当前位置: 仪器信息网 > 行业主题 > >

纤维粥米

仪器信息网纤维粥米专题为您整合纤维粥米相关的最新文章,在纤维粥米专题,您不仅可以免费浏览纤维粥米的资讯, 同时您还可以浏览纤维粥米的相关资料、解决方案,参与社区纤维粥米话题讨论。

纤维粥米相关的资讯

  • 苏州纳米所在电纺纤维复合凝胶研究方面获进展
    近日,中国科学院苏州纳米技术与纳米仿生研究所研究员张珽团队在《纳微快报》(Nano-Micro Letters)上发表最新研究成果。该研究开发了一种新策略,通过将电纺纤维网络嵌入水凝胶中,从而实现同时具有超薄结构和优异力学性能的复合水凝胶薄膜( 5 μm)的构建。纤维复合水凝胶提供了广泛的可调模量(从~ 5 kPa 到几十MPa),这与大多数生物组织和器官的模量相匹配。超薄的结构和超柔软特性使电纺纤维复合水凝胶能够无缝附着在各种粗糙表面上,是构建贴附型生物电子器件的理想材料。 纤维复合水凝胶薄膜基于静电纺丝、旋涂和冻融联合技术构建(图1)。通过调控静电纺丝时间、旋涂时间和冻融次数,实现对纤维复合水凝胶薄膜理化性质的调控(厚度5微米到毫米;模量几千帕到几十兆帕)。例如,增加纺丝时间可显著提高纤维复合水凝胶薄膜的力学性能;提高旋涂速率,有利于降低纤维复合水凝胶薄膜的厚度;增加冻融次数,可提高水凝胶自身的模量。纤维复合水凝胶具有优异的力学强度,一片厚度仅为7微米水凝胶薄膜可轻松托起20g重量的物体。此外,包埋的纤维网络可有效抑制应力集中导致的裂纹扩增,赋予纤维复合水凝胶薄膜优异的抗撕裂性能(图2)。图1 纤维复合水凝胶设计和制备      图2 纤维复合水凝胶薄膜力学性能     常规的水凝胶材料具有容易失水的缺点,长期暴露于空气中时,由于体系水分的蒸发从而使水凝胶体系失效。该研究通过在纤维复合水凝胶体系中掺入甘油作为保水剂,使复合水凝胶体系具有优异的抗失水性能。暴露于空气中七天后,仍具备优异的柔性。此外,为了改善纤维复合水凝胶的导电性,甘油/NaCl体系使纤维复合水凝胶在空气中维持长期的高导电性能(图3)。      图3 纤维复合水凝胶薄膜抗失水性能 得益于纤维复合水凝胶薄膜超软和超薄的特性,其可实现对各种不同粗糙表面的无缝贴附,其广泛可调的力学性能几乎可实现对所有生物软组织(如脑、肝脏、心脏、肺和皮肤)模量的完美匹配,可伴随组织产生形变而不损伤组织,是构建柔性生物电子器件的理想材料(图4)。 图4 纤维复合水凝胶薄膜的柔性和贴附性能      基于甘油/NaCl体系的纤维复合水凝胶构建的贴附型生物电极具有比商业凝胶电极更加优异的信噪比和长期使用性能。商用凝胶电极长期(48h)暴露于空气中会由于失水从而丧失性能,甘油/NaCl体系的纤维复合水凝胶电极在7天后仍旧保持良好信噪比,可实现对人体肌电信号的采集。甘油/NaCl体系的纤维复合水凝胶电极用于检测人体肌电信号,可实现对不同运动姿势和不同运动强度肌肉电信号的监测(图5)。     图5 纤维复合水凝胶电极用于人体肌电信号监测 研究人员通过将电纺纤维网络包埋于水凝胶,开发了一种制备超软、超薄、力学增强复合水凝胶的新策略。该工作为超薄柔性生物电子提供了新颖的设计和构建思路。
  • 苏州市计量测试学会立项《碳纳米管纤维及丝束 电导率的测定》两团体标准
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对中国科学院苏州纳米技术与纳米仿生研究所申报的《碳纳米管纤维及丝束 电导率的测定》、《碳纳米管纤维及丝束 拉伸性能试验方法》两项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!请标准起草单位严格按照相关要求,广泛听取意见,对标准质量严格把关,切实提高标准编制的质量和水平,增强标准的适用性和有效性,并按计划递交标准征求意见稿。 联系人及电话:胡学刚 0512-66587060电 子 邮 箱:huxg@szjl.com.cn 苏州市计量测试学会关于《碳纳米管纤维及丝束 电导率的测定》两团体标准立项的.PDF
  • 电纺纳米纤维在创面治疗中的应用
    1.Mater. Lett.:负载磺胺嘧啶银的聚羟基丁酸-明胶纳米纤维基质的制备及其在烧伤创面治疗中的应用 ➣ 设计一种替代的伤口敷料是非常必要的,以克服诸如接触时间短、住院时间延长和防止继发感染等难题。➣ 研究者报告了负载磺胺嘧啶银(SSD)(0.2%w/v)的聚羟基丁酸(PHB)-明胶(70:30)纳米纤维基质的静电纺丝,以作为载体防止二度烧伤创面感染。➣ 纳米纤维基质具有良好的抗渗出物吸收和透氧性能。SSD的受控传输会降低敷料更换的频率。利用NIH3T3成纤维细胞评估了其生物相容性和细胞粘附。➣ 从第18天开始,体内烧伤创面支持增强的再上皮化和MMP-9的产生,显示出快速的伤口愈合趋势。➣ 作为一种替代的伤口敷料,纳米纤维支架通过降低敷料的更换频率和减少抗生素的不良反应来治疗烧伤创面。DOI:10.1016/j.matlet.2020.128541 2. ACS Biomater. Sci. Eng.:具有不同双重药物释放的多功能壳聚糖/聚己内酯纳米纤维支架,可用于伤口愈合 ➣ 第三军医大学张波设计并制备了具有多种功能的盐酸利多卡因(LID)和莫匹罗星负载壳聚糖/聚己内酯(CSLD-PCLM)支架,可用作伤口敷料。➣ 通过双喷头静电纺丝技术,支架获得了纳米纤维结构,这增强了支架与血细胞之间的界面相互作用,并显示出良好的凝血能力。➣ 负载LID和莫匹罗星的支架表现出LID的快速释放和莫匹罗星的持续释放。含有莫匹罗星的CSLD-PCLM支架具有出色的抗菌活性。此外,在全层皮肤缺损模型中,该支架显著促进了伤口愈合过程,并伴随完全重新上皮化以及胶原蛋白沉积。➣ CSLD-PCLM纳米纤维支架可以很好地满足伤口愈合过程的各种要求,是未来临床应用中很有前景的创面敷料。DOI:10.1021/acsbiomaterials.0c00674 3. Adv. Sci.:微流控3D打印技术制备立体超顺滑织物用于创面引流 ➣ 南京大学医学院赵远锦教授团队设计了一种受猪笼草超滑结构启发的,基于微流控3D打印技术的立体超顺滑织物。该织物实现了液体在三维空间、复杂维度内无损快速的运输,为提高创面引流效率提供了新的思路。➣ 研究人员利用微流控技术连续制备了SLIPS聚氨酯微纤维,通过电镜表征可以看出微纤维的表面具有较为均匀的孔洞且内部孔洞相互连通。➣ 由于液体石蜡的润滑性能,渗出物和血液可以快速无残留地通过超滑表面,织物因此可以不被杂质污染,从而降低感染的风险。此外,超顺滑织物隔离了海绵与创面,减少了海绵对组织的二次损伤,有效提升了创面修复的效果。DOI: 10.1002/advs.202000789 4. J. Photochem. Photobiol. A Chem.:具有有效光动力抗菌活性的金属-有机骨架/聚(ε-己内酯)杂化电纺纳米纤维膜 ➣ 中科院应化所栾世方通过可生物降解的PCL基质和光敏金属有机骨架(MOF)纳米晶体的共静电纺丝制备抗菌电纺垫的可行方法。➣ 将玫瑰孟加拉红(RB)一步封装到沸石咪唑酸酯骨架8(ZIF-8)中以获得光动力抗菌性RB@ZIF-8纳米粒子,然后与PCL基质共混,通过共静电纺丝制备复合聚合物纳米纤维。➣ 通过调节PCL中RB@ZIF-8的含量,在纳米纤维表面存在足够的MOF颗粒。得益于纳米纤维膜在可见光照射下产生活性氧(ROS),从而在体外对革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌(E.coli)进行剂量和时间依赖性灭活。➣ 细菌感染的伤口愈合实验表明,纳米纤维膜具有更好的修复细菌伤口感染和加速创面愈合的能力。DOI: 10.1016/j.jphotochem.2020.112626 5. Biomater. Sci.:含硫酸软骨素的镁矿化抗菌纳米纤维敷料的伤口愈合特性—共混和核-壳纳米纤维的比较 ➣ 研究了硫酸软骨素对含矿化镁的聚多巴胺交联电纺明胶纳米纤维的形态、机械性能、润湿性和生物相容性的影响。为了延长敷料的耐用性,研究者制备了以聚己内酯(PCL)和明胶为共混物或核-壳纳米纤维的复合敷料。➣ 在猪皮肤烧伤模型中,与未经治疗的烧伤相比,混合和核-壳纳米纤维敷料均显示出更好的再上皮化、伤口闭合和临床结果。➣ 活检组织的组织学研究表明,与未处理的烧伤相比,用核-壳纳米结构处理的烧伤具有平滑的再生和胶原组织。这项研究比较了复合纳米纤维的理化和生物学特性,该纤维能够加速烧伤创面愈合并具有抗菌特性,突出了它们作为伤口敷料和皮肤替代品的潜力。DOI:10.1039/D0BM00530D 6. Carbohydr. Polym.:含蜂蜜和荆芥的壳聚糖/聚乙烯醇生物纳米纤维创面愈合性能的体内评价 ➣ 构建生物支架以改善皮肤组织再生仍然是医疗保健方面的一项挑战。为了解决这一问题,研究者报告了负载蜂蜜和荆芥属植物的电纺聚乙烯醇和壳聚糖(PVA/Chit)纳米纤维垫的制备和表征,以加快伤口愈合。➣ 通过SEM和TEM检查了纳米纤维垫的形态。利用FT-IR和TGA/DTA对纳米纤维进行了物理化学和热稳定性表征,揭示了纳米纤维中蜂蜜和所需植物的存在。➣ 研究了PVA/Chit@Nep/Hon作为一种潜在的治疗药物在伤口愈合治疗中的作用。对大鼠进行了为期21天的体内伤口愈合研究,发现蜂蜜和植物掺入纳米纤维垫后,三周内伤口愈合更快,因此这种纳米纤维垫在急慢性伤口愈合应用中显示出巨大潜力。DOI:10.1016/j.carbpol.2020.116315
  • 科研团队制成世界最薄丝素纳米纤维带
    p style="text-indent: 2em text-align: justify "东华大学纤维材料改性国家重点实验室教授张耀鹏、邵惠丽团队与纽约州立大学石溪分校教授Benjamin S. Hsiao合作提出了全新的蚕丝多级结构模型,并成功研制世界上最薄丝素纳米纤维带。近日,该成果以全文形式发表于《美国化学学会—纳米》。/pp style="text-indent: 2em text-align: justify "作为蚕丝多级结构的基础构筑单元,丝素纳米纤维对人造蜘蛛丝等高性能丝蛋白材料的设计和构筑尤其重要。张耀鹏团队利用氢氧化钠/尿素水溶液体系,在低温下将蚕丝逐级剥离为厚度约0.4纳米、宽度约27纳米的蚕丝纳米纤维带。这也是目前为止世界最薄的丝素纳米纤维带,其厚度仅为丝素蛋白的单分子层厚度,与单层石墨烯厚度相当。/pp style="text-indent: 2em text-align: justify "该纳米纤维带主要由天然蚕丝中原生的β-折叠片层、无规线团以及α-螺旋构象构成。研究人员通过原子力显微镜、透射电子显微镜及小角X射线散射技术等多种表征技术确认了这些信息,并通过计算机分子动力学模拟技术,模拟了蚕丝在氢氧化钠/尿素水溶液中剥离为丝素纳米纤维的动态过程。/pp style="text-indent: 2em text-align: justify "丝素纳米纤维带通过自组装或者有序构建,可用作增强成分或者直接构建单元,有望制备性能优异或功能性的丝素蛋白基材料。/p
  • 木材衍生的纳米纤维素纸半导体制成
    日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创建有用的微观和宏观结构并实现出色的功能和最终用途的多功能性,仍然具有挑战性。  纤维素是一种源自木材的天然且易于获取的材料。纤维素纳米纤维(纳米纤维素)可制成具有与标准A4纸张尺寸相似的柔性纳米纤维素纸(纳米纸)片材。纳米纸不导电,但加热可引入导电特性。不过,这种受热也可能破坏纳米结构。  大阪大学研究人员与东京大学、九州大学和冈山大学合作,设计出一种处理工艺,使纳米纸能够加热,又不会破坏从纳米尺度到宏观尺度的纸结构。  “纳米纸半导体的一个重要特性是可调性,因为这允许为特定应用展开设计。”研究作者古贺博隆副教授解释说,碘处理对保护纳米纸的纳米结构非常有效。将其与空间控制的干燥相结合,意味着热解处理不会显著改变设计的结构,并且可使用选定的温度来控制电性能。  研究人员使用折纸和剪纸技术来提供纳米纸在宏观层面的灵活性。他们将鸟和盒子折叠起来,冲压出苹果和雪花等形状,并通过激光切割产生更复杂的结构。这证明了新工艺可能达到的细节水平,以及热处理没有造成损坏。  成功应用的例子是,纳米纸半导体传感器结合到可穿戴设备中,以检测穿过口罩呼出的水分和皮肤上的水分。纳米纸半导体也被用作葡萄糖生物燃料电池的电极,产生的能量点亮了一个小灯泡。  古贺博隆表示,新研究展现的将纳米材料转化为实际设备的结构维护和可调性非常令人鼓舞,新方法为完全由植物材料制成的可持续电子产品的下一步发展奠定了基础。
  • 日立实验|紫外可见分光光度法评价纳米纤维素
    紫外可见分光光度法评价纳米纤维素前言:纳米纤维素来源于木材或草等植物纤维,其具有良好的可再生性,力学性能等。为构建脱碳社会,全球各国不断推动纳米纤维素的研发与应用。根据生产工艺,纳米纤维素可分为纤维素纳米纤丝(CNF)和纤维素纳米晶(CNC)等,作为一种新材料,在广泛应用前,对它的安全性评价是必要的,但目前缺乏评价纳米纤维素安全性的统一方法。日本新能源和产业技术开发组织(NEDO)进行了多种纳米纤维素评价方法的开发和评估,本文参考NEDO课题项目“非食用植物源性化学品的制造工艺技术的开发/CNF安全性评价手段的开发”等案例,采用日立紫外-可见-近红外分光光度计UH5700测定了纤维素纳米晶(CNC)。 应用实例:实验样品为使用TEMPO氧化制备的纤维素纳米晶(CNC)和葡萄糖。利用苯酚-硫酸法对样品进行测定1。苯酚-硫酸法的原理是通过对样品进行酸分解,定量分析其分解产物。样品处理过程如图所示。苯酚-硫酸法 由于待测样品量较少,因此需要使用微量样品池,并搭配微量样品池用挡光板,可以测量340~600 µL左右的微量样品。微量样品池及挡光板测定结果如图1所示,在488 nm处获得了特征吸收峰,不同浓度的样品与吸光度的关系如图2所示。图1 样品的吸收光谱图2 样品浓度与吸光度的关系由结果可以看出,使用紫外可见分光光度法可以对纳米纤维素进行定量分析,但测量重现性较低,可能是由于样品不纯,因此,测量过程需要尽可能避免接触纸巾、纺织布等纤维制品。 总结:苯酚-硫酸法不需要特殊的试剂,操作简单,使用日立UH5700能够在488 nm处得到良好的特征峰,能够实现对单一种类纳米纤维素的定量分析。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 科研成果 | 谱育科技ICP-OES助力纳米纤维方向高水平科研论文
    近日,嘉兴大学张彩丹与德州学院张赛、青岛大学吴韶华合作,在期刊《Materials and Design》(IF=8.4)上发表了题为《原位合成纳米银/聚天冬酰肼纳米纤维水凝胶敷料在全皮层缺损伤口愈合中的应用》的最新研究成果。论文链接:https://doi.org/10.1016/j.matdes.2024.112818研究团队将硝酸银(AgNO3)与聚琥珀酰亚胺(PSI)的混合溶液经过静电纺丝得到纳米纤维膜,通过交联和水合肼开环反应,将银离子原位还原为纳米银(AgNPs),同时聚琥珀酰亚胺开环生成聚天冬酰肼(PAHy),制备得到载有纳米银的聚天冬酰肼纳米纤维水凝胶敷料。所得敷料兼具纳米纤维独特的微观结构和水凝胶性能,同时对大肠杆菌和金黄色葡萄球菌具有优异的抗菌性,并能够显著促进伤口部位的再上皮化和胶原沉积,从而加速伤口愈合过程,在感染伤口治疗领域具有巨大的应用潜力。ICP-OES 助力测定AgNPs释放量负载纳米银的聚天冬酰肼纳米纤维水凝胶敷料中银的释放行为对其抗菌性能和细胞毒性有着决定性的影响。研究团队采用谱育科技EXPEC 6500 电感耦合等离子体发射光谱仪(ICP-OES)测定了银的释放量。为银释放行为对水凝胶敷料的抗菌性和细胞毒性影响分析提供有力的数据支撑。▲ 采用ICP-OES测定AgNPs释放量The release behavior of silver from the three different PAHy/AgNPs nanofiber hydrogel mats. (A) The silver release concentration(B) The cumulative silver release rateEXPEC 6500 电感耦合等离子体发射光谱仪(ICP-OES)是谱育科技推出的一款高灵敏型全谱直读ICP-OES产品。此次在研究工作中的应用,进一步验证了产品具有良好的稳定性及可靠性。▲ 研究团队所用EXPEC 6500 ICP-OES
  • Leica DMI6000 B 实现外太空的显微技术
    日本宇航员Koichi Wakata在国际空间站实现活细胞试验日本宇宙航空研究开发机构(JAXA)宇航员Koichi Wakata 使用Leica DMi6000全自动倒置显微镜在国际空间站(ISS)开展实验,研究失重状态对骨密度以及植物生长的影响。他回到地球,带会了在“Kibo”ISS小型实验舱的几项试验新数据,之后这些数据会由他和其他日本研究机构的合作科学家共同评估和分析。宇航员Wakata在装置样品室之前在与安装在希望号上的荧光显微镜前合影青鳉鱼骨细胞2:失重对骨细胞以及青鳉鱼的重力感应系统分析 长期处于失重状态下会引起骨密度损失已是一个众所周知的现象。通过开展名为“青鳉鱼骨细胞2:微重力对骨细胞以及青鳉鱼的重力感应系统分析”的项目,研究人员希望能通过在国际空间站用荧光显微技术检测活日本青鳉鱼获得新的认知。东京技术研究所Akira Kudo教授希望找到造成骨质疏松的机制。此项目的研究结果能帮助改善老年性骨质疏松的治疗。Aniso Tubule :研究周质微管以及微管关联蛋白对于植物茎体在重力诱发下的生长调整所起的作用第二个项目是“Aniso Tubule: 研究周质微管以及微管关联蛋白对于植物茎体在重力诱发下的生长调整所起的作用。探索植物是如何在抵抗重力的情况下,形成它的外形的。在这个过程中,周质微管起到了重要作用。对此,大阪市立大学的科学家Kouichi Soga教授计划在太空中通过倒置荧光显微对拟南芥进行研究。这一方向的研究成果能让科学家了解植物的外形与生长方向时是如何被影响的,这对于在狭小空间以及太空开发农业种植有着重大意义。徕卡显微系统在零重力中的使用已是先驱徕卡显微系统在零重力中的使用早有历史。Leica DMI6000 B上一代荧光显微镜,早已安装在了国际空间站。产品经理Bernard Kleine 表示:“在太空使用的商业化显微镜,必须完全满足特殊的使用需求。值得注意的是,显微镜不仅能直接在太空空间站自动运行,也能通过地面遥控控制。这一功能的实现得益于多方面的紧密合作。徕卡显微镜能够服务于几代太空项目,在外太空为推动科学研究的发展做出贡献。” 不仅能够为地球上的,更能为太空中的科学家提供最先进的研究设备,是徕卡人的骄傲!Leica DMi6000 B 全自动倒置显微镜1999年Leica DMRA 全自动显微镜参与NASA太空项目(宇航员照片转自 Japan Aerospace Exploration Agency官网)关于徕卡显微系统 (Leica Microsystems)徕卡显微系统有限公司是显微镜和科学仪器领域的全球先驱。十九世纪,公司从家族事业起步,如今成为全球知名企业,以无可匹敌的创新精神铸就辉煌历史。与科学界一贯的紧密合作是徕卡显微系统有限公司创新传统的关键,从而将用户的想法付诸实践并根据用户需要为其量身定制解决方案。徕卡显微系统有限公司的全球运作分为四个部门,它们均已成为其各自领域的先驱:生命科学部门、工业部门、医疗部门和纳米科学部门。公司在全球 100 多个国家设有代表处,在 5 个国家设有 6 家制造厂,在 20 个国家设立了销售和服务机构,并且具有全球性的代理商网络。徕卡显微系统公司总部设在德国的韦茨拉尔 (Wetzlar)。
  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。  研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。  目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。  研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。  在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。  研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • 美研制出新型X光纳米显微镜
    据美国物理学家组织网近日报道,美国加利福尼亚大学圣地亚哥分校物理学家开发出一种新型X光显微镜,不仅能透视材料内部结构,而且洞察之细微达到了纳米水平。该显微镜有助于开发更小的数据存储设备,探测物质化学成分,拍摄生物组织结构等。研究论文发表在《美国国家科学院院刊》上。  X光纳米显微镜不是通过透镜成像,而是靠强大的算法程序计算成像。“这种数学运算方法相当复杂,其原理有点像哈勃太空望远镜,就是让最初看到的模糊图像变得清晰鲜明。”领导该研究的加州大学圣地亚哥分校副教授奥里格夏佩克解释说,X光探测到物质的纳米结构后,会生成衍射图案,计算机按照运算法则将这种衍射图案转化为可辨认的精细图像。  为了测试显微镜透视物体的能力和分辨率,研究小组用钆和铁元素制作了一种层状膜。目前信息技术行业多用这种膜来开发高容高速、更微小的内存设备和磁盘驱动器。  “这两种都是磁性材料,如果结合成一体,就会自然地形成纳米磁畴。”夏佩克说,在显微镜下面,能看到它们形成的磁条纹。层状的钆铁膜看起来就像一块千层酥,层层褶皱形成了一系列的磁畴,就好像一圈圈指纹的凸起。  “这还是第一次能在纳米尺度观察到磁畴,而且不需要任何透镜。”夏佩克解释说,这对开发更小的数据存储设备非常关键,磁比特可以做得更小,也就是说让磁纹变得更细,从而开发出磁畴更小的材料,就能在更小的空间里储存更多数据。  “在目前的磁盘表面上,1个磁比特约15纳米大小。我们的显微镜能直接拍摄到比特位,这对拓展未来的数据存储能力打开了新空间。”论文合著者、该校电学与计算机工程教授、磁记录研究中心的埃里克富勒顿说。  此外,该显微镜还能用于其他领域。通过调节X光的能量,还能用它来观察材料内部有哪些元素,这在化学上是非常重要的。在生物学领域,用X光给病毒、细胞及各种不同的组织拍照,要比用可见光拍出来的效果好得多。  夏佩克说,在计算机工程领域,我们希望能以可控的方式造出新型磁性材料和数据存储设备 在生物和化学领域,能在纳米水平操控物质。要达到这些目标要求,必须从纳米水平理解材料的性质,而X光显微技术让人们真正在纳米水平看到了物质内部。
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 飞纳电镜与您相约第六届全国静电纺丝技术与纳米纤维学术会议
    第六届全国静电纺丝技术与纳米纤维学术会议将于2018年11月30日-12月2日在江西师范大学(中国?南昌)召开。会议时间:2018年11月30日 - 12月2日会议地点:江西师范大学会议日程安排2018 年 11 月 30 日:会议报到注册2018 年 12 月 1 日:上午开幕式及大会报告;下午大会报告 (含分会场报告)2018 年 12 月 2 日:上午大会报告 (含分会场报告);下午颁奖,闭幕式,会后交流会议主题静电纺丝新理论、新技术、新装置;静电纺有机高分子材料纳米纤维;静电纺有机/无机复合材料纳米纤维;静电纺无机材料纳米纤维;静电纺技术在军民两用技术方面的应用,如:生物医学、纳米纺织、功能服装、催化、气/液过滤、能源存储与过滤、柔性器件、3D打印、记忆材料、声波吸收与电磁波屏蔽的应用;产学研论坛(国际贸易、新技术、新产品发布、企业推介、技术合作/转让等)。静电纺丝静电纺丝技术是目前为止获取纳米纤维最简单有效的方法之一。它具有比表面积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、 纳米复合材料等领域 。影响静电纺丝纤维的因素有很多。纺丝液自身的性质例如聚合物种类、浓度、导电性、添加剂等都会影响纺丝结果。而纺丝参数设置例如,包括外加电压、喷丝头与接收板之间 的距离、纺丝速度、甚至外界环境温度、湿度等等因素都会对最终结果造成影响。为了摸清这些影响因素的作用规律,获取纺丝样品的形貌照片则显得极为重要。飞纳电镜助力静电纺丝研究飞纳电镜高效的特性特别适合检测静电纺丝此类需要“摸条件”的实验。飞纳电镜抽真空时间只需要 15 秒钟,从装样到得到照片不超过 30 秒。并且,飞纳电镜操作简单,学生经过简单培训就可以自己上手操作。飞纳电镜尺寸迷你,可以放置在任意实验桌甚至办公桌上,且采用高亮度 CeB6 灯丝或肖特基场发射电子源,使得飞纳电镜具有 “小身材,大能量” 的特点。飞纳电镜下的静电纺丝飞纳电镜-纤维统计分析测量系统飞纳电镜的纤维统计分析测量系统(FiberMetric)可以自动测量从纳米到亚微米量级的纤维,数秒之内采集数百纤维的直径信息,同时会对纤维相交产生的孔做出统计。每个数据点均经过 50 次测量取平均值。根据统计信息自动生成纤维直径分布柱状图,并导出数据文件。相对于手动测量,纤维系统软件测量精度高,速度快,效率高,操作简单,它让统计和分析大量不同直径的纤维样品成为可能。纤维系统测量界面 纤维测量图 扫描电镜原图纤维统计图飞纳电镜团队将出席本次会议,期待与参会人员进行扫描电镜在静电纺丝和纳米纤维检测方面的技术沟通。
  • 西北工大校友研发光纤显微内窥镜,实现最高1微米的分辨率和纳米级三维重建
    “我预计今年年底提前博士毕业,虽然我的德国导师希望我继续留下做博后,但我更希望能回到老家江苏做科研。而在最近发表的论文里,我和所在团队首次将定量相位成像技术,用于超细光纤显微内窥镜中,实现了最高 1 微米的分辨率、以及纳米级的三维重建。并通过光纤实现无透镜光场成像,借此制备出一款新型无透镜光纤显微内窥镜。”德累斯顿工业大学生物医学计算激光系统能力中心博士生孙佳伟 表示。▲图 | 孙佳伟(来源:孙佳伟 )此次提出的无透镜光纤显微内窥镜,具备 1000 倍的放大倍率,可通过图像重建让医生“看清”脑部神经元或是组织表面的细胞。(来源:Light: Science & Applications)研究中,他和同事使用无透镜光纤显微内窥镜,对无标记的癌细胞进行高对比度成像,让光纤内窥镜能进一步对体内癌症组织表面进行细胞级的高分辨率成像。这意味着,人们可通过此内窥镜尽早找出病变的癌细胞,实现癌症的早期预警。同时,鉴于光纤内窥镜探针只有头发丝量级,因此可在极大降低创口大小的同时,深入体内的狭小部位,如细微血管、肺泡、耳蜗等进行显微成像。另外,其所搭载的系统基于量产的多芯光纤,可做一次性的内窥镜探头,用完后可以轻松换上新的光纤以作为探头,从而彻底消除交叉感染的风险。据介绍,内窥镜成像(endoscopy)作为临床常用的体内成像方法之一,其常规直径至少在几十毫米以上,且图像放大倍率只有大约 50 倍,只能看清组织大概的形貌。而孙佳伟 的无透镜光纤显微内窥镜的探测端,没有使用任何透镜,探针的直径只有 0.35 毫米,大约在头发丝量级,能大大减轻创口的大小。对于神经外科手术来说,常常需要在大脑或脊柱开非常小的切口,进而通过内窥镜和特殊器械,进行复杂精密的手术。而内窥镜的尺寸越小,手术对患者造成的额外损伤就越小,患者术后恢复得也就越快。▲图 | 新型无透镜光纤显微内窥镜,探针直径仅为 0.35 毫米(来源:孙佳伟 )多年来,荧光显微成像已成为生物医学中广泛使用的成像方法,通过对样品进行荧光标记、激发和检测,可对荧光标记的样品做以选择性成像,从而提升成像的对比度。此前市面上最新的光纤显微内窥镜,是通过共聚焦扫描来实现体内荧光显微成像,但其需要昂贵的光学系统和复杂的校准流程,同时还得预先对体内组织进行特殊荧光染色。然而,某些情况下荧光剂会影响组织正常功能,用后也不易去除。因此,无标记成像技术对内窥镜尤为重要。定量相位成像,是一种无标记显微成像技术。其原理是通过组织中不同成分的微小相位差,来实现生物医学样品的高对比度成像。从技术手段来讲,进一步重建光场的相位信息,还能实现纳米级轴向分辨率的三维成像,这让定量相位成像也常被用于芯片表面检测。但是,此次提出的光纤内窥镜系统,使用量产化的多芯光纤束作为体内成像探针。虽然多芯光纤束只有三根头发丝那样粗,里面却包含着一万根单模的光纤芯,每一根光纤芯都能独立传播光学信号,而把这一万根光纤芯的光学信号组合起来,就相当于有了一万个能成像的像素。但是,光在每一根纤芯中的传播距离有着微小的差别,而光波的相位又非常敏感,即使是 10 纳米以下的光传播距离差,也会引起可观的相位变化。由于光在这一万根光纤芯中的传播距离各不相同,这会带来非常严重的相位失真,就像把样品的光学信息进行了“加密”,故在多芯光纤束中实现定量相位成像,是一个颇具挑战性的难题。(来源:Light: Science & Applications)找到“解码”光场的“钥匙”那么,如何从“加密”光场信息中恢复样品信息呢?孙佳伟 等人提出一种名为远场散斑转换的算法,可从光纤输出端的散斑中,重建出光纤中的固有相位差,这就相当于拿到了“解码”光场的“钥匙”。这样一来,当使用无透镜光纤显微内窥镜去探测样品时,用这把“钥匙”来“解码”样品的光场信息,就能得到样品的相位信息。另外,鉴于可通过光纤显微内窥镜重建完整的光场信息,这时只用一张散斑图像重建出不同深度的图像,即可实现数字重新对焦,并能把无透镜光纤显微内窥镜的工作距离从 10 微米提到 10 毫米。得益于这样的数字对焦,以后医生们再也不用手动调整焦距,通过程序即可实现实时数字对焦,让无透镜光纤显微内窥镜的易用性得到极大提升。近日,相关论文以《通过超薄无透镜光纤内窥镜进行定量相位成像》(Quantitative phase imaging through an ultra-thin lensless fiber endoscope )为题发表在 Light: Science & Applications 上。▲图 | 相关论文(来源:Light: Science & Applications)孙佳伟 担任一作兼通讯,德累斯顿工业大学测量和传感器系统技术实验室于尔根W查斯克(Juergen W. Czarske )教授、以及同一实验室的内克塔里奥斯库库拉基斯(Nektarios Koukourakis )博士担任共同通讯作者。该工作还得到清华大学精密仪器系曹良才 教授和马克思普朗克光科学研究所约亨顾克(Jochen Guck )教授的指导。其中一位审稿人评价称,“论文中的实验结果令人信服,清楚地标明该方法能够对样品进行定量相位成像,并验证了三维成像的可能性。该项新技术开辟了在超细内窥镜进行相位成像的广阔前景。”另一个审稿人表示,“作者使用一种全新的计算重建算法,以便远场强度图像获得相位信息,实现了基于光纤的定量相位成像。”(来源:Light: Science & Applications)据悉,该研究主要由德国科学基金会支持,旨在通过自适应控制多芯光纤的输出光场,精准控制癌细胞的旋转。与此同时,对细胞进行全息成像,最终得到癌细胞完整的三维重建图。为了实现在纳米级精度下,用光精准地去控制癌细胞,孙佳伟 耗时一年搭建出一个非常复杂且昂贵的光学系统,单单研发实验器件的控制程序,他就写了近一万行代码。后来,又泡在实验室几个月,终于通过光纤光场调控,对细胞多轴旋转做以实时控制。这项成果的实现也是世界首次,相关论文在更早之前已发表在 Biomedical Optics Express 上 [1]。▲图 | 利用光纤输出光场,癌细胞进行光学无接触操控,实时控制细胞旋转轴(来源:孙佳伟 )他说:“当时有一个误区,觉得越复杂的系统越高级,固然系统越复杂,需要解决的技术难题也就越多,其中的技术含量也就越高,但是繁杂的系统也就意味着高成本、高投入,难以获得广泛的应用。很多经典的研究,后人看起来其实只是解决了一个很小的问题,但最难的是从零到一的突破过程。”舍弃复杂昂贵的光学器件,只用一根光纤、一个相机和一些基本光学元件,在有限的成本内,通过程序提升成像性能。所以他一直在思考,如何把光学系统化繁为简?于是就有了关于此次论文的初步想法[2]。正好那时,清华大学精密仪器系曹良才 教授课题组的吴佳琛 博士来德国交流,曹教授团队在计算光学领域有着很深的造诣。“在和佳琛沟通了我的想法之后,他也对此特别感兴趣。因为光纤输出端的散斑太过复杂,一开始的算法效果并不理想。后来我们不断改进算法,终于在有天深夜,佳琛激动地跟我说算法成功了。我连忙从床上蹦下来打开电脑,把他的算法和我的代码整合起来,那天晚上兴奋地没怎么睡着。第二天一大早就立马赶去实验室验证算法,结果发现真的能在实验中完美重建出相位图像。”孙佳伟 说。(来源:Light: Science & Applications)计划将光纤显微内窥镜用于临床研究另据悉,因为光学仪器大多都非常精密,外界的微弱干扰都有可能对实验结果产生影响。因此为了减小外部震动,孙佳伟 所在的实验室专门建在地下一层。但是,他的实验室离马路比较近,每次有大型车辆经过的时候,都能在仪器数据上观测到微纳级的抖动。为了得到最佳的实验数据,那几周他每天等到半夜路上没有车的时候,一个人在漆黑的实验室里做实验。功夫不负有心人,最后的实验结果也非常稳定。家庭,也给他提供了软动力支持。他说:“我老婆虽然没有直接参与此次研究,但每次我的实验没有进展、焦头烂额的时候,她总能耐心地安慰我、鼓励我,等我焦躁的心安静下来后,理性地帮我梳理思绪找到问题所在。”据介绍,孙佳伟 是江苏南通人。本科就读于西北工业大学信息对抗技术专业。读研时,他来到德国留学,在波鸿大学读激光与光子学专业。那时,他开始接触到光学实验,并开始从事数字全息成像方面的研究。其说道:“一开始只是单纯觉得激光特别酷,但在实验室待久了之后,我深刻体会到光学实验是一个慢工出细活的过程,慢慢地也喜欢上泡在实验室的感觉。我的硕士论文获得了接近满分的成绩,导师把我推荐到现在的课题组继续攻读博士,我也得以继续从事光学成像的研究。”(来源:Light: Science & Applications)在德国读博更像是工作,他作为一名博士生的同时也是学校雇员,目前其还担任助理研究员一职,要承担一定的教学任务,以及指导本科生和硕士生的毕业论文。为此,孙佳伟 还开设了一门叫做“数字全息技术”的实验课程。疫情期间,他把实验课搬到线上,通过视频给学生呈现光学实验的过程,同时也在线上辅导学生处理数据。当下,他的重心依然是科研。目前的图像重建算法对电脑的硬件要求比较高,后续他计划使用人工智能提升算法效率,让图像重建程序在普通笔记本电脑上也能轻松运行,并能实时重建三维图像。同时,他和导师也申请了与所在大学的附属医院的合作项目,计划进一步将光纤显微内窥镜用于临床研究。参考资料:1.Sun J, Koukourakis N, Guck J, et al. Rapid computational cell-rotation around arbitrary axes in 3D with multi-core fiber[J]. Biomedical Optics Express, 2021, 12(6): 3423-3437.https://doi.org/10.1364/BOE.4230352.Sun J, Wu J, Wu S, et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope[J]. Light: Science & Applications, 2022, 11(1): 1-10.https://doi.org/10.1038/s41377-022-00898-2
  • 看散射型近场纳米红外光谱与成像系统如何助力胶原纤维、生物催化、活体细胞等生物领域研究
    一、胶原纤维研究 胶原纤维是人体各种器官(如骨、肌肉)中关键的组成成分之一。胶原纤维拥有复杂的微纳生物结构,这种结构的有序排列使胶原纤维能够表现出优异的生理性能,同时,这种结构的改变会导致其生理特征的急剧变化。劳损、骨折等常见疾病的发病机理就与胶原微纳结构变化密切相关。如何观测并理解胶原纤维微纳尺度的结构变化是治疗相关胶原类疾病的关键所在。 近日,中国科学院物理研究所陈佳宁课题组利用散射式近场扫描显微镜(IR-neaSCOPE)对胶原纤维进行纳米分辨率红外扫描成像。该研究通过在组织切片表面近场测量紧凑排布的胶原纤维簇,对胶原纤维的纳米周期性横纹结构进行量化分析,并观察到胶原纤维发生的横纹倾斜现象。该研究借助胶原晶格模型解释其现象的产生机理,揭示了胶原纤维内部分子间可能存在的滑移位错形变。 该结果有助于人们理解胶原结构失序时胶原纤维可能发生的纳米结构变化,为解读胶原类疾病的发病机理提供了新思路。同时,该工作展示了s-SNOM在生命科学中对于生物微纳尺度结构研究的广阔应用前景。相关结果发表在近期的《Nano Research》上。该工作得到了重点研发计划、自然科学基金,中国科学院战略重点研究计划的资助。 二、生物催化(MOF体系)研究 生物催化转化在生物体中,如多酶催化联,在不同的细胞膜区隔的细胞器中高效率地进行。然而,在自然系统中模拟生物催化联过程仍然具有挑战性。 近日,华东师范大学李丽老师课题组报道了多壳金属有机骨架(MOF)可以作为一种层次化的支架,在纳米尺度上对酶进行空间组织,以提高联催化效率。 研究人员通过外延逐壳过生长的方法将多壳MOF包裹在多酶上,其催化效率是溶液中游离酶的5.8~13.5倍。重要的是,多壳MOF可以作为一个多空间隔室的纳米反应器,允许在一个MOF纳米颗粒中物理分隔多个酶,以便在一个锅中进行不相容的串联生物催化反应。研究人员使用纳米傅立叶变换红外光谱(Nano-FTIR)来解决与多壳MOF中的酶相关的纳米振动活性的不均一性。多壳MOF能够根据特定的串联反应路线方便地控制多酶的位置,其中载酶1和载酶2的壳沿内到外壳的紧密定位可以有效地促进质量传递,从而促进高效的串联生物催化反应。 这项工作有望为设计高效的多酶催化联反应提供新的思路,以鼓励其在许多化工和制药工业过程中的应用。 三、原位液相活体细胞研究 近日,德国attocube systems AG的工程师Korbinian联合德国慕尼黑大学Fritz Keilmann课题组报道了基于散射型纳米红外成像与光谱技术在液相环境关于纳米颗粒和活体细胞的定量研究。纳米红外光谱与成像的液相探测基于一个由10 nm厚度的SiN薄膜和金属液相池组成,通过扫描探针在针形成有效的红外探测近场对吸附(浸润)在SiN另一侧的纳米颗粒或活体细胞进行原位液相扫描。 液相原位纳米红外成像与光谱下的A 549癌细胞 这项工作是基于反射式光路的散射型扫描近场显微镜(s-SNOM)和nano-FTIR建立的原位液相样品池,通过搭配波长可调谐的红外激光器,有希望拓展从近红外(特别是近红外II区)到中红外(全指纹区覆盖)乃至远红外的全红外波段的液相环境下材料和细胞的纳米尺度探测。
  • 东南大学研发纳米纤维检测技术 可检测室内重金属含量
    p  近几年,随着雾霾现象日益为人们所关注,加强对环境检测和监测成为人们开始关心的话题之一。随之净化器市场迎来发展契机,但使用净化器后的空气质量到底如何,人们并不了解。4月21日,东南大学生物医学工程学院研发的纳米纤维检测技术于东大科技成果价值增值工程首批高潜力项目推介会上展示。该技术可以测出室内空气中重金属的含量,甚至小到PM0.1的颗粒也能测出,让前来“淘宝”的企业代表眼前一亮。/pp  东大生物医学工程学院康学军教授介绍,室内空气污染可达到室外的4倍,PM2.5中的60%-80%是重金属颗粒和细菌病毒,其中PM0.1危害最大,可进入血液循环,甚至影响心血管和大脑。而目前市场上主导的玻纤纤维、光传感技术却拿PM0.1束手无策,根本无法检测和处理。目前国内污染严重地区中小学教室有150万间,幼儿园教室52万间,空气污染地区家庭达1亿户。室内空气质量检测有很大的需求。/pcenterimg alt="东南大学研发纳米纤维检测技术 可检测室内重金属含量" src="http://images.ofweek.com/Upload/News/2017-04/24/nick/1493018963014096618.jpg" width="500" height="306"//centerp  据了解,东大研发的空气质量检测技术,是基于纳米纤维这种新材料,微小如PM0.1的颗粒,也难逃它的“法网”。纳米纤维实际上就是一张膜,把它贴在家里,就能“收集”空气中的污染物,室内铅、汞、砷、镉这些对人体危害大的重金属到底含量多少,一目了然。更重要的是,东大研发的在线监测系统,可由专家根据相关的数据进行分析形成报告,并通过APP向用户推送,提出解决方案。/pp  据了解,此项技术已在国家环境分析测试中心试用,预计明年开始示范推广。/p
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • 岛津原子力显微镜——多维度纳米材料测试
    纳米材料是近十余年来新兴的功能材料类型,一般而言纳米材料在指在三维空间中至少有一维处于纳米尺度,即100 nm以下,或是由此尺度的单元构成的材料。100nm相当于不到1000个原子紧密排列在一起,在这个尺度下,材料表现出了不同于宏观状态的力、光、电、磁、热等属性。因此成为化学和材料学科中研究非常广泛,进展很快的领域。 在纳米尺度下,对此类材料的形貌表征普通的光学观察方式不再适用。因此常用的是电子显微镜和原子力显微镜。而原子力显微镜因为具备三维高分辨表征能力而且环境适用范围广,被广泛运用于纳米材料的分析与检测。 纳米材料按维度可以分为零维材料、一维材料、二维材料、三维材料。 零维材料是指电子无法自由运动的材料,如量子点、纳米颗粒与粉末等。 硅量子点太阳能电池形貌及粒度分布 GaAs (100)衬底上生长的In0.7Ga0.3As量子点 对于零维材料,普遍关注的是颗粒的粒径以及粒径分布情况。从以上两个用案例可以看出,原子力显微镜可以很方便地获得图像及粒径统计数据。 一维材料是指电子只能在一个方向上自由运动的材料,如纳米线、量子线。早期研究较为深入的一维材料是碳纳米管。 单壁碳纳米管 上图是对单壁碳纳米管的观测。不仅可以直观地看到其形貌,而且可以通过断面测量获得管径数值。 同样的,如果视野中观察到了多条纤维,原子力显微镜的分析处理软件也可以对其进行统计分析。 2004年曼彻斯特大学Geim 小组成功分离出单原子层的石墨材料——石墨烯,由此带动了对二维材料的研究。主要包括石墨烯、拓扑绝缘体、过渡金属硫系化合物、黑磷等。 其中研究较为深入的是石墨烯。由于其各种优良属性均依赖于单层或少数几层。所以对石墨烯的基本且重要的测试要求就是对层数的测量。 在这一点上,原子力显微镜具有很好的优势,也因此被列入了国家标准(GBT 40066—2021 纳米技术氧化石墨烯厚度测量——原子力显微镜法)。 氧化石墨烯图像 GBT 40066—2021中规定的厚度计算公式 上图计算得到的计算数据,可知该片氧化石墨烯厚度为0.630±0.039nm,由此可推测这片氧化石墨烯为单层石墨烯。 综上所述,在纳米材料领域,原子力显微镜因其高分辨而且是三维成像的属性,成为各类纳米材料常用的分析工具。 岛津原子力显微镜历经三十余年的发展与积累,应对各种需求,不断推出新型号和新功能,为科学研究和技术发展提供得力的工具。本文中所有图片均为岛津原子力显微镜获得。 本文内容非商业广告,仅供专业人士参考。
  • 三英显微CT与月球的亲密接触
    近日,三英精密的nanoVoxel-4000型显微CT在中科院广州地球化学研究所(简称广州地化所)顺利交付使用,迎来的第一批样品检测任务是来自三十八万公里外的月球样品研究。来自月球的珍贵样品是广州地化所在北京举行的嫦娥五号任务第一批月球科研样品发放仪式上得到,用于开展后续的全面科学研究。广州地化所安装的三英显微CT设备(nanoVoxel-4000型) 广州地化所月球样品证书(图片来源于广州地化所官网)月球样品实物(图片来源于广州地化所官网) 2020年12月17日,嫦娥五号返回器载着1731克月球土壤样品安全着陆,圆满完成了我国首次地外天体采样返回之旅。这不仅意味着我国航天技术取得巨大飞跃,而且我国也成为继美国和苏联之后,全世界第三个从月球带回月壤样品的国家。月壤真有那么稀罕吗?看美国当初挖了381公斤却只给中国1克就知道了。当年中国极为看重这1克的月球土壤,将0.5克放在了北京天文馆,剩下的0.5克拿去做研究,根据仅有的0.5克月壤,中国科学家研究发表了14篇论文。相信今天的中国科学家面对将近2公斤的月壤样品,早已摩拳擦掌,期待产出一批新的科研成果。面对如此珍贵的月球样品,科学家们会利用各种仪器手段对样品进行全面分析,首先要使用的是不破坏样品的“无损分析技术”,X射线三维CT技术是一种典型的无损三维成像技术,三英精密的nanoVoxel系列显微CT设备,分辨率高达500nm,能够对样品进行高分辨、定量化分析,快速精确地分析颗粒形态、结构大小、物性特征,得到其内部各类组构空间信息,包括骨架、基质、裂隙及孔隙等,让样品内部结构直观可见,也成为广州地化所的科研人员重点采用的物性结构分析无损手段。三英精密的资深测试工程师朱云飞与广州地化所科研人员一起开展了月球样品的显微CT扫描测试,幸运成为“触碰月亮”的一员。广州地化所的科研人员感慨道:“中国人自主采回的月球样品,使用我国自主研发的高端显微CT仪器进行分析,拥有更大的意义”。让我们一起期待广州地化所后续的科研成果成功发表。 月球样品安装固定 月球样品显微CT检测 星空浩瀚无比,探索永无止境!三英精密将一如既往为诸多科研和先进制造领域提供专业化的解决方案,助力月球探索事业,让世界见证中国科技!
  • 美国主要使用以玉米为原料的第一代生物燃料,逐渐过渡到第二代纤维素乙醇燃料
    内布拉斯加大学林肯分校能源科学研究所主任肯尼斯卡斯曼认为,美国对进口蔗糖乙醇燃料征收高额关税是正确的,可以保障美国纤维素乙醇燃料发展。他认为,市场一旦放开,美国很可能从依赖进口石油转为依赖进口乙醇燃料。巴西方面则认为,美国采取的贸易保护措施,牺牲了环保利益。虽然要求降低或取消进口蔗糖乙醇燃料关税的呼声已引起奥巴马的注意,但观察人士认为,关税调整落实较难,那些以农业为支柱产业的美国某些州,将以政治手段阻挠降低蔗糖乙醇燃料的进口关税。ELISA试剂盒在这场新能源热潮中,如何发展更环保、效益高的能源成为讨论的焦点,也由此激起无数热议。近日,巴西蔗糖工业协会常务理事埃德瓦多莱奥公开表态,抗议美国对进口巴西产蔗糖乙醇燃料征收54%的高额关税。他表示,蔗糖乙醇燃料比美国广泛使用的玉米乙醇燃料环保,负面影响较低,社会效益更佳。ELISA试剂盒由于外汇匮乏,巴西在20世纪70年代的两次石油危机中,经济濒临崩溃。于是该国政府决定大力发展乙醇燃料,降低对进口能源的依赖。如今,巴西乙醇燃料的使用比例达55%,数千条管道输送乙醇燃料,几乎所有加油站都供应乙醇燃料。不仅如此,近年来巴西生产的汽车几乎都配装弹性燃料发动机,可使用汽油或车用乙醇。今年4月,巴西总统卢拉在一次地区峰会上,ELISA试剂盒曾向美国总统奥巴马表达对美限制进口蔗糖乙醇燃料的不满。他指出,美国的再生能源政策影响巴西对美国出口蔗糖乙醇燃料。卢拉认为,美国选择玉米为乙醇燃料的主要原料是错误的,会造成玉米供应紧张、价格上涨等问题,还会使那些以玉米为主要粮食作物的国家陷入粮食危机。密歇根大学汽车研究中心主任安娜斯坦菲诺保罗持相同观点:“美国中西部地区种植的玉米被广泛用于制造乙醇燃料,造成食品价格持续上涨。”
  • 兰州大学505.54万元采购荧光显微镜,立体显微镜
    详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:荧光显微镜,立体显微镜 开标时间:2022-12-16 09:00 预算金额:505.54万元 采购单位:兰州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:兰州西部投资咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-12-25 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 兰州大学显微镜及互动教学系统等仪器设备采购项目公开招标公告 2022年11月25日 23:50 来源:中国政府采购网 项目概况兰州大学显微镜及互动教学系统等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)获取招标文件,并于2022年12月16日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-391-HW-GK 项目名称:兰州大学显微镜及互动教学系统等仪器设备采购项目 预算金额:505.5400000 万元(人民币) 最高限价(如有):505.5400000 万元(人民币) 采购需求: 相关内容详见招标文件第三章 采购项目需求。 标段名称及标段编号 预算金额(万元) 标的名称 计量单位 数量 是否进口 第一标段(标段编号:LZU-2022-391-HW-GK-01) 144 显微数码互动教室 套 3 否 第二标段(标段编号:LZU-2022-391-HW-GK-02) 96 显微数码互动系统 套 1 是 第三标段(标段编号:LZU-2022-391-HW-GK-03) 86.94 数码带屏一体显微镜 台 23 是 相差显微镜 台 1 成像倒置显微镜 台 2 第四标段(标段编号:LZU-2022-391-HW-GK-04) 39.6 倒置荧光显微镜 台 2 否 普通显微镜 台 20 体视显微镜 台 20 第五标段(标段编号:LZU-2022-391-HW-GK-05) 99 实时全景深显微镜 台 1 是 第六标段(标段编号:LZU-2022-391-HW-GK-06) 40 基因编辑与显微注射平台 套 1 是 合同履行期限:第一标段:合同生效后90个日历日内供货。第二标段:合同生效后90个日历日内供货。第三标段:合同生效后90个日历日内供货。第四标段:合同生效后5个日历日内供货。第五标段:合同生效后90个日历日内供货。第六标段:合同生效后180个日历日内供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一、四标段:无第二、三、五、六标段:对提供进口产品的投标人须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。 三、获取招标文件 时间:2022年11月28日 至 2022年12月02日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn) 方式:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学采购管理办公室电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: 1. 确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 2.核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 3. 选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 4. 登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 5. 供应商登记后应及时登陆兰州大学采购管理办公室供应商库查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。同时可以通过“下载采购文件”模块自行免费下载采购文件。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月16日 09点00分(北京时间) 开标时间:2022年12月16日 09点00分(北京时间) 地点:兰州西部投资咨询有限公司开标室(兰州市城关区南关什字世纪广场B座26楼)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标),投标文件通过兰州大学投标程序客户端上传到电子招投标平台。供应商应按招标文件规定的投标截止时间登录 “ 兰州大学采购管理办公室电子招投标系统(供应商)”参加远程开标(不见面开标),并应自开标时间截止前 30 分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件)。 2、未尽事宜详见第二章投标须知前附表。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:兰州西部投资咨询有限公司 地 址:兰州市城关区南关什字世纪广场B座26楼 联系方式:李伟山 17793580008 3014570993@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826012
  • 大连化物所制备出基于光子纤维素纳米晶的柔性汗液传感器
    近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。   在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,在电子、生物塑料、能源等领域被广泛的应用,有望加速推进各领域的可持续发展。特别的是,CNC可以自发组织形成手性向列液晶结构,产生绚丽的光子结构色,这对可持续性光学和光学传感的发展非常重要。然而,此类材料在潮湿或液体环境中的功能失效,不可避免地损害了它们在生物医学、膜分离、环境监测和可穿戴设备中的发展。因此,通过简单有效的手段使得CNC在液体环境下稳定存在,并实现功能化的应用非常重要。本工作中,团队发展了一种制造不溶性CNC基水凝胶的简单且有效的方法,利用分子间氢键重构,热脱水使优化的CNC复合光子膜在水溶液中形成一个稳定的水凝胶网络。研究发现,该水凝胶在干湿状态之间可以可逆转换,便于进行特定的功能化处理。团队通过在液体环境下吸附溶胀引入功能化分子,得到了具有抗冻性(–20℃)、强粘附性、良好生物相容性、对Ca2+高灵敏度和高选择性感应的水凝胶。该工作有望促进利用可持续纤维素传感器监测其他代谢物(即葡萄糖、尿素和维生素等)的应用,并为在环境监测、膜分离和可穿戴设备中运行的数控水凝胶系统奠定了基础。   卿光焱团队长期致力于CNC手性功能化相关研究,开展了一系列工作:通过整合CNC自组装工艺和DMF溶剂中的紫外光引发的有机聚合,实现高性能光子材料的合成,从而增强CNC基复合材料的弹性变形概念(Small,2022);将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜(Adv. Funct. Mater,2022)等。   相关研究成果以“Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat”为题,于近日发表在Small上。该工作的第一作者是大连化学物理研究所1824组博士研究生李琼雅。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、大连化学物理研究所创新基金等项目的支持。
  • 五洲东方在广州市纤维产品检测院举办售后服务活动
    为答谢广大用户,2012年3月13日北京五洲东方科技发展有限公司联手德国BRAND公司在广州市纤维产品检测院开展了售后服务月活动。纤检院  活动分为两大版块,第一版块为实验室前处理设备保养知识培训,结合广州市纤维产品检测院实验室工作特点设定了三大品牌&mdash 德国BRAND、德国Memmert、德国Sigma前处理设备保养知识培训,由德国BRAND公司和我公司的高级工程师分别主讲。培训得到了广州市纤维产品检测院的大力支持,领导亲自莅临培训现场。来自于广州市纤维产品检测院实验室的40多名技术人员认真聆听了知识培训,并对实际操作提出了大量感兴趣的问题并得到满意的回答,同时公司为积极提问的老师准备了精美的纪念品。培训结束,技术人员们欣喜的收获到公司颁发的培训证书。 测漏活动工程师培训客户体验MEMMERT箱体  第二版块为维修保养三大品牌的仪器设备,德国BRAND公司新产品检漏仪在现场发挥了巨大的作用,共检漏检修48支移液器、瓶口分配器,维修保养Memmert近40台干燥箱培养箱等。本次活动深受实验室的欢迎,方便了各位技术人员的工作同时给技术人员们带来了实惠,同时高度认可我公司现场优质服务和德国优质产品品质。 产品维护产品讲解
  • 兰州大学238.00万元采购偏光显微镜,荧光显微镜
    详细信息 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-11-26 招标文件: 附件1 附件2 附件3 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 2022年11月26日 15:46 公告信息: 采购项目名称 兰州大学偏光显微镜等仪器设备采购项目 品目 货物/通用设备/仪器仪表/光学仪器/显微镜 采购单位 兰州大学 行政区域 城关区 公告时间 2022年11月26日 15:46 获取招标文件时间 2022年11月27日至2022年12月02日每日上午:0:00 至 12:00 下午:12:00 至 24:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 开标时间 2022年12月17日 09:30 开标地点 甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层) 投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 预算金额 ¥238.000000万元(人民币) 联系人及联系方式: 项目联系人 彭老师 项目联系电话 13919826212 采购单位 兰州大学 采购单位地址 兰州市天水南路222号 采购单位联系方式 刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 代理机构名称 甘肃西招国际招标有限公司 代理机构地址 兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 代理机构联系方式 杨蕾萍 19993139334 1170086769@qq.com 附件: 附件1 附件2 工信部300号文(1).pdf 附件2 附件1:兰州大学招投标系统供应商使用指南.pdf 附件3 兰州大学偏光显微镜等仪器设备采购项目招标文件.pdf 项目概况 兰州大学偏光显微镜等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏获取招标文件,并于2022年12月17日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-387-HW-GK 项目名称:兰州大学偏光显微镜等仪器设备采购项目 预算金额:238.0000000 万元(人民币) 最高限价(如有):238.0000000 万元(人民币) 采购需求: 标段号 序号 标的名称 所属行业 计量 单位 数量 是否进口 预算金额(万元) 第一标段 1 偏光显微镜 工业 (制造业) 台 1 是 63.5 2 双目镜 工业 (制造业) 台 1 是 第二标段 1 活细胞培养显微动态观察系统 工业 (制造业) 套 1 是 39.9 第三标段 1 倒置荧光相差显微成像系统 工业 (制造业) 套 2 是 88 第四标段 1 倒置荧光显微镜 工业 (制造业) 台 1 是 40 第五标段 1 数码解剖镜 工业 (制造业) 台 3 否 6.6 2 数码显微成像系统 工业 (制造业) 台 1 否 合同履行期限:第一标段:合同生效后90个日历日内完成供货第二标段:合同生效后90个日历日内完成供货。第三标段:合同生效后90个日历日内完成供货。第四标段:合同生效后90个日历日内完成供货。第五标段:合同生效后15个日历日内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一标段、第二标段、第三标段、第四标段:对提供进口产品的供应商须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。第五标段:无。 三、获取招标文件 时间:2022年11月27日 至 2022年12月02日,每天上午0:00至12:00,下午12:00至24:00。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 方式:重要说明:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: (1)确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 (2)核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 (3)选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 (4)登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 (5)供应商登记后应及时登陆兰州大学电子招投标系统(供应商)查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。 (6)采购文件发布后,登记信息审核通过的供应商可登陆系统下载电子版采购文件及有关资料。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月17日 09点30分(北京时间) 开标时间:2022年12月17日 09点30分(北京时间) 地点:甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层)投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标)投标代理人不要求到达开标现场,投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台。供应商应按招标文件的规定的投标截止时间登录 兰州大学电子招投标系统(供应商) 前参加远程开标(不见面开标),并应自开标时间截止前30分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件1)。 2、未尽事宜详见第二章投标须知前附表; 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:甘肃西招国际招标有限公司 地 址:兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 联系方式:杨蕾萍 19993139334 1170086769@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826212 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:偏光显微镜,荧光显微镜 开标时间:2022-12-17 09:30 预算金额:238.00万元 采购单位:兰州大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:甘肃西招国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 甘肃省-兰州市-城关区 状态:公告 更新时间: 2022-11-26 招标文件: 附件1 附件2 附件3 兰州大学偏光显微镜等仪器设备采购项目公开招标公告 2022年11月26日 15:46 公告信息: 采购项目名称 兰州大学偏光显微镜等仪器设备采购项目 品目 货物/通用设备/仪器仪表/光学仪器/显微镜 采购单位 兰州大学 行政区域 城关区 公告时间 2022年11月26日 15:46 获取招标文件时间 2022年11月27日至2022年12月02日每日上午:0:00 至 12:00 下午:12:00 至 24:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 开标时间 2022年12月17日 09:30 开标地点 甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层) 投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 预算金额 ¥238.000000万元(人民币) 联系人及联系方式: 项目联系人 彭老师 项目联系电话 13919826212 采购单位 兰州大学 采购单位地址 兰州市天水南路222号 采购单位联系方式 刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 代理机构名称 甘肃西招国际招标有限公司 代理机构地址 兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 代理机构联系方式 杨蕾萍 19993139334 1170086769@qq.com 附件: 附件1 附件2 工信部300号文(1).pdf 附件2 附件1:兰州大学招投标系统供应商使用指南.pdf 附件3 兰州大学偏光显微镜等仪器设备采购项目招标文件.pdf 项目概况 兰州大学偏光显微镜等仪器设备采购项目 招标项目的潜在投标人应在中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏获取招标文件,并于2022年12月17日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:LZU-2022-387-HW-GK 项目名称:兰州大学偏光显微镜等仪器设备采购项目 预算金额:238.0000000 万元(人民币) 最高限价(如有):238.0000000 万元(人民币) 采购需求: 标段号 序号 标的名称 所属行业 计量 单位 数量 是否进口 预算金额(万元) 第一标段 1 偏光显微镜 工业 (制造业) 台 1 是 63.5 2 双目镜 工业 (制造业) 台 1 是 第二标段 1 活细胞培养显微动态观察系统 工业 (制造业) 套 1 是 39.9 第三标段 1 倒置荧光相差显微成像系统 工业 (制造业) 套 2 是 88 第四标段 1 倒置荧光显微镜 工业 (制造业) 台 1 是 40 第五标段 1 数码解剖镜 工业 (制造业) 台 3 否 6.6 2 数码显微成像系统 工业 (制造业) 台 1 否 合同履行期限:第一标段:合同生效后90个日历日内完成供货第二标段:合同生效后90个日历日内完成供货。第三标段:合同生效后90个日历日内完成供货。第四标段:合同生效后90个日历日内完成供货。第五标段:合同生效后15个日历日内完成供货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求:第一标段、第二标段、第三标段、第四标段:对提供进口产品的供应商须提供投标产品生产厂家针对本项目的专项授权函原件或区域总代理针对本项目的转授权函原件(提供转授权函的,还须提供生产厂家对区域总代理的授权函复印件且该复印件须加盖区域总代理公章)。第五标段:无。 三、获取招标文件 时间:2022年11月27日 至 2022年12月02日,每天上午0:00至12:00,下午12:00至24:00。(北京时间,法定节假日除外) 地点:中国政府采购网(www.ccgp.gov.cn)和兰州大学采购管理办公室主页 (http://zbb.lzu.edu.cn)采购公告栏 方式:重要说明:本项目采用电子招投标,所有供应商必须办理数字证书后方可登记和投标。 符合本公告要求的供应商,须按以下流程在兰州大学电子招投标系统(供应商)(http://company.lzu.edu.cn/CG-GS/gongSiLogin.initDenglu.action)上注册并完成在线登记: (1)确认企业公章证书(KEY)办理完成并与公司注册账号绑定,确认证书驱动安装完成,并使用证书方式登陆电子招投标系统(供应商)。 (2)核对注册信息准确性和证照扫描件真实性,根据公告及系统要求完善供应商基本信息;公告中要求供应商具备的资格条件,相关证照必须扫描上传至“资质”栏目内。 (3)选择要投标的项目点击在线登记,按要求完整、准确填写登记信息,核对无误后保存并提交。 (4)登记信息使用数字证书签名并提交审核,此过程可能需要输入证书PIN码,注意不是供应商注册的密码。 (5)供应商登记后应及时登陆兰州大学电子招投标系统(供应商)查看审核情况,根据审核要求补充、完善相关信息,审核通过即为登记成功。 (6)采购文件发布后,登记信息审核通过的供应商可登陆系统下载电子版采购文件及有关资料。 注:如有问题,请联系技术支持,电话:13811001607 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月17日 09点30分(北京时间) 开标时间:2022年12月17日 09点30分(北京时间) 地点:甘肃西招国际招标有限公司开标室(兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层)投标文件上传地点:投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台,详见操作说明(见附件1) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交方式:此项目是远程开标(不见面开标)投标代理人不要求到达开标现场,投标文件通过兰州大学电子招投标系统(供应商)上传到电子招投标平台。供应商应按招标文件的规定的投标截止时间登录 兰州大学电子招投标系统(供应商) 前参加远程开标(不见面开标),并应自开标时间截止前30分钟签到,签到完成在开标时间开始起半小时内自行完成开标解密,否则投标无效。详见操作说明(见附件1)。 2、未尽事宜详见第二章投标须知前附表; 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:兰州大学 地址:兰州市天水南路222号 联系方式:刘老师、曹老师 0931-8912932 zbk@lzu.edu.cn 2.采购代理机构信息 名 称:甘肃西招国际招标有限公司 地 址:兰州市安宁区北滨河西路通达街3号雁京罗马商务大厦24层 联系方式:杨蕾萍 19993139334 1170086769@qq.com 3.项目联系方式 项目联系人:彭老师 电 话: 13919826212
  • 蔡司发布全新亚微米级X射线显微镜Xradia 600 Versa
    p  strong仪器信息网讯/strong 德国耶拿当地时间,2019年1月23日,屡获殊荣的蔡司Xradia Versa系列又推出了两款新型先进产品 — Xradia 610 Versa和Xradia 620 Versa X射线显微镜。它们的独特优势是能够在全功率和电压范围内更快速地对样品进行无损成像,且不会影响分辨率和对比度。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/ea57ce49-bb64-409b-939e-5d7cb9fc0001.jpg" title="1.jpg" alt="1.jpg" style="width: 450px height: 300px " width="450" vspace="0" height="300" border="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "新型蔡司Xradia 620 Versa/span/pp  蔡司Versa X射线显微镜凭借优异的大工作距离高分辨率(RaaD)的特性,成为了全球优秀研究人员和科学家的“有力帮手”。在相对大工作距离下也能保持超高分辨率,有助于产生意义非凡的科学见解和发现。随着当今技术的快速发展,对分析仪器也提出了更高的要求,而蔡司Xradia 600 Versa系列就是专为应对这一挑战而设计的。/pp  strong蔡司 Xradia 610 & 620 Versa采用改进的光源和光学技术/strong/pp  X射线计算机断层扫描成像领域面临的两大挑战是:实现大尺寸样品和大工作距离下的高分辨率和高通量成像。蔡司推出的两款X射线显微镜凭借以下优势完美解决了这些挑战:系统可提供高功率的X射线源,显著提高X射线通量,从而加快了断层扫描速度。工作效率提高达两倍,而且不会影响空间分辨率。同时,X射线光源的稳定性得到提升,使用寿命也更长。/pp  strong主要特性包括:/strong/pp  ● 最高空间分辨率500nm,最小体素40 nm/pp  ● 与蔡司 Xradia 500Versa系列相比,工作效率提高两倍/pp  ● 更加简便易用,包括快速激活源/pp  ● 能够在较大的工作距离下对更广的样品类型和尺寸的样品进行亚微米特征的观察/pp  strong先进科研和工业领域的更多应用将因此而受益/strong/pp  这两款用途广泛的仪器可以为不同领域的科研机构和工业客户带来更高的工作效率和价值,助力他们的研究和探索。/pp  凭借RaaD特性,蔡司 Xradia Versa在大工作距离下也能保证超高分辨率,并且能够对安放在环境试验舱室或高精度原位加载装置中的样本进行成像。这可以让材料科学研究人员在受控的环境条件下以无损的方式表征材料的3D微观结构,以探究不同原位条件下(如加热或拉压)造成的影响。/pp  随着全球能源材料需求呈现爆炸式增长,工业研究人员需要分析这些材料在多个固相和液相阶段的复杂多物理场行为及其相关的结构演变。蔡司 Xradia 600 Versa系列能够帮助研究人员解析这些结构的形态及其在工作条件下的行为。这些基于RaaD技术的X射线显微镜可以对完整的软包电池和圆柱形电池进行高分辨率成像,从而为数百次充放电老化效应的研究提供支持。/pp  strong在电子和半导体行业/strong中,用户常常会为了工艺开发、良率提高进行结构和失效分析,并对先进的半导体封装进行结构分析。蔡司Xradia 600 Versa系列可以通过无损成像进行封装产品的缺陷分析,如:Bumps或Microbumps中的裂纹、焊料润湿问题或TSV通孔结构。在物理失效分析(PFA)之前对缺陷进行三维可视化,减少人为物理切片引入的假象缺陷,从而提高失效分析的成功率。/pp  strong在增材制造行业/strong中,3D X射线显微镜在从粉末到零件的整个流程的多道工序中发挥着重要作用。典型应用包括:研究粉末床中颗粒的具体形状、尺寸和体积分布,以确定合适的工艺参数。蔡司Xradia 600 Versa系列具有更高的工作效率和结果效率,实现高效的工作流程。/pp  strong在原材料研究领域/strong中,用户会进行多尺度的孔隙结构分析,包括原位流体流动分析。全新蔡司Xradia Versa X射线显微镜以更快的运行速度为数字岩心模拟、基于实验室的衍射衬度断层扫描成像和多尺度成像等提供更精确的三维纳米尺度成像,从而减少研究前后衔接瓶颈限制。/pp  strong在生命科学领域/strong,蔡司 Xradia 600 Versa系列可实现更快、更高分辨率的成像,让研究人员能够研究软组织(如神经组织、血管网络、细胞结构、韧带和神经)、骨骼的矿物组织以及植物结构(如根和细胞结构)。/pp  strong持续改进和可升级性/strong/pp  蔡司X射线显微镜旨在通过不断创新和发展进行升级和扩展,以保护我们客户的利益。这样可以确保随着前沿技术的不断进步,显微镜技术也能向前发展,从蔡司 Xradia Context microCT到蔡司Xradia 500/510/520 Versa,再到现在新增的蔡司 Xradia 610/620 Versa,用户都可以将系统升级至最新的X?射线显微镜。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong关于蔡司/strong/span/pp  蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。/pp  全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong蔡司研究显微镜解决方案/strong/span/pp  蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6,300名员工在2016/2017财年创造了总额达15亿欧元的业绩。/p
  • 纳米先导 引领未来—走近牛津仪器原子力显微镜、纳米科学业务
    p  strong 仪器信息网讯/strong 2017年8月29-31日,第七届中国国际纳米科学技术会议(ChinaNANO 2017)在北京举行。大会旨在促进纳米科学与技术研究的前沿问题的交流。中国科学院院长白春礼出席开幕式并致辞,会议吸引来自全球30多个国家和地区的2000多名代表参加。/pp style="text-align: center"img style="width: 450px height: 253px " src="http://img1.17img.cn/17img/images/201708/insimg/3dc59c0e-1c44-417c-8462-d6d8dc4212a7.jpg" title="00.jpg" height="253" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong会场一角/strong/pp  作为ChinaNANO 2017赞助商,牛津仪器携旗下纳米科学部门(NanoScience)和原子力显微镜部门(Asylum Research)等业务部门亮相此次大会。借此机会,在牛津仪器展位,仪器信息网编辑就两业务部门研发及市场最新动向,与Asylum Research的亚太区副总裁David E.Beck博士、美国总部研发总监Mario Viani博士、中国区技术主管程鹏博士,以及NanoScience的亚洲销售及市场经理赵勇杰博士进行了现场交流。/pp style="text-align: center"img style="width: 450px height: 253px " src="http://img1.17img.cn/17img/images/201708/insimg/14481a0d-5b7f-4d7e-a415-6642a11c9432.jpg" title="0.jpg" height="253" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong中国科学院院长白春礼到牛津仪器展位询问/strong/pp  span style="color: rgb(255, 0, 0) "strong牛津仪器Asylum Research—创新设备引导前沿应用,坚持“最专业的售后支持”/strong/span/pp  自从1985年,首台原子力显微镜(AFM)问世以来,由于其相比光学显微镜及电子显微镜完全不一样的图像显示方式,及在多场不同物理性能表征等方面的广泛应用。在30余年里,AFM表征技术得到了迅速的发展。/pp  Asylum Research总部位于美国加利福尼亚圣塔芭芭拉市,成立于1999年,由三名原DI(Digital Instruments)公司的科学家共同创立。公司致力于纳米科学表征中的AFM研发及生产,并于2012年加入牛津仪器。/pp  Asylum Research产品的发展大致可以分为两个阶段:1999-2008阶段,研发了三轴分立的扫描器和高分辨率定位传感器, 在原子力显微镜行业首次实现了精确定量的力曲线和闭环扫描。接着,在Mario Viani带领的研发团队努力下,于2008年开发出Cypher S 原子力显微镜,全新设计的机械结构大大提高了分辨力和扫描速度,常规扫描速度提高了10到20倍,同时实现了全自动化操作,大大降低了使用难度。在2012年,Cypher ES环境控制扫描器问世,在保持Cypher S性能的同时实现了稳定扫描下的温度和湿度控制、气体和液体的密闭式循环。2017年,又经过近十年的研发积累和技术储备,2017年2月,推出了全功能的视频级原子力显微镜Cypher VRS。Cypher VRS同时具有极高的成像速度和极高的成像分辨率,扫描线速度最高可达625Hz,最快能以每秒10帧左右的速度成像。作为对比,其扫描速度比传统的AFM要快300倍以上,比目前的“快速扫描”AFM要快10倍以上。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/252142ee-638a-4434-bd87-e411f6cf8625.jpg" title="1.jpg"//pp style="text-align: center "strong全功能的视频级AFM-Cypher VRS/strong/pp  对于拥有了高分辨率的AFM,极高的成像速度是很可贵的。Mario Viani博士介绍道,“‘快速’的概念很早就有科学家提出过,但由于定制化的设备难以使用,并未得到广泛的应用。我们的AFM有一个特点,就是在‘高速、高分辨’的基础上,操作很简单。这样,用户无论来自生物领域、化学领域,还是材料等领域,都能够在拿到设备后很容易得到高质量高分辨的图像结果。另外,Cypher VRS这种视频级成像的技术对于AFM领域是很前沿的。这个全新的技术将引领一系列全新的科研应用,为那些需要在原子力显微镜的分辨率下研究动态过程的科研领域打开了一个新世界的大门。我们注意到Cypher VRS面世以来,受到了各领域广泛的关注,如生物、化学、材料领域。”/pp  对于Asylum Research,另一个重要事件不得不提,那就是2012年加入牛津仪器。David E.Beck博士讲道:“Asylum Research加入牛津仪器使双方实现了共赢,牛津仪器在扩展了纳米分析领域的产品线的同时,Asylum Research获得更多客户、市场宣传等共享资源,业绩也实现快速发展,在中国市场的表现尤为亮眼。”/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201708/insimg/b10f8192-20ef-4f53-bfcd-a02dbbdfe78e.jpg" title="000.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong合影留念/strong/pp style="text-align: center "(左二,David E.Beck博士 左三,Mario Viani博士 左四,程鹏博士)/pp  对于AFM业务的下一步发展,David E.Beck博士认为,Asylum Research核心宗旨依旧是保持最专业的“售后支持”。因为AFM的应用非常广泛,涵盖化学、生物、材料、物理和机械等多个领域,时刻让客户设备保持最佳工作状态,协助客户获得最佳数据就成为Asylum Research的首要任务。另外,中国当下高速发展的科学研究,为AFM技术推广和应用带来了新机遇。Asylum Research十分重视中国市场:包括在北京和上海已建立的两个设备齐全的Demo实验室、支持中国技术团队与本地客户紧密合作,为特殊需求进行产品定制研发。/pp  span style="color: rgb(255, 0, 0) "strong牛津仪器NanoScience—Demo实验室拉近客户距离,跟踪需求源引研发创新/strong/span/pp  关于刚提到Asylum Research加入牛津仪器的共赢,赵勇杰博士表示:“确实如此,比如参加本次会议,NanoScience和Asylum Research虽然是不同的业务部门,但我们的客户是有很大交叉的,只不过AFM可能用来表征形貌,而我们更多考察在低温、强磁场环境下做成纳米器件的光电性能等。这样我们就实现了共享客户及市场资源,同时这对为客户提供更完善解决方案也是更很有利的。”/pp  赵勇杰还表示:“近五到十年,国内创新十分活跃,越来越多国内的研究成果得到转化或发表在国际高水平期刊杂志上。在此大背景下,客户对更多高端检测手段有了越来越多的需求,我们作为高技术设备制造者也一直在为找到更好的结合点而努力,其中,Demo实验室就是一个很好的方式。”/pp  据介绍,牛津仪器NanoScience上海的Demo实验室设立与2016年下半年,经过近半年的试运行(配件购置、调试等),现已正式运营近半年时间并取得了良好的效果。Demo实验室主要包括研发和测试两项工作,研发则包含了牛津仪器自己以及与客户合作的项目。用赵勇杰博士的话说,“demo实验室拉近了我们与客户的距离”。不仅简短了与客户之间的沟通时间周期,还可以对客户的需求及时跟进,这也促进了与客户科研工作的紧密合作。同时,通过与客户合作过程中不断的发现需求、验证的过程,还可以为新的应用或新产品的研发提供源源不断的设想或理念,从而本土化创新就无形中推动了整个牛津仪器产品系列的创新。赵勇杰博士说:“我们欢迎广大用户来参观、使用我们的demo实验室,在此进行科学实验或验证创新的想法。”/pp  正是拉近与客户的距离,不断与客户密切的研发合作促进了牛津仪器本土化的售后支持与研发能力。NanoScience的产品设计也十分重视不同客户的不同体验,迷你无液氦稀释制冷机系统(Io系统)就是一例,该产品于2016年面世,是一个紧凑的,无液氦的低振动连续冷却解决方案,可以将样品温度降到50 mK。一些用户实验室空间不足或经常从一个地方转移到另一个地方,Io系统便是专为这些用户的需求而设计,其不仅紧凑,重量轻,易移动,易于安装和操作,设计简单,即使没有经验的用户,也可以轻松在新的地方重新搭建调试系统,而且还大大节省了用户的购买成本。这套系统在当前细分化的市场中,提供了更多可能性满足了用户的需求。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/e2ed47ba-ae85-4764-8d5a-e7f806beca3b.jpg" title="2.jpg"//pp style="text-align: center "strong迷你无液氦稀释制冷机系统(Io系统)/strong/p
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT 参考文献(1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimma and T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 显微CT核心技术掌握在国人自己手中——仪器信息网25周年“万里行”之走访三英精密
    近年来,随着我国制造业转型升级,产业结构调整不断深入,电子、汽车、新能源、航空航天等重点行业迅猛发展,促进了无损检测设备需求快速增长。同时,国家颁发了一系列文件,如《“十四五”智能制造发展规划》提出“研发在线无损检测等智能装备和仪器”,《产业结构调整指导目录(2024年本)》中“鼓励工业CT、三维超声波探伤仪等无损检测设备”,《推动大规模设备更新和消费品以旧换新行动方案》明确“推广应用无损检测技术工艺”,为无损检测企业发展提供了良好的政策环境。仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。为了深入了解我国无损检测行业现状,为发展新阶段赋能,北京信立方科技发展股份有限公司副总经理赵鑫、产业研究部主任武自伟、仪器信息网编辑部主管杨厉哲、仪器信息网部门经理韩永风一行走进了天津三英精密仪器股份有限公司(以下简称“三英精密”),近距离领略X射线CT国产企业风采。三英精密副总经理张宗、市场部经理张鹏热情接待了走访团队。走访团队合影——关于产品X射线三维显微镜或工业CT,是计算机断层扫描成像技术的简称,能在对检测物体无损伤条件下,以三维立体图像的形式,清晰、准确、直观地展示被检测物体内部的结构、组成、材质及缺损状况,被誉为当今最佳无损检测和无损评估技术。2011年,显微CT成为我国“十二五”首批“重大科学仪器设备开发专项”之一。当时,国内显微CT领域几乎还是空白。在“X射线三维显微成像检测系统研制与应用开发”专项的支持下,三英精密成功研发出我国首台X射线三维显微成像检测设备。该产品突破了光学显微镜、扫描电镜、透射电镜等传统的表面显微成像技术,实现了无损检测和三维全息成像,空间分辨率可达500nm。秉承“技术创新,精心制造”的理念,三英精密注重研发投入,持续提高核心竞争力,不仅先后承担多项国家科研项目,建有博士后工作站,且与中科院、清华大学、天津大学等科研院所开展合作,先后研发出nanoVoxel 2000、nanoVoxel 3000、nanoVoxel 4000系列X射线三维显微成像检测系统,Multiscale Voxel-450系列高分辨高能CT, Geoscan 100、Geoscan 200系列全岩心扫描仪、EFPscan系列平板CT等高端无损检测设备,多项产品填补X射线成像技术高端装备制造业的国内空白,技术指标达到国际先进水平。目前,三英精密产品覆盖显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等多元化领域,并形成了较为完整的无损检测解决方案体系。显微CT nanoVoxel-3000荣获“国产好仪器”称号——关于市场三英精密的市场是从科研院校开始做起,第一波客户是各个院校,第二波客户是国家的一些重大工程,之后便是工业领域的企业。如今,系列化的产品线让三英精密可以覆盖汽车、新能源、新材料、半导体、石油地质、岩土工程、生命科学等各领域的应用需求,用户遍布清华大学、北京大学、中国科学院等科研院校,航空航天、核工业等科研单位,以及华为、宁德时代、比亚迪等先进制造领域的企业。凭借着产品的高性能和高可靠性,以及本地化及时优质的售后服务保障体系,让三英精密在与国外品牌的竞争中得到了广泛认可。近两年,受需求低迷、成本上升、内卷严重、进口产品本土化等不利因素影响,部分国产仪器企业业绩承压,而三英精密的营收仍以两位数稳定增长。随着科研领域的不断扩宽和深入,高端制造产品对质量检测要求的不断提升,显微CT作为一种无损三维内部结构检测技术,在各个行业的应用不断拓展。接下来,三英精密将持续开发,提高自动化、智能化等技术水平,以满足更多客户需求,逐步在更多领域实现国产替代。——产业观点张宗先生讲到,尽管CT的产业链已相对成熟,为设备的配套整合提供了便利,但也存在着标准滞后的问题,制约着行业发展。具体来说,现行的标准还沿用自十几年前,已难以适应当前技术发展的需求。例如,微米级校验标准的差异、分辨率定义的不明确以及设备命名的不统一,都给产业发展带来了困扰。另外,有时工业CT能够满足某些行业用户的特定检测需求时,会因缺乏相应的行业标准而无法广泛推广,也限制了该技术的应用与普及。近年来,随着工业市场的不断扩展,尤其是锂电等行业的“火热”,促进X射线CT检测设备需求增长的同时,也吸引了众多新进厂家的加入,市场竞争进一步加剧。现阶段,三英精密的客户在科研和工业领域几乎持平。张宗先生认为,三英精密紧跟市场需求变化,充分利用先进科学技术和平台赋能,以科技创新实力进阶,未来保持科研领域优势的同时,有望在工业领域占据更大的市场份额。
  • 广州纤维产品检测院采购950万元检测设备
    中经国际招投标有限公司广东分公司受广州市纤维产品检测院的委托,对广州市纤维产品检测院检测设备采购项目(二)进行公开招标采购,招标文件【招标编号:CEITCL-GD-CZHW-130826】公示期为 2013年9月4日至2013年9月10日五个工作日,欢迎符合资格条件的供应商投标。  一、招标编号:CEITCL-GD-CZHW-130826  二、采购项目名称:广州市纤维产品检测院检测设备采购项目(二)  三、项目内容及数量:  1. 投标人必须对包组内所有内容进行投标,只对包组内部分内容进行投标的,视为无效投标。  2. 简要技术要求或者采购项目的性质:详见招标文件采购项目内容。  3. 项目类别:货物类。  4. 经政府采购管理部门同意,本项目采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。  四、供应商资格要求:  1. 在中华人民共和国注册的具有独立民事责任的法人,取得合法企业工商营业执照   2. 具备《中华人民共和国政府采购法》第二十二条资格条件   3. 本项目不接受联合体投标。  五、符合资格的供应商应当在2013年9月4日8时30分起至2013年9月23日17时30分止(法定节假日除外)到中经国际招投标有限公司广东分公司购买招标文件,招标文件每套售价200元(人民币),售后不退。投标人必须携带以下相关资料原件或复印件加盖公章到代理机构所在地购买招标文件:  1. 经年审合格的营业执照副本复印件   2. 法定代表人证明书或法定代表人授权委托书   3. 法定代表人或投标人授权代表身份证复印件   4. 投标人注册属地人民检察院出具的《无行贿犯罪档案记录证明》复印件和《公平竞争承诺书》原件。  六、招标文件质疑  根据《广东省实施〈中华人民共和国政府采购法〉办法》第三十五条的规定,供应商认为政府采购文件的内容损害其权益的,可以在公示期间或者自期满之日起七个工作日内以书面形式向采购人或者采购代理机构提出质疑。应当以书面形式提交质疑书原件。质疑供应商为自然人的,应当由本人签字 质疑供应商为法人或者其他组织的,应当由法定代表人或者主要负责人签字盖章并加盖公章。逾期质疑无效。供应商以电话、传真或电邮形式提交的质疑属于无效质疑。  七、本次招标项目公告等相关信息在相关法定媒体上公布,并视为有效送达,不再另行通知,本招标项目不举行集中答疑会,如有任何疑问请以书面、传真或电邮形式至采购代理机构释疑。  八、投标截止时间:2013年9月24日9时30分(注9时00分开始受理投标文件)  九、投标文件送达地点:广州市越秀区寺右一马路18号泰恒大厦14楼1408室  十、开标评标时间: 2013年9月24日9时30分  十一、开标评标地点:广州市越秀区寺右一马路18号泰恒大厦14楼  十二、采购人的名称、地址:  采购人名称:广州市纤维产品检测院  采购人地址:广州市滨江中路草芳围35号之二  十三、采购代理机构的名称、地址和联系方式:  政府采购代理机构:中经国际招投标有限公司广东分公司  地址:广州市越秀区寺右一马路18号泰恒大厦14楼  联系人:陈小姐 李先生  联系方式:020-28842163  邮政编码:510060  传真:020-28842162  中经国际招投标有限公司广东分公司  二〇一三年九月三日
  • 广州纤维产品检测院采购900万元仪器
    广东华鑫招标采购有限公司(以下简称“采购代理机构”)受广州市纤维产品检测院(以下简称“招标人”)的委托,就广州市纤维产品检测院仪器设备采购项目(委托编号:GDHX11263)进行国内公开招标,经过评标委员会的评审和推荐,并经采购人确认,评审结果如下:  一、包组内容、中标人名称、地址和中标报价:  包一 气质联用仪5台 液质联用仪1台 超高效液相色谱仪1台  中标人名称:广州市徕康科技有限公司  中标人地址:广州市天河区黄埔大道西100号B-610A房  中标报价: ¥8,945,000.00(人民币捌佰玖拾肆万伍仟元整)  请中标供应商务必自中标通知书发出之日起三十日内带齐有关文件与采购人签订合同,并在8月27日前依谈判文件中《中标服务费承诺书》的承诺向采购代理机构缴纳中标服务费。  收款单位名称:广东华鑫招标采购有限公司  开户银行:农行远洋宾馆支行  开户帐号:44032601040004092  二、定标日期:广州市纤维产品检测院仪器设备采购项目于2011年8月12日定标  三、评标委员会成员名单:谭寿再、李穗中、吴敏仪、袁敏、卢其明、陈宏基、黎仲明  四、采购代理机构的名称和地址:  采购代理机构名称:广东华鑫招标采购有限公司  采购代理机构地址:广州市环市东路区庄立交高迅大厦11楼(中山眼科医院东临)  五、采购项目联系人姓名和电话  采购项目联系人姓名:邹小姐  采购项目联系人电话:020-87303028、87303068  广东华鑫招标采购有限公司  二○一一年八月十二日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制