当前位置: 仪器信息网 > 行业主题 > >

稀土粉

仪器信息网稀土粉专题为您整合稀土粉相关的最新文章,在稀土粉专题,您不仅可以免费浏览稀土粉的资讯, 同时您还可以浏览稀土粉的相关资料、解决方案,参与社区稀土粉话题讨论。

稀土粉相关的论坛

  • 稀土抛光粉

    各位大侠,有谁做过稀土抛光粉的,我用酸溶和碱溶都没有把样品消解完全。跪求前处理方法,测试里面的氧化镧和氧化铈

  • 稀土抛光粉是怎么消解的?

    我手上的稀土抛光粉中氧化铈占稀土氧化物总量的80%左右,氧化镧占18%左右,稀土氧化物总量≥96%。我的称样量是0.5g,一开始采用硝酸+双氧水体系溶解,体积比1:1(硝酸和双氧水各加了20mL以上),电热板温度200℃,可是最终无论补多少酸,甚至温度升高二三十度都始终有一点点非常细的粉末溶解不掉。后面又采用高氯酸+双氧水体系,体积比2:1(高氯酸20mL,双氧水10mL),可是无论怎么补加酸或者升温,溶液里始终有大量的细小的薄片状的白色固体漂浮在液体里。请问有没有大神做过稀土抛光粉,究竟应该怎么才能把0.5g给彻底溶清?求不吝赐教!

  • 稀土精矿化学分析方法

    GB/T 18114.1-2010 稀土精矿化学分析方法 稀土精矿化学分析方法第1部分:稀土氧化物总量的测定 重量法GB/T 18114.2-2010 稀土精矿化学分析方法 第2部分:氧化钍量的测定 GB/T 18114.3-2010 稀土精矿化学分析方法 第3部分: 氧化钙量的测定 GB/T 18114.4-2010 稀土精矿化学分析方法 第4部分:氧化铌、氧化锆、氧化钛量的测定电感耦合等离子发射光谱法GB/T 18114.5-2010 稀土精矿化学分析方法 第5部分: 氧化硅量的测定GB/T 18114.6-2010 稀土精矿化学分析方法 第6部分:氧化铝量的测定 电感耦合等离子发射光谱法GB/T 18114.7-2010 稀土精矿化学分析方法 第7部分: 氧化铁量的测定 重铬酸钾滴定法GB/T 18114.8-2010 稀土精矿化学分析方法 第8部分:十五个稀土元素氧化物配分量的测定 电感耦合等离子体发射光谱法GB/T 18114.9-2010 稀土精矿化学分析方法 第9部分:五氧化二磷量的测定 磷铋钼蓝分光光度法GB/T 18114.10-2010 稀土精矿化学分析方法 第10部分:水分的测定 重量法GB/T 18114.11-2010 稀土精矿化学分析方法 第11部分:氟量的测定 蒸馏-EDTA滴定法

  • 【求助】稀土检测线性求助

    本人现在要做稀土样品,可是一直没有机会好好学习稀土检测,不知道分光光度计所检测稀土的吸光值线性是怎么样的?有哪位大哥可以提供一下稀土检测的可个标准的吸光值,供小弟我参考下。万分感谢![em06]

  • 稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析

    稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析

    稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析摘要:本文研究了应用ICP-AES 分析技术测定稀土元素的方法。考察了各种共存元素对La、Ce、Pr、Nd 和Sm 元素多条谱线的影响情况。选择了合适的分析谱线,确定了仪器工作参数和分析条件。进行了样品加标回收试验和精密度试验,回收率在92%~106%之间,相对标准偏差小于5%。 关键词:稀土硅铁合金稀土硅铁镁合金镧铈镨钕钐 ICP-AES http://ng1.17img.cn/bbsfiles/images/2014/11/201411191622_523652_3238_3.jpg 1 前言 稀土硅铁合金和稀土硅铁镁合金在球铁冶炼过程中广泛使用,其含量及用量对生产影响较大,加入量有严格规定。各种稀土元素对生产和产品性能影响不同,因此,单一稀土元素分析已成为材料研究和生产中必不可少的项目。 稀土元素由于化学性质相似,很难相互分离和分别测定,传统化学分析是测定混合稀土总量。混合稀土单一分量测定,最常用的方法是X 射线荧光光谱法,但这种分析技术灵敏度不高,基体干扰严重。ICP-AES法由于灵敏、基体干扰小,目前已成为稀土元素光谱分析重要手段。高纯稀土氧化物中杂质稀土元素分析报道最多,土壤、肥料、植物、金属与合金也有报道。 我们采用上海泰伦分析仪器生产的DGS-Ⅲ型电感耦合等离子体发射光谱仪,开展了稀土硅铁合金和稀土硅铁镁合金中稀土单一分量分析方法研究。 2 试验部分 2.1 仪器及工作条件 上海泰伦分析仪器有限公司生产DGS-Ⅲ型电感耦合等离子体发射光谱仪仪器工作条件:冷却气14L/min;护套气0.3L/min;载气0.425L/min;溶液提升量:1.2mL/min.;功率0.97 kW;观测高度为感应线圈上方15mm。 2.2 试剂及标准溶液 实验中使用的硝酸、氢氟酸、高氯酸、盐酸均为分析纯试剂,水为蒸馏水。 各元素标准溶液均采用国家标准物质。 2.3 样品溶液的制备 准确称取0.1000g样品(预先过120目筛)于铂金或聚四氟乙烯烧杯中,加少量水湿润后,加入5mL硝酸,再滴加3~5mL氢氟酸。低温加热溶解试样,待试样溶解完全后,加入5mL 高氯酸,继续加热至冒烟。溶液体积蒸发至1mL 左右取下冷却,加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL容量瓶中,用蒸馏水稀释至刻度,摇匀待测。 2.4 混合标准溶液的制备 称取0.0300g 高纯铁数份于100mL 玻璃烧杯中,加入5mL 硝酸和5mL 高氯酸,低温溶解。待试样溶解完全后,加热冒高氯酸烟,蒸发溶液体积至1mL 左右取下,稍冷后加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL 容量瓶中,吸取适量各元素纯标准溶液,按表组成,配制成混合标准溶液系列。3 结果与讨论 3.1 试样溶解 采用硝酸和氢氟酸分解稀土硅铁合金、稀土硅铁镁合金试样,溶液中剩余氢氟酸采用高氯酸高温加热冒烟赶氟。采用本方法溶解试样,样品分解完全,溶液清亮。 3.2 分析谱线的选择 根据被测试样组成、被测元素及共存元素含量初步选择谱线,并对各条谱线光谱干扰情况进行了实际考察。3.2.1基体影响及消除 试样经高氯酸冒烟处理后,主量元素之一硅生成氟化物挥发了,因此,溶液中铁为基体,只要考虑铁对被测元素的影响。结果表明;除Pr422.535nm 谱线外,铁量小于500μg/mL 时,对La333.749nm 线、Ce413.765nm 线、Nd430.358nm 线的影响很小,其干扰可忽略。其它分析线不受影响。大部分谱线基线强度不随铁量变化,采用高纯铁配制标准溶液系列,对含铁量进行大致匹配后进行试样分析,可以得到正确结果。本方法铁匹配量为300μg/mL。 3.2.2 共存元素的影响 溶液中除被测元素外,还含有锰、镁、钙、钛等共存元素。配制上述元素纯标准溶液,分别在表2所列分析波长附近进行谱线扫描,将各种谱线轮廓图重叠比较,发现Mn100μg/mL,Mg100μg/mL、CaTi50μg/mL、Al10μg/mL 不干扰La333.749nm 线和La398.852nm 线测定,也不干扰Nd406.109nm、Nd430.358nm 和Nd415.608nm 谱线测定,Pr422.293nm 谱线也不受干扰。Nd401.225nm 线受Ca 和Ti 线尾翼重叠干扰,其它元素对它不干扰。Ca、Ti 对Sm422.434nm 谱线的影响可忽略不计,其它元素对此线不干扰。 3.2.3 被测元素之间相互影响及消除 配制稀土元素单一标准溶液,其含量分别为La、Ce、Pr、Nd、Sm100μg/mL、Ce150μg/ mL、Pr15μg/ mL、Sm10μg/mL,在各元素谱线波长附近分别作光谱扫描图,通过比较谱线轮廓图,认为La333.749nm谱线和La398.852nm 谱线受其它元素干扰影响较小,一般不影响0.5ug/mL 以上La 的测定。实际样品中,由于稀土元素组成较固定,且含量远低于试验量,因此,实际干扰影响更小。 Sm442.434nm 谱线受Ce 干扰,含铈高时会影响含量在1ug/mL 以下Sm 的测定。 La 和Sm 100μg/mL、Ce 150μg/mL 不干扰Nd430.358nm 谱线测定;Pr100μg/mL 有光谱干扰,但溶液中含镨量不会这么高,而且测定时可采用含镨的溶液代替空白液作低标消除影响。 Nd415.608nm 线:La 100μg/mL、Sm10μg/mL、和Pr15μg/mL 不干扰测定,Sm、Ce、Pr100μg/mL对该谱线有干扰。 Nd406.109nm 谱线:Sm、Pr100μg/mL 溶液对该谱线有部分重叠干扰,影响1μg/mL 含量Nd 的测定。 Ce100μg/ml、Sm10μg/mL 和Pr15μg/mL 不干扰0.1μg/mL 以上Nd 量的测定。 Nd401.225nm 线受铈元素干扰,含铈量150μg/mL 时产生严重干扰、无法测定钕量。 对Pr422.293nm 谱线,La 100μg/mL 不干扰镨量测定;Ce 和Nd100μg/mL 有尾翼重叠干扰;Sm100μg/mL、Nd 使谱线背景增大;Sm10μg/mL 基本不干扰Pr 的测定。 对Pr417.939nm 谱线,Ce、Sm、Nd100μg/mL 有直接和部分重叠干扰,特别是Nd 产生严重干扰,该线应舍弃。 Ce412.765nm 谱线,受La100μg/mL、Pr、Nd、Sm 影响较小;Sm10μg/mL 不干扰铈的测定。 综合考虑铁基体、共存元素之间干扰情况,选择了干扰小、且易消除的谱线作为分析谱线见表3。试样中La、Ce、Pr、Sm 和Nd 组成比例较固定,所测定稀土元素含量高时,以含稀土元素的低标溶液代替空白溶液作曲线,可消除稀土元素之间的影响,采用基体匹配后,铁基体和其它共存元素不干扰测定。3.3 ICP 仪器工作参数 我们以等效背景浓度值为考察指标,逐个改变功率、冷却气流量、载气流量和观测高度,观察各种参数变化对测定的影响,通过多次试验、折衷选择适用于多元素同时测定的工作参数,以保证大多数元素特别是灵敏度差的元素能有较好的检出能力。功率0.97kW;观测高度为感应线圈上方15mm;冷却气流量14L/min;载气流量0.425μg/mL. 3.4 方法检出限3.5 精密度试验 采用含不同稀土量的稀土硅铁合金、稀土硅铁镁合金标准样品,按试样分解方法处理,在同样的分析条件下,分别进行6 次测定,计算出平均值和相对标准偏差。结果表明:五种元素测量精密度均比较好,RSD 小于5%。3.6 加标回收试验 按样品处理方法分解稀土硅铁合金、稀土硅铁镁合金标准样品,在标准样品溶液中加入适量的稀土元素,测定各元素含量,计算回收率,结果见表6。各元素回收率在92%-106%之间。3.7 标准样品分析 采用本方法对稀土硅铁合金和稀土硅铁镁合金标准样品进行了测定。由于市售标准样品中无稀土元素分量值,我们将测定结果与混合稀土总量标准值进行了对照。4结束语本文提出了应用ICP-AES 法测定稀土硅铁合金、稀土硅铁镁合金中单一稀土分量方法,通过选择分析谱线、基体匹配等方法消除了共存元素之间相互影响,不需进行化学分离,可直接测定混合稀土元素中镧、铈、镨、钕、钐单一分量。方法简便,适用于材料日常检验。

  • 【求助】稀土检测吸光值

    本人现在要做稀土样品,可是一直没有机会好好学习稀土检测,不知道分光光度计所检测稀土的吸光值线性是怎么样的?有哪位大哥可以提供一下稀土检测的可个标准的吸光值,供小弟我参考下。万分感谢!

  • 稀土硅铁的粒度效应

    请问大家,稀土硅铁测镁、钙、硅、稀土总量、铝有什么快速的方法 没?我们现在是用X射线分析,可是最近最到一个问题,就是样品用制样机研磨成粉末时,研磨时间不一样,镁含量也不一样,制样机经常出问题,导致分析结果不准确。大家有什么其它设备可以快速分析的,或是什么好的制样机推荐的??

  • 稀土纯度测定

    您好!请问稀土纯度分析是否只测定一下稀土杂质然后用稀土总量减去稀土杂质.再除以稀土总量就得到纯度了?

  • 什么是稀土?

    由于近来工作需要检验稀土,查得一篇文章与大家分享。什么是稀土? 稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。

  • 稀土的介绍

    稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组:轻稀土包括:镧、铈、镨、钕、钷、钐、铕、钆。重稀土包括:铽、镝、钬、铒、铥、镱、镥、钪。版友们,你们是否做过或者正在从事稀土方面的测试,能否分享下前处理方法跟仪器分析经验?

  • 等离子体光谱测定稀土

    国产WLY100-1型等离子体顺序扫描光谱仪在痕量稀土组份分析中的应用研究陈小珍 沈长春( 浙江省地质矿产研究所 )摘要:将岩石矿样经过Na2O2-NaOH熔融后,经过沉淀和离子交换两次分离富集,用国产ICP顺序扫描光谱仪对稀土组份进行全分析。关键词:沉淀 离子交换 稀土组份全分析 稀土元素广泛应用于地质调查、医疗卫生、农业微肥、食品、激光晶体、超导与储氢材料和原子能工业等各个领域,对稀土元素的组份分析自然必不可少。目前,国内外主要的分析手段有:中子活化、质谱、ICP-质谱、X-荧光光谱及ICP-AES等,因为中子活化、MS、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]设备昂贵,XRF检出限差,都难以推广,而ICP-AES以其检出限好、稳定、效率高、价格便宜等优点成为首选办法,但目前国内开展的ICP-AES分析稀土组份都采用进口仪器,尤其浙江省进口ICP-AES仪器不少,可是用光电直读法对15个稀土组份分析尚为空白,而采用国产ICP-AES对稀土15个元素组份分析在国内也未见报道。本研究将岩石矿样经Na2O2-NaOH熔融后,经过沉淀和离子交换两次分离杂质,并富集稀土元素,引入等离子矩管中,对国产ICP光电直读光谱仪进行条件实验,得到一项稳定的国产ICP顺序扫描光谱仪对痕量稀土组份分析的方法,方法检出限为1×10-7-1×10-9,精密度RSD5%。1试验部分1.1仪器与试剂 WLY100-1等离子单道扫描光电直读光谱仪(北京地质仪器研究所)工作参数: 功率: 0.84Kw 积分时间: 0.1s 载气: 0.25L/min 火焰高度: 18mm等离子气:13L/min 测量方法:峰高732型强酸性阳离子交换树脂混合提取液(每100ml水中5ml三乙醇胺0.25gEGTA)Na2O2、NaOH、H2SO4(均为分析纯)标准储备液:分别称取已在850℃灼烧后的各种稀土氧化物,用优级纯的盐酸配制成1ml含1mg各稀土储备液100ml,10×10-2盐酸介质。工作标准用液:μg/ml表一 标准系列表含量 元素序号La、Ce、Nd、YPr、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu110.12101由标准储备液逐个分别吸取,并稀释至1号和2号标准溶液,以10×10-2盐酸作为标准零点。1.2分析手续称取0.2g待测岩矿样品,于刚玉坩锅中加入Na2O25克,搅匀,覆盖一层NaOH, 置于 650℃高温马弗炉中熔20分钟。取出冷却.擦净埚底部,放入250ml烧杯,加入热的混往合提取液100ml,洗出坩埚,如果此时沉淀太少,加入一毫升(1mg/ml)的Mg溶液作为共淀剂,溶液煮沸3分钟,取下稀释冷却后,用中速滤纸过滤,用1%NaOH清洗3次,洗沉淀7-8次,弃去滤液,用热的1+2 HCL 20ml分2-3次溶解沉淀,用原烧杯承接,再用1%的HCL洗涤滤纸10次,最终体积为200ml(酸度约为0.5mol/l HCL).然后将此溶液分次倒入已用0.5mol/l HCL 平衡过的离子交换柱中,用0.5mol/l HCL溶液洗涤烧杯3次加入离子交换柱中,待溶液流尽后,用1+10的HCL 150ml 淋洗Fe、Al、Ca、Mg、Mn、等基体杂质,然后用0.5mol/l的H2SO4100ml淋洗Zr、Ti、等杂质,再用1+10的HCL100ml淋洗,最后用1+2HCL 250ml洗脱离子交换柱中的稀土素,洗脱液收集于原烧杯中, 于电热板上加热蒸约1ml,用1% HCL 将其移入10ml的比色管中并稀释至刻度、摇匀。此溶液酸度约为10×10-2。将此溶液在试验结果所得的仪器工作参数状态下引入等离子体中,测定稀土各组份的含量。2结果与讨论2.1离子交换树脂的选择要使稀土元素和基体杂质元素得到较好的分离,并使待测元素在交换柱上得以最大量的吸附和富集,选择适当的树脂是前提。我们选用了732型强酸性聚苯乙稀阳离子交换树脂(粉碎至60-80目)和P507萃淋树脂(粒度为100-150目)进行比较实验,结合不同的酸度和介质进行上柱、吸附和淋洗试验,发现732阳离子树脂在低酸度分离效果好,且避免使用有机试剂,而P507树脂虽然液体体积可减少,但要使用有机试剂而且手续繁琐,故我们选用732强酸性离子交换树脂。2.2仪器工作参数选择 在ICP-AES分析中,分析方法的精密度和检出限主要取决于雾化器的质量及其参数:雾化效率的高低、雾滴粒径的大小及雾化器的稳定性。此外发生器的输出功率、矩管火焰高度、载气流量等等都影响着分析结果的稳定性和准确性,为此我们对每个稀土元素,分别从功率、载气、火焰高度和负高压等因素上进行试验研究,从它们各自的信背比(S/N)分析中获得最佳工作条件。见图一和图二从功率因素上分析,除元素Lu以低功率0档为最佳,元素Yb和Gd以III档功率较好外,大部分稀土元素以II档功率为最佳。再从载气流量因素考虑,从分析图中看出分为三组,一组为0.2L/h,为最佳载气流量,它们是Yb、Gd、Eu、Nd;第二组为0.25L/h的元素为Ho、Tb、Dy、Ce、Pr、Sm;第三组为0.3L/h的元素是Lu、Tm、La、Er、Y。因为本方法是多元素同时测定,折衷考虑各因素,功率以居中的大小为最佳,载气流量也是左右兼顾为准。故本方法最后选定载气流量为0.25L/h。 S/N 0 II III V 功率 图一 功率影响示意图 S/N 第二组 第三组 第一组 0.15 0.20 0.25 0.30 0.35 0.40 0.45 图二 载气影响示意图同时我们还实验了火焰高度和负高压,对特别灵敏的元素来说,基本上不受负高压的影响,只要调至适中即可,大部分元素以负高压的负值越高越好,这还要考虑样品或待测元素本身浓度的大小,浓度大,强度达到饱合值不行,在分析过程中随时要试验,以选择最佳的负高压值。火焰高度也是不可忽视的因素之一,由于稀土元素原子结构极为相似,化学性质非常相近,蒸发电离行为不差上下,故分别选择几个重稀土、轻稀土元素的火焰高度即可,本方法采用的火焰高度为18mm。此外,我们所用的雾化器和Scott型雾室均为仪器所配的性能较佳的石英雾室和雾化器,试验结果表明雾化效率、雾滴大小和稳定性均符合本方法的要求。2.3干扰的排除稀土分析的干扰首先是基体的干扰,其次是被测元素相互之间的干扰和光谱谱线干扰。对此我们首先选择了合适的交换树脂。实验结果表明:在分析操作中,经过沉淀和离子交换两次的分离,绝大部分的基体在样品处理过程中除去,剩下的Fe、Ca约有40μg/ml,和Al、Mg约20μg/ml,在实际的测定中,其影响可以忽略不计,其实,在我们的实际测试过程中,在标准曲线试验中我们也加入了相应的基体Fe、Al、Ca、Mg以消除可能造成的误差。对于不可避免的光谱谱线干扰和待测元素间的相互干扰,主要采取选择不同的谱线和依靠仪器的分辨能力加以排除,稀土元素的光谱谱线非常丰富,根据其不同的强度、激发能量,结合自然界岩石矿物中稀土元素的相对含量,分别选择其合适的灵敏线和次灵敏线,通过谱图分析结果,找到了比较合适的分析线。见表二。2.4检出限、精密度准确度为了检定方法的检出能力,仪器方法的稳定性,特配制一标准样品,加入相应量的基体元素Fe、Al、Ca、Mg等,在选定的工作条件下,进行检出限、精密度和准确度的测试,其结果见表二和表三。2.5讨论 本方法所选用的混合提取液效果良好,经碱融后的样品,用三乙醇胺能同时和Fe、Cu、Mn等元素形成络合物,EGTA又是大量Ca与稀土分离时的很好的掩蔽剂,所以大量的伴生元素、杂质在提取时均留在溶液中,不影响稀土氢氧化物的沉淀、过滤。在离子交换分离柱上,用硫酸、盐酸淋洗杂质,尽管试剂、蒸馏水中都含有一定量的Al、Ca,在分析液中我们作了Ca、Al等杂质的测定但最终不至于影响我们分析结果。本台仪器的光栅的闪耀波长在长波,对位于长波段的稀土来说灵敏度就要差些,所对于低含量的稀土元素,误差就大些。在本实验中,所获得的检出限和精密度分别是1×10-8和RSD5×10-2(Tb除外),均已达到本课题设计要求。 表二 项目元素分析线( nm )检出限(μg/L)精密度( RSD% )Lu261.5421.02.30Tm313.1262.53.01Yb328.9370.52.65La333.7494.02.09Er337.2710.52.26Gd342.2471.02.82Ho345.6000.52.63Tb350.9170.52.52Dy353.1700.51.75Sm359.2600.52.73Y371.0300.51.23Eu381.9670.51.88Pr390.8441.51.57Ce413.7655.01.62Nd430.3584.02.40 表 三元素标准值μg/ml测 定 值(μg/ml)RE%12345Lu0.1000.1010.1020.1000.1020.1021.4Tm0.1000.0920.0850.0820.0840.081-15.2Yb0.1000.1080.1010.0970.1040.1042.8La1.0001.101.041.051.060.974.4Er0.1000.1100.1100.1080.1020.1057.0Gd0.1000.1020.1010.1070.1030.0971.8Ho0.1000.1050.1000.1020.1040.1083.8Tb0.1000.0960.0910.0800.1020.103-5.6Dy0.1000.1030.1020.1070.1020.101

  • 有稀土行业的大神吗?

    有做稀土行业的吗?本人从事稀土化验工作,刚入行没多久,希望能向稀土行业的大神学习学习:或者学习稀土知识的平台都有哪些?谢谢!

  • 【分享】稀土百科和检测分析

    概念: 稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组:轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 稀土矿在地壳中主要以矿物形式存在,其赋存状态主要有三种:作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分。这类矿物通常称为稀土矿物,如独居石、氟碳铈矿等。作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和稀有金属矿物中,这类矿物可称为含有稀土元素的矿物,如磷灰石、萤石等。呈离子状态被吸附于某些矿物的表面或颗粒间。这类矿物主要是各种粘土矿物、云母类矿物。这类状态的稀土元素很容易提取。 1894年由芬兰化学家约翰·加得林在瑞典发现,由于貌似土族氧化物,故取名稀土元素。(已发现的稀土矿物有250种以上,其中具 稀土矿有工业价值的约50~60种,具有开采价值的只有10种左右,现在用于工业提取稀土元素的矿物主要有四种—氟碳铈矿、独居石矿、磷钇矿和风化壳淋积型矿,前三种矿占西方稀土产量的95%以上。独居石和氟碳铈矿中,轻稀土含量较高。磷钇矿中,重稀土和钇含量较高,但矿源比独居石少。) 最重要的稀土矿物有氟碳铈(镧)矿、独居石、磷钇矿、离子吸附型稀土矿、褐钇铌矿等。全世界共探明稀土储量5000万吨,其中中国约占80%,其余主要产于美,俄,印度,南非等国.

  • 【分享】17种稀土元素名称及用途

    【分享】17种稀土元素名称及用途

    大多数稀土金属呈现顺磁性。钆在0℃时比铁具更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。   稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。   我国拥有丰富的稀土矿产资源,成矿条件优越,堪称得天独厚,探明的储量居世界之首,为发展我国稀土工业提供了坚实的基础。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080833_195073_1611705_3.jpg[/img]应用在国内外高品质的玻璃、陶瓷、磁性材料,发光、记忆材料,超导、荧光、激光及光纤光缆行业 稀土的分类   1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。   2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。   铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。   稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 镧(La) 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。   镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080833_195074_1611705_3.jpg[/img]硅酸镓镧(LGS)晶体 铈(Ce) 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080834_195076_1611705_3.jpg[/img]二氧化铈 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080834_195077_1611705_3.jpg[/img]无水氯化铈   铈的广泛应用:   (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.   (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。   (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。   (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr)  镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080835_195078_1611705_3.jpg[/img]镨黄(釉用) 原子红(釉用)[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001080835_195079_1611705_3.jpg[/img]氟化镨钕 镨的广泛应用:   (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。   (2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。   (3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。   (4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd) 钕(Nd) 伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。

  • 【求助】铝基中锆(0.05~1.0%)与稀土(1.0~1.5%铈和镧)的分离

    本人遇到铝合金中含锆、稀土(铈和镧)、铁、硅等元素,用分光光度法或EDTA滴定法测试锆无法测试准确,因稀土严重干扰锆的测定。据资料介绍1)分离钍、稀土:将含锆的稀土沉淀于热浓硫酸(或高氯氯酸和硝酸)中,然后调节酸度进行草酸盐沉淀,全部锆均可留在溶液中。问题: 1、称取试样(铝基材)量为多少。 2、取多少ml酸酸,温度是多少适宜。 3、调节酸度为多少mol/L为宜。 4、取用哪种草酸盐,用量多少可将锆与稀土分离。2)在10mol/L盐酸介质中,用苯甲酰苯胲萃取锆,可与铀、钍、稀土、铌、钽、钛等分离。有机相中的锆以氢氟酸——盐酸反萃取至水相中,可用光度法测定。问题: 1、称取试样(铝基材)量为多少。 2、苯甲酰苯胲萃浓度是多少为宜 3、氢氟酸——盐酸各自浓度为多少以多少比例混合。请高手指点,还是有更合好的分离方法或具体的测试同时含有稀土和锆的方法(由于实验条件,只能局限于分光光度分和滴定法),谢谢!

  • 【求助】含稀土的能不能用X荧光光谱测

    我要测稀土三基色荧光粉的具体成分,拿去做X荧光光谱,结果测试中心的老师不给测,他说含稀土的测不准,怕到时候测不好了我骂他,具体的没有告诉我为什么,请教高手,能否告诉我其中的原因,而且我该怎么办,还有什么办法可以测得其中得成分,马上就要毕业了,结果最后却被卡在这里了。[em63]

  • 太平洋海底淤泥中稀土光谱分析

    一.事由 《参考消息》2010年6月30日再次报道,日本发现大型海底稀土淤泥。东京大学学者研究表明,稀土泥沙中稀土平均值为1070PPM,稀土总储量为680万吨,泥矿特征是富含用途广泛的重稀土,例如镝。二.建议分析方法 事者早期曾写过《太平洋海底淤泥中稀土光谱分析》的难题征答,未见网友回音。这次《参考消息》又提起稀土泥矿的问题,现介绍本人对分析方法的设计,与网友讨论。1.两个方案 一个方案是样品溶解后用ICP-MS测定。该方法的优点简便快速、实用。缺点是样品组份可能复杂,例如,可能含量达大量铁或其他干扰ICP—MS测定的元素。 另一方案是ICP-AES法。该方法是采用阳离子交换分离,然后再用ICP—AES测定。优点是可以清除所有干扰,保证准确;缺点是费时,且要求操作者有一定实验技巧。2.阳离子交换分离- ICP-AES法步骤(1)样品碱溶 此时铝及金属、碱土金属不沉淀; 稀土及重金属(铁、镍、铜、锌等)形成氢氧化物沉淀。如果沉淀不够多,可加适量铁,使铁与稀土共沉淀,以保证稀土沉淀完全。 (2)稀土与非稀土重金属的分离 氢氧化物沉淀用小量稀盐酸溶解,溶解后酸度控制在小于1.0M盐酸。 样品液上柱(小型阳离子交换柱,内装1.0毫升Bio-Rad 50w-X8阳离子交换树脂,100-200目)。样品液过柱时,稀土元素此时的Kd是大于100,定量吸附於阳离子交换树脂;而非稀土元素有部分吸附部分不吸附。 用1.75mol/L HCL淋洗非稀土(铜、铁、镍和锌等),此时这些元素的Kd~10,不吸附;而RE的Kd>40,强吸附,两者定量分离。 再 用4.0mol/L HCL洗下稀土。此时稀土的Kd<10,不吸附。最后ICP-AES测定。三.说明 1.为验证上述推荐方法,可用矿石/岩石标样验证。 2.经济价值高的镝,光谱性能好。所谓光谱性能好,是采用此前的照相式光谱测定,可看到镝的灵敏线‘锐’且标准曲线斜率好。另一个经济价值高的铕,照相式光谱显示,灵敏度稍差且标准曲线斜率低。其他重稀土元素,光谱性能均好。 3.由于太平洋海底淤泥中稀土品位较高,若取样1.0克样品(未见干燥处理原样),即可获15种稀土元素的良好检测数据(同时包括钪和钇)。四.此外1.我曾在网上提到〝不同材料中15种稀土元素的光谱分析〞。不同与钢铁、岩石、矿石、茶叶、铀、铝、及铝金属。它们的光谱分析不是采用同一种分离方法; 钢采用阴离子交换树脂或萃淋树脂,其他采用阳离子交换树脂。 钢中稀土元素的光谱分析见发表在《理化检验-化学手册》2010年4期386页。2.欢迎指教。

  • 【原创大赛】【开学季】***茶中稀土元素溶出性研究

    1引言由于***的土壤特性含有较高的稀土元素,以及茶叶管理施用肥料,这都茶叶生长带来富集稀土元素的可能。因此,有些茶叶稀土超标是不可避免的。那么超标的茶叶稀土元素测过人们的泡茶,被人们饮用的茶汤又含有多少稀土元素呢?徐清在《浸泡法测茶叶中稀土氧化物的溶出量》一文研究认为从茶叶浸泡温度、时间曲线和浸泡次数曲线,得出稀土氧化物含量随温度的升高、浸泡时间的延长呈上升趋势。茶叶浸泡液中稀土含量远小于茶叶中的稀土总含量,一般都小于总量的20%。石元值等人研究表明采用3次冲泡的总浸出率以乌龙茶粉最高,约为60%;其次是乌龙整茶,约为50%;针形绿茶的稀土浸出率最低,仅为5%。鉴于人们饮用的是茶汤,而从前人的研究来看,茶叶中被人们饮用的稀土总量只是一小部分,本实验旨来通过***岩茶的稀土总量采用水浸泡分析茶汤中稀土总量,并且研究茶叶稀土总量溶出率及16种单质稀土元素的溶出性,为人们茶叶饮用安全提供科学依据,及食品安全研究提供基础数据。据中华全国供销合作总社杭州茶叶研究院副院长杨秀芳介绍,茶叶稀土标准自发布实施以来,就引起很大争议,许多学者和茶叶企业持不同见解。2mg/kg的限量指标是将茶叶与稻谷、玉米、小麦等粮食等量齐观,但茶叶不同于其他植物性食品。茶叶通常被人们用来冲泡饮用,稀土较难溶于水,冲泡的茶汤中只有不到1/4的稀土氧化物会浸出,对人体的安全风险很小,这与粮食直接吃到肚子里是完全不同的。2实验材料与方法2.1实验材料选择***地区的岩茶,先通过茶叶稀土元素含量的测试,然后进行实验茶叶的选择。把茶叶稀土元素氧化物总量超过国家标准限量值2.0mg/kg作为实验材料,数量为10个。2.2主要仪器及试剂Agilent 7700x ICP-MS 电感耦合等离子体质谱仪; ETHOS ONE微波消解仪(Milestone公司产);Al204电子分析天平;粉碎制样机;高纯氩:99.999%;16种稀土元素单标标准物质溶液100ug/mL;测定时将其配制成(0、5、10、15、20、30)ng/mL

  • 稀土分析专区开通啦!

    最近看到很多版友建议增开一个稀土分析专区。http://bbs.instrument.com.cn/shtml/20070402/790358/看来稀土分析工作者人数挺多的。特开稀土专区,广大稀土分析工作者可以在这里互相交流,互相提高。祝大家在ICP光谱能收获快乐!收获知识!

  • 【原创大赛】稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析

    【原创大赛】稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析

    稀土硅铁合金、硅铁镁合金中稀土分量ICP-AES分析摘要:本文研究了应用ICP-AES 分析技术测定稀土元素的方法。考察了各种共存元素对La、Ce、Pr、Nd 和Sm 元素多条谱线的影响情况。选择了合适的分析谱线,确定了仪器工作参数和分析条件。进行了样品加标回收试验和精密度试验,回收率在92%~106%之间,相对标准偏差小于5%。关键词:稀土硅铁合金稀土硅铁镁合金镧铈镨钕钐 ICP-AES 1 前言稀土硅铁合金和稀土硅铁镁合金在球铁冶炼过程中广泛使用,其含量及用量对生产影响较大,加入量有严格规定。各种稀土元素对生产和产品性能影响不同,因此,单一稀土元素分析已成为材料研究和生产中必不可少的项目。稀土元素由于化学性质相似,很难相互分离和分别测定,传统化学分析是测定混合稀土总量。混合稀土单一分量测定,最常用的方法是X 射线荧光光谱法,但这种分析技术灵敏度不高,基体干扰严重。ICP-AES法由于灵敏、基体干扰小,目前已成为稀土元素光谱分析重要手段。高纯稀土氧化物中杂质稀土元素分析报道最多,土壤、肥料、植物、金属与合金也有报道。我们采用上海泰伦分析仪器生产的DGS-Ⅲ型电感耦合等离子体发射光谱仪,开展了稀土硅铁合金和稀土硅铁镁合金中稀土单一分量分析方法研究。http://ng1.17img.cn/bbsfiles/images/2014/11/201411201338_523756_3238_3.jpg上图为上海泰伦分析仪器有限公司DGS-Ⅲ型电感耦合等离子体发射光谱仪2 试验部分 2.1 仪器及工作条件上海泰伦分析仪器有限公司生产DGS-Ⅲ型电感耦合等离子体发射光谱仪仪器工作条件:冷却气14L/min;护套气0.3L/min;载气0.425L/min;溶液提升量:1.2mL/min.;功率0.97 kW;观测高度为感应线圈上方15mm。 2.2 试剂及标准溶液实验中使用的硝酸、氢氟酸、高氯酸、盐酸均为分析纯试剂,水为蒸馏水。各元素标准溶液均采用国家标准物质。 2.3 样品溶液的制备准确称取0.1000g样品(预先过120目筛)于铂金或聚四氟乙烯烧杯中,加少量水湿润后,加入5mL硝酸,再滴加3~5mL氢氟酸。低温加热溶解试样,待试样溶解完全后,加入5mL 高氯酸,继续加热至冒烟。溶液体积蒸发至1mL 左右取下冷却,加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL容量瓶中,用蒸馏水稀释至刻度,摇匀待测。 2.4 混合标准溶液的制备称取0.0300g高纯铁数份于100mL 玻璃烧杯中,加入5mL 硝酸和5mL 高氯酸,低温溶解。待试样溶解完全后,加热冒高氯酸烟,蒸发溶液体积至1mL 左右取下,稍冷后加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL 容量瓶中,吸取适量各元素纯标准溶液,按表1组成,配制成混合标准溶液系列。表1混合标准溶液 (μg/mL) 编号LaCePrNdSmFe1[s

  • 【转帖】什么叫稀土?

    一、稀土元素稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。“稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”:“轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。“重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。二、稀土资源及储备状况由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因此在矿物中它们常与其它元素一起共生。我国稀土资源占世界稀土资源的80%,以氧化物(REO)计达3 600万吨,远景储量实际是1亿吨。

  • 【分享】【冶金应用】稀土元素

    稀土元素是从比较稀少的矿物中发现的,“土”原指不溶于水的物质,故称稀土。英文Rare Earth Element(简写RE或R)。 稀土家族是来自镧系的15个元素,加上与镧系相关密切的钪和钇共17种元素。它们是:镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。你若想用中文呼唤这个家族的某个成员,不用管那贴在一旁的“金”,直接喊边上的“名”,包你八九不离十。 稀土是一个神奇的家族。天然的稀土元素常常是结伴同行,人们必须想方设法才能把它们分离。人类在认知稀土的早期,常常在得到某种稀土元素时,却不知道还有别的“顽皮”的元素隐藏其中,或者无法将不愿分手的伙伴分开。比如“镧”就是在“铈”中发现的,它的名字“La”就是希腊语“隐藏”一词的缩写。 “镨钕”在希腊语中意为“双生子”,“镨钕”是在“镧”中间发现的,而40年以后,它们才得以被分离成两个元素,所以一个就叫“镨”,另一个则取名“钕”。还有,“钐”是在“镨钕”中发现的,“钆”又是在“钐”中发现的……。 由于特殊的原子结构,稀土家族的成员非常的活泼,且个个身手不凡,魔力无边。它们与其他元素结合,便可组成品类繁多、功能千变万化、用途各异的新型材料,且性能翻番提高,被称作当代的“工业味精”。稀土元素的组成 (Rare Earth Element) 周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~ 71的15种化学元素又统称为镧系元素。稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土元素[1];钆、铽、镝、钬、铒、铥、镱、镥、钇称为重稀土元素。稀土元素是历史遗留下来的名称,通常把不溶于水的固体氧化物叫做土,而在18世纪 ,这17种元素都是很稀少的尚未被大量发现,因而得名为稀土元素。现已查明,它们并不稀少,特别是中国的稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从铀的裂变产物中分离出钷,共经历150多年。 已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7H2O]。 周期表中IIIB族钪、钇和镧系元素之总称,包括钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Tb)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。其中钷是人造放射性元素。在自然界中主要矿物有独居石、铈硅石、铈铝石、黑稀金矿和磷酸钇矿。因其天然丰度小,又以氧化物或含氧酸盐矿物共生形式存在,故得名。他们都是很活泼的金属,性质极为相似,常见化合价+3,其水合离子大多有颜色,易形成稳定的配化合物。溶剂萃取和离子交换是目前分离稀土的较好方法。镧、铈、镨、钕等轻稀土金属,由于熔点较低,在电解过程可呈熔融状态在阴极上析出,故一般均采用电解法制取。可用氯化物和氟化物两种盐系,前者以稀土氯化物为原料加入电解槽,后者则以氧化物的形式加入。常用的氯化物体系为KCl-RECl3他们在工农业生产和科研中有广泛的用途,在钢铁、铸铁和合金中加入少量稀土能大大改善性能。用稀土制得的磁性材料其磁性极强,用途广泛。在化学工业中广泛用作催化剂。稀土氧化物是重要的发光材料、激光材料

  • 【分享】中国首部稀土环保标准原则通过 预计今年出台

    我国首部《稀土工业污染物排放标准》已由国家环境保护部原则通过,预计今年会出台,这是全球首部针对稀土工业的环保标准。  问题一:可能会出台的《稀土工业污染物排放标准》里最引人关注的内容有哪些?  据参与稀土环保标准起草工作的专家王国珍预计,标准出台后,稀土行业环保成本要比原来增加一倍。这个标准规定了稀土工业的企业特征、生产工艺和装置的水污染物、大气污染物排放限值等内容,比如说水污染物特别排放限值中,氨氮限值15毫克,这比原来降低了10毫克。  问题二:为什么要提高环保标准?你是否了解背后原因?  稀土是制造高科技产品和军工产品的关键原料,日本和美国是稀土的主要进口国。但是上世纪90年代以及2008年中国稀土价格走低,卖出所谓的“萝卜价、猪肉价”,主要就是因为我国稀土工业的生产工艺与设备比较落后,高昂的“环保成本”没有被计算在内。  问题三:环保标准提高对稀土生产厂家可能造成什么样的影响?  记者采访的一些企业的相关负责人表示,这个标准不仅会提高他们在生产过程中的稀土冶炼的分离成本,还会提高开采矿山的成本,加大企业运营的压力。但是也有一部分企业表示,他们是支持国家出台这个环保标准的,毕竟严格控制稀土工业高污染排放物的产生,是有利于居民居住环境提升的。  问题四:对稀土行业可能会产生什么样的影响?  王国珍表示,这个标准将会十分严格,对稀土行业在污水排放、防辐射、植被保护等方面都有明确地规定,并且这个标准会对老企业有一到两年的调整时间。这会促使企业淘汰老旧设备,开发新的冶炼工艺,以及加大员工培训力度以达到标准要求。这对促进稀土工业整体的发展是有益的。同时,值得注意的是,我国现在承担了世界90%的稀土出口,但是中国稀土资源的占有量已从全球的43%下降到只占31%。稀土环保标准的出台,也将从另一个侧面降低我国稀土出口的环保成本。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制