当前位置: 仪器信息网 > 行业主题 > >

细胞壁成分损失

仪器信息网细胞壁成分损失专题为您整合细胞壁成分损失相关的最新文章,在细胞壁成分损失专题,您不仅可以免费浏览细胞壁成分损失的资讯, 同时您还可以浏览细胞壁成分损失的相关资料、解决方案,参与社区细胞壁成分损失话题讨论。

细胞壁成分损失相关的论坛

  • 酵母菌细胞壁

    下列哪类物质是酵母菌细胞壁主要的成分()。 A、甘露聚糖 B、脂质 C、无机盐 D、蛋白质

  • 【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    原子力显微镜(AFM)是我们学校新进的大型仪器设备之一。与光学显微镜及电子显微镜不同,AFM可利用微小探针“摸索”样品表面来获得信息。其成像原理决定了它具备其他显微技术所不具有的优点:受工作环境限制较少,可以在真空、气相、液相和电化学的环境下操作;可以对导体、半导体、绝缘体等多种样品成像,样品制备简单,且对样品的破坏性较小;具有原子级高分辨率,可得到观测表面的三维立体图像,并能获得探针与样品相互作用的信息。AFM可以观察许多不同材料的原子级别的高分辨表面形貌与结构,是一种新型的表面结构分析仪器。它的出现使人类在认识和改造自然方面进入一个新的层次,已被广泛应用于高分子材料、生物学以及生命科学等领域。近年来,研究人员也开始将这种新型的表面分析技术应用于木材微观结构的研究。这为人们进一步认识和了解木材微观世界,提供了一种有效的分析手段。目前在木材科学与技术领域内的研究内容主要包括两个方面:一方面是材料表面形貌、相结构的表征,在微米、纳米的范围内获取图像。另一方面是木质材料细胞壁的力学性能,如硬度、弹性模量和屈服强度的测量。我是实验室参加工程师培训的人员之一,由于课题的需要,我尝试利用AFM技术对杨木木纤维形态尺寸特性进行了测量,具体测量与分析方法如下:1材料与方法1. 1 试样制备试材为速生杨木,切削成横截面尺寸为5 mm×1 mm×5-8mm的木片,再用Spurr树脂进行包埋,然后用超薄切片机(LKB-2188,瑞典)进行表面抛光。1.2 测试方法测量时,将用双面胶固定在钢制样品垫上,再放置在原子力显微镜(AFM XE-100型,PSIA公司)的样品台上(磁铁固定)进行扫描。AFM主要参数设定如下:接触模式,扫描速度和扫描力分别为0.5Hz和1.08nN。2 图像处理图像扫描后还需要通过原子力显微镜配套软件(XEI 1.5)进行数据处理与分析。得到原始的形貌像之后,图像处理主要步骤如下:第一步是斜度校正(Slope Correction ),为的是消除样品倾斜或弯曲(极小程度)造成的图像失真。通过软件的拉平(Flatten )功能可以方便地消除x, y方向的图像倾斜。第二步是消除噪声,保证图像的真实性。第三步根据需要还可以对图像进行滤波、放大、灰度转换、改变像素以及切面、输出3D图像等操作图。处理图像结束后得到了相对真实的表面形貌图,再直接进行分析。图1是一组木材横切表面斜度校正处理前后的表面形貌图。3 杨木细胞壁特征参数测量杨木细胞壁特征参数测量是通过原子力显微镜配套软件(XEI 1.5)来实现的。测量原理与方法见图所示。其中图2和图3分别为AFM扫描的杨木表面形貌图及细胞壁厚度、长度尺寸测试图。通过测量可知,所测杨木细胞横截面的壁厚尺寸为1.026-4.082μm;壁长为2.195-21.004μm。这与前人的研究结论相一致。这说明原子力显微镜完全可以在微/纳米尺度下对木材的细胞形态特征进行测量。http://ng1.17img.cn/bbsfiles/images/2009/01/200901081623_128216_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081625_128217_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081627_128220_1615676_3.jpg

  • 常用的几种细胞破碎方法介绍

    随着重组DNA技术得到广泛应用以来,生物技术发生了质的飞跃。很多基因工程产物都是胞内物质,必须将细胞破壁,使产物得以释放,才能进一步提取,因此细胞破碎是提取胞内产物的关键步骤,破碎方法的得当与否,直接影响到所提取产品的产量、质量和生产成本。现将近年来常用的几种细胞破碎方法介绍一下。   1. 高压匀浆法   设备是高压匀浆器,它由高压泵和匀浆间组成,美国Microfluidics公司和ATS公司均有产品出售。其破碎机理:细胞在一系列过程中经历了高速造成的剪刀,碰撞以及由高压到常压的变化从而造成细胞的破碎。   存在的问题;较易造成堵塞的团状或丝状真菌,较小的革兰氏阳性首以及有些亚细胞器,质地坚硬,易损伤匀浆阀,也不适合用该法处理。   2. 高速珠磨法   设备是珠后机,瑞士WBC公司和德国西门子机械公司均制造各种型号的珠磨机,其破碎机下:微生物细胞悬浮液与极细的研磨剂在搅拌浆作用下充分混合,珠子之间以及珠子和细胞之间和互相剪切、碰撞,促使细胞壁破碎,释出内含物,在珠波分离器的协助下,珠子被滞留在破碎室内,浆液流出,从而实现连续操作,破碎中,生的热量由夹套中的冷却液带走。   存在的问题:操作参数多,一般赁经验估计并且珠子之间的液体损失30%左右。   3. 超声破碎   频高于15-20KHz的超声波在高强度声能输入下可以进行细胞破碎。其破碎机理:可能与空化现象引起的冲击波和剪切力有关。超声破碎的效率与声频、声能、处理时间、细胞浓度及首种类型等因素有关。   存在问题;超声波破碎在实验室规模应用较普遍,处理少量样品时操作简便,液量损失少,但是超声波产生的化学自由基团能使某些敏感性活性物质变性失活。而且大容量装置声能传递,散热均有困难。   4. 酶溶法   就是用生物酶将细胞壁和细胞腊消化溶解的方法。常用的溶酶有溶菌酶β-1.3-葡聚糖酶、蛋白酶等。   存在的问题;易造成产物抑制作用,这可能是导致胞内物质释放率低的一个重要因素。而且溶酶价格高,限制了大规模利用。若回收溶酶,则又增加百分离纯化溶酶的操作。另外酶港法通用性差,不同菌种需选择不同的酶。   5. 化学渗透法   某些有机溶剂(如苯、甲苯)、抗生素、表面活性剂、金属螯合剂、变性剂等化学药品都可以改变细胞壁或膜的通透性从而使内合物有选择地渗透出来。其作用机理;化学渗透取决于化学试剂的类型以及细胞壁和膜的结构与组成。   存在的问题;时间长,效率低;化学试剂毒性较强,同时对产物也有毒害作用,进一步分离时需要用透析等方法除去这些试剂;通用性差:某种试剂只能作用于某些特定类型的微生物细胞。   本文介绍了几种细胞破碎的方法,可谓各有千秋,在实际应用中,应尽量考虑全面,选择最科学、有效的方法。

  • 常用细胞破碎方法及缺陷汇总贴

    随着分子生物学的快速发展,许多实验的目标物质都是细胞内物质,要进行实验研究或产物收集就必须将细胞破壁,使产物得以释放,才能进一步提取,因此细胞破碎就变成了提取胞内产物的关键步骤,破碎方法的得当与否,直接影响到所提取产品的产量、质量和生产成本。现将常用的几种细胞破碎方法介绍如下。1.超声波破碎   利用超声波高强度声能产生的空化现象引起冲击波和剪切力进行细胞破碎。超声破碎的效率与超声频率、超声功率、处理时间、细胞浓度及处理量等因素有关。   不足及须加强的问题:超声波破碎在实验室规模应用较普遍,处理少量样品时操作简便,液量损失少,但超声波产生的化学自由基团可能使某些敏感性活性物质变性失活影响实验结果。且大容量装置声能利用率低,装置散热性差。2.生物酶溶法   就是用生物酶将细胞壁和细胞膜消化溶解的方法。常用的溶酶有溶菌酶β-1.3-葡聚糖酶、蛋白酶等。   不足:易造成产物抑制作用,这可能是导致胞内物质释放率低的最主要因素。而且溶酶价格高,限制了大规模利用。若回收溶酶,则又增加分离纯化溶酶的操作。另外酶溶法通用性差,不同菌种需选择不同的酶。3.物理珠磨法   微生物细胞悬浮液与极细的研磨剂在搅拌浆作用下充分混合,珠子之间以及珠子和细胞之间和互相剪切、碰撞,使细胞壁破碎,释出内容物,在珠波分离器的协助下,珠子被滞留在破碎室内,浆液流出,从而实现连续操作,破碎中产生的热量由夹套中的冷却液带走。缺陷:效能利用率仅为1%左右,且破碎过程产生大量的热能无法利用。4.化学渗透法   某些有机溶剂(如苯、甲苯)、抗生素、表面活性剂、金属螯合剂、变性剂等化学药品都可以改变细胞壁或膜的通透性从而使细胞内容物物有选择地渗透出来。其作用机理;化学渗透取决于化学试剂的类型以及细胞壁和膜的结构与组成。   不足:时间长,效率低;化学试剂毒性较强,同时对产物也有毒害作用,进一步分离时需要用透析等方法除去这些试剂;通用性差。

  • 【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061858_264950_2019107_3.jpg啤酒酵母细胞自溶技术破壁研究摘要:研究了PH、温度、食盐浓度三个因素对啤酒酵母细胞破壁的影响,确定出最佳的自溶法破壁条件 。进而为分离啤酒废酵母中的有效活性成分奠定了基础。关键词:啤酒酵母;破壁;自溶The Research of Autolysis on the Beer Yeast Cells wallAbstract:This paper researched the condition of autolysis on the waste yeast cells wall with three factors (pH 、Temperature 、Salt density) and determined the best condition based on autolysis. And build basis for separating the activity forms from beer waste yeasts.Key words: The beer yeast; Breaking Cells wall; Autolysis引言啤酒酵母(S.csrsviside)属于真菌门酵母属,多数为单细胞微生物,细胞呈圆形或卵圆形,革兰氏染色呈阳性G+。啤酒酵母细胞是由细胞壁、细胞膜、液泡、颗粒和线粒体等部分组成,细胞年幼的时候细胞壁很薄,所以不明显;细胞年老时,细胞壁较厚。啤酒酵母细胞内不但含有丰富的蛋白质、维生素、葡聚糖及甘露聚糖等营养及保健成分,可作为食用单细胞蛋白,此外还含有辅酶I、细胞色素,卵磷脂、RNA,,这些物质或其降解产物及衍生物如氨基酸制剂和核苷酸及核酸制剂等在生物化学、医药及保健食品中最有重要的作用。由于啤酒废酵母价格便宜,因此可利用啤酒废酵母来提取、制备这些物质。啤酒废酵母(waste brewer's yeast)是啤酒生产的副产物,是指啤酒酿造后沉降的酵母泥,主要是由大量的弱细胞和死细胞组成。在啤酒生产过程中,每生产 100吨啤酒大约有1-1.5吨废酵母 (以干重计)产生。传统的处理方法,是弃置不用或作为饲料处理,直接排放到河流湖泊中,将造成环境污染,同时也是对财富的浪费;因其具有坚韧的细胞壁和特有的酵母臭,适口性差,不易消化和吸收,故烘干作为饲料用的经济效益不高。充分利用啤酒废酵母可以有效地减轻污染,实现资源的二次转化,也可产生巨大的经济效益,如开发酵母抽提物。 为了增加酵母抽提物产量国内外同行做出不同努力,开展了有些研究。目前关于啤酒酵母破壁的研究很多,大体可归纳为:化学破壁(酸解、碱解)、物理破壁(液体剪 切、固体剪切等)、生物破壁(酶解、自溶)。其中,化学破壁不仅会造成一些营养成分的破坏,而且为有效成分的提取增加困难;物理破壁虽然方法简单、成本低,能完好保存营养成分,但其破壁效果较差;生物破壁中的酶解法会增加提取成本,故均不能大规模广泛的应用。而采用自溶法进行细胞破壁是一种简便易行的操作过程,通过确定啤酒酵母细胞最适合的自溶条件,可以建立一套利用酵母细胞生产酵母抽提物的工艺和方法,旨在为啤酒酵母的综合利用寻求一种新的方法,为工业化生产提供理论基础和实践指导。1.4实验方法 工艺流程 啤酒废酵母(保藏)—— 活化、两次斜面培养—— 接种、平板划线——摇瓶培养——取对数期的酵母细胞——做稀释梯度——做影响因素(温度、食盐浓度、pH并固定时间60分钟)的实验-——做正交试验——镜检(血球计数法)——计算啤酒酵母细胞的破碎率——得到自溶的最佳工艺参数1.5啤酒废酵母自溶条件的确定酵母自溶的实质是酵母细胞内的蛋白质在自身蛋白酶的作用下,降解为游离的氨基酸,那么,一切影响酶促反应的因素均影响酵母细胞的自溶,如自溶温度、食盐浓度、pH值、自溶时间等。自溶法是以存在酶活性的新鲜活酵母为原料,利用酵母细胞本身的酶系,在一定条件下,将酵母体内的糖类物质、蛋白质和核酸分解为还原糖、氨基酸、肤类、核昔酸等小分子物质并从酵母细胞内抽提出来的一种方法。利用自溶法生产的酵母抽提物,蛋白质分解率高,游离氨基酸含量高,风味好,成本较低,但呈味核昔酸含量低.目前,欧美及我国所生产的酵母抽提物绝大部分都是采用这种方法。[font=仿宋_GB2

  • 血细胞分析仪检测原理

    目前血细胞分析仪检测原理包括电学和光学两种,电学包括电阻抗法和射频电导法,光法包括激光散射法和分光光度法。电阻抗法根据Coulter原理及血细胞非传导的性质,以电解质溶液中悬浮的血细胞在通过计数小孔时引起的电阻变化进行检测为基础,进行血细胞计数和体积测定。当有细胞通过小孔时,由于电阻增加,于瞬间引起电压变化及通过脉冲。细胞体积越大,脉冲振幅越高,细胞数量越多,脉冲数量也越多。脉冲信号经过:放大、阈值调节、甄别、整形、计数而得出细胞技术结果。电阻抗法可准确量出细胞(或类似颗粒)的大小,是三分类血液分析仪的主要应用原理,并与光学检测原理组合应用于五分类血液分析仪中。激光散射法应用了流式细胞术检测原理及细胞通过激光束被照射时,产生与细胞特征相应的各种角度的散射光。对经信号检测器接受的散射光信息进行综合分析,即可准确区分正常类型的细胞。激光散射法在区别体积相同而类型不同的细胞特征时,比电阻抗法分群更加准确。故激光散射法已成为现代五分类血液分析仪的主要检测原理之一。射频电导法是用高频电磁探针渗入细胞膜脂质可测定细胞的导电性,提供细胞内部化学成分、细胞核和细胞质、颗粒成分等特征信息。射频电流是每秒变化大于10000次的高频交流电磁波,能够通过细胞壁。分光光度法是所有类型的血细胞分析仪检测血红蛋白的原理,它利用血红蛋白与溶血剂在特定波长下比色,吸光度的变化与液体中血红蛋白含量成比例。

  • 牛奶体细胞测定与牧场管理

    [b]奶牛体细胞测定与牧场管理[/b]是DHI(Dairy Herd Improvement)的必修课题。DHI即奶牛生产性能测定也称牛群改良,是一套完整的奶牛生产性能记录和管理体系,是一个实实在在通过度量和分析解决奶牛生产实际问题的方法,其目的是提高牛群的整体素质和生产水平,使用方法是从群体着眼,针对个体解决存在的问题。DHI检测的项目:一是牛群的产奶性能,包括每头牛的产奶量、乳脂率、乳蛋白率等;二是收集牛群饲养管理与经营方面的资料,如系谱资料、产犊日期、干奶日期、淘汰日期和牛群的年龄结构等,并将这些资料信息进行系统加工处理,所得结果再返回牛场指导牛场的经营管理,帮助提高牛场经济效益。DHI的用途具体体现为追踪个体牛表现、观察牛群表现、开发新目标、乳房炎管理、选种等方面的。  针对于[b]奶牛体细胞测定与牧场管理[/b]课题,最关键是乳脂率、乳蛋白率、体细胞数,其中体细胞直接影响产奶量、乳脂率、乳蛋白率和其它乳成分。通过体细胞数的变化,可反映牧场管理水平及牧场经营状况。DHI检测设备推荐本特利NexGen系列新一代牛奶成分+体细胞检测,检测速度400-600/小时,可以根据牧场需要进行配置,同时检测模块有丙酮和乳铁蛋白,对于预防奶牛酮病和乳房炎有提前预警作用。 [b]体细胞数(SCC)[/b]是指每毫升牛奶中所含的体细胞量,它反映牛场奶牛乳房健康状况,几乎参加DHI项目的每头泌乳牛都进行体细胞检测。它包括多种类型的细胞如白细胞和脱落的上皮细胞等,高SCC记录预示着大量的白细胞的存在和乳房感染几率较大。DHI报告可提供全群奶牛各胎次每月体细胞数值,可按照不同胎次统计出不同SCC水平的牛头数及所占百分比。  个体[b]奶牛体细胞数(SCC)[/b]直接反映了奶牛乳房健康状况,并能反映防治措施是否有效,需要说明一点,SCC的高低反映了乳房受感染的程度,而并非超过某一特定值就表示该牛一定有乳房炎而需要治疗。 牛群[b]体细胞数(SCC)[/b]是整个牛群乳房健康程度的标志。体细胞数、体细胞评分反映了该牛群的健康状况。对于体细胞高的牛群,应从挤奶设备的消毒效果,挤奶设备真空度及真空稳定性,奶衬性能及使用时间,牛床、运动场等卫生环境等方面找问题。 在DHI报告中提供了因[b]奶牛体细胞数(SCC)[/b]太高而造成奶牛产奶量的损失,应用该数据可以计算出奶牛场全年产奶量损失及直接经济损失。[b]奶牛体细胞数(SCC)[/b]与奶量损失的关系  DHI报告分析:脂肪蛋白比。一个牛群正常的脂肪和蛋白比例在1.1-1.2的范围内,或蛋脂比在0.8—0.85如果变化范围超过上限或下限,说明奶牛饲养管理方面有问题。  当脂蛋比低于1.1时表明  A、奶牛粗饲料在瘤胃中的发酵率降低  B、粗饲料的质量差  C、精料比例过大  D、瘤胃亚临床或临床型酸中毒  E、奶牛反刍减少,日粮中缺乏缓冲物质  当脂蛋比高于1.2时表明:  A、奶牛日粮中蛋白质不平衡,品质差,缺乏必需氨基酸,如蛋氨酸和赖氨酸。  B、日粮中能量不足,瘤胃微生物蛋白合成不足  C、奶牛干物质采食量不足  D、夏天热应激  E、饲料中添加了大量的油脂类脂肪  F、可发酵碳水化合物含量不足DHI报告中奶牛繁殖状况分析:平均泌乳天数。如果一个牛群具有正常的牛群结构,且常年均衡配种,那么该牛群的平均泌乳天数应改为150-170天。如果超过上限则表明:  A、所提供的产犊日的准确性  B、奶牛产后繁殖问题严重  C、配种技术员水平不高 D、存在严重的饲养管理问题  DHI报告在生产实践中的重要意义:DHI分析报告是奶牛场改进饲养方法、提高管理水平的基础。如根据奶牛泌乳曲线的变化、乳成分和奶牛体细胞和尿素氮测定结果,分析各类营养的平衡关系,以调整饲料配方和优化饲喂程序,保证牛群的正常管理,而使牛群发挥最大的生产潜力,提高生产水平。

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合2006-11-20 17:14植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • [资源集锦] 动物细胞培养罐分类

    1、搅拌式动物细胞培养罐  搅拌式培养罐靠搅拌桨提供液相搅拌的动力,它有较大的操作范围、良好的混合性和浓度均匀性,因此在生物反应中被广泛使用。但由于动物细胞没有细胞壁的保护,因此对剪切作用十分敏感,直接的机械搅拌很容易对其造成损害,传统的用于微生物的搅拌培养罐用作动物细胞的培养显然是不合适的。所以,动物细胞培养中的搅拌式培养罐都是经过改进的,包括改进供氧方式、搅拌桨的形式及在培养罐内加装辅件等。  (1)供氧方式的改进  一般情况下搅拌式培养罐还常伴有鼓泡,为细胞生长提供所需氧分。由于动物细胞对鼓泡的剪胞生长提供所需氧分。由于动物细胞对鼓泡的剪切也很敏感,所以人们在供氧方式的改进上做了许多工作。笼式供氧是搅拌式动物细胞培养罐供氧方式的一种,即气泡用丝网隔开,不与细胞直接接触。培养罐既能保证混合效果又有尽可能小的剪切力,以满足细胞生长的要求。北野昭一报道了一个经过改进的搅拌式动物细胞培养罐,整体呈梨形,搅拌置于培养罐底部,在搅拌轴外装了一个锥形不锈钢丝网与搅拌轴一起转动。轴心处的鼓泡管在丝网内侧鼓泡,丝网外侧的细胞不与气泡直接接触。  (2)搅拌桨的改进  搅拌桨的形式对细胞生长的影响非常大,这方面的改进主要考虑如何减小细胞所受的剪切力。有人对搅拌桨的形式作了改进,并在反应器内加装了辅件,实验证明改进后的反应器适用于对剪切力敏感的细胞进行高密度培养。反应器采用了一个双螺旋带状搅拌桨,顶部的法兰盖上安装了3块表面挡板。每块挡板相对于径向的夹角为30°,垂直插入液面。挡板的存在减小了液面上的旋涡。这个反应器维持了较小的剪切力,实验中用于昆虫细胞的培养,最终的培养密度达到6×106个/mL,成活率在98%以上。  2、非搅拌式动物细胞培养罐  搅拌式细胞培养罐用于动物细胞培养存在的最大缺点是剪切力大,容易损伤细胞,虽然经过各种改进,这个问题仍很难避免。相比之下,非搅拌式培养罐产生的剪切力较小,在动物细胞培养中表现出了较强的优势。  (1)填充床反应器填充是在反应器中填充一定材质的填充物,供细胞贴壁生长。营养液通过循环灌流的方式提供,并可在循环过程中不断补充。细胞生长所需的氧分也可以在反应器外通过循环的营养液携带,因而不会有气泡伤及细胞。这类反应器剪切力小,适合细胞高密度生长。  (2)中空纤维反应器中空纤维培养罐由于剪切力小而广泛用于动物细胞的培养。这类培养罐由中空纤维管组成,每根中空纤维管的内径约为200μm,壁厚为50~70μm。管壁是多孔膜,O2和CO2等小分子可以自由透过膜扩散,动物细胞贴附在中空纤维管外壁生长,可以很方便地获取氧分。  (3)气升式细胞培养罐气升式生物反应器(airliftbioreactor)也是实现动物细胞高密度培养的常用设备之一,其特点是结构简单,操作方便。有人在气升式反应器中利用微载体培养技术,研究了Vero细胞高密度培养的工艺条件。证明气升式反应器中悬浮微载体培养Vero细胞,在加入适量保护剂、营养供应充足的情况下,细胞可以正常生长至长满微载体表面,终密度可达1.13×106个/mL。

  • 【转帖】石榴汁的成分能抑制癌细胞迁移

    石榴汁的成分能抑制癌细胞迁移 在美国细胞生物学会于费城召开的第50届年会上公布了这项研究根据今天在美国细胞生物学会(American Society for Cell Biology)于费城举行的第50届年会上公布的一项研究,加州大学里弗赛德分校(UCR)的科研人员发现石榴汁中的一些成分似乎能够抑制癌细胞的运动并且削弱它们被一种化学信号吸引的能力,这种信号已经被证明能够促进前列腺癌向骨的转移。加州大学里弗赛德分校(UCR) Manuela Martins-Green博士实验室的科研人员打算在一个前列腺癌体内模型中进行进一步的测试,从而确定这两种成分的剂量依赖性效应和副作用。石榴汁对前列腺癌恶化的作用即便存在,也是有争议的。在2006年的一项针对每天饮用一杯8盎司石榴汁的前列腺癌患者的研究中,加州大学洛杉矶分校(UCLA)的科研人员检测到了前列腺特异性抗原(PSA)水平的下降,这提示癌症恶化可能减缓。加州大学洛杉矶分校(UCLA)的科研人员并没有设法描述该研究中石榴汁效应背后可能的生物机制。

  • Science:三类抗生素潜在杀伤力可损伤细胞DNA

    4月20日,国际著名杂志《科学》Science上刊登了来自麻省理工学院和波士顿大学的研究人员的最新研究成果“Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics,”,文章中,研究者揭开了三类主要的抗生素潜在的杀伤机制:药物生成了一些破坏性分子,通过一连串细胞事件对细胞DNA造成了致命性的损伤。青霉素和其他抗生素的出现使医药发生了革命性的改变,将曾经是致死性的疾病转变为了容易治愈的疾病。然而,尽管抗生素在临床上应用已有70多年,其杀死细菌的确切机制却仍是一个待解之谜。研究人员表示详细了解这一机制可以帮助科学家们改进现有的药物。在过去40年只有少数的新抗生素被开发出来,而大量的细菌株却对当前可用的药物产生耐受。波士顿大学生物医药工程学教授James Collins说:“这有可能提高我们当前‘武器库’的杀伤效应,减少所需剂量,或使细菌株对现有的抗生素重新敏感。破坏性的自由基2007年,Collins证明三类主要的抗生素——喹诺酮类、β-内酰胺类和氨基糖苷类——可通过生成高度破坏性的分子羟基自由基(hydroxyl radicals)来杀伤细菌细胞。当时,他和其他的研究人员就猜测自由基对它们遭遇的所有细胞成分发动了全面的攻击。麻省理工学院生物学教授Graham Walker 说:“它们几乎对一切都产生反应。它们会追击脂质、它们能氧化蛋白,它们能氧化DNA。”然而在新研究中,研究人员发现这种损伤大部分并非是致命性的,研究人员证明能对细菌造成致死性损伤的是羟基诱导的鸟嘌呤损伤,鸟嘌呤(G)是组成DNA的四个基本核苷酸碱基之一。当这种损伤的鸟嘌呤插入到DNA中时,细菌会致力修复这种损伤,但最终加速了自身的死亡。“这并非是导致所有杀伤效应的原因,但事实它却占据了相当重要的比重,”Walker说。最初,Walker对于DNA修复酶的研究令到研究人员怀疑这种氧化鸟嘌呤有可能在抗生素介导的细胞死亡中发挥了作用。在第一个研究阶段,他们发现了一种特异的DNA聚合酶DinB非常善于利用氧化鸟嘌呤元件来合成DNA。然而,DinB不仅在DNA复制过程中将氧化鸟嘌呤插入到了其正确碱基对胞嘧啶(C)的对面,还将其插入到了腺嘌呤(A)的对面。研究人员发现当太多氧化鸟嘌呤被掺入到新的DNA链中时,细胞将无法成功去除这些损害,因此导致了死亡。基于这些基础的DNA修复研究,Walker和他的同事们于是猜测抗生素生成的羟基自由基是否有可能引发了相同的一连串的DNA损伤。事实证明果然如此。一旦抗生素处理导致的氧化鸟嘌呤插入到DNA中,一个旨在修复DNA的细胞系统就会采取行动。一些称之为MutY 和 MutM的特异性酶通过剪断DNA来启动胞修复过程,正常情况下这一修复机制可以帮助细胞应对DNA中存在的氧化鸟嘌呤。 然而这种修复也是具有高风险的,因为它需要打开DNA双螺旋,在错误碱基被替换时切断DNA链。如果两种这样的修复在DNA反向链附近的位置同时发生,那么DNA就会发生双链断裂,这通常对细胞具有致命效应。“原本应该保护你,确保准确性的系统变成了刽子手。”Walker说。哈佛医学院微生物和免疫生物学教授Deborah Hung说:“新研究代表随着我们重新了解抗生素的作用机制会开启下一个重要的篇章。我们过去思考我们所知的,现在我们意识到所有的简单假设都是错误的,它其实更为的复杂。”

  • 金属检测的回收率和损失率

    我们做加标检测,实际上测定出的是标物的损失率,如何让损失率更接近回收率,因为我们做加标时,标物与样品一般不会发生强烈的反应和螯合,但样品里含的待测金属成分有的是被固定或螯合的

  • 【分享】细胞冻存和细胞复苏的方法步骤

    目前,细胞冻存最常用的技术是液氮冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。细胞在不加任何保护剂的情况下直接冷冻,细胞内外的水分会很快形成冰晶,从而引起一系列不良反应。如细胞脱水使局部电解质浓度增高,pH值改变,部分蛋白质由于上述原因而变性,引起细胞内部空间结构紊乱,溶酶体膜由此遭到损伤而释放出溶酶体酶,使细胞内结构成分造成破坏,线粒体肿胀,功能丢失,并造成能量代谢障碍。胞膜上的类脂蛋白复合体也易破坏引起细胞膜通透性的改变,使细胞内容物丢失。如果细胞内冰晶形成较多,随冷冻温度的降低,冰晶体积膨胀造成细胞核DNA空间构型发生不可逆的损伤,而致细胞死亡。因此,细胞冷冻技术的关键是尽可能地减少细胞内水分,减少细胞内冰晶的形成。采用甘油或二甲基亚砜作保护剂,这两种物质分子量小,溶解度大,易穿透细胞,可以使冰点下降,提高细胞膜对水的通透性,且对细胞无明显毒性。慢速冷冻方法又可使细胞内的水分渗出细胞外,减少胞内形成冰结晶的机会,从而减少冰晶对细胞的损伤。二、细胞冻存操作步骤:(1)选择处于对数生长期的细胞,在冻存前一天最好换液。将多个培养瓶中的细胞培养液去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养液。用吸管吸取培养液反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬液。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清液,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×106~1×107/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记好细胞名称和冻存日期,同时作好登记(日期、细胞种类及代次、冻存支数)。(4)将装好细胞的安瓿或冻存管装入沙布袋内;置于液氮容器颈口处存放过夜,次日转入液氮中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时(此步可省略),再吊入液氮容器颈气态部分存放2小时,最后沉入液氮中。细胞冻存在液氮中可以长期保存,但为妥善起见,冻存半年后,最好取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。

  • 悬浮细胞的分离方法

    组织材料若来自血液、羊水、胸水或腹水的悬液材料,最简单的方法是采用1000r/min的低速离心10分钟,若悬液量大,可适当延长离心时间,但速度不能太高,延时也不能太长,以避免挤压或机械损伤细胞,离心沉淀用无钙、镁PBS洗两次,用培养基洗一次后,调整适当细胞浓度后再分瓶培养,若选用悬液中某些细胞,常采用离心后的细胞分层液,因为,经离心后由于各种细胞的比重不同可在分层液中形成不同层,这样可根据需要收获目的细胞。不同比重的分层液的配制和具体分离方法详见淋巴细胞分离培养的章节。    实体组织材料的细胞分离方法    对于实体组织材料,由于细胞间结合紧密,为了使组织中的细胞充分分散,形成细胞悬液,可采用机械分散法(物理裂解)和消化分离法。    (一)机械分散法    所取材料若纤维成分很少,如脑组织,部分胚胎组织可采用剪刀剪切、用吸管吹打分散组织细胞或将已充分剪碎分散的组织放在注射器内(用九号针),使细胞通过针头压出,或在不锈钢纱网内用钝物压挤(常用注射器钝端)使细胞从网孔中压挤出。此法分离细胞虽然简便、快速,但对组织机械损伤大,而且细胞分散效果差。此法仅适用于处理纤维成分少的实验室试剂软组织。    (二)消化分离法    组织消化法是把组织剪切成较小团块(或糊状),应用酶的生化作用和非酶的化学作用进一步使细胞间的桥连结构松动,使团块膨松,由块状变成絮状,此时再采用机械法,用吸管吹打分散或电磁搅拌或在摇珠瓶中振荡,使细胞团块得以较充分的分散,制成少量细胞群团和大量单个细胞的细胞悬液,接种培养后,细胞容易贴壁生长。    1、酶消化分离法    酶消化分离法常采用胰蛋白酶和胶原酶,其分离方法如下:    (1)胰蛋白酶分散技术    胰蛋白酶(简称胰酶)是广泛应用的消化剂。胰蛋白酶是一种胰脏制品,对蛋白质有水介作用,主要作用于赖氨酸或精氨酸相连接的肽键,使细胞间质中的蛋白质水介而使细胞分散开,在常用人血清 AB的蛋白酶中由于产品的活力和纯度不同,对细胞的消化能力也不同,胰蛋白酶对细胞的作用,取决于细胞类型、酶的活力、配制的浓度、消化的温度、无机盐离子、pH以及消化时间的长短等。    ①细胞类型胰蛋白酶适于消化细胞间质较少的软组织,能有效地分离肝、肾、甲状腺、羊膜、胚胎组织、上皮组织等。而对含结缔组织较丰富的组织,如乳腺、滑膜、子宫、纤维肉瘤、肿瘤组织等就无效,但若与胶原酶合用,就能增加其对组织的分离作用。    ②酶的活力市售的胰蛋白酶,其活力都经过测定而有效,但配制时必须新鲜,需保存在低温冰箱中,消化时的pH和温度都要适宜,否则会影响活力,细胞的分散直接与酶的活力有关,最终使用活力为1:200或1:250,56℃pH8.0时活力最强。    该酶为粉剂,保藏时要防潮,室内温度不宜过高,保存时间不能太长,若粉剂结团块,说明该部分受潮或失效。    ③酶的浓度胰蛋白酶一般采用的浓度为0.1%-0.25%(活力1:200或1:250),但遇到难消化的组织时,浓度可适当提高,消化时间适当延长。浓度高对细胞有毒性,而较低浓度的胰蛋白酶在培养液中可促进细胞的增殖,若培养液中加入血清,其少量胰蛋白酶可被血清中抗胰蛋白酶因子所清除。    ④温度一般认为胰蛋白酶在56℃时活性最强,但由于对细胞有损害而不能被采用,常使用的温度为37℃,通常在37℃进行消化比室温作用快。    ⑤pHpH8~pH9是胰蛋白酶活力适宜范围,但随碱性的增加其活力也随之减少,活性强分散快,细胞也容易被消化下来,消化分离细胞时PH只能选用7.6~8.0之间,否则对细胞有损伤。    ⑥无机盐离子若用含有钙和镁的盐类溶液来配制胰蛋白酶时,可以发生抑制胰蛋白的消化作用。因此,在配制时应采用无钙镁离子的PBS配制。    ⑦消化时间如果细胞消化时间过长,可以损害细胞的呼吸酶,从而影响细胞的代谢,一般消化时间为20分钟为宜,冷消化时使用低浓度消化液,于4℃过夜也可。    分离方法如下:    ①过夜冷消化将取得的组织用Hanks液洗三次,剪成碎块大小为4毫米左右,用Hanks液洗2~3次以除去血球和脂肪组织,再加入0.25%的胰蛋白酶,摇匀后放4℃过夜,次日再用Hanks液洗涤,弃去上清,共洗2~3次,然后,加入少量营养液吹打分散,细胞计数,按适当的浓度分瓶培养。    ②多次提取消化法多次提取消化法有以下三种:    热消化多次提取将剪碎的细胞块加入0.25%胰蛋白酶37℃水浴中消化15~20分钟,然后经洗涤后用营养液分散制成细胞悬液,按合适的浓度分瓶培养,然后将留下的未彻底消化的组织按上述方法操作,再消化提取细胞。    冷消化多次提取方法同上,只是消化温度为4℃。    先热消化后冷消化将组织块先用胰蛋白酶于37℃下消化20分钟经洗涤后用营养液分散,制成悬液,剩余未消化的小组织块经洗涤后用胰酶于4℃下过夜,次日再提取细胞,分散成悬液,分瓶培养。    (2)胶原酶(Collagenase)消化法    胶原酶是一种从细菌中提取出来的酶,对胶原有很强的消化作用。适于消化纤维性组织、上皮组织以及癌组织,它对细胞间质有较好的消化作用,对细胞本身影响不大,可使细胞与胶原成分脱离而不受伤害。该酶分离效果好,即使有钙、镁离子存在仍有活性,故可用PBS和含血清的培养液配制,即操作简便又可提高细胞成活率,最终浓度200u/mL或0.1~0.3mg/mL。细胞培养此酶消化作用缓和,无需机械振荡,但胶原酶价格较高,大量使用将增加实验成本。    经过胶原酶消化后的上皮组织,由于上皮细胞对酶有耐受性,可能有一些上皮细胞团块尚未被完全消化开。成小团块的上皮细胞比分散的单个上皮细胞更易生长,因此不必要再进一步消化处理。    鉴于胰蛋白酶和胶原酶的生物学活性和在不同浓度下消化各种组织小块所需的时间(小时)有差异,以及两者价格不等,有人采用胶原酶与胰蛋白酶并用,同时还可加透明质酸酶(对细胞表面糖基有作用),采用两者的联合消化作用,对分散大鼠和兔肝、癌组织非常有效。    除上述两种最常用的消化酶外,还有链霉蛋白酶、粘蛋白酶、蜗牛酶、弹性蛋白酶、木瓜蛋白酶,近年来,还有一种从灰霉菌中提取的Pronase新酶分散细胞更佳。    2、非酶消化法(EDTA消化法)    EDTA是一种非酶消化物,又称螯合剂或Versene,全名为乙烯二胺四乙酸。常用不含钙、镁离子的PBS配成0.02%的工作液,对一些组织,尤其是上皮组织分散效果好,该化学物质能与细胞上的钙、镁离子结合形成螯合物,利用结合后的机械力使细胞变圆而分散细胞或使贴壁细胞从瓶壁上脱离,缺点是细胞易裂解或贴壁细胞从瓶壁上脱离时呈片状,有团块,常不单独使用,但可与胰蛋白酶混合使用(1:1或2:1),不仅利于细胞脱壁又利于细胞分散,可降低胰酶的用量和毒性作用。    消化分离法的操作步骤:    (1)剪切把组织块剪碎,呈1~5mm3大小的组织块。    (2)加液漂洗将碎组织块在平皿(或三角烧瓶)中用无钙镁PBS洗2-3次(采用倾斜,自然沉降法)。    (3)消化加入消化液(胰蛋白酶或胶原酶或EDTA)于37℃水浴中作用适当时间(中间可轻摇1~2次),若组织块膨松呈絮状可终止,若变化不大可更换一次消化液,继续消化直至膨松絮状为止。胰蛋白酶消化时间不宜过长。    (4)弃去消化液采用倾斜自然沉降或低速离心法尽量弃去消化液。    (5)漂洗将含有钙、镁离子的培养基沿瓶壁缓缓加入,中止消化反应,采用漂洗法洗2-3次后,加入完全培养基。    (6)机械分散采用吸管吹打或振荡法,使细胞充分散开后用纱网或3~4层无菌纱布过滤后分瓶培养,若要求不高可采用倾斜自然沉降5~10分钟,吸上层细胞悬液进行分瓶培养。

  • 细胞培养实验室环境设计

    1 实验室设计 细胞培养是一种无菌操作技术,要求工作环境和条件必须保证无微生物污染和不受其它有害因素的影响.细胞培养室和设计原则是防止微生物污染和有害因素影响,要求工作环境清洁,空气清新,干燥和无烟尘.细胞培养室的设计原则一般是无菌操作区设在室内较少走动的内侧,常规操作和封闭培养于一室,而洗刷消毒在另一室. 2 常用设施及设备 (1)超净工作台:也称净化工作台,分为侧流式,直流式和外流式三大类. (2)无菌操作间:一般由更衣间,缓冲间和操作间三部分组成.操作间放置净化工作台及二氧化碳培养箱,离心机,倒置显微镜等.缓冲间可放置电冰箱,冷藏器及消毒好的无菌物品等. (3)操作间:普通培养箱,离心机,水浴锅,定时钟,普通天平及日常分析处理物(4)洗刷消毒间:烤箱,消毒锅,蒸馏水处理器及酸缸等. (5)分析间:显微镜,计算机及打印机等. 3 培养器皿 常用细胞培养器皿有培养瓶,培养板,培养皿等.常准备量是使用量的三倍.器皿应选择透明度好,无毒,利于细胞粘附和生长的材料,常用一次性聚苯乙烯材料制品或中性硬度玻璃制品.常用的器皿有下面几种. (1)液体储存瓶:用于储存各种配制好的培养液,血清等液体,常用规格有500ml,250ml, 100ml等几种. (2)培养瓶:根据培养细胞种类要求不同培养瓶的形态各异,用于细胞传代培养的细胞要求瓶壁厚簿均匀,便于细胞贴壁生长和观察,瓶口要大小一致,口径一般不小于1cm,允许吸管伸入瓶内任何部位,规格有200ml,100ml,50ml,25ml,10ml等几种. (3)培养皿:用于开放式培养及其它用途.分直径30mm,60mm,120mm等几种. (4)吸管:常用的有长吸管和短吸管两类,长吸管也称刻度吸管.其改良后管上部有球型刻度称改良吸管,刻度吸管用于移动液体.常用1ml和10ml两种.短吸管也叫滴管,分弯头和直头两种. (5)离心管:离心管是细胞培养中使用最广泛的器皿,根据用途不同形态各样,常用于细胞培养的离心管有大腹式尖底离心管和普通尖底离心管两类.前者分别为50ml,30ml,15ml;后者则多为10ml和5ml. (6)其它:如三角烧瓶,烧杯,量筒,漏斗,注射器等.4 细胞培养温度 维持培养细胞旺盛生长,必须有恒定而适宜的温度.不同种类的细胞对培养温度要求也不同.人体细胞培养的标准温度为36.5℃±0.5℃,偏离这一温度范围,细胞的正常代谢会受到影响,甚至死亡.培养细胞对低温的耐受力较对高温强,温度上升不超过39℃时,细胞代谢与温度成正比;人体细胞在39-40℃1小时,即能受到一定损伤,但仍有可能恢复;在40-41℃1小时,细胞会普遍受到损伤,仅小半数有可能恢复;41-42℃1小时,细胞受到严重损伤,大部分细胞死亡,个别细胞仍有恢复可能;当温度在43℃以上1小时,细胞全部死亡.相反,温度不低于0℃时,对细胞代谢虽有影响,但并无伤害作用;把细胞放入25-35℃时,细胞仍能生存和生长,但速度减慢;放在4℃数小时后,再回到37℃培养,细胞仍能继续生长.细胞代谢随温度降低而减慢.当温度降至冰点以下时,细胞可因胞质结冰受损而死亡.但是,如果向培养液中加入一定量的冷冻保护剂(二甲亚砜或甘油),可在深低温下如-80℃或-196℃(液氮)长期保存. 5 合适的气体环境 气体是哺乳动物细胞培养生存必需条件之一,所需气体主要有氧气和二氧化碳.氧气参与三羧酸循环,产生供给细胞生长增殖的能量和合成细胞生长所需用的各种成分.开放培养时一般把细胞置于95%空气加5%二氧化碳混合气体环境中.二氧化碳既是细胞代谢产物,也是细胞生长繁殖所需成分,它在细胞培养中的主要作用在于维持培养基的pH值.大多数细胞的适宜pH为7.2-7.4,偏离这一范围对细胞培养将产生有害的影响.但细胞耐酸性比耐碱性大一些,在偏酸环境中更利于细胞生长.但有一些细胞也喜欢偏碱环境中生长,如成纤维细胞最适合pH是7.4-7.6.每种细胞都有其最适pH值.

  • 实时无标记全自动细胞分析仪让您的实验如鱼得水

    iCELLigence全自动细胞分析仪让您远离MTT实验不断重复还无法得到统一结果的烦恼,让您不再因只看到其中的一个点而损失了其它的细胞生物学信息而无计可施,因为它可以清楚的记录下细胞完整的一生! 一:全自动细胞分析仪仪器原理 iCELLigence实时无标记全自动细胞分析仪是一款新型的细胞分析平台,具有实时监测、高信息量、无需标记、全自动化、高灵敏度和高准确性等独特优点。该细胞分析仪通过嵌在E-plate板上孔底的微电子感应器阻抗变化去感受细胞的有无以及贴壁、黏附和生长程度的改变。在细胞毒性检测中,可实时、直观的反应细胞增殖、存活、凋亡、形态变化等细胞生物学变化。 二:全自动细胞分析仪仪器优势 iCELLigence全自动细胞分析仪的传感器阻抗技术在细胞分析中具有其独特的优势:它为整个的细胞毒性检测分析过程中提供了全程无损伤的监控,实时、连续显示的数据让您可以更加自信更加清楚的进行细胞毒性检测操作和其它的细胞分析,而不是假定细胞处于合适的处理阶段。一连串实时获取和显示的数据让您处理每一步结果都可以通过机理来预测,同时也可以结合全自动细胞分析仪实时的读数来决定传统终点细胞毒性检测分析的最佳时间点。只需几个简单的操作步骤您就可以获得高信息量的、直观的、准确的结果,就可以让您的细胞实验变得更加省时高效。 三:全自动细胞分析仪的应用领域基于iCELLigence全自动细胞分析仪的技术优势,该系统在基础生命科学领域具有广泛的应用,如细胞质量控制、细胞毒性检测、细胞粘附和细胞伸展等。

  • 细胞破碎的四种方法

    [b][font=微软雅黑][size=10.5pt]一、机械破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]是指利用捣碎机、研磨器或匀浆器[/font] [font=微软雅黑]等将细胞破碎开来[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt]1. 高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。[/size][/font][font=微软雅黑][size=10.5pt]2. 玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。[/size][/font][b][font=微软雅黑][size=10.5pt]二、物理破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt]指利用温度差、压力差或超声波等将细胞破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]1.用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂(借助超声的震动力破碎细胞壁和细胞器)。[/size][/font][font=微软雅黑][size=10.5pt]机制:可能与强声波作用溶液时,气泡产生、长大和破碎的空化现象有关,空化现象引起的冲击波和剪刀力使细胞裂解。[/size][/font][font=微软雅黑][size=10.5pt]超声波破碎的效率取决于声频、声能、处理时间、细胞浓度和细胞类型等。(使用时注意降温,防止过热)。[/size][/font][font=微软雅黑][size=10.5pt]2. 高压破碎:细胞悬浮液从高压室的环状隙喷射到静止的撞击环上,被迫改变方向经出口管流出。此过程中细胞经历了高速造成的剪切的碰撞及高压到常压的变化,从而破碎释放内含物。[/size][/font][font=微软雅黑][size=10.5pt]这是一种温和的、彻底破碎细胞的较理想的方法。[/size][/font][font=微软雅黑][size=10.5pt]3. 反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。[/size][/font][b][font=微软雅黑][size=10.5pt]三、化学破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]指利用甲醛、丙酮等有机溶剂或表面活性剂作用于细胞膜,使细胞膜的结构遭到破坏或透性发生改变[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠([/font]SDS)、去氧胆酸钠等细胞膜破坏。浓度一般为1mg/ml。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]四、酶学破碎法[/font] [font=微软雅黑]:[/font][/size][/font][font=微软雅黑][size=10.5pt]选用合适的酶,使细胞壁遭到破坏,进而在低渗溶液中将原生质体破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]细菌细胞壁较厚,可采用溶菌酶处理效果更好。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]裂解液标准配方[/font]: :50mM Tris-HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml溶菌酶。(溶菌酶在这个pH范围内比较好发挥作用) 。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]综合叙述:无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸([/font]DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入PMSF也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。[/size][/font]

  • 你是细胞培养达人吗?细胞培养秘笈新鲜出炉啦!

    你是细胞培养达人吗?细胞培养秘笈新鲜出炉啦!

    [align=center][size=18px]细胞主子难伺候?[/size][/align][align=center][size=18px]离心重悬、大量损失、移取污染?[/size][/align][align=center][size=18px]这些状况你是否都遭遇过?[/size][/align][align=center][size=18px]快来参与Eppendorf小活动,即可赢取精美礼品![/size][/align][size=16px]参与方式:点击下方链接,即可进入相关文章,并在留言区分享你在细胞复苏操作时遇到的大危机或者小贴士,小编会随机抽取三位送出Eppendorf 75周年限量版笔记本![/size] [url]https://mp.weixin.qq.com/s/VDwPvAkMuo4baf8bsXPKpA[/url] [align=center][img=,690,4792]https://ng1.17img.cn/bbsfiles/images/2020/04/202004020924338530_141_3299836_3.jpg[/img][/align]

  • 【实战宝典】总卤素分析如何避免待测物损失?

    问题描述:总卤素分析如何避免待测物损失?解答:[font=宋体]使用燃烧炉[/font]-[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]联用系统([/font]Combustion-IC[font=宋体])分析各类复杂基体中的总卤素、总硫。样品燃烧、燃烧产物吸收、吸收液进入[/font]IC[font=宋体]检测系统一系列环节全部自动完成,相对传统的氧弹、燃烧瓶方法,不仅更快速安全,还避免了吸收液转移环节引入误差。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 熟吃会损失多少维生素

    每当人们说起加热食物,总是会说“这样会损失维生素”。尤其是那些提倡生食的人,避免因为加热损失维生素更是一个最常见的理由。更有“养生大师”语出惊人:超过40度维生素就要分解,所以要生着吃才有用。历史发展到今天,人类是唯一会把食物做熟了吃的生物。蔬菜熟吃,到底会损失多少维生素呢?  首先需要说明的一点,维生素不是一种物质,而是一大类物质。每一种维生素的特性各不相同,面对各种条件的稳定性也不一样。维生素C很容易溶于水,一些B族维生素例如叶酸、B6、B12等也溶于水,那么用水煮的话就比较容易失去。从保留水溶性维生素的角度来说,蒸是比煮更好的方式。这几种不稳定的维生素和维生素E、K在光照的条件下也会损失。此外,它们所处的环境,比如酸碱性也会影响它们的稳定性。而某些金属,比如铁和钴,能导致维生素E和B12失去活性。严格说来,维生素“失去活性”也并不是“生”和“死”两种状态,而是损失了多少的问题。  加热对于不同维生素的影响不一样,各种食物“加热”的温度和时间也不一样,所以“熟吃会损失多少维生素”并不是一个容易回答的问题。美国农业部的数据库里有 常见食物的各种维生素含量。有人统计了各种食物在“生”和“熟”状态下的数据,剔除含水量变化的影响,得出了各种维生素经过加热之后的损失比例。虽然这些数字不一定非常准确,但是足够我们得到一个有意义的印象:维生素A和E受温度影响不大,做熟之后损失10%左右,维生素C损失16%的样子,而维生素B1最不稳定,损失26%,其他的维生素也基本上在这个范围之内。总体而言,把食物做熟,维生素的损失大致在10-25%之间。  但是加热对维生素也有积极意义。有些食物中含有所谓的“反维生素物质”,它们能与维生素结合,而加热会破坏这些物质,从而增加维生素的吸收率。b-胡萝卜素是另一个例子,它存在于多种蔬菜中,比如胡萝卜、菠菜、红薯、西兰花等等。到了人体内它能转化成维生素A,是素食者获得这种维生素的主要途径。但是生的蔬菜中b-胡罗卜素的吸收率很低,而加热就可以使它的吸收率大大增加。有趣的是,超高温长时间加热的话,它会从有生物活性的反式结构转化成没有活性的顺式结构,所以这些蔬菜做成罐头之后b-胡罗卜素的损失就会比较大。不过,通常的蒸煮达不到那个温度,所以日常烹饪也就不用担心了。  加热损失的10-25%,不算很多,也不算少。不过,考虑到生吃蔬菜可能带来的问题,比如致病细菌,以及一些需要加热破坏的毒素,很难简单地说蔬菜应该生吃还是熟吃。其实对于维生 素来说,与其过多地关注“损失”,不如把注意力集中在来源上。不同的食物所富含的维生素不同,如果所吃的食物比较多样化,那么各种卫生素的总量就可能都会 比较多,损失一点也就没有什么关系了。毕竟,我们的身体需要的是各种维生素都达到某个需求量,而不是某一两种越多越好。baoanbaikang.soxsok.com/ zhongpengyi.soxsok.com/ whhaicheng.soxsok.com/ cmipma.soxsok.com/

  • 润滑油损失的主要原因

    油品的蒸发损失,即油品在一定条件下通过蒸发而损失的量,用质量百分比表示。蒸发损失与油品的挥发度成正比。蒸发损失越大,实际应用中的油耗就越大,故对油品在一定条件下的蒸发损失量要有限制。润滑油在使用过程中蒸发,造成润滑系统中润滑油量逐渐减少,需要补充,粘度增大,影响供油。液压液体在使用中蒸发,还会产生气穴现象和效率下降,可能给液压泵造成损害。蒸馏方法得到的数据只是粗略的结果,润滑油品的蒸发损失需专门方法测定。目前,我国测定润滑油蒸发损失的方法为GB/T 7325润滑油和润滑脂蒸发损失测定法。该方法是把放在蒸发器中的润滑油试样,置于规定温度的恒温浴中,热空气通过试样表面22h。然后根据试样的质量损失计算蒸发损失。根据该方法,润滑油品的蒸发损失可以在99-150℃内的任一温度下测定。目前,该方法在我国主要用于合成润滑油的蒸发损失评定。国外主要的测定方法有:美国的ASTM D972、德国的DIN 51581和日本的JIS K2220 (5.6)等。抗乳化性分析2009-08-27 12:39(1)概述2.乳化乳化是一种液体在另一种液体中紧密分散形成乳状液的现象,它是两种液体的混合而并非相互溶解。抗乳化则是从乳状物质中把两种液体分离开的过程。润滑油的抗乳化性是指油品遇水不乳化,或虽是乳化但经过静置,油-水能迅速分离的性能。两种液体能否形成稳定的乳状液取决于两种液体之间的界面张力。由于界面张力的存在,分散相总是倾向于缩小两种液体之间的接触面积以降低系统的表面能,即分散相总是倾向于由小液滴合并大液滴以减少液滴的总面积,乳化状态也就是随之而被破坏。界面张力越大,这一倾向就越强烈,也就越不易形成稳定的乳状液。润滑油与水之间的界面张力随润滑油的组成不同而不同。深度精制的基础油以及某些成品油与水之间的界面张力相当大,因此,不会生成稳定的乳状液。但是如果润滑油基础油的精制深度不够,其抗乳化性也就较差,尤其是当润滑油中含有一些表面活性物质时,如清净分散剂、油性剂、极压剂、胶质、沥青质及尘土粒等,它们都是一些亲油剂和亲水基物质,它们吸附在油水表面上,使油品与水之间的界面张力降低,形成稳定的乳状液。因此在选用这些添加剂时必须对其性能作用作全面的考虑,以取得佳的综合平衡。对于用于循环系统中的工业润滑油,如液压油、齿轮油、汽轮机油、,油膜轴承油等,在使用中不可避免地和冷却水或蒸汽甚至乳化液等接触,这就是要求这些油品在油箱中能迅速油-水分离,(按油箱容量,一般要求6-30min分离),从油箱底部排出混入的水分,便于油品的循环使用,并保持良好的润滑。通常润滑油在60℃左右有空气存在并与水混合搅拌的情况下,不仅易发生氧化和乳化而降低润滑性能,而且还会生成可溶性油泥,受热作用则生成不溶性油泥,并剧烈增加流体粘度,造成堵塞润滑系统、发生机械故障。因此,一定要处理好基础油的精制深度和所用添加剂与其抗乳化剂的关系,在调合、使用、保管和贮运过程中亦要避免杂质的混入和污染,否则若形成了乳化液,则不仅会降低润滑性能,损坏机件,而且易形成油泥。另外,随着时间的增长,油品的氧化、酸性的增加、杂质的混入都会使抗乳化性的变差,用户必须及时处理或者更换

  • 【转帖】中药化学成分的提取

    1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。  中草药成分在溶剂中的溶解度直接与溶剂性质有关。溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同。

  • 【转帖】砒霜门事件致农夫山泉损失超10亿人民币

    新浪财经讯 12月7日下午消息,据新浪财经刚刚获得的一份农夫山泉内部损失统计数据显示,“砒霜门”事件一周内农夫果园和水溶C100销量环比下降50%,多地区出现下架情况,整体估计集团在此事件中损失超过10亿。  卖场、超市销售锐减过半  “砒霜门”爆发前的11月21日起,农夫山泉开始在全国范围内着力推广农夫果园和水溶C100,全国2935家超市和卖场参加了此次推广活动。活动刚开始一周“砒霜门”的消息被主流网站转载,自此销量一路下滑。  据农夫山泉内部损失统计表显示:相比此前一周农夫果园和水溶C100的销售额分别下降了46%和53%。  该统计表的下方注明:为这次活动所投入的所有堆头布置、促销员聘请等费用都无法收回,即使在没有进行推广活动的超市,农夫山泉也损失惨重。  表格还列举了从全国主要超市、卖场、便利店获得的“砒霜门”后一周两款产品环比销量下降幅度。  在这个表格上看到,华南成了这一事件的“重灾区”,广州地区的好又多超市两款产品销量下降73%和91%,易初莲花销量下降65%和88%。

  • 超声波破碎细胞的常见问题

    大肠杆菌表达外源蛋白,在超声破碎的时候,用含有1%triton-X-100的PBS悬浮,然后超声的效果较好,1%triton-X-100的作用还是很明显的,对其他的一些细菌同样起作用,比如链霉菌。 细菌沉淀直接加样品1buffer,再加5ul的巯基乙醇,混匀,离心,煮沸10min,直接上样,染色脱色步骤如下:将胶放入适量的染色液微波炉里加热1min(下次适当补点醋酸即可),将染色液换成大量的水(自来水即可)在微波炉煮10min 就可以。 在表达重组蛋白后超声波破碎细胞,采用冰浴,400w,破2s停1s,但是不一会就产生大量泡沫,影响了破碎功率,pbs和tris缓冲液都是这样,最后都是破碎不完全,而我的目的蛋白就在这些未破碎的细胞中。1*会产生气泡是因为你的探头位置没放好。探头一定要接近底部,约1cm(我一般是距底部0.5mm)。功率根据仪器不同会有所不同,但你可以观察液面,有波动但不要太剧烈就好。2*破3S停10S,破个二三十次看看。 3*变幅杆位置摆放也要注意,听声音如果不对的话就要及时调整。另外可以从菌浓度方面考虑。 在破碎时试着加大体积,强度最好不要超过60%. 4*尝试超8s停8s,对有些菌体蛋白来说,你的方法很难散热,导致蛋白变性产生气泡,最好停顿时间稍长一些,这种情况多见于包涵体形式的蛋白。链霉菌(放线菌)超声破碎的,用的方法条件是什么?前处理一般就是配置成一定浓度的菌悬液。使用超声破碎时采用的具体条件是:(1)取细菌的24 h培养液于5 000 r/min 下离心5 min收集菌体.(2)用pH 7.5的Na2HPO -NaH2PO 缓冲液洗涤3次,再用该缓冲液将菌体配成1:3的菌悬液.置于40 mL大塑料试管内.(3)将大塑料试管置于冰浴中,采用超声波破碎(功率200 W,1/2”探头,破碎30 s,间歇30 S).(4)破碎液于12 000 r/min下高速冷冻离心30 min,收集细胞碎片和上清夜. 超声破菌流程与 上述基本一致,就是洗涤菌体也可以用预冷的生理盐水或pH8的Tris-HCl,洗涤一次就可以。另外,超声剂量随样品量、菌体改变比较大,功率可以到400-600w,超5s,停5s,冰浴,要加终浓度1 mM的PMSF。为确定合适的超声强度和次数,有必要随时镜检观察菌体是否完全破碎。 放线菌属于原核生物系统进化树上的(G+C)摩尔百分含量(mol%)高的革兰氏阳性菌(Eubacteria)分枝类群,它虽然具有原核生物特有的分子生物学特性,但在其不同类群中,细胞壁的化学组分变化很大。 在做大肠杆菌超声时,采用的是400W,超5停5的方法,效果不错,但是用在链霉菌上,似乎没什么效果。会不会就是由于细胞壁组成差异造成的呢,因为大肠杆菌式属于革兰氏阴性菌的。 再有镜检是检验破碎效果,但是细胞破碎程度和我需要的酶获得之间有正比关系吗?破碎时间长也会影响到酶的活性。所以想问问anaisai战友,你提供的“功率200 W,1/2”探头,破碎30 s,间歇30 S”的条件好像是用于破碎链霉菌孢子的,也可以用于发酵离心后的菌泥吗?如果可以,你破碎的全程时间大概是多少呢? 如果你需要的是胞内酶,细胞破碎程度和需要的酶获得之间基本上有正比关系。破碎时间长的确会影响到酶的活性。这就需要在最佳的破碎时间和酶活性之间做出判断,最直接的办法是先绘制相关曲线(酶活性和时间的关系曲线)。 实验中,破碎的是棒状杆菌(也是很难破壁的G+菌),破碎时间控制在30min左右,酶活较好。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制