当前位置: 仪器信息网 > 行业主题 > >

显微活体成像

仪器信息网显微活体成像专题为您整合显微活体成像相关的最新文章,在显微活体成像专题,您不仅可以免费浏览显微活体成像的资讯, 同时您还可以浏览显微活体成像的相关资料、解决方案,参与社区显微活体成像话题讨论。

显微活体成像相关的仪器

  • 活体成像仪 400-860-8560
    UVP iBOX Scientia 900活体成像仪随着科研的深入,生命科学的研究已经发展到在体研究的阶段,德国耶拿公司UVP iBOX 900活体成像仪是一款兼容生物发光和荧光多重成像的非侵入性活体成像仪。生物发光方面,该仪器使用了一个-100度深度制冷的背照式CCD,配合超大光圈的定焦镜头,不仅能实现灵敏度的信号采集,而且将噪音水平控制到极低的水平,从而实现高灵敏度的生物发光检测。荧光成像方面,高强氙灯光源可以实现从紫外到近红外的全光谱荧光成像,既兼容了所有的荧光成像应用,又可以通过近红外降低样品背景,进一步提升了成像效果。 该仪器既可以用于动物活体成像,亦可以用于植物活体成像,模块化设计,及各种配件可以实现生物学、医学、环境生物学等多个领域的各种成像应用扩展,比如高分子材料、纳米靶向材料成像、WB成像等。可以根据客户需求定制化滤光片,匹配个性化的需要。温控板可以让小鼠保持正常生理体温,小鼠成像时的状态与正常生理状态一致,确保结果的准确性。软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像。在线气体麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤。一次可同时进行多达5只小鼠的成像。软件符合21CFR Part11,可以实现对数据追踪溯源,保证数据的真实性。应用方向:癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
    留言咨询
  • In-vivo 显微CT 全球最高的空间分辨率SKYSCAN 1176是面向临床前研究的高性能体内显微CT扫描仪。大尺寸1100万像素x光相机极其完美地整合了分辨率、像场大小和扫描速度——这些正是繁忙、苛刻的生物医学研究实验室所需要的。像场宽度高达68 mm,支持鼠的全体扫描,以及兔子等大型动物的前肢扫描,像素大小为9、18 和35μm。可变x光外加电压和过滤器可提供扫描灵活性,支持包括肺组织和骨骼(带有钛植入物)在内的广泛样本成像。鼠的动物床可采用碳纤维或聚苯乙烯泡沫进行制作。集成式生理监控子系统可提供呼吸与心跳控制,以可靠地改进同步采集的胸部图像。 特点 提供的全系列SKYSCAN 软件包括快速容积重建、2D / 3D 定量分析软件以及3D可视化。另外还作为标配提供4D时间解析显微断层成像软件。该扫描仪可以“按钮”模式工作,可从触摸屏开始/停止扫描以及设置规程。触摸屏可戴手套操作。机架式主工作站集成于扫描仪下方。扫描仪最好结合四台Dual-QuadCore工作站使用 免维护90千伏X光光源全失真矫正1100万像素X光相机螺旋扫描:无环形伪影,无部分扫描链接每断层最多8000x8000像素最低9μm 体内3D空间分辨率全扫描周期不到1分钟(1Kx1K 片格式)集成式生理检测(呼吸、运动检测、心电图)4D 时间解析显微断层成像2D/3D 图形分析、骨骼形态测量学和仿真可视化的相关软件
    留言咨询
  • UVP iBox Explorer2显微小动物活体成像仪●独特的显微放大成像功能可以使小动物的荧光标记检测到达一个全新的水平,可以实现从整只小鼠到单个细胞信号的检测●自动样品控制台,不仅带有温度控制,而且在仪器外部配置了一个操作杆,可以简单快速的实现样品观察部位的精密切换。在线麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤●除了常规的小动物活体成像应用外,该仪器还可以实现传统方法难以实现的各种与微观研究相关的实验应用:微环境相关研究,例如肿瘤微环境;血管生成/生发,例如肿瘤血管生成;细胞在血管内和淋巴管内的迁移等;肿瘤细胞脱落;肿瘤细胞/主体间的相互作用;微/宏转移;原发肿瘤的生长研究;细胞外渗等
    留言咨询
  • 活体双光子显微镜 400-860-5168转2623
    双光子显微镜系统可长时间多次观察,动物实时成像,包括清醒的动物成像,活体双光子显微镜搭载zui新的COHERENT飞秒激光器,成像波长可达690-1050 nm,穿透深度可达1000 um 活体共聚焦成像模块搭载4色通道(405, 420, 445, 473, 488, 505, 514, 532, 561, 633, 642, 660, 685, 705, 730, 785 nm (可任选4通道)),成像速度高达100 fps @ 512 x 512 像素。1、IVIM双光子显微镜 技术-超快旋转多面镜扫描仪-实现超高速体内成像(512x512像素,zui大100fps)-在整个成像视场(FOV)上实现均匀的激发照明-在FOV的中心区域没有降低的荧光信号和信噪比(SNR)-FOV边缘区域没有过度的光漂白-在整个FOV上均一的高信噪比-改善图像质量而不会浪费过多的光子2、IVIM双光子显微镜技术-集成运动伪影补偿-自动无忧的高精度运动补偿-通过GPU辅助并行计算立即获取运动补偿的成像结果,以加快算法处理速度-超快的活体成像的协同效应-确保从慢速运动的组织(例如肝,肾,脾等腹腔器官)到快速运动的组织(例如心脏,肺等胸腔器官)的时空组织运动范围广泛的zui佳结果该系统应用范围为:小鼠模型中各个器官的体内成像:-肝脏,淋巴结,脾脏,皮肤,视网膜,肺,脑,结肠,胰腺,小肠,前列腺,肾脏,心脏,气管,食道,食道,骨髓,胸腺等。细胞水平的图像处理和分析:-细胞动力学(细胞运动,细胞运输,细胞运动,细胞归巢)-细胞-细胞/细胞微环境/细胞-分子相互作用-细胞死亡/存活,细胞分布,细胞分化多种人类疾病的小鼠模型:-使用荧光癌细胞系(肺癌/乳腺癌/结肠癌/胰腺癌,胶质母细胞瘤,白血病,黑素瘤等)的异种移植和同基因癌症模型-急性/慢性炎症模型(全身注射,器官/组织)损伤,缺血再灌注损伤)-嵌合体模型,用于特定细胞类型的活体内成像(干细胞移植,淋巴细胞的过继性细胞转移等)
    留言咨询
  • 荧光小动物活体成像 400-860-5168转3078
    活体成像技术是肿瘤生长观察和迁移监控的理想方法,可以实现对同一生物个体的长时间示踪,提高了实验数据的可比性,提供了最为直接的生物个体水平的证据。荧光蛋白法是使用得最为成熟和普遍的方法,即建立转基因表达GFP/RFP的肿瘤细胞系,植入裸鼠体内,通过终端的检测设备激发GFP/RFP即可示踪肿瘤的生长和迁移。荧光探针法是近年来较为流行的方法,即向肿瘤动物模型直接注射NIR(近红外)染料标记的探针,由于肿瘤所特有的生物学特性,探针会富集在肿瘤生长的区域,通过终端的检测设备激发NIR染料即可观察肿瘤。FluorVivo系列:从个体到细胞的体内成像 FluorVivo系列是专注于荧光检测的小动物活体成像系统,其产品线提供了一套从个体水平到细胞水平的体内成像的解决方案。 FluorVivo系列的技术优势 全波长范围内用户定制通道,通道数量1或3可选。同时成像GFP和RFP。毫秒级快速成像,实时动态监测,可生成Video。实时光谱分离,去除背景荧光,有效提升信噪比。配备脚踏板成像装置,方便易用,可开门操作。标配FluorVivo成像与分析软件。全波长范围内用户定制通道 不同的用户有不同的检测需求,而市面上大多数的相关设备均是预制通道,限制了用户对染料的选择。FluorVivoTM系列可以在全光谱范围内(从蓝光至近红外),由用户根据自身的需求定制通道,有效节约您的硬件投资。 毫秒级快速成像,可生成Video FluorVivoTM系列可以实现毫秒级曝光,快速生成图像,并且可以长时间动态示踪,生成Video 实时光谱分离 动物体在可见荧光的范围内本身具有比较强的自发荧光,FluorVivoTM系列的软件预制了光谱分离 (Spectral Separation/Unmixing)的算法,能够有效去除杂光的干扰,凸显靶标物的信号。 方便快捷,可开门操作 由于具有光谱分离的技术,FluorVivoTM系统可以实现开门操作,这样则无需麻醉动物,用双手固定动物即可快速拍照。同时,FluorVivoTM系统配备有脚踏板成像装置,在双手固定动物的同时,用脚触动脚踏板即可拍照,无需双人配合。 FluorVivo成像与分析软件 FluorVivo系列的所有型号都标配有FluorVivo软件,界面友好,提供图像捕获、视频录制、信号区域快速识别与定量、背景扣除与光谱分离等操作 FluorVivo Pathfinder——荧光介导的小动物手术操作平台 在活体成像观察完成后,需要切取动物模型的病灶(包括原发灶和转移灶)进行组织化学等分析。FluorVivoTM Pathfinder是荧光介导的小动物手术操作平台,使得这一过程变得“特异性可视化”,借助光源的照明能够准确地区分出病灶与健康组织,且不易遗漏微小的转移灶。 FluorVivoTM Mag 体内细胞成像系统——in vivo Cell Imaging FluorVivo Mag 体内细胞成像系统——in vivo Cell Imaging 利用FluorVivoTMMag可以在活体内观察到单细胞,有助于深入了解肿瘤细胞与宿主微环境的相互作用,提供更多的信息。同时,FluorVivoTMMag也可以作为一个具有放大作用的外科手术操作平台。FluorVivoTMMag通过FluorVivo软件驱动第三方的体视显微镜/荧光显微镜,同时再加配INDEC Biosystems的数码彩色相机。 用户可以根据自身的需求选择不同的显微镜。一份单拷贝的FluorVivo软件即可分别驱动FluorVivoTM 100/300的暗箱和FluorVivoTM Mag,构成一个从个体到细胞的体内成像平台。用户可根据预算构建平台,例如,先购买暗箱式的成像系统,再升级连接到第三方的显微镜设备。 INDEC Biosystems和AntiCancer属于合作伙伴关系,前者制造小动物活体成像的硬件检测设备和数据分析软件,后者提供各种荧光转染的细胞系和转基因动物模型,且为INDEC Biosystems提供应用服务。
    留言咨询
  • Ultima多光子显微镜是一套完美的系统。 它的一些特点,包括模块化设计、极其准确的光激活和光遗传学操作能 力、PrairieView软件等,都成为业界竞相模仿的典范。Ultima系统配置灵 活,其高分辨率成像、深层组织成像、高速成像能力、同时进行成像和 光操作、可整合和同步各种刺激和电生理学记录设备等,都决定了Ultima 是世界上突出的活体多光子显微镜系统。为科学家在更高的空间和时间分辨率上观察生 物学现象提供了可能:基于单分子定位技术 可进行超高分辨率的活细胞动态观察 可同时进行四荧光通道超高分辨率成像(需安装750 nm 激光器)三维成像,成像深度达15μm 专为生物学家设计的软件和操作流程 活细胞超高分辨率成像专用的成像步骤和工作流程 通用的数据格式,无论采用布鲁克还是第三方的算法均 可进行分析完善的应用支持“在细胞生物学走向系统研究和定量分析的今天,单分子定位 成像系统缓慢的数据采集速度、较小的成像视野,大大阻碍了 单分子定位技术在细胞生物学系统研究中的应用。
    留言咨询
  • 服务简介活体微循环血管三维成像服务:运用最新的活体微循环血管三维成像系统,精准检测血管形 态和长度、密度、灌注面积、灌注量以及孔隙率等指标,对成像结果进行血管形态、血管网 络密度和血流灌注量等指标进行量化评估,给予血管网络病理生理变化的全面记录。 检测项目
    留言咨询
  • Optiscan探头式小动物活体共聚焦成像系统 产品介绍:FIVE2探头式小动物活体共聚焦成像系统采用了手持探头式成像方式,活体动物层面的高分辨率可达到0.5微米级别,可在活体动物层面观察到组织或者细胞的病理切片信息,细胞或者亚细胞级别的染色信息,抗体表达情况,荧光染料,纳米粒子的分布情况等,广泛应用于实验动物肝脏,肾脏,呼吸道,胃肠道,口腔,肿瘤,淋巴组织,脑部,骨骼,生殖器等的活体显微观察中。 主要特点:1. 活体层面最小0.5微米级别分辨率,可直接观察到活体的组织和细胞情况;2. 深度可达400μm,可进行不同层面扫描成像并合成3D结果;3. 探头式成像,成像角度和位置更灵活,可观察更多切面;4. 可进行实时动态采集,设置帧频采集速度并进行长时间采集;5. 采用荧光成像的方式,可选用多种商业化的荧光探针,易标记;6. 操作简单,无需复杂设置参数,无需专门人员负责;佰泰科技(中国)有限公司
    留言咨询
  • 1.对活体各种器官进行深层组织成像2.装载高性价比NIRfs脉冲激光 支持3频道/ 4频道成像 节省成本、 节省空间、免提功能、免维护3。拍摄活体动作的活体显微镜 超高速成像:最大100争。512x512像素 活体内动作补正系统: X,Y,Z&T轴补正4.可对小鼠模型的所有器官进行体内成像。 卓越的运动补偿功能利用现有的图像配准功能,在生物特征成像环境下进行显微精度补偿并不容易。为了获得好的结果,需要选择合适的参考图像,与超高速图像采集硬件进行连接,并优化算法。IVIM技术的运动补偿技术结合高速硬件进行优化,拥有超过10年的专业知识,可以在不需要用户干预的情况下,以0.01像素为单位进行高速校准,获得好的效果。没有可比较的技术来显示作为例子的校准水平
    留言咨询
  • 服务简介活体激光血流成像服务:运用高分辨激光血流成像系统,以独有的非接触、高分辨、全视场快速成像的技术,为临床医疗及生命科学基础研究提供全新的血流监测及血流成像分析服务。同时获取血流速度、氧合血红蛋白浓度、脱氧血红蛋白浓度、氧代谢率、 血流灌注值、血管形态、血管密度、血管角度等多种血液动力学参数。 效果展示1.光化学诱导小鼠脑皮层血管栓塞模型 2.透过小鼠完整头骨,观测缺氧后恢复供氧过程的脑皮层血流变化 3.老鼠肠系膜血流成像 4.老鼠皮窗模型血流成像 5.小鼠脚爪血流成像6.大脑中风模型的血流再灌注过程 图a:正常脑皮层;图b:建立中风模型后;图c为去除中风模型;图d:去除24小时后7.中动脉栓塞再释放过程中(MCAo)大脑皮层上血流分布的时空变化 8.PDT治疗鲜红斑痣过程病灶处血管逐渐被封堵
    留言咨询
  • AniView Kirin小动物活体三维成像系统 主要特征 ● 极高的检测灵敏度 AniView Kirin 小动物活体三维成像系统采用国际先进的背部薄化、背部感光超低温CCD相机,其具有超高的量子效率的同时还具有超低的暗电流,搭配F0.95超大光圈定焦镜头以及高透过性滤光片,使其具有无与伦比的检测灵敏度,可实现体外单个细胞或体内<50个细胞的检测。极高的检测灵敏度对于生物发光标记细胞的检测极为有效,可实现肿瘤细胞生长过程中的早期观测以及肿瘤转移的及时监测,帮助研究者及时准确地把握肿瘤的生长动态。对于部分复杂珍贵的细胞样品,可以在减少细胞使用量的情况下,实现活体内的成像检测。● 出色的成像视野 AniView Kirin 小动物活体三维成像系统可实现高达250mm的视野,既可以满足5只小鼠同时成像,还可以实现局部位置准确成像。● 全局激发光源 AniView Kirin 小动物活体三维成像系统在采用LED光源的基础上,配置自主研发的激发装置,保证整个视野拥有光源均匀性。● 准确的透射成像 在动物荧光活体成像实验中,大部分荧光信号都集中在肝脏、肺部等器官,相对较深的位点,使得透射式的荧光激发光源比照射式具有更强的穿透能力,从而提高了荧光检测的灵敏度。 相机模块和透射式的激发光源分别位于小鼠的上下两端,因此相机两侧不会产生因激发光源照射而产生的动物自身背景荧光,大大提升荧光检测的信噪比。● 三通道气体麻醉系统 AniView Kirin 小动物活体三维成像系统配备专业的气体麻醉系统(AA-600多功能气体麻醉系统),其在暗箱内部配备两个麻醉面罩,分别位于三维扫描成像和二维高通量成像。专业设计的面罩保证了每个通道均匀的气体输出量,避免不同小鼠之间气体麻醉程度的差异。 AniView Kirin 小动物活体三维成像系统配备回风过滤系统,在暗箱内形成负压后进行回收,避免气体散逸到空气中。相较于传统麻醉气体回收效率较低,暗箱内麻醉气体残留较多以及可能对实验人员造成影响等缺点,AniViewKirin更科学、更环保。 AA-600多功能气体麻醉系统具备小鼠尾静脉辅助注射功能,可实现尾静脉快速注射。● 智能热风循环系统 AniView Kirin 小动物活体三维成像系统创新性地采用智能热风循环系统,将暗室内空气进行加热(室温-40℃)并循环流动,使热量与动物充分接触,减少动物的应激反应,确保成像结果更加准确。● 精确定量的三维成像 AniView Kirin 小动物活体三维成像系统配备三维激光扫描仪,可对小鼠进行三维轮廓扫描成像,并通过软件算法实现体内器官的源重构。软件可通过对不同动物、不同波长、不同深度的生物发光信号进行分析计算,重构出动物体内生物发光信号的三维模型,并与动物三维源重构进行匹配,从而获得生物发光位点的位置、深度等准确信息。 与生物发光类似,AniView Kirin 小动物活体三维成像系统还可以根据透射荧光光源对动物样品的激发,然后采集不同角度、不同位置体表荧光信号的强度、分布进行数学模拟分析,并与动物三维源重构进行匹配,从而获得荧光位点的位置、深度等准确信息。● 强大的光谱分离功能 AniView Kirin 小动物活体三维成像系统采用多达12种激发光源以及18种发射滤光片(最多可配备22种),所有滤光片均采用镀膜处理,保证透光率≥90%,且截止深度为OD6。数量众多的窄带宽滤光片配合复杂的光谱分离算法,能够对动物自发荧光进行背景扣除,同时也可以对多种荧光材料进行分离,从而实现标记物的自动区分。
    留言咨询
  • SOPTOP与浙大合作,将近红外二区荧光成像技术与传统的荧光显微技术相结合,开发了一套宽场激发、面阵探测的新颖近红外二区荧光正置显微成像系统,可以实现对近红外二区荧光探针的光学表征以及活体生物样品、厚生物组织等的大深度、高时空分辨成像,是全球首款近红外二区荧光活体正置显微影像系统传统的显微镜荧光信号位于可见光波段,在生物组织中穿透力弱,散射衰减较大,因此,只能实现活细胞和薄组织的成像,对活体生物样品(如小鼠、大鼠甚至非人灵长类等)的观测显得无能为力。NIR II - MS近红外二区活体显微影像系统不仅具有相对可见光和近红外一区更大的成像深度(在高倍物镜下可达 1.4mm)和更高的活体成像分辨率(可达 2μm),还实现了高成像时间分辨率,并可根据需求提供外扩展功能。专为近红外二区量身打造的显微系统激发光接入模块可见光——近红外增透,可选择不同波长的激光器与之匹配,全面满足不同近红外二区荧光试剂的激发需求。多种波长的高功率高稳定性激光器可选择两个以上不同波长的激光器,实现双波长甚至多波长激发落射激发模块可见光——近红外增透,可保证激发光高效通过光路,减少损耗,提高激发效率荧光收集模块可见光——近红外增透,覆盖近红外二区,减少信号光的损失,能满足近红外二区荧光信号的高效率收集大尺寸电动 Z 轴移动平台X-Y-Z三轴电动测量系统,μm 级精度光学尺,实现大行程的 X-Y-Z 测量定标,无需手动式实际操作,仅通过软件,就可以精确测量,测量数值实时显示在高精度数显上,对精确定位生物样品中的位置至关重要。近红外高灵敏度相机拥有灵敏的近红外二区荧光探测能力以及高精度的低温控制技术,可广泛应用于近红外二区荧光材料表征、近红外二区活体动物荧光成像、半导体材料检测分析等领域近红外二区专用物镜 平场复消色差物镜镀有近红外增透膜,中心波长覆盖可见光至近红外波段。成像面平坦,光斑失真小,无需大量后期图像处理也可以获得高清成像。 应用领域2020化学与材料科学领域热点前沿,近红外二区应用研究大热,应用前景广阔,行业发展迅速。基于NIRⅡ-MS的优秀论文集1. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels, Nat. Commun., 11(1255): 1, (2020). (Nature子刊)——首次实现了基于有机荧光探针的近红外二b区(1500-1700nm)显微活体成像(和香港科技大学唐本忠院士课题组合作)2. Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIR-II Fluorescence and Photoacoustic Imaging, Adv. Mater., 31(30): 1902504, (2019). (IF=25.809) ——和新加坡国立大学刘斌院士课题组合作3. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region, Adv. Mater., 30: 1706856, (2018). (IF=25.809, ESI Highly Cited)——在国内首次实现了近红外二区荧光宽场显微活体成像(和香港科技大学唐本忠院士课题组合作)4. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence, ACS Nano, doi.org/10.1021/acsnano.0c00043, (2020). (IF=13.903) ——和南京工业大学黄维院士课题组合作5. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging, Adv. Funct. Mater., 28: 1703451, (2018). (IF=15.621) ——和浙江大学医学院附属邵逸夫医院合作6. NIR-II fluorescence in vivo confocal microscopy with aggregation-induced emission dots, Sci. Bull., 64(6): 410-416, (2019). (IF=6.277, Cover paper)——国内首次实现近红外二区荧光共聚焦显微活体成像(和新加坡国立大学刘斌院士课题组合作)7. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor, Theranostics, 9(19): 5706-5719, (2019). (IF=8.063) ——和浙江大学医学院附属邵逸夫医院合作8. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates, Theranostics, doi:10.7150/thno.43533, (2020). (IF=8.063)——首次在非人灵长类动物上实现了近红外二区荧光宽场和共聚焦显微活体成像(和浙江大学医学院合作)9. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy, J. Mater. Chem. B, 7(42): 6623-6629, (2019). (IF=5.047)—— 和浙江大学医学院附属邵逸夫医院、附属妇产科医院合作
    留言咨询
  • 活体荧光成像 400-860-5168转2042
    荧光成像冷CCD相机 TCH-1.4ICE & TCH-1.4CICE良好的制冷技术 TCH-1.4ICE和TCH-1.4CICE属于图森专业相机H系列,前者为黑白制冷CCD相机,后者为彩色制冷CCD相机。它们使用了SONY公司经典的高品质CCD芯片ICX285,同时半导体制冷技术将CCD温度降低至零下10摄氏度。在此低温下,CCD可进行长达1小时的曝光而不影响成像质量。TCH-1.4ICE/TCH-1.4CICE相机作为图森多年来精密制造工艺技术的完美结晶,为您进行荧光、化学发光等微弱光成像提供了卓越的品质保证。 TCH-1.4ICE和TCH-1.4CICE应用了图森最新的制冷工艺技术,即在数十分钟长时间曝光进行拍摄时,可以将传感器表面的温度降低至-10℃,使得暗电流噪声降低至忽略不计的水平,为您进行微弱光成像提供更全面的保障。 单个像素点达6.45微米X 6.45微米 TCH-1.4ICE和TCH-1.4CICE冷CCD相机分别搭载了SONY公司的专业CCD图像传感器ICX285AL与ICX285AQ,芯片感光面积的对角线长度为2/3英寸,单个像素点尺寸达6.45微米X 6.45微米。极大的像元面积也显著提高了各像素点的蓄光能力,提供了相当高的饱和输出电压信号。 优异的光电转换效率 TCH-1.4ICE和TCH-1.4CICE拥有很高的量子效率水平,其峰值达65%,这带来优异的灵敏度表现,可以捕获到极微弱的光源信号。TCH-1.4ICE与TCH-1.4CICE非常适合对于荧光、化学发光等微弱光成像应用。 TCH-1.4ICETCH-1.4CICE图像传感器型号Sony ICX285AL Sony ICX285AQ 彩色/黑白黑白彩色CCD/CMOS 尺寸2/3"2/3"像素大小(&mu m)6.45× 6.456.45× 6.45有效像素141万141万最大分辨率 (H× V)1360× 10241360× 1024扫描模式逐行扫描逐行扫描快门模式电子快门电子快门帧频13fps(1360 × 1024 全分辨率)13fps(1360 × 1024 全分辨率) 15fps (680 × 520,2 × 2Bin) 15fps (680 × 520,2 × 2Bin) 彩色深度&mdash 36bit模数转换12 bit12 bit曝光控制自动/手动自动/手动曝光范围0.1ms-60min.0.1ms-60min.白平衡控制自动/手动自动/手动动态范围67dB66dB工作温度0-60℃0-60℃工作湿度45%-85%45%-85%贮存温度-20-70℃-20-70℃制冷方式半导体制冷半导体制冷制冷温度-10℃-10℃操作系统支持Windows / Linux / MacWindows / Linux / Mac光学接口C接口C接口数据接口USB2.0/480Mb/sUSB2.0/480Mb/s公 司:福州鑫图光电有限公司地址:福州市仓山区盖山镇齐安路756号财茂城主楼6F邮编:350008电话: 传真: 中文网站:国际网站:一、 技术简介活体生物荧光成像技术是近年来发展起来的一项分子、基因表达的分析检测系统。它由敏感的CCD及其分析软件和作为报告子的荧光素酶以及荧光素组成。利用灵敏的检测方法,让研究人员能够直接监控活体生物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。传统的动物实验方法需要在不同的时间点宰杀实验动物以获得数据,得到多个时间点的实验结果。相比之下,可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。因其操作极其简单、所得结果直观、灵敏度高等特点,在刚刚发展起来的几年时间内,已广泛应用于生命科学、医学研究及药物开发等方面。二、原理活体生物荧光成像技术是指在小的哺乳动物体内利用报告基因-荧光素酶基因表达所产生的荧光素酶蛋白与其小分子底物荧光素在氧、Mg2+离子存在的条件下消耗ATP发生氧化反应,将部分化学能转变为可见光能释放。然后在体外利用敏感的CCD设备形成图像。荧光素酶基因可以被插入多种基因的启动子(promoter),成为某种基因的报告基因,通过监测报告基因从而实现对目标基因的监测。生物荧光实质是一种化学荧光,萤火虫荧光素酶在氧化其特有底物荧光素的过程中可以释放波长广泛的可见光光子,其平均波长为560nm(460~630nm),这其中包括重要的波长超过600nm的红光成分。在哺乳动物体内血红蛋白是吸收可见光的主要成分,能吸收中蓝绿光波段的大部分可见光;水和脂质主要吸收红外线,但其均对波长为590~800nm的红光至近红外线吸收能力较差,因此波长超过600nm的红光虽然有部分散射消耗但大部分可以穿透哺乳动物组织被敏感的CCD camera检测到。三、操作方法荧光标记的选择 活体生物荧光成像主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等。量子点标记作为一种新的标记方法,是有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可调,并且光化学稳定性高,不易分解等诸多优点。量子点是一种能发射荧光的半导体纳米微晶体,尺寸在100nm以下,它可以经受反复多次激发,而不像有机荧光染料那样容易发生荧光淬灭。 但是不同荧光波长的组织穿透力不同,如图1所示,各种波长的光对小鼠各种器官的透过率,都在波长600nm时显著增加。而如图2所示,在650nm-900nm的近红外区间,血红蛋白、脂肪和水对这些波长的光的吸收都保持在一个比较低的水平。因而,选择激发和发射光谱位于650nm-900nm的近红外荧光标记(或至少发射光谱位于该区间),更有利于活体光学成像,特别是深层组织的荧光成像。(推荐文献: Nature Method, 2005, 2: 12 如何选择合适的荧光蛋白; Science, 2009, 324: 804 钱永建教授研究成果-近红外荧光蛋白,非常适合活体生物荧光成像)。 活体生物荧光成像CCD的选择 选择适当的CCD镜头,对于体内可见光成像是非常重要的。如何选择活体荧光性价比最高的CCD呢?CCD有一些重要的参数: 1) CCD像素。CCD像素决定成像的图片质量,像素越高,成像质量越好。由于荧光背景光较强,产生非特异性杂光干扰明显,需要配有高分辨率CCD的相机。 2) 前照式还是背照式CCD。一般而言,背照式CCD具有更高的量子效率,但是只有在检测极弱光信号优势明显(如活体生物发光成像),但在强光检测中与前照式CCD无本质差别,还更容易光饱和,并且其成本较高的弱势使其不属于荧光检测常规要素。 3) CCD温度。制冷CCD分为两种:恒定低温制冷CCD和相对低温制冷CCD。恒定低温制冷CCD拥有稳定的背景,可以进行背景扣除;而相对低温制冷CCD由于背景不稳定,一般不能进行有效的背景扣除。CCD制冷温度越低,产生的暗电流越小,如图3所示,当制冷温度达到-29℃时,产生的暗电流已经低至0.03e/pixel/s。由于仪器自身产生的噪音主要由暗电流热噪音和CCD读取噪音组成,而目前CCD读取噪音最低只能降至2e rms;因而更低温度的CCD并不能明显的降低背景噪音,而成本却极大提高。 4) CCD读取噪音和暗电流。CCD读取噪音和暗电流热噪音是成像系统产生背景噪音的主要因素,但是在荧光成像中,最主要的背景噪音却是来自于荧光背景光。荧光成像信噪比的改善主要依赖于荧光背景光的有效控制和背景扣除技术(图4)。 &lsquo 自发荧光的干扰 在活体荧光成像中,动物自发荧光一直困扰着科研工作者。在拥有激发光多光谱分析功能的活体成像系统出现以前,科学家们被迫采取各种方法来减少动物自发荧光,比如:采用无荧光素鼠粮饲养小鼠、使用裸鼠等。现在,拥有激发光多光谱分析功能的活体成像系统,能够轻松进行荧光信号的拆分,如图5,食物、膀胱、毛发和皮肤的自发荧光能够被有效的区分和剥离。激发光多光谱分析也可用于多重荧光标记检测,实现一鼠多标记,降低实验成本,并有效提高数据的可比性。 荧光信号的准确定位 如图6所示,如果信号和靶标100%重合,这是科学家所追求的;但是,如果信号并不和靶标重合,而又误以为正确定位时,这是科学的噩梦。也许,一个错误定位的信号,比没有信号更加糟糕! 而同时拥有结构成像(如X光、MRI)和功能成像功能(如荧光、发光、同位素)的多功能活体成像系统,则让您摆脱困境,准确定位荧光信号。如图7所示,小鼠的X成像经过胃肠造影,可清晰地获得胃肠的形状和位置,将荧光信号和X光叠加,荧光和胃肠重合,可准确判定荧光定位在胃肠。 四、应用在肿瘤方面的应用它可以快速的测量各种癌症模型中肿瘤的生长,并可对癌症治疗中癌细胞的变化进行实时观测评估;可以无创伤地定量检测小鼠整体的原位瘤、转移瘤及自发瘤。如Hollingshead等利用人类胶质瘤细胞系U251构建U251-HRE细胞,其中的荧光素酶基因表达受可诱导启动子的操控,低氧状态为其诱导条件,因此在细胞处于低氧状态下荧光素酶基因开始表达。将此肿瘤细胞sc于裸鼠体内,肿瘤增殖早期并无明显荧光素酶表达,当肿瘤达到了300~500mg时,局部组织出现低氧状态,此时可监测到荧光素酶显著表达。这种方法不仅仅监测肿瘤本身,更重要的是可以监测肿瘤细胞所处的微环境。在监测感染和炎症方面的应用荧光素酶基因标记病毒和细菌,利用活体生物荧光成像技术可以检测到,并能连续观察其对机体的侵染过程以及抗病毒药物和抗生素对其病理过程的影响。如Contag et等用细菌荧光素酶标靶沙门菌,并用活体生物荧光成像追踪细菌感染。活体生物荧光成像技术和细胞示踪活体生物荧光成像技术还可应用到免疫细胞、干细胞、细胞凋亡等研究领域。如Costa等通过活体生物荧光成像可以追踪到T淋巴细胞聚集于中枢神经系统。 五、前景活体生物荧光成像技术让研究人员能够观察活体动物体内的基因表达和细胞活动,是将分子及细胞生物学技术从体外研究发展到活体动物体内的强有力手段,正在被越来越广泛地应用于医学及生物学研究领域。由于其检测灵敏度极高,且操作简单,费用相对低廉,因此在生物科学研究领域有着广阔的应用空间。 除非注明,图森文章均为原创,转载请以链接形式标明本文地址  本文地址:
    留言咨询
  • 产品介绍徕科光学LK-TSBM型号活体细胞体视荧光显微镜拥有卓越的拥有卓越的伽利略光学系统和优异的成像性能,为用户提供真实完美的显微图像 同时,出色的人机工程学原理和人性化的操作系统,真正让用户体验到简单而舒适的工作感受。可满足生物医学微电子、半导体领域的研究需求。作为国产显微镜中成熟产品的代表,LK-TSBM型号活体细胞体视荧光显微镜在各项性能和外观上均有不俗的成绩,与国际领先产品相比也丝毫不逊色。在国货崛起的今天,这款产品已经成为越来越多的高校、研究所、科研单位、医疗机构、企业等单位的首选产品,其性能稳定优越,价格务实接地,服务团队专业可靠,在同等级产品中属于“相当能打”的TOP产品。依靠着科技感和创新感双强的研发力量,可以根据不同客户的需求定制出高性价比的产品方案;作为业内唯一的质保期两年的服务保障团队,具备内核稳定的售后方案,7*24小时响应,提供安装培训 一体化互动,更加直接且高效地为客户做好售前、售中、售后服务保障。经过十余年的研发服务,已积累千万客户,并在多地区投建服务部方便与客户的沟通互动。下图为LK-TSBM型号活体细胞体视荧光显微镜产品实景图:下图为现场安装、培训实景图:下图为合作伙伴情况:下图为服务站分布图:产品介绍1、平行光路体视显微镜:拥有卓越的伽利略光学系统和优异的成像性能,为用户提供真实完美的显微图像 。 伽利略光学系统:实现非凡清晰度共用系统主物镜,采用左右光路平行成像的伽利略系统,能够大幅提高图像的可视性,满足科研领域对高分辨率观察的需求,轻松获取平坦清晰的显微图像。2、观察方法:明场、斜照明、荧光明场图例1:明场斜照明效果图例1:明场斜照明效果图例2:明场斜照明效果图例3:明场斜照明效果图例4:荧光效果荧光效果图1:荧光效果图2:荧光效果图3:荧光效果图4:3、高眼点大视场目镜,成像清晰:高配 22mm大视场目镜,可获得更加宽广的图像,且图像的边缘也能得到明亮清晰的展现。视度可调,用户可根据左右眼的视力情况自行调节,均可获得清晰的图像。4、快速灵敏的调焦机构:粗微调同轴调焦和倍率调节都经贴心设计,可以让用户快速调焦并实现锁定,有效避免在观察过程中图像变模糊,节省操作时间。调焦手轮手感舒适,减少长时间操作带来的疲劳感,使用户能够专注于样品和检查工作本身。5、孔径光阑调节装置:带孔径光阑调节装置,用户只需拨动孔径光阑拨块,即可轻松控制光阑的大小,从而控制景深,获取高质量的图像。12.5:1 的出色大变倍比:提供 12.5:1 的变倍比。从 0.8-10X 的每个主要倍率都可以进行锁定,并且手动解除保证低倍率下的样品成像与高倍率下的细节成像无缝切换。图像测量功能恒温台:LK-TSHWT-60型显微镜恒温热台所有的数显温控仪表具备模糊逻辑控制技术,P、I、D控制技术,全电子固态模块技术,过零无触点大功率受控调动技术与数字显示系统一起构成高精度、高可靠性的温度自动控制仪表。工作台用安全低电压并用先进的P、T、C发热材料,热能量功率大,安全可靠。用于样品升温,细胞培养,精子检查,畜牧兽医,人工授精等。恒温台工作原理:被控对象工作台的控制系统是由GWCK数显温控仪表、GWCK功率模块、传感器等组成。当被控对象低于设定温度,仪表黄灯闪亮处于加温状态。当到达设定温度范围,绿灯闪亮,这时工作台就处于保温状态。仪器面板数显屏下方设有“温度设定”旋钮和“设定.显示”按钮,供调节温度。恒温台技术参数(1)电源电压:220V±10%,AC45—60HZ(2)输出电压:36V,功率:50W(3)温度设定方式:数字显示、预置(4)温度控制范围:室温至60℃(5)测量精度:全范围≤±0.2℃(6)系统工作环境温度:自适应室温工作温度(7)工作台尺寸:165*130*8mm,孔径:φ38mm(8)孔径中间有一块透明的玻璃板可选择光源色温:不同材料在不同光线的场合,对于光源的需求也不尽相同。可调节的色温装置能使显微镜适应不同观测环境,满足不同的科研需要,得到较佳观察效果。复消色差主物镜:复消色差设计大幅度地提高物镜的色还原能力。通过校正红、绿、蓝色光的轴向色差,使其汇聚到同一焦点平面上,并有效校正紫色光的轴向色差,真实地再现被观测物体红、绿、蓝等颜色。对比图例1:(左图为使用前,右图为使用后)自由调节式立臂:固定底座上配有锁紧手轮设置,立臂可升降用于调整高度,以满足用户多样的观察需求。生命科学领域中的应用:工业检测领域中的应用:产品参数产品结构体视显微镜/视频显微镜品牌徕科光学型号LK-TSBM产地中国大陆总体放大倍数6.3X-80X光学系统伽利略光学系统;观察方法明场、斜照明、荧光目镜观察筒可调仰角三通观察头,倾角可调范围5°-45°,两档光路选择(100%双目或100%三目),瞳距调节范围50-76mm,固定式目镜筒,带目镜锁紧装置目镜高眼点大视野平场目镜WF10X/22m,视度可调中间变倍连续变倍物镜0.63-8X,变倍比12.5:1,内置孔径光阑,带主要倍率定位机构,可手动解除,主要倍率刻度指示0.63X 0.8X 1X 1.25X 1.6X 2X 2.5X 3.2X 4X 5X 6.3X 8X物镜1X主物镜,工作距离80mm调焦机构立臂式粗微调同轴调焦机构,托架镜体一体式,调焦行程50mm,微调精度0.002mm底座立柱式超薄底座,有色温调节及显示功能(3000-5600K),亮度可调,下光源为144颗LED光源LED 环形灯,亮度可调。(可选配斜射光源)
    留言咨询
  • 光-声多模态小动物成像仪集成了传统光学显微镜、光声显微镜和超声显微镜,能够实现传统的光学成像,组织光吸收成像、组织结构成像,为生物医学研究提供多尺度、多参数的研究信息。产品特征光学/光声/超声三模态成像集合了光学显微成像,色素、血管等内源性光吸收物质的光声成像,以及基于声阻抗差异解析组织结构的超声成像于一体的三模态活体小动物成像系统。微米级分辨率@毫米级成像深度在无需造影剂的加持下,可对3mm内的组织结构进行微米级的高分辨成像。三维图像逐层信息解析通过实时二维断层数据的显示叠加,进一步获取局部组织的三维结构图像。使用数据处理软件,可进一步对二维及三维图像分析。无创非标记成像成像部位只需涂抹少量水(耦合剂)对信号进行匹配,无需注射造影剂即可实现测试部位的无创成像。加热-麻醉一体化小动物固定台专门为更好的保护模型动物而设计开发的加热-麻醉一体化装置。可定制光源的成像系统根据客户的不同需求,订制相应单波长、多波长、可调谐波长光源的成像系统应用实例一、肿瘤生长与治疗监控二、脑功能成像研究小动物脑功能成像应用多模态小动物光-声成像仪,实现了小鼠脑部深处血管网“缺血-再灌注”的动态监控,展示了本仪器在脑血管病理基础研究中的广阔应用前景。参考文献: F.Yang, et al, J.Biophotonics, e202000022,2020, DOl:10.1002/jbio.202000022.三、评估皮损血供程度及麻醉下生命体征监测评估皮损血供程度应用多模态小动物光-声成像仪,实现了小鼠全腿及背部血供程度的评估,突破了影像技术对于评估损伤组织血供程度的瓶颈,提高了快速手术干预的可能性。参考文献: D.Zhang, et al, Quant lmaging Med Surg,11(10),4365-4374,2021,DOl:10.21037/qims-21-135.四、活体动物眼部成像应用五、纳米探针与分子影像学研究特殊波长的肿瘤特异性光声成像((定制版)可定制多模态小动物光-声成像仪,利用特异性纳米探针,针对性的提高肿瘤区域对于特殊波长光声成像信号幅值,实现大深度、高灵敏度的肿瘤特异性光声成像。
    留言咨询
  • 三维光学成像系统一、概述IMAGING 200pro是一台真正实现三维光学成像功能的活体成像设备,具有超高的三维成像分辨率,三维光学成像定位精度达亚毫米级别。运用先进的三维成像算法,在三维空间实现对肿瘤等病灶的准确定位和诊断。 二、产品特点高灵敏度采用超高像素、科学级制冷CCD相机,制冷温度低至 -100 ℃,最大程度降低暗电流,实现微弱光信号捕获,保证在快速的成像同时具备超高的灵敏度与成像质量。 高精度超高像素分辨率镜头,以及绝对封闭的暗箱设计,实现高分辨率和足够深度的荧光成像和生物发光成像,3D光学成像定位精度≤1mm。 多模态具有二维生物发光成像、三维生物发光成像、二维荧光分子成像、三维荧光分子成像、连续图像采集、实时成像等多种图像采集方式。 软件功能强大自主研发配套软件,人性化操作界面,使用者可以快速上手操作。自主研发分析软件功能全面,具有数据定量分析、2D/3D自定义渲染、视频制作、多种荧光伪彩颜色、多种数据格式输出等功能。 三、可升级模块Micro-CT成像模块多模态成像融合模块放疗计划系统模块动物气体麻醉模块#小动物活体成像 #小动物成像 #活体成像 #小动物ct #小动物CT成像 #Micro CT成像#二维/三维光学成像 #生物发光成像 #分子荧光成像 #多模态成像 #三维多模态精准成像
    留言咨询
  • 来因科技多功能植物活体成像系统 植物活体成像检测仪 植物多光谱荧光成像系统PLIS-95PLIS系列多功能植物活体成像系统搭载了超高灵敏度深冷背照式相机大光圈镜、RGB激光光源、IR激光光源、温控平台、全自动滤光轮,用于生物发光检测;植物活体荧光素酶检测;荧光检测;化学发光检测等满足客户多种实验需求的一套高性能植物活体成像分析系统。激光光源:相对LED 和卤素光而言,激光有更稳定的光谱以及更小的光衰,光源更纯净,无边缘效益, 在光斑处光都处于均匀的能量,使其成为最佳的荧光成像光源。背照式高灵敏度深冷相机:PLIS植物活体成像仪采用了660万高分辨深冷背照式相机其QE在峰值最高高达95%,制冷温度 达到-95℃, 配合F0.95大光圈镜头,同时具备的了出色的信噪比和灵敏度。专用滤镜:深度定制激光专用滤镜,双层镀膜,截止深度更是高达OD6, 杂散光通过率非常低,背景干净。植物活体成像应用:相对普通LED 的可见荧光,激光尤其红外激光因穿透力较强,背景低,激发效率高的特性,可以更好的拍摄活物体内的细胞活动和基因表达,有效地研究观测感染性疾病发生发展过程、植物转基因鉴定,植物突变体筛选,病毒侵染等。产品参数型号PLIS-68PLIS-95分辨率1200万像素(背照式相机)660万像素(背照式相机)制冷温度-68℃-95℃像素尺寸4.63um×4.63um11um×11um感光效率HighQE:95%像数密度16bit(0-65535)曝光时间1ms-60min像素合并1×1、2×2、4×4…8×8动态范围≥4.8个数量级电动镜头F=0.95/35MM自动聚焦镜头,可选配F0.8镜头RGB光源标配650nm、532nm、473nm(红绿蓝)激光器IR光源标配红外680nm、780nm激光器紫外反射254nm白光光源LED冷光滤光镜轮7位滤光轮滤光镜片标配535nm,570nm、605nm、699nm、720nm、820nm拍摄面积最大拍摄面积32×26cm×10cm(L×W×H),侧位相机选配光照模块选配旋转样品台选配输入气孔预留定时关闭1~60分钟
    留言咨询
  • 动物活体成像动物CT 400-860-5168转5910
    动物活体成像动物CT RAYIM-ColorUCT- Vivo产品指标:参数指标X光机90kV封闭式免维护探测器能量分辨光子计数式探测器像素分辨率最小8um能区数量2-8个成像视野&varphi 65mm× L 200mm图像矩阵512×512至1547× 1547动物活体成像动物CT RAYIM-ColorUCT- Vivo系统简介:本系统基于先进的光子计数探测器,面向小型活体动物,尤其是昆虫、鱼类以及小鼠、大鼠等啮齿动物的全身结构实现高信噪比的三维能谱成像,以及面向牙齿、骨小梁等离体组织实现高分辨率的三维结构成像,能够提供具有高对比度和高分辨率水平的断层图像,满足生物医学研究领域多方面的应用需求。动物活体成像动物CT RAYIM-ColorUCT- Vivo产品特点:感兴趣区高分辨成像,清晰呈现动物器官微小结构。提供高对比度的断层图像,有效区分密度接近组织。具有材料分解和鉴别能力,能够将多个成分不同的组织进行分解,获得不同组织的断层分解图像并以彩色形式表达,还可以获得不同组织的成分及比例。具有K-edge成像能力,能够利用造影剂进一步提升标记部位的对比度。在活体动物扫描中,动物或样品在固定或者麻醉状态下保持不动,实现快速、连续的扫描过程,有利用进行活体的动物实验,并达到良好的剂量控制。针对典型的检测对象,例如骨小梁、小鼠、大鼠等,设计有多种不同且固定的扫描模式,减少用户的操作步骤,提高检测效率及设备的吞吐量。提供多种可更换的扫描床体,满足不同尺寸检测对象的扫描需求。床体具备与呼吸麻醉机的接口,满足活体动物麻醉扫描,并易于拆卸,便于离体组织扫描。系统具有扩展能力及多系统可融合性,可实现CT与PET、SPECT等多系统的图像融合。设备外壳具备全封闭辐射屏蔽能力,能够将X射线良好的隔绝在扫描舱内,保证操作人员的辐射安全,降低工作场地要求。
    留言咨询
  • 二维光学成像系统产品特点高灵敏度采用超高像素、科学级制冷CCD相机,制冷温度低至 -100 ℃,最大程度降低暗电流,实现微弱光信号捕获,保证在快速的成像同时具备超高的灵敏度与成像质量。全局无影对称式LED激发模式全局光源采用高功率LED,亮度高、带宽窄、寿命长、发散少,对样品的激发强度更高且无需常更换光源。对称式光源布局,能产生稳定均一的激发光,保证全局成像时荧光的准确性。智能化仪器载物台升降、温度及各种光源均可由软件自动控制,三色警示灯提示设备三种不同工作状态,实时反映仪器运行状态;磁吸式防护门,智能开合,有效屏蔽外界光线干扰,内置安全联锁,避免任何可能的误操作,确保安全。 多功能 具备生物发光成像、荧光成像、切伦科夫光学成像、上转换荧光成像等功能,可根据实验需求,快速选用相应模块、实验方法更加多样,功能更加强大。 #小动物活体成像 #小动物成像 #活体成像 #小动物ct #小动物CT成像 #Micro CT成像#二维/三维光学成像 #生物发光成像 #分子荧光成像 #多模态成像 #三维多模态精准成像
    留言咨询
  • 产品简介:近红外二区小动物活体成像系统是新一代的具有900~1700 nm荧光波长探测范围的活体成像仪器,其克服了传统荧光成像难以在深层组织成像的问题,具有更深的穿透深度、更少的背景散射和生物组织自发光干扰、更高的信噪比,能够获得更高分辨率的图片。同时其也具有无创,成本低等优点,广泛应用于分析化学、化学生物学和生物医学领域,是基础生物研究,药物研发和临床应用中最为有效的实时成像手段之一。适用于小动物研究领域。 此外还有高分辨近红外二区活体显微镜可实现对样品的高分辨显微荧光成像。从细胞尺度的分子机理研究,到活体尺度的多器官协同作用进行深入的研究,为科学家提供一整套的跨尺度光学成像方案。恒光的光路系统具备升级3D(NIR-II光谱 ,共聚焦)的潜在优势。适用于小动物的细小组织与细胞层面研究。 产品原理:相对于传统的可见光(400~750 nm)和近红外一区(NIR I,750~900 nm)荧光成像技术,近红外二区(NIR II,1000~1700 nm)的发射波长更长,可显著降低生物组织内光子的散射,增强生物组织的光吸收,具有穿透深度大,空间分辨率高,速度快等优势,被誉为下一代荧光成像技术。穿透深度高于 15mm空间分辨率优于4um荧光寿命分辨率优于10us高速采集速度高于1000fps产品特点:近红外二区成像NIR-Ilin-vivo lmaging近红外I区与II区小鼠颅内血管成像对比全光谱成像 Full Spectrum全光谱(可见光-近红外一区/二区)活体荧光成像系统,具备300-1700 nm双光路设计,可实现高灵敏度生物发光(bioluminescence)与荧光(fluorescence)成像。全视野 Cross-Scale首创的全视野成像能力,满足了从微观到宏观成像视野的需求(1.5-250 mm),极大丰富了用户的使用场景:肿瘤微环境、脑部精细成像、斑马鱼、眼部血管、神经成像、小鼠大鼠整体成像,到兔、犬、猴大动物的局部成像等均可轻松实现。 高灵敏度成像系统的核心相机均采用了业界知名的Teledyne Princeton Instruments的NIRvana系列,具有高灵敏度,低噪声,高速成像等优势,其量子效率与噪声抑制技术为高品质成像提供保证。可拓展X-ray / CT 模块市场上首台可嵌入小动物荧光成像系统的桌面式 X-ray激发/CT成像模块,系统顶部配置一块铅玻璃,在隔离射线辐射的情况下,让350-1700 nm的 光透射出射线腔,实现X-ray激发的荧光成像,CT-荧光三维共定位等。 荧光寿命与高精度激光器系统采用了高精度控制的电子门控激光器(下降沿优于900ns),方便用户在荧光强度成像与荧光寿命成像之间快速切换,而无需繁琐的硬件系统(如斩波器等),且荧光寿命精度可达15μs。 活体多模态成像设计采用模块化的结构设计,可进行后期功能扩展,整合近红外一区荧光成像,超声,光声,CT断层扫描,荧光寿命,PET-C,MRI等系统,实现多模态成像解决方案。其遮光外壳、上下机体可分离组合,带来更加自由的实验平台。近红外二区荧光探针与众多科研院所合作,为用户提供丰富的荧光探针选择方案:小分子,量子点,AIE,稀土纳米探针等;可满足肿瘤靶向,血管造影,淋巴标记,细胞体内追踪,药物筛选,体内分布等众多应用。同时团队具有丰富的生物学实验设计与数据分析经验,可为用户提供生物成像的培训及N3服务。应用领域:NIR-II区荧光成像拓宽了荧光成像的应用范围,包括:肿瘤研究、血管成像、药物开发、靶向治疗、手术导航、肠道菌群成像、淋巴成像、脑科学、药理研究、药效评价及大分子药物药代动力学研究等众多领域。部分文献[1]Ji A, Lou H, Qu C, et al. Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance[J]. nature communications, 2022, 13(1): 3815.[2] Dong S, Feng S, Chen Y, et al. Nerve suture combined with ADSCs injection under real-time and dynamic NIR-II fluorescence imaging in peripheral nerve regeneration in vivo[J]. Frontiers in Chemistry, 2021, 9: 676928.[3] Feng S, Chen M, Chen Y, et al. Seeking and identifying time window of antibiotic treatment under in vivo guidance of PbS QDs clustered microspheres based NIR-II fluorescence imaging[J]. Chemical Engineering Journal, 2023, 451: 138584.[4] Zhang X, Ji A, Wang Z, et al. Azide-dye unexpected bone targeting for near-infrared window ii osteoporosis imaging[J]. Journal of Medicinal Chemistry, 2021, 64(15): 11543-11553.[5] Yang S, Zhang J, Zhang Z, et al. More Is Better: Acceptor Engineering for Constructing NIR-II AIEgens to Boost Multimodal Phototheranostics[J]. 2022.[6] Qiu Q, Chang T, Wu Y, et al. Liver injury long-term monitoring and fluorescent image-guided tumor surgery using self-assembly amphiphilic donor-acceptor NIR-II dyes[J]. Biosensors and Bioelectronics, 2022, 212: 114371.[7] Yang R, Bao G, Li H, et al. Lead/cadmium-free near-infrared multifunctional nanoplatform for deep-tissue bimodal imaging and drug delivery[J]. Materials Today Advances, 2022, 16: 100306.[8] Pan Y, He Y, Zhao X, et al. Engineered Red Blood Cell Membrane‐Coating Salidroside/Indocyanine Green Nanovesicles for High‐Efficiency Hypoxic Targeting Phototherapy of Triple‐Negative Breast Cancer[J]. Advanced Healthcare Materials, 2022, 11(17): 2200962.[9] Chen M, Shu G, Lv X, et al. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma[J]. Biomaterials, 2022, 284: 121512.
    留言咨询
  • BIOVIVO B,为动物活体成像研究而来!超一流的活体成像视野BIOVIVO B动物活体成像系统的视野高达400mm,可实现≥16只小鼠同时成像,满足高通量筛选的使用需求;同时,宽泛的成像视野可以满足斑马鱼、小鼠、大鼠、兔子、猴、猪等多种体型的活体研究。高灵敏相机,极弱光检测BIOVIVO B动物活体成像系统采用业内高灵敏的背照式、大像素CCD相机,量子效率高达95%,深度制冷,温度低至-100℃,最大限度提升弱光检测的灵敏度(信噪比),特别适用于动物活光学成像检测。快速镜头技术,更高信噪比BIOVIVO B动物活体成像系统使用超级定焦镜头,光圈全开可达F0.85,大大提升光信号采集速度,缩短成像时间,降低长时间曝光引起的成像噪音,有效提升图像信噪比。顶级荧光激发光源,全光谱荧光成像应用BIOVIVO B动物活体成像系统配备高能氙灯作为荧光激发光源,发光效率高,激发能量强,能够提供稳定连续的250-1200nm全光谱波长激发,搭载高性能带通滤片,满足全光谱荧光成像的应用需求。
    留言咨询
  • PlantView100植物活体成像系统主要应用于植物活体基因表达分析、植物活体克隆筛选、植物生物节律研究、植物光周期相关研究、植物抗逆性研究、植物病菌害研究、植物生长的连续观察以及基因育种的筛选等。PlantView100植物活体成像系统是新型的植物学研究平台,其将植物学研究从分子水平提升到整体水平,能够反映细胞或基因表达的空间和时间分布,从而了解活体植物体内的相关生物学过程、特异性基因功能和相互作用;其次,在转基因植物研究过程中,可以更早期、更快速、高通量精确筛选目标植株,缩短育种周期;对植物的性状进行跟踪检测、对表型进行直接观测和(定量)分析,具有廉价、灵敏、定量和可重复性的检测特性,节约时间成本,提高实验效率。 产品优势 超大视野,双位相机 最大成像面积可达280mm×280mm, 满足常见植物全株成像的同时, 可实现幼苗、 种子、 果实, 培养皿等样品的批量成像。 特有的双相机模式, 除顶部主相机外还可搭配一台侧位相机, 可实现植物从种子萌发到幼苗自然垂直生长的长时间连续观察。 超灵敏,高品质 采用超高量子效率、 深度制冷科研级CCD相机, 制冷温度低至绝对-100℃, 具备针对微弱荧光或发光的强大捕获能力; 配备全密闭抗干扰暗箱, 避免外界光源及宇宙射线对成像的影响; 搭配OD6高品质滤光片, 结合背景干扰扣除功能, 在快速成像的同时保证超高的灵敏度与成像质量。 多功能 配备植物光照模拟模块,可用于植物生长节律及光周期等实验。 同时具备通用接口,连接多种装置,便于模拟多种特殊实验环境。 还可连接X-Ray成像模块, 紫外或蓝光透射台等, 满足更多实验研究需求。 多光源 荧光光路系统全部采用高功率窄带宽LED,强度更高、光衰更小,环形全局排列具有更均匀的光线输出。且系统最多可配备20种激发光源,10种发射滤光片,满足更多荧光成像需求。 智能软件,专业可靠 人性化的全中文软件可自动控制样品台升降及各种光源强度大小, 预设多种成像模式、 一键快速成像、 多种伪彩及定量单位自由切换、 量化分析功能、 具备国际公认标准单位(p/s/cm2/sr)、 符合GLP原始数据、 操作记录规定、 可直接输出实验报告。 中文软件, 操作简化, 快速上手, 软件终身免费升级。 应用示例菌种筛选(GFP)植物全株基因表达(Luc)蛋白互作(Luc)病毒侵染(Luc)植物防御机制(Luc)叶绿素荧光
    留言咨询
  • In-vivo 显微CT 全球最高的空间分辨率SKYSCAN 1176是面向临床前研究的高性能体内显微CT扫描仪。大尺寸1100万像素x光相机极其完美地整合了分辨率、像场大小和扫描速度——这些正是繁忙、苛刻的生物医学研究实验室所需要的。像场宽度高达68 mm,支持鼠的全体扫描,以及兔子等大型动物的前肢扫描,像素大小为9、18 和35μm。可变x光外加电压和过滤器可提供扫描灵活性,支持包括肺组织和骨骼(带有钛植入物)在内的广泛样本成像。鼠的动物床可采用碳纤维或聚苯乙烯泡沫进行制作。集成式生理监控子系统可提供呼吸与心跳控制,以可靠地改进同步采集的胸部图像。 特点 提供的全系列SKYSCAN 软件包括快速容积重建、2D / 3D 定量分析软件以及3D可视化。另外还作为标配提供4D时间解析显微断层成像软件。该扫描仪可以“按钮”模式工作,可从触摸屏开始/停止扫描以及设置规程。触摸屏可戴手套操作。机架式主工作站集成于扫描仪下方。扫描仪最好结合四台Dual-QuadCore工作站使用 免维护90千伏X光光源全失真矫正1100万像素X光相机螺旋扫描:无环形伪影,无部分扫描链接每断层最多8000x8000像素最低9μm 体内3D空间分辨率全扫描周期不到1分钟(1Kx1K 片格式)集成式生理检测(呼吸、运动检测、心电图)4D 时间解析显微断层成像2D/3D 图形分析、骨骼形态测量学和仿真可视化的相关软件
    留言咨询
  • MPI磁粒子小动物活体成像 基本原理: 磁粒子成像(MPI)是新一代分子影像技术,采用复合组合方式的旋转可变梯度磁场,直接检测体内的超顺磁氧化铁纳米粒子(SPIO),获得ng级具备临床转换能力的高灵敏度成像。更加详细的资料请查询北京普华量宇科技有限公司官网。 MPI磁粒子小动物活体成像性能优势 1. 易转化到人,用临床SPIO示踪剂。 2. Nm级灵敏度,可检测个位数细胞。 3. Mm级分辨率,目前达到0.3mm。 4. 信号不随深度衰减,3D断层扫描。 5. 可以长达数个月的连续示踪成像。 6. SPIO无毒无放射,代谢成血红素。 7.定量分析。 主要应用 多模态成像;活体成像;干细胞及各种类细胞示踪;肿瘤检测示踪(肿瘤微环境/肿瘤免疫微环境);免疫炎症示踪;心脑血管成像;血管灌注成像;准确靶向磁热疗;准确靶向药物输送;肿瘤免疫治疗(局部免疫刺激);纳米粒子开发。 肿瘤免疫治疗是全球趋势 临床应用前景 1.得到美国NIH的资金支持,正在合作研发可用于临床的MPI. 2. 区别于CT、MRI、和PET等,MPI成像没有任何辐射,不需要使用任何有毒性的示踪剂。使用临床许可的超顺磁性氧化铁纳米颗粒(SPIO):安全性通过临床审查,特别是可用于肾功能不全或肾脏损伤的病人。 3. SPIO这种纳米尺寸的氧化铁粒子在体内可以分解并转化为血红素,完全的支持长期诊断检测,无任何累计辐射或毒性。
    留言咨询
  • 近红外活体成像系统 400-860-5168转4585
    产品性能: 可实现近红外二区大视野及局部小动物成像 可进行多只小鼠同时成像 可对单幅高信噪比图片进行拍照 满足高帧率视频拍摄 可选配多种激光器以及LED、X射线应用范围:活体脏器多重成像,手术导航,血管成像,淋巴成像,肿瘤成像,炎症检测和监测,药物追踪,活体 原位疾病检测等仪器配置:响应波长:≥900 ~ 1700 nm;量子效率:≥80%(1000~1600nm),峰值85%;曝光时间:2 μs ~ 60 s;连续观察拍照: 10ms;分辨率:≥640 × 512;制冷温度:≤-190℃,-85℃,55℃等可选;读出噪声:<60 e-/p/s;帧率:多种帧率可供选择(110 fps、55 fps、22 fps)
    留言咨询
  • 德国伯托 LB985 植物活体成像系统是专门用于植物研究的活体影像系统。它的核心部件是背透式超灵敏 CCD 相机。相机可安装在暗箱顶部或侧部,可以在*避光的暗箱内从顶部或侧面捕获植物的生物发光及荧光信号。暗箱本身可以进行温度或湿度控制,高通量检测旋转台可以进行植物标本的多角度拍摄,样品室内强大的 LED 模拟器可模拟日照程序,暗箱可连接温控制模块,用于植物低温胁迫研究。NightSHADE配备有高度敏感的1200万像素冷emCCD摄像头,冷却的绝对温度可以达到-20°C。摄像头的电子倍增模式增强了放大过程中读出的电子信号,这增加了短曝光时间的灵敏度,保证了单光子检测。最高量子效率达到500nm到750nm之间,使摄像头成为荧光素酶和荧光染料的理想选择。 特点■ 超灵敏低温 CCD 相机■ 多功能全封闭暗箱■ 发光及荧光信号检测光路■ LED 植物光照模拟模块■ 顶部成像和侧面成像接口■ 高通量旋转台■ 温度和湿度控制器■ 显微成像模块应用方向■ 植物基因表达调控研究■ 植物生物节律监测■ 植物克隆筛选■ 植物抗逆性■ 植物细菌和病毒感染■ 植物体钙离子流量监测■ 植物细胞微观表达检测■ 植物蛋白相互作用■ 兼容动物活体成像样品形式可观察样品包括放在培养皿或微孔板上内的小芽苗,叶子,真菌,甚至整株植物。软件indiGOTM软件可控制所有硬件。
    留言咨询
  • IVIS Spectrum顶级小动物活体光学成像系统IVIS Spectrum 小动物活体光学成像技术代表了目前活体光学成像系统的最高水平。系统同时具备二维及三维断层水平的生物发光、荧光、切伦科夫辐射成像功能,能够无创伤地在活体动物水平对疾病的发生发展及治疗、细胞的动态变化、基因的实时表达进行长期观测。基于顶级的硬件配置,系统具备了业内公认最高灵敏度的生物发光及荧光成像性能,并且是目前唯一同时具备生物发光和荧光三维成像性能的系统,因此能够和其它模式的三维影像系统(如MRI、CT 及PET 等)联合使用,将不同模式的三维影像进行融合,实现功能性成像与结构性成像的结合。主要性能 高灵敏度生物发光及荧光成像 3D 断层扫描及重建 精确定量 高通量 高分辨率(达20微米) 28个高效滤光片,覆盖430-850nm全波段– 实现基于多光谱扫描的高品质光谱分离成像– 实现基于光谱分离成像而进行的背景去除及多探针成像 多模式成像及影像融合特点一:全面而先进的荧光成像解决方案荧光反射及透射成像功能大多数活体光学成像系统均采用反射照明而激发体内荧光信号,此方式由于是全身激发,故存在激发光能量分散且全身组织自发背景荧光强的缺陷,因而对体内深层荧光信号的检测效果较差。IVIS Spectrum在具备荧光反射激发模式的基础上,开创性地整合了透射激发模式,即通过光纤将光源能量引至实验动物底部,进而从动物底部进行多点透射激发扫描,在集中激发能量的同时,减少了自发背景荧光的产生,完美地解决了深层荧光成像的问题。长寿命高透光率窄带宽滤光片为了实现最高品质的荧光成像性能,IVIS Spectrum配置了丰富且优质的荧光滤光片,光谱覆盖包括从蓝光至近红外光波段的全部区域,并且,所有滤光片的加工制作均采用最先进的硬涂层技术,在保证高透光率(95%以上)的同时具备长寿命耐损伤品质。 标配10块窄带激发光滤片:415 nm – 760 nm (30 nm 带宽) 标配18块窄带发射光滤片:490 nm – 850 nm (20 nm 带宽)图1. 窄带宽激发光和发射光滤片特点二:灵活可调的成像视野图3. IVIS Spectrum具备灵活的视野调节性能,可以实现从体外单个细胞的高分辨率成像至5只小鼠全身同时成像特点三:业内公认最高灵敏度的生物发光成像基于-90℃ 制冷的CCD 相机、大尺寸高量子效率CCD 芯片及大光圈镜头,IVIS Spectrum 具备了无与伦比的超高生物发光检测灵敏度,可以实现对以萤火虫荧光素酶、海肾荧光素酶、细菌荧光素酶等多种荧光素酶为报告探针的发光信号进行快速准确的成像检测。这种超灵敏的检测能力,使研究者能够在活体动物水平观测到低至个位数级别的细胞信号,进而帮助研究者尽早地对疾病的发生发展进行监测和分析。图4. (上图)在4T1-luc2肿瘤细胞皮下注射当天的活体裸鼠上检测到所注射5个细胞发出的信号,以及之后长期观测的结果;(下图)对左心室注射的MDA-MB-231-luc2肿瘤细胞在活体小鼠体内转移的长期观测。图 5. 长期观测C57BL/6小鼠颅内移植GL261-luc2胶质瘤细胞在体内的发展情况。特点四:强大的荧光成像性能使用IVIS Spectrum,研究者可以实现对荧光蛋白、荧光染料、纳米颗粒、量子点、功能性荧光试剂等荧光类探针进行成像。另外,IVIS Spectrum由于配置了丰富且优质的荧光滤光片,以及业内公认金标准的光谱分离分析算法,因而具备强大的光谱分离成像功能,能够实现组织自发背景荧光的完美去除,有效提高荧光成像的灵敏度和准确性,并满足多探针成像的需求。除了提供高性能仪器,瑞孚迪还为使用者研发出丰富的活体荧光成像配套试剂,以帮助研究者更便捷快速的获取实验数据。而IVIS Spectrum是与这些配套试剂结合使用的最佳选择。图6. 在活体小鼠中,利用IVIS Spectrum及功能性荧光试剂MMPSense 680和ProSense750EX,监测基质金属蛋白酶(MMP)和组织蛋白酶(cathepsin)在4T1-luc2肿瘤细胞发生骨转移过程中的活性。图7. 在右下肢关节炎小鼠模型中,利用IVIS Spectrum观测由VivoTrack680荧光染料标记的巨噬细胞对炎症发生区域的靶向富集。特点五:利用先进的光谱分离技术实现多光谱成像IVIS Spectrum配套的Living Image成像和分析软件内置了功能强大的光谱分离算法,凭借该算法,研究者在基于多光谱成像结果的基础上,可以对不同探针信号的光谱信息进行绘制和拆分,而实现组织自发背景荧光去除及多探针成像。由于软件内置了Imaging Wizard成像及分析向导模块,一步步引导进行图像获取及分析,因此,研究者可以轻松便捷地完成包括上述多光谱分离在内的所有成像及分析操作。结合先进的光谱分离算法及丰富的窄带滤光片,组织自发背景荧光的干扰及多探针成像的困扰将不复存在。图8展示了利用光谱分离功能实现的4种荧光探针同时成像的结果。图8. 利用光谱分离技术对4种荧光探针进行成像。4种探针分别为:肝脏中的VivoTag680、肺中的VivoTag750、肠道中的ICG以及绿色代表的组织自发背景荧光。特点六:3D成像-对光学信号在体内进行精确定量和定位二维成像只能实现对光学信号的相对定位和定量,而三维成像是解决上述问题的唯一途径。IVIS Spectrum利用专利的生物发光和荧光三维成像技术对动物体内的光学信号进行断层扫描,并通过先进的模型算法对成像结果进行三维重建。重建出的三维结果可利用软件进行分析,获得光学信号在体内的深度、发光体积、发光强度、细胞数量、探针浓度等三维定量信息,以及结合数字器官图而显示的器官定位信息(图9、10)。图9. 生物发光三维成像显示GL261-luc2胶质瘤在颅内的定位图 10. 荧光三维成像显示(a)tdTomato标记的P3CM前列腺癌细胞3D成像结果;(b)某750波段染料标记的抗体对P3CM细胞靶向3D成像结果;(c)上述肿瘤及抗体3D成像结果的融合影像特点七:多模式影像融合IVIS Spectrum 是当今最顶尖的活体光学成像系统,不仅是因为具备先进的二维及三维成像功能,而且具备与其它模式活体成像系统联合使用的能力(图 11、12和13),以实现功能性与结构性成像的融合,获取更为全面和准确的研究结果。图11. 利用IVIS Spectrum对生物发光肿瘤MDA-MB-231-luc2进行三维成像(橙色),并与利用Quantum FX microCT对实验小鼠骨架进行三维成像的结果融合。图 12. A)U-87MG-luc2胶质瘤3D光学信号与实验小鼠骨架microCT成像信号融合影像;B)生物发光肺炎链球菌3D光学信号与实验小鼠骨架microCT成像信号融合影像。图 13. 生物发光肿瘤细胞MDA-MB-231-luc-D3H2ln在小鼠体内转移的3D信号与实验小鼠骨架microCT成像信号融合影像。
    留言咨询
  • AniView100多模式动物活体成像系统是广州博鹭腾仪器仪表有限公司推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机具有极高的检测灵敏度,而经过特殊设计的暗箱能够有效避免外界光线及宇宙射线对成像的影响。大功率全波长卤素灯激发光源配合精密复杂的内嵌式环形全局激发光源和Dual万向点状激发光源光路系统,再加上先进的光谱转换能力和滤光片组合,极大地提高了荧光信号的特异性,并大大缩短曝光时间,减少实验对小鼠的影响。特点:1.超灵敏全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView100可以检测到小鼠体内100个luciferase标记细胞或10ng FITC,精确实验结果,减少实验误差。 2.低背景 荧光成像模块配备了150W全波长卤素灯、多种可自由组合的滤光片、内嵌式全局照射和Dual万向点状荧光照射装置,配合先进的光谱转换能力以及荧光自发光干扰扣除功能,完全满足荧光成像实验“低背景”的要求。 3.大视野 AniView100的广角镜头和硬件结构的完美结合造就了超大的成像视野,可实现6只小鼠或1只兔子(270mm×270mm)同时成像。并且软件预设实验方案,可根据样品尺寸自动调整视野大小,自动对焦,实现一键成像。 4.人性化 人性化的软件可自动控制仪器载物台升降、温度及各种光源;多种荧光强度表达方式可选,量化分析功能,直接输出实验报告,简化仪器操作,节约您的时间。 5.多功能仪器内部还配备多个法兰接口及电源插口,可连接动物温控床、X-ray动物结构成像模块、气体麻醉模块、上转换荧光UCNPs检测模块、显微镜等,可根据实验需求,快速选用相应模块,实验方法更加多样,功能更加强大。 应用范围癌症与抗癌药物研究,免疫学与干细胞研究,细胞凋亡,病理机制及病毒研究,基因表达和蛋白质之间相互作用,转基因动物模型构建,药效评估,药物甄选与预临床检验,药物配方与剂量管理,肿瘤学应用,生物光子学检测等。
    留言咨询
  • BIOVIVO B动物活体成像系统特点:Ø 高灵敏相机——极弱光检测工具采用业内高灵敏的科研级背照式相机,量子效率高达95%,半导体制冷,降低暗电流背景干扰,灵敏度可低至1amol ATP(美国NIST标准量化数据),或≤50 photons/s/cm2/sr,配备全密闭抗干扰暗箱,满足您生物发光和荧光活体成像实验的灵敏度需求Ø 快速镜头技术使用超级定焦镜头,光圈全开可达到F0.85,大大提升光信号收集速度,缩短成像时间,降低长时间曝光引起的成像噪音,有效提升图像信噪比。Ø 独特的荧光通路多点LED灯激发,波长自主选择,可检测8种荧光。Ø 全光谱荧光光源 长寿命卤钨灯激发光源,提供连续光谱激发,搭载十位置激发滤光片,提供最佳性能的荧光成像解决方案Ø 宽视野、多样品、高通量:总能满足您的实验需求!成像视野从108mm*108mm到320mm*320mm,最大可实现10只小白鼠同时成像,满足高通量样本筛选的需求。同时,宽泛的成像视野可以满足斑马鱼、小鼠、大鼠、兔子、猴、猪等多种体型的动物样本,我们坚信:总有一档视野适合您的动物!Ø 多模态成像能力不仅具备生物发光和荧光成像功能,还可以扩展升级X光成像、切伦科夫核素成像以及超声成像等多模态成像能力,实验方法多样,图像数据更加全面。 Ø 专业活体成像软件,重新定义您对活体成像应用的期望BiovivoLabEasy软件界面简洁直观,操作简单,可视化编程设计,可自由定义实验方案,使得所有使用者均可快速上手,轻松完成各种实验要求下的成像拍摄任务。智能AI算法,深度自学习。图像光谱分布统计功能,帮您迅速识别背景鉴定信号;美国NIST标准校准,专业量化分析功能,快速准确的ROI量化分析,给您的成像数据进行精准的定量分析。
    留言咨询
  • 来因科技植物活体成像系统 植物活体成像分析仪PLIS-68PLIS系列多功能植物活体成像系统搭载了超高灵敏度深冷背照式相机大光圈镜、RGB激光光源、IR激光光源、温控平台、全自动滤光轮,用于生物发光检测;植物活体荧光素酶检测;荧光检测;化学发光检测等满足客户多种实验需求的一套高性能植物活体成像分析系统。激光光源:相对LED 和卤素光而言,激光有更稳定的光谱以及更小的光衰,光源更纯净,无边缘效益, 在光斑处光都处于均匀的能量,使其成为最佳的荧光成像光源。背照式高灵敏度深冷相机:PLIS植物活体成像仪采用了660万高分辨深冷背照式相机其QE在峰值最高高达95%,制冷温度 达到-95℃, 配合F0.95大光圈镜头,同时具备的了出色的信噪比和灵敏度。专用滤镜:深度定制激光专用滤镜,双层镀膜,截止深度更是高达OD6, 杂散光通过率非常低,背景干净。植物活体成像应用:相对普通LED 的可见荧光,激光尤其红外激光因穿透力较强,背景低,激发效率高的特性,可以更好的拍摄活物体内的细胞活动和基因表达,有效地研究观测感染性疾病发生发展过程、植物转基因鉴定,植物突变体筛选,病毒侵染等。产品参数型号PLIS-68PLIS-95分辨率1200万像素(背照式相机)660万像素(背照式相机)制冷温度-68℃-95℃像素尺寸4.63um×4.63um11um×11um感光效率HighQE:95%像数密度16bit(0-65535)曝光时间1ms-60min像素合并1×1、2×2、4×4…8×8动态范围≥4.8个数量级电动镜头F=0.95/35MM自动聚焦镜头,可选配F0.8镜头RGB光源标配650nm、532nm、473nm(红绿蓝)激光器IR光源标配红外680nm、780nm激光器紫外反射254nm白光光源LED冷光滤光镜轮7位滤光轮滤光镜片标配535nm,570nm、605nm、699nm、720nm、820nm拍摄面积最大拍摄面积32×26cm×10cm(L×W×H),侧位相机选配光照模块选配旋转样品台选配输入气孔预留定时关闭1~60分钟
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制