当前位置: 仪器信息网 > 行业主题 > >

细胞分裂素

仪器信息网细胞分裂素专题为您整合细胞分裂素相关的最新文章,在细胞分裂素专题,您不仅可以免费浏览细胞分裂素的资讯, 同时您还可以浏览细胞分裂素的相关资料、解决方案,参与社区细胞分裂素话题讨论。

细胞分裂素相关的资讯

  • 研究发现新活性物质可抑制白血病细胞分裂
    上海沪峰日前发表研究公报,称发现了一种新的活性物质,可以抑制白血病细胞分裂,而且有望在抗癌治疗中发挥重要作用。这种被称为XD14的活性物质可以抑制BET蛋白家族中的几种蛋白功能。BET蛋白也称为表观遗传识别蛋白,可以识别细胞组蛋白中的表观遗传学信息变化,并传递激发细胞分裂等的信号。以白血病为例,血细胞内BET蛋白的基因突变会干扰这种信号传输,导致病变细胞不受控制地分裂,从而损害人体的组织器官。研究人员采用了一种虚拟筛选的方法,找到了这种新的活性物质。他们在计算机模拟的模型中,研究了大约1000万种分子化合物的特性,以鉴别出能够阻止某些BET蛋白传递信号的物质。研究人员对60种不同类型的癌细胞进行了XD14的测试。实验结果证明XD14能够显著抑制白血病细胞的分裂。上海沪峰生物科技有限公司是一家集经销批发鸡elisa试剂盒,牛elisa试剂盒,羊elisa试剂盒,猪elisa试剂盒,elisa试剂盒厂家培养基专卖,培养基,干燥培养基,显色培养基,招商代理的有限责任公司,是一家经国家相关部门批准注册的企业。主要经营ELISA试剂盒、细胞、血清、抗体、金标试剂盒、生物试剂、耗材、培养基、一抗、二抗、毒素、移液器等产品,产品畅销国内大部分地区 ,销售额逐年稳步提高。上海沪峰生物科技拥有雄厚的实力、合理的价格和优良的服务,能够及时解决和满足客户的各方面的需求,与国内多家企业建立了良好的长期合作关系,在市场上树立了公司的良好信誉和形象。
  • Nature Communication:在有丝分裂中整合素减少对细胞外基质的粘附而加强对相邻细胞的
    为了进入有丝分裂,大多数粘附的动物细胞减少粘附,随后细胞变圆。有丝分裂细胞如何调节与邻近细胞和细胞外基质(ECM)蛋白的粘附目前学界尚不清楚。尽管在有丝分裂之前、之中和之后的粘附调节的重要性已经被很好地证明,但是对于有丝分裂细胞如何调节细胞ECM和细胞-细胞粘附的启动的见解还是有限的。此外,整合素和钙粘蛋白介导的粘附在有丝分裂进入和进展过程中的相互作用还不清楚。 为此苏黎世联邦理工学院生物系和德国马汀里德马克斯普朗克生物化学研究所分子医学部的研究人员在基因工程细胞系中使用基于原子力显微镜(AFM)的单细胞力谱(SCFS)方法来定量测量细胞-ECM和细胞-细胞间粘附力的大小,以了解细胞与ECM和邻近细胞的粘附力的启动和加强是如何被不同地调节的。实验显示,在有丝分裂细胞中,整合素没有通过踝蛋白和纽蛋白与细胞骨架连接,导致了细胞与ECM粘附增强作用减弱,而β1整合素和不同的粘附蛋白,包括纽蛋白、黏着斑蛋白和踝蛋白,增加了有丝分裂钙粘蛋白介导的细胞-细胞粘附。研究人员结合单细胞力谱和荧光显微镜来定量HeLa细胞的细胞周期依赖性粘附力。将表达MYH9-GFP和H2B-mCherry的单个圆形间期或有丝分裂HeLa细胞连接到伴刀豆球蛋白A (ConA)包被的AFM的悬臂上,使它们接近基质胶或牛血清白蛋白(BSA)包被的底物,并允许它们启动和加强粘附5-360秒的时间,然后将它们从基底上脱离以定量测量粘附力的大小(补充图1a)。作者通过共聚焦的方法观察到间期HeLa细胞使粘附位点成熟并稳定增加其铺展面积(图1b-e)。图1. 有丝分裂细胞显著降低了对ECM的粘附增强,并增加了对邻近细胞的粘附。a在给定的接触时间后,间期(左)或有丝分裂(右)HeLa细胞与基质或牛血清白蛋白的粘附力。点表示单个细胞的粘附力,红条表示中位数,n(细胞)表示至少三次独立实验中测试的独立细胞的数量。as值将附着力增强率表示为所有接触时间内通过附着力线性拟合的斜率(±SE),并将as值与参考数据集进行比较的p值(补充图2a)。间期HeLa细胞对Matrigel的粘附力以灰色表示,与有丝分裂细胞比较。b,c在SCFS期间,表达paxillin- gfp的间期(b)或有丝分裂的stc (c) HeLa细胞(n = 7)粘附在Matrigel上的共聚焦显微镜图像的代表性时间序列。箭头显示paxillin-GFP簇。比例尺,20µ m。d表达paxillin- gfp的间期和有丝分裂stc HeLa细胞的接触时间依赖性和归一化扩散面积(±SEM) (n = 7个独立实验)。灰色区域表示间期和有丝分裂的stc HeLa细胞扩散面积有显著差异(P值补充表1)。e有丝分裂的stc HeLa细胞60min后对Matrigel的粘附力,360s后对Matrigel的粘附力作为灰色参考。描述的数据表示。 f接触时间120s时,间期(左)或有丝分裂stc(右)HeLa细胞与纯化ECM蛋白的粘附力。数据表示如a.间期HeLa细胞对各自ECM蛋白的粘附力以灰色参考给出。g在给定接触时间,两个间期(左)、间期和有丝分裂stc(中)或两个有丝分裂stc(右)HeLa细胞之间的粘附力。P值比较显示数据集和参考数据集的as值(补充图4a)。两个间期HeLa细胞之间的粘附力以灰色表示。数据表示如a.“MitoticSTC”所示,表明有丝分裂细胞通过STC富集(“方法”)。采用双尾Mann-Whitney检验计算给定数据与参考数据(a, d-g)比较的P值,采用双尾额外平方和f检验计算比较as值的P值。接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).图2:a对间期和有丝分裂stc HeLa细胞进行整合素亚基荧光标记,并用流式细胞术进行分析。点表示每个样品分析的2万个细胞的中位荧光强度归一化到间期HeLa细胞样品中位荧光强度的平均值,条表示所有中位的平均值,误差条表示扫描电镜。N(样本)表示测试的生物独立样本的数量。b间期和有丝分裂stc HeLa细胞的流式细胞术,标记了扩展构象的整合素(克隆9EG7)。间期和有丝分裂stc HeLa细胞与Matrigel结合概率的数据表示。圆点表示单个HeLa细胞的结合概率,红条表示所有被测细胞的中位数结合概率,误差条表示扫描电镜。n(cells)表示探测HeLa细胞的数量,并采样每种情况下记录的力-距离的数量。d对间期和有丝分裂的stc HeLa细胞进行n -钙粘蛋白标记,并用流式细胞术进行分析。数据表示如a. e所述,间期或有丝分裂stc HeLa细胞与散布在底物上的单个间期细胞的结合概率。整个的研究实验数据揭示了整合素在有丝分裂细胞中的双重作用:刚结合配体的整合素不与肌动蛋白偶联,因此很难增强与ECM的粘附,而贝塔1整合素增强了有丝分裂细胞与邻近细胞的粘附,间期细胞利用黏着斑蛋白、踝蛋白和纽蛋白快速启动和加强整合素介导的细胞-ECM粘附。有丝分裂细胞增加了它们对邻近细胞的粘附力。这部分是由于钙粘蛋白的细胞表面含量水平增加了约20%以及钙粘蛋白结合率增加了两倍。有趣的是,我们还发现贝塔1整合素促进了与相邻间期或有丝分裂细胞的粘附的启动和加强。在实验中,没有在间期细胞或有丝分裂细胞的细胞表面检测到胶原、层粘连蛋白或纤连蛋白,这表明参与有丝分裂细胞的细胞间粘附的整合素不太可能与其他间期细胞或有丝分裂细胞的细胞表面上的ECM蛋白结合。然而,不能完全排除ECM蛋白参与有丝分裂细胞-细胞粘附实验。是否贝塔1整合素的贡献是通过直接结合E-和/或N-钙粘蛋白来实现的,如报道的胶原结合整合素,还有待探索。Mn2+或抗体对贝塔1整合素的外源性激活不会增加有丝分裂细胞间的粘附,这可能表明贝塔1整合素的功能与构象无关,或者整合素的激活不会增加其结合动力学。尽管在最初的360秒内,贝塔1整合素并不促进两个间期细胞间的粘附形成,但在融合的MDCK细胞单层中,无论细胞周期状态如何,贝塔1整合素都定位于细胞间的接触。总之,细胞在有丝分裂开始时减少细胞ECM粘附,导致细胞变圆,对整合素和粘附素蛋白的需求有限。与此同时,有丝分裂细胞通过激活钙粘蛋白和利用细胞间粘附位点增强与邻近细胞的粘附。这种细胞ECM和细胞-细胞粘附位点的复杂重塑确保了有丝分裂细胞的圆形化和组织完整性的维持。 该工作使用了Bruker旗下的JPK Nanowizard4三轴分立的闭环、全针尖扫描的生物型原子力显微镜。最新的JPK Nanowizard V系统还配备了Bruker专利技术的PeakForce Tapping可以不用考虑针尖的动力学而非常轻易的成像。且还有专门针尖细胞成像的定量成像模式(QI)可以同时得到样品的表面形貌和机械性能的Mapping图。文章信息如下,感兴趣的朋友可以自行下载阅读。论文链接:https://www.nature.com/articles/s41467-023-37760-x Bruker NanoWizardV 简介:https://www.bruker.com/de/products-and-solutions/microscopes/bioafm/jpk-nanowizard-v-bioscience.html
  • 文献速递 | Echo显微镜助力对疟原虫独特分裂机制的解析
    疟疾是由疟原虫属的单细胞原生动物寄生虫引起的,人类疟疾每年会导致2亿人感染,造成40多万人死亡。真核细胞周期通常分为不同的阶段,核分裂后立即进行胞质分裂。为了确保细胞分裂的正确进行,细胞分裂每个阶段都通过检查点的反馈协调控制分裂进程。但疟原虫有所不同,在恶性疟原虫的无性复制周期中,其经历了多轮不同步的有丝分裂,伴随着未浓缩染色体的分离,随后是具有完整核膜的核分裂。然后,多核细胞经历一轮胞质分裂,产生数十个称为裂殖子的子细胞。迄今为止,还没有发现调节疟原虫分裂的细胞周期检查点的分裂模式。由于疟原虫细胞分裂的特殊性,了解疟原虫中驱动和调节分裂过程的分子机制可以帮助揭示治疗疟疾的新靶点。本次推荐的文章《Depletion of the mini-chromosome maintenance complex binding protein allows the progression of cytokinesis despite abnormal karyokinesis during the asexual development of Plasmodium falciparum》找到了一个与疟原虫分裂相关的蛋白复合物,该蛋白的缺失将导致疟原虫细胞分裂异常。本文的作者鉴定出了微小染色体维持复合物结合蛋白(MCMBP)的疟原虫同系物(PfMCMBP),它与MCM复合物(基因组DNA复制所需的复制解旋酶)结合。为了研究PfMCMBP在恶性疟原虫无性生命周期中的作用,作者通过同源重组将三份带有去稳定结构域的血凝素表位标签融合到3D7菌株中内源PfMCMBP的羧基末端,产生3D7-PfMCMBP3HADD转基因寄生虫株。即在小分子Shield-1 (Shld1)的存在下,PfMCMBP3HADD蛋白稳定,并且将Shld1在培养基中的含量与PfMCMBP建立联系,量化其在胞内的含量。通过Echo荧光显微镜观察发现PfMCMBP缺失的表型,PfMCMBP缺失可以破坏核形态和寄生虫增殖,但不会阻断DNA复制。PfMCMBP缺失促进了MTOCs的形成,MTOCs具有延伸的纺锤体微管,这些微管附着在空间分离的DNA簇中的染色体上。PfMCMBP缺失促进有丝分裂纺锤体微管的形成,延伸到一个以上的DNA焦点,导致异常的中心粒分布。虽然PfMCMBP缺陷使寄生虫无法正常进行核分裂,但其可以完成胞质分裂,形成具有不同细胞和细胞核大小的非整倍体裂殖子。本文表明寄生虫缺乏一个强大的检查点来停止异常核分裂后的胞质分裂。▲ PfMCMBP缺陷寄生虫在整个环期至早期滋养体的核DNA形状Echo正倒置一体显微镜Echo正倒置一体显微镜兼具正置和倒置显微镜的功能,方便小巧,一机多能,可以非常便利地通过旋转实现正倒置配置的切换;无传统目镜设计,拥有明场,相衬,荧光,偏光等观察方式,可兼容活细胞观察,病理切片,免疫组化,免疫荧光,荧光原位杂交等。▲ Echo正倒置一体显微镜参考文献:Sajuthi S P , Deford P , Li Y C , et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium[J]. Nature Communications, 2020, 11(1).DOI:10.1038/s41467-020-18781-2
  • 受激拉曼散射技术可无创诊断细胞癌变程度
    p style="TEXT-ALIGN: center"img title="sss_55f7c78f7a458.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/0ea9e597-6c66-4b99-a961-aadbc4690184.jpg"//pp  美国哈佛大学的科学家在最新研究中利用受激a title="" href="http://www.instrument.com.cn/news/20150918/172905.shtml" target="_self"拉曼/a散射(SRS)显微镜技术,在无需荧光标记的情况下,观察到活体皮肤癌细胞分裂过程中DNA分子动力活动机理。新技术是一种不用着色的非标记技术,可在不干扰细胞正常进程的条件下了解细胞癌变程度。/pp  现有方法中的DNA检测技术需要对其进行荧光标记,病理诊断也要对活检组织染色,这些方法均有可能改变细胞的原生环境。受激拉曼散射能在活细胞研究中实时快速获得样本数据,并可观察到化学键的振动频率。通过观察细胞内碳氢键的振动区间,并对图像进行线性分解,可观察到细胞内DNA、蛋白质和脂类及其分布,以及细胞分裂过程。/pp  研究人员发表在《美国国家科学院院刊》上的报告称,他们利用受激拉曼散射技术观察了海拉细胞的细胞分裂全过程。在有丝分裂前期,他们构建出三维DNA、脂类、蛋白质分布 在有丝分裂间期,辨别出细胞核的染色质结构。延时受激拉曼散射技术还观察到细胞分裂中期到后期过渡期的变化。/pp  研究人员对使用苯二甲酸(TPA,可促进细胞分裂)的老鼠皮肤进行了活体研究。除了同样观察到上述细胞周期的每个阶段,他们还观察到癌细胞中染色体的迁移,发现细胞有丝分裂活动高达18个小时,24小时后下降。这是首次细胞有丝分裂率在活体内以量化方式记录。/pp  他们还检测了该技术在诊断人类肿瘤中的可行性。实验采用三位鳞状细胞癌患者的皮肤癌组织作为样本。他们发现,癌变细胞的有丝分裂在不断增加,从而增加细胞分裂和细胞增殖。这表明新方法可与传统染色病理诊断相提并论。此外,新技术还能让研究人员对肿瘤细胞有丝分裂动力学进行量化研究。研究人员表示,该技术可用来计算体内有丝分裂速度,有助于皮肤癌诊断。/pp  研究人员表示,该技术提供了自然环境下细胞和细胞核的高分辨率影像,对于无创皮肤癌诊断和癌细胞快速评估具有较好的应用前景。/p
  • 细胞多样性控制机制或揭晓 将有助于延缓肿瘤生长
    p style="line-height: 1.75em " 据最新一期《发育细胞》期刊报道,加拿大研究人员发现了一种在发育神经系统中产生细胞多样性的机制。/pp style="line-height: 1.75em " 为了繁殖并产生新的组织,干细胞分裂成两个并不一定相同的子细胞,这些子细胞能够分化形成适当组织功能所必需的各种细胞类型,亦即细胞多样性。/pp style="line-height: 1.75em " 为了解释这一现象,蒙特利尔大学临床研究所和多伦多大学组成的研究团队提出了一个假设——干细胞分裂的方向会影响细胞的多样性。他们假设桌上有一个顶红底绿的苹果,如果以垂直方式切开,分成两半的苹果将拥有相同的红色和绿色部分;如果以平行方式切开,分成两半的苹果将呈现完全不同的一红一绿。/pp style="line-height: 1.75em " 研究人员证明,一个名为SAPCD2的基因会影响细胞分裂的方向,分裂方向则控制着体内子细胞的命运。研究人员对小鼠的视网膜干细胞进行了基因改造,使其能够表达或不表达SAPCD2基因。在不存在SAPCD2基因的情形下,大部分分化改变方向,此时产生的子细胞是不同的。在存在该基因的情形下,产生的子细胞则是相同的。因此,是该基因控制着干细胞分裂的方向,进而影响细胞的多样性。/pp style="line-height: 1.75em " 此项发现或可改善编程干细胞以产生特定细胞类型的能力,这些特定细胞植入患者体内后就能重建受损组织。此外,该研究也将有助于设计出更有针对性的方法来延缓肿瘤生长。/ppbr//p
  • 诺奖得主埃里克团队研发可看清活体细胞显微镜
    今年诺贝尔化学奖得主埃里克· 贝齐格的团队23日宣布,研发出一种新型光学显微镜,能以近乎实时的速度对活体细胞的活动进行超高精度三维成像,同时把对细胞本身的伤害减至最小。  这项成果已发表在《科学》杂志上。任职于美国霍华德· 休斯医学研究所的贝齐格在一份声明中说,这种&ldquo 晶格层光显微镜&rdquo 拥有空间和时间方面的高分辨率,已被成功用来跟踪个体蛋白质的运动、观察受精卵的发育以及研究细胞分裂时细胞骨架成分的快速生长和收缩,而这些都曾被认为不可能做到。  论文第一作者陈壁彰对新华社记者说,市面上看到的光学显微镜通常用同一个镜头做放大和观察,而他们新研发出的光学显微镜使用两个镜头,一个镜头把光聚焦产生一条细细的笔状光束,照射有萤光分子的生物样品以产生萤光 另一个镜头则收集这些萤光。为了保证获得数据的速度,并降低对生物样本的光伤害,这一显微镜会同时产生100多条笔状光束,组合成一个片状的大光束扫描样本。  &ldquo 想象我们的样品是一个西瓜,而照射光源是一把菜刀,扫描西瓜的三维影像就好像是用菜刀将西瓜切成好几百等分一样。切得愈薄,所得到纵向分辨率愈高。这和坊间的显微镜最大的不同是,它们是用点扫描的方式,所以速度慢,而且对活体的伤害大。&rdquo   该显微镜能力到底有多强大?陈壁彰在电子邮件中说,对一个正在做细胞分裂的细胞来说,它可以用不到一秒的时间获取其体积数据和图像,而且可以研究整个细胞分裂的过程,其空间分辨率也极高。&ldquo 这样快速、高分辨率又对样品低伤害的显微镜,不仅可用在观察细胞上,连线虫和果蝇的卵,我们都可以做观察&rdquo 。  陈壁彰的导师贝齐格是今年诺贝尔化学奖3位得主之一,他的主要成就之一就是在2006年证实单分子显微镜成像方法可用于实践。
  • 追踪细胞体积变化的先进技术-----DPP技术
    [color=#DC143C][size=4][font=楷体_GB2312]细胞状态实时追踪分析系统[/font][/size][/color] 生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。 由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。 Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。 DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。 Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。 细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。 在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。 任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。 当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。 使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。  细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。  在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。  细胞的死亡  细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。  渗透压的补偿  任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。  当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。  细胞平均体积(MCV)的变化  当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。  由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。  自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。  作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。  多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。  库尔特原理(Coulter Principle)  又称为电感应区技术。  悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。  Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。  DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。  DPP技术在低温生物学中的应用  这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。  择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。  使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 今日讨论:细胞的基本介绍!
    原代培育也称初代培育,严格地说即从体内取出安排接种培育到第一次传代阶段,但实际上,通常把第一代至第十代以内的培育细胞统称为原代细胞培育。一般继续1一4周。此期细胞呈活泼的移动,可见细胞分裂,但不旺盛。初代培育细胞与体内原安排在形状结构和功能活动上相似性大。细胞群是异质的,也即各细胞的遗传性状互不相同,细胞相互依存性强。如把这种细胞群稀释分散成单细胞,在软琼脂培育基中进行培育时,细胞克隆形成率很低,即细胞独立生存性差。最常用的原代培育有安排块培育和分散细胞培育。1、安排块培育是将剪碎的安排块直接移植在培育瓶壁上,加入培育基后进行培育。2、分散细胞培育则是将安排块用机械法或化学法使细胞分散。如欲从胎儿或新生儿的安排分离到活性最好的游离细胞,经典的办法是用蛋白水解酶消化细胞间的结合物,或用金属离子螯合剂除掉细胞相互粘着所依靠的Ca2+,再经机械轻度振动,使之成为单细胞。
  • 神奇的“万-能细胞”——干细胞
    人体内有各种各样各司其职的细胞,白细胞、淋巴细胞保护我们免受细菌及病毒的侵害,红细胞携带氧气,血小板可以凝血… … 除了这些,人体内还有一种细胞功能更复杂,那就是有“万-能细胞”之称的干细胞。要知道,人体内的细胞都是有寿命的,例如红细胞一般有120天左右的寿命,120天后全新的红细胞就会代替那些老去的红细胞。那么,新的红细胞从何而来?其实,新的红细胞就是由干细胞中的造血干细胞分化而来。这就不得不提干细胞的五个特征:一是自我更新,指细胞分裂增殖的过程,产生的子代细胞仍维持亲代细胞的原始特性,比如,肝移植供者切除3/4的肝脏,可以在两周内完全恢复成原样。二是克隆源性,即单个细胞具有创造更多相同细胞的能力,一个细胞能复制成两个完全一样的细胞。三是高度分化潜能,即能向不同的组织分化。例如我们临床上已经成熟应用的白血病治疗方法——造血干细胞移植,其实就是利用了造血干细胞的分化功能,相当于更换了正常的干细胞。四是可塑性,指干细胞具有分化为其他类型组织细胞的能力。例如骨髓造血干细胞可以在适合的环境下分化为和脑组织的神经同类型的神经细胞。五是生物学特征,干细胞要想维持自我更新和分化的特性,需要特定的干细胞微环境,在不同的微环境中,干细胞可以发挥不同的能力。干细胞还是个大家族,根据不同的标准,可有多种分类。例如,根据来源不同,干细胞可分为胚胎干细胞和成体干细胞两大类。胚胎干细胞主要来自囊胚的内细胞团,是一种高度未分化细胞;成体干细胞是对胎儿、儿童和成人组织中存在的多潜能干细胞的统称。相比于胚胎干细胞,成体干细胞来源较广,相对容易获取,并且源于患者自身的成体干细胞在应用时不存在组织相容性的问题,可避免移植排异反应和使用免疫抑制剂。按照发育潜能,干细胞又可分为全能干细胞、多能干细胞、单能干细胞三大类。全能干细胞是指能够发育成具有各种组织器官的完整个体潜能的细胞,如受精卵;多能干细胞虽然能分化出多种细胞组织,但并不能发育成完整的个体,如胚胎干细胞;单能干细胞是指只能向单一方向分化、产生一种或几种密切相关类型的细胞,如造血干细胞、神经干细胞、心脏干细胞等。当前,干细胞研究已经成为医学领域和生物医学领域的热点之一。经过多年的研究积累,我国在干细胞研究领域也已取得了诸多成就,如利用干细胞开展脊髓损伤修复已初见成效。相信不久的将来,随着干细胞理论的日臻完善和干细胞技术的不断发展,“万能细胞”将为人类健康做出更多贡献。
  • 干细胞分化调控研究获进展
    近日来自美国乔治亚大学的一项新研究首次绘制出了一幅蓝图,揭示了干细胞是如何连接到一起对不断受到的外部信号分子做出响应的。这一研究发现使多年来自世界各地实验室相互矛盾的实验结果趋于一致,并使科学家们获得了精确调控干细胞发育或分化为特异细胞类型的能力。文章的主要作者是乔治亚研究协会著名分子生物学学者、乔治亚大学富兰克林艺术与科学学院教授Stephen Dalton 。Dalton 表示:&ldquo 我们可以利用该研究中的信息作为指南书来调控干细胞的行为,这样就能够将这些干细胞以更有效和更加可控的方式分化为治疗细胞类型。&rdquo 举个过去的例子,某些信号分子单独作用就可激起一连串调控细胞命运的事件。从另一方面,Dalton的研究揭示了几种分子之间复杂的相互作用调控了一种重要的&ldquo 开关&rdquo ,决定了干细胞是维持自我更新状态或是分化为某种特殊的细胞类型,例如心脏、大脑或胰腺细胞等。美国国家卫生研究院国立普通医学科学研究所干细胞生物学基金监管人Marion Zatz说:&ldquo 干细胞研究中面临的最大挑战之一就是如何调控干细胞转变为一种特异的细胞类型,这项工作涉及到了这一点。在这篇文章中,Dalton博士将几道谜题拼合到了一起,为了解多重信号通路如何协同作用操纵干细胞分化为特异的细胞类型提供了一个模型。这一研究不仅加深了对于胚胎发育的基础了解,还将推动再生医学中干细胞的应用。&rdquo 过去在干细胞分化研究中,科学家们对于一种称为Wnt的信号分子的作用持各种相反的观点。有一半发表的研究结果认为Wnt的作用是关闭分子开关,使干细胞维持在未分化状态。而另外一半的研究则提出了相反的结论。那么相同的Wnt分子是否有可能导致双重结果?事实证明,答案确实是如此。Dalton发现少量的Wnt信号可使按细胞维持在多能状态,而大量的Wnt信号则起相反作用,促进细胞分化。然而Wnt并非单独发挥功能。其他一些分子,诸如胰岛素样生长因子(IGF),成纤维生长因子(FGF2)和Activin A都能在其中发挥作用。这些信号分子相互放大彼此,使得在一种情况下放大2倍的信号,在另一种情况下被放大到10倍,从而使得情况变得更为的复杂。同时,信号进入的时机也会产生影响。Dalton 说:&ldquo 让我们感到惊讶事情之一是所有这些信号均相互沟通。你不可能在调控IGF信号通路时不影响FGF2信号通路,你也不可能在调控FGF2信号通路不影响Wnt。它就像纸牌搭的房子,所有的一切完全是相互关联的。&rdquo Dalton和他的研究小组通过五年的艰辛努力,构建了一些关于这些信号分子如何发挥功能的假说,并对它们进行了验证。在面临着意料之外的结果时,他们不断重建假说,重复验证。持续这一过程直至解决了整个系统。他们的研究发现使科学家们更深入地了解了干细胞分化第一步,Dalton相信相同的方法还可用于理解随胚胎内细胞分裂形成越来越特化的细胞类型,后续的发育步骤。
  • Nature:干细胞的端粒保护机制与众不同
    众所周知,端粒是染色体末端的特殊“帽子”结构,作用是保持染色体完整性和控制细胞分裂周期。弗朗西斯• 克里克研究所(Francis Crick Institute)的研究人员近日在《Nature》杂志上发表了一项新成果,突出了干细胞与众不同的端粒保护机制。在健康细胞中,端粒的保护作用非常有效,但随着年龄的增长,端粒逐渐缩短,最终失去了某些保护功能。这会导致我们的健康状况随着年龄的增长而下降。不过,端粒缩短也能够避免肿瘤发展。癌细胞必须突破这层障碍,才能实现无限增殖。在体细胞内,端粒结合蛋白TRF2发挥着端粒保护作用。它结合并稳定端粒末端的t环(t-loop)结构,从而阻止染色体末端被识别为DNA损伤。在去除TRF2蛋白后,t环无法形成,染色体末端融合在一起,形成意大利面状的染色体,最终杀死细胞。然而,在这项最新的干细胞研究中,研究人员发现TRF2的端粒保护作用是可有可无的。从小鼠胚胎干细胞中去除TRF2蛋白后,t环继续形成,染色体末端仍然受到保护。这也就是说,即使TRF2不存在,干细胞在很大程度上不会受到影响。随着胚胎干细胞分化成体细胞,这种独特的末端保护机制却消失了。t环和染色体末端保护都依赖于TRF2。这表明体细胞和干细胞采用完全不同的方式来保护染色体末端。文章第一作者、DNA双链断裂修复机制实验室的Philip Ruis表示:“现在,我们知道干细胞中t环的形成并不需要TRF2,我们推断肯定有其他因素在起到相同的作用,或这些细胞采用不同的机制来稳定t环。我们也想深入了解。”研究人员发现,胚胎干细胞中t环的形成不依赖于TRF2,这也说明了为什么在多能性阶段TRF2的保护作用是可有可无的。“从根本上说,我们证明了干细胞以与众不同的方式保护其染色体末端,但仍需要t环,”通讯作者Simon Boulton说。多年来,人们一直在争论t环本身是否在保护染色体末端上起作用。此次研究有助于平息这场争论。研究人员发现,在带有t环但缺乏TRF2的干细胞中,端粒仍受到保护,这表明t环结构本身具有保护作用。研究人员表示,更好地了解端粒如何工作,以及它们如何保护染色体末端,这有助于人们深入了解早衰和癌症等过程。未来,他们将继续这项研究工作,深入解析体细胞和干细胞的端粒保护机制。
  • Nature丨癌细胞中的“团伙作案”:ecDNA“犯罪中心”驱动癌基因分子间的协同表达
    DNA不仅可以按其序列编码信息,也可以按其形状编码信息。人类基因组被分割成由染色质纤维折叠成动态的层次结构组成的染色体。这种空间结构(包括许多染色质环)可以将远端元件拉近,并将转录活动组织到不同的区域,从而限制了DNA的调控和转录机制。而在癌症中,这种染色质环境则发生了深远的改变【1】。近年来,编码癌基因的环状染色体外DNA(ecDNA)被证明在癌症中广泛存在,是癌症基因组的普遍特征,也是人类癌症进展的有力驱动因素。ecDNA是共价闭合双链,不同于在健康体细胞组织中发现的千碱基大小的环状DNA,其大小从100千碱基到数兆碱基不等,且被高度扩增【1】。ecDNA缺乏着丝粒,并且在每次细胞分裂后随机分布在子细胞中,使得其可以快速积累,且可以选择具有耐药性或其他适应性优势的ecDNA变体【2】。ecDNAs可以重新整合到染色体中,因此也可能作为某些染色体扩增的前体【3】。ecDNA具有更高的染色质可及性而缺乏更高的染色质致密性,且包含内源性致癌基因增强子元件,这表明癌基因扩增子可能是通过调控依赖性来扩增转录的【1,4】。值得一提的是,ecDNA存在于正常染色体环境之外,但其在细胞核中的空间组织尚不清楚。此外,ecDNA可以在细胞分裂期间或DNA损伤后聚集,但此生物学后果也尚不清楚。2021年11月24日,来自美国斯坦福大学的Howard Y. Chang团队在Nature上在线发表题为 EcDNA hubs drive cooperative intermolecular oncogene expression 的文章,研究了致癌ecDNA的空间、表观遗传学和转录动力学,揭示了由聚集在间期细胞细胞核中的约10-100个ecDNA组成的ecDNA“中心”,可以驱动分子间增强子信号以促使癌基因表达扩增,从而作为癌基因协同转录的组合增强子平台。研究人员利用DNA荧光原位杂交(FISH)技术,使用靶向多个细胞系中的ecDNA扩增的癌基因的探针来观察间期细胞核中ecDNA的定位,包括前列腺癌细胞系PC3(MYC扩增)、结直肠癌细胞系COLO320-DM(MYC扩增)、多形性成胶质细胞瘤细胞系HK359(EGFR扩增)和胃癌细胞系SNU16(MYC和FGFR2扩增)。结果显示,在进行实验的所有ecDNA阳性癌细胞中,尽管有数十到数百个单独的ecDNA分子,这些ecDNA的DNA FISH信号在很大程度上都局限于间期细胞细胞核的特定区域,由此表明ecDNA彼此发生了强烈聚集,该特征被称为ecDNA“中心”。这些ecDNA“中心”所占据的空间比相同大小的相邻染色体片段大得多,提示它们由许多紧密聚集在该空间中的ecDNA分子组成。进一步实验发现,ecDNA的聚集可以发生在具有不同癌基因扩增的各种癌症类型和原发性肿瘤中。随后,研究人员通过联合DNA和新生RNA FISH,在PC3和COLO320-DM细胞系中观察MYC等位基因的活跃转录,并计算每个ecDNA分子的MYC转录概率。结果显示,大多数新生的MYC mRNA转录本来自ecDNA“中心”,而不是来自染色体位点。ecDNA“中心”上致癌基因的转录活性明显高于染色体位点,表明当同一细胞中有更多的ecDNA拷贝时,每个ecDNA分子转录癌基因的可能性更大,尤其是以ecDNA“中心”的形式。人类染色体8q24上的MYC癌基因是癌症中体细胞DNA重排的热点,在人类癌症中近30%的MYC扩增以ecDNA的形式存在,通常包含MYC和PVT1(浆细胞瘤变体转录本1,位于MYC 3’端55kb处,是人类癌症的常发断点)的5’端部分。MYC的两侧是超级增强子,以赖氨酸27处的组蛋白H3乙酰化(H3K27ac)和BET蛋白(如BRD4)为标记,MYC转录对抑制剂JQ1置换BET蛋白高度敏感。为了检测活细胞中的MYC ecDNA,研究人员在COLO320-DM细胞中的MYC ecDNA中插入Tet-operator (TetO)阵列,并用TetR-eGFP或TetR-eGFP(A206K)标记ecDNA,以最小化GFP二聚化。实验结果显示,JQ1能有效降低COLO320-DM细胞(含MYC ecDNA)中MYC mRNA的水平,但对COLO320-HSR细胞(染色体MYC扩增子或均匀染色区)中MYC mRNA的水平没有显著影响(注:这两种细胞来自同一患者肿瘤,除了MYC扩增的背景外,具有高度相似的遗传背景)。此外,TetO-GFP COLO320-DM细胞的活细胞成像显示ecDNA“中心”在有丝分裂期间分解成更小的颗粒,之后又重新形成大的“中心”。值得注意的是,有丝分裂后的ecDNA“中心”的组装会被JQ1阻断。这些结果表明,COLO320-DM细胞中ecDNA“中心”的形成、维持和癌基因转录对BET蛋白的溴域H3K27ac相互作用具有独特的依赖性。为了将ecDNA结构与MYC转录调控联系起来,研究人员使用五种正交方法重建了COLO320-DM ecDNA,报告了迄今为止组装的最大的ecDNA结构——一个4.328 Mb的ecDNA,包含PVT1-MYC融合、标准MYC序列和来自多个染色体起源的序列(染色体6、8、13和16)的多个拷贝,并且利用DNA FISH验证了PLUT、PCAT1和MYC基因在重建预测的ecDNA上的共定位。接下来,研究人员确定了与癌基因高表达相关的ecDNA调控元件。来自72,049个COLO320-DM和COLO320-HSR细胞的配对单细胞ATAC–seq和RNA-seq确定了47个与高MYC表达相关的ecDNA调控元件,而目前驱动ecDNA上MYC癌基因表达的PVT1启动子(PVT1p),在ecDNA“中心”内接受了广泛的组合增强子输入。进一步地实验表明,分子间增强子-启动子在ecDNA“中心”激活,同时研究人员证实PVT1p作为一种DNA元件,能够反式激活ecDNA“中心”。那么分子间增强子-基因的相互作用是否可以被精确定位和干扰呢?以SNU16细胞系(它包含两种不同的ecDNA类型:一种来自8号和11号染色体的MYC扩增子和一种来自10号染色体的FGFR2扩增子)为研究对象,实验结果表明FGFR2和MYC ecDNA是共同选择的,因此这两个扩增子上的增强子可协同激活MYC表达。然后,MYC蛋白又可以反过来激活FGFR2的表达。顺式和反式调控元件之间几乎没有重叠,这也证实分子间增强子元件是直接通过反式而非下游效应修改基因表达。而进一步评估独立癌症类型中的分子间ecDNA的相互作用显示ecDNA“中心”内的分子间增强子基因激活发生在不同的癌基因位点和多种癌症类型中。综上所述,ecDNA“中心”内ecDNA的局部聚集促进了新的分子间增强子-基因相互作用和癌基因过度表达(图1)。与偏向局部顺式调控元件并跨越100-300nm的染色体转录中心不同,ecDNA“中心”可以跨越1000 nm以上,且涉及位于不同ecDNA分子上的反式调控元件。毫无疑问,这一发现对于ecDNA如何进行选择以及ecDNA上癌基因调控的重组如何促进转录具有深远的意义。同时,对于ecDNA“中心”促进癌基因转录的认识为癌症治疗提供新的潜在机会。原文链接:https://doi.org/10.1038/s41586-021-04116-8
  • 哺乳动物细胞培养过程 & 培养条件
    哺乳动物细胞培养过程哺乳动物细胞在培养过程中会经过组织提取,原代培养,传代培养等过程。传代培养会根据具体情况分为细胞株培养和细胞系培养。如下对各个过程进行简述:原代培养:从动物机体取出组织后切碎,经过各种酶(常用胰蛋白酶),螯合剂(常用EDTA)结合机械方法(吸液管反复吸吹)处理,分散成单细胞,置于合适的培养基中培养,使细胞得以生存、生长和繁殖。一般把从动物有机体内取出细胞开始培养,到繁殖十代以内的细胞培养称为原代细胞培养。经过原代细胞培养,细胞分裂繁殖,培养物逐渐增多长满培养空间,继而相互之间接触,发生接触抑制现象,生长速度逐渐减慢甚至停止。需要重新接种到新的培养瓶内进行传(继)代培养。传(继)代培养:将原代细胞从培养瓶中取出,配制成细胞悬浮液,分装到两个或两个以上的培养瓶中继续培养,称为传(继)代培养。细胞系:初代培养物开始第一次传代培养后的细胞,即称之为细胞系。如果细胞系的生存期有限,则称为有限细胞系。已获得无限繁殖能力,能持续生存的细胞系称为连续细胞系或无限细胞系。细胞株:从一个经过生物学鉴定的细胞系,用单细胞分离培养或通过筛选的方法,由单细胞增值形成的细胞群,称为细胞株。再由原细胞株进一步分离培养出与原珠形状不同的细胞群,成为亚株。哺乳动物细胞培养条件不同哺乳动物细胞在各个阶段的培养,都需要有基础的培养条件,归纳如下:1、无菌无毒的环境:对培养液和所有培养用具无菌处理;培养液中添加抗生素防止培养过程中污染;定期更换培养液以清除代谢产物,防止对培养细胞造成危害。2、营养:液体合成培养基包含糖、氨基酸、促生长因子、水、无机盐、微量元素等;通常还需加入血浆、血清等天然成分3、适宜的温度和pH:人和哺乳动物细胞最适宜温度大多为36±0.5℃。适宜的酸碱度为pH 7.2-7.4。4、气体环境:气体环境一般为“95% 空气+5% CO2”混合气体。氧气是细胞代谢必须气体,CO2维持培养液pH。德国WIGGENS CO2培养箱,为细胞生长提供最佳环境,为您的细胞培养保驾护航。
  • 迅数推出红细胞微核分析系统,提高药物毒理研究效率
    近日,杭州迅数在重庆第六届全国药物毒理大会上推出新品——MCN系列红细胞微核智能分析系统。  迅数MCN系列红细胞微核智能分析系统专为遗传毒理大数据设计,适用Giemsa染色的哺乳动物骨髓或外周血红细胞微核试验。通过对嗜多染红细胞(PCE)的智能学习,采用随机共振技术,几十秒即可从上百张混有各类细胞的显微影像中抓取2000个PCE细胞并识别微核,自动计算含微核细胞率。  显微细胞图像获取  显微图像质量是微核识别精度的保证。高分辨率平场消色差油镜,大面阵高灵敏度CCD,细腻展现各类细胞色泽、轮廓、核质,确保每个视野获得较多的细胞。  自适应随机共振技术  微核试验染色玻片中细胞种类多,其中的“正染红细胞”、“嗜多染细胞”颜色浅,与背景色接近,传统的图像分割、颜色提取技术很难分辨。通过随机共振提高细胞弱色信号强度,再由互信息熵通过双稳态系统输出端处所获得的信息量,实现对弱色细胞的识别和特征提取。  “随机共振_弱细胞识别系统”构成  自动计算嗜多染红细胞在总红细胞中的比例  典型红细胞智能学习记忆,消除染色背景、杂细胞(淋巴细胞、粒细胞等)干扰  分离、提取正染红细胞(图1)、嗜多染红细胞(图2),自动计算两者比例  高效微核细胞识别  利用微核的典型特征:嗜色性与核质一致、圆形、光滑、直径为红细胞的1/20-1/5,对已提取的1000-2000个“嗜多染红细胞”快速扫描,找出含微核细胞,并自动计算含微核细胞率。  方便快捷的回检验证系统  系统自动识别、提取的PCE、NCE、含微核PCE列阵细胞,允许用户追溯其来源、图像坐标并放大观察,轻松修正。  显微测量、细胞计数  数字测微尺(直线、弧线、曲线、角度、面积)直观测出显微数据 多功能颗粒计数模块,可用于多孔板克隆计数、 显微细胞总数自动统计。  用于彗星参数的测量  模糊图像清晰化  自适应增强、边缘锐化、背景平整、滤波、边缘检测、形态学运算等27种图像处理功能,使得更清楚地展现染色体核形、更细微观察染色体数目和结构的改变。  微核试验是检测染色体或有丝分裂器损伤的一种遗传毒性试验方法。无着丝粒的染色体片段或因纺锤体受损而丢失的整个染色体,在细胞分裂后期仍留在子细胞的胞质内成为微核。最常用的是啮齿类动物骨髓嗜多染红细胞(PCE)微核试验。以受试物处理啮齿类动物,然后处死,取骨髓,制片、固定、染色,于显微镜下计数PCE中的微核。如果与对照组比较,处理组PCE微核率有统计学意义的增加,并有剂量-反应关系,则可认为该受试物是哺乳动物体细胞的致突变物。
  • 耶鲁大学干细胞基础研究中心获百万美元支持
    p  绿叶生命科学集团近日向耶鲁大学干细胞研究中心提供100万美元资助,用于基础干细胞研究支持。耶鲁大学干细胞研究中心主任、细胞生物学尤金-希金斯特聘教授、遗传学系、妇产科与生殖科学系教授林海帆博士表示:“该项资助将帮助我的实验室探索干细胞领域最前沿的研究课题,通常这些高风险课题很难通过主流投资机制得到支持。”br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/fab38a9f-5ffa-4702-9f58-b69819274580.jpg" title="1.jpg"//pp/pp style="text-align: center "绿叶生命科学集团向耶鲁大学干细胞研究中心提供研究支持/pp  得益于这笔研究资助,林海帆博士将带领他的实验室团队继续研究其所发现的 Argonuate/Piwi 基因家族,该组基因与人类生育相关。过去十年来,林海帆博士研究了这些基因在癌细胞分裂中的潜在作用,这些研究结果对于找到阻止癌细胞扩散的治疗方法很有帮助。/pp  “在绿叶生命科学集团的支持下,我们将专注于在表征遗传水平上研究通过 Piwi-piRNA 信号调控下的细胞分化的机理。”林海帆博士表示,“非常感谢绿叶生命科学集团领导层对于这些项目的支持与信任,并期待今后与绿叶的团队保持良好合作。” /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/da54a54c-6e1a-4696-a9e0-2304cf3eb69d.jpg" title="2.jpg"//pp/pp style="text-align: center "绿叶生命科学集团向耶鲁大学干细胞研究中心提供研究支持/pp  此项研究资助的发起机构为绿叶生命科学集团波士顿研发中心,该中心于2017年7月成立。绿叶生命科学集团董事会主席刘殿波表示:“耶鲁大学干细胞研究中心是全球最大的干细胞研究机构之一,为推动前沿干细胞技术的发展做出了重要贡献。很高兴波士顿研发中心能与其合作开展研究,并期待实现更多的研究成果。”/pp  “我们期待与这些机构紧密结合,共同推动更多创新药和具有临床价值的新技术投放市场。”刘殿波补充道,“技术革命和跨界融合的时代已经到来,我们只有及时进行技术转型升级,深度布局未来,尤其要坚定的布局新型抗体,干细胞与基因治疗,才能保持持续的创造力与竞争力!”/pp  耶鲁医学院院长兼恩塞特聘教授 Robert J. Alpern 博士指出:“绿叶生命科学集团的支持将继续推进林海帆博士和干细胞研究中心在基础干细胞生物学领域的各项研究工作。这些研究对于整个干细胞领域,尤其是再生医学领域具有至关重要的意义。”/p
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 文献速递 | naica® 微滴芯片数字PCR系统高通量测定大麦花粉核减数分裂重组率
    减数分裂通过产生单倍体细胞和基于同源重组(HR)产生的遗传变异来支持有性生殖。HR通过重组交换(CO)、同源染色体之间的联会,交换等来确保减数分裂染色体分离,同时保证遗传变异在育种过程中发挥作用。在植物中,同源重组可以通过几种技术检测到,例如通过减数分裂染色体分析进行细胞学检测,通过测序进行基因分型和分离群体中的分子标记或荧光标记株系(FTLs)。FTLs在拟南芥中是测量花粉或种子中减数分裂重组事件的有力工具。但FTLs不适用于作物,因为在基因组特别大的作物中产生FTLs既费力又昂贵。此外,不同的作物或某些基因型不适合遗传转化。作为替代,使用小孢子(四分体或花粉核)基因分型或测序用于直接检测减数分裂产物中减数分裂重组的结果。然而,作物小孢子的测序/基因分型相当昂贵,因此可以进行检测的数量有限,特别是对于大基因组物种如谷物。在受精前测量雄配子的减数分裂重组率有样本量大,分子标记分析独立和即时重组交换分析的优势,但配子DNA含量有限,测序/基因分型方法通常依赖于全基因组扩增(WGA)。而直接通过PCR反应分析单个配子进行基因分型也由于单倍体配子的低DNA含量无法达成。在大麦中,单花粉核基因分型是通过荧光激活细胞分选从种内杂种中分离出单个单倍体花粉核,然后进行WGA和多位点KASP基因分型或单细胞基因组测序完成的。单个单倍体花粉核的DNA有限,且WGA价格较高,导致分析样品的数量有限,无法完成高通量的分析。德国莱布尼茨植物遗传和作物植物研究所的科学家近日在《The Plant Journal》上发表了一篇减数分裂重组率测量的相关文献,该文章采用naica微滴芯片数字PCR系统对配子中减数分裂重组率进行测量,实现高通量和低成本的基因分型。使用基于naica微滴芯片数字PCR系统的基因分型分析,无需大量预先进行的WGA就可完成对大麦花粉细胞核中减数分裂重组率的高通量测量。在取得花粉后,将花粉中的花粉核取出,并通过流式进行纯化,将得到的花粉核加入naica微滴芯片数字PCR系统的Mix中进行检测,从而得到减数分裂重组率,通过对总共42,000个单个花粉核进行基因分型(每株分析多达4900个核),在杂交植物中测量了两个着丝粒和两个远染色体间隔内的减数分裂重组率。花粉核中确定的重组频率与分离群体中的检测到的频率接近。▲ 图1:用naica微滴芯片数字PCR系统进行大麦单花粉核基因分型的工作流程。(a)杂交植物的花药;(b)通过使用不同筛孔大小的过滤器(100和20微米)在悬浮液中分离花粉和花粉核。(c)花粉核用碘化丙锭染色,并流式分选到数字PCR反应Mix中。(d)将25微升数字PCR反应Mix(包括分选的花粉核)装入sapphire芯片的四个腔室之一。(e)在Geode中进行液滴生成和热循环。(f)在热循环之后,在naica Prism 3中扫描sapphire芯片,然后在Crystal Miner软件中进行数据分析该文章在进行花粉核减数分裂重组率的检测时采用双探针法,如前期可行性验证时检测的InDel3118和InDel3135之间的区间Id 3-1,用HEX标记Barke (B)等位基因特异性探针(绿色),用FAM标记Morex (M)等位基因特异性探针(蓝色)(图2b),研究者将来自亲本基因型的花粉核以1∶1的比例混合,同时也检测了Id 3-1杂合的杂交植物的花粉核。在亲本混合样本检测中,两种亲本基因型的液滴相等,两种标记显示相同的荧光(B的HEX或M的FAM)(图2b)。在杂交材料样本检测中下,预计会出现代表重组事件的不同液滴群,即同时显示两种颜色的液滴(InDel3118为HEX,InDel3135为FAM,反之亦然)(图2b)。在实际检测中发现,亲代基因型得到了数量大致相等的液滴,它们对两种标记物显示出相同的荧光(图2d,e,绿色和蓝色矩形)。在对杂交植物的花粉核的检测中,检测到具有两种颜色(HEX和FAM)的液滴,表明重组事件(图2e,红色矩形)。此外,可以区分只有一个标记成功扩增的液滴(图2d,e,簇I和iii)以及没有任何扩增的液滴(图2d,e,簇ii)。表明使用naica微滴芯片数字PCR系统对单个花粉核进行包裹和基因分型是完全可行的。▲ 图2。用naica微滴芯片数字PCR系统进行大麦花粉单核基因分型。(a)在大麦染色体1和3上定义四个染色体间隔的的InDel或单核苷酸多态性(SNP)标记。(b)以Id 3-1为例的基于naica微滴芯片数字PCR系统的花粉核基因分型分析:两种荧光探针的可能组合能够区分重组和非重组花粉核。(c)有效微滴阵列原始视图。每个腔室通常包含大约25000个稳定的有效液滴。在任何通道(FAM或HEX)中成功扩增的液滴是浅灰色的,而暗灰色的液滴是阴性的。(d,e)来自芯片室的基于naica微滴芯片数字PCR系统的花粉核基因分型数据,在软件中显示为来自以1:1比例混合的亲本基因型的花粉核的点图(d)和来自与Id 3-1杂合的杂交植物的花粉核的点图。(e)通过两个HEX标记的(绿色方框)或FAM标记的等位基因探针(蓝色方框)将两个非重组亲代群体检测为具有成功基因分型的微滴。在亲代基因型混合物(d)的点状图中以灰色框表示HEX和FAM双阳性微滴为假阳性+噪声。杂交植物中HEX和FAM双阳性微滴为包括假阳性和噪音在内的重组群体,显示为红色方框(e)。簇(I)和(iii)代表仅成功扩增一种标记的微滴naica微滴芯片数字PCR系统具有极高的分辨率,因此在那些成功扩增标记物的微滴中,也可以观察到微滴内的细胞核(图2c),研究者通过对微滴包裹核的数量分析进一步优化实验,通过用热稳定的限制性酶预处理花粉核来提高基因分型的效率,且因为细胞核数量与单个包裹细胞核的微滴数量呈正相关,提出上样细胞核的最佳区间(不同物种的不同大小细胞核有差异)。本文基于2色探针进行检测是非常成功的,而进一步通过6色平台可以同时进行更多组基因分型检测,将获得多重基因分型数据,也可以对相同或不同染色体上的一个以上染色体间隔的重组率进行平行测量,或者对CO干扰强度/存在的测量。总的来说,基于naica微滴芯片数字PCR系统的单个大麦花粉核基因分型在种内杂种植物的规定染色体间隔内提供了可靠、快速和高精度的减数分裂重组测量。来自一系列具有不同细胞核和基因组大小的物种的细胞核的成功包裹表明,所提出的方法广泛适用于单个细胞核的基因分型。德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士也给我们在线分享了他们的研究成果,想要直观的去了解这篇文章的详细内容,请点击https://mp.weixin.qq.com/s/KNXVs6rOt8MYpBjzuKZZ9A进行观看哦。本文链接:https://doi: 10.1111/tpj.15305naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • Echo Revolve显微镜在非小细胞肺癌靶向治疗获得性耐药机制研究中的应用
    在非小细胞肺癌(NSCLC)靶向治疗过程中,有可能会出现获得性耐药的问题。虽然目前已经发现了许多获得性耐药的驱动因素,但在治疗过程中导致肿瘤进化的潜在分子机制还不完全了解,治疗在多大程度上通过促进突变过程积极推动肿瘤的发展尚不明确。因此来自美国马萨诸塞州总医院的Hideko Isozaki和Ammal Abbasi等科学家发表了一篇名为《APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer》的文章,文中作者研究了在NSCLC靶向治疗期间,是否有特定的突变机制驱动肺癌的基因组进化。结果表明靶向治疗诱导胞苷脱氨酶APOBEC3A (A3A)突变可能促进非小细胞肺癌获得性耐药的发展。作者在研究中发现,临床常用的肺癌靶向治疗诱导A3A的表达,导致耐药癌细胞持续发生突变。诱导A3A可以促进了药物治疗细胞中双链DNA断裂(DSBs) 的形成,从而导致耐药细胞进化过程中的染色体不稳定性,如拷贝数改变和结构变异。通过基因缺失或RNAi介导的抑制来预防治疗诱导的A3A突变可以延缓耐药的出现。因此,靶向治疗诱导A3A突变可能促进非小细胞肺癌获得性耐药的发展。抑制A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。因此靶向治疗诱导A3A突变可能促进非小细胞肺癌获得性耐药的发展。抑制A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。在DNA双链损伤形成时,H2AX的Ser139 位点会被迅速磷酸化,从而形成γH2AX,γH2AX可以作为双链修复的标志物。文章中作者通过免疫荧光技术,利用ECHO Revolve正倒置一体荧光显微镜进行免疫荧光观察。在奥希替尼治疗2周后,我们观察到PC9细胞中组蛋白变体H2AX的Ser139磷酸化水平升高(图1),说明TKI诱导的A3A突变导致基因组不稳定,促进耐药克隆的进化。将γH2AX映射到TKI处理的PC9细胞的细胞周期分布上显示,γH2AX最显著地定位于一个恢复细胞分裂并处于G2期的细胞亚群(图2),因此,TKI治疗诱导增殖耐药细胞中A3A催化的基因组损伤。▲图1:用1 μM奥希替尼处理PC9细胞0或14天,用γH2AX染色以量化DNA损伤。NT,没有处理;比例尺= 70μm。▲图2:左图是用1 μM奥希替尼处理PC9细胞14天,用EdU/DAPI染色以分辨细胞周期,代表G1、S、G2细胞 比例尺= 10 μm。右图是EdU细胞周期试验的散点图,用γH2AX定量DNA损伤。NT:未处理。作者的研究结果表明,TKI治疗后APOBEC突变信号的获取可能指示了耐药克隆的进化路径,并提供了一种新的机制,通过该机制,靶向治疗可能在治疗期间无意中增加了癌细胞的适应性突变。因此,阻止A3A的表达或酶活性可能是一种潜在的治疗策略,以预防或延迟获得性耐药的肺癌靶向治疗。参考文献:H Isozaki, Abbasi A , Nikpour N , et al. APOBEC3A drives acquired resistance to targeted therapies in non-small cell lung cancer. 2021.DOI:10.1101/2021.01.20.426852Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。
  • 让细胞观测“活起来”:LiveCodim模块化超高分辨率共聚焦显微镜全新来袭
    荧光显微镜是进行生物学研究的常用工具,但其易受到光学衍射限的影响,高的分辨率为200 nm,因此很难观察细胞中的超微结构。近年来,共聚焦显微镜得到了长足的发展,被广泛应用于生物、医学等日常科研中。基于此,为更好的助力我国科研人员的研究,Quantum Design中国引进了法国Telight公司的模块化超高分辨率共聚焦显微镜——LiveCodim。该公司具有多年的研发经验,设计的LiveCodim具备超高的光学分辨率(120 nm)、低的光毒性、操作简单以及结果可靠等优势。且该设备通过有的锥形光衍射成像技术实现了实时超高分辨率成像,以结构光扫描成像的方式实现了宽场、共聚焦和超高分辨率成像三合一的模式,为实时活细胞超分辨观测提供了一个佳的解决方案。LiveCodim的主要特点: 模块化设计,兼容不同类型的倒置显微镜LiveCodim系统是一个高度兼容模块化系统,能够适配大多数的倒置荧光显微镜。升后的超高分辨率显微镜不会破坏原有显微镜的功能,可以节约您的预算与空间,扩展原有成像系统的功能。超高分辨率活细胞实时成像有的锥形光衍射成像技术实现活细胞超分辨成像,分辨率高达120 nm,实现x,y,z,时间序列,多通道的5D实时超分辨成像,可以实时观测诸如细胞器动态变化,小分子转运,以及细胞分裂等等非常精密的动力学过程。一套系统,多种模式LiveCodim系统提供宽场、共聚焦、超高分辨三种成像模式,满足不同的观测体系,成像视野等成像需求,三种成像模式快速切换,多通道图像同时输出。 操作简单 易于上手LiveCodim系统对于超分辨初学者来说操作简单,多种模式一键切换,z-stacking和时间序列成像快速设置,直接输出标准,输出文件支持诸如Fiji等其他图像分析软件进一步分析,可以帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科研之路。 您可以通过点击此处关注模块化超高分辨率共聚焦显微镜详情信息,若有任何关于技术或设备其他问题也欢迎您致电咨询010-85120280。 发表文章:[1] Fernandez, Juliette, et al. "Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating." Nature microbiology 4.11 (2019): 1840-1850.[2] Vargas, Jessica Y., et al. "The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes." The EMBO journal 38.23 (2019): e101230.[3] Maarifi, Ghizlane, et al. "RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif." Communications biology 1.1 (2018): 1-11.[4] Garita-Hernandez, Marcela, et al. "Optogenetic light sensors in human retinal organoids." Frontiers in neuroscience 12 (2018): 789.[5] Getz, Angela M., et al. "Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons." Scientific reports 7.1 (2017): 1-16.典型用户:
  • Millipore引进完整的台式流式细胞仪方案
    Millipore引进完整的台式流式细胞仪方案 高质量的试剂,设备和服务支持完整的工作流程 Billerica, Massachusetts&mdash &mdash 2008年7月7日&mdash &mdash Millipore公司,生物科学和生物制药领域中提供技术,设备和服务的生命科学先驱者,宣布为其整合的台式流式细胞仪提供系列检测,试剂盒,流式系统和服务方案。流式技术作为一种强大的工具,用于检测细胞数量,细胞活性, 细胞凋亡,细胞分裂,毒性和特定蛋白的分化表达,以帮助科学家研究胚胎发育生物学,癌症,代谢和退行性疾病,药效乃至老化。台式设计使该项技术更加方便,灵活,易于掌握。 今年年初,Millipore和Guava Technologies公司携手建立长期的合作伙伴关系,旨在将最好的台式流式细胞仪以及相关服务带给细胞生物学家,包括干细胞研究者,高校和政府研究机构,以及生物技术和医药公司。 全球的学术界和政府研究机构,以及欧洲和北美以外的制药和生物技术公司,均可从Millipore公司获得合作关系中含盖的所有Guava公司流式细胞仪匹配的检测,试剂盒和系统。Guava Technologies保留其所有产品在欧洲和北美制药和生物技术公司中的独家经销权。除此以外,Millipore作为Guava流式细胞仪在全球范围内唯一指定服务商。 最新技术信息,产品和服务介绍,以及Millipore和Guava Technologies公司合作发展关系相关报道均可通过访问www.millipore.com/flowcytometry 或者 www.guavatechnologies.com获得。 Millipore已经从在传统过滤方面有着卓著表现和服务的公司转型为设备和服务的领先供应商,以及生命科学客户重要的合作伙伴。我们经历了系列变革,包括在R&D中的投入,内生增长,以及并购了Chemicon, Upstate, Linco, Celliance, Newport Bio Systems, NovAseptic AB 和 MicroSafe. 整合后的Millipore为合理的实验进程提供更新颖的技术和更强大的应用支持, 并且提供稳定可靠的实验结果。Millipore公司生命科学部门的专家和科学家深谙生命科学研究的复杂性,能够与全球的科研工作者一道攻克细胞生物学,干细胞生物学,蛋白质研究和信号传导中的难关。 关于Millipore(密理博) 密理博作为全球领先的生命科学公司,为生物科学研究和生物制药研发提供前沿的技术、工具和服务。作为策略性合作伙伴,我们携手客户共同面对人类健康问题的挑战。从科研、开发到生产,我们的科学专家和创新的解决方案帮助客户处理最复杂的问题以加速实验进程。 密理博公司是标准普尔指数500成分股之一,全球雇员人数超过6100人,遍布全球47个办事处。了解更多信息,请浏览密理博全球官方网站www.millipore.com,或拨打亚洲区技术服务热线:400-889-1988。 ADVANCING LIFE SCIENCE TOGETHERTM Research. Development. Production. 密理博中国媒体联络人: 李绿芊 市场推广主管 密理博中国有限公司Millipore Corporation 021-38529008 Lu_qian_LI@millipore.com Millipore, Celliance, Chemicon, Upstate, Linco and NovAseptic are registered trademarks and the &ldquo M&rdquo logo, ADVANCING LIFE SCIENCE TOGETHER and MicroSafe are trademarks of Millipore Corporation.
  • CNS前沿文献追踪 – 用SIM观察减数分裂过程中DNA修复、联会、交叉互换
    减数分裂前期染色体会发生一系列变化,此次分享的文章关注减数分裂前期DNA损伤修复、联会复合物形成、同源染色体交叉互换,具体内容如下:首先简述一下减数分裂前期染色体的动态变化:细线期(Leptotene),DNA发生双链损伤(DSB);偶线期(Zygotene)重组酶RAD51结合到一条损伤的DNA单链上,进行同源寻找,诱导DNA单链侵入同源双链DNA;粗线期(Pachytene)联会复合物形成,将同源染色体“粘”在一起;双线期(Diplotene)形成交叉互换复合物(CO)。纵观整个减数分裂前期,重要事件有三 - DNA损伤修复、联会复合物形成、交叉互换复合物形成,此次分享的文章用SIM超分辨技术对减数分裂进行观察,研究这三个事件的时空关系 – 上图来源于网络 为了提高信噪比,文章作者用了核spreading的方法制样,细节可找原文研究一下 先观察各个时期DNA损伤修复相关蛋白量的变化:染色体交叉互换复合物CO(COSA-1是CO的marker)实际上是DNA损伤修复转化而来,因此DNA损伤修复蛋白和CO的形成密切相关,涉及的蛋白主要包括重组酶RAD-51、单链DNA结合蛋白RPA-1、解旋酶BLM、CO促进因子MSH-5。文章作者以线虫生殖细胞为研究对象,根据染色体形状(HTP-3为染色体轴marker)将生殖细胞所处时期归类(上图主要关注偶线期zygotene和粗线期pachytene,DSB-2指示粗线期早期),统计生殖细胞细胞核内各种蛋白点的数量后,以分裂时相和点数分别为xy轴做图。各损伤修复蛋白在粗线期达到峰值,到粗线期末期消失,值得注意的是从CO的角度去看可将DNA损伤修复分为CO相关修复和非CO相关修复,MSH-5因其有促进CO形成作用,到粗细期末期在核内仍可观察到 单纯的看CO形成(COSA-1为CO marker),可发现CO在粗线期末期形成(红框代表粗线期早期,绿框代表末期) 通过对大量不同生殖细胞的观察、归纳总结,文章作者概括出了上图:细线期(leptotene)RAD-51结合到染色体上;偶线期(zygotene)各种DNA损伤修复蛋白都结合到了染色体上,同时因为同源介导修复的作用,出现了同源染色体相互靠近的现象;粗线期(pachytene)各种修复蛋白达到高峰后离去,部分损伤修复转化为CO;双线期/终变期(diplotene/diakinesis)仅剩CO marker COSA-1 看完各个修复蛋白随分裂时相量的变化之后开始看它们的空间分布,首先是偶线期的重组酶RAD-51:在染色体附近,大部分成对或细长的状态 粗线期早期解旋酶BLM也是成对或细长的状态,延着染色体分布 粗线期早期单链DNA结合蛋白RPA-1同样成对或细长状态,延染色体分布,有时以单点存在,且和BLM彼此接近 粗线期早期MSH-5以单点状态分布,定位在BLM成对的两点之间或挨着BLM单点 相较粗线期早期的单点分布,在粗线期末期MSH-5成对分布,横在两条相互靠近的染色体之间,在粗线期末期DNA修复相关蛋白只剩下BLM和MSH5,两者十字交叉分布,CO复合物位于十字中心附近到双线期(diplotene)MSH-5和BLM的分布发生变化,有“萎缩”变少的趋势,到终变期(diakinesis)完全消失 看完DNA修复蛋白和CO的空间关系之后,作者开始研究联会复合物和CO的空间关系,笔者在网上搜索了一张联会复合物的电镜图片:联会复合物包括边缘和中间两部分,边缘呈“梯子”状,中间呈一条细线 – 上图来源于网络SYP-1和SYP-2反映的是联会复合物中心区,可见在粗线期早期COSA-1只是靠近联会复合物,到粗线期末期,联会复合物会鼓起一个空泡,COSA-1定位到空泡中形成CO,一直到双线期CO和联会复合物都保持着这样的空间关系这张图说明了染色体(HTP-3)、联会复合物(SYP-1)、CO(COSA-1)之间的空间关系:联会复合物(绿色)位于两条染色体(红色)中间,将同源染色体“粘”在一起(和别的研究者的电镜结果一致),CO(蓝色)定位在联会复合物空泡内,被联会复合物包裹 有文献报道联会复合物可促进CO形成,但这方面的机制尚不是很清晰,所以文章作者做了两类突变(突变联会复合物中心区或突变促CO因子),看突变对DNA损伤修复蛋白的影响:发现突变后粗线期早期明显延长,DNA损伤事件变多 COSA-1被突变后(CO受影响)粗线期末期MSH-5不再定位到染色体附近:DSB-1为粗线期早期marker,野生型在失去DSB-1进入粗线期末期后染色体附近尚仍有MSH-5分布,而突变型染色体附件不再有MSH-5 突变syp-1后(联会复合物受到影响),到粗线期末期(红框内为早期,黄框内为早-末转化,绿框内为末期)BLM消失(前面的实验在野生型上观察到的是BLM到粗线期末期仍存在) 突变影响联会复合物后COSA-1和MSH-5的空间关系受到影响野生型中到粗线期末期MSH-5和BLM十字交叉分布,定位在同源染色体中间,可突变影响联会复合物后,两者十字交叉分布现象消失,且MSH-5会错误的定位到染色体上 这是一篇Cell,只有两个作者,通篇都是显微镜的图,足以说明超分辨技术的威力。显微镜的文章一个很大的门槛是工具使用,工具掌握了,选好题,直接把别人研究的细胞、分子行为拍遍就能成文̷̷ Woglar A , Villeneuve A M . Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination[J]. Cell, 2018:S0092867418303982.想了解更多CNS级期刊最新内容,请关注我们的公众号,常有更新哦,也可加笔者微信交流:qianle522568
  • 【网络研讨会】naica® 六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率
    2021年7月15日星期四(北京时间:11:00PM),德国莱布尼茨植物遗传与作物研究所(IPK)的Stefan Heckmann教授和Yun-Jae Ahn博士将在线分享:基于naica六色微滴芯片数字PCR系统无需全基因组扩增 (WGA),高通量绝对定量检测大麦单花粉核减数分裂重组率”的研究。本次网络研讨会将讨论关于开发单个花粉核基因分型,实现数字PCR高通量绝对定量检测四个特定染色体间隔内的减数分裂重组率。主题:naica六色微滴芯片数字PCR系统高通量绝对定量检测大麦单花粉中核减数分裂重组率日期:2021年7月15日(周四)时间:北京时间11:00PM内容简介:植物育种利用减数分裂重组产生的新等位基因组合。在受精前直接测量配子中的减数分裂重组率,从单个个体中筛选出大量的样本,无需隔离种群分子标记分析,无需费时的细胞学观察的交叉互换(Cross Over)检测。目前由于花粉核DNA含量有限(~5 pg/单倍体细胞核),大麦花粉单核基因分型方案需要先进行全基因组扩增(WGA),再进行PCR分型或单细胞测序,从而限制了分析样本的数量。德国莱布尼茨植物遗传与作物研究所(IPK)科学家,基于Stilla Technologies 公司的naica六色微滴芯片数字PCR系统,开发了一种单花粉核基因分型检测方法,在不进行WGA的情况下,以高通量测定四个特定染色体间隔内(两个着丝粒和两个远端)的减数分裂重组率。通过对花粉核的热稳定性限制性酶消化提高了基因分型检测的效率,完成了42,000多个花粉核进行了基因分型。杂交花粉核中测得的减数分裂重组率与隔离种群测得的重组率一致。基于naica六色微滴芯片数字PCR系统,通过多重分析可在两个染色体间隔同时检测,进一步提高了样本通量。该系统同时兼容基于多种不同核大小和DNA数量的农作物细胞核,证明基于naica六色微滴芯片数字PCR系统的单核基因分型检测方法具有广泛适用性。该成果“High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR™ ”已发表于The Plant Journal ( IF 6.417 ) PubDate : 2021-05-05 ,DOI: 10.1111/tpj.15305主讲人:Evi Lianidou博士(雅典大学分析化学和临床化学)德国莱布尼茨植物遗传与作物研究所(IPK),隶属于德国莱布尼茨科学联合会,坐落于德国Gatersleben,研究定位以作物为主要对象,研究野生和栽培植物的遗传多样性,并利用这些材料,开展具有原创性的科学发现和技术创新,并实现农作物的分子改良。经过长达70多年的收集,保存了151,000多份不同作物的种质资源,是欧洲最大的种质资源收集与保藏中心,为IPK和世界相关研究人员研究作物基因和基因组演变、发展和表达规律提供了独一无二的研究材料。注册页面:注册链接:https://u9cm7yjb.pages.infusionsoft.net/
  • 首个完整无间隙人类基因组序列公布
    被誉为生命科学“登月计划”的人类基因组测序再次取得重大进展:国际科学团队端粒到端粒联盟(T2T)发表了第一个完整的、无间隙的人类基因组序列,首次揭示了高度相同的节段重复基因组区域及其在人类基因组中的变异。这是对标准人类参考基因组,即2013年发布的参考基因组序列(GRCh38)的“重大升级”。当地时间31日,《科学》杂志连发6篇论文报告这一成就。2001年2月12日,由6国科学家共同参与的国际人类基因组计划首次公布人类基因组图谱及初步分析结果;2003年4月15日,公布了人类基因组序列草图。然而由于技术限制,当初的人类基因组计划留下了大约8%的“空白”间隙。这部分很难被测序,由高度重复、复杂的DNA块组成,其中包含功能基因以及位于染色体中间和末端的着丝粒和端粒。新的无间隙版本被称为T2T-CHM13,由30.55亿个碱基对和19969个蛋白质编码基因组成。增加了近2亿个碱基对的新DNA序列,包括99个可能编码蛋白质的基因和其中近2000个需要进一步研究的候选基因。这些候选基因大多数是失活的,但其中115个仍然可能表达。团队还在人类基因组中发现了大约200万个额外的变异,其中622个出现在与医学相关的基因中。此外,新序列还纠正了GRCh38中的数千个结构错误。具体而言,新序列填补的空白包括人类5条染色体的整个短臂,并覆盖了基因组中一些最复杂的区域。其中包括在重要的染色体结构中及其周围发现的高度重复的DNA序列,如染色体末端的端粒和在细胞分裂过程中协调复制染色体分离的着丝粒。新序列还揭示了以前未被发现的节段重复,即在基因组中复制的长DNA片段,已知其在进化和疾病中发挥重要作用。新序列还在识别和解释遗传变异方面具有重要改进,并揭示了关于着丝粒周围区域的前所未见的细节。这一区域内的变异性可能为人类祖先如何进化提供新证据。研究人员称,这一完整的、无间隙的序列对于了解人类基因组变异的全谱和了解某些疾病的遗传贡献至关重要。研究人员表示,下一阶段的研究将对不同人的基因组进行测序,以充分掌握人类基因的多样性、作用以及我们与近亲、其它灵长类动物的关系。【总编辑圈点】基因组的某些区域,其实是一遍又一遍的重复,这些重复区域包括细胞分裂中一些极其关键的部分,也包括可能帮助物种适应的新基因。在过去,所有这些重复使得科学家无法以正确的顺序“组装碎片”——就像高难度的、几乎每一块都相同的拼图,而人们不知道其中哪一块该放在哪,就在基因组图谱上留下了巨大空白。现在的最新成果不再有任何隐藏或未知的部分,或者也可以说,一个全新的基因宝库正在全人类面前徐徐打开。
  • 中大发现M1天然病毒 癌细胞有望精确杀灭
    在杀死癌细胞的同时,也杀死了正常细胞。”这个困惑着全世界医生和癌症病人的难题,终于可望破解。笔者13日从中山大学获悉,中山大学中山医学院教授颜光美课题组于7日在国际期刊《美国科学院院报》发表了天然甲病毒M1具有选择性抗肿瘤作用的最新研究,该研究表明,一种叫做M1的天然病毒能特异性杀死癌细胞而不伤害正常细胞,这种新型溶瘤病毒有望成为新一代抗癌利器全球癌症发病率呈现快速增长态势,现有的治疗手段远远未能满足临床需求。颜光美课题组历经多年研究,从海南岛分离得到一种M1的天然病毒。颜光美团队使用细胞培养方法发现,M1病毒能选择性地感染并杀死包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种癌细胞,而对正常细胞无毒副作用。整体动物模型证明,M1病毒“像长了眼睛一样准确找到肿瘤组织并将其杀灭”,正常细胞则不受影响。XY-EL-Ch1509c鸡间隙连接蛋白26(CX26)ELISA试剂盒 Chicken CX26 (Connexin 26) ELISA Kit XY-EL-Ch1510c鸡金属硫蛋白2 (MT2)ELISA试剂盒Chicken MT2 (Metallothionein 2) ELISA Kit XY-EL-Ch1511c鸡神经激肽A(NKA)ELISA试剂盒Chicken NKA (Neurokinin A) ELISA KitXY-EL-Ch1512c鸡细胞粘附蛋白相互作用蛋白(CYTIP)ELISA试剂盒 Chicken CYTIP (Cytohesin Interacting Protein) ELISA KitXY-EL-Ch1513c鸡磷酸二酯酶4D(PDE4D)ELISA试剂盒Chicken PDE4D (Phosphodiesterase 4D, cAMP Specific) ELISA KitXY-EL-Ch1514c鸡5核苷酸酶(5-NT)ELISA试剂盒 Chicken 5-NT (5-Nucleotidase) ELISA KitXY-EL-Ch1515c鸡γ1肌动蛋白(ACTG1)ELISA试剂盒Chicken ACTg1 (Actin Gamma 1) ELISA KitXY-EL-Ch1516c鸡细胞分裂周期蛋白23(CDC23)ELISA试剂盒Chicken CDC23 (Cell Division Cycle Protein 23) ELISA KitXY-EL-Ch1517c鸡谷胱甘肽S转移酶κ1(GSTκ1)ELISA试剂盒Chicken GSTκ1 (Glutathione S Transferase Kappa 1) ELISA Kit XY-EL-Ch1518c鸡血管紧张素II受体1(ANG II R1)ELISA试剂盒 Chicken ANG II R1/AGTR1 (Angiotensin II Receptor 1) ELISA Kit XY-EL-Ch1520c鸡染色质区解旋酶DNA结合蛋白3(CHD3)ELISA试剂盒Chicken CHD3 (Chromodomain Helicase DNA Binding Protein 3) ELISA Kit XY-EL-Ch1521c鸡脂多糖结合蛋白(LBP)ELISA试剂盒 Chicken LBP (Lipopolysaccharide Binding Protein) ELISA KitXY-EL-Ch1523c鸡唾液酸结合免疫球蛋白样凝集素8(SIGLEC8)ELISA试剂盒Chicken SIGLEC8 (Sialic Acid Binding Ig Like Lectin 8) ELISA KitXY-EL-Ch1524c鸡肝细胞生长因子(HGF)ELISA试剂盒 Chicken HGF (Hepatocyte Growth Factor) ELISA Kit XY-EL-Ch1525c鸡脂蛋白脂酶(LPL)ELISA试剂盒Chicken LPL (Lipoprotein Lipase) ELISA KitXY-EL-Ch1526c鸡胸腺五肽(TP5)ELISA试剂盒 Chicken TP5 (Thymopentin) ELISA KitXY-EL-Ch1527c鸡可溶性CD14分子(sCD14)ELISA试剂盒Chicken sCD14 (Soluble Cluster of Differentiation14) ELISA KitXY-EL-Ch1528c鸡胰岛素(INS)ELISA试剂盒Chicken INS (Insulin) ELISA KitXY-EL-Ch1530c鸡甲状腺素(T4)ELISA试剂盒Chicken T4 (Thyroxine) ELISA KitXY-EL-Ch1532c鸡促红细胞生成素(EPO)ELISA试剂盒Chicken EPO (Erythropoietin) ELISA Kit XY-EL-Ch1533c鸡甘露糖受体C1(MRC1)ELISA试剂盒 Chicken MRC1 (Mannose Receptor C Type 1 ) ELISA KitXY-EL-Ch1535c鸡胰岛素样生长因子2-mRNA结合蛋白3(IGF2BP3)ELISA试剂盒 Chicken IGF2BP3 (Insulin Like Growth Factor 2 mRNA Binding Protein 3) ELISA Kit XY-EL-Ch1536c鸡T细胞活化连接蛋白(LAT)ELISA试剂盒Chicken LAT (Linker For Activation of T-cell) ELISA KitXY-EL-Ch1538c鸡激酶锚定蛋白1(AKAP1)ELISA试剂盒 Chicken AKAP1 (A Kinase Anchor Protein 1) ELISA Kit XY-EL-Ch1539c鸡肿瘤特异生长因子/肿瘤相关因子(TSGF)ELISA试剂盒Chicken TSGF (Tumor Specific Growth Facter/Tumor Supplied Group of Factor) ELISA KitXY-EL-Ch1540c鸡胃动蛋白2(GKN2)ELISA试剂盒Chicken GKN2 (Gastrokine 2) ELISA Kit XY-EL-Ch1542c鸡丙酮酸脱氢酶E1(PDH E1)ELISA试剂盒Chicken PDH E1 (Pyruvate Dehydrogenase E1) ELISA KitXY-EL-Ch1543c鸡抗丙氨酰tRNA合成酶抗体(Anti-AlaRS/Anti-PL12)ELISA试剂盒 Chicken Anti-AlaRS (Anti-Alanyl-tRNA Synthetase/Anti-PL12-Antibody) ELISA KitXY-EL-Ch1544c鸡脱氢表雄酮硫酸酯(DHEA-S)ELISA试剂盒 Chicken DHEA-S (Dehydroepiandrosterone Sulfate) ELISA Kit XY-EL-Ch1545c鸡胚胎性硫糖蛋白抗原(FSA)ELISA试剂盒 Chicken FSA (Fetal Sulfoslycoprotein Antigen) ELISA KitXY-EL-Ch1546c鸡酪氨酸羟化酶(TH)ELISA试剂盒 Chicken TH (Tyrosine Hydroxylase) ELISA KitXY-EL-Ch1547c鸡α-胞衬蛋白(SPTAN1)ELISA试剂盒 Chicken SPTAN1 (Alpha-Fodrin) ELISA Kit 除细胞水平及动物实验之外,课题组还使用临床标本离体活组织培养模型进一步证实了上述新型溶瘤病毒的有效性和特异性。据介绍,更为重要的是,研究工作还证明了M1病毒作用的分子遗传学机制,这个发现为精准的临床用药和实施个体化疗法提供了可靠的科学依据,也极大地增加未来临床试验取得成功的机会。据专家介绍,新型天然溶瘤病毒M1将会安全而有效地治疗癌症,有望成为攻克人类癌症的新一代利器
  • 植物愈伤组织能再生器官研究获进展
    组织培养是重要的植物营养繁殖技术,也是基因编辑等现代农业分子育种技术得以应用的基础。20世纪50年代,由Skoog、Miller奠定的组织培养技术沿用至今(Symposia of the Society for Experimental Biology,11:118–130, 1957)。在两步法组织培养技术中,第一步是获取多能性(pluripotency acquisition),即利用高浓度生长素诱导外植体产生具有再生多种器官能力的愈伤组织;第二步是器官发生(organogenesis),即通过高浓度细胞分裂素诱导愈伤组织再生为芽,或通过低浓度生长素诱导愈伤组织再生为根。2010年,Meyerowitz实验室提出愈伤组织类似于根尖分生组织,开启了关于愈伤组织在细胞和分子层面的新认识(Developmental Cell,18: 463-471, 2010)。  愈伤组织的器官再生能力是植物再生领域的核心科学问题之一,而尚未在分子机制方面得到合理解释。为什么愈伤组织能够在不同的激素诱导下再生为不同的器官,而普通体细胞却没有这样的能力?11月15日,中国科学院分子植物科学卓越创新中心徐麟研究组的研究成果(Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration)作为封面文章,发表在Nature Plants上,从单细胞和分子层面揭示了愈伤组织具有器官再生能力的机制。  研究对拟南芥下胚轴产生的愈伤组织展开单细胞测序,确认了愈伤组织类似于根原基或根尖分生组织,大致分为三层:外层细胞类似于根尖的表皮和根冠;中层细胞具有根尖静止中心(quiescent center,QC)的特征;内层细胞类似于根尖的维管初始细胞。研究运用转录组比较分析、特征基因表达模式观察和细胞谱系追踪等方法,发现愈伤组织中层细胞与根尖静止中心QC有高度类似的转录组特征,也是根和芽再生的源头干细胞。在遗传表型方面,根尖静止中心QC的特征转录因子基因WOX5及其同源基因WOX7突变后,愈伤组织的器官再生能力下降;而WOX5/7过量表达可以使愈伤组织在低浓度细胞分裂素的情况下也具有芽再生的能力。分子层面的研究发现,WOX5/7至少通过三条通路促进愈伤组织中层细胞获取多能性:WOX5/7维持愈伤组织中层的干细胞属性;WOX5/7-PLT蛋白复合体能够激活内源生长素合成基因TAA1的表达,促进高浓度生长素的积累;WOX5/7-ARR12复合体能够抑制ARR5基因的表达,从而解除细胞分裂素的负反馈信号通路,达到细胞分裂素超敏感状态。  根据上述结果,研究推测愈伤组织具有器官再生能力的原理。愈伤组织中层细胞具有干细胞特征,处于未分化状态。愈伤组织的中层细胞具有双激素信号高峰的特征,即同时具备高浓度生长素积累和细胞分裂素超敏感的双重特性。这两个特征使愈伤组织具有既能再生根又能再生芽的能力:当培养基中只含有低浓度生长素而不含有细胞分裂素时,愈伤组织由于积累了高浓度生长素而分化为根;当培养基中含有高浓度细胞分裂素时,愈伤组织的细胞分裂素超敏感状态使细胞分裂素能快速有效的激活芽基因的表达,从而发育为芽。而在已分化的体细胞中,生长素途径和细胞分裂素途径相互抑制,无法达到两种激素信号的双高峰状态,因而不具备器官再生的能力。  研究工作得到国家自然科学基金、中科院、植物分子遗传国家重点实验室的支持。愈伤组织转录组数据和单细胞转录组数据可通过线上工具查询(http://xulinlab.cemps.ac.cn/)。  论文链接
  • 我国科学家在精神分裂症分子遗传机制研究中取得新突破
    精神分裂症(Schizophrenia)是一组病因未明的慢性精神疾病,临床上往往表现为症状各异的综合征,涉及感知觉、思维、情感和行为等多方面的障碍以及精神活动的不协调。基于双生子的遗传学研究显示精神分裂症遗传率约79~81%,表明遗传因素在精神分裂症中具有重要作用。  目前,国际上已开展一系列大规模的全基因组关联研究(GWAS),报道了上百个与精神分裂症显著相关的单核苷酸多态性位点(SNPs),其中2q33.1风险基因座中遗传变异与精神分裂症显著相关。  近日,我国科学家团队基于已报道的108个精神分裂症风险基因座开展鉴别研究工作,发现132个功能SNPs中的2个功能SNPs(rs796364、rs281759)位于2q33.1区域,其在东亚人群中与精神分裂症显著相关,突破性发现这2个功能SNPs可能通过干扰转录因子(CTCF、RAD21和FOXP2)的结合来调控远端基因TYW5表达,进而影响神经发育和树突棘形态发生,导致精神分裂症易感。该研究发现将为精神分裂症的遗传分子机制解析提供重要依据。相关研究结果于9月28日以“Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression”为题发表在《Brain》杂志上。   注:此研究成果摘自《Brain》,文章内容不代表本网站观点和立场。  论文链接:https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awab357/6377331
  • Nature重磅!科学家开发出活细胞转录组测序技术
    一个受精卵发育为一个复杂个体,正常体细胞变成肿瘤细胞,细胞作为生命的基本单位,其状态的动态变化既是健康发育的基础也是疾病产生的原因。从光学显微镜对细胞形态变化的观察,到绿色荧光蛋白对细胞基因、表达定位等变化的追踪,再到分子记录器在基因组中稳定写入曾经发生的分子事件,以及单细胞转录组测序的发展,允许细胞全转录组的变化拟时序推测,每一次细胞动态变化记录的技术变革均推动了细胞生物学的发展。既有方法或受限于对细胞形态或少数基因的动态表征,或依赖于拟时序分析中多种在实际细胞体系中可能无法满足的假设,目前尚不能直接测量细胞全转录组状态变化。 8月17日,中国科学院深圳先进技术研究院、瑞士洛桑联邦理工学院Bart Deplancke课题组、苏黎世联邦理工学院Julia Vorholt课题组合作,在《自然》(Nature)上以article长文形式,发表了题为Live-seq enables temporal transcriptomic recording of single cells的研究论文。 该研究开发了活细胞转录组测序技术(Live-seq),首次实现了单细胞进行转录组测序后依然能够保持细胞存活。该技术兼具全基因表达分辨率和动态解析能力,是当前对单细胞转录组直接动态测量、偶联细胞现有状态及其后续表型的唯一解决方案。 基因表达程序的变化是细胞对外源和内源刺激反应的重要表现。对单个细胞的连续观测是细胞对刺激反应、变化的重要研究手段,活细胞成像是最早的方法之一。随着显微成像技术和荧光标记手段的发展,显微成像可实现从体外细胞培养到体内环境下对基因表达的动态观测。基因编辑技术的发展促进分子记录器的出现。该技术通过细胞原生的或人工合成的基因线路,对刺激的感应并将信息写入基因组,记录历史分子事件。技术的发展和应用促进细胞生物学的发展,例如活细胞成像已成为现代细胞生物学实验室的常用手段;分子记录器虽出现不久,但在体内多场景的适用性和稳定性上颇具潜力。而它们在记录基因表达上存在共同的限制——在一个细胞中只能同时记录一个或几个基因的表达。 2009年汤富酬首创单细胞mRNA测序以来,不再只依靠少数几个基因的表达来分析细胞类型,而可用整个转录组的状态来更系统全面的定义细胞类型和状态。单细胞转录组变革了对细胞状态异质性的解析能力,推动了发育生物学、肿瘤细胞学、免疫学和干细胞生物学等的发展。然而,研究只可测量细胞的静态状态,无法像前述的活细胞成像那样连续观测细胞的动态或检查细胞后续的表型。为了克服这一限制,多种基于计算或标记的方法被开发出来。这些方法基于共同的假设,即群体的静态分布可以模拟个体的动态运动。运用不同的数学模型和/或新旧RNA的标记等手段,研究将转录组相似的细胞连接,产生一条轨迹来代表一个细胞的变化路径。这些方法提供了有意义的生物学认知,但由于这些前提假设在复杂细胞系统不一定能被满足,其提供的变化路径应被解读为一种统计学上的预期,而非细胞真正变化的轨迹。而这些限制的根本原因在于单细胞测序时裂解杀死了细胞,因而无法连续测量。 本研究中,科研人员开发出活细胞转录组测序技术(Live-seq),在进行单细胞转录组测序后,依旧保持细胞的存活和功能。该技术的核心是对部分细胞质进行微创地提取,并对微量的细胞质RNA进行扩增。具体地,该技术整合改造了多种跨学科技术(图1):具备纳米级移动分辨率和皮牛顿力学灵敏度的原子力显微镜,实现超精密显微操作;亚皮升级别的微/纳流控通道和液压调节系统,实现微量(约1皮升)样品提取和转移;纳米级的、中空可定量的、可和细胞膜无缝密封的特殊探针,可实现微创的细胞质提取;相偶联的实时跟踪成像和细胞培养系统,可以长时间锁定同一个细胞;高灵敏度的RNA扩增测序;对前述步骤的无缝整合。 Live-seq只对少量的细胞质进行测序,其结果能否代表细胞的状态?研究对多种类型和状态的细胞进行活细胞测序,并平行地和单细胞测序结果进行比较。结果显示活细胞测序结果和单细胞测序结果高度吻合,证明了Live-seq能够较好的体现细胞的全转录组状态。这一过程是否改变细胞状态甚至杀死细胞?研究对包括干细胞在内的多种细胞类型进行评估,发现大部分细胞在Live-seq后仍然存活。同时,细胞分裂依然能够正常进行(图2)。研究通过对巨噬细胞对细菌脂多糖LPS刺激的反应和脂肪干细胞分化过程的观测发现,细胞的反应未因Live-seq而有明显变化。研究对接受和未接受细胞质提取的细胞全转录组进行比较,也未发现大量的基因表达变化。结果显示,Live-seq未对细胞的活性和功能产生较大影响。 由于细胞测试后仍旧存活,Live-seq首次实现对同一个细胞全基因表达的连续测量。作为概念验证,Live-seq直接测定了同一个巨噬细胞和脂肪干细胞在刺激前后的变化路径(图3)。Live-seq可以回答细胞怎样的过去决定它的现在。即使是单克隆来源的巨噬细胞对细菌脂多糖的反应依旧有很大的异质性。利用这一模型,研究表明起始状态的少数基因的表达差异和噪音(如Nfkbia、Gsn等)是决定细胞后续反应差异的重要原因,处于细S期的细胞对刺激反应也更弱。对应地,普通的单细胞转录组无法找到这些规律。 Live-seq仍有不足:与高通量的单细胞转录组相比,Live-seq是低通量的手段;Live-seq尚不能在体内应用;在高度极化而mRNA分布不均的细胞(如神经细胞)中,Live-seq或无法体现全细胞转录组;多次采样对细胞的干扰需要更多研究。未来持续的发展如自动化提高通量、通过和双光子显微镜联用运用于体内样品等,有望使上述不足得到改善。Live-seq第一次使得对活细胞的连续观测成为可能,希望可以催生更多新可能。 研究工作得到国家重点研发计划、深圳合成生物创新研究院的支持。   论文链接 图1.Live-seq基本原理 图2.Live-seq对细胞的影响,黄色的细胞被提取出细胞质,蓝色和紫色的细胞未被处理 图3.活细胞测序新可能:(左图)对同一个细胞转录组的连续分析;(右图)偶联细胞起始的转录组状态(因)和后续细胞对刺激的反应(果)
  • 细胞体外培养实验的成功要从用水的选择开始!
    细胞体外培养用水中水的质量要求提起细胞体外培养实验,每个经历过的实验者都会有这样的领悟吧,细胞虐我千百遍,我待细胞如初恋。明明小心翼翼的操作,细胞总会莫名其妙的被污染了!莫名其妙的挂掉啦!到底怎么回事呢?其实造成细胞污染的因素不单单是微生物,培养环境中所掺杂的物质也可能会影响细胞的生长。水是细胞赖以生存的主要环境,营养物质和代谢产物都必须溶解在水中,才能为细胞吸收和排泄。对于体外培养的细胞来说,水是细胞培养液和试剂中简单而重要的组分。所以,细胞培养对水的质量要求较高,培养用水中如果含有一些杂质,即使含量极微,有时也会影响细胞的存活和生长,甚至导致细胞死亡。水中的杂质对水质有不同影响:1.离子——平衡渗透压;一些重金属 (Cadmium)对细胞毒害大,即便剂量很低 ( 0.1 ppb); 2.微生物——污染,改变微环境如pH,影响增殖,死后释放内毒素等;3.内毒素——改变细胞外形、活化细胞、促进或抑制细胞分裂、影响细胞附着等;4.有机物——影响细胞的生长状态。水质评价常用的指标:1. 电阻率(electrical resistivity)衡量实验室用水导电性能的指标,单位为MΩ• cm,随着水内无机离子的减少电阻数值逐渐变大。2. 异体菌落数(Heterotrophic bacteria count,HBC)衡量实验室用水微生物的指标,单位为cfu/mL。3. 有机物(Total Organic Carbon ,TOC)水中碳的浓度,反映水中可氧化的有机化合物的含量,可间接反映出水中细菌和内毒素含量的高低。单位为ug/L或ppb。4. 内毒素(Endotoxin)革兰氏阴性细菌的脂多糖细胞壁碎片,又称之为“热原”,单位EU/mL。参考国际标准化组织的实验室纯水规范ISO3696,美国CLSI和ASTM D1193的试剂纯水规范,我国GBT6682和GBT 30301的试验用水指导,《实验细胞资源的描述标准与管理规范》用水指导,结合多年的实验操作经验,总结出细胞培养用水对水质的要求。细胞培养对水质的要求:1.一定要无菌:HBC 0.01 cfu/mL2.无蛋白及核酸酶和内毒素:无内毒素或无热源0.03EU/mL3.阻碍细胞生长的有机物含量要低:TOC5 ppb4.去除离子含量:电阻率≥18 MΩ• cm(@25℃)细胞体外培养用水中纯水机的配置要求细胞培养过程中,各种培养液和试剂的配制用水均需要经过严格的纯化处理,不含离子和其他的杂质,即使是储存试剂的玻璃器皿,在自来水冲洗过后也应用超纯水漂洗三次以上。目前,市场上供应的纯水装置种类较多,比如自来水进水同时制备二级纯水和超纯水的上海乐枫Genie一体化纯水装置,可以由自来水进水通过预处理柱P Pack、反渗透柱RO Pack及EDI(连续电流电去离子)模块等纯化后达到二级纯水,储存于水箱中以满足日常的清洗应用;水箱中的水再经过U Pack超纯化柱去离子,紫外灯照射杀菌并降低有机物含量,最后经终端滤器RephiBio过滤,以获得无菌、无热源、无核酸酶的超纯水。Genie G 水路图要想达到细胞培养用水的水质要求,纯水机的配置非常关键,带有消毒模块的纯水水箱、终端过滤器、取水水质的实时监测等配置都关系着产水水质是否达标。纯水的储存对保持纯水的质量是至关重要的,由于周围环境和空气中的二氧化碳更容易使水污染改变其pH,所以储存水的容器要尽量密封,避免和外界过多接触,抑制微生物生长。如Genie纯水设备可以提供的纯水水箱带有紫外消毒模块和去除二氧化碳的过滤器,能够尽量的保证水箱内的纯水水质。水箱空气过滤器(含CO2吸附剂)200/350L 水箱空气过滤器主控屏显示水箱水循环状态终端滤器可用于去除纯水中特定类型的污染物,满足不同实验的应用需求。对于细胞体外培养可以选用RephiBio Filter 纯水终端过滤器,安装在乐枫超纯水系统的出水口,可有效去除水中的热原(内毒素)、核酸酶、细菌等杂质,制备符合细胞培养用水要求的超纯水(无热原、无DNase、无RNase、无菌)。对于超纯水而言需要格外注意终端水质的TOC、电阻率、细菌和内毒素的含量,必须做到即取即用,因此取水的远程监控和水质实时监测就显得尤为重要。目前已有厂家可以提供与手柄通过无线连接的实验室纯水机(如上面提到的Genie),将水机和取水手柄分别放在洁净间的内外,通过无线控制取水手柄达到超纯水的取用和实时检测水的电阻率和TOC数值,非常适合无菌环境下的操作,尽量减少污染。无线 自由局域网无线通信技术 各单元摆脱信号线羁绊主机,主控屏,手柄摆放可自由组合 手柄触屏信息? 系统运行状态:待机,泄压,循环,产水? 水箱液位:0%或者L? 纯水(超纯水)水质参数:电阻率、TOC、温度 终 端 水 质 实 时 监 测结合上述用水要求,为大家推荐两款制备超纯水的水机,Genie G一体化纯水仪和Genie PURIST 超纯水仪。 Genie G一体化纯水仪以自来水为进水制备超纯水和 EDI 二级纯水性能指标Genie PURIST 超纯水仪以纯水(EDI 纯水,RO 水或蒸馏水等)为进水,制备实验室超纯水。性能指标【注意事项】1.超纯水应当注意使用时间,应该“即取即用”。防止超纯水吸收外界的杂质导致水质下降。2.在合适的环境使用超纯水。环境中的VOC(挥发性有机物),细菌等都会影响细胞培养。3.培养细胞的容器应当洁净无污染。 4.配制离散细胞用的消化液和细胞洗涤液时,宜采用钙、镁离子含量低的缓冲液,缓冲液用水可以选用装配乐枫低镁型纯化柱的纯水机,避免钙、镁离子促使细胞凝聚作用的产生。不同细胞体外培养用水选择指南细胞培养(cell culture)是指在体外模拟体内环境(无菌、适宜温度、酸碱度和一定营养条件等),使之生存、生长、繁殖并维持主要结构和功能的一种方法。细胞培养的整个流程中实验用水贯穿每一个环节:1.取材:组织的清洗和灌注试剂用水,如PBS缓冲液、Hanks液的配制;2.原代培养:1640、DMEM等培养基用水,明胶等支持物的配制,添加药物、检测试剂的配制;3.传代培养:胰酶等消化液的配制;4.冻存:细胞冻存液DMSO的配制。细胞体外培养的细胞类型一般分为动物细胞培养、植物细胞培养和微生物培养,其中极难的是动物细胞的培养。动物细胞的培养除了需要无菌、温度、气体、渗透压、pH等基本条件,它还需要血清、支持物等特殊物质,其中原代细胞的培养是很难的。植物细胞的培养需要光照和激素,而且培养条件和培养技术比较成熟。微生物培养多为单细胞生物,微生物人工培养的条件比动植物细胞简单得多,蛋白胨、麦芽汁、酵母膏等培养基即可满足微生物的营养要求,其中厌氧微生物培养比好氧微生物复杂,需要维持CO2等非氧惰性气体的浓度。由于细胞的种类和培养条件不同,对培养环境中杂质的含量要求也不同,那么配制培养基或试剂用水的选择大有讲究,不同细胞体外培养用水的指标如下:细胞体外培养用水选择细胞类型纯水等级电阻率(MΩcm)TOC(ppb)微生物(cfu/mL)内毒素(Eu/mL)核酸酶(pg/mL)动物细胞超纯水181010.002?ND植物细胞超纯水181010.002?ND微生物实验室Ⅱ级纯水10501NANA从上表可以看出,动物细胞和植物细胞的培养对去除内毒素和核酸酶的要求很高,用于这两类细胞培养可以选择商品化的细胞培养用水,另外去除纯水中的内毒素和核酸酶可以通过在纯水机的取水口安装终端滤器达到。各种细胞培养用水的比较细胞培养用水制备方法优点缺点商品化细胞培养用水纯水或超纯水进行多效蒸馏制成,严格控制热源、无菌、内毒素、pH、渗透压等指标水质标准程度化高,可保证实验结果的重复性价格昂贵DEPC水DEPC处理过并经高温高压灭菌的MiliQ纯水,无RNase、DNAase和proteinase。完全去除核酸酶价格昂贵,未去除内毒素终端滤器过滤超纯水采用0.22μm的过滤膜,可有效去除水中的热原(内毒素)、核酸酶、细菌等杂质。性价比高,供水量大对取水环境要求高乐枫 RephiBio 终端过滤器采用0.22μm带正电荷的双层尼龙66过滤膜,可制备符合生物领域应用要求的超纯水(无热原、无DNase、无RNase、无菌),纯水中内毒素含量低于0.001 Eu/mL,核酸酶的含量低于可检测范围,微生物的含量低于0.1 cfu/mL,可以满足动物细胞和植物细胞的需求。Tips: 通常情况下乐枫RephiBio 终端过滤器的更换周期为3 个月,以达到好的使用效果。
  • 《Science》回答:那么多条染色体,分离的时候怎么不掉队?
    有机体从单个细胞开始,经过数百万代的分裂,最终生成骨骼、心脏、大脑和其他组成生物的成分。在这个复杂的过程中,DNA的转移是通过染色体这种离散包来进行的。在细胞分裂的每一代中,所有染色体的复制和精确分布是至关重要的。如果遗传的染色体成分发生改变,即使是轻微的改变,也可能导致出生缺陷和某些癌症。博士后学者Pablo Lara Gonzalez,生物科学部教授Arshad Desai和他们的同事在《Science》杂志上发表了一项新的研究,研究了每次细胞分裂时染色体如何正确遗传的奥秘。Lara Gonzalez和Desai使用了一种新的探针来监测这一过程的一个关键方面,他们详细研究了“等待”信号背后的机制,以确保细胞分裂不会过早启动。研究人员将他们的研究集中在 “纺锤体检查点”上,这是一种质量控制机制,可以确保细胞分裂过程中染色体的准确遗传。纺锤体检查点通路在染色体上的一个叫做着丝粒的位置被激活,着丝粒是一个机械界面,蛋白质纤维在这个界面上耦合,将染色体拉开。细胞与发育生物学(生物科学)和细胞与分子医学系(医学院)教授Desai说:“当着丝粒没有附着在这些蛋白质纤维上时,它们会发出‘等待’信号,使细胞停止有丝分裂(细胞分裂),从而为附着物的形成提供时间。”通过这种方式,细胞确保所有染色体正确连接,并准备在细胞分裂前被拉开,从而不留下任何染色体。在这篇论文中,研究人员描述了等待检查点信号是如何在未连接染色体的着丝粒上产生的。巧合的是,他们研制出了一种荧光探针,使他们第一次能够观察到活细胞着丝粒中等待信号产生的关键分子事件。Lara Gonzalez说:“这项研究发现了一个关键的‘媒人’分子,它将等待信号的两个成分结合在一起,而这两个成分不喜欢单独联系在一起。这些发现有助于解释为什么‘等待’检查点信号选择性地产生于动粒而不是细胞的其他部位。”研究人员说,这一发现为在某些疾病状态(如癌症)下如何降低染色体遗传的准确性提供了一个框架。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制