层、第四层则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382648_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091011_382649_2961690_3.jpg硅胶可以从水溶液中吸附碱金属离子,表3则列出了硅胶自水溶液中吸附无机碱计算值与实验值的比较。计算采用的公式为:http://ng1.17img.cn/bbsfiles/images/2012/08/201208091012_382650_2961690_3.jpg从计算结果可见,对于不同的碱金属离子有不同的A,B 值,但是不管是Li+、Na+ 、 K+还是NH4+,每吸附一个碱金属离子就要从硅胶表面顶替下来七个水分子。 带电荷的离子型化合物,由于电荷同性相排斥的原理,形成多层吸附则更不可能了。http://ng1.17img.cn/bbsfiles/images/2012/08/201208091013_382651_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382653_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208091026_382654_2961690_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208101148_382997_1688674_3.jpg 图6 一氧化碳在木炭上吸附量计算值与实验值的比较http://ng1.17img.cn/bbsfiles/images/2012/08/201208091027_382656_2961690_3.jpg计算的数值。 图6表示一氧化碳在木炭上吸附量计算值与实验值的比较。由图可见二元溶液单分子层吸附方程(1)在 p=0 的情况下也可以很好地描述气体的吸附过程。 结论:通过对van der Waals作用能的分析,解释了在溶液吸附只能形成单分子层吸附的原因。在过去推导的溶液吸附方程的基础上,拟合了多组吸附质、吸附剂的实验数据,得到良好结果。证明了溶液单分子吸附理论成立。所推导的溶液吸附公式成立。 参考文献 戴朝政,卢佩章,色谱 ,1994年第3期 戴朝政,第三届科学仪器网络原创大赛,二元溶液体系吸附方程的验证 赛冷LG,兰吉PW,加布里桑CD著,傅献彩等译。物理化学习题集,北京:人民教育出版社,1959:299。 严继民,张启元,高敬综。吸附与凝聚固体的表面与孔。北京:科学出版社。1986:93 段世铎,谭逸玲。界面化学。北京:高等教育出版社,1990:107 顾惕人编,傅鹰选集。北京:冶金工业出版社,1990:41

  • 氮吸附法测定比表面及孔隙率的技术

    任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出: Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.050.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P00.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来

  • 【原创大赛】官人代发:“诡异”的物理吸附等温线

    【原创大赛】官人代发:“诡异”的物理吸附等温线

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]通过物理吸附技术可以得到固体材料的比表面积、孔径分布、孔隙度、表面性质等结构信息,其在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。[b]习惯上,将由实验得到的吸附和脱附过程得到的等温线统称为吸附等温线。[/b]多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等信息。实验上,用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为N[sub]2[/sub]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图2)。由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。[align=center][img=,348,510]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935179761_1197_3224499_3.jpg!w348x510.jpg[/img] [/align][align=center]图1物理吸附等温线的最新分类[/align][align=center][img=,340,280]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935287586_8445_3224499_3.jpg!w340x280.jpg[/img][/align][align=center]图2 典型氮气吸脱附等温线[/align]理论上,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。而在脱附过程中,随着压力的持续减小,在相应的压力下吸附的气体分子逐渐脱离样品的表面。理论上,如果不考虑表面张力的作用,吸附曲线与脱附曲线应保持重合(图3)。由于表面张力作用的存在,导致在某一压力下吸附的分子不能在该压力下发生脱附。随着压力的进一步下降,这部分吸附的分子会进一步发生脱附,由此得到的吸附线与脱附线之间并不重合,形成了如图2所示的滞后环。在0.4~0.95之间的滞后环通常被看作介孔材料的典型特征。[align=center][img=,452,367]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935450026_3092_3224499_3.jpg!w452x367.jpg[/img][/align][align=center]图3[/align]然而,在实际上通过物理吸附实验得到的等温线与图1中IUPAC提出的分类方法并不一致,本文结合实验中得到的一些“诡异”的等温线谈一下这些引起这些诡异的等温线的原因,并给出相应的解决方案。概括来说,常见的异常等温线主要分为以下几类:[b]1 吸附支正常,脱附支逐渐与吸附支交叉并处于吸附等温线的下方[/b]这种类型的等温线如图4所示,图中红色曲线对应于吸附过程,紫色曲线则对应于脱附过程。由图可见,在脱附过程中,随着相对压力的减小,脱附支逐渐下降,在相对压力P/P[sub]0[/sub]=0.65处与吸附支相交,并保持持续降低。在相对压力低于0.65的压力范围内的吸附量始终低于吸附支所对应的数值。[align=center][img=,480,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935588561_2093_3224499_3.jpg!w480x405.jpg[/img][/align][align=center]图4[/align]图4中的这种现象主要是由于在实验过程中液氮液面的逐渐下降,导致样品所处的等温环境发生的变化,温度逐渐升高引起的。图4中的等温线多见于吸附量较大的多孔材料。对于这类材料除了应选择合适的样品量之外(不宜加入过多的样品量,由此会导致实验时间延长),还应注意根据实验所使用的杜瓦瓶的容积来及时添加液氮,使样品始终处于等温的环境下。[b]2. 吸附支基本正常,脱附支在实验过程中始终处于吸附支的下方[/b]如图5所示,所得到的等温线的吸附支基本正常,但等温线的脱附支始终处于吸附支的下方。与第一种情形类似,如果实验在较短的时间内完成(排除液氮液面的下降因素),此时应考虑样品量和脱气条件等因素。较少的样品量会引起测量的吸附量的绝对值降低,造成测量数据的准确性下降。另外如果脱气温度设置不当,也会产生类似的现象。过低的脱气温度会引起在表面或者孔道中存在的溶剂或水分子无法有效地去除而造成堵塞现象,过高的脱气温度则会造成孔道或者表面的塌缩,从而引起吸附量的下降。避免这种现象的有效方法是选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936126460_5937_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图5[/align][b]3. 等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降[/b]这种异常的等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降,如图6和图7所示。如前所述,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。由于脱附支曲线所对应的吸附量应大于等于吸附支所对应的吸附量,因此这类等温线得到的数据为异常数据,由等温线计算得到的孔径分布曲线、比表面积、孔容积等数据均是异常的数据。这种现象是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,412,344]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936274501_1625_3224499_3.jpg!w412x344.jpg[/img][/align][align=center]图6[/align][align=center][img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936394117_5512_3224499_3.jpg!w436x374.jpg[/img][/align][align=center]图7[/align][b]4. 等温线的吸附支和脱附支之间出现了两个交点,呈8字形[/b]这种类型的等温线的吸附量随着相对压力的升高整体保持增加的趋势,但在脱附过程中的脱附支曲线与吸附支有出现了两个交点,呈8字形,如图8所示。由于这种类型的等温线有一段(图8中P/P0在0.5-0.8之间)出现了脱附支所对应的吸附量位于吸附支曲线所对应的吸附量的现象,因此为异常曲线。这种类型的等温线通常是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936549772_8663_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图8[/align][b]5 等温线的吸附支和脱附支不闭合[/b]如图9和图10所示,等温线的吸附支和脱附支之间并没有发生了闭合现象,这种现象与图1 中的IUPAC所描述的几种类型的等温线出现了偏离。文献中对于这种类型的等温线也给出了不同的解释。理论上,出现这种不闭合的现象是由于发生了不可逆吸附造成的。在实际的数据分析过程中,应首先排除样品量和脱气条件的影响,如果这些条件都没有问题的话应结合样品的性质对于这种现象给出合理的解释。通常可以通过调整样品量和脱气条件来改善这种现象。对于不可逆吸附过程而言,可以通过不更换样品管原位多次重复吸附来证实。[align=center][b][/b][/align][align=center][img=,400,345]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937072894_6250_3224499_3.jpg!w400x345.jpg[/img][/align][align=center]图9[/align][align=center][img=,420,378]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937199101_3189_3224499_3.jpg!w420x378.jpg[/img][/align][align=center]图10[/align]

  • 重量法蒸汽吸附仪 简介

    重量法蒸汽吸附仪 产品简介重量法动态蒸汽吸附仪DVS系列在测量水和有机蒸汽在粉体表面吸附方面处于世界领先地位,它通过在一定相对湿度下气体通过样品后重量的变化来测定蒸汽吸附,比传统的干燥法测量更快,更节省时间。由于其独特的优势,DVS系列产品世界各地的实验室有广泛的应用,可用于研发部门以及质控部门确定产品结构、产品稳定性、吸湿性、包装和产品开发中固体材料存在的问题。结合了微天平、气体流动和蒸汽的测量技术的优势使用干燥的载气,通常为氮气,可以选择任何两个蒸汽源中的一个质量流量控制和独特的水和有机蒸汽浓度实时监控结合可以精确控制饱和干燥载气流量的比例整个体系的温度可以由选择,并且在闭合环条件下可以精确控制,以保证吸附质的蒸汽压恒定具有极其高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全 DVS Advantage软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准待测样品置于微量天平上,已知浓度的蒸汽通过样品,记录式微天平可以测量由蒸汽吸附或脱附引起的质量变化。这种动态流动环境易于快速研究吸附/脱附过程。如果进一步实验选择需要,样品可以首先预热,这样可以加速体相吸附或者无机氧化物干燥过程的分析循环时间。加热过程可独立进行或通过软件来控制升温速率。

  • 活性炭吸附的优点及其在VOCs 治理中的应用

    [size=3]1 活性炭吸附的优点及其在VOCs 治理中的应用活性炭微孔结构高度发达,使它具有很大的比表面积,由表面效应所产生的吸附作用是活性炭吸附最明显的特征之一。活性炭吸附主要有以下特点:(1)活性炭是非极性的吸附剂,能选择吸附非极性物质;(2)活性炭是疏水性的吸附剂,在有水或水蒸气存在的情况下仍能发挥作用;(3)活性炭孔径分布广,能够吸附分子大小不同的物质;(4)活性炭具有一定的催化能力; (5)活性炭的化学稳定性和热稳定性优于硅胶等其他吸附剂。活性炭吸附法适用于大风量、低浓度、温度不高的有机废气治理。此法工艺成熟,效果可靠,易于回收有机溶剂,因此被广泛地应用于化工、喷漆、印刷、轻工等行业的有机废气治理,尤其是苯类、酮类的处理。王淑勤等[7]利用亚硫酸氢钠和碳酸钠改性的活性炭对室内空气污染中甲醛进行了治理研究,考察了颗粒活性炭、粉末活性炭、改性活性炭对甲醛去除率的影响,测试了改性活性炭的平衡吸附量,吸附穿透时间。结果表明,亚硫酸氢钠和碳酸钠改性的活性炭对甲醛的去除率为 60 %,动态治理后能够达到国家室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量标准。 2 活性炭吸附挥发性有机气体的影响因素 2.1 活性炭孔隙结构对VOCs 吸附的影响孔隙结构是指孔隙容积、孔径分布、表面积和孔的形状。按照杜比宁(Dubinin)的分类,孔的半径(r) 苯甲苯。通常而言,吸附能力随吸附质的相对分子质量增大而提高,即有机物相对分子质量越大,穿透时间越长。但这个实验中,苯比甲苯的穿透时间长,这估计是因为活性炭具有非极性表面,在较低的浓度下更易于吸附同为非极性物质的苯。 2.5 混合VOCs 对活性炭吸附的影响多组分VOCs 吸附时,除了各组分吸附亲和力大小不同外,各吸附组分之间会发生相互作用和竞争效应,使得吸附过程复杂化。活性炭对不同有机废气吸附的过程中其吸附结合常数不同,而有机废气在活性炭表面的吸附过程实际上是一个吸附和解离相平衡的过程,当吸附能力强的有机废气达到一定浓度后必然对吸附能力弱的有机废气的吸附位点形成竞争性结合,使得吸附能力弱的有机废气解离量大于吸附量,从而在局部形成浓度高于进气浓度的现象,当这种竞争性结合达到稳定之后,吸附能力弱的有机废气在活性炭上的吸附和解离又重新达到平衡,其表现在穿透曲线上即为浓度跃升现象。金一中等[16]对MA-70 型活性炭吸附苯、甲苯进行了研究,结果表明,MA-70 活性炭对甲苯的吸附能力强于苯,吸附能力较强的甲苯组分能将已被吸附的苯组分置换出来。王长林[17]对多组分有机气体(包括乙酸乙酯、正己烷、丁酮和氯仿)在活性炭上的吸附行为进行了考察,结果表明:活性炭对非极性乙酸乙酯和极性丁酮的吸附能力非常接近,对正己烷的吸附能力稍差,对氯仿的吸附能力最差。吸附能力弱的有机废气发生浓度跃升现象,但吸附能力强的有机废气不能完全置换吸附能力弱的有机废气。 2.6 其他因素对活性炭吸附的影响温度、流量、吸附柱填充密度等对活性炭的吸附也有影响。孙辉[11]研究了吸附法去除室内苯系物,结果表明,气流量加大会较快到达穿透点和吸附饱和点,使穿透曲线发生左移,曲线斜率不变;填充密度对穿透时间与饱和时间都有影响,密度大有利于吸附。 3 总结活性炭吸附法是处理挥发性有机气体最广泛应用的方法。本文归纳了活性炭吸附有机气体的几个重要影响因素,指出活性炭的孔隙结构及其活化方法对挥发性有机气体的吸附有重要的影响,并指出了进气的初始浓度越高,到达穿透点时间和完全饱和时间越短;VOCs 的物化性质(如吸附质的极性、分子质量、沸点等)对穿透点有影响;多组分有机气体共存时,会发生相互作用和竞争效应,吸附能力强的有机废气置换吸附能力弱的有机废气,从而在局部形成浓度高于进气浓度的现象。此外,温度、流量、吸附剂填充密度等也是重要的影响因素。在实际应用中,应该结合考虑活性炭吸附VOCs 的综合影响因素,设计出最佳的工业应用参数和流程。[/size]

  • 吸附率问题

    我想请问一下,就是我用自己合成的材料(固相萃取)富集增塑剂,富集之后收集富集残液,上液相色谱仪检测,发现在目标物出峰位置没有出峰;然后用甲醇洗脱之前吸附过增塑剂的柱子,收集洗脱液上液相色谱仪测试,在目标物出峰位置出峰了,这样我的吸附率怎么计算呢

  • 煮沸或吸附方法可去除自来水中超标苯

    4月11日,兰州自来水检测出苯含量超标,最高的检测值达到200微克/升,远超出国标中10微克/升的限值。随后,网上盛传的几种去除水中苯含量的方法引起了网民的讨论。央视《是真的吗》记者到第三方检测机构进行了实地检测验证。  据了解,苯,在常温下是一种无色、有甜味的透明液体,低毒。网上流传的去除水中苯含量的方法有冷冻结晶法、煮沸蒸发法、吸附过滤法,并强调去除率都能达到90%以上。事实是否如此?记者来到了一家专业的第三方检测机构进行检测验证。  本次实验,记者将一般自来水中添加苯标注溶液进行试验,用以检测化学物质苯的去除情况。检测员配置成浓度为200微克/升的、含有苯的样品溶液,分成三份。采取网上流传的三种去除超标苯的方法进行逐一验证。  网传去除水中超标苯方法一:“冷冻结晶法”   验证:有一定作用 但仍会残留   网传方法一:将含苯饮用水冷冻至结冰率达80%到90%,取出冰块融化成水即可使用。按照网民的说法,记者把含有苯的饮用水放置冰箱中冷冻。待样品水结冰率达到90%左右,取出样品,静置冰块融化成水。然后按照《生活饮用水标准检验方法》,记者开始对溶化后的水中苯的含量进行检测发现,样品水中苯的浓度由200微克/升降至100微克/升,去除率为50%.这种方法虽然有一定作用,但还会有大量的苯残留。  网传去除水中超标苯方法二:“煮沸蒸发法”   验证:去除率约为100%   网传方法二:将含苯饮用水煮沸3-4分钟,将蒸发的气体排出室外。检测人员把含有苯的样品水进行加热。经过检测,通过煮沸沸腾法,样品水中苯的含量已经检测不到了。去除率约为100%,这是为什么呢?北京科卓检测技术有限公司技术部主任王憬告诉记者:“这是由于苯的密度是比较低的,是0.88g/ml,要比水的密度低,所以它是会浮在水的表面。而苯的沸点又只有80.1摄氏度,是属于易挥发的物质,所以就是在煮沸的过程中,它就很容易的从水中挥发出来,就直接排到了空气中。”  网传去除水中超标苯方法三:“吸附过滤法”   验证:去除率约为100%   网传方法三:在含苯水中加入6%的活性炭,8-10分钟后滤出。按照这种说法,检测人员把样品液与6%的活性炭混合在一起,再静置10分钟,最后再把水样过滤。经检测,通过吸附过滤法,样品水里没有再检测出苯,也就是说这种方法的去除率也约为100%.北京科卓检测技术有限公司技术部主任王憬说:“吸附法用的吸附剂是活性炭,活性炭有很强的吸附作用,用途也非常广泛。”  实验证明,煮沸和活性炭吸附的方法都可以有效去除苯。但是记者并不提倡引用这样的水。如果是必须选择苯超标的水时,可以参考后两种方法处理再饮用。

  • 【求助】讨论 吸附,解离具体过程怎样

    大家都只知道大致原理就觉的行,如流动相载着分析物通过色谱柱,在里面被吸附,解离,最后按保留顺序流出。在里面被吸附,解离具体过程怎样,大家可讨论下。就象大家都知道有万有引力,但为什么有万有引力,都不知道。扯得太远,呵呵

  • 材料中物理吸附

    在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。

  • 【求助】跪求Tenax-Ta吸附管信息

    最近做实验,想换个新的方法,第一次要用这东西,是个小白,我想问下,如果用这个东西吸附过物质后,可以用液体淋洗出来检测物吗,Tenax-Ta吸附管,会不会像GC的毛细管柱一样看上去完全被填料填实了?淋洗液过不去,

  • [求助]循环伏安-吸附控制和表面控制过程的异同?

    循环伏安中,一般通过峰电流和扫速的关系可以区别:扩散控制和吸附控制两种电化学过程。扩散控制的Ip~V^1/2的公式可以查到,其斜率能反映电化学反应的快慢等信息。但是,吸附控制的Ip~V的关系有公式吗?其斜率又体现了什么信息?我只查到了表面控制的电流扫速关系(单分子吸附层模型的),Ip~V斜率与表面吸附量有关系,[em50] 请问高手,吸附控制的过程有没有电流扫速方程?可否与表面控制过程类比?Ip~V斜率能体现关于电化学过程的什么信息?谢谢啦!

  • 【分享】水处理——什么叫吸附法?

    [size=4][/size]1、[url=http://www.samsco.com.cn/KWD_%CE%FC%B8%BD.htm][u][color=#000080]吸附[/color][/u][/url]原理固体表面有吸附水中溶解及[url=http://www.samsco.com.cn/KWD_%BD%BA%CC%E5.htm][u][color=#000080]胶体[/color][/u][/url]物质的能力,比表面积很大的[url=http://www.samsco.com.cn/KWD_%BB%EE%D0%D4%CC%BF.htm][u][color=#000080]活性炭[/color][/u][/url]等具有很高的吸附能力,可用作[url=http://www.samsco.com.cn/KWD_%CE%FC%B8%BD%BC%C1.htm][u][color=#000080]吸附剂[/color][/u][/url]。吸附可分为物理吸附和化学吸附。如果吸附剂与被吸附物质之间是通过分子间引力(即范德华力)而产生吸附,称为物理吸附;如果吸附剂与被吸附物质之间产生化学作用,生成化学键引起吸附,称为化学吸附。[url=http://www.samsco.com.cn/KWD_%C0%EB%D7%D3%BD%BB%BB%BB.htm][u][color=#000080][u][color=#000080]离子[/color][/u][/url]交换[/color][/u]实际上也是一种吸附。物理吸附和化学吸附并非不相容的,而且随着条件的变化可以相伴发生,但在一个系统中,可能某一种吸附是主要的。在污[url=http://www.samsco.com.cn/KWD_%CB%AE%B4%A6%C0%ED.htm][u][color=#000080]水处理[/color][/u][/url]中,多数情况下,往往是几种吸附的综合结果。一定的吸附剂所吸附物质的数量与此物质的性质及其浓度和温度有关。表明被吸附物的量与浓度之间的关系式称为吸附等温式。目前常用的公式有二:弗劳德利希(Freundlich)吸附等温式,朗格缪尔(Langrnuir)吸附等温式。2、影响吸附的因素吸附能力和吸附速度是衡量吸附过程的主要指标。固体吸附剂吸附能力的大小可用吸附量来衡量。吸附速度是指单位重量吸附剂在单位时间内所吸附的物质量。在水处理中,吸附速度决定了[url=http://www.samsco.com.cn/KWD_%CE%DB%CB%AE.htm][u][color=#000080]污水[/color][/u][/url]需要与吸附剂接触的时间。吸附速度快,则所需的接触时间就短,吸附设备的容积就小。多孔性吸附剂的吸附过程基本上可分为三个阶段:颗粒外部扩散阶段,即吸附质从溶液中扩散到吸附剂表面;孔隙扩散阶段,即吸附质在吸附剂孔隙中继续向吸附点扩散;吸附反应阶段,吸附质被吸附在吸附剂孔隙内的吸附点表面。一般,吸附速度主要取决于外部扩散速度和孔隙扩散速度。颗粒外部扩散速度与溶液浓度成正比,也与吸附剂的比表面积的大小成正比。因此吸附剂颗粒直径越小,外部扩散速度越快。同时,增加溶液与颗粒间的相对运动速度,也可以提高外部扩散速度。孔隙扩散速度与吸附剂孔隙的大小和结构,吸附质颗粒的大小和结构等因素有关。一般,吸附剂颗粒越小,孔隙扩散速度越快。吸附剂的物理化学性质和吸附质的物理化学性质对吸附有很大影响。一般,极性分子(或离子)型的吸附剂容易吸附极性分子(或离子)型的吸附质;非极性分子型的吸附剂容易吸附非极性的吸附质。同时,吸附质的溶解度越低,越容易被吸附。吸附质的浓度增加,吸附量也随之增加。污水的pH值对吸附也有影响,活性炭一般在酸性条件下比在碱性条件下有较高的吸附量。吸附反应通常是放热反应,因此温度低对吸附反应有利。3、吸附剂吸附剂的种类很多。常用是活性炭和腐植酸类吸附剂。(1).活性炭在生产中应用的活性炭的种类很多。一般都制成粉末状或颗粒状。粉末状的活性炭吸附能力强,制备容易,价格较低,但再生困难,一般不能重复使用。颗粒状的活性炭价格较贵,但可再生后重复使用,并且使用时的劳动条件较好,操作管理方便。因此在水处理中较多采用颗粒状活性炭。活性炭的比表面积可达800—2000m2/g,有很高的吸附能力。颗粒状活性炭在使用一段时间后,吸附了大量吸附质,逐步趋向饱和并丧失工作能力,此时应进行更换或再生。再生是在吸附剂本身的结构基本不发生变化的情况下,用某种方法将吸附质从吸附剂微孔中除去,恢复它的吸附能力。活性炭的再生方法主要有:1)加热再生法在高温条件下,提高了吸附质分子的能量,使其易于从活性炭的活性点脱离;而吸附的有机物则在高温下氧化和分解,成为气态逸出或断裂成低分子。活性炭的再生一般用多段式再生炉。炉内供应微量氧气,使进行氧化反应而又不致使炭燃烧损失。2)化学再生法通过化学反应,使吸附质转化为易溶于水的物质而解吸下来。(2)腐植酸类吸附剂用作吸附剂的腐植酸类物质主要有:天然的富含腐植酸的风化煤、泥煤、褐煤等,它们可以直接使用或经简单处理后使用;将富含腐植酸的物质用适当的粘合剂制备成的腐植酸系树脂。4、吸附工艺和设备吸附的操作方式分为间歇式和连续式。间歇式是将废水和吸附剂放在吸附池内进行搅拌30min左右,然后静置沉淀,排除澄清液。间歇式吸附主要用于小量废水的处理和实验研究,在生产上一般要用两个吸附池、交换工作。在一般情况下,都采用连续的方式。连续吸附可以采用固定床、移动床和流化床。固定床连续吸附方式是废水处理中最常用的。吸附剂固定填放在吸附柱(或塔)中,所以叫固定床。移动床连续吸附是指在操作过程中定期地将接近饱和的一部分吸附剂从吸附柱排出,并同时将等量的新鲜吸附剂加入柱中。所谓流化床是指吸附剂在吸附柱内处于膨胀状态,悬浮于由下而上的水流中。由于移动床和流化床的操作较复杂,在废水处理中较少使用。在一般的连续式固定床吸附柱中,吸附剂的总厚度为3~5m,分成几个柱串联工作,每个柱的吸附剂厚度为1~2m。废水从上向下过滤,过滤速度在4~15m/h之间,接触时间一般不大于30~60min。为防止吸附剂层的堵塞,含悬浮物的废水一般先应经过砂滤,再进行吸附处理。吸附柱在工作过程中,上部吸附剂层的吸附质浓度逐渐增高,达到饱和而失去继续吸附的能力。随着运行时间的推移,上部饱和区高度增加而下部新鲜吸附层的高度则不断减小,直至全部吸附剂都达到饱和,出水浓度与进水浓度相等,吸附柱全部丧失工作能力。在实际操作中,吸附柱达到完全饱和及出水浓度与进水浓度相等是不可能的,也是不允许的。通常是根据对出水水质的要求,规定一个出水含污染物质的允许浓度值。当运行中出水达到这一规定值时,即认为吸附层已达到“穿透”,这一吸附柱便停止工作,进行吸附剂的更换。5、吸附法在[url=http://www.samsco.com.cn/KWD_%CE%DB%CB%AE%B4%A6%C0%ED.htm][u][color=#000080][u][color=#000080]污水处理[/color][/u][/url][/color][/u]中的应用由于吸附法对进水的预处理要求高,吸附剂的价格昂贵,因此在废水处理中,吸附法主要用来去除废水中的微量污染物,达到深度净化的目的。如:废水中少量重金属离子的去除、少量有害的生物难降解有机物的去除、脱色除臭等。

  • 林地内空气挥发物成分测定,采用吸附-洗脱-GC/MS过程,请指导。

    目的:测定不同树种(单体)、林地(群体)释放的挥发性有机物成分及含量。现有资料显示,主要是烯萜类物质,也有少量醇、酮、酯类,烷烃,但是量很少,含量和种类上都很少。 查阅资料方法如下: 大气采样仪,将空气通过TCT采样管(采用0.12gTenax-TA吸附剂处理的),然后样品管采用热脱附(TCT过程);脱附后直接进入GC/MS中进行测定。 现有条件,没有热脱附条件。有研究生提出溶剂洗脱,具体如下: (1)TCT管较贵,可采用玻璃管(玻璃棉堵塞端口即可),填入吸附剂后,当做吸附管;吸附管需要老化,可采用正戊烷过一下,去除杂质。(2)随后进入野外进行采集。(3)采集后,用正戊烷洗脱,分析纯洗脱两次,质谱纯洗脱一次。(4)浓缩后,进入GC/MS进行分析,采用顶空或者SPME都可以。整个过程没有人具体做过,所以来此请教。 问题:此方法是否科学可行;关键几个术语:老化;洗脱;浓缩。 老化,看资料是进入GC/MS仪器中进行TCT管老化。我用正戊烷冲洗吸附剂填充的玻璃管,算是老化吗。 洗脱,采集空气后,正戊烷能把吸附管内的挥发性有机物洗脱出来吗,洗脱液之间进入顶空瓶吗,只能用橡胶垫密封,不能用硅胶垫密封。 浓缩,不知道怎样进行? 上述过程完后,采用顶空或SPME哪种方法应该更好些。 洗脱采用:正戊烷,正己烷,氯仿,二氯甲烷,可以吗?哪种比较合适。 我的问题较多,希望大家多指导。 我不知道应该放在哪个版块合适,不合适的话,烦请版主帮忙。 真诚感谢大家。

  • 搅拌棒吸附萃取

    介绍 环境、生物药物、食品和香料中的有机物的分析通常需要将待测物从基质(饮用水、废水、体液、饮料等)中提取和富集。目前大多数样品前处理方法包括液-气萃取或平衡法(冲洗和收集,顶空分析),液-液萃取或固相萃取。 过去几年里,微型化已成为分析化学的一个主要趋势。样品前处理方法微型化的典型事例包括微量液-液萃取(瓶内萃取),室温静态顶空和盘式固相萃取。通过与先进的分析仪器联用,在保证或提高检测灵敏度的前提下,这项技术实现了更快的分析速度,更高的样品通量、较低的溶剂消耗、较低的劳动力花费。几十年前,Arthur和Pawliszyn 提出了一种新的微萃取的方法,即固相微萃取(SPME)。80年代中期,不同研究小组分别报道了采用涂有PDMS薄膜的开管柱收集阱,以聚二甲基硅氧烷作为萃取介质对含水样品或气相中有机物进行萃取的实例。以PDMS作为介质的萃取是基于物理吸着而不是化学吸附作用。如Baltussen等所述,吸着性浓集与吸附过程相比具有多种优点。这些优点包括浓集效果可以预测,不存在转移效应,吸附材料化学性质稳定,可在较温和条件下快速解吸。但是,实际应用中的局限(低载样量,低上样体积……)限制了PDMS涂层开管柱收集阱的应用。另一方面,SPME是一种使用十分简便、快捷的技术。在针的外层涂有一薄层PDMS膜(7-100μm)作为萃取介质。吸附完成后,化合物在GC进样器中热解吸或在LC进样器中进行液体解吸。与PDMS涂层的开管柱收集阱不同的是,SPME本质上是一种相平衡技术,该技术基于溶质在硅氧烷相及水相分配行为的差异进行提取。近来研究发现,这一平衡与溶质在辛醇/水中的分配系数(KO/W)有关。这些研究表明,当溶质的KO/W较低(KO/W10000)时,其回收率也较低,这主要是由于水相和PDMS相两相间的相比较大产生的。SPME中PDMS的用量常常只有0.5μl或更少,因此限制了样品在PDMS纤维上的富集量。基于上述研究,近年来开发出了一种新的使用PDMS涂层搅拌棒进行萃取的方法。在这种方法中,PDMS的用量为50-300μl,因此,检测灵敏度增加了100到1000倍。当溶质的KO/W大于500时,可获得100%的回收率。当溶质的KO/W在10到500之间时,可采用SPME相同的方法对分析结果进行校正。这项技术称为搅拌棒吸附萃取(SBSE)。

  • 废水石油类分析

    在石油类检测实验过程,其中萃取/吸附过程中有机相损失较严重,加25ml损失达10ml。请问你们有没有这样情况?是怎么解决的呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制