当前位置: 仪器信息网 > 行业主题 > >

纤维性能

仪器信息网纤维性能专题为您整合纤维性能相关的最新文章,在纤维性能专题,您不仅可以免费浏览纤维性能的资讯, 同时您还可以浏览纤维性能的相关资料、解决方案,参与社区纤维性能话题讨论。

纤维性能相关的资讯

  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。  高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。  经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • 长纤维高性能锂离子电池研究取得重要突破
    纤维锂离子电池为智能织物等各种可穿戴电子产品提供能源供给。批量生产柔性、安全和可清洗的纤维电池线轴,是推动便携式和可穿戴电子产品发展的关键。目前,主流研究方向是制造直径为数十至数百微米的纤维锂离子电池,然而迄今为止,研制的纤维电池只有几厘米长,且整个电池能量密度低,大规模生产长纤维高性能锂离子电池仍然是一个挑战。近期,科技部高技术研究发展中心(基础研究管理中心)受托管理的国家重点研发计划“纳米科技”重点专项“新型纤维状储能器件的重大科学技术问题”项目取得重要研究进展。复旦大学科研团队经过协同攻关,将钴酸锂正极和隔膜包裹的纤维负极扭在一起制造出不同长度的纤维锂离子电池,并发现电池的内阻随着长度的增加而减小。研究团队将纤维锂离子电池编织成大面积纺织品,将其集成到日常服装中,破坏性实验证明,经各种方式折叠或被汽车碾压后,该电池未发生燃烧或爆炸,即使经机器清洗或被刀片刺穿后,仍可继续为平板电脑充电,呈现出良好的安全性能。此外,将该纤维锂离子电池纺织品制成保健夹克,用于个人实时健康管理,对接受康复体育锻炼的囊性纤维化患者、骨髓瘤或肝硬化患者的早期诊断具有一定效果。该研究成果有望实现高性能纤维锂离子电池的大规模生产,为下一代智能纺织品、生物医学和商业可穿戴设备开辟一条全新的路径。相关研究成果于2021年9月发表在Nature上。
  • 快速棉纤维性能测试仪通过国家级科技成果鉴定
    7月2日,陕西长岭纺织机电科技有限公司研制的XJ128快速棉纤维性能测试仪通过由国家质量监督检验检疫总局组织并主持的国家级科技成果鉴定。  以中国科学院院士梅自强、姚穆为组长,中国棉花协会高级工程师杨照良、中国棉纺织行业协会副会长朱北娜、农业部棉花品质检验局研究员唐淑容等11人组成的专家组一致认为,XJ128快速棉纤维性能测试仪是集光、机、电、气、计算机及网络技术为一体的高技术、多功能仪器。该仪器自动化程度高,可靠性好,总体技术达到国际同类产品水平,可替代进口,建议尽快推广使用。  XJ128快速棉纤维性能测试仪的研制成功,受到有关方面的高度重视。中国纺织工业协会副会长、中国棉纺行业协会会长徐文英,国家质量监督检验检疫总局科技司司长武津生以及国家发改委经贸司有关领导应邀出席鉴定会。参加鉴定会的还有纺织界有关专家和领导及相关单位的专业人员。  据陕西长岭电器有限责任公司董事长、党委书记张宝会介绍,去年,在省市领导的关怀和支持下,长岭集团进行了重组整合,为长岭纺电的发展提供了更为宽松的环境。长岭纺电积极调整产品结构,由单纯的“电”向“机电”转移,不断拓宽产品线,以争取更大的市场空间。  武津生在讲话中指出,国产快速棉纤维性能测试仪首次研制成功具有重要意义,并高度评价了长岭纺电多年来对我国纺织工业发展作出的积极贡献。  徐文英在产品通过鉴定后表示,这一科技成果通过国家级鉴定,对我国纺织行业来讲是件好事。同时,他希望长岭纺电吸取专家建议,不断提高产品性能,尽快将该成果在全国推广并替代进口。  根据我国棉花质量检验体制改革对公证检验仪器提出的新要求,长岭纺电应用现代电子技术、光电技术、气流控制技术成功研发出XJ128测试仪。XJ128测试仪的主要创新点是:强度测量时断裂纤维量与长度关联,保证了强度测试指标的正确性和一致性 气动控制棉样梳理装置,运动平稳,可靠性高 色泽测试的光电源恒流控制,保证了色泽测试指标的稳定性 可调节的负压系统,废棉随气流一起旋转,保证了测试时气流稳定。与会专家认为,该仪器的研制成功填补了国内空白,对促进我国棉花质量检验体制改革、提高棉检行业和纺织企业检测装备水平具有重要意义。
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • SENTERRA II — 拉曼显微镜性能提升至新高度
    在2016慕尼黑上海分析生化展(Analytica 2016)上,布鲁克推出紧凑型科研级拉曼显微镜SENTERRA II,用于取代布鲁克上一款成功产品SENTERRA。SENTERRA II同时也定义了紧凑型拉曼显微镜在性能和用户友好性方面的新水准。鉴于其高灵敏度和灵活性,SENTERRA II非常适合先进的拉曼显微应用。紧凑的尺寸和易用的界面也使SENTERRA II成为工业实验室中快速、可靠、有效的工具。SENTERRA II的谱仪完全重新设计,与之前的版本相比,可以实现更高的光谱分辨率和更高的性能。对于大多数应用来说,现在覆盖整个光谱范围的单次扫描可记录光谱,同时光谱分辨率达到4 cm-1。对于像硅应力或药品多态性等特定的应用来说,测量分辨率分辨率可高达1.5 cm-1。 SENTERRA II 能够利用成熟的SURE_CAL 技术实现固定波长校准。SENTERRA II 的核心创新在于全新的强大共焦拉曼成像和映射。SENTERRA II 拉曼成像的数据采集可利用不同的采集模式分别实现高光谱记录率和高横向分辨率。SENTERRA II 是一款易用共焦多激光器拉曼显微镜。所有相关部件,包括激光器、光栅、过滤器和光圈,均实现自动化,能够通过软件自动设置参数。SENTERRA II独特的向导式图形用户界面(GUI)十分直观,能够引导操作员轻松完成数据采集和评估过程。SENTERRA II 准备用于管制药品实验室。它根据《美国药典》和《欧洲药典》提供全自动操作验证和性能验证(OQ/PQ)测试程序。SENTERRA II 通过经验证的OPUS 软件进行操作,旨在完全符合GLP、GMP和21CFRp11规范。拉曼显微镜主要用于识别有机和无机材料,即使是在复杂的构成中。SENTERRA II 的主要市场包括聚合物材料、制药材料和纳米材料等材料科学,细胞生物学和组织生物学等生命科学,以及法医学、美术学和地质学等经典领域。SENTERRA II 通过增加十分强大的拉曼成像显微镜,使布鲁克的微分子光谱学产品组合更完整。该产品组合还包括LUMOS和HYPERION FTIR 显微镜。关于布鲁克公司 布鲁克公司(NASDAQ: BRKR)是面向分子和材料研究以及工业与应用分析的高性能科学仪器和解决方案的领先供应商。了解更多信息,请访问 www.bruker.com。更多关于SENTERRA II 的信息,请访问: www.bruker.com/senterra
  • 中国高性能纤维要做到“领跑”就必须主动创新——访东华大学材料科学与工程学院院长朱美芳教授
    p  span style="font-family: 楷体,楷体_GB2312,SimKai "2017年7月,“中国材料大会2017暨银川国际材料周”在宁夏国际会堂隆重召开。大会盛况空前,参会人员近5500人。作为大会组织委员会主任之一及“先进纤维与纳米复合材料”分会场的分会主席,朱美芳教授在大会报告及分会场均作了发言致辞。会议期间,仪器信息网编辑有幸就大会概况与朱美芳教授进行了简单交流,受益良多,在时间有限的情况下,会后以电话及邮件形式,请朱美芳教授就本次大会、先进纤维与纳米复合材料领域最新的发展动态、该领域涉及的分析仪器及表征手段、即将牵头成立纤维材料二级学会等进行了详细介绍与解读。/span/pp style="text-align: center"img style="width: 300px height: 423px " src="http://img1.17img.cn/17img/images/201708/insimg/dbaf8a26-f3e7-435d-8ff0-fb7e77ae815d.jpg" title="" height="423" hspace="0" border="0" vspace="0" width="300"//pp style="text-align: center "span style="font-family: 楷体,楷体_GB2312,SimKai "/spanspan style="font-family: 宋体,SimSun "strong东华大学材料科学与工程学院院长朱美芳教授/strong/span/pp  span style="color: rgb(255, 0, 0) "strong首次落地西北,带动地方经济;大众参与办会,激发青年学者责任感/strong/span/pp  以“新材料,新技术,新发展”为主题的“中国材料大会2017暨银川国际材料周”(以下简称大会)在银川宁夏国际会堂盛大开幕。本次大会由中国材料研究学会主办,宁夏旅游投资集团有限公司承办。大会得到了中国科协、中国科学技术部、中国科学院、中国工程院、国家自然科学基金委员会,宁夏回族自治区科协、经信委、科技厅等部门的大力支持。大会盛况空前,是中国材料研究学会组织的历年来规模最大的一届会议。会议在线注册人数5100余人,实际参会人数近5500人,共收到4000余篇论文摘要。/pp  大会落地银川市,是大会首次在我国西北地区举办,为地方经济发展注入活力和新的增长动力,对推广宁夏新材料、新技术、新工艺等“宁夏制造”具有重大意义。/pp  中国材料研究学会本着开放包容的办会理念,吸引和鼓励国内外优秀的材料科技工作者参与办会,通过办会,培养出了一大批具有社会责任感、长期活跃于国内外高端学术交流的中青年学者,激发了青年学生的创造力和对材料研究的热忱与责任感。本届大会从材料前沿交流到产业对接互动,都是一次内容丰硕,时间紧凑,富有成效的大会!/pp  “中国材料大会2017”设置有37个分会、1个材料教育专业论坛和2个国际分论坛:“2017中日韩纳米功能材料研讨会”和“一带一路材料论坛”。大会主题主要涵盖了能源材料、环境材料、先进结构材料、功能材料、材料基础研究等材料领域。共呈现2200余场口头报告,其中930人为邀请报告。/pp  span style="color: rgb(255, 0, 0) "strong纤维是老百姓未来“智能生活”的保障,中国高性能纤维要 “领跑”就必须主动创新/strong/span/pp  提到纤维,人们首先想到的肯定是衣服、纺织品等。实际上,纤维是当今人类不可或缺的最重要的材料之一。从航天器、导弹、飞机、高铁、汽车等高精尖装备,到衣服、帽子、袜子、手套等日常生活物品无一离得开纤维。“strong全世界70%的纤维由中国产出,而全国70%的纤维由长三角地区产出。纤维是国家经济发展的基础材料,是老百姓未来‘智能生活’的保障/strong。”东华大学材料科学与工程学院院长朱美芳如是说。/pp  strong东华大学材料科学与工程学院源于1954年我国著名纤维科学家和教育家钱宝钧、方柏容先生创建的新中国第一个“化学纤维”专业/strong,历经化学纤维研究室、研究所及化学纤维系的建立和发展,于1994年成立,可谓为国内材料学院中的“老字号”。拥有我国首批博士学位授予点(1981年)、首批国家重点学科(1986年)、首个纤维材料领域国家重点实验室(1992年)。/pp  学院依托纤维材料改性国家重点实验室等13个国家和省部级基地,坚持产学研用结合,在国防军工急需的三大高性能纤维材料,关乎民生的功能共聚酯、纳米复合功能纤维、大容量聚酯熔体直纺等通用纤维领域取得了系列标志性成果 在民用航空及汽车轻量化复合材料和光、电、热等能量转换功能材料领域已形成新的增长点。研究成果和专利转化效益惠及年产值达万亿的纤维材料行业,材料学科获得国家技术发明奖和国家科技进步奖16项、省部级科技奖项170余项,为我国跃升世界纤维生产第一大国并向世界强国迈进做出重大贡献。/pp  中国的纤维产业从无到有、从小到大,现在到了从大到强的转变阶段。在功能性纤维方面,源于70%的产量和广阔的市场潜力,中国的实力比较强,质和量上处于“并跑”和“领跑”地位 在生物质纤维方面,与国外处于“齐头并进”初步发展阶段,而strong在高性能纤维方面,中国还处于“跟跑”和“并跑”阶段,将来要做到“领跑”就必须主动创新。/strong高性能纤维的研发能力如何,直接关系到国与国之间的竞争实力。从上世纪80年代起至今,strong东华一代又一代的材料人围绕国家对高性能纤维与复合材料的迫切需求,海、陆、空全面出击,持续系统展开科研攻关/strong。功能性纤维方面,“行业急需依托大容量工程基础,促进常规产品优质化,提升产品附加值,实现通用纤维高品质多重功能化。”朱美芳认为。/pp  目前,纤维新材料目前已远远超出传统化学纤维的范畴,纤维成分应由单一向复合、简单向多重构筑发展,纤维功能研究应由被动适应向主动创新设计直至智能化方向发展,同时加强基础研究,为产品研发注入原动力,支持原创关键技术开发,加大多学科的交叉与融合。因此我们分会的名称为“先进纤维与纳米复合材料”,这也在参加分会的老师所作报告中得到了体现,如复旦大学彭慧胜教授在可发电储电供电的新能源纤维上取得了一系列进展,我们预计从事这个领域研究的科研工作者还会继续快速增加,从而带动传统纤维行业转型升级同时其中也孕育着无穷的创新创业机会。/pp  strongspan style="color: rgb(255, 0, 0) "科研是不断攀登高峰的过程,仪器设备则是认识者和认识对象之间的纽带/span/strong/pp  先进纤维与纳米复合材料领域是纤维材料改性国家重点实验室的研究内容之一,实验室建有仪器设备公共平台,拥有大精测试仪器48台(套)、工程试验线17条,实现24小时预约开放。为相关科学研究提供支撑,比如扫描电子显微镜、X-射线衍射仪、透射电镜、原子力显微镜、激光拉曼光谱仪、激光光散射仪、红外光谱仪等对纤维与复合材料微观结构的表征设备,以及热重分析仪、动态热机械分析仪、差示扫描量热仪、毛细管流变仪、电子万能材料试验机、单丝纱线强伸度仪等测试设备,另外,还开发了纤维声速仪、结晶动力学、小型湿法纺丝机、微型共混仪、微型注塑仪等自制设备。/pp  科学研究是一个不断攀登高峰的过程,为了提高先进纤维与纳米复合材料的研究水平,需进一步加强低维材料和先进纤维开发、复合材料表界面、微观结构与性能分析表征等多方面的仪器设备建设,完善纤维生物材料表征及微纳器件制备超净平台建设等。一些新型仪器设备也逐渐成为未来需求,如:基质辅助激光解析电离飞行时间串联质谱联用仪、多功能光热诱导纳米红外显微镜系统、高温旋转流变仪、纳米压痕仪、超景深三维显微镜、微流变仪、3D生物材料打印机、介电常数测试仪以及模块化功能型纺丝设备系统等。/pp  仪器设备,是为了实现科学认识目的而制造和使用的工具,它作为认识者和认识对象之间的纽带,在科学研究中是不可缺少的重要条件。仪器设备和科学研究两者相辅相成、密不可分,科学研究如果不依靠仪器设备提供的大量的客观材料,即使研究方法正确,也出不了好的成果,而仪器设备是观察现象的一种手段,只有在正确科学研究方向的指导下,才能对材料进行全面、客观、准确的认识,从而找出过程的本质和规律,对获得的结果做出正确的评价。/pp  strongspan style="color: rgb(255, 0, 0) "成立纤维材料二级学会,为纤维材料工作者提供学术交流的平台/span/strong/pp  材料是科技的先导,纤维材料领域的科技革新正推动纤维产业的颠覆性发展,催生新一代纤维。具有绿色、智能、多功能及超高性能、超高性价比、超高附加值的纤维材料将引领未来发展方向 纤维材料应用领域超越传统纤维,成为先进制造业、智能与功能消费品、医疗与健康、环保与防护、现代建筑业与农业、新能源等领域的关键基础和核心材料,成为国家供给侧结构性改革的重要突破口。材料作为现代文明的三大支柱之一,发达国家竞相在新一代纤维产业发展上布局谋篇,美国革命性纤维发展注重以智能纤维研发与生产为核心,并在纤维材料应用领域拓展与军转民等方面进行全面部署 欧盟着力于纤维产品高质化、专业化、可持续发展及技术创新机制 日本注重以高性能纤维材料为核心的整个产业链的研发。我国的传统纤维产量虽然占世界第一,但在高技术纤维、新一代纤维方面的研发相对滞后,导致部分纤维及高技术领域的相关零部件被发达国家垄断,极大地减缓了我国在未来纤维材料领域的发展动力,限制了我国科技和经济的持续高速发展。在“十三五”期间,纤维新材料的发展趋势是通过纤维学科与生物、电子、纳米技术等相关学科的交叉和渗透,研制与信息技术、生命科学、环保技术、新能源相关,且低碳、环保的新纤维、新技术,以满足服装、家用、产业用等各领域的需求。这种发展趋势主要体现在以下几个方向:纤维性能向高性能化、智能化发展,纤维品种向生态化、高功能化及结构功能一体化方向发展,纤维技术向高速、高效、短流程、全自动、规模化、清洁化方向发展,纤维成分由单一向复合、简单向多重构筑方向发展,纤维尺度向纳米化发展,功能智能与产业用纤维由被动适应向主动创新设计方向发展,成纤聚合物合成和成形技术向生物、仿生技术等方向发展,纤维原料向绿色化方向发展。/pp  纤维材料的发展为信息、能源、生物医用等高新技术提供关键性新材料,对我国整体技术水平的提高和整体实力的增强有着不可替代的作用。实现我国纤维材料产业向“大纤维”新材料的转型升级,将对我国能源、资源、环境、生态和国民经济相关领域的发展和科技进步产生重要影响,对国民经济的产业结构调整和升级,对国家的经济和国防安全以及我国人们生活质量的改善都具有重要的战略意义。纤维材料分会的成立将有助于提升我国在“大纤维”材料领域的基础研究与应用研究水平,有助于推动我国相关行业的快速发展。/pp  中国材料研究学会是致力于推进材料科学与工程领域的研发与产业化的国家一级学会,纤维材料是新材料的一种,也是充满活力的基础研究和产业应用方向,纤维材料的发展也为其它材料的发展和应用提供了强有力的支撑。当今正是纤维材料发展的高潮阶段,成立纤维材料二级学会不仅能为广大纤维材料工作者建立联系纽带,提供学术交流的平台,促进我国纤维材料的发展 而且能契合国家“十三五”在新材料、新能源、新型光电多个领域的重点支持。目前纤维材料分会成立的前期准备工作已经就绪,已经将相关材料报送至中国材料研究学会,等待学会根据章程及相关程序审批。/pp span style="color: rgb(255, 0, 0) "strong 第八届ICAFPM十月上海召开,“中日韩女科学家论坛”成亮点/strong/span/pp  先进纤维与聚合物材料国际会议(ICAFPM)由东华大学纤维材料改性国家重点实验室发起举办,旨在探讨与先进纤维和聚合物材料相关的各个领域的最新研究和进展,开拓纤维和聚合物研究领域前沿。自2002年举办第一届以来,已成功举办七届。/pp  第八届先进纤维与聚合物材料国际会议定于2017年10月8-10日在东华大学松江校区举办,会议由纤维材料改性国家重点实验室、纤维材料先进制造技术与科学创新引智基地、东华大学先进低维材料中心、东华大学材料科学与工程学院联合主办并承办,中国自然科学基金委、中国材料研究学会纤维材料分会(筹)、中国材料研究学会高分子材料与工程分会、中国女科技工作者协会、聚烯烃催化技术与高性能材料国家重点实验室协办。本次会议的主题是:下一代纤维:改变我们的生活(Next generation fibers:Changing our life)。并将围绕“新一代纤维”这一主题及相关子议题开展多项学术交流活动,其中包含学术会议、学术论文宣讲和墙展活动。此次分会主题包括A. 高性能纤维与复合材料、B. 纤维与纺织品中的化学与物理、C. 纳米技术在纤维和聚合物中的应用、D. 智能纤维、智能纺织品与可穿戴智能设备、E. 环保纤维与聚合物、F. 医用纤维与聚合物、G. 能源用纤维与聚合物、H. 天然纤维与仿生聚合物、I. 低维材料、J. 多功能与多组分纤维、K. 第八届中日韩女科学家论坛暨国际材料科技女性研讨会 。预计会议将有200余位来自美国、日本、德国、英国、法国、瑞士、印度、澳大利亚、瑞典、新加坡、葡萄牙等世界各国的知名学者参会,包括4名美国工程院院士、1名英国皇家工程院院士、1名欧洲科学与艺术学院院士、1名美国国家发明家科学院院士,以及亚洲聚合物协会主席、欧洲高分子联合会前任主席、日本纤维学会会长等。/pp  中日韩女科学家论坛于2008年由韩国女科技团体联合会发起,中国女科技工作者协会、日本女工程师和科学家国际网络组织以及韩国女科技团体联合会共同签署了关于三国轮值举办该论坛的备忘录。论坛至今已举办了七届,每届由中日韩三方分别轮流主办。围绕科技女性的发展状况、女性在科技领域的领导力、如何平衡女性事业与家庭关系以及各国政府在重视和积极开发女性科技人力资源的政策举措等方面进行广泛交流,相互借鉴经验 同时也进一步加强了中日韩三国女科技工作者间的创新与合作。/pp  在中国科协常委会女科技工作者专门委员会的支持下,第八届中日韩女科学家论坛暨国际材料科技女性研讨会作为2017年第八届ICAFPM第11个分会,将于10月7日召开。此次论坛由中国女科技工作者协会主办,东华大学纤维材料改性国家重点实验室、东华大学先进低维材料中心和东华大学材料科学与工程学院承办,主题为“科学中的女性:合作与创新”(Women in science: cooperation and innovation)。论坛分领导力、示范力、创新力三个分会,报告人有中日韩三方等知名女科学家和有关人员。届时,也将邀请出席2017年第八届ICAFPM其它分会有关代表到会参与讨论交流。/pp style="text-align: right "strong采访编辑/strongstrong:/strong杨厉哲br//pp strong 附:朱美芳简历/strong/pp  朱美芳,女,1965年生,博士、教授、博士生导师,教育部长江学者特聘教授。现任东华大学材料科学与工程学院院长,纤维材料改性国家重点实验室主任,纤维材料先进制造技术与科学创新引智基地主任。是国家杰出青年科学基金、首届全国创新争先奖、中国青年科技奖、中国青年女科学家奖、国家级有突出贡献中青年专家、新世纪“百千万人才工程”国家级人选获得者。作为团队带头人入选教育部创新团队、科技部创新人才推进计划重点领域创新团队。主要研究方向包括:聚合物纤维及纳米复合功能材料、有机/无机纳米杂化材料的应用基础和关键技术研究。近年主持及完成国家自然科学基金重点项目、国家重点研发计划等项目30余项。在Advanced Materials、Chemical Communication、Macromolecules等国内外著名期刊发表论文260余篇,编写专著6部(章) 授权国家发明专利100余件,成果在多家企业得到推广应用。以第一完成人曾获国家科技进步二等奖、上海市科技进步一等奖等10余项科技奖励。现(曾)任教育部高等学校材料科学与工程教学指导委员会委员、高分子材料与工程专业教学指导分委员会副主任委员,科技部十五“863”高技术计划新材料领域纳米材料专项总体组专家成员,中国材料研究学会副理事长,中国纺织工程学会化纤专业委员会副主任委员,上海新材料协会副会长,中国化学会高分子学科委员会委员 Progress in Natural Science: Materials International、Journal of Fiber Bioengineering and informatics、《高分子学报》、《纺织学报》、《合成纤维》等期刊编委。组织国际国内会议20余次,100余次作国际国内会议大会报告、邀请报告或担任会议主席。/p
  • CSTM发布《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准
    近日,中国材料与试验团体标准委员会(CSTM标准委员会)批准发布T/CSTM 00653—2022《纤维增强聚合物基复合材料 超低温力学性能试验方法》团体标准,并将于2022年8月27日起正式实施。该团体标准规定了纤维增强聚合物基复合材料超低温力学性能试验的试验原理、试验设备、试样、试验步骤、试验结果和试验报告;适用于连续纤维增强聚合物基复合材料在-183 ℃~-269 ℃超低温下进行拉伸、面内压缩、弯曲和剪切等力学性能试验,超出上述温度范围及树脂浇铸体和塑料的超低温力学性能试验可参照使用。该标准起草人:渠成兵、肖红梅、黄传军、刘玉、付绍云、刘德博、张健、左小彪、史汉桥、李元庆、矫维成、杨帆、蔡浩鹏、张红菊、陈超。起草单位:中国科学院理化技术研究所、北京玻璃钢研究设计院有限公司、北京宇航系统工程研究所、航天材料及工艺研究所、重庆大学、哈尔滨工业大学、武汉理工大学、国标(北京)检验认证有限公司、山东省标准化研究院。标准文本:标准下载链接:https://www.instrument.com.cn/download/shtml/1091668.shtml
  • 205.9万!宁夏大学材料性能表征实验室显微镜等设备采购项目
    采购计划编号: 2022NCZ000614项目编号: YQ-NCZ-2022011项目名称: 宁夏大学材料性能表征实验室建设设备采购项目预算金额(元): 2059000.00最高限价(如有): 2059000.00元采购需求:采购标段标的名称数量简要规格描述或项目基本概况预算金额(元)备注宁夏大学材料性能表征实验室建设设备采购项目其他仪器仪表1显微镜、激光共聚焦显微镜、高温差热-热重测试仪、阻温测试系统等设备2059000.00数量合计:1预算合计:2059000.00合同履行期限:合同签订后60日内。本项目(是/否)接受联合体投标: 是 否
  • 直播| 原子力显微镜和纳米压痕在材料表面微观性能方面的应用
    纳米压痕仪您可以使用安东帕的多功能压痕仪精确得到薄膜、涂层或基体的机械特性,例如硬度和弹性模量。仪器可以测试几乎所有材料,无论是软的、硬的、易碎的还是可延展的材料。也可以在纳米尺度上对材料的蠕变、疲劳和应力 - 应变进行研究。载荷范围大:从纳米到宏观尺度安东帕的纳米压痕仪的载荷范围大,因此几乎提供市面上最多的功能且适用性最强的解决方案。这些专用的压痕测试仪涵盖纳米、微米和宏观尺度,可用于研究无数种材料,包括金属、陶瓷、半导体和聚合物等。纳米压痕测量纳米压痕测量让您能获得材料的机械性能,如硬度、弹性模量或蠕变。在压痕测试过程中,会持续记录载荷和位移,并在仪器的实时提供载荷和位移曲线。直接得到硬度和弹性模量与传统的微米硬度测试仪相反,安东帕压痕仪不仅能够得到样品的硬度,也能够基于高精度的仪器化压入测试 (IIT) 技术得到样品的弹性模量。独特的表面参比技术真正使安东帕压痕仪远远优于其他同类仪器的设计特性是其独特的表面参比系统。我们的仪器设计结合了涵盖整个压痕仪的顶表面参比技术,对大量的压痕测试提供一致的参比。高框架刚度得益于安东帕独特的表面参比技术,纳米压痕仪的将框架距离减至最小,提供极高的框架刚度,从而直接结果就是非常高的测量精度。原子力显微镜:Tosca 系列安东帕Tosca 系列以独特的方式将先进技术与高时效操作相结合,使这款 AFM 成为非常适合科学家和工业用户等群体的纳米技术分析工具。有两种不同的型号可供选择:Tosca 400 或 Tosca 200,前者适合大样品,属于高端 AFM,后者适合中型样品以及预算有限的用户。两者提供的性能、灵活性和质量水平相同。采用模块化理念,为未来的发展做好准备现在你获得的这款仪器已经可以满足未来的需求。其设计为为不远的将来能够扩展多种功能和可能性。可以在当前系统中添加新功能和模式。设计稳固,适用于工业应用安东帕 AFM 的设计专注于工业应用。仪器的机械和电子元件已经通过耐久性测试进行了全面检查。所有关键部件都必须通过这些测试,以确保能够在运行现场多年无故障运行。 紧凑型仪器,体积小巧仪器的两大部分——主机和控制器——在实验室空间和功能方面都做了优化。安东帕的 AFM 集先进的自动化与高精度于一体,同时只需要很少的空间。例如,压电陶瓷 驱动器仍留有充足空间用于安装其他模式或模块的电子扩展卡。 切尽在掌控安东帕 AFM 简化了与仪器的交互,操作非常简单。您只需将样品放在样品台上,安装悬臂梁,然后关闭仓门即可。其余的活动(比如样品定位、接触过程等等)均由软件来执行和控制。 数秒中内即可更换悬臂梁压电陶瓷驱动器 设计精巧,您可以使用我们的悬臂梁更换工具,非常轻松、快速地更换悬臂梁。只需将压电陶瓷驱动器放入工具中,然后向内或向外滑动悬臂梁。无需用镊子将悬臂梁放入压电陶瓷驱动器中,并且能保证悬臂处于最佳放置。
  • 【喜讯】奥谱天成ATR8200型自动聚焦高性能显微拉曼光谱仪中标中国科学院
    【喜讯】2018年元旦过后,奥谱天成收到喜讯,ATR8200型自动聚焦高性能显微拉曼光谱仪,在中国科学院泉州装备制造研究所成功中标。中国科学院海西研究院泉州装备制造研究所是经中国科学院和福建省人民政府批准,由中国科学院海西研究院和泉州市人民政府共同建设的科研机构。研究所首期建设用地100亩,包括晋江市三创园内40亩、泉州台商投资区百崎湖片区60亩,首期建设面积6万平方米,并在泉州台商投资区预留100亩发展用地,全所建成后人员规模为 800人,并根据发展需要可以进一步扩充。装备所立足福建省装备制造的优势和泉州现有装备制造产业基础,以装备制造研发应用为导向,以“突出重点、形成特色、支撑产业、资源整合、院企结合”为原则,以装备制造企业和制造业体系转型升级为主要服务对象,充分发挥中国科学院集聚科技创新资源、拓展技术市场的品牌优势,整合国家、省科研机构、在闽高校及当地政府的科技资源,打造装备制造企业技术开发、交流与协作的中心和国家级装备制造业的高端创新平台、研发基地与产业化示范基地,为促进福建省装备制造产业及其产业链的健康快速发展提供科技支撑。战略定位装备所建设按照“地方党委政府满意、合作企业满意、老百姓满意和科技界同行认同”的总体要求,加强所地互动和所企结合,借鉴国内外先进科研机构的成功经验,建设职责明晰、评价科学、开放有序、管理规范的现代研究所。充分发挥中国科学院集聚科技创新资源和科技成果的综合优势,突出重点、形成特色、整合资源、服务产业,以更灵活的人才使用模式、更集约的科研组织模式、更开放的组织架构平台,打造国内一流的装备制造高端创新平台,以及装备制造企业技术开发、交流与协作的中心,成为闽南地区乃至海西地区科技人才聚集“洼地”和科技创新“高地”。发展目标贯彻落实党的十八大精神,按照习总书记“四个率先”的要求,以中科院“一三五”发展战略和“创新2020”发展规划为指引,突出创新引领、两化融合和智慧制造,以绿色制造、智能装备及机械基础件、高端工业设计、基础制造工艺、通信及精密电子元器件为主线,从科学前沿、战略高技术、工程产业化的创新链条进行学科布局,着力建设一批科技创新平台,建立一批技术与工程示范基地,推动实施一批综合技术示范与应用项目,形成一批具有国内外先进水平的重大科技成果。ATR8000系列 型自动聚焦高性能显微拉曼光谱仪
  • 基于NV色心的超分辨量子磁学显微镜和高性能NV探针再度升级,让磁学成像更精准!
    磁性材料的显微观测有助于材料的微观结构及其形成机理的研究。随着科学技术的发展,磁性材料研究的尺度已经趋向于亚微米级甚至纳米级。因此,超高分辨率和超高灵敏度的测试非常有助于这类尺寸材料的研究。 源于苏黎世联邦理工学院自旋物理实验室的Qzabre公司,结合多年的NV色心磁测量技术与扫描成像技术研发出了基于NV色心的超分辨量子磁学显微镜QSM和NV色心探针。该技术能够实现高灵敏度和高分辨率的磁学成像,并且可以实现定量的磁学分析,所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。超高分辨率、超高灵敏度的量子磁学显微镜! Qzabre公司自主研发的基于NV色心的超分辨量子磁学显微镜QSM集高性能、友好性、灵活性于一身,使其成为研究纳米尺度磁现象的理想工具,在表面的高分辨率和定量磁性分析方面提供了非常可靠的性能。QSM显微镜采用经过验证的低漂移设计,具有高精度闭环扫描、大范围测量、高效率光学测量、直观的用户界面和简单的针尖更换等优势。基于NV色心的超分辨量子磁学显微镜外观图(左)和内部构造图(右) 相比于传统的显微观测设备如克尔显微镜(分辨率~300 nm),磁力显微镜MFM(分辨率~50 nm ),该设备除了拥有优于30 nm的磁学分辨率外,还可以进行样品表面磁场大小的定量测试,而且NV色心作为单自旋探针, 所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。典型应用更耐用、更灵敏、可定制化的NV色心探针! 传感器针尖是任何扫描氮空位 (NV) 系统的核心,也是决定设备性能的关键因素。Qzabre对传感器针尖进行不断改进,使其更具光亮、坚固和高性能。金刚石部分与音叉相连,可以为原子力显微镜的操作提供力反馈,整个组件安装在陶瓷芯片上,具有操作简便,性能优异,随时可用等特性。基于陶瓷基片的NV色心探针 在与 NV 轴对齐的磁偏置场下,每个扫描针尖都具有严格的特性。标准探头的灵敏度分为七个等级。也可以根据客户需要,定制各种不同类型的探针。不同灵敏度的NV色心探针(标准探针) 在 NV 实验中,磁杂散场的测量总是投射到 NV 轴上。该轴线取决于制作针尖的金刚石晶体取向。最常见的切割方法是,其 NV 方向与法线成 54.7°。 针对特定应用,我们还提供平面内和平面外取向的针尖。由于信号会随着离轴磁场的增加而减弱,因此这两种针尖非常适用于在较高磁偏压下的测量。平面外针尖也可用于消除方向。不同取向的NV色心探针 为了便于操作,Qzabre将金刚石针尖集成在一个即插即用的传感器芯片上。极小厚度的载体设计确保了传感器可以安装在垂直空间狭小的显微镜中,同时可以根据要求定制金刚石探针的倾斜度。陶瓷芯片载体上的尺寸和接触馈线与Akiyama探针的基底面兼容。整个传感器芯片可兼容真空和低温环境。另外可根据需要提供两种针尖与 PCB 方向的标准配置:向上和向下。向上(左)和向下(右)配置的NV色心探针成功交付于多家国际科研院所机构! Qzabre公司的基于NV色心的超高分辨量子磁学显微镜已在多家国际院校投入使用,目前在全球范围内已成功交付9套!以下为已成功验收安装的国际用户名单及部分用户验收图。左)在法国Jean Lamour研究所交付使用的带有定制化光路的QSM系统右)法国国家科学研究中心/Thales联合物理研究所kim教授与新安装的QSM系统
  • 新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关
    新品发布|设备更新政策好,惠然科技高性能场发射扫描电子显微镜F4000助力科技攻关近日,为加快构建新发展格局、推动高质量发展,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(以下简称《行动方案》)的通知,提出实施设备更新、消费品以旧换新、回收循环利用、标准提升四大行动,大力促进先进设备生产应用,推动先进产能比重持续提升等举措。《行动方案》指出,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。强化创新支撑,聚焦长期困扰传统产业转型升级的产业基础、重大技术装备“卡脖子”难题,积极开展重大技术装备科技攻关。完善“揭榜挂帅”、“赛马”和创新产品迭代等机制,强化制造业中试能力支撑,加快创新成果产业化应用。惠然科技长期专注于攻克国家第35项“卡脖子”工程“扫描电镜”的关键技术壁垒,坚持全正向自主研发,关注供应链国产化率,期望为中国科学仪器行业带来真正的国产高性能电子束检测设备,助力科学研究及工业领域科技攻关,成为领先的“纳米世界之眼”关键设备供应商。新品问世惠然科技FE-SEM整机“风”系列再添新品——高性能场发射扫描电子显微镜F4000。2023年,惠然科技FE-SEM整机“风”系列F6000顺利出机并取得较好客户反馈,其业界独创的WR-HybriCol磁电混合式电子束扫描偏转系统、WR-AdapCol 双物镜镜筒设计以及优化设计的“能量选择型”WR-ExBCol 双镜筒内探测器设计,得到技术专家认可的同时,其低电压成像,大视野无畸变成像,快速定位ROI以及多种探测器匹配的产品特点受到市场好评。为满足客户不同应用场景下的要求,以及客户对于高性能场发射扫描电镜的多样化需求,惠然科技即日发布FE-SEM整机“风”系列F4000,可实现较高分辨率的同时,实现磁性样品的直接观测以及强大的可拓展附件功能,同时在价格上更具市场优势。FE-SEM整机“风”系列 高性能场发射扫描电子显微镜F40005大技术优势自主研发电子光学系统分辨率 0.9nm@30kV; 1.4nm@15kV无漏磁镜筒设计,可直接观测磁性样品双物镜无漏磁设计,可直接观测磁性样品高速扫描成像技术单像素有效驻留时间20ns,将SEM跨越至视频级纳米摄像机时代三步成像,操作易上手WD(工作距离、放大倍数)、ABC(自动亮度、对比度调整)、AF/AS(自动对焦)附件拓展功能强可拓展功能:样品预抽交换仓;真空转移样品杆;拉曼-电镜联用系统;EDS能谱仪;EBSD背散射衍射仪;CL阴极荧光分析成像等。5大产品竞争力自主研发国产电镜,核心技术自主正向研发,分辨率性能达到通用型科研电镜领先水平软件可控软件系统自主开发,可支持Windows、Linux、麒麟系统,满足客户信息安全保密需求操作方便界面中文为主,支持英文,可选专家级页面模式和极简模式,适应不同类型用户应用习惯客户定制强大的研发团队,可根据用户需求和应用场景,定制化开发和升级软硬件系统售后服务先进的售后理念和完善的运维体系,最快的速度响应用户的需求,支持用户的应用惠然FE-SEM整机“风”系列产品 当前,惠然科技紧跟国家政策,以市场需求为导向,以客户为中心,为客户带来更多可选择、高性能的国产电子束检测产品。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p strong 各有关单位:/strong/pp  由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。/pp  拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。/pp  为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。/pp  同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。/pp  会议事项通知如下:/pp strong 一、时间和地点/strong/pp  会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议/pp  会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室/pp  地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内)/ppstrong  二、宣贯内容/strong/pp  1、拉曼光谱的基本原理与应用介绍 /pp  2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /pp  3、拉曼光谱仪的校准与溯源 /pp  4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。/pp strong 三、考核与发证/strong/pp  培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。/pp strong 四、培训费用/strong/pp  培训费:1500 元/人,包括讲义、标准复印件、培训证书。/pp  请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款/pp  信息如下:/pp  账户名:中国计量科学研究院/pp  开户行:交通银行北京分行和平里支行/pp  账号:110060224018010008693/pp  行号:301100000074/pp  电话:010-64524304/pp  银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填span style="TEXT-ALIGN: center"写参会回执(附件2)中的开票信息。/span/pp style="TEXT-ALIGN: center"img title="QQ截图20180906104247.jpg" style="HEIGHT: 701px WIDTH: 600px" border="0" alt="QQ截图20180906104247.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width="600" height="701"//ppstrong  附件:/stronga title="附件2. 宣贯会参会回执(1).docx" style="FONT-SIZE: 12px COLOR: rgb(0,102,204)" href="https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx"br/strong  /strong/astrong/stronga title="附件1. CSTM-FC00领域委员会简介(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf"strong附件1. CSTM-FC00领域委员会简介.pdfbr/  附件2. 宣贯会参会回执.docxbr/  /strong/astrong/stronga title="附件3. 酒店交通(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf"strong附件3. 酒店交通.pdf/strongbr//a/p
  • 球差校正技术助力材料微结构与性能关系解析
    2021年10月30日,科学服务领域的世界领导者赛默飞世尔科技与中国分析测试协会高校分析测试分会合作,首次冠名设立的“赛默飞高校分析测试优秀青年人才奖”在线揭晓获奖名单。作为微纳结构分析室负责人和重庆大学分析测试中心的助理研究员,张斌博士凭借优秀的技术成果荣获赛默飞高校分析测试优秀青年人才奖二等奖。对此,仪器信息网走进重庆大学分析测试中心并特别视频采访了张斌。电子显微镜发明于上世纪30年代,距今已90年,电子显微镜有两大特点:第一是超强的空间分辨能力,可以达到纳米甚至原子尺度;第二个是强大的分析能力,可以分析一些化学成分、电子结构等。张斌从研究生起便开始了电子显微学的研究,主要从事相变存储材料、热电材料等功能材料的微结构研究。在此基础上,为了解决一些问题,投身开发一些新的显微学分析方法。这一路走来,丰富的研究经历奠定了他今后在电子显微学的研究方向:电子显微学方法的开发和应用,以及材料微结构与性能关系的解析。当谈及这次的获奖技术成果“基于透射电子显微分析的材料微结构定性/定量研究”时,张斌谦虚地表示,“获奖核心技术不能说是太好的一些成果,就是有一点点小的进步而已。”其中,图像分析、数据处理分析的技术最早被用于相变存储材料微结构研究中空位分布的解析,其主要利用图像上点阵的位置和强度来描绘空位可能的占据以及定量化的动态演变过程。去年张斌团队将这套方法加以改进,首次应用在原子尺度的构型解析实践上,并取得突破。另一个核心技术成果经典案例就是制样,在做显微学分析时,观测100纳米及以上的Cu5FeS4颗粒存在尺度太大的问题,通过超薄切片和引入酸刻蚀腐蚀等方法,张斌团队将其内部结构解析得更加清楚。正是通过这种制样方法,张斌团队发现了二十面体、五次孪晶结构和独到的核壳结构等一系列丰富的结构信息,对热电材料的性能提升带来很大帮助。科研技术的发展离不开仪器技术的发展。张斌表示,这些成果的取得离不开球差校正技术的突破和发展,因为大部分实验图像来源于赛默飞的球差校正电镜,所有的图像分析都是基于球差校正获得的HAADF图像,正是有了这些清晰的照片和先进的技术,才能获得更多的实验结果。采访最后,张斌向我们展示了他的“收藏品”——上万片承载研究观察样品的小铜环。这里的每一片铜环都代表着一个人一次研究的样品,张斌从电镜装好的那一天就开始把这些铜环收集到玻璃皿中,近4年的积累,如今铜环数量已达上万片。关于重庆大学分析测试中心重庆大学分析测试中心,于2014年正式挂牌成立,是面向学校和社会开放的校级仪器共享机构和学科交叉融合平台。2018年3月通过国家级实验资质认定,具备为社会提供公正、科学、准确数据的条件和资格,成为可提供具有法律效力检验检测报告的第三方检测基地。中心遵从源于需求、重在统筹、共建共享、优化资源、科学管理、高效运行的建设原则,致力于为校内科研工作的顺利开展提供高水平测试服务,同时也为重庆市高校、企业及科研院所自主创新能力的提升提供服务与支持。
  • 解决卡脖子难题|国家重大仪器项目“苛刻使役条件性能与显微结构间关系原位研究系统”通过验收
    p style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "strong style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px "仪器信息网讯 /strong2019年5月26-27日,由浙江大学张泽院士负责的国家重大科研仪器研制项目(部门推荐)“针对若干国家战略需求材料使役条件下性能与显微结构间关系的原位研究系统”(项目批准号:11327901,以下简称“重大仪器项目”)结题验收会在浙江杭州召开。仪器信息网进行了全程报道。/pp style="text-align: center"img width="450" height="301" title="1.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="1.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/2e1c3a5e-17c8-4124-8820-8f4e429d7df8.jpg" border="0" vspace="0"//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "img title="" class="qi_image" style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px " alt="" src="http://qi.mofangyu.com/qi/core/static/ueditor/themes/default/images/spacer.gif"/span style="color: rgb(0, 176, 240) "验收会议会场/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "该重大仪器项目由浙江大学牵头,北京工业大学、中科院金属研究所、东南大学等4家单位共同承担。验收会由国家自然科学基金委员会(以下简称“自然科学基金委”)数学物理科学部常务副主任董国轩主持。自然科学基金委计划局、财务局、数学物理科学部相关人员,浙江大学副校长严建华出席会议。参加会议的技术测试专家有:韩杰才院士、俞大鹏院士、张国庆研究员、陈江华教授、罗胜年教授、申德振研究员、冯强教授等。/pp style="text-align: center"img width="450" height="626" title="0.jpg" style="width: 450px height: 626px max-height: 100% max-width: 100% " alt="0.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/ac153096-6aca-4317-9c79-5a14a46a4dca.jpg" border="0" vspace="0"//pp style="text-align: center"span style="color: rgb(0, 176, 240) "现场技术测试/span/pp style="text-align: center"img width="450" height="301" title="3.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="3.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/d4739eb3-3aca-4550-988c-603aeed3ffba.jpg" border="0" vspace="0"/br//pp style="margin: 5px 0px text-align: center color: rgb(0, 0, 0) text-transform: none text-indent: 0px letter-spacing: normal font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 text-decoration: none word-spacing: 0px white-space: normal orphans: 2 -webkit-text-stroke-width: 0px background-color: transparent "span style="color: rgb(0, 176, 240) "财务验收现场/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "strong style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px "验收会议第一天日程/strong,主要针对项目进行技术评审、现场技术测试、财务及技术档案验收,并最后通过讨论形成测试结论及验收意见。作为项目负责人,张泽院士首先介绍了项目整体情况,包括项目总体指标完成情况、技术测试方案、财务档案及技术档案准备情况等。接着,技术测试专家组、财务验收专家组、档案验收专家组,分别针对项目技术测试方案及现场技术测试、财务验收、技术档案验收同时进行。经过一天有条不紊的分头验收及测试,最后大家的现场讨论,最终形成技术测试报告及测试结论、财务验收意见、技术档案验收意见。/pp style="text-align: center"img width="450" height="625" title="4.jpg" style="width: 450px height: 625px max-height: 100% max-width: 100% " alt="4.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/7ec7ea1c-59e2-47dc-95ec-5194b18ca535.jpg" border="0" vspace="0"//pp style="margin: 5px 0px text-align: center color: rgb(0, 0, 0) text-transform: none text-indent: 32px letter-spacing: normal font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 text-decoration: none word-spacing: 0px white-space: normal orphans: 2 -webkit-text-stroke-width: 0px background-color: transparent "img title="" class="qi_image" style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px " alt="" src="http://qi.mofangyu.com/qi/core/static/ueditor/themes/default/images/spacer.gif"/span style="color: rgb(0, 176, 240) "技术测试专家组就测试报告签字/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "strong style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px "验收会议第二天,项目验收汇报及最终验收工作正式拉开帷幕。/strong/pp style="text-align: center"img width="450" height="301" title="5.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="5.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/09316100-da64-4ae1-b337-7285ead4b307.jpg" border="0" vspace="0"//pp style="margin: 5px 0px text-align: center color: rgb(0, 0, 0) text-transform: none text-indent: 32px letter-spacing: normal font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 text-decoration: none word-spacing: 0px white-space: normal orphans: 2 -webkit-text-stroke-width: 0px background-color: transparent "span style="color: rgb(0, 176, 240) "浙江大学副校长严建华致辞/spanimg title="" class="qi_image" style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px " alt="" src="http://qi.mofangyu.com/qi/core/static/ueditor/themes/default/images/spacer.gif"//pp style="text-align: center"img width="450" height="301" title="6.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="6.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/7eb8161e-c42f-4783-9f75-bf21830bf39b.jpg" border="0" vspace="0"//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "自然科学基金委数学物理科学部常务副主任董国轩介绍验收规范/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "高温、高应力载荷等苛刻使役条件下材料性能与结构动态研究,是国家发展战略性结构材料的瓶颈性基础难题,严重制约着关乎国防安全的先进航空发动机镍基单晶高温合金、钛合金等关键材料的发展。针对这些材料制备、加工、使役过程中力学性能与结构间关系的关键科学问题,该重大仪器项目拟研制开发一套在使役条件下从室温至1150℃高温、同时施加137MPa以上载荷,跨宏观-微观-原子尺度的结构与材料性能间关系的一体化动态研究系统。其目标即将常规力学实验引入到显微平台实现原位、高温、跨尺度,从而填补我国在先进高温合金、高性能钛合金等材料力学性能与显微结构间关系研究领域原位测试分析方法的空白。/pp style="text-align: center"img width="450" height="301" title="7.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="7.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/780d4ab8-a548-40df-8b7a-ee4e61a88855.jpg" border="0" vspace="0"/br//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "张泽院士作项目工作汇报/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "该重大仪器项目主要包含基于扫描电子显微镜的微观尺度高温力学原位研究系统和基于透射电子显微镜的原子点阵分辨高温力学原位研究系统两部分仪器开发。张泽院士分别从这两个方面,介绍了该项目团队历经5年时间,取得的一些先进性成果及创新应用。/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "strong style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px "微观尺度高温力学原位研究系统方面/strong,目前,国际上还没有一款能够在扫描电子显微镜中对样品进行同时原位加载(0-2000N)和加热(室温-1200℃),又能对样品进行显微结构分析的科研仪器。该重大仪器项目经过5年的研究,成功研制开发出了具有我国自主知识产权的从室温至1200℃高温,同时施加3200N载荷,能够进行跨宏观-微观-纳米尺度的显微结构与材料性能间关系的原位仪器系统及配套分析处理软件共6台套,测试指标达到国际上该类仪器领先水平。同时,项目研制的仪器成果已经对中国航发北京航空材料研究院、钢铁研究总院、清华大学、西安交通大学、北京科技大学、北京理工大学、南京航空航天大学、太原理工大学等单位在镍基单晶高温合金、高温合金等热端部件、热障涂层、耐热钢、金属基复合材料、3D打印金属部件的相关研究提供了强有力的实验支持。/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "strong style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px "原子点阵分辨高温力学原位研究系统方面/strong,成功解决了透射电子显微镜毫米限域空间范围内高温场与应力场同时施加所面临的高温场局域化、热膨胀致样品断裂、热扩散导致力驱动器时效等世界性技术难题,首次在透射电镜中实现了1150℃(最高1238℃)高温场与毫牛顿(应力达到4GPa)量级应力场的耦合加载,达到国际领先水平。解决了在透射电镜中对样品力学加载、加温与双轴倾转的技术矛盾,开发了具有自主知识产权、国际领先的力热耦合MEMS芯片、透射电子显微镜原位专用力学实验仪、多通道电学信号传输电路板等核心部件及配套应用分析软件。研发的原位原子尺度高温实验力学装置系统应用于我国自主开发的第二代和第三代Ni基单晶高温合金及Co基单晶高温合金,研究其在700℃、900℃、1100℃、1150℃高温应力耦合条件下的,元素扩散行为、在基体和强化间位错形核和运动行为和微观机理。该仪器已系统应用于中国航发北京航空材料研究院、中国科学院金属研究所、浙江大学高温合金材料的开发,为其提供了强有力的实验方法。/pp style="text-align: center"img width="450" height="301" title="8.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="8.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/4acef974-fac4-4226-9c56-e24d9935d113.jpg" border="0" vspace="0"/br//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "监理组成员清华大学高级会计师管群作监测报告/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "监测组主要通过电子邮件、电话沟通、参加项目组组织的学术交流及实地查看等方式了解项目的执行情况,检查项目管理、财务及档案文件等。管群首先介绍了监督项目组组织和运行机制,接着分别介绍了监督项目实施的保障和支撑情况、监督项目组经费支出情况、监督项目档案归档管理等情况。/pp style="text-align: center"img width="450" height="301" title="9.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="9.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/f5feacdd-a606-49cb-ab3a-47d42cc2ed3c.jpg" border="0" vspace="0"/br//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "技术测试组组长韩杰才院士作技术测试情况汇报/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "技术测试专家组听取了项目组测试方案汇报,并按照本次重大科学仪器项目计划书对测试方案进行了评审。并在浙江大学电镜中心对研制的仪器进行了技术指标现场测试,形成测试讨论。韩杰才院士分别针对“原子点阵分辨高温力学原位研究系统”和“微观尺度高温力学原位研究系统”的测试方案的评审结果进行了介绍。通过现场测试,技术测试专家组对资助项目计划书分别对两个子系统的技术指标得出测试结论,最终,专家组认为该项目的各项指标均达到资助项目计划书验收指标要求,一致通过技术测试验收。img title="" class="qi_image" style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px " alt="" src="http://qi.mofangyu.com/qi/core/static/ueditor/themes/default/images/spacer.gif"//pp style="text-align: center"img width="450" height="301" title="10.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="10.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/ad31d8b0-8229-48b5-b212-62b054cd8fb8.jpg" border="0" vspace="0"//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "财务验收专家占静婉作财务验收情况介绍/span/pp style="text-align: center"img width="450" height="301" title="11.jpg" style="width: 450px height: 301px max-height: 100% max-width: 100% " alt="11.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/fe420761-7160-4a87-8c70-58c0fb17ea3b.jpg" border="0" vspace="0"//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "档案验收专家组组长乔书荣作技术档案验收情况介绍/span/pp style="text-align: center"img width="450" height="626" title="12.jpg" style="width: 450px height: 626px max-height: 100% max-width: 100% " alt="12.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/564bd8cf-2fb2-41ed-b9ee-19ae3dc4bd8f.jpg" border="0" vspace="0"/br//pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: center text-decoration: none text-indent: 0px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "span style="color: rgb(0, 176, 240) "专家最终讨论/span/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "随后,验收专家组针对各组验收报告进行了讨论,经过监理组、技术测试专家组、财务验收专家组、档案验收专家组、国家自然科学基金委员会代表现场投票,专家组形成最终验收意见,项目验收专家组一致同意该项目通过验收。专家组也建议进一步加大研制仪器的产业化和推广应用力度。/pp style="background-color: transparent color: rgb(0, 0, 0) font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 letter-spacing: normal margin-bottom: 5px margin-left: 0px margin-right: 0px margin-top: 5px orphans: 2 text-align: left text-decoration: none text-indent: 32px text-transform: none -webkit-text-stroke-width: 0px white-space: normal word-spacing: 0px "验收结论中的代表性成果及突出进展如此描述:该项目成功研制了国际领先水平的原位纳米/原子尺度力学耦合研究手段,并及时应用于我国“卡脖子”难题的镍基单晶高温合金等关键材料研究,采取“边研制边科研”的思路,取得了一系列重要研究成果。项目中关键技术获得授权美国专利3项,国际PCT专利1项,中国发明专利27项,中国实用新型专利2项。img title="" class="qi_image" style="margin-bottom: 0px margin-left: 0px margin-right: 0px margin-top: 0px " alt="" src="http://qi.mofangyu.com/qi/core/static/ueditor/themes/default/images/spacer.gif"//pp style="text-align: center"img width="450" height="300" title="13.jpg" style="width: 450px height: 300px max-height: 100% max-width: 100% " alt="13.jpg" src="https://img1.17img.cn/17img/images/201906/uepic/43b7cdae-9628-450a-ba16-70de22196ff5.jpg" border="0" vspace="0"//pp style="margin: 5px 0px text-align: center color: rgb(0, 0, 0) text-transform: none text-indent: 0px letter-spacing: normal font-family: sans-serif font-size: 16px font-style: normal font-variant: normal font-weight: 400 text-decoration: none word-spacing: 0px white-space: normal orphans: 2 -webkit-text-stroke-width: 0px background-color: transparent "span style="color: rgb(0, 176, 240) "项目验收专家组与项目组成员代表合影留念/spanbr//p
  • 回放视频:听8位专家讲“复合材料性能表征与评价”
    复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网于2021年6月8日成功举办了“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕会议主题带来精彩报告,并为参会人员搭建了网络互动平台进行学术交流。回放视频链接如下:报告时间报告主题报告嘉宾回放链接09:30--10:00固化与湿热条件对挖补复合材料层合板力学性能的影响程小全(北京航空航天大学 航空科学与工程学院 实验室主任/教授)链接10:00--10:30复合材料固化的热分析表征曾智强(德国耐驰仪器制造有限公司 市场与应用副总经理)链接10:30--11:00聚乳酸基纳米复合材料的制备与结晶行为研究贾仕奎(陕西理工大学 材料科学与工程学院 系主任/副教授)链接11:00--11:30纤维增强树脂基复合材料基本力学性能测试与表征白瑞祥(大连理工大学 力学系 副教授/博士生导师)链接14:00--14:30复合材料破坏与强度预报黄争鸣(同济大学 航空航天与力学学院 教授)链接14:30--15:00聚合物基复合材料力学性能试验关键要素分析王斌(力试(上海)科学仪器有限公司 总经理)链接15:00--15:30高温环境下防热复合材料力学性能测试仪器与装备张建海(吉林大学 副教授/吉林省材料服役性能测试国际联合研究中心副主任)链接15:30--16:00环氧树脂复合材料的改性研究黄培(重庆大学 航空航天学院 讲师)不回放16:00--16:30纤维增强聚合物基复合材料拉伸性能试验方法陈新文(中国航发北京航空材料研究院 高级工程师)链接
  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 循丝探理│碳纤维取向度如何测?
    导 读碳纤维作为高性能纤维的翘楚,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,并且沿纤维轴方向有很高的强度和模量,其外形呈纤维状、柔软、可加工成各种织物,一直以来,是航空航天、风电叶片、汽车、压力容器等高端应用场景的核心材料之一。 老话常说:心往一处想,劲儿往一处使。其实说的就是“方向一致进而形成强大的合力”。类似,对纤维材料而言,其分子链、微晶在拉伸等加工过程中产生的方向效应,即取向效应,亦对纤维的机械性能有着直接影响。岛津XRD(X射线衍射仪),配有纤维取向度专用附件,可方便、迅捷的对聚合物等纤维材料取向程度进行测定。 什么是纤维取向度?定义:表示纤维的晶体轴沿着纤维长度方向排列的平行程度或择优取向程度。 先来看两张示意图:左图给各位看官直观的感觉是不是就像一群散兵游勇? 而右图则是整齐队列的既视感?整齐划一、万众一心、众志成城!!! 是的,合成纤维等线形聚合物在未发生取向时,大分子链或链段、微晶的排列是随机的、无序的;而在纺丝、拉伸等加工过程中,大分子链或链段、微晶受到外力的作用,则会表现出不同程度的取向效应。 发生取向后,由于在取向方向上原子之间的作用力以化学键为主,而在与之垂直的方向上,原子间的作用力以较弱的范德华力为主,因而纤维取向度越高,则纤维长度方向上的机械强度、弹性模量等机械性能越好。 XRD测试纤维取向度原理 XRD作为材料结构分析的典型手段,可对纤维材料取向度进行有效表征。图1 纤维取向度测试时光路示意图 在正交透射模式下(图1),将纤维束置于子午线方向,保持光管、样品位置固定不动,探测器作2θ扫描收集衍射信号,此过程称为子午扫描。将纤维束置于赤道线方向,重复上述过程,即为赤道扫描;存在高度取向的纤维,赤道扫描与子午扫描谱图差异较大。 选取某特征衍射峰,将探测器固定于该特征峰峰位处,纤维束在垂直于入射X射线的平面内旋转(图1),测得β-I角度-强度分布曲线,此过程称之为方位角扫描,并采用以下经验公式即可计算纤维取向度π。 式中:π—纤维取向度 H—方位角扫描谱峰半峰宽(单位°) 岛津解决方案 针对纤维取向度测试,岛津XRD开发有纤维取向度专用附件,纤维专用样品架(图2)可保证纤维束平直拉紧,旋转样品台(图3)可实现正交透射模式及平面内旋转,以及数据处理模块“Preferred Orientation”可一键给出纤维样品取向度。 以某碳纤维样品实际测试为例,其赤道扫描及子午扫描谱图叠加见图4;显然,纤维束在两种方向放置测试,测得谱图差异十分明显,例如黑色箭头标示处,赤道扫描,该衍射峰强度非常高,而在子午扫描时该处基本未出峰,这表明该碳纤维存在很强的取向。 图4 碳纤维样品赤道扫描与子午扫描谱图叠加 利用岛津分析软件“Basic Process”模块,对赤道扫描谱图进行处理,读取最强峰衍射角2θ=25.69°,将探测器固定在25.69°进行方位角扫描,测得的强度分布曲线如图5所示。 图5 碳纤维样品方位角扫描谱图 利用岛津分析软件“Basic Process”模块,对方位角扫描谱图进行平滑、扣除背底、寻峰等操作后,利用岛津分析软件“Preferred Orientation”模块即可直接计算出碳纤维样品取向度为83.7%。 结语 纤维取向度对纤维的机械强度、弹性模量及其它机械性能有着直接影响,因此对纤维取向度进行测定有着非常重要的实际意义。类似的测试可拓展用于不同批次、不同工艺下纤维产品的对比,进而指导工艺优化。 撰稿人:崔会杰 *本文内容非商业广告,仅供专业人士参考。
  • 复合纤维材料开启高端微波化学仪器的新时空
    复合材料一般泛指由两种或两种以上不同物质以不同方式组合而成的材料,在性能上互相取长补短,产生协同效应,使材料的综合性能优于原组成材料而满足各种不同的要求。复合纤维材料的出现堪称材料史上的一次革命。由于复合纤维材料具有高强质轻、耐高温、耐疲劳、优良的减振性、耐化学腐蚀和热膨胀系数小等特点,广泛应用于航空航天、现代工业、体育器材等领域,如神舟7号、嫦娥探月工程以及C919大飞机等重大项目中均见其身影。 目前,微波化学仪器已成为分析化学、材料科学等应用领域中一种高效的样品前处理和制备设备,然而反应容器的材质直接决定仪器承受高温、高压的性能。市场上流行的微波消解仪通常采用PTFE、PFA以及TFM加工成消解内罐,高端产品更青睐于TFM材质用作消解内罐(最高耐温315℃,最大承受压力12MPa),因此消解外罐的各项性能成为仪器发展和技术创新的&ldquo 瓶颈&rdquo 。早期的聚砜(PSF)或聚苯硫醚(PPS)消解外罐普遍用在普及型和低端微波消解仪上,但在使用过程中因反应条件或机械损伤很容易造成消解罐发生酸腐蚀、变形、产生裂缝,甚至爆裂,现在中高端微波消解仪中已很难见到了。大约在2005年初,国内一代微波消解系统逐渐采用耐高温、高压,尺寸稳定性以及良好耐化学性的聚醚醚酮(PEEK)设计制造压力反应罐外罐,其使用寿命和安全性得到大幅提高。随着用户对微波反应的要求越高(反应温度高于250℃,反应压力高达4MPa,反应罐体耐压能力超过6MPa),PEEK材料的外罐存在如此高温下易熔易燃,且易受高压损伤等缺陷;特别是高温硫酸蒸汽对其的影响而导致罐体开裂,从而大大降低了仪器设备的安全性能和提升了运行维护的成本。 上海新仪公司对目前市场上已有的国外高端产品经过长时间的市场调研和咨询国内先进材料专家,凝聚公司科研技术人员克服多重难关,引进并自主开发出全封闭防腐超强复合纤维材料,在2008奥运年一举攻克外罐材料的&ldquo 瓶颈&rdquo ,奠定开发高端微波化学仪器的技术基础。新型复合纤维材料外罐采用纤维一体化缠绕并外裹PFA材料工艺制作而成,强度高(80MPa)、耐高温(400℃)、质量轻巧和极低的热膨胀系数,耐受各种酸碱、有机溶剂,由于全封闭防腐技术的应用克服了国外同类现有产品的怕水或水蒸气浸蚀、不耐腐蚀等缺点。复合纤维材料的抗疲劳强度为其抗拉强度的60%左右,即使因疲劳断裂也是从基体开始,逐渐扩展到纤维和基体的界面上。因此,具备破坏前的预兆,可以及时检查发现,材料寿命比一般金属的长数倍。同时,复合纤维材料的基体中有成千上万根独立的纤维,当用这种材料制成的外罐即便因反应产生爆炸也能在极短时间内将载荷重新分配并传递到未破坏的纤维上,故整个外罐不至于在短时间内丧失承载能力,其安全性能超越目前已知的所有高分子工程塑料。经实际产品测验结果表明,爆不破炸不裂撕不碎的复合纤维材料外罐完全消除横向炸裂的可能,安全系数大大超过目前市场通用的有机改性PEEK材料,耐用性能为PEEK材质的20~100倍。 MDS-10高通量密闭微波消解· 萃取· 合成工作站和MASTER 40罐高通量密闭微波消解/萃取工作站均采用超高强度的复合纤维材料制成的外罐,同时配合专利的垂直爆破泄压结构,从真正意义上实现了&ldquo 垂直爆破&rdquo 理论,杜绝了由于反应罐的横向破裂造成仪器和人员伤害,极大限度地提高了操作人员的安全性,开启了微波化学超高温高压的新时空。有关仪器详情请浏览我公司网站:www.sineo.cn.
  • 苏州纳米所在电纺纤维复合凝胶研究方面获进展
    近日,中国科学院苏州纳米技术与纳米仿生研究所研究员张珽团队在《纳微快报》(Nano-Micro Letters)上发表最新研究成果。该研究开发了一种新策略,通过将电纺纤维网络嵌入水凝胶中,从而实现同时具有超薄结构和优异力学性能的复合水凝胶薄膜( 5 μm)的构建。纤维复合水凝胶提供了广泛的可调模量(从~ 5 kPa 到几十MPa),这与大多数生物组织和器官的模量相匹配。超薄的结构和超柔软特性使电纺纤维复合水凝胶能够无缝附着在各种粗糙表面上,是构建贴附型生物电子器件的理想材料。 纤维复合水凝胶薄膜基于静电纺丝、旋涂和冻融联合技术构建(图1)。通过调控静电纺丝时间、旋涂时间和冻融次数,实现对纤维复合水凝胶薄膜理化性质的调控(厚度5微米到毫米;模量几千帕到几十兆帕)。例如,增加纺丝时间可显著提高纤维复合水凝胶薄膜的力学性能;提高旋涂速率,有利于降低纤维复合水凝胶薄膜的厚度;增加冻融次数,可提高水凝胶自身的模量。纤维复合水凝胶具有优异的力学强度,一片厚度仅为7微米水凝胶薄膜可轻松托起20g重量的物体。此外,包埋的纤维网络可有效抑制应力集中导致的裂纹扩增,赋予纤维复合水凝胶薄膜优异的抗撕裂性能(图2)。图1 纤维复合水凝胶设计和制备      图2 纤维复合水凝胶薄膜力学性能     常规的水凝胶材料具有容易失水的缺点,长期暴露于空气中时,由于体系水分的蒸发从而使水凝胶体系失效。该研究通过在纤维复合水凝胶体系中掺入甘油作为保水剂,使复合水凝胶体系具有优异的抗失水性能。暴露于空气中七天后,仍具备优异的柔性。此外,为了改善纤维复合水凝胶的导电性,甘油/NaCl体系使纤维复合水凝胶在空气中维持长期的高导电性能(图3)。      图3 纤维复合水凝胶薄膜抗失水性能 得益于纤维复合水凝胶薄膜超软和超薄的特性,其可实现对各种不同粗糙表面的无缝贴附,其广泛可调的力学性能几乎可实现对所有生物软组织(如脑、肝脏、心脏、肺和皮肤)模量的完美匹配,可伴随组织产生形变而不损伤组织,是构建柔性生物电子器件的理想材料(图4)。 图4 纤维复合水凝胶薄膜的柔性和贴附性能      基于甘油/NaCl体系的纤维复合水凝胶构建的贴附型生物电极具有比商业凝胶电极更加优异的信噪比和长期使用性能。商用凝胶电极长期(48h)暴露于空气中会由于失水从而丧失性能,甘油/NaCl体系的纤维复合水凝胶电极在7天后仍旧保持良好信噪比,可实现对人体肌电信号的采集。甘油/NaCl体系的纤维复合水凝胶电极用于检测人体肌电信号,可实现对不同运动姿势和不同运动强度肌肉电信号的监测(图5)。     图5 纤维复合水凝胶电极用于人体肌电信号监测 研究人员通过将电纺纤维网络包埋于水凝胶,开发了一种制备超软、超薄、力学增强复合水凝胶的新策略。该工作为超薄柔性生物电子提供了新颖的设计和构建思路。
  • 电纺纳米纤维在创面治疗中的应用
    1.Mater. Lett.:负载磺胺嘧啶银的聚羟基丁酸-明胶纳米纤维基质的制备及其在烧伤创面治疗中的应用 ➣ 设计一种替代的伤口敷料是非常必要的,以克服诸如接触时间短、住院时间延长和防止继发感染等难题。➣ 研究者报告了负载磺胺嘧啶银(SSD)(0.2%w/v)的聚羟基丁酸(PHB)-明胶(70:30)纳米纤维基质的静电纺丝,以作为载体防止二度烧伤创面感染。➣ 纳米纤维基质具有良好的抗渗出物吸收和透氧性能。SSD的受控传输会降低敷料更换的频率。利用NIH3T3成纤维细胞评估了其生物相容性和细胞粘附。➣ 从第18天开始,体内烧伤创面支持增强的再上皮化和MMP-9的产生,显示出快速的伤口愈合趋势。➣ 作为一种替代的伤口敷料,纳米纤维支架通过降低敷料的更换频率和减少抗生素的不良反应来治疗烧伤创面。DOI:10.1016/j.matlet.2020.128541 2. ACS Biomater. Sci. Eng.:具有不同双重药物释放的多功能壳聚糖/聚己内酯纳米纤维支架,可用于伤口愈合 ➣ 第三军医大学张波设计并制备了具有多种功能的盐酸利多卡因(LID)和莫匹罗星负载壳聚糖/聚己内酯(CSLD-PCLM)支架,可用作伤口敷料。➣ 通过双喷头静电纺丝技术,支架获得了纳米纤维结构,这增强了支架与血细胞之间的界面相互作用,并显示出良好的凝血能力。➣ 负载LID和莫匹罗星的支架表现出LID的快速释放和莫匹罗星的持续释放。含有莫匹罗星的CSLD-PCLM支架具有出色的抗菌活性。此外,在全层皮肤缺损模型中,该支架显著促进了伤口愈合过程,并伴随完全重新上皮化以及胶原蛋白沉积。➣ CSLD-PCLM纳米纤维支架可以很好地满足伤口愈合过程的各种要求,是未来临床应用中很有前景的创面敷料。DOI:10.1021/acsbiomaterials.0c00674 3. Adv. Sci.:微流控3D打印技术制备立体超顺滑织物用于创面引流 ➣ 南京大学医学院赵远锦教授团队设计了一种受猪笼草超滑结构启发的,基于微流控3D打印技术的立体超顺滑织物。该织物实现了液体在三维空间、复杂维度内无损快速的运输,为提高创面引流效率提供了新的思路。➣ 研究人员利用微流控技术连续制备了SLIPS聚氨酯微纤维,通过电镜表征可以看出微纤维的表面具有较为均匀的孔洞且内部孔洞相互连通。➣ 由于液体石蜡的润滑性能,渗出物和血液可以快速无残留地通过超滑表面,织物因此可以不被杂质污染,从而降低感染的风险。此外,超顺滑织物隔离了海绵与创面,减少了海绵对组织的二次损伤,有效提升了创面修复的效果。DOI: 10.1002/advs.202000789 4. J. Photochem. Photobiol. A Chem.:具有有效光动力抗菌活性的金属-有机骨架/聚(ε-己内酯)杂化电纺纳米纤维膜 ➣ 中科院应化所栾世方通过可生物降解的PCL基质和光敏金属有机骨架(MOF)纳米晶体的共静电纺丝制备抗菌电纺垫的可行方法。➣ 将玫瑰孟加拉红(RB)一步封装到沸石咪唑酸酯骨架8(ZIF-8)中以获得光动力抗菌性RB@ZIF-8纳米粒子,然后与PCL基质共混,通过共静电纺丝制备复合聚合物纳米纤维。➣ 通过调节PCL中RB@ZIF-8的含量,在纳米纤维表面存在足够的MOF颗粒。得益于纳米纤维膜在可见光照射下产生活性氧(ROS),从而在体外对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌(E.coli)进行剂量和时间依赖性灭活。➣ 细菌感染的伤口愈合实验表明,纳米纤维膜具有更好的修复细菌伤口感染和加速创面愈合的能力。DOI: 10.1016/j.jphotochem.2020.112626 5. Biomater. Sci.:含硫酸软骨素的镁矿化抗菌纳米纤维敷料的伤口愈合特性—共混和核-壳纳米纤维的比较 ➣ 研究了硫酸软骨素对含矿化镁的聚多巴胺交联电纺明胶纳米纤维的形态、机械性能、润湿性和生物相容性的影响。为了延长敷料的耐用性,研究者制备了以聚己内酯(PCL)和明胶为共混物或核-壳纳米纤维的复合敷料。➣ 在猪皮肤烧伤模型中,与未经治疗的烧伤相比,混合和核-壳纳米纤维敷料均显示出更好的再上皮化、伤口闭合和临床结果。➣ 活检组织的组织学研究表明,与未处理的烧伤相比,用核-壳纳米结构处理的烧伤具有平滑的再生和胶原组织。这项研究比较了复合纳米纤维的理化和生物学特性,该纤维能够加速烧伤创面愈合并具有抗菌特性,突出了它们作为伤口敷料和皮肤替代品的潜力。DOI:10.1039/D0BM00530D 6. Carbohydr. Polym.:含蜂蜜和荆芥的壳聚糖/聚乙烯醇生物纳米纤维创面愈合性能的体内评价 ➣ 构建生物支架以改善皮肤组织再生仍然是医疗保健方面的一项挑战。为了解决这一问题,研究者报告了负载蜂蜜和荆芥属植物的电纺聚乙烯醇和壳聚糖(PVA/Chit)纳米纤维垫的制备和表征,以加快伤口愈合。➣ 通过SEM和TEM检查了纳米纤维垫的形态。利用FT-IR和TGA/DTA对纳米纤维进行了物理化学和热稳定性表征,揭示了纳米纤维中蜂蜜和所需植物的存在。➣ 研究了PVA/Chit@Nep/Hon作为一种潜在的治疗药物在伤口愈合治疗中的作用。对大鼠进行了为期21天的体内伤口愈合研究,发现蜂蜜和植物掺入纳米纤维垫后,三周内伤口愈合更快,因此这种纳米纤维垫在急慢性伤口愈合应用中显示出巨大潜力。DOI:10.1016/j.carbpol.2020.116315
  • 《纤维笔头》等三个行业标准通过审查
    2009年12月19日,全国制笔标准化技术委员会在杭州组织召开了《纤维笔头》等三个行业标准(送审稿)审查会。由来自行业协会、生产、使用单位、科研和检测机构等相关方面的20名专家参加了会议。  《纤维笔头》、《纤维储水芯》行业标准(送审稿)由德清县智星实业有限公司负责起草,《微孔笔头》行业标准(送审稿)由上海市制笔工业研究所负责起草。该三个行业标准均无国内外标准,为自行研究开发。标准的主要内容依据相关零件的行业质量技术要求和企业标准,在十多年的生产实践验证基础上,加以完善和提高后确定。标准对产品的尺寸和性能指标进行了规范,较为完整地反映产品的质量特征和功能特性。与会专家在听取了负责起草单位的标准编制说明、标准的内容介绍和对征求意见的汇总处理后,对标准(送审稿)进行了认真讨论。与会专家认为记号笔产品的特点是品种多,用途各异,需求量大,近年来记号笔产量呈现迅速增长的趋势。制定配套零件的标准,有利于指导相关产品的生产,加强质量管理,进一步提高产品的质量水平。同时标准的制定对填补制笔行业零部件领域标准的空白,完善制笔行业零部件的标准体系有重要意义。标准遵循的编制原则明确、客观,编写格式符合GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写》的要求。该三个行业标准根据国内现有产品的品种规格,对标准的适用范围进行了限制,避免在使用中产生歧义。通过对样品的验证试验,绝大部分指标能达到标准的要求,部分指标如微孔笔头的直径公差,由于受到国内现有设备成型稳定性差等因素的限制,与国外产品尚有差距,应根据实际予以适当放宽。笔头强度和笔头滑缩力等指标与现行的记号笔行业标准保持协调。通过对产品的吸水性能的分析,考虑到行业内各企业仪器设备的现状,确定仍采用吸水率作为描述产品特性的方法。对产品保质期较短的分歧意见,由于目前尚不明确产品润湿性能下降的原因,考虑到成品笔厂的生产周期,对保质期作了适当延长的处理。经过会议讨论,与会专家提出对部分指标和文字作进一步修改和增加非圆形纤维笔头对角线长度的建议。  与会专家认为该三个标准结构合理、内容科学,具有普遍的适用性和较强的可操作性。一致同意通过对《纤维笔头》等三个行业标准(送审稿)的审查,希望制笔标委会会同标准负责起草单位根据审查会上专家提出的意见,对标准(送审稿)中的有关内容做出进一步修改和完善,尽快形成报批稿,作为推荐性行业标准报工业和信息化部批准发布。
  • 粘胶纤维用浆粕 粘度的测量
    粘胶纤维(Viscose fibre)简称粘纤,又名黏胶丝,是人造纤维的主要品种,也是中国产量第二大的化纤品种。粘胶纤维的主要原料是化学浆粕,包括棉浆粕和木浆粕两种,后增加竹浆粕和棉浆粕等材料,通过化学反应的方式将天然纤维素分离出来再生而成。粘胶纤维吸湿性好,易于染色,不易起静电,有较好的可纺性能,常与棉、毛或各种合成纤维混纺、交织、用于各类服装及装饰用纺织品。高强力粘胶纤维还可用于轮胎帘子线、运输带等工业用品。粘胶纤维制品的质量取决于原料浆粕的各项属性,但不论是在棉浆粕、木浆粕还是其他浆粕原料中,黏度都是非常关键的一项指标。黏度的数值会直接影响到粘胶纤维的性能,进而对后端产品造成影响。FZ/T 50010.3-2011中规定了粘胶纤维用浆粕的黏度测试方法,采用乌氏法,以铜乙二胺和铜氨溶液作为样品溶剂,根据不同的溶样温度及不同时间去溶解样品,再通过相关辅助设备测试浆粕溶液的黏度。粘胶纤维用浆泊的黏度测试是一个相对繁琐的过程,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐冗杂等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 新疆理化所在荧光玄武岩纤维制备及应用领域取得进展
    玄武岩纤维(BF)是由玄武岩矿石经熔融、拉丝、涂覆浸润剂后制备的纤维材料,被广泛应用于航空航天、交通运输、土木建筑等领域。玄武岩纤维本身表现出一定的物理和化学惰性,这限制了材料在环境响应、个体识别等领域的功能应用。近期,中科院新疆理化所科研人员围绕玄武岩纤维在制备过程中需要涂覆浸润剂这一过程,研发出以环氧乳液和氧化锌量子点(ZnO QDs)为主要成分的纳米复合浸润剂,探究了浸润剂对玄武岩纤维表面形貌、光学和力学等性能的影响。研究结果表明,纳米复合浸润剂具有优异的稳定性、成膜特性和荧光性能,可使单纤维和束纤维的力学性能分别提升28.1%和125.1%,这种提升主要源于浸润剂不仅修复、钝化了纤维表面的缺陷,还提升了纤维与纤维之间的集束性能。此外,科研人员发现通过调控浸润剂中ZnO QDs尺寸,可获得荧光颜色从黄色、绿色到蓝色的玄武岩纤维(图1A),所得荧光玄武岩纤维具有优异的水洗稳定性、防伪特性和对H+的高度敏感性(图1B),从而拓宽了玄武岩纤维的功能特性。该研究成果也为开发其它无机荧光纤维(如玻璃纤维、石英纤维、碳化硅纤维等)提供了新的方法和途径。相关研究成果近期发表在复合材料专业期刊Composites Communications上。研究工作得到了中科院“西部之光”交叉团队项目-重点实验室合作研究专项、新疆维吾尔自治区上海合作组织科技伙伴计划及国际科技合作计划等项目资助。图1. 荧光玄武岩纤维及其应用  (上图:具有不同荧光特性的玄武岩纤维;下图:不同pH溶液中黄色玄武岩纤维的荧光变化情况,插图为溶液pH值与荧光淬灭时间之间的关系)
  • OPTON的微观世界|第10期 从合金的断口看材料的塑性性能
    ——不同断口在SEM下的微观分析 前期回顾上期我们探索了蚂蚁在扫描电子显微镜下的形貌。从整体形貌到细节上的形貌,详细的描述了蚂蚁身体上的各个结构的形貌以及功能。本期我们继续借助扫描电子显微镜研究不同加工条件下合金的断口,以表征其塑性性能。序 言合金通常要经过铸造、压力加工(如轧制、挤压、锻造、拉丝以及冲压等)和热处理等过程,以获得优良的组织,制成合适的型材和工件,应用在国民经济等各种领域。在产品批量生产前,通常利用一系列的拉伸试验以检验材料的一些力学性能。从拉伸试验过程中,可以得出一系列的拉伸曲线,以表征材料的本征弹性、塑性、韧性等。在拉伸曲线的最后阶段,试样在外力作用下丧失连续变形,就会断成两段。试样的断裂过程包括裂纹的萌生和裂纹的扩展两个基本过程。金属材料的断裂过程在工程上有很大的实际意义。桥梁、轮船、汽车、宇航器的断裂行为给国民经济带来了巨大的危害。金属材料的抗断裂行为主要取决于两大因素。一是外因。如应力状态、温度、湿度等。二是内因。如显微组织和化学成分等。人们可以通过调整合金的化学成分,改善加工参数以及热处理方案,以提高材料的性能指标。人们在追求合金的高强度的同时,越来越关注材料的塑性和韧性等。本文主要通过一些合金的断口的微观形貌来分析材料的塑性指标。材料的断裂主要分为两大类:塑性断裂和脆性断裂。塑性断裂又叫延性断裂,断裂前发生大量的宏观塑性变形;脆性断裂过程中,几乎没有宏观塑性变形,但是在局部区域内存在一定的微观塑性变形。本文选取了四种不同变形量的铝合金的断口,观察其形貌组织,以表征其塑性指标。 20%变形量下的合金断口——形貌分析从图1可以看出,20%变形量下样品的断口主要是韧窝解理型断口,在解理断口的周围有一些韧窝。一般来说,韧窝越大,分布越多,材料的塑性性能越好。在较低的倍数下,有解理台阶和微裂纹的形成。解理裂纹继续扩展过程中,解理台阶相互汇合,形成“河流花样”。在较高的放大倍数下,可以从这些解理断口看出试样的晶粒呈长条状分布,这些长条状晶粒的尺寸多为15um左右,主要是由于加工变形造成的。在这些长条状晶粒的周围分布着少量的小晶粒,这些小尺寸晶粒的尺寸多为5um左右,主要是由于局部再结晶造成的。此外,在有的解理断口中还含有少量的第二相颗粒或孔洞。这些孔洞可能是由于在断裂过程中,晶体内部的第二相颗粒的脱落留下的位置造成的。图1 20%变形量下合金的断口形貌图 30%变形量下的合金断口——形貌分析图2 30%变形量下合金的断口形貌图从图2可以看出,30%变形量下样品的断口主要是韧窝解理型断口。与20%变形量下样品相比,30%变形量下样品的韧窝增多,表征在较大的变形量下,材料的塑性增强。主要表现在两个方面,一是韧窝的体积增大,二是韧窝的数量增多。在较高的放大倍数下,从这些解理断口看出呈长条状分布的变形晶粒,这些长条状晶粒的尺寸多为10um左右。在这些长条状晶粒的周围分布着少量再结晶晶粒,这些小尺寸晶粒的尺寸多为3um-5um左右。此外,在这些解理断口分布区域还有一些撕裂棱和第二相颗粒的分布。 50%变形量下的合金断口——形貌分析从图3可以看出,50%变形量下样品的断口主要是韧窝解理断口。有明显的解理台阶以及“河流花样”。在较高的放大倍数下,从解理断口的形貌可以看出长条状晶粒的周围分布着大量的近乎等轴的再结晶晶粒。这些长条状晶粒较少,且其尺寸多在7um-10um范围内,这些小尺寸晶粒的尺寸多为5um左右。表明材料发生了明显的再结晶。在这些解理断口中有第二相颗粒的分布,且这些颗粒尺寸较20%变形量下的颗粒尺寸要小一些。表明第二相颗粒的固溶强化作用增强,材料的力学性能以及塑性会有一定的改善。在这些几乎等轴的晶粒边缘含有一定的韧窝。这些韧窝的体积较小,可能是由于大变形量下颗粒尺寸较小,形成的韧窝也比较小。图3 50%变形量下合金的断口形貌图 60%变形量下的合金断口——形貌分析从图4可以看出,60%变形量下样品的断口主要是韧窝解理断口,在解理断口的周围有一些韧窝。从解理断口可以看出晶粒都呈近乎等轴分布,且这些晶粒的尺寸较50%变形量下的晶粒尺寸较大。这表明再结晶过程已经较充分进行,并且发生了一定程度的再结晶晶粒长大的行为,这不利于材料的塑性性能。在部分几乎等轴的解理断口中含有细小的第二相颗粒。这些第二相颗粒起到了很好的固溶强化的作用,对材料的塑性性能也有一定的益处。图4 60%变形量下合金的断口形貌图后记通过扫描电子显微镜下不同变形条件下的合金的断口形貌观察,可以看出随着变形量的增加,合金的再结晶程度增加,晶粒的尺寸逐渐减小,第二相的颗粒也会发生一定的碎化。材料的塑性会有一定的提高。但是,当变形量到达一定数值时,部分再结晶晶粒会发生一定的长大,可能对合金的塑性性能有一定的损害。当然,材料的力学性能与多种外因和内因有关。我们在选择合适的加工工艺同时,可以通过调节合金的成分、改善合金的热处理工艺等,获得优良的塑性性能。
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿200ns)上海昊量光电作为Spark Lasers在中国地区独家代理商,为您提供专业的选型以及技术服务。对于Spark Lasers有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 科研团队制成世界最薄丝素纳米纤维带
    p style="text-indent: 2em text-align: justify "东华大学纤维材料改性国家重点实验室教授张耀鹏、邵惠丽团队与纽约州立大学石溪分校教授Benjamin S. Hsiao合作提出了全新的蚕丝多级结构模型,并成功研制世界上最薄丝素纳米纤维带。近日,该成果以全文形式发表于《美国化学学会—纳米》。/pp style="text-indent: 2em text-align: justify "作为蚕丝多级结构的基础构筑单元,丝素纳米纤维对人造蜘蛛丝等高性能丝蛋白材料的设计和构筑尤其重要。张耀鹏团队利用氢氧化钠/尿素水溶液体系,在低温下将蚕丝逐级剥离为厚度约0.4纳米、宽度约27纳米的蚕丝纳米纤维带。这也是目前为止世界最薄的丝素纳米纤维带,其厚度仅为丝素蛋白的单分子层厚度,与单层石墨烯厚度相当。/pp style="text-indent: 2em text-align: justify "该纳米纤维带主要由天然蚕丝中原生的β-折叠片层、无规线团以及α-螺旋构象构成。研究人员通过原子力显微镜、透射电子显微镜及小角X射线散射技术等多种表征技术确认了这些信息,并通过计算机分子动力学模拟技术,模拟了蚕丝在氢氧化钠/尿素水溶液中剥离为丝素纳米纤维的动态过程。/pp style="text-indent: 2em text-align: justify "丝素纳米纤维带通过自组装或者有序构建,可用作增强成分或者直接构建单元,有望制备性能优异或功能性的丝素蛋白基材料。/p
  • 纤维级聚己内酰胺(PA6)切片黏度的测定方法
    聚酰胺(polyamide)俗称尼龙,是指分子主链上含有重复酰胺单元—[NHCO]—的热塑性聚酯,是现代社会非常常见的高分子材料之一。 聚酰胺拥有优异的性能,具有一定的抗冲击强度和拉伸强度,并且耐磨性、耐化学药品性和耐溶剂性都较为优异。主要被用于制作合成纤维,其良好的性能使得聚酰胺纤维耐磨性高于其他所有纤维,比棉花耐磨性高10倍,比羊毛高20倍,在混纺织物中稍加入一些聚酰胺纤维,即可大大提高制品耐磨性。目前市场上较为常见的聚酰胺有:聚己二酰己二胺(PA66)、聚己内酰胺(PA6)、聚 ω-氨基十一酰(PA11)、聚十二内酰胺(PA12),其中PA6更常用于合成纤维领域。对于尼龙纤维产品的质量控制来说,黏度是一项非常关键的指标,黏度的大小会直接影响到尼龙的各项物理性能,例如强度和韧性,GB/T 38138中对纤维级聚己内酰胺切片黏度测量给出了具体的实验方法,采用96%的浓硫酸溶解样品,再通过辅助设备测试PA6切片的相对黏度。在实验过程中用浓硫酸作为溶剂,在移液、配液、溶解样品及排废液等环节中实验人员都会有接触浓硫酸的风险。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率及高安全性的要求,现在已普遍采用自动化乌氏粘度仪的方法去测定聚以内酰胺的黏度。以杭州卓祥科技有限公司的AVM系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程AVM系列全自动乌氏粘度仪可实现全自动进样、全自动测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差,最多可以实验连续测试24个样品。4. 测试结果:AVM系列全自动乌氏粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化黏度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。 AVM系列全自动乌氏粘度仪,无需手动进样、无需手动测量、无需手动清洗、无需人员看管,更高效、更稳定、更经济、更安全。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制