当前位置: 仪器信息网 > 行业主题 > >

纤维样品

仪器信息网纤维样品专题为您整合纤维样品相关的最新文章,在纤维样品专题,您不仅可以免费浏览纤维样品的资讯, 同时您还可以浏览纤维样品的相关资料、解决方案,参与社区纤维样品话题讨论。

纤维样品相关的资讯

  • 电镜应用小Tips|看Axia如何应对纤维类不导电样品(二)
    上期中我们着重介绍了Axia拍摄纤维样品时,在样品喷金的条件下,所获得的高质量图片,以及能谱相关成分信息。通常,对于纤维、纸张这样导电性差的样品,在电镜高能电子束连续扫描过程中,样品表面会逐渐累积负电荷,严重时产生荷电效应,造成图像晃动、亮度突变的问题。解决这一问题通常的方法是在样品表面镀一层金膜或者碳膜以提高样品的导电性。然而,这一过程费时费力,对于样品的微观形貌细节也会造成影响,尤其是对于珍贵样品或者还需要进行能谱分析等原位观察的样品,镀膜会对样品造成不可逆转的破坏。因此,喷金并非不导电样品的首选方法。低真空模式同样适用于不导电样品。低真空模式在处理非导电样品时具有多个优势,它不仅可以实现无电荷成像还可以提高材料对比度,并使用更高的电子束流进行化学分析。低真空扫描电镜技术是通过在样品室内通入少量的气体/水蒸气实现的。少量的空气进入扫描电镜样品室,在电子和气体分子之间通过碰撞产生正离子,当这些正离子电流达到样品完全抵消全部负电荷时,也就是出现了所谓的电荷平衡,从而消除了样品表面的荷电效应。上图1~4是纤维样品在不喷金,低真空模式下拍摄的图片。1、2为背散射图像,3、4为二次电子图像,在两种图像模式下,Axia均表现出优异的成像功能。Axia ChemiSEM提供的低真空模式,可调节压力到最高150Pa,支持各种不同的样品。然而,低真空模式也并非始终是首选,在突出样品表面细节时,需要较低的着陆能量,否则这些细节会随着高加速电压而变平。例如观察纤维制品时, 不经过镀导电膜, 看原始形态, 将电压下调到1kV或以下, 既满足样品少放电, 又有足够的信号强度。图5~8为低电压下的纤维形貌, 可清楚看到纤维形态的差异, 与高电压下的图像相比,纤维表面突显出更细微的结构, 表面的颗粒感变得更为明显。通过对比,我们可以看到,Axia在1KV电压下的成像效果丝毫不落后于场发射低电压下的成像效果。Axia ChemiSEM提供了最有效的减少电荷策略,允许在高真空、电子束减速(BD)模式下为电子束敏感样品成像。电子束减速是一种光学模式,其中用施加在样品架上的负电位使样品产生偏压,使原电子在着陆前减速。因为加速电压高于着陆能量,所以可提高最终分辨率。此外,电子束减速模式能够检测到几乎平行于样品表面的低角度背散射电子(低角度BSE),从而增强了表面的拓扑结构。工业和先进的材料表征机构通常会处理未知材料和应对各种各样的要求。因此,全面的解决方案、分析功能和处理绝缘或电子束敏感样品的能力显得尤为重要。全新的 Axia ChemiSEM具有极佳的全方位性能,可为不同类型材料的表征提供最多的信息。 参考文献:[1]周广荣.低真空扫描电镜技术在材料研究中的应用[J].分析仪器,2012(06):39-42.[2]吴东晓,张大同,郭莉萍.扫描电镜低电压条件下的应用[J].电子显微报,2003(06):655-656.
  • 电镜应用小Tips|看Axia如何应对纤维类不导电样品(一)
    随着经济的发展和人们生活水平的提高,纤维制品已经成为我们生产和生活的必需品,为了满足人们对纤维制品的高要求,各种纤维制品推陈出新,质地复杂多变,与此同时也给纤维的检验工作带来新的挑战。纤维制品的检测方法有多种,扫描电镜凭借其出色的特点在纤维微观形态分析方面发挥重要的作用,特别是扫描电镜-能谱仪的应用,更加适用于纤维的检验,被普遍应用于各个行业。 Axia ChemiSEM是新一代的扫描电镜,旨在提供最高效的SEM-EDS用户体验。Axia ChemiSEM将无需对中的操作与独有的即时定量元素分布图结合在一起,让之前从未接触过扫描电镜的用户也能轻松操作。Axia ChemiSEM的全新平台支持业内最大的扫描电镜样品重量,在牢固性和灵活性方面达到了全新的高度。 利用扫描电子显微镜扫描纤维织物表面的微观区域,观察织物纤维与纤维交联处的微观特征,确定相关成分含量,并通过观察其表面光滑程度以及粗细,对研究改性的生产工艺,开发新用途都具有重要的意义。上图1~4是利用Axia的ETD探头,在样品喷金的条件下,所获得的扫描电镜图像。图中从500倍~10000倍,我们均获得了高质量的清晰图片。即使在高倍条件下,纤维表面的附着物依然清晰可见。上图5是采用Axia的CBS探测器所获得的衬度像。Axia的背散射电子探测器是一个2分割的可伸缩探测器,可以呈现优异的衬度像。并且,内环可采集高角度背散射电子(BSE)以提供纯粹的成分衬度,而外环则可接收低角度BSE以提供拓扑结构信息。图6、7是ColorSEM实时能谱。图中信息显示了纤维的主要成分,并实时显现在分析图像上。Axia ChemiSEM提出了全新的EDS分析理念,优化了收集、处理和呈现样品成分信息的流程。使用 Axia ChemiSEM,电子束打开后用户即可通过图像中的颜色来观察定量元素信息。这样,相关的成分信息便即时可用,同时减少了传统EDS工作流程的大多数步骤。这极大地提高了分析的速度、易用性和完整性。 参考文献:[1]黄滟波,刘站.扫描电镜低真空模式在纤维表面形貌分析中的应用[J].造纸科学与技术,2014,33(01):69-72.[2]马非非,徐亚民.扫描电镜的原理及其在纤维物证鉴定方面的应用[J].中国纤检,2008(05):30-31.
  • 倒置扫描微波显微镜——生物样品的应用与展望
    Siti Nur Afifa Azman , Eleonora Pavoni , Marco Farina扫描微波显微镜(SMM)在提供亚表面结构的成像和允许样品的局部定量表征方面是突出的。一种被称为反向扫描微波显微镜(iSMM)的新技术是最近开发的,旨在扩大该应用,超出当前对表面物理和半导体技术的关注。通过一个简单的金属探针,iSMM可以从现有的原子力显微镜(AFM)或扫描隧道显微镜(STM)转换而成,从而在带宽、灵敏度和动态范围方面形成传统的SMM。iSMM主要用于分析生物样品,因为它可以在液体中工作。扫描微波显微镜(SMM)[1]是扫描探针显微镜(SPM)[2]家族中的一种仪器,该家族包括众所周知的原子力显微镜(AFM)和扫描隧道显微镜(STM)。在SMM中,用作天线的探头在表面附近进行光栅扫描,在扫描过程中,记录微波信号的局部反射系数,提供关于表面和亚表面阻抗的信息。SMM的一个基本优点是它能够通过利用纳米探针和样品本身之间的近场电磁相互作用来定量表征样品的电磁特性。在一些实施方式中,矢量网络分析仪(VNA)被用作微波信号的源和检测器,通过导电探针辐射和感测微波信号。通常,SMM与一些其他SPM技术(例如AFM或STM)协同工作,提供了一种控制和保持探针和样品之间距离恒定的机制。基于SPM的SMM显微镜的使用最近在生物和生物医学领域获得了更多的关注,这是由于该技术能够测量与生理病理条件密切相关的电磁参数。然而,在极端环境(如用于保持细胞健康的生理缓冲液)中喂养SPM探针已被证明极具挑战性。作者于2019年引入的一种称为倒置SMM(iSMM)的新设置[3]克服了原始SMM与生理环境相关的大多数限制:倒置SMM的结构成本低、易于获得,并且与生理环境兼容,这也使得SMM能够应用于生物生活系统。其想法是将进料从探头移动到样品架;在iSMM中,样品保持器是一条传输线,通过该传输线测量反射和透射,而SPM探头(交流接地)仅干扰通过样品的传输线。因此,任何现有的SPM都可以创建iSMM,只需提供适当的样本保持器,当然,还可以使用软件同步传输线上的测量和SPM扫描。需要强调的是,所提出的系统是宽带的,能够实现频谱分析、时域分析和微波层析成像。到目前为止,SMM已被用于表征活的生物细胞,尽管在生理缓冲液中操作存在挑战[4,5]。除此之外,它还被用于负责细胞呼吸和能量生产的亚细胞细胞器,如线粒体[6]。iSMM已证明能够克服液体操作的局限性,这是首次在生理缓冲液中成功地对活细胞进行微波成像[3]。仪器开发几年来,研究活动一直基于一种自制的STM辅助SMM,该SMM是通过将Imtiaz[7]的系统的一些特性与Keysight[8]开发的系统混合而构建的。在这里,特别是结合了标准隧道显微镜,其反馈电路用于将探针与样品保持在给定距离,并在反射计设置中使用微波信号。然而,与Keysight仪器和其他可用设备不同,该仪器没有谐振器;因此,显微镜可以在VNA允许的整个频率范围内记录数据。具体而言,该系统利用并控制一台商用STM显微镜、NT-MDT的Solver P47和一台Agilent矢量网络分析仪PNA E8361,其带宽为67 GHz,动态范围为120 dB。例如,该技术被应用于线粒体成像[9],以评估干燥的癌细胞,并被特意处理以确定掺入的富勒烯的存在[10]。通过利用在多个相近频率下获得的图像的相关性,并使用一种权宜之计,即时域反射法[11-13],提高了系统灵敏度,这可以通过使用尖端/样本相互作用对微波信号进行“扩频”调制来理解;在频谱上传播的信息通过傅里叶逆变换在单个时间瞬间折叠来恢复。STM辅助的SMM提供了非常高质量的图像,减少了由于地形“串扰”而产生的伪影,即由于扫描期间探针电容的变化而产生的地形副本。然而,STM在处理导电性较差的样品(如生物样品)时极具挑战性,在液体中使用时更为困难。图1A)中所示的传统SMM通常是从AFM(或STM)获得的,其中微波信号被注入并由反射测量系统感测:反射信号和注入信号之间的比率,即所谓的反射系数(S11),可用于确定样品的扩展阻抗或介电常数,经过适当的校准和分析。这种单端口反射测量通常具有40-60dB的动态范围,这受到定向耦合器的限制。在图1(B)所示的iSMM配置中,导电扫描探针(AFM或STM)始终接地,微波信号通过传输线(例如共面波导、槽线)注入,以这种方式,传输线成为样品保持器。传输线的输入和输出连接到VNA,从而可以测量反射和传输信号(分别为S11和S21)[3,14,15]。这种双端口测量通常具有120−140 dB,这使得当接地探头扫描样品时更容易感测到接地探头引起的微小扰动。图1:(A)基于AFM的传统SMM和(B)倒置SMM的示意图。图2:干燥Jurkat细胞的同时(A)AFM和(B)iSMM|S11|图像。Jurkat细胞和L6细胞的iSMM表征最初,在干燥的Jurkat细胞以及干燥的和活的L6细胞上证明了iSMM[3]。图2显示了干燥Jurkat细胞的AFM和iSMM S 11图像的比较。同时,图3比较了盐水溶液中活L6细胞的AFM和iSMM S 21图像。iSMM S 11和S 21信号分别在4 GHz和3.4 GHz下滤波。干燥Jurkat细胞的iSMM S 11图像显示出与AFM相同的质量,而活L6细胞的iSMMS 21显示出由双端口SMM在液体条件下测量的透射系数形成的最佳质量。在这项工作中,透射模式测量的校准程序[16]应用于干燥L6电池的iSMM S21。图4说明了校准的效果,显示了AFM形貌图像、被样品形貌破坏的iSMM S21电容图像以及在6.2 GHz下去除了干燥L6电池的形貌效应的iSMM S 21介电常数图像。正如预期的那样,在干燥电池的外围附近出现了脊,但整个电池的介电常数为2.8±0.7。本质上,该值与电解质溶液中脂质双层的值相当[17],但低于干燥大肠杆菌的值[18]。随后,对干燥的Jurkat细胞进行了iSMM反射模式测量的定量表征[19]。图3:盐水溶液中活L6细胞的同时(A)AFM和(B)iSMM|S21|图像。图4:干燥的L6电池的(A)AFM形貌、(B)iSMM|S21|电容和(V)iSMM| S21|介电常数图像。图5:(A)AFM形貌,(B)iSMM|S11|,(C)iSMMφ11,和(D)干燥Jurkat电池的介电常数图像。图6:(A)AFM形貌,(B)iSMM|S11|,(C)iSMM| S21|,(D)时间门控iSMM|S 11|,和(E) 葡萄糖等渗溶液中相同线粒体的时间门控iSMM|S21|图像。图5显示了AFM形貌、原始iSMM S11的大小以及在4GHz下同时获得的相位。该图显示了带样品和不带样品的区域之间的良好对比,揭示了与表面和亚表面区域中不同的电特性相关的其他特性。按照已经描述的算法校准原始iSMM S11图像[20]。图5(D)显示了干燥的Jurkat电池的提取介电常数图像,其约为2.6±0.3,并且在电池上均匀。该值与传统SMM在干燥的L6细胞上获得的先前数据一致[21]。生活环境中线粒体的iSMM表征iSMM的最新工作是在完全浸入液体中的线粒体上进行的,以非接触模式操作,最大限度地减少了对样品的损伤[22]。图6(A)、图6(B)和图6(C)显示了AFM形貌图像,其中iSMM图像S11和S21在直径约为1µm的同一线粒体上同时采集。在1.6-1.8GHz的频带上对iSMM信号进行滤波和平均。显然,|S11|和|S21|图像质量相当,并且都揭示了AFM图像中不存在的细节。由于线粒体是不导电的,所以从周围的CPW电极可以很容易地看到对比。与大多数SMM不同,iSMM能够进行宽带测量。因此,它使iSMM从1.6GHz到1.8GHz测量的S11和S21信号能够通过傅里叶逆变换变换到时域。随后,可以门控掉不需要的信号,以进一步提高SNR[13,20]。最后,图6(D)和图6(E)显示了时间门控iSMM S11和S21图像,显示了更精细的细节。iSMM探针和线粒体之间的相互作用阻抗可以从S11和S21测量中获得。反过来,可以提取线粒体介电性质的局部变化,正如SMM对活细胞所做的那样[3]。总结iSMM能够对生物样本的细胞内结构进行无创和无标记成像。iSMM可以通过任何现有的扫描探针技术轻松获得,只需使用合适的样品夹,为大多数实验室提供了利用该技术的机会。Jurkat细胞、L6细胞和线粒体的iSMM图像显示出良好的灵敏度和质量,显示了AFM形貌中无法看到的细节。通过实施为传统SMM开发的校准算法,分别对干燥的Jurkat细胞和L6细胞进行透射和反射模式测量的定量表征。Jurkat细胞的介电常数被确定为约2.6±0.3,而L6细胞显示为约2.8±0.7。时域分析定性地改进了iSMM,并提供了对样品(如线粒体)的更多了解。致谢我们要感谢我们的研究小组和所有为本报告的科学结果做出贡献的人。这项工作的一部分获得了欧洲项目“纳米材料实现下一代物联网智能能源收集”(NANO-EH)(第951761号赠款协议)(FETPROACT-EIC-05-2019)的资助。我们还要感谢来自意大利SOMACIS的Francesco Bigelli博士和Paolo Scalmati博士在实现样品架原型方面的帮助。附属机构:1 Department of Information Engineering, Marche Polytechnic University, Ancona, Italy联系;Prof. Dr. Marco Farina Department of Information Engineering Marche Polytechnic University Ancona, Italy m.farina@staff.univpm.it 参考文献:https://bit.ly/IM-Farina 原载:Imaging & Microscopy 4/2022. Inverted Scanning Microwave Microscopy—— Application and Perspective on Biological Samples供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片
    安捷伦科技推出优于纤维素卡片的干血斑样品制备卡片 2011 年6 月6 日,安捷伦科技公司(纽约证交所:A)推出了用于干血斑生物分析的Bond Elut DMS(干基质血斑)样品制备卡片。该专利设计与传统纤维素卡片相比具有诸多优势。 干血斑分析是生物研究领域的一项新兴技术。与液体样品制备程序相比,它能够显著降低成本并减少耗时的步骤,且具有同等的分析精度。 主要应用包括药物代谢和药代动力学研究。 非纤维素型Bond Elut DMS 不用试剂浸渍。这就降低了分析物的非特异性结合,从而能增强质谱响应和改善信噪比。安捷伦的这一新产品可以兼容自动化操作和标准冲孔工具,冲压力仅需纤维素卡片的五分之一。使用该卡片能够加快工作流程、减轻技术人员的疲劳以及使自动化过程更加平稳。 不论血液样本中红细胞的比例多少,Bond Elut DMS都提供形状、大小一致和重现性好的血斑样品。 安捷伦与五家全球制药和合同研究机构携手合作,为制药生物分析市场开发出了Bond Elut DMS。 安捷伦样品制备产品经理Paul Boguszewski 说:&ldquo 目前只有安捷伦能够提供适用于生物分析的如此完整的样品制备技术。安捷伦能够提供固相萃取、蛋白质沉淀/过滤、湿法萃取和干血斑样品制备消耗品。这些产品是我们著名的液相色谱柱和系统以及全面的高灵敏度质谱系列产品的完美补充。&rdquo 了解更多信息,请访问:www.agilent.com/chem/DMS 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 显微FTIR光谱仪助力嫦娥五号月壤样品研究
    嫦娥五号任务成功从月球正面返回了1.73 kg表面与钻取样品,其采样区域比以往的Apollo及Luna任务的采样区域都要年轻。目前已经报道的样品分析结果表明,着陆区的物质组成是比较复杂的,因此对大尺度遥感探测数据的解译要格外慎重。准确的物质组成信息对行星地质演化历史的解译十分关键,而遥测光谱技术是目前获取这些信息最有效的手段之一。可见-近红外或中红外波段的一些独特的吸收特征可以用来识别行星表面矿物组成。其中可见-近红外光谱的吸收特征主要是由矿物中过渡性金属离子(Fe2+)如外层电子跃迁产生,而中红外光谱中的吸收则主要是由矿物晶体晶格振动(如硅酸盐矿物中Si-O的伸缩振动等)产生。在中红外谱段,光谱特征更为丰富,可以对可见-近红外光谱无法区分的物质类型进行有效判别。由于月球等地外样品比较珍贵,以往的行星光谱学研究大多是基于地球矿物或模拟物开展的,科学家通过在地面实验室开展控制性实验测量,分析不同类型物质的光谱特征变化规律,然后应用到行星遥测数据的反演分析中。地球上的模拟物虽然丰富,但是真实月壤的很多性质依然无法完美复制。尤其是发生于月表的太空风化作用,会对月表物质的光学特性产生显著影响。嫦娥五号采样任务的成功为利用真实月壤样品开展光谱分析提供了重要机遇。中国科学院国家空间科学中心太阳活动与空间天气重点实验室副研究员杨亚洲、研究员刘洋等从嫦娥五号返回的表层月壤样品中挑选出了一些粒径在200-500 μm之间的颗粒,其中包含了典型的月球矿物(橄榄石、辉石、斜长石)与玻璃球粒等(图1),并利用显微FTIR光谱仪测量了这些颗粒的中红外反射光谱。在中红外光谱中,Christiansen特征(CF)、剩余射线带(RB)、透明特征(TF)是硅酸盐矿物中最为显著的几个特征,借助这些特征可以对矿物的类型及具体成分进行判别。在反射光谱中,CF表现为反射率的最小值,硅酸盐矿物的主CF通常出现在7.5-9.0 μm波段范围内,主要与晶体中Si-O伸缩振动有关。月球主要矿物中,斜长石的CF峰位一般在波长较短位置(~8 μm),而橄榄石的CF峰位则出现在波长较长位置(~9 μm),辉石的CF峰位则在前两者之间。基于CF峰位与RB特征,以及显微镜下的矿物形貌特征,研究人员对挑选出的月壤颗粒类型进行初步判别(图2),然后对不同矿物与玻璃端元的显微红外光谱特征进行对比分析。图1(a)立体显微镜下月壤颗粒影像;(b)显微红外光谱仪获取的影像拼接图;(c)典型月壤矿物与玻璃颗粒影像放大图。图2 所测颗粒样品的CF峰位分布图通过与Apollo返样及月球陨石中不同矿物及玻璃端元的红外光谱进行对比(图3a),研究人员发现与常规FTIR测量相比,利用显微FTIR技术测量的红外反射光谱中没有透明特征(TF)。这主要是因为显微FTIR通常测的是单个颗粒,所测反射信号中没有颗粒之间的多重散射的贡献。但是CF峰位等特征不会受到这两种不同测量技术的影响。对于用常规FTIR方式测量的粉末样品光谱,其近红外波段的反射率通常要比中红外波段高很多,但是随着样品尺寸的增加,两个谱段之间的差异逐渐变小(图3a)。除了颗粒尺寸外,太空风化作用也会降低近红外与中红外谱段的光谱对比度,因为风化作用会使近红外谱段的反射率显著降低,但是对中红外谱段的影响很有限,这主要是因为两个谱段的光谱吸收特征的产生机制完全不同。月表的太空风化作用机制主要有太阳风注入与微陨石撞击等,在人们以往的研究中曾利用脉冲激光照射的方式来模拟微陨石撞击过程,以制备具有不同风化程度的模拟样品。通过对比嫦娥五号橄榄石颗粒与经过不同程度脉冲激光照射的地球橄榄石样品的光谱(图3b),可以看到,随着风化程度的增加,橄榄石近红外波段与中红外波段的反射率差异逐渐减小。在后续研究中,若能对更多具有不同风化程度的月壤矿物颗粒样品进行显微红外光谱分析,则有可能构建一个近红外-中红外光谱对比度与风化成熟度的关系模型,从而应用到更多样品的分析上。橄榄石是岩浆冷却过程中结晶最早的矿物之一,其晶体中Mg与Fe的相对含量(Fo,镁值)对于指示原始岩浆的成分具有重要意义。橄榄石RB特征中的几个反射峰的峰位会随着镁值的变化而发生系统的偏移。基于嫦娥五号橄榄石显微光谱中的RB峰位,研究人员反演得到了这些橄榄石的镁值,结果与先前报道的实验室测量结果相一致(图3d),表明该方法虽然是基于常规FTIR测量的红外光谱建立的,但是在显微红外光谱分析中也是可行的。除了矿物颗粒外,月壤中通常还含有丰富的玻璃质物质,这些玻璃物质主要有撞击与火山活动两种成因。该研究分析结果表明,这些玻璃大多属于月海撞击成因玻璃,但有少数可能具备火山成因。图3 (a)CE-5橄榄石颗粒显微红外光谱与Apollo返样中橄榄石粉末样品红外光谱对比图;(b)CE-5橄榄石颗粒与经过不同脉冲激光照射的地球橄榄石样品的光谱对比;(c)利用5.6-μm与6.0-μm波段峰位反演的橄榄石样品Fo值结果;(d)利用RB波段发峰位反演橄榄石Fo值结果。在行星光谱学研究中一直存在一个难题,就是实验室测量的光谱与遥测光谱之间往往存在较大差异,因为即使有了月壤样品,在实验室内也无法完全复制月表原始的堆积状态。因此实验室测量光谱往往无法直接应用于遥测数据的解译上,尤其是显微光谱分析结果。而通过反演光学常数(或折射率)的方式,可以将实验室测量结果与遥测分析很好的衔接起来。光学常数是光谱模型的重要输入量,有了不同矿物端元的光学常数,再结合给定的颗粒尺寸、孔隙度及各端元的含量等参数,就可以生成模型光谱。利用该模型对实际遥测月表光谱进行拟合,就可以实现对观测区域矿物组成的定量反演。目前的光学常数库中,基于真实地外样品的光学常数还比较匮乏。虽然地球上的矿物种类非常丰富,但是与地外样品相比,即使是同种类的矿物,其在具体成分上也存在一定差别。比如地球上的橄榄石大多Mg含量比较高,而月球上的橄榄石通常Mg含量比较低。因此,尽可能的扩充基于真实地外样品分析得到的光学常数库是很有必要的。该研究中,研究人员基于显微红外反射光谱,对挑选出的一些典型橄榄石、斜长石、辉石及玻璃端元的光学常数进行了反演(图4),这些结果将对现有的或将来的月球及其他小行星的光谱分析产生很大帮助。图4 基于反射光谱反演得到的典型矿物与玻璃端元的光学常数论文链接:https://doi.org/10.1029/2022JE007453
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备
    这里是TESCAN电镜学堂第6期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!样品制备对扫描电镜观察来说也至关重要,样品如果制备不好可能会对观察效果有重大影响。通常希望观察的样品有尽可能好的导电性,否则会引起荷电现象,导致电镜无法进行正常观察;另外样品还需要有较好的导热性,否则轰击点位置温度升高,使得试样中的低熔点组分挥发,形成辐照损伤,影响真实的形貌观察。如果要进行EDS/WDS/EPMA定量检测,还需要样品表面尽可能平整。第一节 常规样品制备样品制备主要包括取样、清洗、粘样、镀膜处理几个步骤。§1. 取样在进行扫描电镜实验时,在可能的条件下,试样应该尽量小,试样有代表性即可。特别在分析不导电试样时,小试样能改善导电性和导热性能。另外,大试样放入样品室会有较多气体放出,特别是多孔材料,不但影响真空度,还大幅度增加抽真空的时间,可能也会引入更多的污染。因此对于多孔材料在放入电镜前,可以在不损伤样品的前提下,对样品进行一定的热处理,比如电吹风吹,红外灯烘烤,或者放入烘箱低温加热一段时间,将其空隙的气体排出,以减小进入电镜后的抽真空时间。对于薄膜截面来说最好能够进行切割、镶嵌、抛光等处理。在镶嵌时最好能将试样一分为二,将要观察的膜面朝里然后对粘,然后再进行镶嵌、抛光处理。这样做的好处是避免在抛光过程中因为膜面和镶嵌料之间的力学性能有一定的差异,而引起薄膜的脱落或者出现裂纹和缝隙,如图4-1。对粘后的膜面两面力学性能一样,会改善此种情况。 图4-1 单膜面力学性能不对称引起的损伤对于比较软的样品在制截面时,一般不要用剪刀直接剪断,直接剪断的截面经过了剪切的拉扯,质量较差。可以考虑用锋利的刀片切断,比如手术刀片等。或者在将试样浸泡在液氮中进行冷冻脆断。在冷冻脆断前可以先切一个小缺口,这样冻硬的样品可以顺着切口用较小的力就可发生断裂。有条件的话可以考虑用截面离子束抛光或者FIB抛光。对于粉末样品来说,取样要少量,否则粉末堆叠在一起会影响导电性和稳定性。粉末样品团聚严重的话,可以考虑将粉末混合在易挥发溶剂中(如纯水、乙醇、正己烷、环己烷等),配成一定浓度的悬浊液,用超声分散,然后取小滴滴在试样座或者硅片、铜(铝)导电胶带上。此时不要使用碳导电胶带,因为碳导电胶带不够致密,会使得样品嵌入在空隙中影响观察。等待溶剂挥发干燥后,粉体靠表面吸附力粘附在基底上,如图4-2。 图4-2 粉末超声分散制样不过值得注意的是溶剂的选择,溶剂不能对要观察的试样有影响,否则会改变试样的初始形貌而使得图像失真。如图4-3,高分子球样品在用水稀释分散后仍为球形,而用无水乙醇分散后,形貌发生了变化。 图4-3 水(左)和乙醇(右)稀释分散对形貌的影响§2. 清洗试样尽可能保证新鲜,避免沾染油污。特别是不要直接用手直接接触试样,以免沾染油脂。清洁不仅仅是针对试样的要求,同样还包括了样品台。样品台要做到经常用无水乙醇进行清洗。§3. 粘样试样的粘贴应该尽量保持平稳、牢固,并尽可能减少接触电阻,以增加导电性和导热性。特别是对于底面不平整的试样,最好用银胶进行粘贴,让银胶填满缝隙以保证平稳。如果要进行EBSD测试,最好也用银胶。EBSD采集要经过70度的倾转,重力力矩较大,而导电胶带有一定的弹性,可能会因为重力缘故而逐步拉伸,导致样品漂移。此外,平时大多数试样都是采用碳导电胶带进行粘贴,不过如果要进行极限分辨率的观察,最好也用银胶,以进一步增加导电性。我们粘贴样品的目的是使得样品要观察的表面要能和样品台底座之间具有导电通路,而不是仅仅认为表面导电就好。样品表面导电性再好,如果没有导电通路和样品台联通的话,仍然会有荷电。特别是对于不规则样品,更要注意粘贴时候的导电通路。如图4-4,左边与中间的表面并未和样品台导通,属于不合理的粘贴,而右边形成了通路,是合理的粘贴方式。 图4-4 合理(右)与不合理(左、中)的粘贴对于很多规则样品,比如块体或者薄片样品,也存在很多不合理的粘贴方式。很多人认为试样有一定的导电性,就将试样直接粘在导电胶带上,如图4-5左。样品表面和样品台之间依然会出现没有通路的情况,有时即使样品导电性好,可能也会因为有较大的接触电阻使得图像有微弱的荷电或者在大束流工作下有图像漂移。而图4-5右,则是开始将导电胶带故意留一段长度,将多余的长度反粘到试样表面去。这样使得不管样品体内导电性如何,表面都能通过导电胶带形成通路。而且即使样品整个体内都有较好的导电性,连接到表面的导电胶带相当于一个并联电路,并联电路的总电阻总是小于任何一个支路的电阻,所以无论试样的导电性任何,都应习惯性的将一段导电胶带连接到表面,以进一步减小接触电阻,增强导电性。 图4-5 将导电胶带延伸到试样表面的粘贴 对于粉末试样的粘贴,也是要少量,避免粉末的堆叠影响导电性和导热性。粉体可以取少量直接撒在试样座的双面碳导电胶上,用表面平的物体,例如玻璃板或导电胶带的蜡纸面压紧,然后用洗耳球吹去粘结不牢固的颗粒,如图4-6左。如果粉末量很少,无法用棉签或药勺进行取样,也可将碳导电胶带直接去粘贴粉末,如图4-6右。 图4-6 粉末试样的粘贴方法§4. 镀膜对于导电性不好的试样,我们通常可以选择镀膜处理。通常情况我们选择镀金Au膜,如果对分辨率有较高的要求,可以选择镀铂Pt、铬Cr、铱Ir。如果要对样品进行严格的EDS定量分析,则不能镀金属膜,因为金属膜对X射线有较强的吸收,对定量有较大影响,此时可选用蒸镀碳膜。现在的镀膜设备一般都能精确控制膜厚,通常镀5nm的薄膜就足够改善导电性,对于有些特殊结构的试样,比如海绵或泡沫状,表面不致密,即使镀较厚的导电层,也难以形成通路。所以我们镀膜尽量控制在10nm以下,如果镀10nm的导电膜仍没有改善导电性,继续增加镀膜也没有意义。一般镀金的话在10万倍左右就能看见金颗粒,镀铂的话可能需要放大到20万倍才能看见铂颗粒,而镀铬或者铱则需要放大到接近30万倍。所以对于导电性不好的试样来说,可以根据需要选择不同的镀膜。镀膜之后,由金属膜代替试样来发射二次电子,而一般镀的金、铂都有较高的二次电子激发率,在镀膜之后还能增强信号强度和衬度,提升图片质量。只要镀膜不会掩盖试样的真实细节,完全可以进行镀膜处理,而不用纠结于一定要不镀膜进行观察,除非有特别不能镀膜的要求。当然,对于要求倍数特别高或者严格测量的一些观察要求,则要谨慎镀膜处理。毕竟在高倍数下,镀膜会掩盖一定的形貌,或者使测量产生偏差。如图4-7,左边是镀金处理的PS球在SEM下的测量结果,右边是TEM直接拍摄的结果,可以发现SEM的测量结果大约在195nm左右,而TEM的测量结果在185nm左右,这就是因为给PS球镀了5nm金而引起直径扩大了10nm左右。 图4-7 PS球在SEM下镀膜观察和TEM直接观察的对比除了不导电样品需要镀膜,对于一些导热性不佳的试样,有时也需要镀膜。电子束轰击试样时,很多能量转变成热能,使得轰击点温度升高,升高温度表达式为ΔT(K) = 4.8 × VI / kd其中,V为加速电压、I为束流、d为电子束直径,k为试样热导率。对于导热性差的试样,k较低,ΔT有时能接近1000K,很容易对试样造成损伤。比如有时候对高分子样品进行观察时,会发现样品在不断的变化,其实是样品受到电子束轰击造成了辐照损伤损伤,如图4-8。而经过镀膜后,可以提高热导率,降低升温程度,避免样品受到电子束辐照损伤。 图4-8 电子束辐照损伤【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【奖品公布】上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】如果要对样品进行严格的EDS定量分析,可以镀金属膜吗,为什么?(快关注“TESCAN公司”微信公众号去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息:TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看: 电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
  • 鉴知手持式显微拉曼光谱仪助力完成微量复杂样品的现场快检
    目前,普通的手持式拉曼光谱仪均可快速无损检测固体、液体。然而,并不适用于一些固体混合物,如壁画颜料、药物胶囊颗粒、宝玉石瑕疵以及现场微量残留物(药物、爆炸物、毒品等)。(图片源自网络)显微拉曼光谱仪体积较大,无法拿到现场。手持式拉曼光谱不能准确区分微量混合物中具体位点信号,受到限制。鉴知技术新推RS1500手持式物质识别仪,将显微成像功能集成在手持拉曼上,轻松完成微量复杂混合物的现场快检。(鉴知RS1500手持式物质识别仪) 针对上述复杂的现场快检场景,鉴知技术取得显微拉曼仪器小型化的创新性突破——手持拉曼RS1500手持式物质识别仪(1064nm)。该设备具有特殊的光路集成微区成像功能,能够进行被测样品区域的实时成像,并准确检测复杂样品中的特定位点,最终更好地应对现场快检的不同挑战,堪称用户的理想解决方案。 【检测示例】1、现场散落的残留粉末 棕色样品瓶的自身荧光、瓶壁的厚度以及瓶底的微量样品均会影响激光的穿透和聚焦,而鉴知技术RS1500手持式物质识别仪能对瓶底的微量样品进行实时显微成像,观测激光照射位置,并引导激光照射到样品上,从而正确聚焦完成检测。此外,鉴知技术RS1500手持式物质识别仪还利用特殊设计的光路和算法来有效去除荧光干扰,并具备更强的穿透性和去荧光能力,能进行更为准确的识别。(RS1500检测棕色样品瓶底部的微量样品)2、 混合微量样品 为检测药物胶囊内多色微小颗粒的主要成份,鉴知技术借助微区成像,令普通手持式拉曼光谱仪难以聚焦的问题迎刃而解。RS1500手持式物质识别仪检测胶囊内多色颗粒的拉曼光谱图如下图所示,结果显示具有很强的拉曼信号,主要成份为对乙酰氨基酚。(微区成像画面) (RS1500检测药物胶囊内多色颗粒谱图) (RS1500检测药物胶囊内多色颗粒视频) 更多产品详情,请点击链接!往期推荐: 缉毒演习:鉴知手持拉曼光谱仪检测毒品混合物 鉴知技术 1064手持拉曼穿透多种包装的检测合集 鉴知拉曼与红外设备助力芬太尼的现场快速检测
  • 直播邀请 | 电子样品显微制备方案及失效分析交流会
    电子样品显微制备方案及失效分析交流会会议时间2022年11月29日15:00-16:45会议内容随着电子行业产业逐渐升级,产品的技术与发展,测试要求越来越高,质量方面也不断严格把控,而电子元器件产品、IC、配件、电子中间产品、终端产品的每一个环节都至关重要。此次会议,主要针对常规以及微小电子样品的失效分析、切片制备、定位处理等进行方案介绍和案例分享。会议议程奖品多多,参者有份一等奖:京东购物卡200元,2名二等奖:商务背包,5名三等奖:保温杯,10名*凡参与抽奖未获得上述奖品者,只要填写了收货信息,均可获得精美笔记本一本报名参会* 长按识别右边二维码* 关注领拓仪器公众号可参与抽奖
  • 全新高通量光片显微镜,帮您实现活细胞长时间多样品高分辨成像!
    瑞士Viventis公司推出的高通量活细胞高分辨光片显微镜LS系列,是一款全新的光片成像平台,该设备适用于活性光敏感样品(如卵子、胚胎、类器官等)的长期成像,具有低光毒性、高分辨率等特点。高通量活细胞高分辨光片显微镜是近些年来研发的创新技术,它的照明光是与一张与成像面平行的薄薄的光片,只有焦平面的样品被照亮,而光片上下的样品不受影响。该成像系统在细胞与组织层面的实时成像对于深入理解生物学行为至关重要。尤其适合于对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。Viventis提供细胞发育过程的环境并进行实时成像Viventis的主要特点——双侧照明光片显微镜双侧照明均可以通过软件进项控制,仅需要点击鼠标就可以控制光束的平移和旋转。光片厚度仅为1.5~6 μm,且厚度可调、位置可自动校准,以适应更多的样本尺寸。配合上高NA物镜,可以实现更好的穿深,更少的伪影。另外,系统配置可见激发激光器,让用户通过检测物镜,对自定义样品中感兴趣的区域进行快速定位成像操作。高通量,多样品同时成像Viventis光片显微镜可以快速对多个样品进行同时成像而无需更换样品,支持绝大多数胚胎样品并可并排摆放,方便添加培养基、加药等操作。Viventis的样本槽大于50 mm,对于并排的样本系统也可以连续采集成像。对于细胞球、类器官等本身较易漂浮的样本,Viventis也提供了较好的解决方案,采用人工基底膜/水凝胶嵌入式等方案,实现上述样本的稳定成像。软件界面简洁 易于上手Viventis系统对于光片成像的初学者来说操作简单,多种模式一键切换,软件界面简洁,可以帮助您快速的建立自己的光片成像之旅,打开lightsheet大门,助力科研之路。典型文章:[1] Science. Mechanism of spindle pole organization and instability in human oocytes.2022[2] Nature. Left–right symmetry of zebrafish embryos requires somite surface tension.2022[3] Nature cell biology. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. 2021[4] Cell Stem Cell. Capturing Cardiogenesis in Gastruloids. 2021[5] Science. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. 2019[6] Nature. Self-organization and symmetry breaking in intestinal organoid development. 2019典型国外用户:国内用户:相关产品1、高通量活细胞高分辨光片显微镜
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置
    Hello,好久不见距离上次更新已有时日,这段时间小编没密集更新是因为知道大家在忙着立新年flag!但2018年的计划一定不能少的是跟随tescan电镜学堂持续输入电镜知识,稳定输出科研成果! 这里是TESCAN电镜学堂第7期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 特殊试样的处理对于一些特殊的试样,除了常规制样方法外,可能还需要一定的特殊处理。§1. 金相试样金相试样要经过严格的抛光程序,为了在电镜下观察能有更好的衬度,需要进行一定的腐蚀处理。不同的金属需要不同的腐蚀剂以及腐蚀时间,这需要去慢慢摸索。腐蚀不能过度,否则表面会有太多的腐蚀坑,此外,腐蚀剂要清洗干净。§2. 生物试样对于生物样品,为了保证在电镜样品室的高真空下不发生变形而保持原貌,需要对试样进行一系列的处理,需要经过清洗、固定、脱水、干燥等步骤。① 清洗:试样取材好后可用生理盐水或缓冲液清洗,或用5%的苏打水清洗;用超声震荡或酶消化的方法进行处理。② 固定:常用戊二醛及锇酸双固定。③ 脱水:样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。④ 干燥:可用空气干燥法、临界点干燥、冷冻干燥等方法。§3. 石墨烯试样石墨烯是近年特别火热的样品,不过利用扫描电镜进行石墨烯的观察需要一定的技巧,否则难以有很好的说服力。理论上石墨烯厚度非常小,在扫描电镜下难以有很好的衬度。而那些铺展的很平整,却有着很好的明暗衬度的试样,本人觉得只能算是石墨薄片而不能算石墨烯。扫描电镜分辨率还不足以观察到石墨烯的碳原子结构,也没有探测器能证明其碳结构,不过扫描电镜可以定性判断其膜层的厚薄,当然这需要特殊的制样。我们可先对硅片这种平整基底镀上一层较厚的金膜,然后将石墨烯分散镀金硅片上。我们对镀金的形貌有着非常清晰的认识,如果表面有一层石墨烯的话,金膜就会像蒙了一层纱一样。石墨烯膜层越薄,金颗粒越清楚;反之如果金颗粒越不清楚,则膜层越厚;当完全看不见金颗粒时,则膜层已经相当厚,完全不算是石墨烯了,这点可以通过蒙特卡罗模拟来得到印证。之所以选择先镀金,就是让被覆盖的与未被覆盖的区域进行一个对比,这样可以定性判断石墨烯的膜厚。图4-9 石墨烯分散在硅片和镀金硅片上的对比如图4-9,左边四张图片是石墨烯直接分散在硅片上,因为没有参照物,只能判断出不同区域的厚薄,而这些厚薄是否能达到石墨烯要求的水准则难以判断;而右边六张图片是分散在镀金硅片上的图片,我们很容易通过与空白处金颗粒的对比来大致判断其膜层厚度是否符合石墨烯的要求。第三节 试样的放置问题 试样在放入电镜室中需要满足一定的几何条件。首先,一次性放置多个样品时,尽量保持高度一致。遇到高度不等的情况,可以将较矮的样品放置在加高台上,如图4-10。将不同高度的样品垫平。 图4-10gm-163-r样品台其次,样品如果表面凹凸不平,如断口材料或楔形样品,在放置样品的时候尽量将要观察的区域的朝着eds或etd的方向,避免在电镜观察时,因为观察面背向探测器而有强烈的阴影或者没有eds信号。还有,对于截面样品观察,有时候并非在90度的绝对垂直下效果最好。特别是对于一些膜面质量不是很好有点撕裂的薄膜,有时候倾转一点的角度,在非正入射的条件下有更好的立体感和景深,有时候更能观察到膜面和基体的结合情况。不过在进行测量的时候要记住需要进行倾斜修正。如图4-11上图,在正90度下虽然能观察到膜面,但是膜面质量的好坏及整体情况却无法判断,而在70度下则能看出膜层的整体情况。将倍数放大后,也可看到70度下有更好的景深和立体感,也更有助于进行膜面和基底结合的判断。 图4-11 膜的截面在90度和70度倾转下的对比再如图4-12,试样为两层同样成分的薄膜,如果在正90度下进行观察,膜之间的界线很不明显,而如果旋转到55度,可以发现膜在断裂过程中有发生“错位”地方,这个角度的观察使得对膜层的观察更加清楚。图4-12 双层膜的截面在90度和55度倾转下的对比特别是一些半导体的截面样品,时常都是先在非正入射的情况下进行观察,再转到90度的情况下进行测量。?福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。?奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】截面样品观察,是否一定是在90°的绝对垂直下效果最好,为什么?(快去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息: TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统
  • 电镜样品前处理和X射线显微镜无损成像技术交流会顺利举行
    10月13日,电镜样品前处理和X射线显微镜无损成像技术交流会在我校分析测试中心顺利举行。电镜技术已经运用于材料科学、生命科学等各个领域,但不同样品电镜制样方法不同,同一样品不同研究目的制样方法也不同,要想获得样品的真实形貌,电镜样品前处理技术至关重要。X射线显微镜能够以亚微米的细节分辨能力对被检测对象内部结构进行无损的三维成像,是一种新型的检测手段,在材料科学、生命科学、地球科学、电子半导体材料等方面得到越来越多的关注。为加强技术交流,分享先进的制样方法及无损检测技术,分析测试中心(中心实验室)联合徕卡显微系统(上海)贸易有限公司/广州领拓仪器科技有限公司、天津三英精密仪器股份有限公司,共同举办此次技术交流会。徕卡应用专家包沈源博士和领拓制样专家黄晓晔共同担任本次培训的主讲人。参加交流会的有来自化学与精细化工广东省实验室、广东以色列理工学学院、医学院、理学院、化学化工学院等单位的师生,总计90余人。本次交流会让参与的师生对不同的样品前处理设备和无损成像技术有了更多的了解,也为大家提供了一个广泛交流的机会。让刚进入汕大的研究生踏入了科研之路的第一步,让已经展开实验的老生重新认识样品制备的重要性,对今后的样品制备和科学研究大有收获。
  • 经验分享:透射电子显微镜应用领域及样品制备方法
    透射电子显微镜是使用较为广泛的一类电镜,具有分辨率高、可与其他技术联用的优点。已广泛应用于医学、生物学等各个研究领域,成为组织学、病理学、解剖学以及临床病理诊断的重要工具之一。常规电镜样品制备包括常温化学双固定、常温脱水包埋、常规超薄切片、普通电镜观察几个步骤。样品制备过程历时约一周,超薄切片经醋酸双氧铀和柠檬酸铅染色后,电镜观察。所有操作均按照以下流程进行。一、试剂0.2 mol/ L磷酸盐缓冲液Na 2 HPO 4 2H 2 O 35.61 g 或Na 2 HPO 4 7H 2 O 53.65 g / Na 2 HPO 4 12H 2 O 71.64 gNaH 2 PO 2 H 2 O 27.60 g 或NaH 2 PO 4 2H 2 O 31.21 g加双蒸水(ddH2O)到1000 mL0.1 mol/ L磷酸盐缓冲液(PBS)0.2 mol/ L磷酸盐缓冲液 250 mL加双蒸水到500 mL2 % 低温琼脂低温琼脂 1.0 g加双蒸水到 50 mL加热到沸腾,溶液均匀后备用1 % 戊二醛固定液25 %(m/v)戊二醛水溶液 2 mL0.2 mol/ L磷酸盐缓冲液 25 mL加双蒸水到50 mL1 % 锇酸固定液2 %(m/v)锇酸水溶液 10 mL0.2 mol/ L磷酸盐缓冲液 10 mL包埋剂A液Epon 812 树脂 50 mL十二烷基琥珀酸酐(modecenyl succinic anhydride, DDSA) 80 mL包埋剂B液Epon 812 树脂 50 mL六甲酸酐(methyl nadic anhydride, MNA) 44.5 mL2 , 4 , 6 - 三甲氨基甲基苯酚( 2, 4, 6 - tridimethylamino methyl phenol, DMP-30 )甲苯胺蓝染液甲苯胺蓝 1 g1 mol/ L NaOH 10 mL加双蒸水到50 mL混匀过滤后使用1 % 醋酸双氧铀染液醋酸双氧铀 0.2 g加双蒸水到10 mL封口膜封口,4℃避光保存1 % 柠檬酸铅染液硝酸铅 0.265 g柠檬酸钠(含2分子结晶水) 0.352 g加双蒸水到10 mL①① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。封口膜封口,4℃保存仪器修块机 Leica EM TRIM切片机 Leica EM UC6光学显微镜 Nikon 80i 及配套拍照系统DS-L1透射电子显微镜 JEOL-1230Gatan Bioscan Camera 792低电压透射电子显微镜 JEM-1230二、实验流程一、 取材与固定A. 植物样品1. 自来水冲洗表面泥尘后,使用灭菌水清洗2-3次,置于铺有预湿滤纸的培养皿中。2. 使用干净锋利的刀片切取目标材料,所取材料体积不大于3 mm3。切取样品时应注意动作迅速、减小损伤,避免来回切拉;使用的灭菌水及器具应4℃预冷,并在操作中尽量保持低温以降低组织细胞活性。3. 将切下材料放入装有预冷的戊二醛固定液的青霉素小瓶中后抽气,抽几次后轻摇小瓶,并打开瓶盖。重复2-3次,直到样品沉入瓶底。4. 室温静置1h,或摇床轻摇1h。5. PBS清洗3次,10min/次。6. 1%锇酸固定液固定1h。7. PBS清洗3次,10min/次。B. 动物样品1. 4℃预冷生理盐水冲洗组织块,迅速切取组织块,体积不大于3 mm32. 将切取的组织块投入装有预冷戊二醛固定液的青霉素小瓶中,并抽气直至样品沉底。3. 室温静置1h,或摇床轻摇1h。4. PBS清洗3次,10 min/次。5. 1%锇酸固定液固定1 h。6. PBS清洗3次,10 min/次。C. 单层培养细胞或悬浮培养细胞样品②1. 3000 rpm离心5 min,收集细胞样品,尽量多的吸弃培养液上清。2. 加入4℃预冷PBS液,充分吹吸混匀,静置4 min,3000 rpm离心5 min,吸弃上清。① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。3. 重复步骤2一次。4. 加入预冷的血清或蛋清,充分吹吸混匀,3000 rpm离心10 min,吸弃大部分上清,留少部分,吹吸悬浮沉淀细胞。(或离心后吸弃上清,留少部分上清,不悬浮沉淀细胞,视样品浓度而定)5. 缓慢加入戊二醛固定液,小心放入4℃冰箱,固定过夜。6. 吸弃上清,刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的血清包埋块。7. 使用干净的单面刀片或手术刀,将血清包埋块切成2 mm3左右的小块,取3-5个富集细胞样品效果较好的包埋小块继续下面实验。8. PBS清洗3次,10 min/次。9. 1%锇酸固定液固定1 h。10. PBS清洗3次,10 min/次。D. 藻类及其他游离培养样品1. 吸取2%低温琼脂液200μL到0.2mL离心管,并将离线管置于冰上,取10μL枪头迅速插入琼脂中并保持离心管竖直,且枪头竖直靠中的包裹在琼脂中。2. 静置1 min,待琼脂凝固后,小心拔出枪头,形成琼脂空腔,待用。3. 3000 rpm离心5 min,收集样品,尽量多的吸弃培养液上清。4. 加入4℃预冷PBS液,充分吹吸混匀,静置4min,3000 rpm离心5min,吸弃上清。5. 重复步骤2清洗,吸弃大部分上清,留极少部分上清液,吹吸悬浮样品。6. 使用10μL 移液器小心将样品加入已经制备好的琼脂空腔中,使样品充满空腔大部分,添加过程中尽量避免气泡出现。7. 吸取50μL溶化的琼脂,快速滴加到空腔琼脂上封口,冰浴5 min,待琼脂完全凝固。8. 使用单面刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的琼脂包埋块,稍作修葺。9. PBS清洗3次,10 min/次。10. 1%锇酸固定液固定1 h。11. PBS清洗3次,10 min/次。二、 脱水1. 按丙酮与灭菌水体积比3:7配制30%脱水剂。吸弃样品管/瓶中的PBS,快速加入现配的脱水剂(脱水换液过程禁止出现样品暴露空气中现象,可不全部吸完,略有剩余,使样品浸润;动作应迅速准确),室温放置或摇床轻摇45 min。加入按30%、50%、70%、90%、100%(v/v)的浓度梯度进行脱水。2. 配制50%脱水剂,快速换液,室温轻摇45 min。3. 配制70%脱水剂,快速换液,室温轻摇45 min。4. 配制90%脱水剂,快速换液,室温轻摇45 min。5. 使用纯丙酮快速换液,室温轻摇30 min③。6. 重复步骤5一次。三、 渗透包埋在此步脱水操作完成后即可开始配制渗透用包埋剂,以免安排不周。样品浸泡在纯丙酮中时间不宜过久,以免造成样品较脆,不利于超薄切片。1. 配制渗透用树脂包埋剂1) 取干净的10 mL注射器,拔去活塞,用封闭针头堵住注射口,放于通风橱中。2) 小心倾倒B液9 mL到注射器中;然后再小心倾倒A液1 mL。3) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色均匀,无丝状液体。4) 小心拔去活塞,通风橱中操作,缓慢滴加14滴DMP-30。5) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色完全均匀,无丝絮状分色,竖直放置待用。2. 按照包埋剂与丙酮体积比3:7配制30%渗透剂,快速吸弃样品管中纯丙酮并加入渗透剂,轻摇渗透3 h。3. 按照包埋剂与丙酮体积比7:3配制70%渗透剂,快速换液,轻摇渗透过夜。4. 重新配制包埋剂,并小心推按注射器,将包埋剂挤到包埋模具中至液面略凸。5. 解剖针挑取样品到纯包埋剂中,渗透3 h。6. 小心挑取样品,滤纸上稍微沾下吸弃部分粘附的包埋剂,轻轻放置到未渗透过样品的包埋孔中,小心将样品按到底,摆放好位置。记录各样品对应包埋块编号。7. 梯度温度聚合包埋1) 37℃烘箱中12 h,期间定时观察样品有无漂移现象,如有,则再次小心摆放样品位置。2) 45℃烘箱中12 h。3) 60℃烘箱中24 h。四、 修块与切片1. 拿到包埋块后检查样品位置是否得当,选取位置好的包埋块优先进行修块、切片。2. 粗修包埋块1) 使用六角扳手将包埋块固定在样品头上,露出长度合适。2) 将样品头固定在修块机上,体视镜观察修块,分四个方向将包埋块头部多余的包埋剂修去,暴露出组织块。3) 使用锋利的单面刀片修去组织块周围毛刺的包埋剂,使其四边光滑清晰。4) 卸下样品头装至切片机上,使用玻璃刀修片,直至样品表面光滑清晰。3. 半薄切片1) 将粘有水槽的玻璃刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见900nm厚度切片反光为亮绿色。6) 待有切片下来形成4-6片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,放到干净载玻片上,酒精灯略微加热,使水蒸干,并对着光亮用记号笔标示切片所在位置。4. 半薄切片染色1) 吸取20μL甲苯胺蓝染液,滴加到载玻片放有切片的位置,室温静置30 s 。2) 去离子水冲洗玻片,直至不再有蓝色。吸水纸上沥干,酒精灯略微加热,加速切片上的水分蒸发。3) 显微镜观察切片质量和样品位置。5. 精修包埋块1) 移去装有水槽的玻璃刀,取下装有包埋块的样品头,装至修块机上。2) 根据半薄切片结果,使用新的锋利刀口,小心修理包埋块四边,使其尽可能的光滑、平整。6. 超薄切片1) 将钻石刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的干涉光谱颜色一致;继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见70nm厚度切片反光为亮灰色及浅灰色。6) 待有切片下来形成10-20片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,轻轻放到干净载膜铜网上,用尖角滤纸靠近铜网边缘缓慢吸干水分。8) 轻轻移去捞片环,将载有切片的铜网放到铺有滤纸的平皿中,晾干待染色观察。五、 染色1. 醋酸双氧铀染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。2) 将放有切片的载网小心放到染色盘上,有切片面靠上,并稍微用镊子按载网边缘,使其与染色盘接触粘附牢固。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色30 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。6) 重复清洗2次。2. 柠檬酸铅染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。④2) 在放置染色盘的平皿中放入2片固体NaOH,用以吸收平皿中CO2气体。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色8 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。连续染色时,载网不需要从染色盘上拿下,清洗后直接进行铅染即可,但是铅染液要现用现取。6) 重复清洗2次。7) 小心夹取载网,放置到铺有滤纸的干净平皿中,晾干待电镜观察。六、 电镜观察1. 取出样品杆,打开样品夹,小心放入载网,合上样品夹,并转动样品杆,轻敲确保样品夹已准确固定载网。2. 将样品杆插入透射电镜样品室,开始抽气。3. 打开灯丝开关,等待检测电流出现后,打开观察窗开始观察。4. 先在低倍下找到切片,再高倍观察切片,寻找待看目标,仔细对焦。5. 将切片目标区域遇到观察窗中间后,调整灯丝电流密度为3.8 pA/cm2。6. 插入拍照CCD,Start View,微调焦距,Start Acquire 拍照。7. 拍照完毕,按格式需求保存照片到指定文件夹。8. 使用专用写保护闪存盘拷贝数据到公共电脑观察、使用。三、应用领域1、材料领域材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结 构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。2、物理学领域在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使透射电子显微镜在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,透射电子显微镜结合电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。3、化学领域在化学领域,原位透射电子显微镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电子显微镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料Z常用的表征手段之一。4、生物学领域在生物学领域,X射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2nm,但是其各有局限。X射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。
  • 环境型原子力显微镜和扫描电镜联用 助力检测橡胶样品
    设备: 日立环境型原子力显微镜 AFM5300E   日立扫描电子显微镜 SU3500背景及目的SEM是检测电子束扫描样品所生成的2次电子,背闪射电子,特征X射线等信号,得出样品结构,成分,结晶特性,元素分布等信息。另一方面,SPM是利用探针和样品表面的相互作用,表征高精度样品形貌及硬度和摩擦力,吸附力等敏感的力学物理特性及电流,电气阻抗,表层电位,压电特性,磁性等电磁物理特性。在这里我们介绍,包含氧化铅和硫磺的橡胶样品的SEM背闪射电子图像和X射线面分布像及利用SPM的形貌像(AFM像)和相位像(Phase像)的观察结果。1) Phase像根据样品表面的硬度和吸附力对比,利用共振悬臂的相位变化成像物理特性的方法。图1 SPM、SEM的检测信息和橡胶样品中的应用2) 观察结果图2 橡胶样品的SEM、SPM观察同一视野结构观察在背闪射电子像(BSE像)里重元素的对比度高,EDX元素分析得知这个区域含有铅元素和氧元素。SPM的Phase像观测中我们选用两类橡胶的弹性有较大差别的冷却温度-10℃,致使微区当中明显区分两种橡胶分布。SEM和SPM联系起来,表面的形貌和元素,结构,各种物理特性(力学特性和电磁特性)的面分析信息相结合,给基础研究,产品研发等提供更多观察及分析手段。 关于日立环境型原子力显微镜 AFM5300E,请点击:http://www.instrument.com.cn/netshow/SH102446/C244320.htm关于日立扫描电子显微镜 SU3500,请点击:http://www.instrument.com.cn/netshow/SH102446/C168115.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 牛津仪器发布全新大样品原子力显微镜Jupiter XR
    p  strong仪器信息网讯/strong 2月27日,牛津仪器Asylum Research宣布推出新型原子力显微镜(AFM)——Jupiter XR™ AFM,这是一款能够利用单一扫描器同时提供全自动、多功能、高扫描速度和高精度的大样品AFM。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/fcb4ea90-3952-4695-954b-639d2f0cb1fe.jpg" title="000.jpg" alt="000.jpg" style="width: 300px height: 259px " width="300" vspace="0" height="259" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "全新大样品原子力显微镜Jupiter XR™ AFM/span/pp  Jupiter XR™ 提供超过210 mm的样品空间,可呈现更高分辨率,更快速获得结果,用户操作更简单,并且同时满足学术研究和工业研发需求。通过Asylum Research近20年的AFM技术创新历史积累,Jupiter XR™ 将大样品原子力显微镜的性能提升至新高度。/pp  “多年来,用户们一直期望我们能够提供一款大样品AFM,我们也非常高兴这款新推出的Jupiter从性能和易用性等多个方面都能满足用户的需求。”strong Asylum Research总裁Roger Proksch博士表示,/strong“创立至今,Asylum Research始终致力于不断推动AFM技术的极限,Jupiter XR™ 不但具备了一系列Asylum Research独特核心技术——低噪声位置传感器、Cypher AFM出色的分辨率和速度、新的纳米力学测量技术以及blueDrive™ 光热激发轻敲技术等,同时也保持了Asylum Research产品一贯的可靠性和专业的客户支持。”/pp  Jupiter XR™ 具有可高速精准定位的210 mm样品台,可对整个样品任意位置进行精准定位 简单直观的软件操作界面,并且具备全自动的激光和探测器对准,自动智能优化成像参数,自动多点成像和分析 以及Asylum Research独特的blueDrive™ 光热激发轻敲模式,可以大大提高探针尖端寿命和测量可重复性。/pp  与其他Asylum Research原子力显微镜系列产品一样,Jupiter XR™ 具备了广泛的应用和多样的配件体系等特点,并采用模块化设计便于将来扩展,可用于科学研究、平台实验中心、大批量工业应用和故障分析实验室等领域。无论身处怎样的研究领域,Jupiter XR™ 均可凭借其易用性、高速扫描、高性能和灵活性游刃有余。/p
  • 新品 | 为NEXTA DSC系列推出Real View®偏光显微样品观察装置,可进行高精度结构分析
    2024年3月6日,日立高新技术集团旗下的日立分析仪器有限公司(以下简称为“日立分析仪器”)推出了可在NEXTA DSC系列热分析仪上使用的偏光显微镜配件。NEXTA DSC被用于不同的热分析领域,包括聚合物、制药、电子、化学、学术研究、石油和天然气、食品和金属等,以对热流进行测量从而获得材料特性。其可测量熔点、玻璃化转变和结晶等热性能。在开发高性能材料的行业和研究设施中,作为日立NEXTA DSC可选配件的Real View®偏光显微样品观察装置用途广泛,可扩展应用到样品晶体取向、多层薄膜质量控制和故障分析等。高级显微分析NEXTA DSC的Real View®偏光显微样品观察装置配备一个2,000万像素的高分辨率摄像头,与标准Real View®摄像系统相比,分辨率提高了10倍,数码变焦倍率提高了50倍。此外,可控偏光技术增强了图像的对比度,使操作人员能够探索样品的方向性,即各向异性。摄像头装置具有专门为偏光观测设计的专用图像处理功能。该系统采用与NEXTA DSC系列类似的简单操作,可对多层薄膜进行逐层熔点分析。这些功能有助于对各种材料进行高精度结构分析,能够清晰地观测微小区域,包括多层薄膜质量的异常。日立分析仪器热分析仪产品经理Olivier Savard表示:“NEXTA DSC系列的Real View®偏光显微样品观察装置引入了高精度结构分析的创新方法,为需要增强材料特征的公司和研究实验室扩展了差示扫描量热仪的功能。”日立高新科学热分析仪产品经理西村晋哉表示:“偏光显微样品观察装置采用由日立创新开发的图像处理功能对微区域进行热分析。该产品为研发和质量保证/质量控制市场提供了创新应用和解决方案。"*“NEXTA”和“Real View”是日立分析仪器在日本、美国、欧盟及其他国家/地区的注册商标。
  • 泰安市纺织服装产业链商会(协会)发布《纺织纤维鉴别拉曼光谱法测试用桑蚕丝织物标准样品》团体标准
    根据《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定,泰安市纺织服装产业链商会(协会)联合山东纺织工程学会批准发布《纺织纤维鉴别拉曼光谱法测试用桑蚕丝织物标准样品》(T/TGIC 001-2023 T/SDTES 016-2023),现予以公布。 泰安市纺织服装产业链商会(协会)标准化技术委员会2023年10月18日关于发布《纺织纤维鉴别拉曼光谱法测试用桑蚕丝织物标准样品》团体标准的通知.pdf
  • 不透明液体中样品也能扫!突破限制的原子力显微镜, 只有手掌大小!
    众所周知,原子力显微镜(AFM)对液体中的样品表征十分重要。然而,传统的基于激光反射探测原理的AFM对液体中样品表征存在着诸多不尽如人意的方面。 先,制备传统AFM所用液体样品的时间较长,对扫描样品的尺寸限制多。为了避免液体对传统AFM的激光反射光路产生影响,人们通常会把测试样品通过多个步骤制备在AFM专用的液体腔中。整个制备流程复杂费时。同时,传统的AFM通常不能对较大尺寸的样品进行扫描,例如厘米骨骼样品。这大地限制了医学等学科对各类器官组织的研究。 二,传统的AFM在对液体中样品的表征模式方面存在一定的限制。由于传统AFM在扫描液体中的样品时可能会涉及到AFM探针在大气和液体两个相中的转换。为了避免探针在液气两相转换过程中所出现的问题,基于激光反射原理的AFM在测量液体中的样品时通常使用接触模式(Contact Model),不使用轻敲模式(Tapping Model)。然而对于表面敏感的样品而言,接触模式在扫描过程中接触样品表面时间长,对样品扫描时施加的力大,容易损坏样品表面形貌。 三,传统基于激光反射原理的AFM不能对不透明液体中的样品进行扫描表征。由于传统AFM的成像机理,这类的AFM不可能把探针伸入不透明液体,然后对液体中的样品进行扫描。然而,在生物学等领域,把探针伸入不透明液体对样品进行扫描又是非常必要的研究。因为,细胞在不透明液体(例如血液)和透明缓释液中的状态是不一样的。 四,传统的AFM由于体积原因很难和其他表征设备联用,例如与荧光显微镜进行协同原位表征。 为了解决传统基于激光反射原理AFM在液体中测量样品过程中所遇到的问题。Quantum Design公司推出了基于全电系统的生物学AFM-AFSEM。使用AFSEM对液体中样品表征时,无需繁琐的制样过程,扫描探针进入液体中直接扫描即可[1]。在扫描模式上,AFSEM可在对液体中样品扫描时提供接触和轻敲两种模式,扫描过程中尽可能减少对样品的损伤。由于AFSEM是一款基于全电系统的AFM,可以在不透明液体中对样品进行扫描。突破性地解决了以往AFM不能在不透明液体中扫描样品这一难题。后,由于AFSEM的体积仅有手掌大小,如图1所示,AFSEM可以与各种光学显微,电子显微镜,FIB等多平台结合。图1. AFSEM原子力显微镜实物图。A) AFSEM的两种型号。左侧为AFSEM 1.0,右侧为AFSEM Nano。B)AFSEM 1.0尺寸大小示意图。图2. AFSEM在1:8(血液:水)稀释的血液中扫描样品的结果。A) AFSEM在液体中扫描样品的特写。B)在液体中获得的血红细胞血影的形貌图。图中比例尺为10 μm。 图3. 在不同透明度液体中扫描TGZ2 AFM标样的结果。A)表样浸在牛奶液体中。B)牛奶液体中获得的TGZ2 AFM扫描结果。图中比例尺为为10 μm。C)在去离子水液体中扫描标样的结果。D)血清中扫描标样的结果。E)未稀释血液中扫描标样结果。 图4. AFSEM在不同液体中扫描HS-500MG AFM XYZ标准样的结果。图中上半部分为去离子水中的扫描结果,下半部分为在未稀释的人体血液中获得的结果。扫描速度从左至右从30 μm/s增加到750 μm/s。 图5. 装在SEM中的AFSEM对大尺寸骨骼样本进行多维度原位表征。A)AFSEM对大尺寸骨骼样品表征示意图。B)把AFSEM放在SEM样品腔体中。C)在SEM中获得骨骼样品原位形貌信息示意图。D)C图中白色虚线部分的放大图。E)D图中彩色部分的三维立体结果。 Quantum Design公司拥有一只强大专业的定制化团队,可以根据用户的要求将AFSEM与光学显微镜,电子扫描显微镜,聚焦离子束加工设备,荧光显微镜等设备进行整合。下图为2021年9月Quantum Design公司为斯坦福大学定制的AFSEM系统[2]。图6. 2021年9月Quantum Design公司为斯坦福大学安装定制的AFSEM系统。A)斯坦福大学Fritz Prince教授和Quantum Design工程师在定制AFSEM系统前合影。B)为教授定制的AFSEM系统。定制系统方案为在FEI Teneo电子显微镜的样品腔中将AFSEM与Kleidiek八探针电学测量平台进行整合。 参考文献:[1]. Michael Leitner, Hannah Seferovic, Sarah Stainer, et al.Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine. Sensors, 2020,20,3715.[2]. https://www.qd-microscopy.com/2021-august-microscopy-virtual-conference-2021/
  • 生物样品成像新突破!低电压台式透射电子显微镜落户上海大学附属南通医院老年医学研究院
    低电压台式透射电子显微镜-LVEM25是由Delong Instrument公司研发推出的新一代生物友好型透射电子显微镜,设备采用25kV的加速电压设计,对生物样品不会造成任何损伤,摆脱了染液与负染过程本身可能对生物样品结构造成的损害,可以高效、高衬度地对生物样品进行透射电镜成像。 近日,Quantum Design中国顺利将低电压台式透射电子显微镜-LVEM25安装于上海大学附属南通医院老年医学研究院,并为用户进行详细的仪器介绍和操作培训,其优越的生物样品、纳米材料表征特点将协助上海大学附属南通医院在老年病研究、外泌体等研究方向取得进一步发展。 上海大学附属南通医院低电压台式透射电子显微镜-LVEM25上海大学附属南通医院低电压台式透射电子显微镜-LVEM25培训现场上海大学附属南通医院低电压台式透射电子显微镜-LVEM25培训现场 Delong Instrument公司推出的LVEM低电压台式透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,为生物样品的电镜成像提供便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.0nm的图像分辨率。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。部分高分文献:[1] Babaei-Ghazvini A , Cudmore B , Dunlop M J , et al. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties[J]. Carbohydrate Polymers, 2020, 247:116688.[2]Process Pathway Controlled Evolution of Phase and Van‐der‐Waals Epitaxy in In/In2O3 on Graphene Heterostructures[J]. Advanced Functional Materials, 2020.[3] Sun C , Ma Q , Yin J , et al. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling[J]. Experimental & Molecular Medicine.[4] Wang H , Maimaitiaili R , Yao J , et al. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis[J]. Hypertension, 2021.[5] Weiss M , Fan J , Claudel M , et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential[J]. Journal of Nanobiotechnology, 2021, 19(1).[6] Su, Yu, et al. "Steam disinfection releases micro (nano) plastics from siliconerubber baby teats as examined by optical photothermal infrared microspectroscopy." Nature nanotechnology 17.1 (2022): 76-85. 部分用户单位:
  • Park 原子力显微镜发布AFM新品:针对新一代显示器,最大样品2200 mm!
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 6月23日,知名原子力显微镜(AFM)制造商Park原子力显微镜公司(Park Systems Inc.)宣布推出高分辨率、自动化原子力显微镜新品——Park NX-TSH,据介绍,Park NX-TSH的/spanspan style="text-indent: 2em color: rgb(0, 112, 192) "龙门架设计/spanspan style="text-indent: 2em "平板式探针扫描器专为最新一代显示器工厂的应用需求研发设计,/spanspan style="text-indent: 2em color: rgb(0, 112, 192) "最大样品可以测到2200 mm/spanspan style="text-indent: 2em "。另外,其模块化设计还可在提供样品3D形貌的同时提供微区电流测量。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 405px " src="https://img1.17img.cn/17img/images/202006/uepic/c86270b5-68fa-4a86-aa11-aeafcc66248d.jpg" title="1.png" alt="1.png" width="450" height="405" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(0, 112, 192) "strong产品研发背景:迎合OLED新兴市场带来照明和屏幕技术的需求/strong/span/pp style="text-indent: 2em "有机发光二极管(OLED)技术由于其扁平、薄如纸、柔韧性,并且具有漫射光的能力,该技术有望在未来几年显著推动市场增长。/pp style="text-indent: 2em "数据显示,OLED面板市场在2020-2025年期间将以12.9%的复合年增长率增长,到2025年将达到455.5亿片。尽管受全球新型冠状病毒疫情影响而总体上将出现小幅下滑,但业内专家仍预计OLED面板将成为全球采用的一种重要的显示技术趋势,且屏幕尺寸将更大,分辨率将提高到8K,并将具有新的外形规格。/pp style="text-indent: 2em "为了迎合OLED市场的需求,原子力显微镜制造商Park 原子力显微镜开发了Park NX-TSH,扩大了其Gen8 +和所有大型平板显示器的AFM工具。为制造下一代平板显示器制造商而开发,以克服300 mm样品尺寸的限制。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strongPark NX-TSH:用于大样品分析,最大样品2200 mm!/strong/span/pp style="text-indent: 2em "尖端扫描头(TSH)是一种自动移动的扫描头,适用于对OLED,LCD,光子学用于最大尺寸达2200 mm的大样品进行工业AFM测量,用于大样品分析。自动的尖端扫描头采用气载台技术,可将x,y,z扫描仪直接移动到基板上的所需位置。/pp style="text-indent: 2em "“Park NX-TSH专为生产制造下一代平板显示器的半导体厂(fab)开发设计,并克服了300 mm的门槛限制。”strongPark市场部副总裁Keibock Lee谈道/strong。/pp style="text-indent: 2em "自动化的Park NX-TSH系统通过龙门式尖端扫描仪系统克服了纳米计量学的挑战,该系统可直接移动到样品上的某个位置,并生成粗糙度测量,台阶高度测量,临界尺寸和侧壁测量的高分辨率图像。/pp style="text-indent: 2em "Park NX-TSH可以在x,y和z方向上扫描针尖,最大扫描方向为100 µ m x 100μm(x-y方向),z方向为15μm,并具有灵活的卡盘,可容纳大型和重型样品。随着对更大尺寸的平板显示器的需求增加到65英寸,75英寸甚至更多。Park NX-TSH通过自动尖端扫描系统克服了这些挑战,而在龙门式尖端扫描仪系统中克服了纳米计量学的挑战。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 374px " src="https://img1.17img.cn/17img/images/202006/uepic/24d9eaff-04cb-43a0-a66b-5534c4a10458.jpg" title="2.png" alt="2.png" width="450" height="374" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "Park NX-TSH专为Gen8+和所有大平板显示器研发,不仅能够进行纳米级尺寸测量,也可进行微区电性测试。同时,Park NX-TSH还可以兼容多种型号机械手臂,实现自动化测量。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 295px " src="https://img1.17img.cn/17img/images/202006/uepic/4a5a2c6d-45a6-4703-9155-50b765639ccd.jpg" title="3.png" alt="3.png" width="450" height="295" border="0" vspace="0"//pp style="text-indent: 2em "该全自动Park NX-TSH系统专为超大样品量身订造,扫描器可以固定在龙门架上,并能提供高分辨率的粗糙度测量,步长测量,临界尺寸和侧壁测量。/pp style="text-indent: 2em "Park NX-TSH将样品固定在样品卡盘上,连接到机架的尖端扫描头移动到表面样品的测量位置。这也使得Park NX-TSH尖端扫描头系统克服了样品尺寸和重量的限制。/pp style="text-indent: 2em "原子力显微镜是一种准确、无损的纳米级样品测量方法,使用Park NX-TSH,可以在龙门式桥架上的OLED,LCD等上获得可靠的高分辨率AFM图像,从而系统的提高生产率和质量。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong值得关注的是,/strong/spanPark 原子力显微镜将参加6月27日-29日上海新国际博览中心举办的Semicon China,并在展位E7549上现场演示新品Park NX-TSH和NX-Photomask,并将在稍后举行的SEMICON West展会上进行线上产品展示秀。届时,大家感兴趣可以现场观摩咨询。span style="color: rgb(127, 127, 127) "(地址:上海新国际博览中心;时间:2020年6月27-29日;展位:E7 7549)/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/202006/uepic/b4de76ec-87cf-40a1-b2d7-1e53b1e2b408.jpg" title="4.jpg" alt="4.jpg" width="450" height="283" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(0, 112, 192) "strong关于Park原子力显微镜/strong/span/pp style="text-indent: 2em "Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。/p
  • 【重磅新品】Park Systems推出200毫米样品原子力显微镜FX200
    (韩国首尔,2024年8月12日)作为市场领先的纳米计量系统制造商, Park Systems宣布推出最新的原子力显微镜 (AFM) 创新产品——Park FX200。该产品专为200毫米样品而设计,不仅可以满足研究和工业应用的需求,还有力促进了大样品AFM技术的重要发展。FX200采用先进的机械结构,可显著降低本底噪声并最小化热漂移,从而提高测量的稳定性。这一改进提升了精度和可靠性,使其在长时间操作中表现稳定。凭借更快的Z伺服性能,FX200能够快速且精准地扫描大面积样品。其增强的高功率样品视图具有自动对焦功能,无论样品类型或条件如何,该功能都能使研究人员在AFM成像中获得出色的清晰度和细节。FX200包含多种自动化功能,以简化操作并保证研究效率最大化。探头无需手动调整,即可自动识别和更换。而减小的激光光斑尺寸和自动对准功能则显著提高了测量的精度且保证了测量的一致性。同轴光学系统提供了全面的200毫米样品视图,无需拼接多幅图像即可进行全面分析。该系统在预定义坐标处能进行自动顺序测量,进一步提高了大样品区域的数据收集效率。Park FX200配备了自动AFM扫描参数设置,旨在提高用户便利性。其直观的界面使研究人员能够更专注于科学目标,而非仪器配置,从而提高了生产力和工作流程效率。此外,卓越的性能使其在广泛的研究和工业应用(包括表面形貌研究、机械性能表征和纳米尺度现象探索)中表现出色,为当代科学研究提供了可靠的数据结果。作为AFM技术的重要进展,Park FX200提供了无可比拟的精度、自动化效率和全面的样品可视化功能。更多详情,请访问:http://www.parksystems.cn/fx200 关于Park Systems Corp.(KOSDAQ: 140860)Park Systems是全球领先的原子力显微镜(AFM)、椭偏测量仪及其他纳米计量系统制造商,提供全系列产品,服务于化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师。公司的使命是推动科学家和工程师在纳米尺度上的进步,解决全球最紧迫的问题,并拓展科学发现和工程创新的边界。Park Systems的客户包括全球大多数领先的半导体公司以及亚洲、欧洲和美洲等国家研究型大学。Park Systems在韩国证券交易所(KOSDAQ)上市,公司总部位于韩国水原,并在圣克拉拉、曼海姆、巴黎、诺丁汉、北京、东京、新加坡和班加罗尔设有地区总部。
  • 易被忽视的重要技术:关于原子力显微镜样品制备技术的反思
    基于探针,电子束和光谱的成像技术在近二十年都取得了变革性的进展。技术进展主要聚焦在显微镜核心技术本身。以原子力显微镜为例,对于技术进展的关注侧重于成像模式,成像速度以及物理,化学测量的关联成像等,往往不包括试样制备因素。2021年8月18日,中国科学院沈阳自动化所苏全民研究员将在仪器信息网主办的“第三届原子力显微镜”主题网络研讨会中,线上为大家分享“试样制备在显微镜技术中的使能作用—关于原子力显微镜技术的反思”。图自Hui, F., Lanza, M.*, “Scanning probe microscopy for advanced nanoelectronics”, Nature Electronics 2, 221-229 (2019)本次报告,苏全民研究员将聚焦于各种显微镜试样制备技术的对比,并以一些试样制备为使能的技术革命为例来阐述其作用。在原子力显微镜领域中,一个普遍认识是试样无须特殊处理和制备。在适当成像模式和探针控制条件下,原子力显微镜成像的结果便是试样纳米尺度本征物性的表征。报告将力图证明正是因为缺乏试样制备的技术,原子力显微镜技术在揭示试样纳米尺度的本征性能这一核心应用目标上落后于其他显微镜技术。作为纳米尺度3维形貌的工具,原子力显微镜成功的成为其他技术的标定标准。AFM试样无须特殊制备就能够定量表征试样的本征几何形貌。但在使用AFM进行纳米物性测量时, 无论探针和试样的表面吸附,表面畸变层等都有可能导致探针相互作用的复杂化,产生非本征作用。在许多应用中,非本征作用的贡献可能大于试样本征物理和化学性能的贡献。报告将进一步分析 “非本征作用” 的物理机制,进而探讨试样制备和环境控制的重要性并展望如何通过试样制备更好的揭示各类试样纳米尺度的本征物性,使试样制备在原子力显微镜领域中也起到使能作用。报告时间:2021年8月18日上午10:00--10:30即刻报名占座:https://www.instrument.com.cn/webinar/meetings/AFM2021/报告人简介苏全民,国家特聘专家,纳米定位和测量国家标准专家组成员,全国显微镜协会理事,于2017年全职回国,现为中国科学院自动化研究所研究员和天津大学兼职教授。回国前为美国布鲁克公司高级技术总监,领导原子力显微镜(AFM)技术和系统的研发。苏全民是53 项美国授权专利的发明人,领导布鲁克原子力显微镜的技术和产品开发,曾获 R&D 100(2002)和 Microscopy Today(2012) 年度最佳产品奖。苏全民发表了80多篇论文;并组织了“Seeing at the Nanoscale”系列国际会议,担任过各种国际会议的分会主席,如MRS , M&M, AVS等,并在多个国际会议(IEEE, MRS,M&M,AVS等)做过大会,分会和专题特邀报告。或扫码报名占座关于“第三届原子力显微镜网络会议”日程
  • Protochips携原位TEM样品杆新品参加第四届电子显微镜催化学研究国际研讨会(EMCat 2016)
    2016年1月27-29日,Protochips作为赞助商之一参加了在德国柏林举办的第四届电子显微镜催化学研究国际研讨会(EMCat 2016)。该学术研讨会是利用TEM从事催化材料研究的专业学术会议,每两年在德国举办一次。本次研讨会是由德国马普学会Fritz Haber研究所无机化学部,德国马普化学能量转换研究所多相反应研究部和中国科学院沈阳材料科学国家实验室催化材料研究部共同举办,由RobertSchloegl和苏党生共同主持。Protochips携新一代热电样品杆Fusion,新一代液体样品杆Poseidon Select和气体样品杆Atmosphere出席本次会议。  新一代热电样品杆Fusion除了秉承上一代Aduro良好的温度均匀性及化学稳定性外,大大提高了热稳定性能与精度,同时进一步升级了软件控制系统,操作界面更加简洁友好。 Protochips Fusion系列热电样品杆  新一代液体样品杆Poseidon Select系列延续上一代Poseidon系列产品的设计理念,而在具体设计方面采用模块化的设计思路。具体而言就是将上一代产品中两管路或三管路设计并存的方案,统一为可进行溶液混合的三管路设计方案。根据应用方向,客户可选配流动或静态液体环境,混合或无混合管路,电化学功能模块及新近推出的加热功能模块(液体最高加热至100℃)。模块化的设计可以让使用者根据不同阶段的研究目的选配不同的功能模块。当需要升级功能应用时,只需要升级相应模块即可,无需重新购买基础样品杆。 Protochips Poseidon系列液体样品杆  Protochips Atmosphere是目前国际上*一款商业化的原位气体样品杆产品。她能够突破现有透射电镜对于真空度要求的限制,利用现有电镜平台即可完成原位气体环境及加热功能,使科研工作者能够在更宽的参数(气体,气压,温度)范围内研究材料。该样品杆能够实现通入气体在一个标准大气压(1 atm)下样品加热至1000℃时,样品依然能够保持原子级别的分辨率。同时, Atmosphere的控制软件强大但易于操作,能够自动控制温度,气体流量及数据存储,具有简洁的操作界面,引导操作者完成参数设置及运行。独特设计的温度闭环控制系统能够保证加热器的控温精度,无需担心由于通入气体造成的温度干扰。 Protochips Atmosphere系列气体样品杆  本次研讨会共计24个学术报告,其中8个是Protochips已有用户,另外还有3个Protochips用户做了Poster展报(详见下表)。本次研讨会中所有关于原位液体TEM研究工作都是基于Poseidon系列产品完成;而会议中原位气体TEM研究工作除了使用ETEM外,其余全部都是利用Atmosphere原位气体样品杆实现的。序号研究人员高校研究所Protochips产品1Stig HelvegHaldor Topsoe in DenmarkAduro2Marc WilligerFritz Haber Inst in GermanyAtmosphere3Nigel BrowningPacific Northwest National Lab in USPoseidon4Gianluigi BottonMcMaster University in CanadaPoseidon & Aduro5Krijn P. de JongUtrecht University in The NetherlandsPoseidon6Stephan SteinhauerOkinawa Inst of Technology in JapanAduro7Nejc HodnikMax Planck Inst in GermanyPoseidon8Kunio TakayanagiTokyo Inst of TechnologyPoseidon9Simona MoldovanUniv of Strasbourg in FranceAtmosphere & Poseidon10Ramzi FarraFritz Haber Inst in GermanyAtmosphere11Jaysen NelayahUniv of ParisAtmosphere & Poseidon   Protochips位于美国北卡罗来纳州,公司致力于研发、设计及生产具备*水平的电镜原位测试仪器。结合电镜的高分辨,将材料领域的动力学过程展示于研究者,并向材料研究人员提供相关技术指导和应用服务。  Protochips目前的电镜原位测试产品主要包括三个系列,Fusion,Poseidon Select和Atmosphere。都是基于MEMS理论设计完成,仪器精度高,灵活性强,在电镜原位表征领域处于领先水平。Protochips在美国有自己的研发中心和实验室,不断研究开发最新的原位纳米测试技术,扩展纳米测试技术的应用领域。
  • 纺织纤维成分快速测定的春天来了
    为保护消费者的合法权益,几乎所有的国家都规定纺织品上必须有标注原料成分标签,纺织品原料成分的定量分析是纺织品生产者、消费者、贸易关系人及各国政府监管部门十分重视的一项工作。然而,现有的纺织品成分分析方法(化学溶解法、显微镜法)存在着诸多缺点,如检测周期长、对样品的破坏性、使用有毒有害化学试剂、对检测人员的要求高等。因此,开发一种快速、简便的分析方法是一种迫切需求。 近红外光谱分析(NIR)是一种快速、高效、环保的技术,它是集光谱测量技术、计算机技术、化学计量学技术于一体的新技术,其原理是将近红外光谱所反映的样品基因、组成或物态信息与认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质。 成熟完善的模型对实现近红外的快速测定是至关重要的,为了建立更适合用户的模型,聚光科技联合江西省出入境检验检疫局收集和分析全国各出入境检验检疫局实验室的数据,确定常见纺织品的种类;收集20000多个纺织样品,进行纺织样品收集和实验条件摸索,在确定了最佳的实验条件下,进行样品的近红外光谱采集;利用化学计量学方法,结合样品的经典方法检测结果,最终建立了纺织品原料组份的分析模型;并通过实验室自我验证、外部比对和专家现场验证的方式,对模型进行优化,对优化后的模型进行大量的样品验证,模型的预测结果与经典方法的检测结果进行统计分析,证明两者不存在显著差异;将开发成熟的成果转化为方法标准。 尽管模型建立和最终方法标准的形成是相当地辛苦和费神,天道酬勤,应用光谱测量技术、计算机技术、化学计量学技术将近红外光谱所反映的纺织品纤维组分信息与经典方法测得的纤维组分信息数据相结合,采用化学计量学技术建立校正模型,然后通过对未知纺织品光谱的测定和建立的校正模型,实现快速、准确测定纺织纤维组分含量,使传统检测需要17小时的检测缩短为3分钟,研究成果“填补了近红外光谱技术在纺织品成分检测领域的国内外空白”。 本项目的另一大创新点是首次研发并制定纺织品纤维组分近红外检测方法并形成方法标准,已经对外检测出证100000余批次。“纺织品 纤维定量分析 近红外光谱法”获工信部标准立项,项目号:2013-1732T-FZ本项目不但做到了这些,还实现了: 首次建立了近红外光谱法快速测定用纺织品纤维组分样品和质控样品的制备方法,提高了校正模型的准确性和适用范围并为检测过程提供了结果准确的质控样品。 首次开发纺织品近红外检测附件,提高了纺织品纤维组分近红外检测结果的稳定性和可靠性。 首次开发针对市场纺织品不同纤维含量分布的统计软件,极大提升了近红外纺织品纤维组分检测的适应性和覆盖率。 纺织纤维近红外光谱法具有检测速度快、便于操作、不使用化学试剂、不破坏样品等优点,除在监督管理部门使用,还可应用于纺织品的质量监管、生产企业质量监控、纺织品流通等多个领域,有助于提高检测效率、有效保障产品质量。 近日中国纺织品工业联合会为保障在全国纺织行业科学研究、技术创新、成果推广、高新技术产业化中做出的突出贡献,为聚光科技颁发了科学技术进步奖。获奖证书聚光科技近红外产品家族
  • 弯月面法测量纤维润湿性
    方法介绍弯月面法是一种基于弯月面接触角测量纤维润湿性的光学方法,弯月面的接触角是由垂直浸入纤维上的毛细力而产生的。纤维接触角与哪些问题有关?许多工艺和产品都涉及纤维和液体之间的作用。通常,润湿性扮演着重要的作用。例如,在开发护发产品时,了解洗发后头发的润湿行为是研发配方过程中至关重要的一环。在复合材料中,纤维与聚合物基体相容性也可以通过润湿性来表征。除此之外,接触角对于纺织品的制造和护理也很重要。弯月面法是什么原理?采用弯月面法测量纤维时,需将附着在支架上的纤维样品垂直浸入液体中。纤维上形成的弯月面在三相点形成接触角,通过该接触角可表征纤维和液体间的润湿性。相机将全程记录浸入的过程,并且通过视频图像进行轮廓分析以测定接触角。在浸入的纤维处形成弯月面,轮廓分析以测定接触角KRÜ SS设计的纤维支架与任何液滴形状分析仪的针头滴定系统都兼容,由于是直接连接到针头,因此不需要更换整个滴定装置。如果滴定装置可通过软件进行高度调节,则在纤维浸入和拉出的过程中也可以动态测量接触角,以测定前进角和后退角。纤维接触角既然可由张力仪测量,为什么还需要有新的纤维测量方法?事实上,采用张力仪的Wilhelmy方法测量基于润湿力的纤维接触角通常是标准做法。弯月面法不会取代Wilhelmy法测纤维的接触角,但这种方法对光学接触角测量仪的用户来说是一个很好的补充,他们可以使用该模块来扩大他们的样品的测量范围,而无需采用另一台仪器,投资也很少。除此之外,采用这种新的方法的优势在于:与Wilhelmy方法不同,这种测量方法在测量时不要输入纤维直径和液体的表面张力,因为接触角是直接通过光学法测量的,这也减少了测量前的准备工作,避免了这两个容易出现测量误差的参数造成测试不准确的可能性。在什么情况下应该用张力仪测量纤维接触角?弯月面法不适用于润湿性差的样品,即接触角大于90°的样品,比如防水纺织品。在这种情况下,没有毛细管粘附,而是毛细管凹陷,即弯液面反转,三相点低于水平面。在这种情况下,光学测量很难实现。另一个极端情况是测量特别小的接触角,因为通过图像分析无法精确测定到三相点。而对于张力仪的Wilhelmy方法来说,润湿性的好坏对样品的测量不会产生影响。
  • 循丝探理│碳纤维取向度如何测?
    导 读碳纤维作为高性能纤维的翘楚,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,并且沿纤维轴方向有很高的强度和模量,其外形呈纤维状、柔软、可加工成各种织物,一直以来,是航空航天、风电叶片、汽车、压力容器等高端应用场景的核心材料之一。 老话常说:心往一处想,劲儿往一处使。其实说的就是“方向一致进而形成强大的合力”。类似,对纤维材料而言,其分子链、微晶在拉伸等加工过程中产生的方向效应,即取向效应,亦对纤维的机械性能有着直接影响。岛津XRD(X射线衍射仪),配有纤维取向度专用附件,可方便、迅捷的对聚合物等纤维材料取向程度进行测定。 什么是纤维取向度?定义:表示纤维的晶体轴沿着纤维长度方向排列的平行程度或择优取向程度。 先来看两张示意图:左图给各位看官直观的感觉是不是就像一群散兵游勇? 而右图则是整齐队列的既视感?整齐划一、万众一心、众志成城!!! 是的,合成纤维等线形聚合物在未发生取向时,大分子链或链段、微晶的排列是随机的、无序的;而在纺丝、拉伸等加工过程中,大分子链或链段、微晶受到外力的作用,则会表现出不同程度的取向效应。 发生取向后,由于在取向方向上原子之间的作用力以化学键为主,而在与之垂直的方向上,原子间的作用力以较弱的范德华力为主,因而纤维取向度越高,则纤维长度方向上的机械强度、弹性模量等机械性能越好。 XRD测试纤维取向度原理 XRD作为材料结构分析的典型手段,可对纤维材料取向度进行有效表征。图1 纤维取向度测试时光路示意图 在正交透射模式下(图1),将纤维束置于子午线方向,保持光管、样品位置固定不动,探测器作2θ扫描收集衍射信号,此过程称为子午扫描。将纤维束置于赤道线方向,重复上述过程,即为赤道扫描;存在高度取向的纤维,赤道扫描与子午扫描谱图差异较大。 选取某特征衍射峰,将探测器固定于该特征峰峰位处,纤维束在垂直于入射X射线的平面内旋转(图1),测得β-I角度-强度分布曲线,此过程称之为方位角扫描,并采用以下经验公式即可计算纤维取向度π。 式中:π—纤维取向度 H—方位角扫描谱峰半峰宽(单位°) 岛津解决方案 针对纤维取向度测试,岛津XRD开发有纤维取向度专用附件,纤维专用样品架(图2)可保证纤维束平直拉紧,旋转样品台(图3)可实现正交透射模式及平面内旋转,以及数据处理模块“Preferred Orientation”可一键给出纤维样品取向度。 以某碳纤维样品实际测试为例,其赤道扫描及子午扫描谱图叠加见图4;显然,纤维束在两种方向放置测试,测得谱图差异十分明显,例如黑色箭头标示处,赤道扫描,该衍射峰强度非常高,而在子午扫描时该处基本未出峰,这表明该碳纤维存在很强的取向。 图4 碳纤维样品赤道扫描与子午扫描谱图叠加 利用岛津分析软件“Basic Process”模块,对赤道扫描谱图进行处理,读取最强峰衍射角2θ=25.69°,将探测器固定在25.69°进行方位角扫描,测得的强度分布曲线如图5所示。 图5 碳纤维样品方位角扫描谱图 利用岛津分析软件“Basic Process”模块,对方位角扫描谱图进行平滑、扣除背底、寻峰等操作后,利用岛津分析软件“Preferred Orientation”模块即可直接计算出碳纤维样品取向度为83.7%。 结语 纤维取向度对纤维的机械强度、弹性模量及其它机械性能有着直接影响,因此对纤维取向度进行测定有着非常重要的实际意义。类似的测试可拓展用于不同批次、不同工艺下纤维产品的对比,进而指导工艺优化。 撰稿人:崔会杰 *本文内容非商业广告,仅供专业人士参考。
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。  DM 2500P 技术参数  1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光  2. 目镜:10X/22mm视域  3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度  5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um  6. 可双向调中孔位的物镜转盘,5孔位  7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺  8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱  9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱  DM 2500P 主要特点  1. 无限远光学校正系统,图像清晰,高反差  2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱  3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力  4. 检偏镜可180度旋转  5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整  7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护  8. 调节工具可放在镜体上方便随时取用  9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变  10. 各种滤片都经过防热处理  11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动  江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。  工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。  摘自南通醋酸纤维素工程技术研究中心网站
  • 徕卡微电子类样品电镜制样方法
    电子类样品检测手段多种多样,其中扫描电子显微镜检测不仅观察样品表观形貌,通过制样设备可实现对内部指定点或区域的观察分析,就目前来说电镜观察手段及观察方法渐趋成熟,但制样手段及手法仍有许多值得探究,在这里简单介绍下简单易操作的制样方法。下图是经常遇到的几个电子类材料的类型,线路板PCB,LED,OLED等,从材料角度来说,基本为复合材料(金属/玻璃/硅/聚合物,填料);大多为软硬结合材料;大多为分层结构;多为局部器件的平整面获取和分析。图1.电子材料部分类型举例一般根据样品形状大小,分析观察需要,可采用三种方式制备样品:样品较薄或待分析结构位于表面10微米左右,可用胶加以保护并采用徕卡精研一体机EM TXP配合其光学显微镜观察,切到目标位置附近,再做简单磨抛处理后,采用徕卡三离子束EM TIC 3X进行离子束的切磨处理;若样品较厚,且观察区域较大,可采用传统方法磨抛,并使高度和直径符合徕卡三离子束EM TIC 3X的旋转抛光要求即可,徕卡三离子束TIC 3X旋转抛光具有旋转和移动功能,可最大程度保证加工面积;若样品微小,则可将其用小型包埋板包埋,再用精研一体机EM TXP切割到目标位置附近后,再做离子束的切磨处理,在此不用担心楔形样品,厚度方向和高度方向的倾斜,采用多功能的样品台来调节即可。图2.微电子类材料处理的简单方法图3.徕卡三离子束EM TIC 3X多功能样品台图示对于样品较薄或待分析结构位于表面10微米左右,其处理方法及所需工具如下,胶水,胶带(或其他平整柔软垫子)载玻片,加热台过程如下:胶带贴于载玻片(若有耐高温软垫子,则不需要此步骤),将胶水混合滴在胶带上,样品有结构的一面扣在胶水上,轻轻按压,加热台加热后,抬起胶带,则胶水与样品固化在一起,此方法的优点在于不会过多使用胶,样品导电性不会因为过多的胶引起荷电效应过重或后续处理过于复杂。图4.较薄样品处理所用耗材及工具简图 对于较柔软样品,如柔性屏,由于其材质的不同,则处理起来与上述不同,其需要准备的耗材如下:剪刀或刀片(视材料的薄厚而定)取小块样品,用铝箔纸将其包覆起来,胶水封口,干燥后刀片切出断面,粘在小片硅片上或小样品托上,接着离子束加工即可。图5.柔性电子材料制样工具及耗材 由于电子类材料多为复合材料,且多为胶类物质填充其中,因此电镜观察除了要复合用背散射电子成像信息更丰富以外,导电性是一个干扰正常观察项,同时,微电子材料的诸如分层结构等多为纳米或亚微米级,因此对镀膜处理要求高,若镀膜颗粒大则分层不清楚甚至不分,较宽范围的金属层结构的晶向结构无法分析,徕卡高真空镀膜仪EM ACE600镀膜颗粒细腻,膜厚可控,非常适合离子束加工后的微电子类材料平整断面处理。图6.徕卡高真空镀膜仪 EM ACE600
  • 粘胶纤维用浆粕 粘度的测量
    粘胶纤维(Viscose fibre)简称粘纤,又名黏胶丝,是人造纤维的主要品种,也是中国产量第二大的化纤品种。粘胶纤维的主要原料是化学浆粕,包括棉浆粕和木浆粕两种,后增加竹浆粕和棉浆粕等材料,通过化学反应的方式将天然纤维素分离出来再生而成。粘胶纤维吸湿性好,易于染色,不易起静电,有较好的可纺性能,常与棉、毛或各种合成纤维混纺、交织、用于各类服装及装饰用纺织品。高强力粘胶纤维还可用于轮胎帘子线、运输带等工业用品。粘胶纤维制品的质量取决于原料浆粕的各项属性,但不论是在棉浆粕、木浆粕还是其他浆粕原料中,黏度都是非常关键的一项指标。黏度的数值会直接影响到粘胶纤维的性能,进而对后端产品造成影响。FZ/T 50010.3-2011中规定了粘胶纤维用浆粕的黏度测试方法,采用乌氏法,以铜乙二胺和铜氨溶液作为样品溶剂,根据不同的溶样温度及不同时间去溶解样品,再通过相关辅助设备测试浆粕溶液的黏度。粘胶纤维用浆泊的黏度测试是一个相对繁琐的过程,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐冗杂等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV6000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 《絮用纤维制品异味的测定》填补异味检验领域的空白
    很多人在选购服装、床上用品的时候都有闻一闻气味的习惯,很多纺织品和絮用纤维制品的国家标准也对异味检验项目提出要求,但是均没有具体的检测方法标准对异味项目进行检测。日前通过审定的《絮用纤维制品异味的测定》国家标准将填补这个领域的空白。  据了解,我国的强制性国家标准《国家纺织产品基本安全技术规范》、《絮用纤维制品通用技术要求》和《生态纺织品技术要求》等标准均要求检验异味,种类包括霉味、高沸程石油味(汽油味、煤油味、柴油味等)、鱼腥味、芳香烃味、未洗净动物纤维膻味、臊味等。对于异味这项反映纤维及纤维制品质量的重要技术指标,是以人工感官检验的方法进行检验的。在这类主观性检验中,检验人员对异味种类的正确理解、熟悉程度、对检验方法的掌握以及个体的因素,对检验结果均会产生较大的影响。尽管标准中对检验人员提出了须经培训的要求,但由于异味检验在国内开展时间不长,检验人员的实践经验相对不足,异味检验存在着一些问题。  标准的霉味、鱼腥味等都是什么味道?2009年2月发布的《纤维及纤维制品异味标准样品》就是标准的“异味”样品的国家标准。检验人员闻一闻标准样品,按相关要求,再去闻一闻检验的样品,就可以判定是否有异味。当然不是每次检验都需要闻一闻标准样品,但是需要按要求用标准样品对嗅觉进行校准。  据中国纤维检验局技术管理处处长冯平介绍,正常情况下,纺织纤维都会带有一些纤维自身固有的气味。絮用纤维制品在生产及加工过程中会产生化学物质的残留,这些残留物在纺织产品的使用过程中逐渐挥发或氧化分解会产生特殊气味 絮用纤维制品被微生物污染后,微生物的繁殖以及微生物对纤维和其上残留有机物的分解也会产生气味。有些异味达到一定程度,就会对人体健康产生不利影响,所以国内外纺织产品标准中均对异味提出了检验要求。随着《纤维及纤维制品异味标准样品》的使用越来越广泛,中国纤维检验局又联合其他实验室完成了《絮用纤维制品异味的测定》国家标准,填补了检测领域的空白。  据介绍,这项标准由国家纤维质量监督检验中心、广州市纤维产品检测院、重庆市纤维织品检验所共同完成。调查显示,异味检验的问题主要是同一个样品在同一个实验室检测,不同人员的检测结果不同 同一个样品在不同实验室检测,也会出现不同结果。其原因一是部分检验人员对异味了解不深、辨别不清 二是不同人员对气味的敏感程度不同,对气味的强度的掌握上尺度不一 三是对于异味的检验方法尚无详尽的描述,对检测的环境条件也无严格限定,而异味是由纤维及其制品中的某些物质挥发到空气中产生的,不同温度下,物质挥发的程度不同,异味的严重程度也就不同。  据标准主要起草人、国家纤维质量监督检验中心周硕介绍,标准对实验室的设备和材料、检测环境、试样准备、检验程序等方面的要求都是感官检验准确性的重要前提。尤其对检测人员进行了详尽的要求,其中包括身体健康,嗅觉正常,不吸烟,不酗酒 检测当天不使用带气味化妆品或护肤品,检测前洗手并用清水漱口去除口腔气味。并且规定了进入检测环境内需要进行2~3次深呼吸,然后静待10秒以适应检测环境。并且对检测人员的嗅觉校准提出了要求,规定了长期从事该项目检测的试验人员一个月进行一次嗅觉校准,试验人员发生变化、疾病或长期未从事该项目检测时应缩短嗅觉校准时间为一周等要求。  这项标准结合《纤维及纤维制品异味标准样品》可提高检验人员对絮用纤维制品包括纺织品中规定的异味种类的辨别,统一把握异味的强度,提高异味检验的准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制