当前位置: 仪器信息网 > 行业主题 > >

细胞运动

仪器信息网细胞运动专题为您整合细胞运动相关的最新文章,在细胞运动专题,您不仅可以免费浏览细胞运动的资讯, 同时您还可以浏览细胞运动的相关资料、解决方案,参与社区细胞运动话题讨论。

细胞运动相关的论坛

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 什么是体细胞数?如何降低生鲜乳中的体细胞数?

    生鲜乳中体细胞数(SomaticCellCount,简称SCC)反应生鲜乳卫生状况和奶牛乳房健康的状态。体细胞通常由巨噬细胞、淋巴细胞、脱落上皮细胞和中性白细胞等组成。当乳腺被感染或受机械损伤后,体细胞会上升,受感染乳区的乳汁中大约99%的细胞是白细胞。  1、高体细胞数对乳制品的影响主要有:(1)牛奶味道变异;(2)牛奶贮存期缩短;(3)乳清量增加、酪蛋白收缩性降低,导致奶酪的产量下降。  2、引发高体细胞数原因有:(1)可能有隐性乳腺炎发生 发生隐性乳腺炎时,感染牛很少有临床症状,肉眼观察乳汁正常,故常常误将感染乳区的乳作正常牛奶处理,造成生鲜牛奶中体细胞的升高。(2)牛群结构偏老 一般而言,胎次越小的牛只体细胞越低。因为老龄牛只长期接触乳腺炎病原菌,免疫功能下降,有更多的被感染机会。  3、降低生鲜乳中SCC,重点应从以下方面着手:(1)减少乳房机械性损伤。牛床、运动场、挤奶厅、饲槽、水槽等奶牛活动区域无尖锐物品,机械挤奶时不可过挤,以避免引起乳房损伤。(2)减少病原菌等生物侵袭。加强环境消毒,及时杀灭环境中的有害微生物。(3)日粮营养充足、均衡,提高机体抗感染能力。(4)定期(至少每月1次)进行牛群隐性乳房炎检测,及时进行乳房炎预防。(5)隔离患有传染性乳房炎的奶牛,淘汰患有慢性乳房炎的母牛等。

  • 【分享】研究细胞内扩散的3种方法

    通常,研究胞内分子运动,相互作用及微环境的研究者需要分析细胞内诸如扩散速率等信息。近期,有报道称科学家们使用OlympusASW2.1软件的“扩散测量软件包”(Diffusion MeasurementPackage)得到了三种有效的方法用于测量分析胞内分子扩散。考虑细胞生物学及生物物理学研究的多种需求,他们使用OlympusFluoView共聚焦显微镜系统。 第一种方法,点荧光相关光谱(Point Fluorescence Correlation Spectroscopy,PointFCS)。这一方法可逐点分析信号波动情况。通过记录荧光强度的波动,可计算出运动中的粒子数目。这一具有高时空分辨率的技术非常适用于快速运动粒子的研究。根据研究需要,可得出扩散常数或分子数目两种结果。 第二种方法,光栅扫描图像相关光谱(Raster scan Image CorrelationSpectroscopy,RICS)。这一方法用于区域研究,可测量细胞内任意区域的扩散情况。如溶液中的分子或细胞膜上的蛋白,任意胞内结构都可测量。通过划定感兴趣区域,RICS能够通过2维图像创建扩散图谱,帮助研究者掌握胞内不同时间各区域的情况。这一方法可得到扩散常数及分子数目。 第三种方法,荧光漂白恢复(Fluorescence Recovery After Photobleaching,FRAP)。通过研究扩散到漂白区域的荧光信号,这一方法被光分应用于某一区域扩散常数的分析。

  • 高压细胞破碎机应用

    目前国内对细胞破碎机的研究局限于实验研究,仅对某种结构均质阀的均质效果进行验证与分析,或是选择结构参数。实验研究的局限性使这种分析不够全面。高压细胞破碎机是目前生物工程领域广泛使用的一种细胞破碎机。作者结合近期国外对高压细胞破碎机的理论研究工作,应用半经验半理论的方法,分析探讨了高压细胞破碎机的均质理论。高压细胞破碎机的结构及工作原理: 高压细胞破碎机由高压泵和破碎阀两部分组成,高压泵通常采用柱塞往复泵,其结构与一般柱塞泵相同。破碎阀安装在柱塞泵的排出管路上,一般由阀芯和阀座构成,阀芯和阀座的结构形式对破碎效果、能耗以及阀的磨损影响极大。国外对破碎阀的结构进行了大量研究,设计出许多不同结构的破碎阀,研究主要围绕下列问题进行:1,在较低操作压力下提高破碎效果2,提高阀的使用寿命。意大利Niro Soavi公司为此,开发出R型细胞破碎阀,经过多年的实际使用,获得用户的认可。高压细胞破碎机工作原理: 高压细胞破碎机有一个或数个往复运动的柱塞,物料在柱塞作用下进入可调节压力大小的阀组中,经过特定宽度的限流缝隙(工作区)后,瞬间失压的物料以极高的流速(1000米/秒,最高可达1500米/秒)喷出,碰撞在阀组件之一的碰撞环上,产生三种效应: 空穴效应:被柱塞压缩的物料内积聚了极高的能量,通过限流缝隙时瞬间失压,造成高能释放引起空穴爆炸,致使物料强烈粉碎细化。(主要应用于均质) 撞击效应:物料通过可调节限流缝隙的以上述极高的线速度,喷射到用特殊材料制成的碰撞环上,造成物料粉碎。(主要应用于细胞破碎) 剪切效应:高速物料通过泵腔内通道和阀口狭缝时会产生剪切效应。(主要应用于乳化)经过这三种效应处理过的物料可均匀细化到0.1μm-2μm粒径。

  • 【转帖】日本利用诱导多功能干细胞让瘫痪绒猴重新蹦跳

    TAG: ips 冈野荣之 干细胞 绒猴 http://img.antpedia.com/attachments/2010/12/27501_201012101146281.jpg  据物理学家组织网12月8日报道,日本研究人员称,他们利用诱导多功能干细胞(iPS)使一只瘫痪小猴的运动能力恢复到接近正常水平,这只小猴因为脖子以下脊椎受伤而不能正常运动。  日本东京庆应义塾大学冈野荣之教授称,这是世界上第一个在小型灵长类动物身上用干细胞修复脊椎损伤的例子。此前,他和研究小组曾用相似方法,帮一只小鼠恢复了运动能力。  研究人员移植了四种基因到人体皮肤细胞,生成诱导多功能干细胞,然后再把诱导多功能干细胞注射到一只瘫痪的绒猴(美洲产小型长尾猴)体内。冈野荣之说,考虑到治疗最佳时机,研究人员在绒猴受伤后第九天进行了注射,这是最有效的时机。在随后的两到三周内,绒猴开始活动它的四肢。“6周以后,它恢复到了又能到处蹦跳的水平,这已经非常接近于正常水平。它用前肢抓住物体的力量也恢复到了80%。”  但冈野荣之说,虽然用人类胚胎干细胞作为治疗癌症和其他疾病具有很大潜力,但要取得能发育成几乎所有组织的细胞,就要破坏人类胚胎,因此胚胎干细胞研究面临诸多争议,并受到宗教保守人士的反对。而日本研究人员的新研究为在人类身上使用类似医疗技术开拓了道路。

  • 细胞单分子操纵磁镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html][b]细胞单分子操纵磁镊系统[/b][/url],magnetic tweezers是继激光光镊技术仪器后又一种细胞操纵和细胞力学测量仪器.它采用倒置显微镜和电动平移旋转定位台和PicoTwist磁力细胞操纵捕获技术,组成强大的单分子操纵磁镊仪器。细胞单分子操纵磁镊系统是通过梯度分布的磁场对处于其中的可磁化微粒施力,通过显微镜观察并分析微粒运动过程,这套磁镊可同时对40个细胞分子视频采集和跟踪测量。[b]细胞单分子操纵磁镊系统特点[/b]操作稳定—图像漂移很低分辨率高,测力能力强—适合超薄样品可以同时对40个细胞单分子成像和跟踪测量磁铁来控制 DNA拉伸和超螺旋结构[b]细胞单分子操纵磁镊系统应用[/b]细胞单分子,生物单分子,细胞力学,生物力学等,在单分子水平上对生物分子行为(包括构象变化、相互作用、相互识别等)的实时﹑动态检测以及在此基础上的操纵﹑调控等;对单个生物大分子施以力或力矩,并测量它们的物理性质(如DNA弹性、蛋白质的力学变性等);对单个生物大分子施以力或力矩,测量它们的力学生化反应(如分子马达);研究机械力的作用如何影响细胞的生长、分裂、运动、粘附以及信号的传输,基因的表达;在生物大分子上施加力以使之发生构像上的变化,研究生物单分子形成新的结构,以及力学以及动力学之间的相互联系等。研究各种药物可能导致的DNA、蛋白质凝聚、变性过程;给出分子实时行为与性质的分布,有效避免对集群测量苛刻的同步(synchronization)要求,如DNA的解链(unzipping)、蛋白质的折叠(folding)等。[b][img=细胞单分子操纵磁镊系统]http://www.f-lab.cn/Upload/magnetic-tweezers.jpg[/img][/b]细胞单分子操纵磁镊系统:[url]http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html[/url]

  • 把细胞铺匀的7个小技巧

    做cell biology实验,细胞铺板大概是最常见的一个实验了。但是有很多人不是很得要领,铺得不是均匀: 要么中间密周围稀,要么周围密中间秃顶。以下是我的一些技巧,希望可以帮助到大家。1. 一般96孔板我每孔是加100微升细胞悬液,从孔的左边靠近底部加入,加完半边板后,将未加的细胞悬液混一下再,继续加剩余的半边板子,都加完后盖上盖子,左手轻轻扶住板的左边,右手轻轻敲击板的右边缘,注意把握力度(我一般轻巧敲三下),太强或次数太多会导致细胞集中成堆,将板顺时针旋转(逆时针效果不好),依次敲击剩余三个边,静置约5分钟,放入37度培养箱。 6孔板12孔板或24孔板,我均采用将第一个孔加入少量无血清培养基,晃动浸润整个孔底,然后用移液枪吸至第二孔,同样方法浸润孔底,其它孔一次类推,这样整个孔底都是湿润的,细胞悬液会平铺在整个孔底,加细胞悬液的时候可以避免加在中间中间细胞多,而加在周边晃匀后周边细胞多中间少的现象,细胞分散较均匀,注意加完细胞悬液后要放工作台静置一下。这个方法就是有点慢,但操作熟练了也不慢。也可以采用轻拍的方式,但力度没有96孔板好掌握,效果没有96孔板好,所以我放弃改用浸润孔底的方法。2.细胞悬液加完后,将细胞培养板抬高,对着灯光,从底部往上看,看细胞有没有抱团。然后从底部敲击,使之分散。3. 如果实验室有平板振荡器的话,我建议用这个仪器稍振荡一下,效果不错,就是振幅小,频率高的那种。4. 细胞要尽量打散,大部分呈单个状态。离心后,要充分悬浮!还有转移到六孔板后,是要晃得!晃的时候最好不要让那个细胞液转圈,不然细胞就全被带到中间去了,就会不均匀!5. 一瓶细胞长满后,正常处理,在培养瓶里吹匀,然后铺6孔板,每孔2毫升,铺完之后不用观察直接用酒精棉擦拭,然后放到培养箱里,轻微的左三圈右三圈 前三圈 后三圈。基本上24小时之后观察 每孔的细胞都会很均匀。6.计算好所需要的全部液体量和细胞量,混匀后,加到六孔板里,六孔板按横8字型晃,显微镜下观察,如果不均匀,按上述方法再晃。如果细胞未计数直接种的话,在种六孔板的过程中,随时晃一下混匀用的瓶子,瓶子我通常是顺时针或逆时针转圈。7.放在水平板面上先上下移动,再左右移动,每个方向5到6次,但关键的是摇完后最好直接放入培养箱中,不要再做过多的运动,例如放到镜下去看,否则很容易就又聚到中间去了。

  • 【分享】PNAS:发现储存“时间记忆”的脑部细胞

    据国外媒体报道,美国麻省理工大学的神经学家通过实验发现人类大脑中储存“时间记忆”的神经元细胞。 数十年来,神经学科的科学家在理论上推测人类的大脑中有一部分细胞可以在大脑中为我们日常发生的事件打上“时间标签”,这样我们可以及时回想起过去所发生事情的时间。但是,在科学界一直没有找到可以让人信服的证据证明这部分帮助我们记忆事件发生时间的脑细胞的存在。 近日,麻省理工大学的安-格雷布耶尔(Ann Graybiel)教授和他的研究小组发现,在灵长类动物的大脑中有一类神经元细胞可以将时间信息精确的编译储存。安-格雷布耶尔说:“我们的大脑对所有事情都加上时间的标签,这样就使得我们回忆事情显得非常简单。我们回忆事情的时候首先通过过滤这些时间标签,然后通过时间标签将相关的事情从记忆中提取出来。”这种准确的时间记忆对于开车或弹钢琴等日常活动以及对于我们回忆往事极为重要。这个发现发表在新一期的美国《国家科学院院刊》(PNAS)上。这项研究成果可用于治疗帕金森综合征等导致记忆力丧失疾病的治疗上。 安-格雷布耶尔的实验小组首先训练两只猕猴按照规定完成一个简单的眼部运动实验。当接到“开始”的命令后,两只猕猴按照自己的速度去完成眼部运动实验的过程。研究小组用相应的仪器同步记录两只猕猴大脑中数百个神经元细胞的电信号。同时,实验小组用相关的仪器同步记录两只猕猴大脑中数百个神经元细胞的电信号,并由日本脑部研究所的直孝藤井(NaotakaFujii)和宾夕法尼亚州立大学的金德哲(DezheJin)领导的研究小组用数学的方法来分析这些电信号。 经分析后发现,当猕猴接到“开始”的实验命令后,猕猴脑部的神经元细胞总是在特定的时间内由脑部发出,比如说:在猕猴接到“开始”实验命令后的100毫秒、110毫秒或者150毫秒时等等。安-格雷布耶尔说:“这些实验数据的分析表明,我们已经找到了一直在寻找而没有发现的猕猴大脑内储存时间记忆的脑部细胞。” 这些储存时间记忆的神经元细胞位于脑部前额叶皮层和纹状体区域,这些区域同时也是人类大脑掌控学习、运动和思维的重要区域。安-格雷布耶尔表示,尽管这次实验主要集中在研究猕猴脑部前额叶皮层和纹状体区域,但是脑部其他的区域肯定也存在这些可以储存时间记忆的神经元细胞。 对于这次研究结果的应用,安-格雷布耶尔表示,这次研究的结果可以帮助帕金森综合症患者康复。帕金森综合症的患者正是由于脑部时间记忆功能受损,在寻找和传输时间记忆时总是比正常人要慢。因此帕金森综合症患者不能像正常人一样按照正确的时间规律来完成日常行动。根据这次实验的结果,在为帕金森综合症患者治疗时,可以通过轻轻拍打等外部刺激帮助患者脑部加速寻找关于时间的记忆,这样患者讲话时会显得更加清楚一些。另外,医生还可以通过神经元修复装置或者神经元修复药物(这些药物中含有神经元细胞所需的多巴胺和羟色胺等)来帮助帕金森综合症患者恢复。 在下一步的研究中,安-格雷布耶尔将集中研究脑部是怎样制造这些含有“时间记忆标签”的神经元细胞的,并研究这些时间记忆细胞是如何控制人们的行为和学习活动的。还有一个重要的研究问题是,脑部究竟为何对于不同环境下对时间的感受并不相同。安-格雷布耶尔说:“我们有时候会感觉时间过的很快,有时候却感觉时间过的很慢,所有这些都将可以用带有时间记忆的神经元细胞来解释说明原因所在。” 美国匹兹堡大学的神经生物学教授彼得-施特瑞克(Peter Strick)对这次实验结果给予高度的评价,施特瑞克认为这次实验结果是对脑部如何记录和表述时间概念的一次全新阐释。施特瑞克说:“对于光线、声音、触觉、冷热感知、嗅觉等,我们人体有特定的感觉接受器,但是对于时间我们并没有特定的感觉接受器,对于时间的感知和储存是由大脑自己形成并运行的。”(转自科学网)

  • 【转帖】石榴汁的成分能抑制癌细胞迁移

    石榴汁的成分能抑制癌细胞迁移 在美国细胞生物学会于费城召开的第50届年会上公布了这项研究根据今天在美国细胞生物学会(American Society for Cell Biology)于费城举行的第50届年会上公布的一项研究,加州大学里弗赛德分校(UCR)的科研人员发现石榴汁中的一些成分似乎能够抑制癌细胞的运动并且削弱它们被一种化学信号吸引的能力,这种信号已经被证明能够促进前列腺癌向骨的转移。加州大学里弗赛德分校(UCR) Manuela Martins-Green博士实验室的科研人员打算在一个前列腺癌体内模型中进行进一步的测试,从而确定这两种成分的剂量依赖性效应和副作用。石榴汁对前列腺癌恶化的作用即便存在,也是有争议的。在2006年的一项针对每天饮用一杯8盎司石榴汁的前列腺癌患者的研究中,加州大学洛杉矶分校(UCLA)的科研人员检测到了前列腺特异性抗原(PSA)水平的下降,这提示癌症恶化可能减缓。加州大学洛杉矶分校(UCLA)的科研人员并没有设法描述该研究中石榴汁效应背后可能的生物机制。

  • 【原创大赛】【流式细胞仪系列之一】液流系统工作原理

    【原创大赛】【流式细胞仪系列之一】液流系统工作原理

    液流系统的作用是依次传送待测样本中的细胞到激光照射区,其理想状态是把细胞传送到激光束的中心。而且在特定时间内,应该只有一个细胞或粒子通过激光束。 因此,必须在样品室内把细胞注入鞘液流。样品室是液流系统的核心部件,在样品室内细胞液柱聚焦于鞘液中心,细胞在此与激光相交。样品室内充满鞘液,根据层流原理,在鞘液的约束下,细胞排成单列出样品室喷嘴口,并被鞘液包绕形成细胞液柱。这种同轴流动的设计,使得样品流和鞘液流形成的流束始终保持着一种分层鞘流的状态,这个过程称为流体聚焦。http://ng1.17img.cn/bbsfiles/images/2014/12/201412251405_528922_2648817_3.jpg图1 液流系统 单个细胞悬液在液流压力作用下从样品管射出,粒子或细胞在流动室内与激光相交,此交点为测量区。 流动室是仪器核心部件,被测样品在此与激光相交。流动室由石英玻璃钢制成,并在石英玻璃中央开一个孔径为430μm×180μm的长方形孔,供细胞单个流过,检测区在该孔的中心,这种流动室的光学特性良好,流速较慢,因而细胞受照时间长,可收集的细胞信号光通量大,配上广角收集透镜,可获得很高的检测灵敏度和测量精度。 流动室内充满了鞘液,鞘液的作用是将样品流环包,鞘液流是一种稳定的液体流动,鞘液以匀速运动流过流动室,在整个系统运行中流速是不变的,样品流在鞘液的环包下形成流体力学聚焦,使样品流不会脱离液流的轴线方向,并且保证每个细胞通过激光照射区的时间相等,从而得到准确的细胞荧光信息。

  • 新显微镜可追踪胚胎发育单细胞分裂过程 有助于理解一个单细胞怎样变成了复杂的组织

    中国科技网讯 从一个受精卵发育成多种功能的胚胎,细胞要经过上千次分裂和复杂的排列重组。据物理学家组织网6月3日报道,霍华德·休斯医学研究院珍妮莉娅法姆研究学院开发出一种最新的成像技术,能以前所未有的速度和精确度看到这一过程,让人们能追踪胚胎成形时每个细胞在几天甚至几小时内的变化。相关论文发表在6月3日出版的《自然·方法学》上。 研究人员演示了一段约20小时的果蝇胚胎发育视频。在视频中,生物结构逐渐出现,从一小团简单的细胞簇慢慢变长,变成上万个细胞紧紧挤在一起的拉长的小胚胎,然后在新形成的肌肉收缩舒张下开始颤动,此时胚胎仅有半毫米长。此外,论文中还有一段果蝇胚胎中枢神经系统完整的发育视频,跟踪了单个细胞发育出感觉器官、脑叶及其他结构的过程,由于分辨率足够高,还能看到神经轴突尖端迅速变化。 发明该技术的珍妮莉娅法姆研究学院的菲利普·凯勒说,要理解一个单细胞怎样变成了复杂的组织,真实看到这一过程非常重要。传统光学显微镜速度太慢,无法跟踪细胞在生命初期的迅速变化,也容易破坏一个活胚胎,只能通过把多阶段、多组织的照片拼在一起,才能推测发生的变化,但“细胞分裂重组每次都不一样,这种观察方法可能会产生误导”。 新技术基于一种高速非侵入式光学显微镜,称为SiMView光层显微镜,能从4个角度同时拍摄图像,不仅能跟踪细胞运动,还能对发展过程进行数量分析。该显微镜由凯勒小组和德国的欧洲分子生物实验室合作开发,攻克了传统光学显微镜的两个难题:一是光源对样本造成的伤害,二是对海量数据进行处理分析。 大部分光源都会伤害细胞,使其中的荧光标记消失。研究小组设计的照明技术是一种激光扫描层,一次照射样本极薄的一层以减少伤害,由探测仪记录下被照亮的部分。光层来自两个相反方向,并用两个探测仪来探测荧光,照明与探测相结合,提供了4个不同的观察角度。不仅能避免由于光散射而造成的模糊,还将图像采集速度提高了50倍。 要让照亮样本和探测荧光在时间、位置上协调一致,时机吻合极为重要,光层交叉通过会造成图像模糊,发光间隔仅几毫秒。为了保持精度,SiMView还安装了实时调节的电子系统。 显微镜每秒会收集350Mb的数据,一个样本一天要产生海量数据,而不同条件或不同基因的发育对比实验,所要求的数据比这还要多好多倍。为此,研究人员开发出一种新的计算方法,能识别并跟踪显微镜视频中单个细胞并自动分析。这些都构成了拍摄活样本这一完整技术框架的必要组成部分。 凯勒表示,他们还将继续改进显微镜使计算过程更加有效。今后不仅能追踪胚胎中细胞的一代代世系,还可能控制发育以探索发育机制,并研究其他更大更复杂样本的发育过程。(常丽君) 《科技日报》(2012-06-05 二版)

  • 牛奶体细胞测定与牧场管理

    [b]奶牛体细胞测定与牧场管理[/b]是DHI(Dairy Herd Improvement)的必修课题。DHI即奶牛生产性能测定也称牛群改良,是一套完整的奶牛生产性能记录和管理体系,是一个实实在在通过度量和分析解决奶牛生产实际问题的方法,其目的是提高牛群的整体素质和生产水平,使用方法是从群体着眼,针对个体解决存在的问题。DHI检测的项目:一是牛群的产奶性能,包括每头牛的产奶量、乳脂率、乳蛋白率等;二是收集牛群饲养管理与经营方面的资料,如系谱资料、产犊日期、干奶日期、淘汰日期和牛群的年龄结构等,并将这些资料信息进行系统加工处理,所得结果再返回牛场指导牛场的经营管理,帮助提高牛场经济效益。DHI的用途具体体现为追踪个体牛表现、观察牛群表现、开发新目标、乳房炎管理、选种等方面的。  针对于[b]奶牛体细胞测定与牧场管理[/b]课题,最关键是乳脂率、乳蛋白率、体细胞数,其中体细胞直接影响产奶量、乳脂率、乳蛋白率和其它乳成分。通过体细胞数的变化,可反映牧场管理水平及牧场经营状况。DHI检测设备推荐本特利NexGen系列新一代牛奶成分+体细胞检测,检测速度400-600/小时,可以根据牧场需要进行配置,同时检测模块有丙酮和乳铁蛋白,对于预防奶牛酮病和乳房炎有提前预警作用。 [b]体细胞数(SCC)[/b]是指每毫升牛奶中所含的体细胞量,它反映牛场奶牛乳房健康状况,几乎参加DHI项目的每头泌乳牛都进行体细胞检测。它包括多种类型的细胞如白细胞和脱落的上皮细胞等,高SCC记录预示着大量的白细胞的存在和乳房感染几率较大。DHI报告可提供全群奶牛各胎次每月体细胞数值,可按照不同胎次统计出不同SCC水平的牛头数及所占百分比。  个体[b]奶牛体细胞数(SCC)[/b]直接反映了奶牛乳房健康状况,并能反映防治措施是否有效,需要说明一点,SCC的高低反映了乳房受感染的程度,而并非超过某一特定值就表示该牛一定有乳房炎而需要治疗。 牛群[b]体细胞数(SCC)[/b]是整个牛群乳房健康程度的标志。体细胞数、体细胞评分反映了该牛群的健康状况。对于体细胞高的牛群,应从挤奶设备的消毒效果,挤奶设备真空度及真空稳定性,奶衬性能及使用时间,牛床、运动场等卫生环境等方面找问题。 在DHI报告中提供了因[b]奶牛体细胞数(SCC)[/b]太高而造成奶牛产奶量的损失,应用该数据可以计算出奶牛场全年产奶量损失及直接经济损失。[b]奶牛体细胞数(SCC)[/b]与奶量损失的关系  DHI报告分析:脂肪蛋白比。一个牛群正常的脂肪和蛋白比例在1.1-1.2的范围内,或蛋脂比在0.8—0.85如果变化范围超过上限或下限,说明奶牛饲养管理方面有问题。  当脂蛋比低于1.1时表明  A、奶牛粗饲料在瘤胃中的发酵率降低  B、粗饲料的质量差  C、精料比例过大  D、瘤胃亚临床或临床型酸中毒  E、奶牛反刍减少,日粮中缺乏缓冲物质  当脂蛋比高于1.2时表明:  A、奶牛日粮中蛋白质不平衡,品质差,缺乏必需氨基酸,如蛋氨酸和赖氨酸。  B、日粮中能量不足,瘤胃微生物蛋白合成不足  C、奶牛干物质采食量不足  D、夏天热应激  E、饲料中添加了大量的油脂类脂肪  F、可发酵碳水化合物含量不足DHI报告中奶牛繁殖状况分析:平均泌乳天数。如果一个牛群具有正常的牛群结构,且常年均衡配种,那么该牛群的平均泌乳天数应改为150-170天。如果超过上限则表明:  A、所提供的产犊日的准确性  B、奶牛产后繁殖问题严重  C、配种技术员水平不高 D、存在严重的饲养管理问题  DHI报告在生产实践中的重要意义:DHI分析报告是奶牛场改进饲养方法、提高管理水平的基础。如根据奶牛泌乳曲线的变化、乳成分和奶牛体细胞和尿素氮测定结果,分析各类营养的平衡关系,以调整饲料配方和优化饲喂程序,保证牛群的正常管理,而使牛群发挥最大的生产潜力,提高生产水平。

  • 红细胞与白细胞的重新定向

    白细胞与红细胞在此重新定向。白细胞(WBC)和红细胞(RBC)是血液中的重要组成部分,在生命体延续发展和生物治疗中具有不同的功能。红细胞,又称红血球,含有一种蛋白质称作血红蛋白。当血红蛋白从肺部吸收氧气时,血液呈红色。随着血液流经全身,血红蛋白向人体组织释放氧气。红细胞的生命周期为4个月,其形如圆盘,中间下凹,边缘较厚,呈圆饼状。白细胞,又称白血球,具有更加复杂的功能。白细胞构成了人体抵抗感染的一种防御机制。有多种不同类型的白细胞,其生命周期和功能各不相同。白细胞还能够产生一种特殊的蛋白质,称作抗体,能够识别并吞噬入侵人体的外来异物。 红细胞白细胞物理特征红细胞呈双凹圆盘状,无核。尺寸大约为6-8 μm。白细胞呈不规则性,但有一个核和外缓冲层。生命周期120天。几天,但在健康人体中可存活数天至数年不等。类型:血液中只有一种红细胞在血液中存在许多类型的白细胞,其功能各不相同:嗜中性粒细胞、T淋巴细胞、B淋巴细胞(巨噬细胞)、嗜酸性粒细胞、嗜碱性粒细胞。循环系统:心血管系统。心血管和淋巴系统总计红细胞700:1白细胞男性每立方毫米460-6200万个;女性每立方毫米4200-5400万个。每立方毫米4000 – 11000个功能:向身体的不同部位提供氧气,并负责运送二氧化碳和其它废物。产生抗体,对感染形成免疫力,有些具有噬菌功能。血液中含量:

  • 细胞自噬 细胞自噬

    细胞自噬是机体一种重要的防御和保护机制。但是这种自噬“信号”如何传递给细胞从而使其“执行”自噬过程,则一直是科学界的难题。近期,我校生命科学学院林圣彩教授课题组成功找到高等动物细胞在生长因子缺失条件下,启动自噬的部分“密码”,从而在细胞自噬机制研究方面取得重大突破。  4月27日,最新一期的美国《科学》杂志以研究文章的形式刊发了这项研究成果,并配发专门评述。这也是近三年来,我校生命科学学院第二篇发表在这一世界顶级学术刊物上的论文。2009年6月,该院韩家淮教授的一篇有关细胞选择死亡方式机制的研究文章曾“登上”该杂志。  所谓自噬,是指细胞消化自身蛋白质或细胞内的结构(细胞器)的一种自食现象。通过这种现象,细胞可以降解、消除和消化受损、变性、衰老和失去功能的细胞器和变性蛋白质等生物大分子,为细胞的生存和修复提供必须的能量。  科学家们认为,自噬与细胞凋亡、细胞衰老一样,是一种十分重要的生物学现象。有关实验表明,包括肥胖症、糖尿病、神经退行性疾病、免疫失调及癌症在内的人类许多重大疾病的发生都与该过程的异常有关。为此,自噬也是当前生命科学中最热门的研究领域之一。  据林圣彩介绍,对自噬进行分子机制的研究始于上世纪90年代的以单细胞生物酿酒酵母为模型的研究,目前,一系列构成单细胞生物自噬核心机器的基因已被发现并命名。  然而,对自噬在多细胞生物特别是哺乳动物中的调控机制的研究,科学界至今仍在不断探索中。摆在科学家面前的一个根源性的问题是:在多细胞生物中,诱导自噬的各种信号是如何被传递到细胞内自噬“核心机器”从而启动自噬过程的?  研究表明,与单细胞生物不同,在多细胞生物内,外界营养元素要依赖于生长因子的调控才能被转运到细胞内。一旦细胞外的生长因子匮乏,细胞便能启动自噬以维持能量平衡。那么,生长因子缺失这一信号又是如何“传达”的呢?  这也成为长期致力于细胞信号转导研究的林圣彩教授课题组近年来的研究目标之一。经过多年研究,课题组终于成功“**”这一自噬启动“密码”——即通过一种名为GSK3的激酶活性增高后磷酸化并随之激活乙酰转移酶TIP60,进而导致自噬核心机器中的蛋白激酶ULK1的乙酰化水平增强而启动细胞自噬。简言之,这一发现揭示了多细胞生物在生长因子缺失条件下的细胞自噬过程的新的介导分子及其通路。  林圣彩认为,弄清楚了细胞内到底有哪些蛋白分子“参与”了自噬和它们如何串联在一起,将有益于科学界从“源头”上认识相关疾病,并为这些疾病的诊断和治疗提供新的靶点。

  • 【整理总结】李晶教授细胞冻存、解冻方法与细胞计数

    液氮槽vaporphase长期储存。-20℃不可超过1小时,以防止胞内冰晶过大,造成细胞大量死亡,亦可跳过此步骤直接放入-80℃冰箱中,惟存活率稍微降低一些。(2)程序降温:利用已设定程序的等速降温机以-1~-3℃/分钟之速度由室温降至(-80℃以下)-120℃,再放在液氮槽vaporphase长期储存。适用于悬浮型细胞与hybridoma之保存。3、步骤:(1)冷冻前24-48小时更换半量或全量培养基,使细胞处于指数生长期。(2)配制冷冻保存溶液(使用前配制):另取一离心管,加入培养基、血清,逐滴加入二甲基亚砜(DMSO)至20%浓度,即制成双倍的冻存液,置于室温下待用。(3)离心收集培养之细胞,用加血清的培养基重悬起细胞,取少量细胞悬浮液(约0.1ml)计数细胞浓度及冻前存活率。(4)取与细胞悬液等量的冻存液,缓慢逐滴加入细胞悬液,并晃动试管,制成细胞冻存悬液(DMSO最后浓度为5~10%),使细胞浓度为1~5×106cells/ml,混合均匀,分装于已标示完全之冷冻保存管中,1~2ml/vial,并取少量细胞悬浮液作污染检测。严密封口后,注明细胞名称、代数、日期。然后进行冻存。4、注意事项:(1)欲冷冻保存之细胞应在生长良好(logphase)且存活率高之状态,约为80~90%致密度。冷冻前检测细胞是否仍保有其特有性质,例如hybridoma应在冷冻保存前一至二日测试是否有抗体之产生。(2)细胞在液氮中可长期冻存无限时间,而不会影响细胞活力;在-70度可保存数月。(3)注意冷冻保护剂之品质。DMSO应为试剂级等级,无菌且无色(以0.22micron FGLP Telflon过滤或是直接购买无菌产品,如Sigma D-2650),以5~10ml小体积分装,4℃避光保存,勿作多次解冻。Glycerol亦应为试剂级等级,以高压蒸汽灭菌后避光保存。在开启后一年内使用,因长期储存后对细胞会有毒性。本方法中先制备双倍冻存液,可避免DMSO直接加入时释放的热量对细胞的损伤。缓慢逐滴加入细胞悬液是使细胞逐步适应高渗,可降低细胞受损。DMSO可能引起部分白血病细胞株的分化,可换用10%甘油冻存。(4)冷冻保存之细胞浓度:①normal human fibroblast:1~3×106cells/ml②hybridoma:1~3×106cells/ml,细胞浓度不要太高,某些hybridoma会因冷冻浓度太高而在解冻24小时后死去。③adherent tumor lines:5~7×106,依细胞种类而异。Adenocarcinoma解冻后须较高之浓度,而HeLa只需1~3×106cells/ml④other suspensions:5~10×106cells/ml,human lymphocyte须至少5×106cells/ml。(5)冷冻保护剂浓度为5或10%DMSO,若是不确定细胞之冷冻条件,在做冷冻保存之同时,亦应作一个backup culture,以防止冷冻失败。(6)冻存可用10%~90%的血清,一般高浓度血清有助于维护细胞活力,此处介绍20%终浓度有利于细胞悬浮而少沉积(4度时),复苏存活率在80%~90%以上,对原代培养细胞,以90%血清冻存更为有效。二、冷冻细胞活化1、冷冻细胞之活化原则为快速解冻,以避免冰晶重新结晶而对细胞造成伤害,导致细胞之死亡。2、细胞活化后,约需数日,或继代一至二代,其细胞生长或特性表现才会恢复正常(例如产生单株抗体或是其它蛋白质)。3、材料37℃恒温水槽、新鲜培养基、无菌吸管/离心管/培养瓶、液氮或干冰容器4、步骤:(1)操作人员应戴防护面罩及手套,防止冷冻管可能爆裂之伤害。(2)自液氮或干冰容器中取出冷冻管,检查盖子是否旋紧,由于热胀冷缩过程,此时盖子易松掉。(3)将新鲜培养基置于37℃水槽中回温,回温后喷以70%酒精并擦拭之,移入无菌操作台内。(4)取出冷冻管,立即放入37℃水槽中快速解冻,轻摇冷冻管使其在1分钟内全部融化,以70%酒精擦拭保存管外部,移入无菌操作台内。(5)取出解冻之细胞悬浮液,缓缓加入有培养基之培养容器内(稀释比例为1:10~1:15),混合均匀,放入CO2培养箱培养。取0.1ml解冻细胞悬浮液作存活测试。(6)解冻后是否立即去除冷冻保护剂(例如DMSO或glycerol),依细胞种类而异,一般而言,大都不需要立即去除冷冻保护剂。惟若要立即去除,则将解冻之细胞悬浮液加入含有5-10ml培养基之离心管内,离心1000rpm,5分钟,移去上清液,加入新鲜培养基,混合均匀,放入CO2培养箱培养。(7)若不需立即去除冷冻保存剂,则在解冻培养后隔日更换培养基。三、细胞计数与存活测试1、原理:(1)计算细胞数目可用血球计数盘或是Coultercounter粒子计数器自动计数。(2)血球计数盘一般有二个chambers,每个chamber中细刻9个1mm2大正方形,其中4个角落之正方形再细刻16个小格,深度均为0.1mm。当chamber上方盖上盖玻片后,每个大正方形之体积为1mm2×0.1mm=1.0x10-4ml。使用时,计数每个大正方形内之细胞数目,乘以稀释倍数,再乘以104,即为每ml中之细胞数目。(3)存活测试之步骤为dyeexclusion,利用染料会渗入死细胞中而呈色,而活细胞因细胞膜完整,染料无法渗入而不会呈色。一般使用蓝色之trypan blue染料,如果细胞不易吸收trypan blue,则用红色之Erythrosin bluish。计算细胞活率:活细胞数/(活细胞数+死细胞数)×100%。计数应在台盼兰染色后数分钟内完成,随时间延长,部分活细胞也开始摄取染料;因为台盼兰对蛋白质有很强的亲和力,用不含血清的稀释液,可以使染色计数更为准确。2、材料:0.4%w/v trypan blue(GibcoBRL15250-061);Erythosin bluish stain;取0.1gram Erythrosin bluish(SigmaE-9259)及0.05gram preservative methyl paraben(SigmaH-3647)溶于100mlCa++/Mg++freesaline;血球计数盘及盖玻片(Hemocytometerandcoverslip);计数器(counter);低倍倒立显微镜;粒子计数器(Coultercounter,CoulterElectronics)。白细胞稀释液(4%乙酸溶液)。3、步骤:(1)取50μl细胞悬浮液与50μl trypan blue(orErythrosinbluish)等体积混合均匀于1.5ml小离心管中。(2)取少许混合液(约15μl)自血球计数盘chamber上方凹槽加入,盖上盖玻片,于100倍倒立显微镜下观察,活细胞不染色,死细胞则为蓝色(或红色-Erythrosin bluish)。(3)计数四个大方格之细胞总数,再除4,乘以稀释倍数(至少乘以2,因与trypanblue等体积混合),最后乘以104,即为每ml中细胞悬浮液之细胞数。若细胞位于线上,只计上线与右线之细胞(或计下线与左线之细胞)。注:4大格细胞总数×稀释倍数×104/4=细胞数/ml;每一大格的体积=0.1cm×0.1cm×0.01cm=10-4ml计数板计数时,最适浓度为5~10×105细胞/ml,此范围外计数误差偏大。高浓度细胞悬液,可取出部分作稀释或连续稀释后计数。5、范例:T75 monolayer culture制成10ml细胞悬浮液,取0.1ml溶液与0.1ml trypan blue混合均匀于试管中,取少许混合液加入血球计数盘,计数四大方格内之细胞数目。活细胞数/方格:55,62,49,59;死细胞数/方格:5,3,4,6;细胞总数=243平均细胞数/方格=60.75;稀释倍数=2;细胞数/ml:60.75×104×2(稀释倍数)=1.22×106;细胞数/flask(10ml):1.22×106×10ml=12.2×106存活率:225/243﹦92.6%

  • 【转帖】iPS细胞:人造肿瘤细胞?

    各国争相发展的重点项目  iPS技术,即诱导性多能干细胞技术,是一种将成体成熟、分化的体细胞重编程获得类似胚胎干细胞的新兴技术。2007年11月美国和日本科学家分别独立宣布可将人类皮肤细胞转化为iPS细胞。这一发现被《自然》和《科学》杂志分别评为2007年第一和第二大科学进展。之后,iPS细胞研究迅猛发展,不同的国家和实验室纷纷报道了多种方法建立的iPS细胞系。就连世界第一只体细胞克隆动物多利羊的培育者伊恩·威尔莫特也宣布放弃人类胚胎干细胞克隆研究,转而进行 iPS 细胞研究,因为他认为这种细胞比胚胎干细胞更具潜在优势。  我国连续多年将干细胞研究列入“863”、“973”、国家自然基金重点项目。国务院2006年发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,干细胞作为五项生物技术之一成为未来15年我国前沿技术的重点研究领域。  致瘤风险浮出水面  Yamanaka研究组在《自然·生物技术》上发表的文章显示,用iPS细胞诱导的神经干细胞,即使不含c-Myc(曾被认为是导致肿瘤的主要原因),在植入NOD/SCID免疫缺陷小鼠后仍有很强的致瘤性,甚至高于胚胎干细胞。   他们共研究了36个iPS细胞克隆,在诱导方式上,有些诱导剂配方中含有c-Myc基因,有些没有,因此具有较好的代表性。同时他们选择了3株胚胎干细胞作为对照。在45周的观察中,移植胚胎干细胞来源神经干细胞的34只小鼠有4只长出肿瘤。在100只移植胚胎成纤维细胞来源的iPS神经干细胞小鼠中34只发现肿瘤,概率和胚胎干细胞相当。在55只移植成人成纤维细胞来源的iPS神经干细胞小鼠中46只发现肿瘤,概率远高于胚胎干细胞。在36只移植肝细胞来源的iPS神经干细胞小鼠中10只发现肿瘤,概率高于胚胎干细胞。8只移植胃上皮细胞来源的iPS神经干细胞小鼠中未发现肿瘤。病理学检查证实肿瘤均为畸胎瘤,部分为恶性畸胎瘤。  研究还发现,以前认为致瘤性很强的c-Myc在去掉后并没有减少iPS神经干细胞的致瘤性,相反以前认为没有致瘤性的Nanog基因却可以明显增强iPS神经干细胞的致瘤性。  这次试验的另一个意外结果是并未发现在生成的肿瘤细胞中有c-Myc或其他基因的激活。以前的观点认为,转入的癌基因是iPS致瘤性的基础,只要在iPS细胞诱导成功后通过各种方法去除已完成使命的癌基因即可使iPS细胞免于致瘤性。这次试验的结果无疑给这些想法留下了阴影,而且使iPS致瘤的机制更加扑朔迷离。

  • 【分享】细胞冻存和细胞复苏的方法步骤

    目前,细胞冻存最常用的技术是液氮冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。细胞在不加任何保护剂的情况下直接冷冻,细胞内外的水分会很快形成冰晶,从而引起一系列不良反应。如细胞脱水使局部电解质浓度增高,pH值改变,部分蛋白质由于上述原因而变性,引起细胞内部空间结构紊乱,溶酶体膜由此遭到损伤而释放出溶酶体酶,使细胞内结构成分造成破坏,线粒体肿胀,功能丢失,并造成能量代谢障碍。胞膜上的类脂蛋白复合体也易破坏引起细胞膜通透性的改变,使细胞内容物丢失。如果细胞内冰晶形成较多,随冷冻温度的降低,冰晶体积膨胀造成细胞核DNA空间构型发生不可逆的损伤,而致细胞死亡。因此,细胞冷冻技术的关键是尽可能地减少细胞内水分,减少细胞内冰晶的形成。采用甘油或二甲基亚砜作保护剂,这两种物质分子量小,溶解度大,易穿透细胞,可以使冰点下降,提高细胞膜对水的通透性,且对细胞无明显毒性。慢速冷冻方法又可使细胞内的水分渗出细胞外,减少胞内形成冰结晶的机会,从而减少冰晶对细胞的损伤。二、细胞冻存操作步骤:(1)选择处于对数生长期的细胞,在冻存前一天最好换液。将多个培养瓶中的细胞培养液去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养液。用吸管吸取培养液反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬液。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清液,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×106~1×107/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记好细胞名称和冻存日期,同时作好登记(日期、细胞种类及代次、冻存支数)。(4)将装好细胞的安瓿或冻存管装入沙布袋内;置于液氮容器颈口处存放过夜,次日转入液氮中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时(此步可省略),再吊入液氮容器颈气态部分存放2小时,最后沉入液氮中。细胞冻存在液氮中可以长期保存,但为妥善起见,冻存半年后,最好取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。

  • 比较不同细胞冻存方案:厂家差异及其对细胞质量的影响

    细胞冻存是长期保存、运输和共享生物材料的重要手段,对于各种生物医学研究领域具有重要的作用。然而,不同的细胞冻存方法可能会影响细胞的质量和存活率。本文将探讨不同厂家提供的细胞冻存方法,并分析它们对细胞质量的影响。  厂家差异及其对细胞质量的影响  目前,市面上有许多细胞冻存试剂盒供应商,其中一些主要的厂家包括Thermo Fisher Scientific、Sigma-Aldrich、Qiagen和Promega等。这些厂家提供的细胞冻存试剂盒都有其独特的优点和缺点。  以细胞存活率为例,Thermo Fisher Scientific公司提供的CryoStor冻存剂的细胞存活率达到了98.5%,而Sigma-Aldrich公司提供的CryoSure-DMSO冻存剂的细胞存活率仅为85%。这表明,不同厂家提供的细胞冻存试剂盒对细胞存活率的影响存在差异。  此外,不同的冻存方法也可能影响细胞的质量。例如,在使用Thermo Fisher Scientific公司的CryoStor 冻存剂时,冷冻速率、先冷冻后复温的步骤和使用的液氮均对细胞的冻存质量产生影响。另外,Sigma-Aldrich公司的CryoSure-DMSO冻存剂需要在冷冻过程中将细胞悬浮于冻存剂中,并使用20%的DMSO作为保护剂,以确保细胞质量。  因此,选择细胞冻存试剂盒时,需要注意不同厂家提供的细胞冻存试剂盒的差异,以及冷冻的方法是否适合特定类型的细胞。 关注:[url=http://www.yedanguan365.com/]液氮罐[/url] [url=http://www.mvecryoge.com/]金凤液氮罐[/url] [url=http://www.mvecryo.com/]mve液氮罐[/url]

  • 单细胞“纳米生物间谍”技术能进入活细胞取样

    原标题 “纳米生物间谍”技术能进入活细胞取样 可用于深入揭示线粒体基因组变异的重要性 科技日报讯 据物理学家组织网近日报道,美国加利福尼亚大学圣克鲁兹分校(UCSC)研究人员开发出一种机器人式的“纳米生物间谍”系统,能从单个活细胞内提取出微量样本,进行RNA或DNA测序,而不会杀死细胞。研究人员表示,这种单细胞“纳米生物间谍”技术是一种了解活细胞内部动态过程的有力工具。相关论文发表在最近出版的美国化学协会《纳米》杂志上。 “我们能从活细胞中拿走一个‘生物间谍’,再把它送回该细胞,在几天内这样重复多次而不会杀死细胞。如果用其他技术,你不得不牺牲这个细胞才能分析它。”该生物传感与生物电技术小组负责人、UCSC巴斯金工程学院生物分子工程教授内德·波曼德说。 “纳米生物间谍”平台是研究小组用纳米吸液管开发的最新设备。纳米吸液管是一种小玻璃管,取液端越来越细,至尖端直径仅50到100纳米。波曼德说:“我能在实验室造出纳米吸液管,这不需要昂贵的纳米制造设备。但要进入一个细胞,问题是即使在高倍显微镜下,你也看不见吸液管尖端,不知道它偏离了细胞有多远。” 实验室博士后研究员亚当·赛格尔解决了这一问题。他基于在一台改造过的扫描离子电导显微镜(SICM),开发出一种反馈控制系统。该系统能利用通过纳米吸液管尖端的离子流作为反馈信号,在尖端接近细胞表面时探测其中的液滴。在尖端进入细胞之前,一种自动控制系统能定位它在细胞上面的位置,然后尖端很快插入穿透细胞膜,通过操控电压有控制地提取一小点细胞内物质。由于吸液管尖端极精细,对细胞造成的损害极微小。 研究小组用这种系统从活细胞中提取的微量细胞物质,估计只有50毫微微升(千万亿分之一升),约一个人体细胞百分之一的量。他们从单个人体癌细胞中提取物质并进行RNA测序,还从人类成纤维细胞中提取了线粒体并对其进行了DNA测序。“人们已经知道,线粒体和多种神经退化疾病有关。该技术可用于深入揭示线粒体基因组变异的重要性。”波曼德说。 该技术应用前景广阔。波曼德希望能与其他研究人员合作,探索其更多用途。“对于癌症生物学家、干细胞生物学家等想要了解细胞内部情况的科学家来说,这是一种多功能的平台。”(常丽君)来源:中国科技网-科技日报 2014年01月20日

  • 流式细胞仪检测细胞增殖方法有哪些?

    [font=宋体][font=宋体]在生物学和医学研究中,细胞增殖是一个关键过程,对于理解生命活动的基本规律以及疾病的发病机理具有重要意义。随着科技的发展,流式细胞仪作为一种高效、灵敏的分析工具,广泛应用于细胞增殖的检测。流式细胞仪通过快速分析单个细胞,可以对细胞周期、细胞增殖活性、细胞凋亡等多个方面进行研究。本文将探讨流式细胞仪在检测细胞增殖方面的主要方法,包括但不限于溴脱氧尿苷([/font][font=Calibri]BrdU[/font][font=宋体])掺入法、细胞周期蛋白检测法以及细胞大小分析法等,以期为读者提供全面的技术应用概览。流式细胞仪检测细胞增殖方法:[/font][/font][b][font=宋体][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]3H[/font][font=宋体](氚离子)掺入法[/font][/font][/b][font=宋体][font=宋体]原理:是在细胞[/font][font=Calibri]DNA[/font][font=宋体]合成时,用[/font][font=Calibri]3H[/font][font=宋体]脱氧胸腺嘧啶核苷代替普通的脱氧胸腺嘧啶核苷掺入新合成的[/font][font=Calibri]DNA[/font][font=宋体]中,增殖的细胞因为掺入[/font][font=Calibri]3H[/font][font=宋体]而具有放射性,通过定量检测样品细胞的放射性大小而反映细胞的增值活性[/font][/font][font=宋体][font=宋体]缺点:[/font][font=Calibri]1[/font][font=宋体])使用的是具有放射性的同位素,操作较为复杂,同时需要采取放射性保护措施 [/font][font=Calibri]2[/font][font=宋体])低比例高活跃增殖和高比例低活跃增殖可能得到的是相同的结果,用此方法无法进行鉴别 [/font][font=Calibri]3[/font][font=宋体])此方法无法进一步得到具有活性的增值细胞用于下一步的研究 [/font][font=Calibri]4[/font][font=宋体]) 此方法时间较短,无法检测加入前细胞的增殖情况,而且检测到放射性只能说明细胞[/font][font=Calibri]DNA[/font][font=宋体]合成,而不能提供合成[/font][font=Calibri]DNA[/font][font=宋体]的细胞是否进入增殖阶段的信息[/font][/font][b][font=宋体][font=Calibri]2[/font][font=宋体]、相对计数法[/font][/font][/b][font=宋体]原理:将对照组和各实验组控制在相同条件下直接计数然后比较计数结果得到增殖结论[/font][font=宋体]注意点:[/font][font=宋体][font=宋体]对照组与实验组每种细胞所加浓度必须相同,每组至少设置[/font][font=Calibri]3[/font][font=宋体]个复孔,这样每个孔可以得到[/font][font=Calibri]1[/font][font=宋体]个细胞数,将[/font][font=Calibri]3[/font][font=宋体]个复孔取平均值后就是这个组的结果。如果同时需要得到每孔目标细胞增殖后的绝对参数,在每孔细胞中加入[/font][font=Calibri]1*105PE[/font][font=宋体]标记的人工微球作为内参[/font][/font][font=宋体] [/font][font=宋体][font=宋体]收集各组的细胞于[/font][font=Calibri]EP[/font][font=宋体]管中,注意必须尽量将各组的所有细胞都收集起来。标记需要计数细胞的标志表型的荧光素偶联抗体,[/font][font=Calibri]4[/font][font=宋体]℃静置[/font][font=Calibri]30min[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]PBS[/font][font=宋体]洗涤一次,洗去游离的抗体[/font][/font][b][font=宋体][font=Calibri]3[/font][font=宋体]、示踪染料标记法[/font][/font][/b][font=宋体][font=宋体]示踪染料与细胞结合的方式:[/font][font=Calibri]1[/font][font=宋体])能够与细胞内的蛋白质上的氨基发生非特异性的共价结合 [/font][font=Calibri]2[/font][font=宋体])能够非特异性地嵌入细胞膜的脂质双分子层中与细胞发生非共价性结合[/font][/font][font=宋体] [/font][font=宋体][font=宋体]原理:示踪染料的荧光信号都很强,当细胞分裂时,母细胞内的染料会被平均分配到子细胞中,细胞荧光信号会被减弱一半,所以通过检测减弱的、发射示踪染料荧光信号的细胞比例就可以判断细胞增殖的强弱。当荧光强度减弱到标记时的[/font][font=Calibri]1/2[/font][font=宋体]以及以下的细胞都是增殖后的细胞,这些细胞所占比例越高则代表细胞增殖越活跃[/font][/font][font=宋体] [/font][font=宋体]标记方法:[/font][font=宋体][font=宋体]①纯化增殖反应的目标细胞,将细胞的浓度调整为[/font][font=Calibri]1*106/ml[/font][font=宋体],加入[/font][font=Calibri]CFSE[/font][font=宋体],其标记浓度为[/font][font=Calibri]5[/font][font=宋体]微摩尔[/font][font=Calibri]/[/font][font=宋体]升。置于[/font][font=Calibri]37[/font][font=宋体]℃水浴中标记[/font][font=Calibri]15min[/font][font=宋体],在标记过程中每隔一段时间混匀细胞一次[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②加入预冷、含有血清的培养基终止标记,在[/font][font=Calibri]4[/font][font=宋体]℃冰箱中静置[/font][font=Calibri]5min[/font][font=宋体],离心沉淀[/font][/font][font=宋体] [/font][font=宋体][font=宋体]③用培养基再洗涤一次,尽量洗净未结合的游离的[/font][font=Calibri]CFSE[/font][font=宋体],然后将目标细胞静置在增殖体系中[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]4[/font][font=宋体]、[/font][font=Calibri]BrdU[/font][font=宋体]和[/font][font=Calibri]EdU[/font][font=宋体]掺入法[/font][/font][/b][font=宋体][font=Calibri]BrdU[/font][font=宋体]:[/font][font=Calibri]5-[/font][font=宋体]溴脱氧尿嘧啶核苷是胸腺嘧啶核苷的类似物,其特点是胸腺嘧啶环上[/font][font=Calibri]5[/font][font=宋体]位[/font][font=Calibri]C[/font][font=宋体]连接的甲基被溴取代,在细胞增殖[/font][font=Calibri]DNA[/font][font=宋体]合成时可以与内源性的胸腺嘧啶核苷竞争掺入到新合成的[/font][font=Calibri]DNA[/font][font=宋体]中,而[/font][font=Calibri]BrdU[/font][font=宋体]抗体可以特异性的识别[/font][font=Calibri]BrdU[/font][font=宋体],不与胸腺嘧啶核苷结合,所以可以用于检测细胞增殖[/font][/font][font=宋体][font=宋体]适用范围:适用于体内检测目标细胞的增殖,一般将[/font][font=Calibri]BrdU[/font][font=宋体]掺入小鼠的应用水中或经腹腔注射,经过一段时间后,取出目标细胞制成单细胞悬液然后用多聚甲醛固定细胞,后用打孔剂皂苷在细胞膜上打孔,最后标记荧光素偶联抗[/font][font=Calibri]BrdU[/font][font=宋体]抗体,目标细胞的[/font][font=Calibri]BrdU[/font][font=宋体]阳性细胞就是增殖的细胞,阳性比例越高,增殖越活跃。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]5[/font][font=宋体]、其他方法[/font][/font][/b][font=宋体][font=宋体]细胞周期法检测细胞增殖:流式细胞术能够检测细胞内[/font][font=Calibri]DNA[/font][font=宋体]的含量,所以可以检测细胞周期。处于[/font][font=Calibri]S[/font][font=宋体]期的细胞,[/font][font=Calibri]DNA[/font][font=宋体]的量处于二倍体和四倍体之间[/font][font=Calibri] [/font][font=宋体]处于[/font][font=Calibri]G2/M[/font][font=宋体]期时,[/font][font=Calibri]DNA[/font][font=宋体]量为四倍体。处于[/font][font=Calibri]S[/font][font=宋体]期和[/font][font=Calibri]G2/M[/font][font=宋体]期的细胞比例越高说明细胞增殖越活跃[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]PCNA[/font][font=宋体]检测细胞增殖:[/font][font=Calibri]PCNA[/font][font=宋体](增殖细胞核抗原),在细胞核合成且只存在于细胞核内,是[/font][font=Calibri]DNA[/font][font=宋体]聚合酶的辅助蛋白,所以与细胞[/font][font=Calibri]DNA[/font][font=宋体]的合成关系密切,是反映细胞增殖状态的良好指标[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Ki-67[/font][font=宋体]检测细胞增殖:是一种与细胞增殖特异相关的核抗原[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CD71[/font][font=宋体]检测细胞增殖:是转铁蛋白受体,表达于细胞的表面,该受体广泛表达于各种恶性肿瘤细胞表面,正常细胞表达较少,与肿瘤细胞的增殖密切相关[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],更多关于流式细胞仪检测细胞增殖详情欢迎咨询,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 牛奶体细胞数,你真的知道吗?

    [b]牛奶体细胞概念的提出[/b]乳汁中细胞计数或者说是白细胞计数在奶牛乳房炎监测中已运用的大概有百多年的历史。体细胞这一概念是在 1910 年由 Prescott 和 Breed首先提出,当时他们建议用“Body cells”,因为当时认为奶中细胞是从上皮细胞脱落下来的。直到1960 年左右,“Somatic cells”已逐渐被人们所普遍接受。[b]牛奶体细胞的组成[/b] 现今我们通常所说的牛奶体细胞主要指白细胞,包括巨噬细胞、淋巴细胞以及多形核白细胞(PMN)。乳中细胞类型研究表明,腺泡上皮细胞,无论是在干奶期还是泌乳期,在乳中很少,仅占细胞总数的7%以下。所以说泌乳期乳中细胞数的增加不是由于上皮细胞的脱落造成的。巨噬细胞是正常乳中的主要细胞,占细胞总数的 30%~70%。[b]牛奶体细胞出现的原因牛奶体细胞[/b]主要是白细胞对乳腺有重要的作用,它对病原微生物的入侵起监视和杀灭作用。巨噬细胞及PMN具有吞噬功能,可以杀死入侵病原微生物,乳中淋巴细胞包括T淋巴细胞和B淋巴细胞,它们在对入侵微生物的特异性免疫中起很重要的作用,病原微生物一旦通过乳头管进入乳腺并在其中增殖,就会引起一系列的炎性反应。此时乳中的细胞就同病原微生物相互斗争,并且产生一系列的炎性因子,而这些炎性因子将导致一系列的病理变化,这些炎性因子包括补体,前列腺素,白三烯、组胺、5-HT(5-羟色胺)、白介素,TNF(肿瘤坏死因子)、白细胞杀菌素以及一些其他细胞因子,典型的症状包括血管通透性增加,血管扩张,血流量增加,水肿,中性粒细胞转移,以及乳腺合成能力降低,并伴有疼痛,发热。在炎症初期乳腺最主要的防御机制就是 PMN 的迁入,正常情况下,PMN 可自由通过毛细血管,而不黏附或很少黏附在血管壁上,一旦出现炎症,黏附分子被大量表达,从而使得 PMN 黏附、迁移并通过细胞间隙而进入乳腺。乳中白细胞和被损伤的组织释放一些因子能吸引 PMN 大量涌入乳中,在炎症初期乳中细胞 90%以上的是 PMN,有报导表明大量要进入乳腺的 PMN 在腺泡外聚集,甚至在某些腺泡受损较严重的地方,PMN 可通过上皮间隙而进入腺泡,因此 PMN 在感染区的大量迁移是造成[b]牛奶体细胞[/b]SCC 大量上升的主要原因,因而有人认为,PMN 迁入的速率是消除感染乃至决定病情的关键因素。 另外,据报道 PMN 也可在乳头导管、乳头池、乳腺池等处透过基底膜而进入乳汁。因此,这些地方被认为是炎症初期机体作出反应并允许 PMN 通过的地方,乳腺以此来抵御微生物的入侵,值得注意的是,在慢性炎症反应过程中,单核细胞也可透入。因此,SCC 增加也是白细胞迁入造成的。乳中 PMN执行吞噬入侵微生物的功能,但是它也可以吞噬诸如脂滴、酪蛋白这样一些物质,而这些物质被吞入后 PMN 吞噬微生物的功能将降低。即便如此,PMN 仍是乳腺中起关键作用的因素,当然它也可以释放一些物质以增加血管通透性和吸引更多的白细胞到炎性部位。在一些顽固性感染病例中,虽然 PMN 数量会有所波动,但总体上是处在一个高水平上,而且即便是将感染的病原微生物清除后,它仍会维持在高水平上直至乳腺修复。还有报道说:微生物被清除后 PMN 在高水平上仍要维持几天、几周甚至更长一点时间。[b]影响牛奶体细胞的因素[/b]据报道,[b]牛奶体细胞[/b]变化受到很多因素的影响,如年龄、乳期、昼夜、挤奶过程,感染等。近年来报道渐趋于一致即认为,感染是引起变化的最主要因素。[color=inherit]1 )微生物感染的影响[/color] 有研究表明,[b][color=#d92142]体细胞[/color][color=#d92142]S[/color][color=#d92142]CC的主要影响因素就是微生物感染,这不论是在乳区水平、个体还是桶奶水平上都是如此。[/color][/b]有人对感染后的奶牛同其 BTSCC(桶奶 SCC)联系加以分析后认为,BTSCC 之所以发生变化,感染是主要影响因素。感染乳腺的微生物被划分为二大类,即重要微生物及次要微生物,重要微生物一旦感染将使SCC大幅增加,这类微生物包括金黄色葡萄球菌,无乳链球菌及其他一些链球菌,大肠杆菌等;次要微生物包括牛棒状杆菌以及凝固酶阴性的一些葡萄球菌,它们感染后,通常使得感染乳区化正常乳区的 SCC 高出 2~3 倍。现今,许多研究表明,仅用SCC一项来作为衡量乳区感染与否是不可信的,因为常出现假阳性和假阴性的情况。造成这种误差的部分原因可能是感染期间 SCC 的正常波动所致;这种变化在人为用各种病原微生物感染乳腺的实验中得到证实。即在感染的早期阶段数量急剧上升,可以在几小时或几天内达到峰值,(这与感染微生物种类有关)随后由于中性粒细胞的吞噬而适度下降。而 SCC变化范围依感染微生物及转归结果以及牛个体差别而变化很大。有研究表明被感染乳区 SCC 是呈波动态势,在慢性感染乳区,微生物数量及SCC二者均随时间而上下波动,同时未感染乳区SCC也在变化,但始终处在 200,000/mL 以下。另外主要微生物感染后,SCC的变动幅度也由于牛个体不同而不同,所以仅凭 SCC 一项来判别乳区感染与否及微生物种类并不十分可靠。[color=inherit]2 )年龄、乳期对SCC的影响[/color] 研究者普遍认为,牛奶体细胞SCC 随胎次增加及乳期向后延伸而增加,但 Harmon研究却不同,他将牛群中分成感染牛与未感染牛,结果显示:在未感染牛群中,牛奶体细胞 变化都很小,无论是年龄还是泌乳期影响都很小, Sheldrak等人也证实无论是胎次数目增加,还是不同乳期阶段,它对未感染牛群的 SCC影响都很小,有研究显示,在同一乳期中,从分娩35天到205天截止,SCC数目从35天的83,000/mL 逐渐升到285天的160,000/mL,但是相同的时间内金黄色葡萄球感染的乳区中,SCC的数量却从234,000/mL升至1,000,000/mL。当然,在娩后所有乳区SCC均有增加,但那些未感染的乳区和感染了次要微生物的乳区是SCC分娩后35天均很快的下降。Harmon研究也表明,[b][color=#d92142]在微生物未感染的牛群中,SCC受胎次、泌乳乳期的影响不大。[/color][/b][color=inherit]3 )应激对SCC的影响[/color]Wells等报道,各种应激因素都能引起SCC上升。但据 Paape 等人报道,无论将牛只放入可以控制环境条件中的隔离室内,还是给牛注射 ACTH 或者是皮质醇类激素,未感染的牛只其SCC只有很小改变或者说是没有改变。Elvinger调查表明,经受热应激的牛只SCC有大量的上升,他们通过将牛圈在可以控温的房间内或予其他的热刺激,未感染牛与感染金黄色葡萄球的牛的SCC分别是145,000/mL和105,000/mL,分析认为造成这种差异的部分原因可能是由于热应激造成的产奶量下将所致,因热应激造成产奶量下降10%~20%也是很常见的。将牛单独圈起这种应激会不会造成SCC上升,LefcourtA M研究表明这一应激虽可使牛的行为有所变化,但对SCC影响甚微。在法国科学家们进行了一项非常有趣的试验,他们将牛组成二组,一组圈起来,另一组在每天早晨挤奶后走上9.6 km,结果显示:走路的一组中受感染的牛其SCC达185,000/mL,而未感染的牛SCC为47,000/mL,这二者SCC都多于另一组牛的SCC。同时显示运动不仅会使奶牛奶量下降,而且使饲料的摄入量也减少,研究者将已感染和由于剧烈运动损伤乳房而造成感染的牛联系起来分析,认为SCC变动与感染的关系很大,表明[color=#d92142][b]各种各样的应激对受微生物感染牛的SCC影响较未感染牛的大。[/b][/color][color=inherit]4 )季节的影响[/color]据报道,[color=#d92142][b]夏季 SCC 较冬季高,这与夏季临床型乳房炎多是发是吻合的[/b][/color]。研究表明,夏季乳腺对环境中病原微生物易感与牛群中存在大量的大肠杆菌是相一致的。同时也表明了热应激不仅可增加乳腺的易感性而且使得环境中病原微生物的数量也大大增加,热应激本身不能单独使SCC上升,但SCC上升却是由于夏季乳头长时间处于有大量病原微生物的环境中而造成感染和引起临床症状的结果。[color=inherit]5 )其他因素[/color]奶中SCC有一个正常的变化(如昼夜变化),正常挤奶时间所收集的奶与两次挤奶间隔期间收集的奶SCC也有所不同,一般规律是,末期乳中SCC最多,而挤奶前奶中SCC最低,对同一乳区来说,它们相差多达4~7倍,而且挤奶后,高水平的SCC可持续 4 个小时左右后才开始下降。Brolund 报道饲料改变也影响SCC,他认为个体间差别对 SCC 影响有较大的作用,但后来研究表明,这与感染相比影响很小。[color=#d92142][b]牛奶体细胞作为牛群乳腺的健康与否的一个指标,其优势是显而易见的 ,以月为基准测定牛群SCC可以很好地监控奶汁的质量和乳腺的健康程度。但值得强调的是,传染性病原微生物感染后牛奶SCC数量变化比较明显,而条件性病原微生物感染后,由于其感染恢复快,它们感染后,尤其是在管理良好的牛场即便是转归为临床型乳房炎,它们SCC也能维持在300,000/mL以下,在这样一种情况下,SCC 就不能直观地反映出乳腺的健康状况。[/b][/color]也由于这些病原感染后,高水平的SCC维持时间短,而且它们感染率也很低,无论什么时候均小于10%乳区,但以全年经济收入来说,由条件性病原微生物造成临床型乳房炎引起损失还是比较大的。SCC主要影响因素是微生物感染,而其他一些因素只要不影响到乳腺的健康,它的影响就不是很大,而SCC的上升,是乳腺防御微生物入侵而采取的相应措施,应激等可使已感染到乳腺SCC上升,而对于未感染的乳区来说除了昼夜变化对 SCC 有影响外,其他因素影响都非常小。

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • 最新测序技术能用单个细胞分析基因组

    最近,来自美国加利福尼亚大学圣地亚哥分校、克雷格·文特尔研究院和Illumina公司的科学家对现代基因测序算法进行了改良,只需从一个细菌细胞中提取的DNA(脱氧核糖核酸)就可组装成接近完整的基因组,准确率达到90%,而传统的测序方法至少需要10亿个相同的细胞才能完成。这一突破为那些无法培养的细菌提供了测序方法。研究发表在9月18日的《自然·生物技术》网络版上。  实验室无法培养的细菌范围极广,约占99.9%,从产生抗体和生物燃料的微生物,到人体内的寄生菌。它们的生存条件特殊,比如必须和其他菌种共生,或只能生存在动物皮肤上,因此很难进行人工培养。  论文合著者、文特尔研究院的罗杰·拉斯肯教授10年前曾开发出一种多重置换扩增(MDA)技术,可对实验室无法培养的细菌测序,能恢复70%的基因。其工作原理是对一个细胞的基因片断多次复制,直到其数量相当于10亿个细胞那么多。不过,这种技术却给测序软件带来很多麻烦,它在复制DNA时会出现各种错误,而且并非完全统一放大,有些基因组被复制数千次,有一些却只被复制一两次。但测序算法不能处理这些不一致,而是倾向于舍弃那些只复制了少数次的基因,即使它们对整个基因组来说很关键。  加州大学圣地亚哥分校雅各布工程学院计算机科学教授、现代基因测序技术算法创建人帕维尔·帕夫纳和同事改进了这一方法,保留了那些少量复制的基因片断,并用新方法对一个大肠杆菌测序以检验其精确性,发现它能恢复91%的基因,接近传统的培养细胞水平。这已足够解答许多重要的生物学问题,比如该细菌能产生什么抗体。  人体细菌占体重的约10%,它们有些会造成传染病,但也有的能帮助消化,最近研究还发现,它们能改变人的行为方式,比如引诱人吃更多的东西。新方法也有助于科学家理解细菌行为,研究人体内细菌能产生哪种蛋白质和多肽,这些蛋白质和多肽是细菌之间、细菌和宿主之间互相沟通的工具。  研究小组还用新方法对一种以前未曾测序过的海洋细菌进行了测序,获得了相当完整而且能解释的基因组,掌握了它是如何生存和运动的,该基因组将被存入美国国家卫生研究院的基因银行(GenBank)。研究人员表示还将对更多迄今未知的细菌进行测序。

  • 【讨论】关于细胞的知识,细胞主要是原理是什么

    各位好友们,我遇到了一个关于“细胞知识”的难题,想请教一下各位同仁们!! 老板交给我一下任务,是关于细胞知识的,细胞是一个比较难懂的知识哦!我现在对细胞的知识还不太了解,想与大家一起讨论一下关于细胞的知识, 怎样从核酸里面取出DNA与RNA呢?使用什么方法呢?

  • 【转帖】第四种淋巴细胞—NKT细胞

    第四种淋巴细胞—NKT细胞 通常认为,构成机体免疫系统的淋巴细胞有三种细胞系组成,一是由胸腺产生的T细胞,二是由骨髓分化而来的产生抗体的B细胞,三是自然杀伤(NK)细胞。而新近发现存在第四种淋巴细胞—NKT细胞。1. NKT细胞的发现1986年,克隆成功了NKT细胞的特征性抗原受体基因。将其命名为Va14基因,与其他T细胞抗原受体的(TCR)基因不同,有其独特的结构特征。1987年美国国立卫生研究所的Fawlkes与瑞士的Budd分别领导的两个研究小组报告指出,胸腺细胞中的T细胞通常不能表达受体,仅有部分未成熟T细胞选择表达V-β8.2受体。随后的研究证明这种细胞不是T细胞,考虑是NK细胞的受体,这种细胞集团的数量极少,生理意义不明。1994年,这两个研究小组的研究人员发现,他们报道的细胞为同一细胞,从此NKT细胞的研究引起人们的广泛关注。T细胞识别的抗原是蛋白质,而NKT细胞是别的抗原是α-Gal-Cer即所谓的糖脂质,这是该免疫系统与通常的免疫系统重要的不同点。NKT细胞的分化与T细胞不同的是在胸腺形成前的胎生初期6.5日在胸腺外组织分化。NKT细胞与T细胞比较,机能处于不发达状态。T细胞分化为功能不同的Th1和Th2细胞群,Th1细胞产生INFγ及IL-2,引起迟发行过敏症等细胞性炎症。Th2细胞能产生IL-4和IL-10,参与变态反应及抗体产生等体液免疫反应。而NKT细胞不但能分泌Th1和Th2细胞因子,同时还具有与CD8+伤害性T细胞(cytotox-ic Tlymphocyte,CTL)相同的杀伤靶细胞作用。毫无疑问,NKT细胞在免疫调节系统中占有重要位置。NKT细胞与疾病可能有诸多关系,可能与自身免疫性疾病的发病机制、变态反应的调节、抗肿瘤作用、及抑制寄生虫感染等有关。2. NKT细胞的多样性分化NKT细胞具有T细胞和NK细胞细胞两重性质,既能表达Va14/Ja281特定的T细胞受体又能由CD1介导识别脂质抗原。NKT细胞的分化是否依赖胸腺尚有争议。根据其表达TCR等多种表面抗原的不同,提示NKT细胞存在两个以上细胞群。从CD4/8的表达看,可将其分为(1)CD4-NKT细胞,(2)CD8-NKT细胞,(3)CD4和CD8均不能表达的DN-NKT细胞。第一类的全部和第二类的半数是Va14/Ja281-T细胞。3.人类NKT细胞人末梢血中的DN-NKT细胞V区域,可高度表达Va24/JaQ(这与鼠的Va14/Ja281高度相似)及Vβ11(与鼠Vβ18高度相似)。这种TCR的组合表达可见于DN-NKT细胞和CD4+细胞。而未见于CD8+细胞。小鼠的CD1相当于人的CD1d的Va24/JaQ。此外,人末梢血中1~2%的T细胞能表达抑制性受体,即抑制型NK细胞受体(KIR),而Va24/JaQ+细胞则不能表达。它的NK相关分子是CD16、CD56或CD57,Va24/JaQ+细胞异不能表达这些分子。在小鼠中还可以看到Va24/Ja281+T细胞以外的NKT细胞。人类Va24/JaQ+细胞与KIR+T细胞能形成不同的亚群。且具有不同的功能。4. NKT细胞分化的胸腺依赖性这是目前存在争议的问题,可以肯定地说NKT细胞分化过程中胸腺是有作用的。NKT细胞多见于胸腺及脾脏以外的肝脏和骨髓种,胸腺缺损的小鼠与正常小鼠比较,NKT的分化并不少。将出生三日小鼠的胸腺摘除,虽然NKT细胞的分化显著受到抑制,但此时CD8+NKT细胞的分化未受到影响。由此认为CD8+NKT细胞在胸腺外分化的可能。5. NKT细胞产生细胞因子的意义 NKT细胞是指能够表达NKT细胞标志NKT1.1的T细胞,其机能具有T细胞和NKT细胞双重特征。NKT细胞在TCR和NKR介导下,产生大量的IL-4及INFγ,对肿瘤细胞有细胞伤害作用。 NKT细胞能表达T细胞的TCR与NK细胞的NKR-P1两种受体,特别是NKT细胞多数表达Va14TCR,识别CD1抗原,而NKR-P1识别各种糖链。 NKT细胞,特别是CD4-NKT细胞,对TCR刺激可产生大量IL-4及IFNγ,同时具有ThO型细胞因子产生能力。NKT细胞不但产生IL-4的主要细胞,而且强力产生IFNγ。IFNγ参与自身Th1诱导,具有极强的Th1诱导能力,从而是IL-2产生亢进。它同时还具有Th2细胞分化抑制功能。IL-12能诱导NKT细胞产生IFNγ。IL-12对TCR的刺激是IFNγ的产生显著亢进。综上所述,NKT细胞不但是IL-4和IFNγ的强力产生细胞,同时参与Th1/Th2分化的抑制,而这些作用都不是单纯的。 虽然NKT细胞能大量产生细胞因子,但仅在机体内保持这种功能。当初一度认为,NKT细胞只是IL-4的产生细胞,而不是Th2分化的必需细胞。并不认为在CD1缺损的小鼠中NKT细胞的分化和对TCR刺激使IL-4产生减少,且对Th2分化必需的IL-4及IgE的产生没有多大影响。但给小鼠投于α-GalCer可使NKT细胞活化,IL-4的产生诱导Th2的应答。有报告指出,同样投于α-GalCer,可使NKT细胞产生IFNγ而致IgE产生低下。由此可见,NKT细胞能产生IL-4与IFNγ两种功能相反的细胞因子。这种微妙的协调作用可能是NKT机能表达的重要特征。NKT细胞的活化通常伴有T细胞、B细胞及NK细胞的活化,这对NKT细胞活化后的免疫应答有较大影响。

  • 【分享】细胞生长受什么因素影响?影响细胞生长的因素

    细胞在体外进行培养,失去了机体的调节和控制。因此,除满足营养的要求外,还必须使细胞生存环境尽量接近活体的环境。外环境的培养条件如温度、渗透压、酸碱度等均能影响细胞的生长。 一、温度 一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长,但速度减缓;放在40℃数小时后,再置回37℃培养细胞仍能继续生长。但如果在40℃下暴露时间太长,对细胞生长不利,甚至变圆脱落于瓶壁。若温度过低,在降到冰点以下时,细胞因胞外水和胞质结冰而受损死亡。但若向培养液中加入甘油或二甲亚砜等保护剂,封入安瓿中后,置于液氮中,可起保护作用,此时细胞可耐受-70℃以下温度,能长期储存,解冻后细胞复苏,仍能继续生长增殖,细胞生物性状不受任何影响。此为保存细胞的主要手段。 高温对细胞培养不利。细胞在39~40℃培养1小时,能受到一定损伤,但仍有可能恢复,但不能忍受温度再升高2℃,持续数小时,即在41~42℃中培养1小时,细胞损伤严重,温度至43℃以上时细胞多数被杀死。高温主要引起酶的灭活、类脂质破坏,核分裂的破坏,产生凝固酶使细胞发生凝固,另外使蛋白质变性。因此,体外培养细胞时一定要避免高温。 二、渗透压 细胞在高渗溶液或低渗溶液中,可以立即发生皱缩或肿胀、破裂。所以,渗透压是体外培养细胞的重要条件之一。哺乳动物和其他动物组织细胞体外培养的渗透压的维持主要与NaCl有关,但不能忽视其他电介质渗透压的关系。渗透压与单位体积溶媒内溶质的分子数和离子数成正比。为此,按一定比例控制培养液中离子平衡,维持正常渗透压是很重要的。这不仅是为了维持细胞张力,而且是为了调节细胞的代谢。因为细胞外离子输送和离子浓度改变着其他营养物质的输送(如氨基酸、蔗糖等),直接影响细胞基本合成系统。 理想的渗透压因细胞的类型及种族而异,人血浆渗透压为290mmol/L,被视为是体外培养人类细胞的理想渗透压。哺乳类动物细胞的渗透压一般为290~300mmol/L。人胚肺成纤维细胞为250~325mmol/L,鼠则为310mmol/L左右。在实际应用中,260~320mmol/L的渗透压可适于大多数细胞。

  • 利用血细胞计数板进行细胞计数: 像数1,2,3那样简单

    许多关于细胞利用的一些生物学应用,如微生物学、细胞培养、血液检查等要求我们在实验中确定细胞的浓度。细胞计数非常简单,需要有一个计数板,称为血细胞计数板,或血细胞计数器。19世纪法国解剖学家Louis-Charles Malassez发明了这种血细胞计数板。血细胞计数板是由一片较厚的特制玻片构成,中间有一个垂直线网格。网格的尺寸是给定的,因此每条线覆盖的区域是已知的,这样就可以对一定体积内的溶液中的细胞数量进行计数,为后期的血细胞检测奠定基础。最为常见的血细胞计数板类型的中部有一个“H”形结构,上面有两个像镜子一样抛光的网格表面,并可在上面加上外罩。加载血细胞计数板开始进行计数之前,用擦镜纸拭去灰尘颗粒,确保血细胞计数板及其盖玻片处于洁净状态。安装在血细胞计数板上的盖玻片是特制的,明显厚于传统的显微镜盖玻片,这是因为它必须能够克服液滴的表面张力。确保在加载细胞悬液之前,先将盖玻片放置在计数表面,然后将吸液头和样本放进其中的一个V型孔中,并小心地挤出样本。利用毛细管作用充填盖玻片下部的区域。必须放入足够的液体以便覆盖整个镜片的表面,通常需要大约10ul,但不要溢出表面。您可以在一台血细胞计数板中加载两个样本,每个样本进入两个网格。将加载完的血细胞计数板放置在显微镜台上,然后将计数格在低倍镜焦距中显示。将样本静置几分钟,不要移动盖玻片,以免产生气泡导致计数困难。在血细胞计数板上进行血细胞计数一个血细胞计数板的整个网格包括9个方格,每个方格的面积为1mm2。血细胞计数板的中心区域有25个较大的方格,每个大的方格中又包含16个小方格。当进行计数时,仅对那些位于大方格两侧的各行中的细胞进行计数,以避免重复计数。悬液必须稀释到足够的程度,这样,细胞或其它颗粒才能均匀分布,不会再网格中相互重叠。为了判断细胞的活性,通常采用一种特殊的染色剂(如用台盼蓝稀释样本)。这种染色方法,又称为染色

  • 细胞决定人类健康:智能超声波细胞破碎仪

    细胞,生活中无处不在,我们身体里有细胞:脑细胞,造血细胞……路边的小草也有细胞,就连我们看不到的细菌都是细胞构成的。细胞与生活息息相关,所以说细胞决定人类健康。  [b][url=http://www.xo-yq.net/]智能超声波细胞破碎仪[/url][/b],一款将电能通过转换器变成声能,然后这种能量通过液体介质而变成一个个小气泡,这些小气泡会在短时间内迅速炸裂,产生能量,从而起到破碎细胞的作用。  生病是人之常情,免不了吃药。药品是怎么来的呢?  首先通过观察细菌,通过分析细菌的组成,然后讲细胞提取出小部分,导入化合物,最后确定候选物,漫长的过程肯定需要[b]智能超声波细胞破碎仪[/b]啊。  南京先欧科技,专业制造[b]智能超声波细胞破碎仪[/b],[b]超声波细胞粉碎机、裂解仪[/b]……[img=智能超声波细胞破碎仪,50,50]http://www.xo-yq.net/img/%E6%99%BA%E8%83%BD%E8%B6%85%E5%A3%B0%E6%B3%A2%E7%BB%86%E8%83%9E%E7%A0%B4%E7%A2%8E%E4%BB%AA.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制