当前位置: 仪器信息网 > 行业主题 > >

显微技术防伪

仪器信息网显微技术防伪专题为您整合显微技术防伪相关的最新文章,在显微技术防伪专题,您不仅可以免费浏览显微技术防伪的资讯, 同时您还可以浏览显微技术防伪的相关资料、解决方案,参与社区显微技术防伪话题讨论。

显微技术防伪相关的资讯

  • 大连化物所卿光焱团队制备出新型手性光子防伪薄膜
    近日,中国科学院大连化学物理研究所生物分离与界面分子机制创新特区研究组(18T7组)卿光焱研究员团队设计并制备了一种环境友好、多模式、可转换的手性光子薄膜。该研究为先进防伪材料的设计提供了新思路。早在中国古代,防伪标签(如水印、指纹和笔迹)就已广泛应用于文化、经济和军事等领域。创新的防伪技术对于市场的稳定、医疗健康和社会可持续发展等具有重要意义。目前,防伪标签主要使用发光或结构色材料,例如荧光染料、量子点、钙钛矿、室温磷光、纳米印迹光子阵列等,通过物理化学刺激、多色组合、利用复杂图案等实现编码安全。然而,由于自身的空间结构限制,这些防伪编码仅仅停留在一维或者二维的信息传递。相比之下,利用偏振衍生的手性发光材料,将大量有关视觉特征和空间结构的信息整合到一种复合材料中,可实现对每种信息进行编码或集成,从而大大提高防伪水平。纤维素纳米晶体(CNC)是一种来源丰富、绿色可持续的天然多糖聚合物,它可以进行自组装形成手性向列结构。本工作中,该团队将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜。所获得的薄膜同时携带结构色、荧光、手性光和右旋圆偏振发光(CPL)信息,彼此之间可相互切换。基于这些多模式光学状态、湿度响应荧光或可调结构色、柔韧性和耐用性的综合特性,该光学系统在钞票防伪中表现出先进的应用潜力。同时,该材料还具有强CPL发射(不对称因子高达–0.36)、高绝对量子产率(66.7%)和偏振敏感的手性光学特性,这些研究将推动CNC光子材料在手性光学器件、光学探测器、视觉保护和手性传感等方面的应用。相关研究成果以“Multimodal, Convertible, and Chiral Optical Films for Anti-Counterfeiting Labels”为题,于近日发表在Advanced Functional Materials上。该工作的第一作者是大连化物所18T7组和二十八室博士研究生张福生。上述工作得到国家自然科学基金、我所创新基金、兴辽英才计划等项目的支持。(文/图 张福生、李琼雅)文章链接:https://doi.org/10.1002/adfm.202204487
  • 爱色丽支持光学可变防伪油墨标准制定及油墨色彩测量仪器
    防伪油墨作为一种防伪产品的基材,已经广泛应用于国家有价证券、证件证书、普通印刷品和商品包装等领域,其应用范围非常广泛。为了进一步规范防伪油墨的生产、使用及检测,保障国门安全、社会金融安全和产品监督管理的稳定性,爱色丽全力支持将于2023年12月实施的【光学可变防伪油墨】国家标准。这一标准的实施对于保障生产厂商、使用厂商和消费大众的合法权益,维护国家的安全和稳定,具有重要意义。爱色丽的参与和支持,旨在提升产品质量的稳定性和可控性,使得防伪油墨在多领域的应用更加规范和安全。一、测量参数光学可变防伪油墨通过光学原理,使印样随观察角度不同而呈现不同颜色。这一特定材料制作的油墨需要通过以下几个参数来进行测量和评估:外观色:使用单角度色差仪测量颜色差异。同角最大反射波长:标准和样品在波峰位置的匹配度。同角色差:标准和样品分别在30°和90°观察角度的颜色差异值。异角色差:同一试样在30°和90°观察角度的颜色差异值。二、防伪油墨标准制定具体方案参数:外观色试验步骤:1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,分别取标样1份,试样3份。3. 按GB/T19437-2004中4.1的规定进行仪器校准,检测标样色值,包括亮度L、绿色到红色的分量a、蓝色到黄色的分量b,作为颜色标准。在试样中选取避免透印干扰的测量点进行测量,得到ΔE,测量3次取平均值。测量设备:eXact系列色差仪。eXact系列色差仪是印刷和包装应用中用于测量色彩数据的行业标杆。其作为45:0便携式分光测色仪具有简单的用户界面和直观的触摸屏显示,因此是繁忙印刷车间的理想印刷机工具。通过无线操作以及不受限制的校准、规格和数据捕获,操作人员可以在车间内的任意地方使用eXact来测量和存储数据,无需电源。由于存储位于设备上,因此可以快速访问作业预设置和色彩库。参数:技术指标和耐性指标指标要求:- 技术指标:达到油墨的基本要求。- 耐性指标:符合各种耐受测试性能。测量参数:光谱和DE*。试验步骤(以耐性试验为例):1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,抽取4份样品,其中1份作为标样,3份作为试样。3. 将试样和GB/T730-2008规定的1级蓝色羊毛标样用黑色板纸衬白色书写纸各遮盖一半,放入日晒仪中,根据所使用的日晒仪要求确定环境温度和环境相对湿度,进行暴晒。当1级蓝色羊毛标样的变化程度相当于GB/T250-2008中“评定变色用灰色样卡”的3级时停止暴晒,取出试样放入暗处30分钟后,使用多角度分光光度计,测量试样30°、90°观察角度下的色值L、a、b,与标样30°、90°观察角度下的色值进行对比,记录试样ΔE1、ΔE2及异角色差,计算3份试样平均值,记录试验结果。测量设备:MAT系列多角度色差仪。爱色丽MA-T系列多角度色差仪包含6、12个测量角度,而且该色差仪价格实惠,是一款适用于特殊效果涂料的汽车测色仪,兼具彩色成像和多角度测量,体现完整色彩、光亮和粗糙特性。EFX QC是爱色丽MA-T系列汽车测色仪中附带的一个软件包,基于云计算的软件简化了各个分布式供应链交流容差和测量的过程。新的可视化工具支持实时性能监控,并为故障排除提供可行性建议,从而减少浪费和返工。通过严格的检测和标准化流程,光学可变防伪油墨将更好地服务于各类防伪需求。爱色丽将继续在这一领域发挥重要作用,为维护国家和社会的安全与稳定贡献力量。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 山东检疫局建成全国危化品检验报告防伪查询系统
    日前,由山东检验检疫局化矿检测中心自主研发的“危险化学品检验检疫报告防伪验证查询系统”(http://www.ghs-sd.org)正式上线运行,这是全国首个检验检疫报告防伪验证网络查询系统。该系统拥有强大稳定的数据库,可以查询近六年来该中心出具的近万份危险化学品检测报告中的信息,包括产品名称、委托单位、所在地区、进出口情况、报告签发日期等。检验检疫工作人员、相关委托人及报告使用人均可通过登陆该系统查询所需信息,实现了通过互联网快速识别检测报告真伪的功能,有效解决了真假检验检疫报告难以识别的问题。  不法分子经常会采用将危险化学品申报为普通商品,或者编造假冒检验检疫证书将高危险等级化学品申报为低危险等级化学品的手段,降低相关费用,大大增加了危险化学品发生安全事故的隐患和风险。为响应国家质检总局下发的《质检总局关于印发2013年全国检验检疫系统打击假冒检验检疫证书专项行动方案的通知》的要求,进一步加大对假冒检验检疫证书违法行为的打击力度,维护进出口贸易秩序和“中国制造”声誉,山东局化矿检测中心干部职工在工作实践中不断探索和尝试,利用信息化手段推进打击假冒检验检疫证书工作持续深入有效开展。  据该中心危险化学品检测实验室副主任黄红花介绍,由于危险化学品本身固有的危险特性,国家对危险化学品的管理要求十分严格。2011年国务院公布了新修订的《危险化学品安全管理条例》,提出出入境检验检疫机构负责对进出口危险化学品及其包装实施检验。随后国家质检总局发布《关于进出口危险化学品及其包装检验监管有关问题的公告》,正式提出出入境检验检疫机构对进出口危险化学品按照《条例》要求实施检验。进出口企业在办理危险化学品出入境业务时需要提交危险化学品危险特性分类鉴别报告,以及真实准确的化学品安全标签和安全数据单。
  • 先进生物显微技术知多少?目前最新!首次!唯一!
    生物显微成像作为观察微观世界的主要手段,近些年来技术突飞猛进。生物显微技术在分子机制基础研究、药物靶点发现、疾病诊断中都有重要应用。荧光显微、共聚焦显微、电子显微、光片显微等生物显微技术的进步极大的促进了生命科学事业的发展。 本次直播将由来自北大、西安交大、中科院及四大仪器厂商的11位专家为我们全方位地介绍显微技术在生命科学领域的新应用及创新性进展,从超分辨显微成像方法到高速原子力显微镜,从三维显微成像技术到冷冻电镜,将理论与实践相结合,为您带来一场显微盛宴,诚邀您的出席,定不负您的期待!会议时间:8月10日 9:00-16:00会议日程:报名占位时间报告题目报告嘉宾9:00下一代的活细胞超分辨率成像-新原理,新应用陈良怡(北京大学)9:30液体环境下对生物高分子的高分辨三维观测陈强(岛津企业管理(中国)有限公司)10:00基于高速原子力显微镜的生物物理研究焦放(中国科学院物理研究所)10:3050 fps新速度:NanoRacer视频级AFM助力分子动力学研究王鑫(布鲁克纳米表面测量部)11:00高速大视场彩色三维显微成像技术及应用雷铭(西安交通大学)11:30多模态结构光超分辨显微镜技术开发与应用李栋(中国科学院生物物理研究所)13:30基于流式光片的毫米级样品高通量三维成像李辉(中国科学院苏州生物医学工程技术研究所)14:00日立电子显微镜在生物医学领域的解决方案王勐(日立科学仪器(北京)有限公司)14:30冷冻光电关联成像技术在原位结构生物学中的应用李硕果(中国科学院生物物理研究所)15:00冷冻电子断层扫描在生命科学领域的最新应用与进展陈晨(赛默飞世尔科技)15:30电镜技术在生物学中的发展与应用孔妤(中国科学院脑科学与智能技术卓越创新中心)部分报告摘要:《下一代的活细胞超分辨率成像-新原理,新应用》报名占位【摘要】 这里我们将介绍发明的三种活细胞超分辨率成像方法。第一,用于活细胞长期超分辨成像的海森结构光超分辨率显微镜。第二,稀疏解卷积方法首次实现计算超分辨率成像,也是推动现有活细胞荧光显微镜的时空分辨率极限的通用工具。第三,荧光-无标记相位双模态超分辨率显微镜SR-FACT (Super-Resolution Fluorescence Assisted diffraction Computation Tomography),在细胞生物学中广泛适用。《高速大视场彩色三维显微成像技术及应用》报名占位【摘要】 生物体表面色彩的不同色相、饱和度和明度在很大程度上反映了其微观结构和光学性质的不同。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,然点扫描显微成像技术的颜色通道十分有限,通常仅有三至四个,不能反映样品的全部色彩信息。研究团队开发了三维多视场成像技术,该技术是目前唯一的将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术。最大三维光切片速度100fps@1024×1024pixels。《基于流式光片的毫米级样品高通量三维成像》报名占位【摘要】 以毫米尺度的微小模式生物、类器官等为对象,进行发育、疾病机制以及药物筛选的研究不仅需要高分辨的三维成像,还需要对大量样品进行高通量的表征与统计分析。本报告将介绍基于流式和光片扫描的高通量三维活体成像技术与系统,对斑马鱼等微小模式动物根据尺寸、存活、是否成功标记荧光等的高速检测和分选,以及对分选后的样本法人高分辨全自动三维成像,从而实现根据大量样品三维图像的形态/功能特征进行统计分析。《冷冻光电关联成像技术在原位结构生物学中的应用》报名占位【摘要】 针对结构生物学原位生物大分子的高分辨率结构解析技术需求,依托生物成像中心自主研发的基于高真空冷台的冷冻光电关联成像系统HOPE,实现对目标区域的冷冻光镜-扫描电镜关联成像,导航聚焦离子束对目标区域进行减薄,获得包含目标物的200nm冷冻含水切片样品,助力高分辨率冷冻透射电镜的高效原位结构解析。 更多精彩欢迎参与直播,还可以和专家老师互动,获得现场答疑的机会哦! 点击报名吧!报名占位
  • 新活体光片:徕卡显微系统通过整合Viventis显微技术,为其产品组合增加了前沿光片解决方案
    Viventis光片解决方案助力详尽的体成像, 探索生命的全貌 2024年5月7日,德国韦茨拉尔——作为显微镜和科学仪器领域以及高级成像解决方案领域的领先厂商之一,徕卡显微系统公司已将Viventis显微技术的光片技术纳入其先进研究显微镜系列。光片显微镜技术使研究人员能够精确研究复杂生物系统的发展和动态,直至单个细胞水平。作为一种尤为温和的成像技术,光片显微镜提供了对自然过程随时间演变的无偏见观察,这可能在多个科学领域带来突破,深化对生物学、健康和疾病的理解。全新的Viventis LS2 Live光片荧光显微镜以其独特方式进行多视角和多位置光片成像,全方位展示生命。其时空分辨率和图像质量,即使是对大型光散射样本,也能够扩展研究人员的科学认识和分析。徕卡显微系统公司现已对Viventis LS2 Live显微镜接受咨询,并将为所有Viventis显微技术产品提供全球支持与服务。 “在徕卡显微系统公司,我们生命科学领域的重点是为研究人员提供推动未来突破所需的环境,”徕卡显微系统公司总裁安妮特林克博士说。“随着Viventis显微技术加入我们的强大产品组合,我们将赋能全球研究社区,从类器官和其他大型样本等三维模型中提取这一环境。实际上,随时间推移,类器官中整个样本体积的温和可视化带来了前所未有的细节,正在转变深入功能研究并推动科学理解的边界。” “徕卡显微系统公司是我们确保全球研究社区获得创新光片解决方案的理想伙伴,”Viventis显微技术的联合创始人、现为徕卡显微系统生命科学业务部副总裁詹姆斯奥布莱恩团队之一的Petr Strnad补充道。“作为徕卡团队的一员,我们将继续支持研究人员开启科学发现新突破的旅程。” Viventis显微技术自2016年起,与位于瑞士巴塞尔的弗里德里希米舍尔研究所的Prisca Liberali实验室合作,开始开发光片显微镜。自那以后,该公司已为欧洲顶尖研究机构提供显微镜。 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 《Nature Methods》:显微新技术瞄准活细胞“小世界”
    ?SDOM的原理示意图  10月31日,Nature Methods杂志的“研究亮点”栏目报道了由北京大学席鹏课题组及其合作者提出的一种新的基于偏振偶极子方位角的超分辨技术SDOM。这一技术不仅为超分辨提供了一种全新的荧光偶极子的维度、提升了分辨率,能够更清晰地认识其标记的蛋白结构,还为本领域近期的一个热点争论提供了解答。  北京大学博士生张昊、清华大学博士生陈龙为共同第一作者,北京大学席鹏教授、澳大利亚悉尼技术大学金大勇教授及清华大学清华信息国家实验室张奇伟课题组的高军涛副研究员为共同通讯作者。  从“显微”到“显纳”  随着显微技术的发展,人们观察事物的尺度已经可以深入到微米,甚至是纳米级别。  然而,显微技术本身也有天花板。德国物理学家恩斯特阿贝曾指出:光学显微镜分辨率的极限,大约是可见光波长的一半,最小约为200纳米(阿贝衍射极限)。  不仅如此,显微技术本身的发展局限也会影响到其它学科。北京大学工学院教授席鹏告诉《知识分子》,比如,生物学家更乐于追求在微观层面了解生命的奥秘,“分辨率决定了细胞的研究深度”。  据席鹏介绍,显微镜主要分为光学显微镜和电子显微镜两大类。电子显微镜虽然分辨率可以做到很高,但低温、真空等实验环境往往会影响实验对象的生物活性。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。  在寻求突破的过程中,诺奖得主Eric Betzig于1995年在论文中提出了“从不同维度将荧光分子区分开来,从而实现超分辨”的想法论。这一思想与现实中三维空间观察(超分辨)及对应二维投影(传统成像)类似。  在进行显微观察时,人们为了确定单点的位置,会从不同维度对一个点进行描述,最简单的方法就是坐标法:在三维空间确定三个坐标轴,然后用三个维度(x,y,z)进行描述。而Betzig教授则添加了第四个维度——时间,将空间上重叠的点分离,从而更加细致的描述一个点的位置。随后,Betzig教授提出了单分子定位超分辨技术PALM,这一技术通过在时间维度将分子分开,从而实现了超分辨。  然而,虽然PALM的空间分辨率可达10-20纳米,却由于该技术需要将粒子在时间上拆分,直接造成时间维度的牺牲,因此其成像时间比较长(典型在十几分钟量级)。  ?Betzig提出的超分辨思想:从另一维度对荧光分子进行分离,从而达到超分辨。  偏振:超分辨显微的新“四维”  此次席鹏课题组则在三维坐标的基础上引入了第四个新的维度——荧光偏振。  荧光的偏振特性(Fluorescence Polarization)的发现要早于超分辨概念,1926年就被Jean Baptiste Perrin(法国物理学家,1926年诺贝尔奖获得者)等人发现。然而在荧光超分辨显微中,对于荧光的其他特性如荧光强度、激发与吸收光谱、荧光寿命等方面,皆存在很好的应用,但人们却对荧光偶极子的方向(偏振)却甚少关注。  虽然之前有科学家在偏振方向做出了一定的尝试,但所获成果却在该领域引起了一定的争议和质疑。  2014年,Peter J. Walla课题组在Nature Methods上发表文章,通过对激光进行偏振调制来实现稀疏重构的超分辨成像。而在今年年初,同样在Nature Methods上,Jan Keller课题组则对此提出了质疑,并发表了针对这一文章的评论:利用荧光偏振不能够获得进一步的超分辨。Walla课题组一方面承认了Keller等人的观察,另一方面则用新的实验捍卫他们自己的工作,从而引出了一个有意思的争论:偏振调制能否为超分辨带来更多信息?  由于Walla课题组和Keller课题组都是从传统的荧光强度来看待这一问题,席鹏课题组及其合作者则从偏振方向提出了一种名为SDOM(Super-resolution Dipole Orientation Mapping)的新型超分辨技术,该技术引入荧光的偶极子角度作为荧光分子的第四维度,同时从荧光强度和荧光各向异性来考虑偏振调制能否带来更多超分辨信息,完美地回答了这一争论[7] 。  ?Nature Methods 2016年1月就“偏振调制是否对超分辨有帮助”这一问题展开了争论。  据席鹏介绍,传统的荧光各向异性显微成像技术往往只能观察简单样本的荧光偏振,而对于复杂样本,荧光的偏振由于阿贝衍射极限的存在会受到众多荧光团的影响,从而只能观察到平均效果。而超分辨偶极子方向映射(SDOM)技术则实现了同时观察荧光的强度和偏振,从偏振调制数据中将空间强度信息和偏振信息解调出来,既提升了成像的空间分辨率,也提升了探测荧光团偶极子方向的精度。  “一方面,我们通过在传统荧光显微镜的外部加上一个偏振片,使入射的激发光产生偏振 另一方面,我们联合合作者编制相应的算法对被观察物体的偏振进行分析解调,从而获得超分辨的效果,相较于之前的成像效果,SDOM可以将分辨率提升到50-60纳米,尺度缩小了一个数量级,在分辨率上有了很大的提升”席鹏提到。  ?相较于之前的“一片模糊”(图片中左上角),SDOM技术提供的成像(右下部分)更加精准、清晰。  同时,席鹏还表示,SDOM技术具有很快的成像速度(最快可达每秒5帧超分辨),对激发光功率要求也很低(毫瓦量级),非常适用于活细胞观察。  在具体操作方面,作者将SDOM技术应用在固定细胞(海马神经元的SDOM成像以及哺乳动物细胞的肌动蛋白成像)以及活体酵母细胞中的septin蛋白成像。目前,关于基因组三维结构的研究正在掀起一轮新的热潮,而NPC(核孔复合体)对于染色体在细胞核内的定位及基因组的三维结构非常重要。因此,作者也利用该新技术对NPC进行了偏振超分辨成像。这些图像都预示着SDOM超分辨技术在生命科学领域中巨大的应用前景。  值得一题的是,本工作的算法已经通过Github开源,目的是让更多的科研工作者能够从中受益。  ? 2014年诺贝尔化学奖颁给了在超分辨领域做出杰出贡献的(从左至右)埃里克?白兹格、施泰方?海尔和威廉姆?莫纳尔(图片来源:Nobelprize.org)  最后,席鹏表示,从上世纪九十年代中期到现在,每过十年左右,显微技术就会达到一个节点,“从94、95年超分辨概念被提出,到05、06年超分辨迎来了一个爆发式的增长,各种技术频出 再到2014年,诺贝尔化学奖颁给了超分辨领域的三位开创者,各成果也在很多领域得到了应用。但由于过去大多数超分辨技术强烈依赖于染料,这也限制了它们的应用范围。而SDOM技术由于不依赖于特定的荧光染料,因此有望在生物显微中得到进一步的应用。”  目前,国际上正在掀起一系列偏振超分辨的热潮。超分辨的诺贝尔奖得主William E. Moerner(美国化学家,2014年诺贝尔奖得主)利用荧光分子偏振研究了DNA的构象变化 法国科学家Sophie Brasselet等人提出了PolarSTORM技术,结合荧光单分子定位和偏振信息对DNA和肌动蛋白进行了超分辨成像 美国布朗大学Tani课题组则对DNA和F-actin(纤维形肌动蛋白)的偏振进行了动态跟踪。
  • 第四届先进生物显微技术及前沿应用网络大会成功召开|附回放视频
    仪器信息网讯 2023年12月20-22日,仪器信息网主办的“第四届先进生物显微技术及前沿应用网络会议”成功召开!本次大会由近三十位来自知名高校和科研单位的专家分享了精彩内容。会议吸引来自高校、科研院所、医院、相关工业企业等各方与会人员共近1400人,会议内容广受好评。回顾本届生物显微技术网络大会,内容上各个涵盖了共聚焦显微技术、双光子显微技术、光片显微成像、SIM/STORM/STED超分辨技术、单分子荧光、荧光相关光谱、生物电镜、光电关联技术等多种生物显微成像技术,许多是来自国内团队自主研发的技术已经实现商业化!此外,涉及空间生物学、神经科学和脑科学、模式生物和组织器官成像等热门应用方向的内容备受关注。直播间里,问题不断,报告嘉宾逐一耐心解答形成良好互动。应广大网友要求,现将征得本人同意的报告视频整理如下。点击“回放”即可进入视频播放页面。报告题目Topic演讲嘉宾The Speakers回放视频分会场Sessions:徕卡专场——空间生物学(12月20日)精彩展示-Aivia驱动的自主共聚焦显微镜徕卡显微系统(上海)贸易有限公司 /致辞徕卡显微系统(上海)贸易有限公司 /双光子在体脑成像观察麻醉和神经变性过程中小胶质细胞的动态行为刘 勇(广州市第一人民医院 特聘研究员)回放徕卡多维空间深层成像新一站式解决方案李叶昕(徕卡显微系统(上海)贸易有限公司 生命科学高级应用专家)回放高分辨单细胞空间多维组学技术的开发与运用曹罡(深圳理工大学 教授)回放从显微成像到空间多组学的流程化解决方案高天龙(徕卡显微系统(上海)贸易有限公司 生命科学部高级应用专员)回放体显微学中的连续切片技术李喜霞(中国科学院生物物理研究所 高级工程师)/徕卡电镜制样与光电关联方案-助力电镜超微结构定位与解析王仁姚(徕卡显微系统(上海)贸易有限公司 生命科学部 产品经理)回放分会场Sessions::活细胞成像和超微结构解析(12月21日)通用定量活细胞超分辨成像:我们的十年陈良怡(北京大学国家生物医学成像科学中心 副主任、教授)回放共聚焦显微镜在生命科学中的高级应用王文娟(清华大学 高级工程师)/多模式智能显微成像技术在生命科学研究中的应用童昕(徕卡显微系统(上海)贸易有限公司 生命科学部产品经理)回放偏振结构光超分辨显微成像技术及应用席鹏(北京大学 教授)回放Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome-surveillance单琳(中国科学院分子细胞科学卓越创新中心 博士后)回放合理化深度学习定量超分辨显微成像李栋(中国科学院生物物理研究所 研究员)/分会场Sessions:单分子成像前沿技术与应用(12月21日)单分子定位超分辨光学成像及其应用潘雷霆(南开大学 教授)回放多维度细胞成像方宁(厦门大学 教授)回放荧光相关光谱单分子技术应用于活细胞内分子机制的原位研究黄韶辉(中国科学院生物物理研究所 研究员)回放单分子荧光技术的开发和解析分子动态中的应用陈春来 (清华大学生命科学学院 副教授)回放活细胞和体外模拟膜体系的单分子追踪陈忠文(中国科学院生物与化学交叉研究中心 研究员)回放分会场Sessions:模式生物和组织器官成像(12月22日)Decoding large neural networks using tissue clearing, tissue expansion, and tiling light sheet microscopy techniques高亮(西湖大学 研究员/副教授)回放组织光透明成像朱䒟(华中科技大学武汉光电国家研究中心 副主任/教授)/基于新型智能光片显微镜的高通量组织3D整体成像和分析费鹏(华中科技大学光学与电子信息学院 副院长/教授)回放高通量同步飞扫三维显微成像技术及其在脑图谱绘制中的应用徐程(中国科学技术大学 特任副研究员)回放神经科学和脑科学研究(12月22日)面向在体神经活动观测与调控的光学技术孔令杰 (清华大学精密仪器系 副教授)/Plasma FIB用于生物电镜样品的高分辨率三维成像技术方案程路(赛默飞世尔科技 电镜业务拓展经理)回放采用ROI成像技术优化三光子活体神经成像深度李 博(复旦大学脑科学转化研究院 研究员)回放光电关联技术在神经生物学中的应用孔妤(中国科学院脑科学与智能技术卓越创新中心 电镜平台主任/高级工程师)回放冷冻电镜与关联成像探究神经突触传递的结构基础陶长路(中国科学院深圳先进技术研究院 副研究员)/
  • 2013年布鲁克原子力显微镜测量技术系列讲座精彩回放
    2013年布鲁克原子力显微镜测量技术系列讲座 现代科学技术中,观察、测量、分析以及操纵纳米大小的物体是一个热门的研究领域。原子力显微镜的诞生为研究者们提供了分析和操作纳米世界的眼和手。因此,自诞生以来AFM已经被广泛用于科研和工业界各领域,涵盖了聚合物材料表征,集成光路测量,材料力学性能表征,细胞表面形态观察,生物大分子的结构及性质,生物传感器,分子自组装结构等领域的监测等各类科研和生产工作。通过布鲁克2013年原子力显微镜测量技术一系列讲座,大家已经对AFM的基本原理及成像模式, AFM技术的发展进展,及其最新最先进的应用和功能,有了全面的了解。 在2013 年布鲁克原子力显微镜测量技术系列讲座的最后一讲,我们将重点介绍探针的基本信息以及如果合理选择AFM探针。在AFM的测量以及数据分析过程中,探针有着举足轻重的作用。合理选择探针,可以帮助操作者快速高效地获得高质量的实验数据。帮助AFM用户掌握获得高品质图像,获取实验数据的技巧;为用户更深入的研究工作打下良好的基础。 布鲁克原子力显微镜测量技术系列讲座往期精彩回放:第一讲 : 原子力显微镜简介及成像技巧 (点击观看精彩回放) 主讲人:李永君 博士 报告时间:2013年3月28日 第二讲 :原子力显微镜在生物学研究中的应用进展 (点击观看精彩回放) 主讲人:龙飞 博士 报告时间:2013年4月16日 第三讲 :原子力显微镜在高分辨定量测量材料特性方面的应用进展(点击观看精彩回放) 主讲人:仇登利 博士 报告时间:2013年5月21日第四讲:利用AFM-Raman集成成像系统进行材料性能表征的最新进展(点击观看精彩回放) 主讲人:孙万新 博士 报告时间:2013年6月25日第五讲:基于扫描探针显微镜的电学表征技术(点击观看精彩回放) 主讲人:孙昊 博士 报告时间:2013年7月9日第六讲:如何合理选择AFM探针获取高分辨图像 主讲人:陈苇纲 博士 报告时间:2013年12月17日 Bruker Nano Surfaces Division &mdash AFM Business 010-5833 3252sales.asia@bruker-nano.comwww.bruker.comAll Contents © 2013 Bruker Corporation. All Rights Reserved.
  • 以技术方法创新为导向 释放原子力显微镜应用潜能——访中国人民大学教授程志海
    扫描探针技术(SPM)是一类显微术的总称,是在扫描隧道显微镜(STM)的基础上发展起来的,主要分为STM和原子力显微镜(AFM)。首台扫描隧道显微镜于1981年问世,它的出现使得人们首次可以直接探测物体表面的原子排列及其电子行为,对于物理学、材料学、表面科学、微电子加工技术、化学和生命科学等均有着重要的意义。STM具有许多表面分析仪器不能比拟的优点,但其仅局限于对半导体和金属样品进行测量。为了弥补STM这一不足,1985年AFM诞生了。相比于扫描隧道显微镜,原子力显微镜不仅可以研究不具有导电性的样品,可以拓展应用于更多的材料体系研究,同时可以在大气和液体环境中工作,极大地扩展了其应用范围。近日,仪器信息网走进中国人民大学采访了在扫描探针显微镜领域持续进行技术方法创新的“开拓者”——中国人民大学教授程志海老师。程志海老师与课题组实验室的Park NX10 原子力显微镜漫漫求学路 亲历国内扫描探针技术的兴起与发展程志海老师本科就读于大连理工大学物理系,初入科研领域的程志海深受原子操纵、扫描隧道显微镜等先进技术的吸引。那时纳米技术刚刚在国内兴起,程志海找到回国不久的物理所高鸿钧老师,进入其实验室进行扫描探针显微技术的研究。此时,国内还没有多少课题组在进行扫描探针领域的研究工作。在高鸿钧老师的支持下,程志海老师前往德国柏林自由大学深造,学习原子操纵技术。这所大学是当时原子操纵研究较早、也是做得比较好的大学之一。博士毕业后,程志海又赴美留学,在加州大学河滨分校进行动态STM技术的研究,并将其应用于催化和表面扩散领域。这段经历,让他深刻认识到纳米显微技术的重要性,并促使程老师在扫描探针技术领域持续进行技术方法创新,成为扫描探针显微镜领域的“开拓者”,并获得了国际上的高度认可。原子级分辨率骨架成像2011年回国后,程志海加入国家纳米科学中心并在裘晓辉老师领导的纳米表征研究室工作,当时的方向瞄准纳米标准检测方面,主要基于原子力探针显微技术来开展。通过进一步优化发展qPlus- AFM技术,2013年直接“看见”了氢键,获得了原子级分辨率的分子化学骨架结构图像。该成果发表在Science,并入选2013年中国科学十大进展,同年也被Nature评为年度最震撼的图片之一。该实验室是国内第一个掌握该技术的课题组,当时国际上掌握类似技术的课题组也不超过5家。在该成果影响下,随后陆续国内有几个课题组跟进他们的工作并对qPlus-AFM技术很有兴趣,到现在已有更多国内的课题组进入到了这一领域,开展了不同体系的研究工作。AFM:一种通用型的平台技术在qPlus AFM技术应用的过程中,程志海老师意识到AFM具有非常强大的实用功能。相比于扫描隧道显微镜(STM),AFM在应用范围方面更广,不仅适用于半导体、绝缘体样品,也适用于生物样本,还可以用于工业样品的检测和表征。由于qPlus AFM对样品的限制性较大,程志海老师开始转向应用范围更广的大气微悬臂AFM进行技术上的探索。同时,他的实验室也购买了一台Park NX10原子力显微镜,进一步扩大了研究领域和应用范围。这些探索和实践为程志海教授在纳米领域的科研探索打下了坚实的基础,也为国内的纳米技术发展提供了新的思路和方法。Park NX10原子力显微镜使用AFM进行研究,不仅需要对AFM技术理论有一定的了解,也要掌握相关研究领域的知识。目前,程志海教授的研究团队主要集中于低维材料的电学性质、力学性质和热学性质方面的研究,同时与材料科学和生物领域的科研团队开展合作研究。程志海教授认为,AFM更像是一种通用的平台技术,可根据使用者的需求定制具体研究方案。目前,AFM在二维材料、半导体、高分子和细胞生物学等领域有着广泛的应用。为了进一步推广这一技术,程志海教授计划拓展AFM在低温磁场/极端条件下的应用,并进行量子材料探测等相关研究工作,为纳米材料的研究和发展做出贡献。以AFM技术方法为核心开展研究程志海教授的研究团队将AFM技术方法作为核心,开展相关研究。这种方法不同于以仪器为中心的研究方法,但两种方法并没有优劣之分。程志海解释道:“大部分研究者可能是基于材料和问题出发,技术方法仅是其服务的工具。而我们的课题组则是以技术方法为核心,开拓创新先进的扫描技术方法,然后在各种体系中开展展示性的应用,随后可以与基础研究的合作伙伴或仪器公司进一步进行技术合作。”程志海教授进一步表示:“我们使用的许多技术方法并非常规方法,通常需要对现有的AFM设备进行改造来实现。这种研究思路在国内可能比较少见,但国际上许多顶尖的研究团队也采用这种方法。”从方法和需求创新出发 发展AFM技术程志海教授认为,想要进一步突破AFM技术的发展现状,需要从方法和需求两个方面出发。从方法上可以进行技术创新,比如将微波与AFM结合,或是将时间分辨技术与AFM相结合。同时,也可以将人工智能引入AFM技术领域,在自动化数据分析、扫描选取、参数调节等方面进行应用。从需求方面出发,其一是更加注重实际应用场景,将AFM适用于更为实际的复杂体系中,如天然产物或生物等。其二、用户需求也可以作为技术创新的发展方向,仪器公司可以根据客户需求开发相应的技术和方法。程志海教授团队倾向于以需求为核心,结合最新的技术方法进行创新和发展,并将这些技术迅速推广到科研群体中。对用户而言,怎样才是一台好的AFM?程志海老师认为,一台好的AFM还应具有以下特点:1. 精确度和稳定性:能够实现纳米级别的精度,并且测量结果准确可靠。设备皮实耐用,仪器经常故障势必会带来糟糕的使用体验。2. 灵活性好:能够适应不同的样品类型和测试需求,具有多种不同的测试模式和功能。3. 可操作性和兼容开放的平衡:仪器应该容易上手,操作流程应该清晰简单,用户无需花费过多的时间和精力学习如何使用仪器。同时应兼容一定的开放性,为用户对设备的改造预留想象空间。4. 成熟度:用户体验感既依赖于不同类型用户的需求,也依赖于整个仪器技术的成熟度。AFM的不同产品有的适用于工业界,有的适用于平台,有的适用于研究型。国外公司设计的AFM产品基本均经过了较长时间的迭代,具有较高的产品成熟度,而目前国内产品在产品迭代方面就有所欠缺,这也是国产仪器发展的一个瓶颈。对AFM领域的入门者有哪些建议?此外,程志海教授给AFM入门学生提出了以下建议:1. 系统学习基础知识:包括仪器的原理、使用方法、样品制备技术等基础知识,从最基础的开始系统学习,一步步深入,逐渐掌握技能。2. 多动手实践:在学习的同时,多参与实验操作,多看一些样品的实际操作,并从实践中总结经验,不断优化自己的操作技能。3. 注重数据分析:对于得到的数据,应该仔细分析,了解每一个参数的意义,找到相应的解释,积累数据处理的经验,提高数据分析和结果解释的能力。对于即将购买AFM设备的入门者,程志海老师也给出了自己的意见。他提到:“需要先了解自己的研究方向和研究需求,根据需求来选择设备,不要期待着一台设备能实现所有的功能。” “很多老师买设备的时候,总是希望加很多附件,这没有必要。你可能会发现很多功能都是‘打架’的。有些附件或者功能,可能你几年也用不到一次,特殊的功能因为买的人少,成本更高,不仅很贵,服务也不好。所以要根据自己的需求来选择AFM。”程志海老师表示:“对于入门研究学者来说,切忌一下子开展太多的方向,需要积累到一定的阶段才能去开拓比较多的方向。”总之,购买AFM设备需要从自己的需求和实际情况出发,认真选择和了解设备,尽量做到买得安心、用得放心。
  • Adv. Funct. Mater. 北理工张加涛课题组:首次实现了近红外掺杂荧光的高效多模防伪和保密应用 | 前沿用户报道
    供稿:白冰成果简介2021年4月,北京理工大学张加涛教授课题组在国际顶级材料学期刊 Advanced Functional Materials (DOI: 10.1002/adfm.202100286,IF=16.836) 发表了题为Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption 的论文,利用杂质扩散平衡策略首次实现了近红外掺杂荧光的高效多模防伪和保密应用。半导体之所以能被广泛应用在光电产品世界中,凭借的就是在其晶格中植入杂质改变其电性,调控半导体纳米晶体的光、电、磁性质,实现高效率发光器件、太阳能电池、自旋电子器件等新型光电子器件的应用。Cu+作为一种通用的掺杂杂质,可以用来调控半导体纳米晶的光电性质。但是在掺杂纳米晶高温外延生长钝化层的过程中,Cu+杂质容易向外扩散,容易造成掺杂失效,阻碍了掺杂纳米晶的进一步应用。要实现半导体纳米晶的广泛应用,必须解决掺杂问题。北京理工大学张加涛教授课题组发展了一种新型的杂质扩散平衡策略,向Cu+掺杂CdSe纳米晶溶液中引入额外的Cu+,在纳米晶内外部杂质离子扩散平衡的条件下进行表面钝化层的高温外延生长。该策略成功制备出Cu 掺杂CdSe@CdS(CdSe:Cu@CdS)核壳纳米晶。只具有本征荧光的CdSe@CdS和同时具有微弱本征荧光和强近红外荧光的CdSe:Cu@CdS纳米晶分别记录了干扰信息和关键信息,且这两种信息在肉眼下无法被明显分辨;而关键信息的近红外荧光则可以通过普通商业手机摄像头和滤光片(截止边800 nm)的组合轻松获取,首次实现了近红外掺杂荧光的高效多模防伪和保密应用。图文导读通常直接在Cu+掺杂CdSe纳米晶表面外延生长钝化壳层容易造成杂质Cu+向外部扩散,导致掺杂失效,阻碍了掺杂纳米晶的进一步应用。北京理工大学张加涛课题组向溶液中引入额外的Cu+,溶液中的Cu+与纳米晶内部的杂质Cu+形成扩散平衡,该扩散平衡在高温下阻碍了纳米晶内部的Cu+向外扩散,最终在CdSe@CdS核壳纳米晶内部形成了有效的Cu+掺杂,保持了Cu+掺杂核壳纳米晶的近红外掺杂荧光。图1 杂质扩散平衡策略示意图和防伪/保密应用图2 CdSe:Cu和CdSe:Cu@CdS纳米晶的形貌、光学和结构表征图3 近红外荧光防伪和保密图案在多种商业手机中的成像效果Cu+掺杂CdSe纳米晶拥有一个较宽的掺杂荧光发射峰,该峰覆盖了可见光区和近红外光区(700 nm-1100 nm),在此范围内使用常规的荧光光谱仪无法获得连续且完整的荧光光谱数据。HORIBA Duetta 荧光光谱仪装备了CCD检测器,可以连续地获取从250 nm 到1100 nm 范围内的荧光光谱信息,为探索材料的新结构、新性能和新应用提供了有力的帮助。Duetta 荧光及吸收光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望现阶段基于可见荧光的防伪手段面临着易被破解的风险。基于不可见近红外荧光的防伪/保密应用明显地提高了破解的难度,拥有更高的信息安全性。常用的手机摄像头可以有效地捕获近红外荧光,降低了这种基于不可见近红外荧光防伪/保密应用的门槛,有望取代现有的可见荧光防伪/保密模式,实现大规模应用。文献信息Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption文章署名作者:Bing Bai, Meng Xu, Jianzhong Li, Shuping Zhang, Chen Qiao, Jiajia Liu, Jiatao Zhang扫码查看文献张加涛教授简介张加涛教授现任北京理工大学化学与化工学院院长、北京理工大学首位徐特立特聘教授,英国皇家化学会会士、国家自然科学基金委优秀青年基金获得者、国际纯粹与应用化学联合会(IUPAC)杰出奖 获得者。以第一作者或通讯作者在 Nature、Science、Nature Nanotech、Angew. Chem. Int. Ed、Adv. Mater. 等期刊发表 SCI 论文 50 余篇,他引 2800 余次。
  • 2023扫描探针显微成像技术与应用研讨会(SPM2023)在北京怀柔成功举办!
    2023扫描探针显微成像技术与应用研讨会(SPM2023)于3月17日-20日在北京怀柔成功举办。本次大会由中国真空学会主办,中国科学院物理研究所、北京怀柔仪器与传感器有限公司、中科艾科米(北京)科技有限公司共同协办。会议邀请了中国科学院物理研究所、清华大学、北京大学、上海交通大学、复旦大学、中国科学技术大学、中国科学院大学等众多国内知名高校院所的70余名扫描探针显微镜领域专家,围绕扫描探针显微成像技术的最新进展和发展趋势以及其在纳米科学、材料科学、表面科学等领域的研究与应用等内容,完成28份现场报告,并进行深入交流与探讨。本次会议由中科艾科米(北京)科技有限公司创始人、中国科学院物理研究所研究员郇庆和北京大学教授江颖担任主持,中国科学院物理研究所程金光副所长及中国真空学会副秘书长、中国科学院物理研究所时东霞研究员致开幕辞。北京怀柔仪器和传感器有限公司董事长张鸣剑参会并致辞,欢迎各位专家学者的同时,也向大家发出来怀柔创业的邀请。与会专家在学术交流的过程中对怀柔留下美好的印象,也通过此次会议更加了解怀柔,了解科学城。目前,北京怀柔正着力打造高端仪器装备和传感器产业示范区,聚焦真空、质谱、电镜、光电、低温等细分领域,全方位完善产业生态,已聚集一批优质的创新企业,并产出一批拥有自主知识产权的创新产品。其中,由怀柔区明星企业中科艾科米(北京)科技有限公司联合中国科学院物理研究所、北京飞斯科科技有限公司研发的国产闭循环无液氦扫描探针显微镜系统首次在本次会议亮相,该系统主要性能指标超越了国外同类型产品。北京怀柔仪器和传感器有限公司作为怀柔区高端仪器装备和传感器产业研究与产业发展国有平台公司,未来将持续围绕北京怀柔综合性国家科学中心建设,聚焦高端仪器装备和传感器等硬科技领域,以“科创平台+科技服务+基金投资”为核心业务及抓手,全面聚合科技资源、产业资源、平台资源、资本资源,引导和推动高端仪器装备和传感器产业高端创新资源要素在怀加快集聚。
  • “2022中国光学十大进展”发布 近五年首次无光学显微成像技术成果上榜
    4月20日晚,中国激光杂志社重磅发布“2022中国光学十大进展”。经过评审委员会多轮遴选,“微腔光梳驱动的新型硅基光电子片上集成系统”等10项前沿进展入选“2022中国光学十大进展”(基础研究类);“集成化成像芯片实现像差矫正三维摄影”等10项进展入选“2022中国光学十大进展”(应用研究类)。笔者注意到,今年的十大进展中,没有光学显微成像技术入选。回顾在过去几年,2021年《线照明调制显微术实现高清成像》、2020年《亚纳米分辨的单分子光致荧光成像》、2019年《基于多角度干涉的三维多色活细胞超分辨光学显微镜》、2018年《超快,长时程超分辨率海森结构光照明显微镜》连续4年均有光学显微成像技术的上榜。此外,2021年《溶液中单分子电化学反应的直接成像》作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供了新的可能,也为显微成像技术提供新的思路。基础研究类(10项)1.微腔光梳驱动的新型硅基光电子片上集成系统北京大学王兴军团队联合加州大学圣塔巴巴拉分校John E. Bowers团队,攻关解决微腔光梳简易鲁棒激发与长时间稳定、面向光梳光源的硅基系统设计、硅基片上可重构多维光谱整形技术等难题,在国际上首次实现了由克尔微腔光梳驱动的新型硅基光电子片上系统,有望直接应用于数据中心、5/6G信号处理、自动驾驶、光计算等领域,为下一代片上光电子信息系统提供了全新的研究范式和发展方向。2.光学涡环的诞生上海理工大学詹其文带领的纳米光子学团队基于麦克斯韦方程组和光学保角变换,首次在理论上完整推导并在实验上实现了优美的光学涡环结构。该研究工作为三维复杂时空光场的生成和表征提供了崭新的思路,对环状对称电动力学、环状对称等离子物理、光学对称和拓扑、量子物理、天体物理等理论研究,以及光学传感、光操纵、光信息与能量传递等应用研究都将具有重要且深远的意义。3.用光 3D 打印纳米晶体清华大学精密仪器系孙洪波、林琳涵课题组首次提出了利用光生高能载流子调控纳米材料的表面化学活性并实现化学键合,由此实现了半导体量子点等功能纳米粒子的三维激光装配。这一技术具备真三维、高纯度、高分辨率、异质异构集成的技术优势,开辟了功能纳米器件制备工艺的新途径,在片上光电器件集成、高性能近眼显示等领域具有广泛的应用前景。4.新技术首次实现激光3D打印纳米铁电畴南京大学张勇领衔的研究团队发展了一种非互易激光极化铁电畴技术:将飞秒脉冲激光聚焦于铌酸锂晶体中,在晶体内部形成了一个有效电场,实现了三维纳米铁电畴的可控制备。加工精度达到了30纳米,远远突破衍射极限,且可以实现铁电畴结构的修正与重构。这一技术解决了传统极化工艺仅限于在二维平面内以微米精度加工铁电畴结构的难题,为三维集成光电器件的发展提供了新的技术支撑。5.高纯度超集成手性光源领域取得重要研究进展哈尔滨工业大学(深圳)宋清海团队基于连续域中束缚态自身的物理特性,实现了高纯度、高Q值与高方向性的手性荧光到激光的出射。在无需自旋注入的情况下,即可实现控制自发辐射和激光的光谱、远场以及自旋角动量。这种方法对改善当前手性光源的设计,并促进其在光子系统与量子系统中的应用具有重要意义。6.羲和激光首轮实验获得60 MeV质子束中国科学院上海光学精密机械研究所强场激光物理国家重点实验室激光质子加速课题组依托于上海超强超短激光实验装置(羲和激光,SULF) ,在首轮磨合实验中利用SULF-10 PW激光轰击微米金属靶,在靶后法线鞘层加速机制下获得了截止能量达62.5 MeV的质子束,该结果达到国内领先水平,进入国际前列。未来将通过进一步优化,获得百MeV级的高能质子束,切实推动激光质子源在聚变能源、肿瘤治疗等重要领域的应用。7.高效、高重频极紫外超快相干光源上海交通大学刘峰、陈民和李博原课题组通过引入圆偏振预脉冲,成功实现对微米尺度预等离子体的主动调控,构建出合适的纵向密度分布,解决了高次谐波产生受限于激光对比度的难题,实验验证了产生高重频、高亮度极紫外超快辐射源的新方案。8.稀土离子f-f跃迁发光寿命被压缩至纳秒级陕西师范大学物理学与信息技术学院张正龙、郑海荣团队,依托自主搭建的高分辨原位光谱系统,在纳米光学领域取得了突破性进展。利用等离激元倾斜纳米光腔,将稀土离子f-f 跃迁发光寿命压缩至50 纳秒以下,同时获得1000余倍的量子产率增强。该成果被审稿人评价为稀土发光领域“里程碑”式的工作,对拓展稀土发光应用优势,推动量子通讯单光子源、纳米激光器的发展具有重要意义。9.激光干涉仪的量子超越上海交通大学物理与天文学院及李政道研究所张卫平团队与合作者,利用其发展的量子关联干涉技术与激光干涉仪巧妙结合,实现了一种超越传统激光干涉仪的新型量子精密测量技术。新方法融合经典-量子优势于一体,原理上可以拓展到LIGO引力波探测器等大型精密测量仪器中,实现对传统干涉技术的升级,向开拓真正有应用价值的量子技术迈出了重要的一步。10.突破荧光范围的激光辐射山东大学于浩海、张怀金团队和南京大学陈延峰团队协同攻关,在激光物理领域取得突破,首次实现基于多声子耦合的激光辐射,在远超荧光光谱的范围获得了宽波段、可调谐激光输出。研究成果拓宽了激光增益范围,阐明了激光晶体中的关键功能基元和序构关系,对于固体激光技术的发展具有重要意义。应用研究类(10项)1.集成化成像芯片实现像差矫正三维摄影清华大学成像与智能技术实验室方璐、戴琼海团队提出了非相干光下的数字自适应光学新架构,解耦信号采集与像差矫正,首次实现了高速大范围分块像差去除。研制了集成化的元成像芯片,能够实现像差矫正的大视场高分辨率高速三维成像,将传统自适应光学的有效视场直径从40角秒提升至了1000角秒,可广泛用于天文观测、工业检测、医疗诊断等领域。2.时空域精细操控半导体纳米晶能带结构浙江大学邱建荣团队与之江实验室谭德志团队合作,揭示了飞秒激光诱导空间选择性介观尺度分相和离子交换新规律,实现了对玻璃微区元素分布的精细调控,开拓了飞秒激光三维极端制造新技术,构筑了三维发光宽波段连续可调谐纳米晶结构,首次提出并展示这种三维微纳结构在超大容量超长寿命信息存储、高稳定Micro-LED列阵和动态立体彩色全息显示等的前沿应用。3.基于超构透镜集成的平面广角相机南京大学李涛团队研发出一种基于超构透镜阵列的平面广角相机,仅用一微米厚的纳米结构就实现了超过120°视角高质量的广角成像功能。这一全新原理的设计原理成功突破传统商用鱼眼镜头在体积和重量上的限制,展示了超构透镜设计在颠覆性成像技术中巨大的应用潜力。4.光电集成轻微型“复眼相机”,解决商用探测器不兼容问题吉林大学张永来领衔的合作团队通过飞秒激光微加工技术,制造具有对数轮廓小眼的三维仿生复眼,突破了三维复眼非平面成像和商用微型CCD/CMOS探测器失配难题,研制了质量仅为230 mg的光电集成微型复眼相机,借助多目视觉原理和神经网络重构算法,实现了对微观目标运动轨迹的三维重构。该成果在医疗内窥成像和微型机器人视觉等前沿领域具有重要意义。5.光纤量子密钥分发新纪录——无中继安全传输超830公里中国科学技术大学郭光灿、韩正甫团队通过解决极弱光双场制备和低噪声快速相位补偿难题,突破信噪比限制,创造830公里无中继光纤量子通信世界纪录。相比于国内外其他团队的工作,该成果不仅将无中继传输距离提升了200多公里,而且将成码率提升了50~1000倍,向实现千公里陆基量子通信迈出了重要一步。6.光频完美异常反射器同济大学物理科学与工程学院王占山和程鑫彬联合复旦大学物理学系周磊,提出了一维多层膜结合二维超表面的准三维亚波长新结构,通过传输波和布洛赫波的高效耦合增强非局域能流调控能力,首次实现了效率优于99%的光频异常反射。研究成果有望推动新型波束扫描系统等仪器装备的发展。7.超长寿命的钙钛矿LED浙江大学狄大卫、赵保丹团队利用双极性分子稳定剂抑制离子迁移,首次实现了满足实际应用标准的超长寿命钙钛矿LED。在等同于高亮度OLED的光功率下,这些近红外LED的寿命为32675小时(3.7 年);在更低的辐亮度下,其寿命预期长达 270 年。这些创纪录的器件在 5 mA/cm² 的恒定电流下持续工作 5 个月,辐亮度无明显衰减。8.世界首例铌酸锂薄膜偏振复用相干光调制器中山大学蔡鑫伦课题组实现了世界首例铌酸锂薄膜偏振复用相干光调制器,该器件具有CMOS兼容驱动的半波电压,110 GHz的调制带宽,这是目前世界上最高性能的超低电压和超大带宽的电光调制器芯片。利用这一芯片,研究团队演示了目前单载波相干传输的最高净速率——1.96 Tb/s。该项研究攻克了在下一代超高速、低功耗的相干光传输系统不可或缺的电光转换器件。铌酸锂薄膜材料及其光子集成技术研究为实现我国光通信产业链自主可控提供了有力保障。9.首次发现光学微腔中的界面回音壁模式北京大学物理学院肖云峰团队与中科院半导体所陈幼玲合作,首次发现了光学微腔中的界面回音壁模式。研究人员在微流集成的微泡腔中,将光学回音壁模式的电磁场峰值调控至传感表面,从物理上提高了传感器的光学响应强度,成功实现了具有单分子响应的微流传感器件,在高灵敏度微量检测领域具有广泛的应用前景。10.在光编码液晶超结构应用取得突破性研究进展华东理工大学化学与分子工程学院、物理学院、费林加诺贝尔奖科学家联合研究中心朱为宏、郑致刚、Feringa合作,围绕动态可控手性液晶光学微结构,从材料设计、制备和微结构的外场控制入手,解决传统液晶体系光效率低的问题,赋能液晶微结构的光控宽动态域,发展可逆、可擦、渐变、结构叠加与嵌入的多重防伪新技术,为解决我国在高端防伪技术领域面临的材料瓶颈提供了可供借鉴的技术方案。“中国光学十大进展”评选活动由中国激光杂志社发起,至今已成功举办17届,旨在促进中国优秀光学研究成果的广泛传播,推动中国光学事业的发展。凭借高学术水平的候选成果,以及严格公正的评审机制,这一奖项备受业界认可,具有高度的公信力和影响力。
  • 直播预告!iCEM 2022之电子显微学技术在材料领域的应用专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“电子显微学技术在材料领域的应用”专场预告(注:最终日程以会议官网发布为准)专场五:电子显微学技术在材料领域的应用(7月28日全天)上午专场主持人:葛炳辉 安徽大学 教授09:00--09:30高性能镍基单晶高温合金 “全寿命”的微观结构演化规律赵新宝(浙江大学 研究员)09:30--10:00布鲁克全新一代电制冷能谱仪陈剑峰(布鲁克(北京)科技有限公司 应用工程师)10:00--10:30水氧敏感二维材料的本征缺陷原子尺度研究林君浩(南方科技大学 研究员)10:30--11:00跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用卢毓华(钢铁研究总院/纳克微束(北京)有限公司 应用科学家)11:00--11:30高强韧铝合金纳米析出强化机理研究及高效设计李凯(中南大学 副教授)11:30--12:00显微学成像技术及其应用的研究葛炳辉(安徽大学 教授)下午专场主持人:谷猛 南方科技大学 研究员14:00--14:30具有离子导电性的半导体材料电致相变及阻变的电镜研究吴劲松(武汉理工大学 教授)14:30--15:00徕卡电镜制样在材料科学方面的应用与介绍武素芳(徕卡显微系统(上海)贸易有限公司 高级应用工程师)15:00--15:30镍基单晶高温合金的形变机理丁青青(浙江大学 副研究员)15:30--16:00COXEM台式扫描电镜在材料显微表征领域的应用沈宁(COXEM库赛姆台式电镜 产品应用专家)16:00--16:30结构功能一体化纳米多孔金属材料刘攀(上海交通大学 特别研究员)16:30--17:00用原位电镜研究NaYF4上转换发光材料的结构和发光性质鞠晶(北京大学 高级工程师)17:00--17:30固体电解质界面层的冷冻电镜研究谷猛(南方科技大学 研究员)嘉宾简介及报告摘要浙江大学研究员 赵新宝【个人简介】赵新宝,浙江大学“百人计划”研究员,博士生导师,浙江省杰出青年基金获得者,浙江大学材料学院院长助理、高温合金研究所副所长。主要从事航空航天、火力和燃气发电、舰船动力等领域用高温合金、耐热钢材料的研发、制备和产业化应用。先后主持国家自然科学基金重大研究计划重点项目、JWKJW基础加强计划重点项目课题、重大科技专项课题等20余项;参与国家973、浙江省重点研发计划项目、华能集团高精尖科研项目等10余项。先后获得某创新团队奖、教育部自然科学奖二等奖、浙江大学2021年度十大学术进展、华能西安热工研究院有限公司科学技术奖一等奖等。在Acta Materialia、Journal of Materials Science and Technology等金属材料顶级期刊发表论文80余篇,授权国家专利40余项。报告题目:高性能镍基单晶高温合金 “全寿命”的微观结构演化规律【摘要】 镍基单晶高温合金是航空发动机高压涡轮叶片的重要制备材料,其微观结构特征是影响合金关键性能的重要因素。以一种新型第四代镍基单晶高温合金为对象,考察了合金铸态、热处理态和高温低应力蠕变过程中的微观结构演化特征。镍基单晶高温合金的铸态组织为“十字”的枝晶结构,枝晶间和枝晶干存在尺寸不均匀的粗大γ′相和γ/γ′相共晶组织。通过多步阶梯固溶处理,回溶粗大γ′相和γ/γ′相共晶组织并减小偏析,通过两步时效处理获得组织均匀、立方度好的γ′相。在1100℃/137MPa蠕变条件下,获得了合金在不同变形过程中γ′相的筏排化过程、位错网的演化规律,结合断口裂纹的扩展规律,明确了其微观结构演化与蠕变性能的关联关系。南方科技大学研究员 林君浩【个人简介】林君浩,南方科技大学物理系副系主任,副教授,国家青年特聘专家,博士生导师,深圳市新型量子功能材料与器件重点实验室执行副主任。博士毕业于美国范德比尔特大学(Vanderbilt University)物理系,后赴日本任JSPS特聘研究员。林君浩博士主要利用高分辨扫描透射电镜和第一性原理计算作为研究工具,致力于实验与理论相结合的手段研究二维材料中原子结构与材料性能之间的关联,以期通过结构工程获得性能更优异的新型材料。近年来的主要研究兴趣为透射电子显微学新技的发展,以及新型二维铁磁与铁电材料缺陷的精确测量及其对磁性与极化的影响。近5年来,在Nature, PRL,Advanced Materials, ACS Nano等高影响期刊发表80余篇文章,总引用次数超过9700多次,H因子36。多次在国际学术会议及高校论坛做邀请报告,担任Nature, Nature Communication等期刊审稿人,承担多项国家与省市级科研攻关项目。入选《麻省理工科技评论》“35 岁以下科技创新 35 人”2021中国区榜单。报告题目:水氧敏感二维材料的本征缺陷原子尺度研究【摘要】 二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解本征缺陷的原子结构对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如单层铁电,单层铁磁,单层超导材料在大气环境下会迅速劣化,无法表征其本征缺陷。在这个报告中,我将报道定量衬度分析技术在二维材料缺陷表征中的应用,以及我们课题组搭建的大型氛围控制高通量生长与高精度表征联用系统的进展。我们利用该系统在直接观测二维敏感单层材料晶格原子结构与缺陷中取得的一些初步成果,包括单层WTe2的本征褶皱结构、点缺陷的分布,少层卤族铁磁反铁磁材料的直接CVD制备与无损表征,层状拓扑反铁磁绝缘体MnBi2Te4的自发表面重构现象等。中南大学副教授 李凯【个人简介】中南大学材料学博士及比利时安特卫普大学物理学博士,中南大学粉末冶金国家重点实验室副教授、博士生导师,中南大学高等研究中心材料微结构研究所副所长、湖南省电镜中心主任助理。作为第一/通讯作者在Acta Materialia、Journal of Materials Science & Technology、Scripta Materialia等行业高影响力SCI期刊上发表20余篇论文,研发的高强韧铝合金获授权专利2项且其中一项已实现重要应用,主持国家自然科学基金面上、青年、国际合作项目各1项并作为骨干参与国家自然科学基金重点项目2项,应邀为Taylor&Francis出版社的铝合金专著撰写1章节,所发表SCI论文被引用900余次。报告题目:高强韧铝合金纳米析出强化机理研究及高效设计【摘要】 纳米析出相的结构、尺寸、体积分数及力学行为共同影响铝合金强化效果。前期研究及文献报道均发现在200-300 keV的常规高能透射电子束下,铝合金亚稳析出相,如Al-Mg-Si合金的主要强化相β″,在几分钟内即发生结构损坏。为解决该问题,本工作提出了耦合低能量/低剂量球差矫正透射电镜观察和能量-错配度理论计算的系统方法,为不耐电子束辐照的铝合金纳米析出相的晶体结构构建及界面、缺陷结构研究提供了新的范式,构建的Al-Mg-Si(-Cu)体系若干重要析出相如GP区、β″、B′的晶体结构模型夯实了铝合金集成计算材料工程的晶体结构基础,为析出相力学性质、热物理性质及力学行为的理论模拟提供了可靠依据。在另一方面,本工作通过原位TEM纳米力学实验、离位TEM及三维原子探针(3DAP)表征,从实验角度系统揭示了主强化相β″及次强化相β′被位错切过、碎片化及旋转等不同力学行为,并与多尺度微结构定量表征一起,为屈服强度模型提供了关键精准输入,实现了同时析出的不同强化相的强化效果的精确模拟预测。在以上实验研究及文献研究基础上,本工作抓住铝合金实际工业设计中的主要矛盾,提出了应用相图热力学计算指导高强韧铝合金高效设计的三个准则,研制的高性能铝合金得到重要应用。安徽大学教授 葛炳辉【个人简介】安徽大学教授,电镜中心主任,皖江学者特聘教授,入选2018 Nature Index Rising Star, Research杂志(Science合作期刊)副主编。主要从事:1)球差矫正电子显微学方法,像衬理论,电子晶体学方法研究;2)原位电子显微学:3)利用球差矫正电镜表征催化剂,热电材料和高温合金等材料微观结构,探索材料构效关系。近五年材料表征方面研究工作主要发表在EES,Joule, Nature communications,Advanced Materials,Angewandte等顶级杂志;另外,电镜方面工作发表在Ultramicroscopy, Microscopy and Microanalysis,Microscopy等期刊。应邀编写电镜类相关书籍2章(节)。报告题目:显微学成像技术及其应用的研究【摘要】 报告主要介绍三方面工作 1、iDPC技术在轻元素成像中的应用及其最佳成像条件的探索 2、Bi2Te3基热电器件断裂机制的原位研究 3、重型燃气轮机中雀斑缺陷形成机制的探索武汉理工大学教授 吴劲松【个人简介】吴劲松博士师从郭可信院士在中科院北京电镜实验室学习。随后在欧美的电子显微镜实验室(包括德国Juelich研究中心、美国亚利桑那州立大学、美国乔治亚大学,美国西北大学等)工作。吴劲松于2018年全职回国工作。他现任武汉理工大学纳微研究中心执行主任。他共发表科技论文150余篇,其中包括Science (2), Nature Nanotechnology (1), Nature Materials (1),Nature Communication (2), JACS (10), Advanced Materials (5), Nano Letters (4),ACS Nano (9)等。他曾获国际电镜学会、日本电镜学会、德国洪堡奖金等多项奖励。报告题目:具有离子导电性的半导体材料电致相变及阻变的电镜研究【摘要】 具有快离子导体特征的半导体材料如Cu2Se,Ag2Se等在外温度场和电场的作用下会由于铜和银离子的快速迁移,而产生独特的相变特征和物理性能。得益于原位透射电子显微学的迅速发展,能够对材料在外场作用下的结构动态演变进行直接观察。我们利用原位电子显微学来研究了具有离子导体特征的半导体材料在温度、外加电压作用下产生的相变和电阻变化,以探索它们的电阻变化机理。浙江大学副研究员 丁青青【个人简介】丁青青博士以浙江大学全链条高温合金研究平台和先进电子显微技术为依托,从事先进金属结构材料特别是应用于极端条件下合金的研发。研究方向包括合金成分设计及制备、显微结构和形变机理与性能的关系。申请人主持和参与浙江省自然科学基金、浙江省重大研发计划专项、国家自然科学基金重大研究计划项目、国家自然科学基金面上项目、中央高校基本科研业务费专项资金项目等多项, 在金属材料领域国内外重要学术期刊发表学术论文20余篇,其中第一或通讯作者论文发表于Nature、Materials Today、Applied Materials Today、Acta Materialia、Materials Today Nano等顶级期刊,多篇论文入选ESI热点和高被引论文(论文被引用2600余次)。报告题目:镍基单晶高温合金的形变机理【摘要】 镍基单晶高温合金是目前唯一应用于航空发动机涡轮叶片的材料,而理解不同力热耦合条件下镍基单晶合金的形变机理是优化单晶合金成分和性能的前提。结合利用扫描和透射电子显微镜,我们将二代镍基单晶高温合金不同力热耦合条件下力学性能与微观组织结构演变规律相关联,从原子到微米跨尺度揭示了不同力热耦合条件下二代镍基单晶合金的形变机理,阐明了形变过程中合金两相的竞争关系,发现高温形变时基体相是单晶合金的薄弱环节。因此,发展高性能镍基单晶高温合金需重点提高基体相强度。上海交通大学特别研究员 刘攀【个人简介】刘攀,上海交通大学材料科学与工程学院特别研究员、博导。长期从事结构功能一体化金属材料的原位/非原位电子显微学研究,主要研究功能导向三维微纳结构金属及其复合材料的相变热/动力学、表/界面结构特性、弹塑性行为的微观机制、设计制备及应用。累计发表论文114篇,其中包括第一/通讯作者论文Nat. Commun., Adv. Mater., Nano Lett., JACS, Angew. Chem. Int. Ed., Acta Mater.等31篇。论文共获SCI他引6718次,个人H指数42,ESI高被引论文16篇。授权国际国内发明专利13件。主持国家自然科学基金项目、军委科技委重点项目课题等6项。获北京市科学技术一等奖、上海市浦江人才和东方学者。报告题目:结构功能一体化纳米多孔金属材料北京大学高级工程师 鞠晶【个人简介】1996年获吉林大学理学学士,1999年获吉林大学理学硕士, 2003年获北京大学理学博士;2003-2009年在日本东北大学从事科研工作。2009年加入北京大学化学学院并任高级工程师。研究方向:1. 无机固体结构化学2. 原位电镜技术研究化学反应过程。报告题目:用原位电镜研究NaYF4上转换发光材料的结构和发光性质【摘要】 NaYF4是重要的上转换发光材料,广泛应用于医学诊断,成像和防伪技术等领域。本文利用原位电镜方法,系统研究了NaYF4纳米颗粒在加热条件下发生连续的氧化反应,结构从六方相向立方相转变的过程。利用SEM-CL方法研究了结构变化过程中纳米材料发光性能的变化。南方科技大学研究员 谷猛【个人简介】谷猛博士毕业于美国加州大学戴维斯,曾在美国西北太平洋国家实验室和陶氏化学公司任职。主要从事能源反应机理的显微学研究,共发表英文SCI论文170篇,引用超过12000次。2015年,由于谷教授在电子显微分析方面的突出贡献,被美国电镜协会授予Albert CREWE award奖项。2019年入选深圳市青年科技奖。报告题目:固体电解质界面层的冷冻电镜研究【摘要】 包括锂钠钾在内的碱金属是相应电池体系热力学上最理想的负极,但碱金属与电解液之间的不稳定性以及枝晶生长,会导致严重的电池容量衰减甚至内部短路。研究碱金属电化学沉积的行为,理清碱金属与电解液副反应的化学过程,对发展高容量锂电池和低成本钠/钾电池具有重要的指导意义。然而,碱金属及固体电解质界面(SEI)因为对水氧和电子束的敏感性而难以表征,无法得到原子尺度的精确分析。我们将深度结合冷冻电镜的制样与成像技术,系统研究电化学沉积碱金属的微观形态和SEI在原子尺度的精细结构,探索调控碱金属沉积行为和SEI结构的有效策略。布鲁克(北京)科技有限公司应用工程师 陈剑峰【个人简介】毕业于长春应用化学研究所,主要研究方向是高分辨电子显微镜在聚烯烃类高分子结晶中的应用,毕业即加入FEI中国,负责扫描电子显微镜的市场和应用等工作,后在安捷伦及赛默飞负责扫描电子显微镜的应用工作,2021年加入布鲁克公司,主要负责EDS,EBSD,Micro-XRF等产品的技术支持工作,对扫描电子显微镜有多年的实操经验和工作经历。报告题目:布鲁克全新一代电制冷能谱仪【摘要】 2022年布鲁克发布全新一代电制冷能谱仪,具有更高的输出计数和最优的结构设计,与WDS,EBSD和Micro-XRF一起高度集成于ESPRIT软件系统,为业界提供了全面的化学成分和组织结构分析解决方案。本次报告我们主要为大家讲解XFlash 7最新的技术和功能模块,以及在几个领域里的突出优势。钢铁研究总院/纳克微束(北京)有限公司应用科学家 卢毓华【个人简介】卢毓华,男,博士。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,主要研究方向是材料高通量表征方法的研究和应用,博士期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历,目前主要进行高通量电镜的应用开发方面的工作。报告题目:跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用【摘要】 基于材料基因高通量表征的思想,采用高通量场发射扫描电镜,建立了跨尺度γ´相的定量统计表征高通量扫描电镜法,解决了多晶高温合金中一次、二次和三次γ´相的高通量获取、识别和表征问题。首次实现了采用高通量扫描电镜单次实验获得大尺寸高温合金部件的一次、二次和三次γ´相多参量跨尺度的定量统计信息。徕卡显微系统(上海)贸易有限公司高级应用工程师 武素芳【个人简介】武素芳,硕士研究生,毕业于北京航空航天大学。徕卡显微系统(上海)贸易有限公司,材料电镜制样高级应用工程师(Senior Application Specialist),从事电镜应用操作和电镜样品制备工作10年有余,具有丰富的电镜观察和样品制备经验,制备及观察样品种类繁多,对样品制备观察有丰富经验和独特见解。具有丰富的样品制备问题方案解决经验,曾为全国各地区高校、研究所、企业检测、研发中心及生产线产品问题缺陷检测、第三方检测等提供解决方案,培训相关技术及操作人员数千人。报告题目:徕卡电镜制样在材料科学方面的应用与介绍【摘要】 徕卡电镜制样在材料行业提供整套技术路线产品。样品表现出的性能往往不是表层或宏观能看到的,电镜观察是了解微观信息的重要手段,而专业的电镜制样可以将样品制备为符合电镜测试要求的状态,如200纳米以内薄片,无应力平整断面,含水样品的冷冻处理后样品的原位观察等。故好的制样是电镜成功的一半。COXEM库赛姆台式电镜产品应用专家 沈宁【个人简介】沈宁,库赛姆产品应用专家 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责库赛姆台式电镜市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。报告题目:COXEM台式扫描电镜在材料显微表征领域的应用【摘要】 扫描电子显微镜自商业化以来,由于其景深大、分辨率高,有利于观察物体的表面结构,越来越多的科研检测机构或企业将其应用在材料的分析表征。COXEM( 库赛姆)EM系列高分辨率台式( 桌面式)扫描电镜在1~30KV范围内连续可调,采用双聚光镜成像技术,与大型扫描电镜的成像方式一致,使用二次电子探测器作为基础成像单元,从而可以获得更高的分辨率(5nm),图像表面信息更丰富细腻,此外还可配置多种附件,例如EDS、EBSD、STEM、冷台和大面积拼图软件等,是真正意义上的高分辨率综合分析型台式扫描电镜。
  • 邀请函 | 拉曼图像-扫描电子显微镜联用技术论坛
    电镜-拉曼的联用概念并不新鲜,早在十年多前,就有拉曼厂商开始在扫描电镜上安装拉曼光谱仪,实现SEM-Raman的初步联用。不过由于技术和适用性的限制,拉曼联用技术未能像EDS那样获得成功,在电镜上配备拉曼联用的寥寥无几,甚至很多人都未知晓SEM和拉曼的联用,究其根本原因,还在于传统的拉曼联用技术有着非常严重的技术障碍。TESCAN电镜-拉曼一体化系统(RISE显微镜)是一款革命性的产品,在一个集成的显微镜系统中结合了共焦拉曼成像和扫描电子显微镜技术,是世界上第一台真正实用化的扫描电镜-拉曼光谱仪一体化系统,通过实现原位、快速、方便和高性能的拉曼分析,弥补了传统电镜和能谱的分析能力的不足。尤其是针对有机结构解析、碳结构解析、无机相鉴定、同分异构分析、结晶度分析等领域实现了重大突破,扩展了扫描电镜的分析应用领域(如地质、矿物晶体、高分子聚合物、医学、生命医药、宝玉石鉴定),一下子变成全方位的分析,应用前途豁然开朗。为了向国内用户更好地展示电镜-拉曼一体化系统(RISE)在不同领域的应用和成果,TESCAN公司联合上海交通大学分析测试中心于2021年5月13日于上海交通大学转化医学大楼举办拉曼图像-扫描电子显微镜联用技术论坛,会上邀请到多位相关领域专家在现场进行报告和经验分享,诚邀您参加! 日程安排地点:上海交通大学转化医学大楼 S119室时间:2021年5月13日(星期四) 9:20-16:30关于RISE拉曼图像-扫描电子显微镜联用仪(RISE)是一台集成了扫描电镜、共聚焦显微拉曼和能谱分析的一体化综合成像和分析系统,可以实现样品的微观形貌、元素组成和分布,以及晶体结构、结晶度等性质的原位可视化表征。该仪器采用了创新的平行轴式设计,保证了扫描电镜和共聚焦拉曼分析位置的高度重合,可以快速获得样品的 2D和3D 图像,实现样品的微观形貌、成分和结构表征,以及分子化合物组成和可视化分布结果。其中,电镜和拉曼也可以独立工作,互不影响,使得整个系统获得1 + 1>2 的卓越性能。RISE参数 拉曼光谱分辨率----优于1.5cm-1扫描范围----250μm*250μm*250μm共聚焦分辨率----2 μm(532nm)d图像空间分辨率XY方向----360 nm光谱范围----95-4000 cm-1。应用领域扫描电镜-拉曼联用一体化技术可广泛应用于材料科学、地质学、环境科学、半导体、太阳能电池、锂电池、光刻胶、生命医药和有机高分子等领域。主要包括以下几个方面:(1)碳材料:钻石、石墨、碳纳米管、石墨烯等不同碳材料的结构及质量分析;(2)有机材料:环境科学、食品医药、生命科学等有机物的结构鉴定(官能团信息);(3)无机材料:晶体矿物、宝玉石、锂离子电池电极材料等无机化合物的成分和结构分析;(4)二维材料:石墨烯、过渡金属硫属化合物、MXene等微纳米片的化学性质研究。应用案例更多应用案例,以及本次论坛的相关视频(会议结束后上传),敬请关注TESCAN中国用户之家(www.tescan-china.com.cn)。参会报名联系人:李老师报名邮箱:wei.li@tescan.com
  • TESCAN与蔚华科技达成合作:聚焦晶圆制造及封装领域显微分析技术
    仪器信息网讯 2022年11月18日,TESCAN公司与半导体测试解决方案专业品牌蔚华科技(TWSE: 3055)签署全面合作协议,蔚华科技成为TESCAN在中国的经销商,协助在中国半导体晶圆制造及封装市场全系列产品线的销售、推广、维护及支援服务。此次合作双方将发挥各自优势,不断深入优化显微分析解决方案,快速推进TESCAN在中国市场的业务。TESCAN 中国区总经理 冯骏(左),蔚华电子科技(上海)总经理 杨向群(右)随着纳米科学、材料科学、微电子科学等领域的快速发展,对精细加工与微观分析能力提出越来越高的需求,推动高端扫描电子显微镜在微电子设计与先进制造领域的广泛应用,包括透射电镜(TEM)样品制备、材料微观截面截取与观察、样品微观刻蚀与沉积以及材料三维成像分析等。在市场需求的蓬勃崛起之时,对于显微设备的技术指标、应用性能等也都提出更高的要求。作为科学仪器的全球重要供应商之一, TESCAN正为其在设计、研发和制造扫描电子显微镜及扫描电子显微镜在不同领域的应用方面树立良好的声誉和品牌。目前TESCAN的产品和解决方案已经在全球微纳米技术领域取得了领先的地位,首创了扫描电镜与拉曼共聚焦显微镜一体化技术、双束电镜与飞行时间-二次离子质谱仪一体化技术以及氙等离子聚焦离子束技术,是行业领域的技术领导者。TESCAN凭借优异的性能赢得全世界越来越多的用户认可,目前生产的各系列电镜在世界范围内受到广泛的好评,TESCAN的产品与技术正积极服务于全球客户。TESCAN 中国区总经理冯骏表示,蔚华科技经营两岸半导体业多年来累积了丰富的产业资源及客户关系,对于开发TESCAN电镜在半导体晶圆制造及封装领域中的技术应用及提升中国市场市占率产生强大助力,相信通过与蔚华科技的强强合作,能够持续为业界带来最具优势的科学仪器和高质量的服务保障。蔚华电子科技(上海)总经理杨向群表示,在全球经济一体化的竞争化趋势中,对中国半导体企业工艺研发及生产制造设备的更新及技术升级都提出了更高的要求。TESCAN作为全球知名的电子显微仪器制造商,拥有超过70年的显微研究和制造历史,提出了“All In One综合显微分析平台”的理念并给出了完善的解决方案,为开拓市场创造了极大竞争优势,更提升了蔚华制程质量保证解决方案的完整性。通过蔚华科技强大的产业资源,TESCAN的产品能够进一步深入中国市场,赢得更多业内客户支持。关于TESCANTESCAN是一家专注于微观形貌、结构和成分分析的科学仪器的跨国公司,是全球知名的电子显微仪器制造商,总部位于全球最大的电镜制造基地-捷克布尔诺,且已建立起全球的销售和服务网络,在捷克、法国和美国拥有5家研发中心、2个生产基地以及7家海外子公司,已有超过70年的电子显微镜研发和制造历史。其产品主要有扫描透射电子显微镜(STEM)、扫描电子显微镜(SEM)、双束聚焦扫描电镜系统(FIB-SEM)、X射线显微镜系统、矿物自动综合分析系统和微型计算机断层扫描及相关软件等解决方案, 首创了扫描电镜与拉曼共聚焦显微镜一体化技术、双束电镜与飞行时间-二次离子质谱仪一体化技术以及氙气(Xe)等离子聚焦离子束技术,是行业领域的技术领导者,其产品广泛应用于医学、生物、生化、农业、材料科学、冶金、化学、石油、制药、半导体和电子器件等领域中。在半导体工业领域,TESCAN专注于硅晶圆、集成电路、面板、半导体封装等器件缺陷检测和质量控制方面提供专业的解决方案,为包括台积电、美光、三星、海力士、IBM、苹果、西门子、意法半导体、中芯国际、华为、京东方等全球和国内知名科技企业提供服务。关于蔚华科技蔚华科技(股票代码:3055)是大中华地区半导体封测解决方案专业品牌,拥有先进的全方位解决方案及产品,提供半导体各个制程与不同产品的测试、封装、检测、验证等设备销售、应用工程与客户服务需求,合作伙伴包括NI, Osai, SEMICS,AFORE, ERS, Hamamatsu, Intekplus, MesoScope, ShibaSoku, TASMIT, Toray Engineering, Turbodynamics等全球多家半导体设备领导品牌。蔚华集团以专业分工,提供半导体、电子制造、通讯及车用电子等科技产业高质量的整合解决方案。蔚华科技成立于1987年,总部位于台湾新竹,于上海、合肥、苏州、深圳、北京、成都皆有服务据点。
  • 【回放-厂商技术篇】第三届显微成像基础与应用 暑期研讨会
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/e374f3e8-c371-4e30-bc31-ab0c9d515432.jpg" title="image001.jpg" alt="image001.jpg"//pp style="text-align: justify "2020年8月15日由仪器信息网承办并提供网络直播平台的第三届显微成像基础及应用线上研讨会圆满结束。本次研讨会由清华大学结构生物学高精尖创新中心、清华大学生物医学测试中心和西湖大学生物医学实验技术中心联合主办,为期6天。此次研讨会吸引了来自清华大学、西湖大学、北京大学、复旦大学、天津大学、南开大学、浙江大学、中国科学技术大学、中科院生物物理所、中科院动物所等全国30个省市自治区的400多个高校、研究机构和技术企业,以及澳大利亚悉尼大学、美国哥伦比亚大学、美国北卡州立大学、德国维尔茨堡大学等境外7个单位共计2000余人参加。/pp style="text-align: justify " 本次研讨会邀请清华大学生命学院梁鑫研究员、陈春来研究员、医学院郭增才研究员、精仪系孔令杰副教授、电子系马骋副教授,西湖大学高亮研究员,中科院生物物理所李栋研究员和北京脑科学与类脑研究中心孙文智研究员等知名专家授课。同时,Zeiss、Olympus、Timwinter、Cytiva、Chroma、TG和明美光电等技术专家就最新的商品化光学仪器及最新功能进行了专业介绍。研讨会在仪器信息网线上举行,主要分为理论研讨和操作视频录播两部分。/pp style="text-align: justify "strong应广大网友呼吁,仪器信息网特推出回放视频【厂商技术篇】,供大家反复学习。/strong此外,专家学者的报告视频会在清华大学生物医学测试中心官方网站进行回放,大家可自行前往观看(观看地址见文尾)br//pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong1、《TissueFAXS Cytometry全景组织微环境显微成像及其定量分析技术》--王昕|区域产品经理-TissueGnostics Asia Pacific Limited(TG亚太)(点击查看视频)/strong/abr//pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/fe0d4fbc-71d1-4319-95c7-b4f372a627ad.jpg" title="image002.png" alt="image002.png"//a/ppa href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank" style="text-align: justify "strong2、《荧光显微镜基本原理及应用》-吴俊灵|技术主管--广州市明美光电技术有限公司(点击查看视频)/strong/abr//pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/184d0bed-2ff0-4555-aff6-3f867228319d.jpg" title="image003.png" alt="image003.png"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong3、《全自动活细胞成像系统在生命科学领域中的最新应用》-乔成|资深应用专家-卡尔蔡司(上海)管理有限公司(点击查看视频)/strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/9147412f-f3aa-493f-a3ed-74ef79b9149b.jpg" title="image004.png" alt="image004.png"//a/ppbr//pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong4、《共聚焦前沿应用:近红外与上转换成像》-戚少玲|资深产品经理-奥林巴斯(北京)销售服务有限公司(点击查看视频)/strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/6ce27754-0c3e-428f-a595-8e131e36a7fa.jpg" title="image005.png" alt="image005.png"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong/strong/a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong5、《干涉滤光片在显微成像中的选择与应用》-赵灵希|技术支持和销售工程师-Chroma Technology Corp. (点击查看视频)/strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/08587b9e-45db-4def-9042-1eccff0de9c3.jpg" title="image006.png" alt="image006.png"//a/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong6、《DeltaVision OMX超高分辨率多模式显微成像系统最新进展及其应用分享》-陆桂珍|Senior Product Specialist所在公司:Cytiva(思拓凡)(点击查看视频)/strong/abr//pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"strong /strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/d714e271-201f-4e25-8933-11a70b390ee2.jpg" title="image007.png" alt="image007.png"//a/ppa href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank" style="text-align: justify "strong7、《“晶”透至简,“动”悉世界——蔡司新一代激光片层扫描成像系统Lightsheet 7》-李筱婷|资深应用专家-卡尔蔡司(上海)管理有限公司(点击查看视频)/strong/abr//pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c9d3f871-9e38-4266-90a0-068dc1757951.jpg" title="image008.png" alt="image008.png"//a/ppa href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank" style="text-align: justify "strong8、《多种光片显微镜结构及其突破性应用》-齐冬|应用工程师-TimWinter (蒂姆温特远东有限公司) (点击查看视频)/strong/abr//pp style="text-align: center"a href="https://www.instrument.com.cn/webinar/video/collection/10622" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c54df7bf-9a7c-4dcc-926d-cebccc462230.jpg" title="image009.png" alt="image009.png"//a/pp style="text-align: justify "strong【专家学者篇】观看地址:(持续更新中)/strong/pp style="text-align: justify "stronghttp://center.biomed.tsinghua.edu.cn/index.php?c=show& id=60/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/67acc601-3a1d-48d6-9f52-57ea1e409eb7.jpg" title="image010.jpg" alt="image010.jpg"//pp style="text-align: justify "br//p
  • 强强联合,共谋发展——ZEISS全球显微镜部高级副总裁参观访问欧波同有限公司
    2017年4月19日,ZEISS全球显微镜部高级副总裁Manfred Bender先生、ZEISS中国显微镜部副总裁Allen先生、ZEISS中国显微镜部市场总监郑欣先生、ZEISS中国显微镜部渠道经理申建涛先生一行四人莅临欧波同参观访问。欧波同有限公司总裁皮晓宇先生、副总裁张国滨先生、副总裁于小涛先生、产品与业务拓展总监韩鹏先生代表公司对Manfred Bender先生一行的到来表示热烈的欢迎。ZEISS考察团此次访问正值双方合作处于承上启下、继往开来的重要时期,体现了两个企业管理层对新时期推进相互之间关系的高度重视。欧波同作为ZEISS在中国的重要战略合作伙伴,两个企业自建立合作伙伴关系以来,发展势头良好,在多个领域持续深化,体现出与时俱进的鲜明特点。ZEISS作为全球最大最强的显微镜生产企业推出了一系列适合于市场的产品,欧波同作为材料分析行业的领军企业,公司拥有覆盖全国的营销及技术服务网络,与中国各行业用户建立了良好的合作伙伴关系,为各个行业提供全方位高质量的实验室系统解决方案,欧波同与蔡司强强联合建立战略合作关系以来在材料分析的各个领域取得了丰硕成果。ZEISS考察团首先参观欧波同北京总部办公区并且听取了皮晓宇总裁对欧波同公司概况、经营现状、发展战略规划的详细介绍。皮总重点介绍了欧波同在中国经济发展进入新常态,经济增长速度近5年来持续下降,工业企业受到严重影响的市场情况下,公司开展“赢在新常态”下经营模式的转变,在营销、市场、技术等多方面采取的相应措施,创建了符合自身高速发展的RSP接力式营销模式,保障了公司业绩每年能够实现2位数的高速增长!随后ZEISS考察团一行人参观了欧波同材料分析研究中心。欧波同材料分析研究中心是欧波同公司斥巨资打造的全球最高端的电子显微分析综合实验室,能够为各个行业和领域提供材料研发、产品性能改进、逆向工程与失效分析等提供一站式系统解决方案。此次参观考察,使蔡司公司更深刻的了解到欧波同被客户认可的原因,欧波同的管理理念和企业文化的与众不同以及在全球市场独到的营销体系,对欧波同规模现状及发展前景有了进一步的了解,Manfred Bender先生极为赞赏欧波同在材料分析领域的市场拓展和开发能力,充分肯定了欧波同在实验室系统解决方案推广和市场拓展中取得的骄人成绩,为双方未来的进一步合作奠定了良好的基础。双方在友好的气氛中深入探讨,达成共识,交换意见,双方表示通过多年的精诚合作,欧波同已经与ZEISS形成了紧密的战略合作伙伴关系,在今后的合作中能进一步深化沟通交流,充分发挥双边优势,不断深化各领域务实合作,积极探索新的合作领域,并不断取得新成果。关于蔡司显微镜事业部卡尔蔡司为高品质和可靠性的代名词。蔡司显微镜事业部隶属于蔡司集团,是全球光学和光电子工业领域知名的跨国企业。蔡司作为全球显微镜的领先制造商,拥有性能卓越的光学、离子和电子显微镜,将最新的技术和产品带到中国的科研、产品技术研发、医疗卫生、教育以及质量控制等领域,全力支持中国的发展。关于欧波同创新引领未来——欧波同有限公司(opton),是一家具有外资背景的多元化的科技集团公司,是全球实验室分析解决方案的领导者!欧波同成立于2003年(总部位于英国),致力于为客户提供实验室分析系统解决方案,旗下拥有国际贸易、行业解决方案研发、第三方技术服务、融资租赁等业务板块。公司经过十多年的卓越发展已经与德国蔡司(zeiss)公司、美国gatan公司等多家国际顶尖品牌建立战略合作伙伴关系。作为材料分析行业的领军企业,欧波同有限公司拥有覆盖全国的营销及技术服务网络,与中国各行业用户建立了良好的合作伙伴关系,正在为数以万计的国内外用户提供高品质的产品与国际尖端技术服务!如今的欧波同从商海大浪中走来,意气风发,独占鳌头;在未来,欧波同将一如既往致力于中国材料分析技术的创新与发展,与国内外广大用户一起共同开创高端技术科技发展的未来。
  • 引领显微光学技术革命-奥林巴斯推出光学数码显微镜
    2012年1月11日,奥林巴斯在全球同步推出了引领显微光学技术革命的DSX系列光学数码显微镜。奥林巴斯以高端的光学技术著称,而且数码技术也是屈指可数的。现在,利用两项卓越技术的完美融合,我们创造出了新型的光电数字显微镜,使我们在工业显微镜领域取得了巨大的领先。只有奥林巴斯的显微镜才能够使任何使用者满怀信心的进行操作,同时实现高清晰度的视频显示并且实现超高精确度的测量,这些方面我们都走在时代的前沿,并将引领工业显微镜行业的新标准。 &rlm DSX系列光学数码显微镜,是一个全新的产品。通过先进的光学数码技术颠覆了传统显微镜的定义,从以下几个方面,DSX 系列为用户在检测效率上提供了很大的帮助。&rlm 1. 操作的舒适性 ‣ DSX 是由显微镜、数码相机及软件组成的一个整体系统。 它能够实现前所未有的简单操作性和便捷性。 ‣ DSX 能够为客户实现最佳的观察方案。 &rlm 2. 更高的可靠性 ‣ DSX 将先进的光学技术与可靠的测量方法完美的整合成在一起。 ‣ DSX 能够为客户改善可靠性提高帮助有关DSX光学数码显微镜的详细信息,请访问DSX光学数码显微镜专用网址:http://www.olympus-ims.com/zh/microscope/opto-digital/奥林巴斯仪器信息网网址: http://olympus.instrument.com.cn2012年2月-3月,奥林巴斯(中国)有限公司将会陆续在上海、成都、广州、北京等城市举办大型新产品发布会,届时欢迎业内人士和媒体朋友莅临指导!活动联系:胡翠兰 奥林巴斯(中国)有限公司电话:(86)21-51706110 传真:(86)21-51706236地址:上海市徐汇区淮海中路1010号嘉华中心10F 邮编:200031E-mail:cuilan_hu@olympus.com.cn
  • 无创荧光显微技术能为大脑深度成像
    来自瑞士苏黎世大学和苏黎世理工大学的研究人员开发出一种称为漫反射光学定位成像(DOLI)的新技术,利用它可以高分辨率、无创观察活体小鼠大脑深部的微血管。该技术具有卓越的分辨率,可看到深层组织,为观察大脑功能提供了强大的光学工具,在研究神经活动、微循环、神经血管耦合和神经退化方面具有广阔的应用前景。相关研究发表在近日的美国光学学会期刊《光学》上。  这种技术利用了1000—1700纳米之间的第二近红外(NIR-Ⅱ)光谱,这一范围光谱的散射较少,可使显微荧光成像的深度达到光扩散深度极限的4倍。  在各种疾病的动物模型中,荧光显微镜经常被用来对大脑的分子和细胞细节进行成像。但此前,由于皮肤和颅骨的强烈光散射影响,荧光显微镜仅限于小体积和高度侵入性的操作。此次研究首次表明,3D荧光显微镜可帮助科学家以非侵入性方式,高分辨率地观察成年小鼠大脑。该显微镜有效覆盖了大约1厘米的视野。  研究人员首先在模仿人体平均大脑组织特性的组织合成模型中测试了这项技术,证明他们可以在光学不透明的组织中获得最深达4毫米的显微分辨率图像。然后,他们在活小鼠身上测试了这项技术。他们给活小鼠静脉注射了荧光微滴,追踪这些流动的荧光微滴可以重建小鼠大脑深部微血管的高分辨率图。观察发现,借助DOLI技术可以完全无创地观察到脑微血管以及血流的速度和方向。  研究人员表示,这种方法消除了背景光散射,并可在头皮和头骨完好无损的情况下进行。他们还观察到相机记录的斑点大小与微滴在大脑中的深度有很大的关系,这使大脑深度分辨成像成为可能。  “在生物医学成像领域,实现深部活体组织的高分辨率光学观测是一个长期的目标。”研究小组组长丹尼尔拉赞斯基说。  现在,研究人员正在努力优化DOLI技术,以提高其分辨率。他们还在开发改进的荧光剂,这些荧光剂更小、荧光强度更高,且在体内更稳定,这将大大提高该技术在清晰度和成像深度方面的性能。
  • 做中国显微技术领跑者 向超高分辨率成像迈进!——“创新100”访广州市明美光电技术有限公司
    广州市明美光电技术有限公司创立于2003年,创始人张春旺曾就职于某国际知名显微镜企业,对于光学显微镜的技术和销售都有深刻的了解。怀揣让中国科学仪器自主化的理想,成立了明美光电,“明美”寓意科技让明天更美好。公司创立之初,主要生产显微镜相机和相关配件,这也是业内对明美光电的主要印象。如今,明美光电已是国家高新技术企业,专注于显微成像产品的研发、生产和销售,致力为显微领域的自动化、智能化、国产化贡献力量,曾获国家创新基金扶持,被认定为广东省显微成像工程技术研究中心。明美光电以成为中国显微成像行业领跑者为愿景,强调差异化竞争,聚焦在荧光成像为主的中高端范围。2009年以来,明美光电在国家资助支持下开始攻坚LED荧光显微镜,并在2010-2015年间连续获得高新技术企业认证,陆续推出旗下多款研究级荧光显微镜。本期“创新100 ”特别对话明美光电,带大家了解这家“潜心躬耕十余载,立志光大国产‘器’”的创新光学显微镜企业。张春旺 总经理 广州市明美光电技术有限公司仪器信息网:公司主推的产品及型号是什么,产品/技术可应用于哪些领域,有哪些典型用户,解决了什么样的实际问题? 张春旺:明美光电聚焦在中高端的荧光显微镜领域,解决细胞生物学等生命科学研究以及FISH荧光原位杂交癌症检测等医疗领域的需要,同时还有应用于高校、疾控、养殖、金相、工业等领域的产品。比如:电动荧光显微镜MF53-N/MF43-N、研究级荧光显微镜MZX81/MF52-N,具有成像质量高、扩展性能强、简单易用的优势;还有数字切片扫描系统,既是研究级荧光显微镜,也是高速自动化切片扫描仪,一机两用,性能强大。数字切片扫描系统在显微镜配套的相机和光源领域,显微镜四大品牌的高端产品依然强势,但受限于成本,很多实验室还会选择一些中低端产品,使用效果或受到一定影响。明美光电的MSH12/MSX11/MSX2/MS60/MC50-S多款高性能CMOS显微镜相机,覆盖高像素和高灵敏度等不同应用需求,让客户以更低成本实现了理想的成像效果。如同田忌赛马,国产“上等马”对进口“中等马”,便可更胜一筹。MG-120/MG-100/MG-200多款LED显微镜光源,可以搭配徕卡DM2500等四大品牌显微镜,除了寿命可达传统汞灯等热光源的数十倍,还能做到即开即用、无需校准,可极大降低实验人员等待光源预热的几十分钟耗时,并显著降低实验室维护荧光显微镜带来的人力成本,对于客户来说极大提升了效率。四通道光源MG-120无论是荧光显微镜,还是相机和光源,明美光电在国内都有很多典型用户。华中科技大学同济医学院生殖健康研究所章慧平教授课题组所发表的论文“Cardiac developmental toxicity and transcriptome analyses of zebrafish(Danio rerio) embryos exposed to Mancozeb”,揭示了代森锌锰(MZ)暴露诱导斑马鱼心脏发育损伤的分子机制,该研究需要用到荧光体视显微镜看斑马鱼和荧光正置显微镜看斑马鱼切片,如果选择进口品牌,预算仅能够购买一台设备,而选择明美光电则可以两台设备备齐。最终课题组使用了明美光电的研究级正置荧光显微镜MF43-N和研究级荧光体视显微镜MZX81,并对明美光电LED荧光显微镜的易用性和荧光效果表示十分满意。此外,北京大学、清华大学、中国科学技术大学、中南大学、中国疾控病毒防控所、广药白云山制药总厂、南京航天科技研究所等都是明美光电的用户。仪器信息网:与国内外同类型产品相比,您认为公司的主要竞争优势有哪些,增长点在哪里?张春旺:明美光电的主要优势在于荧光成像领域,包括LED荧光显微镜、电动荧光显微镜、荧光光源、荧光附件和高灵敏度相机。明美光电已有非常深厚的积累,因而在产品适配度、方案整合度和使用体验等方面更有优势。比如数显荧光模块,我们已经做到了一个模块有三色甚至四色通道,模块自带屏幕显示波段和光强,自带切换机构和无级调节机构,无需外接控制箱和光源灯箱,而许多同行只能做到一个模块单色或者双色,甚至有些像传统荧光光源一样要外接控制箱。此外,明美光电还在电动化、智能化整合上进行创新,已有纳米级高精度XYZ三轴电动荧光显微镜和具备切片自动扫描功能的数字切片扫描系统,性能可比肩进口品牌,且具有更强的价格优势。除了产品实力,明美光电还具有企业实力。作为一家国家高新技术企业,公司连续11年获守合同重信用企业认证,已通过ISO9001管理体系认证,拥有近百个专利、软著,被认定为广东省显微成像工程技术研究中心。在全国20多个城市均设有服务网点,派驻专业工程师为客户提供完善服务,服务信得过。2021年,国家明确要求医院等机构在一定条件下须采购国产显微镜,这说明国产替代进口的进程已经拉开帷幕,未来还将加速,这对国产企业来说是重大的增长点和利好。未来,明美光电将继续强化LED荧光成像方面的优势,推出更加自动化、智能化的产品,以满足更多客户高端的荧光成像需求。如超高分辨率的成像,以往用户主要购买进口的共聚焦显微镜,未来或替换为明美光电新研发的新型超高分辨率荧光成像产品!仪器信息网:请介绍贵公司当前规模,研发人员和研发投入各有多少,与哪些单位之间有合作?张春旺:明美光电当前全职员工近百人,其中约1/4是研发人员,每年研发投入占年利润的30%以上,以MG-100等LED荧光光源产品类目为例,总研发投入已经达到百万级别。此外,我们还与华南师范大学、暨南大学等单位保持紧密合作,是华南师范大学光学工程合作的硕士联合培养基地、广州医科大学生物工程实习基地,联合研发新型超高分辨率显微镜等产品,目前已有成功的工程样机可以进行超高分辨率观察,产品还在完善中。仪器信息网:贵公司下一步在市场和产品方面有何具体计划?张春旺:明美光电将继续集中力量发展LED荧光相关的产品,同时关注细胞生物学相关领域的进展。前者我们有四通道光源MG-120和液冷光源MG-200,效率、寿命和智能化比以往的宽光谱多通道LED荧光光源MG-100有显著提升,且可以高效接入光纤。后者我们近年推出了如活细胞成像仪MCS11、细胞工厂显微镜MI52-CF和多层细胞工厂成像仪MCF400等针对活细胞成像和新型细胞工厂培养皿的产品。目前还有更紧凑而强大的相关产品正在研发中。仪器信息网:如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?张春旺:随着国家对自主化创新的要求越来越高,国产仪器将会更大范围取代进口仪器,显微镜看似小众,可是应用到很多领域,做好国产显微镜其实是一个艰难的提升过程,我们希望大家一起努力。仪器信息网:企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?张春旺:创新需要大量的资金投入、人员的持续努力和企业的厚积薄发。一个LED荧光光源,看似简单,却是明美光电投入数百万资金、花费几十年研发积累打造的。一个内部结构的小细节,看似不起眼,却是我们调研很多用户、理论分析和实践经验总结的成果。现在市场上有很多明美光电的模仿者,参考我们的设计做方案,又不理解内部细节由来,擅自修改并自以为是完善,结果产品出现问题,不仅影响他们自己的品牌,还可能让客户对国产仪器产品产生总体性质疑,对明美光电也是一种伤害。所以我们需要站出来、喊出来,让大家知道,明美光电不只是做显微镜相机,还在LED荧光显微镜领域做了非常多工作,不仅有自己的研究级荧光显微镜,还有帮助客户升级成荧光显微镜的各种产品和方案。我们希望通过“创新100”让客户了解我们的努力,并且收获更高质量的产品和更良好的体验,建立对国产仪器更强的信心。
  • 共聚焦和光片显微镜将继续成为光学显微技术基石——牛津仪器ANDOR谈高端光镜
    光学显微镜已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,为了满足蓬勃发展的生命科学领域不断产生的新的需求,光学显微镜在成像速度、成像深度、克服光毒性等许多方面也不断发展出新的技术。仪器信息网特别关注高端光学显微镜的技术发展和在生命科学领域的应用进展,并广泛向国内外高端光学显微镜企业约稿(投稿邮箱:lizk@instrument.com.cn),帮助广大用户了解相关技术与应用进展。本篇为牛津仪器ANDOR供稿,这家从实验室成功转化的企业已取得系列亮眼成绩,如2000年推出EMCCD相机,在生命科学等领域被广泛应用;2009年,联合推出sCMOS相机,被广泛应用于生命科学、材料科学、物理科学、工业等领域;2015年,ANDOR推出高速共聚焦显微成像系统Dragonfly,并在市场上取得巨大的成功;近日,ANDOR又推出了BC43台式共聚焦显微镜新产品,操作简便可帮助用户提高工作效率。跟随本文,全面了解这家成立32年的公司,其“一步一个脚印”的发展历程、他们对当前光学显微镜技术和应用现状的解读以及技术未来发展趋势的展望。仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。1989年的一个下午,爱尔兰岛东北部的贝尔法斯特女王大学物理系的Donal Denvir发现当时任何一款相机都无法满足实验检测的需求,他下定决心开始研制一台全真空密封的相机来支持自己的研究应用。新研制的相机经过Andor创始团队不断精心改进,成功应用于各种成像与光谱研究。Andor对显微镜技术的重大贡献是2002年推出了第一台EMCCD(电子倍增电荷耦合器件)相机iXon,这种超灵敏的相机带来了新的契机,能够检测在显微镜下观察的样品中的单分子荧光信号。2005年,ANDOR推出的Revolution活细胞成像系统,iXon与转盘技术的强大组合,大大改善了转盘共聚焦在高对比度活细胞显微成像中的效用,以及对活体样品进行三维成像的能力,赢得了行业用户的广泛关注。2012年,ANDOR将EMCCD现有帧率提升3倍,显著提高了产品性能,并帮助研究人员更多地了解生物样本的快速动态事件。2009年,ANDOR推出sCMOS相机Neo, 此后sCMOS成为使用最广泛的科学相机技术,并且广泛应用于显微镜领域。sCMOS提供了比之前更高的分辨率和更快的帧速率,因此促进了对细胞,特别是细胞内动态和细节的更深入了解。 这种sCMOS技术与EMCCD技术相辅相成,同一台显微镜下可以兼顾灵敏度或者分辨率和速度。同年,ANDOR在显微系列产品组合中增加了两个光刺激模块Mosaic和MicroPoint。Mosaic基于DMD方法,可以在亚细胞或更高分辨率下实现多个照明区域的精确定义。这个工具被用来对显微镜下观察的样品进行光活化、转换或漂白。 这些方法是进行亚细胞实验和了解蛋白质、亚细胞分隔和细胞器的时空行为的有力方法,或者在更大的范围内跟踪大群体中的单个细胞。 该技术发明之前,显微镜只是一种被动观察的工具,但现在可以在显微镜下主动研究细胞和系统生物学。 最近有研究显示,Mosaic与光遗传学相结合,可以成为一种特别有用的工具,这种方法可以促进信号和其他通路的特定光控制。 MicroPoint具有类似的优势,但可用于:(a) 炎症、伤口和愈合与发育的消融研究;(b) DNA损伤,创造DNA断裂的模型,这是细胞可能成为癌症的早期触发因素。这个模型被用来理解DNA修复如何在治疗中发挥作用。2010年,ANDOR收购了Bitplane,将高端三维图像可视化和分析软件Imaris纳入显微产品组合。 Imaris提供广泛的工具来分析一些研究领域的三维图像数据,包括细胞和发育生物学、神经科学、癌症研究和组织分析。2016年,ANDOR推出 Dragonfly,这是为研究人员提供的完整的显微成像解决方案。荣获行业大奖的Dragonfly 500通过转盘设计的改进(详见下文),并结合(a)TIRF(全内反射荧光显微镜),这是一种专门用于细胞膜成像的强大技术(如受体周转和囊泡对接);(b)基于激光的宽视场显微镜,用于微弱光的荧光成像;(c)用于超分辨率成像的光学器件(包含3D成像)。 Dragonfly使研究人员有能力在一台显微镜上对细胞进行比以往更详细的研究。Dragonfly在以下几个方面对现有的转盘技术进行了重大改进:(1)引入Borealis专利照明技术,在基于微透镜的转盘共聚焦显微镜中提供交叉视野照明。这使研究人员在更准确的图像分析、更高质量的大面积和样品拼接的蒙太奇成像中受益。(2)更好的信噪比,实现更高的对比度成像:使用价格较低的低功率激光器,或为dSTORM和DNA-PAINT超分辨率成像或基于图像的单细胞原位转录组学等技术提供更多功率。(3)更稳定的照明源,维护费用低。• 实时样品体积渲染,用户能够快速了解他们的实验进展,并对修改方案做出早期决定和结论。• 更低的仪器本底噪音使研究者能检测到更弱的荧光信号,观察到更细致的生物学现象。• 独特的转盘设计,在保持高速采集速度的同时,可以对样品进行更深入的成像(从数百微米到毫米尺度)。这也意味着转盘技术可以对大型固定样品进行成像,因此为组织成像以及斑马鱼和果蝇等大型模式生物的成像提供了一个高产的解决方案。2017年,ANDOR推出了SRRF-Stream+ ,这是一种超分辨率技术,可以轻松地添加到现有的相机中,或与Dragonfly等显微成像解决方案一起使用。这项技术打破了光学显微镜系统的自然分辨率限制,从200纳米下降到50纳米。现在,研究人员可以观察到他们以前看不到的结构,可以从图像中了解更多信息。 此外,SRRF-Stream+ 无需专门的光学设备或方法来执行,并且可以与几种不同的成像技术一起使用,因此,它可以为更多研究团体所用。2021年,岁末当下,ANDOR推出了BC43台式共聚焦显微镜。一个完整的转盘共聚焦解决方案被整合在如此一个不透光的小设备里。BC43操作非常直观和简单,即便是显微镜新手也能轻松掌握。BC43可以放在普通的实验台上,成为高效实验室工作流程的一部分。简单的操作流程和较少的维护需求使这款设备能够给用户带来非常高的工作效率。此外,BC43内含Dragonfly中的Borealis照明和一些新技术包括内置的一个新激光引擎以实现更小的占地面积。仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?我们公司目前推广和之前描述的显微成像产品是• 用于显微镜的灵敏科学相机EMCCD 和 sCMOS• Dragonfly系统• BC43台式转盘共聚焦显微镜• 激光耦合器• 用于显微镜的光刺激设备Mosaic和MicroPoint• 显微镜用的光谱仪和显微制冷机• 三维可视化分析软件Imaris• 超分辨技术SRRF-Stream+ (技术优势参考上述内容)仪器信息网:贵公司高端光学显微镜在生命科学研究中有哪些应用?目前Andor的转盘共聚焦显微镜灵敏度高、成像速度快、分辨率好,可进行3D+动态立体信息探索,在细胞生物学、发育生物学、肿瘤生物学、疾病与免疫学、微生物学、神经生物学、生物物理学等不同领域均表现卓越。细胞生物学家们借助Dragonfly探究细胞内精细的亚细胞结构如线粒体成像、细胞膜动态、细胞周期与分裂、微管动力学、胞内运输、囊泡运动。同时,作为研究发育和厚组织的利器,Dragonfly可以观测受精卵及早期胚胎发育、肢体形成、模式生物如(果蝇、线虫、斑马鱼)的完整生物体成像、类器官发育分化、血管及血流变化;在神经生物学和植物学等方向,借助高速特点可以进行单分子和钙成像,对于透明脑、体外培养的活组织及切片,三维成像和活体培养极为关键;肿瘤或疾病免疫方向的固定的大组织切片、石蜡切片、透明化组织、病原宿主的互作、受体循环与定位等;以及蛋白互作、单分子运动、内吞外排、膨胀显微镜、空间转录组多维成像等。仪器信息网:从整个行业的角度,对于目前的高端光学显微技术,您比较看好哪些?还有哪些问题亟待解决?未来光学显微镜的技术发展趋势如何?我们相信,任何有利于更快、更深、高对比度成像的技术都是可以看到需求继续增长的关键领域。 因此,共聚焦和光片显微镜将继续成为受欢迎的显微技术基石。我们将看到越来越多的研究会引入光操纵,从而更好地了解细胞内信号通路,以及细胞群体间(如神经细胞)如何相互沟通。Andor有几十年丰富的基础生物学研究,现在正是将这些知识转化为未来临床和社会经济相关问题解决方案的基础,包括植物生物学和动物生物学。这需要进行重大调整,将细胞层面的基础研究纳入多细胞、器官和整个生物体的范畴。未来显微镜在光学能力和提高生产力方面都需要扩大规模。为了支持对样品进行更深入的成像,特别是自从透明化组织的技术出现后,存在着补偿由于折射率不匹配而产生的光学畸变的挑战,以及其他来自样品的光学限制。这方面的潜在解决方案之一是使用自适应光学技术。目前有一些想法已经发表,但还有很多东西需要开发,并使之成为一个光学上高效和紧凑的解决方案,以获得良好的商业解决方案。此外,显微镜需要从 "专家 "技术转变为科学界更广泛、普适的技术。它可以为特定主题(如癌症)完整研究的一部分提供强大的支持。我们看到,对于越来越多的研究人员而言显微镜的使用是其工作流程和发表论文的关键环节。基于对此理解,我们历时达五年之久设计了一键成像的台式共聚焦BC43,将3D+成像融入到普通实验室的日常工作,减除了复杂操作和仪器放置的种种烦扰和顾虑。我们认为应该对图像采集和分析协同结合有所期待,分析可以用来帮助复杂的显微实验的自动化,使显微镜操作步骤实时适应正在研究的样品中发生的情况。通过Dragonfly及BC43结合Fusion和Imaris可以实现从样品图像采集到分析的无缝衔接,这种捕捉-分析相结合的工作流程将促进易用性,使更多的研究人员能够运用高级的显微成像方法。未来如果对一些典型的生物医药应用案例的参数进行提取优化,结合人机交互和机器学习的先进算法,帮助研究者进行实时获取批量数据特征,在观测过程中及时优化调整。疫情以来,越来越多的研究工作者采用线上办公形式,此外,设备过度占用日常科研本就繁忙用户或管理员的时间,亟需各种长时程高频使用的设备包括显微成像及分析趋向于在线自动化远程监测、控制。智能化的人机交互及不同端口多界面控制、物联网设备的稳定运转及报告反馈的联网尤为重要。利用AR、VR及远程全息投影等方式,也可针对设备使用、培训、考核进行更多方案的优化。Dragonfly作为某些平台中心和课题组的成像利器,常年全日无休稳定运转,也给了我们信心未来可以在无人值守及远程控制上进一步探索。如今,随着采集大量图像数据能力的提高,所有研究机构和公司,都面临的一个至关重要的问题:采集的数据在进行转移、存储和分析方面均存在瓶颈,耗费过多的金钱、时间、人力成本。此外,确保分析软件包能加载导入数据并进行有效地分析是一个需要持续关注的问题,需要开发团队对大数据有深层的理解并不懈改善算法和架构。对于大数据分析而言,存储和算力的高要求,不断优化系统配置可能难以覆盖爆炸式的增长,业内伙伴和用户的共同努力,有望能建立云端强大的数据转移、存储、分析体系,以分配更适合终端需求的相应资源,安全、高效、灵活的解决不同需求。在此过程中,如何更好的促进共享、保护隐私值得关注和讨论。仪器信息网:从整个行业的角度,您如何评价目前高端光学显微镜的应用情况?应用过程中还有哪些亟待解决的问题?未来光学显微镜应用将会如何发展?基于对学术设计及对概念验证的大力投入,高端光学显微技术目前发展迅速,挑战在于如何将其精炼成易于商业化的、强大易用的解决方案,从而有助于探索一系列的科学问题和不同应用。这些解决方案的范围包括现有技术的持续进步,如用于体外实验用到的共聚焦和光片,也有越来越多的人需要使用当下这些技术和其他尚未建立的光学技术,以进一步提升对体内或在体实验模型的成像,后者是药物发现和其他疾病治疗转化医学领域的重要环节,需要实验设计和成像设备选型上在NIRⅠ、Ⅱ区的标记、照明、检测上有更多适配。应用方面,先进的科学研究机构、CRO公司和医学院基于平台和服务商的稳定支持,能够基于现有技术对系统进行改造,可以支撑更复杂的需求,如微流控装置或一些电磁场刺激及重力场变化。未来我们相信,更多涉及人类幸福健康的行业团队包括生命科学、医学、化学、材料学、半导体、农业、太空科学将利用光镜发现、验证自己的理论,并结合先进的技术如精细力学控制、3D打印等对目标物进行观测、改造。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?国产光学显微镜在中低端显微镜市场占领份额较多,如江西凤凰、麦克奥迪、永新光学等品牌,或作为高端品牌的元器件代工厂,厚积薄发,未来一定为国内光镜行业的发展奠定基础。目前主流的高端光镜主要依赖进口,欧美日品牌进入市场较早,占市场主导,国内高端显微镜目前在蓬勃发展,很多高等研究机构如清北、中科院生物物理所、苏州医工所、西安交大等和初创企业(多集中在粤港澳和江浙地区)都在进行研究及转化的突破创新,组建的成像系统多处于实验室技术打磨阶段或迈入市场不久,fMOST、LBS、 HiS-SIM已经开始被市场逐步接受,但其零部件还是进口为主,国产替代之路尚需长期努力和紧密合作。Andor也期望和国内外业内伙伴有更多合作,不论是元器件模块、显微成像系统、数据分析软件都可以多方协作,作为整体解决方案应对市场需求。对于商业化的显微镜而言,稳定、易用的高性能体验及使用场景的匹配是整个行业要不断精益求精的重要方向,自然会有市场越来越多的认可。仪器信息网:您认为,未来几年高端光学显微镜的热点市场需求有哪些?在未来几年,我们认为对高端光学显微镜的最热需求将集中在多维活细胞高速动态成像、超分辨成像、类器官研究、大型组织成像(透明化组织、活体组织体外培养)、单细胞原位空间转录组学领域、动物活体深层成像。基于应用的定制化显微成像系统开发将为学术研究、产业、商业提供绝佳的资源并富有成效进行循环利用。这些需求基于多维时空动态成像,联合先进的流式分析分选、高内涵、质谱成像和单细胞及转录组测序技术对物质代谢、基因和蛋白等的时空表达变化图谱进行同步解析,能够给研究工作带来前所未有的海量信息,透过更多跨领域合作和大数据共享分析,打破认知边界和信息壁垒,服务生命健康。不论是高端光学显微成像或其他高精度检测设备都需要合适的高速高灵敏度的CCD/sCMOS检测器,牛津仪器Andor作为科学相机厂家,已经在生命科学、物理科学的深耕多年,未来一定能够帮助更多的客户及合作伙伴们在光学显微及其他先进成像应用提供高质量的产品和全方位的服务。
  • 中国科学院高端光学显微成像技术联盟成立大会暨光学显微成像技术与应用交流会第一轮通知
    一、会议背景近年来,我国在光学显微成像技术研究领域快速发展,部分领域处于 国际前沿。但在核心关键技术、工程化、人才培养等方面仍存在薄弱环节, 高端光学显微镜几乎全部依赖进口。为推动高端光学显微成像技术的发展, 加强技术交流,拟成立“中国科学院高端光学显微成像技术联盟”。联盟 以高端光学显微成像技术为切入点,联合中科院内高端光学显微成像技术 优势单位,加强技术交流,开展创新性研究,形成技术合力,开发新技术、 突破核心关键部件、提升高端设备的使用潜能、培养技术人才、建立技术 智库; 加强研制单位和用户单位的合作交流, 促进研用结合, 加快推进高 端光学显微成像设备国产化。联盟拟于 11 月 10-11 号召开“中国科学院高端光学显微成像技术联 盟成立大会暨光学显微成像技术与应用交流会”。届时将邀请中科院条财 局领导参会。二、会议组织主办单位:中国科学院高端光学显微成像技术联盟 (筹)承办单位:中国科学院苏州生物医学工程技术研究所三、 会议日程(详见附件)会议采取“线下+线上”的形式。国内专家现场参加会议,国外专家 视频参加。会议同期召开“光学显微成像技术与应用交流会”和“光学显微成像 创新思维大赛”现场评选。四、会议时间:11 月 9 日:报到11 月 10 日: 光学显微成像技术与应用交流会11 月 11 日:高端光学显微成像技术联盟成立大会11 月 12 日:离会五、会议地点:苏州市高新区清山会议中心六、会议注册1)注册费:会议免收注册费。会务组协助预定清山会议中心住宿。2 ) 会 议 注 册 : 请 拟 参 会 人 员 发 送 参 会 回 执 到 邮 箱 aomu- cas@sibet.ac.cn。截止日期10月31日。回执附件:附2.参会回执-final.docx线上参会报名:https://www.instrument.com.cn/webinar/meetings/casgxxw20221109/3)会务联络人: 李雨蒙 18306375116;孙玮 15652586621。中国科学院高端光学显微成像技术联盟 中国科学院苏州生物医学工程技术研究所中国科学院高端光学显微成像技术联盟成立大会暨光学显微成像技术与应用交流会日程 (暂定)第一天 光学显微成像技术与应用交流会 (11.10)时 间内 容主持人09:00-09:30光学显微成像技术培训讲座09:30-10:00光学显微成像技术培训讲座10:00-10:30茶歇10:00-12:00光学显微成像仪器示范12:00-14:00午餐14:00-14:30光学显微成像技术培训讲座14:30-15:00光学显微成像技术培训讲座15:00-15:30茶歇15:00-17:00光学显微成像仪器示范18:00-21:00自助餐第二天:中科院高端光学显微成像技术联盟成立大会 (11.11)时 间内 容主持人09:00-09:10介绍会议背景及参会人员09:10-09:20局领导讲话,宣布常务理事单位09:20-09:30常务理事单位代表致辞09:30-10:00中国科学院高端光学显微成像技术 联盟成立总体情况报告10:10-10:30休 息10:30-11:00大会邀请报告一11:00-11:30大会邀请报告二11:30-12:00大会邀请报告三12:00-14:00午 餐14:00-14:20主题报告一14:20-14:40主题报告二14:40-15:00主题报告三15:00-15:20主题报告四15:20-15:40茶 歇15:30-17:00创新思维大赛评选14:00-15:00第一届理事会 (闭门会议)18:00-20:00晚 餐光学显微成像创新思维大赛项目征集一、 大赛意义高端光学显微成像装备需要在应用需求的牵引下,不断创新光学成像 技术、核心器件和应用方案,才能实现创新发展。 为了突出本联盟的创新 优势、提高各单位仪器研制和应用水平, 本联盟拟开展“光学显微成像创 新思维大赛”活动,征集应用场景、 应用方案、成像技术、核心器件方面 的新创意。对于获奖项目,本联盟后续拟通过自设项目、争取其他渠道资源联合 设置项目,开展仪器研制、应用技术方案等方式进一步支持。本次大赛获 奖项目如果后期进行成果转化,参赛者作为创意提出方将享有转化过程中 无形资产的固定比例(暂定 15%)。二、大赛组织主办单位:中国科学院高端光学显微成像技术联盟 (筹)承办单位:中国科学院苏州生物医学工程技术研究所三、 大赛形式1. 项目征集: 面向中科院内单位的研究人员以个人(或若干人组成的团队) 名义申报。每个参赛项目用不超过 1000 字的文字和不超 过 2 个图来说明在光学成像技术、成像器件、应用需求或应用方 案方面的创新思想。参赛项目内容不包括实施方案、研究基础等。2. 初评: 评审组根据征集的参赛项目,评选出 10 项进入第二轮现场评选。 评审重点考核创新性和科学性。3. 现场评选:入选的 10 个项目在联盟大会期间进行公开答辩,每个参赛项目做 3 分钟的 PPT 汇报,评审组进行 2 分钟提问。重点汇 报创新性和科学性。四、大赛奖励1.拟评出特等奖 1 名、一等奖 2 名、二等奖 3 名、三等奖 4 名。 2.对获奖者个人(或团队) 发放现金奖励 (税前) 。特等奖 3 万元, 一等奖 2 万元,二等奖 1 万元,三等奖 5000 元。五、参赛方式填写创新思维大赛申请书电子版 (电子签名 pdf 文件) 发送到邮箱 aomu-cas@sibet.ac.c n , 邮件名称:光学显微成像创新思维大赛+ (参赛人项目) + (参赛项目名称),征集期限为 10.31日。后续提供签字的纸质版。中国科学院高端光学显微成像技术联盟 中国科学院苏州生物医学工程技术研究所 2022.9.30附件:附3.创新思维大赛征集-final.docx
  • 附回放!第一届共聚焦显微成像技术及应用网络研讨会成功召开
    仪器信息网讯 2024年6月18日,由仪器信息网主办的“第一届共聚焦显微成像技术及应用”网络会议圆满召开。15位来自知名高校和科研院所的科研专家、大型生命科学公共平台的技术专家以及国内外主流光学显微镜供应商分享了共聚焦显微镜的最新技术和应用进展,会议吸引近900位相关领域从业人员及学生报名参加。专家报告方面,清华大学、上海科技大学、中科院分子植物科学卓越创新中心、北京大学国重实验室、北京大学分析测试中心的成像平台负责人全面系统讲解了共聚焦显微镜的历史、发展、技术原理,并结合自身工作经验,举例分享了共聚焦显微成像技术在生物学、医药研究、发光材料表征等方向的应用;中国科学院上海免疫与感染研究所酒亚明研究员、中科院分子植物科学卓越创新中心凌祺桦研究员等5为学者分享了共聚焦显微镜在其科研工作中的实际应用。企业报告方面,共聚焦显微镜的主流供应商徕卡显微系统展示了其类器官多色深度成像,EVIDENT中国展示了他们全新一代共聚焦显微镜FV4000,牛津仪器ANDOR展示了其跨尺度显微成像及多维图像分析解决方案。国产供应商方面,创新企业艾锐科技在本次会议上重磅发布了国内首款转盘共聚焦显微镜,艾锐科技首席科学家席鹏教授向与会人员介绍了这块产品的技术创新之处,引发广泛讨论。在征得报告嘉宾同意后,本网特别将部分视频整理发布,供广大网友观看学习。(点击图片即可进入视频观看页面)《徕卡助力类器官多色深度成像》报告人:游换阳 徕卡显微系统(上海)贸易有限公司 高级应用专员《多色快速,好用省心----艾锐NovaSD转盘共聚焦解决方案及应用(上)》报告人:席鹏 北京大学/北京艾锐精仪科技有限公司 教授/首席科学家《多色快速,好用省心----艾锐NovaSD转盘共聚焦解决方案及应用(下)》报告人:王刚 北京艾锐精仪科技有限公司 销售总监《超高分辨率显微镜在哺乳动物动纤毛研究中的应用》报告人:陈青霞 上海交通大学医学院附属新华医院 助理研究员 青年PI《Niche inflammatory signals control periodical mammary regeneration and protect stem cells from cytotoxic stress》报告人:刘春业 国科大杭州高等研究院 博士后《“精准定量,光彩未来”——EVIDENT全新一代共聚焦显微镜FV4000》报告人:戚少玲 EVIDENT中国 产品技术总监《认识细胞生物学研究的“扛把子”——共聚焦显微系统的发展、原理及应用》报告人:蔡文娟 中国科学院分子植物科学卓越创新中心 高级工程师《牛津仪器ANDOR跨尺度显微成像及多维图像分析解决方案》报告人:郑垚 牛津仪器科技(上海)有限公司 ANDOR生命科学应用经理《小鼠滋养层类器官的构建及应用》报告人:林照博 上海科技大学生命科学与技术学院 研究员《泛素化介导的叶绿体蛋白调控》报告人:凌祺桦 中科院分子植物科学卓越创新中心 研究组长/研究员《共聚焦显微成像在生物医药研究中的应用》报告人:李文哲 北京大学天然药物及仿生药物全国重点实验室 助理研究员
  • 遥遥领先!从华为“显微镜”看手机和科学仪器的“合体”
    华为手机上的仪器:“显微镜”10月8日消息,根据美国商标和专利局近日公示的技术专利,华为公司获得了一项手机显微镜技术专利,镜头与被拍摄物体的距离保持0.5毫米左右,可以放大20-400倍。OPPO 此前曾在Find X3 Pro 手机中引入了“显微镜”功能,可以实现60 倍放大。华为公司于2021年提交了这项专利申请,提供了更丰富的显微镜应用场景。华为提交该专利期间仍处于疫情期间,在专利描述中特别介绍了识别拍摄对象细菌数量、提供卫生建议等等。在此简要介绍下该专利原理如下:电子设备上配有2个基础组件,一个是普通相机,而另一个是微距相机,该微距相机采用平场消色差微型物镜,光学分辨率为2.Math.m。1. 首先常规相机拍摄:该相机可识别物体的场景和类别,在示例中可以区分食物、手或餐桌。2. 再使用微距相机(Microscopic Camera)进行微观拍摄:接下来相机需要切换到显微镜模式,拍摄此前照片场景中的某个物体。显微镜模式的作用是揭示此前图像中的微观信息,可以显示细菌的种类和数量情况,这种微观视图为了解物体的卫生状况提供了宝贵的见解。3. 判断卫生情况:设备会根据普通摄像头的场景信息和显微摄像头的微观信息进行综合分析,此步骤对于准确确定物体的卫生状况至关重要。4. 智能提示:该技术可以通过文本、语音、振动或指示器等方式提供相关信息,详细描述对象的卫生情况,并提供改进和适当的卫生措施建议等等。华为在专利中还概述了多个应用场景:食品安全保证:您在家准备晚餐,可以用于确保要切的蔬菜是干净的。厨房用具维护:可以关心厨房用具的清洁度,例如咖啡机或微波炉。个人卫生评估:可以确保个人卫生,尤其是手部清洁。餐桌清洁度:您正在举办晚宴,并希望确保您的餐桌一尘不染。儿童玩具检查:您关心孩子玩具的清洁度。宠物卫生监测:您希望确保宠物生活空间的清洁度。遥遥领先,很快华为用户就能使用上一台最高能放大400倍的手机显微镜了。如此便携的神奇仪器,列文虎克老兄也得羡慕的“流口水”吧?超级便携的手机光谱仪法国公司GoyaLab推出了一款可以将任何智能手机或平板电脑变成超紧凑且功能强大的手持式光谱仪的设备GoSpectro,它的价格只有400多美元。简单来说,GoSpectro是一只可以安装在手机镜头上的分光镜。但是手机装上配套的APP后,二者就合体为一台紧凑却功能强大的便携式光谱仪。GoSpectro在整个可见光范围(400 nm-750 nm)上都很灵敏,光谱分辨率小于10nm,再现性为1nm。这种革命性的器件能够以紧凑性对光源进行光谱表征以及发射、透射或反射的测量光谱。它是在不同设置下和不同场景下测量光谱的理想伴侣,特别是在野外、户外等环境下更为适用。应用场景:珠宝行业:免提分析 纳米尺度测量 宝石分析、储存以及数据导出 无人眼疲劳检测。物证鉴定:便携式阅读器防伪标签(荧光墨水)、证物的实时验证。……虽然GoSpectro的参数及应用还远远比不上实验室中常见的光谱仪,但他的出现似乎在向这个世界宣告:科学仪器的手机时代已经来临。可以嵌入手机的光谱传感器在华为“显微镜”和GoSpectro光谱仪走入大家视野的同时,来自埃因霍芬理工大学(Technische Universiteit Eindhoven,以下简称:TU/e)的研究团队开发了一种新型近红外(NIR)光谱传感器,该传感器易于制造,并且尺寸与智能手机中的传感器相当,可用于工业过程监测及农业相关应用。这一突破性的研究成果已发表于Nature期刊。TU/e团队 图源Mantispectra官网“这项开发成本很低,因为我们可以批量生产众多传感器,并且目前已做好开展实际应用的准备。”该研究的共同第一作者、TU/e应用物理系光子和半导体纳米物理研究组的博士研究员Kaylee Hakkel说道,“该传感器芯片尺寸很小,甚至未来可以嵌入智能手机中。”图源Mantispectra官网这项研究的共同第一作者Maurangelo Petruzzella表示:“我们现在有基于该项技术的完整开发套件——SpectraPod,很多公司和研究团队利用它来构建应用程序。最棒的是,该传感器未来甚至可以在智能手机中普及,这意味着人们可以在家里用它来监测食物质量或健康状况。”开发套件SpectraPod 图源Mantispectra官网相比“手机外设”GoSpectro光谱仪,TU/e的芯片更趋近于“手机即仪器”理念的实现。“便携”是科学仪器行业近些年来公认的发展趋势之一,色谱、光谱、质谱等仪器的便携版已屡见不鲜。同时,随着传感器技术的发展,“便携仪器”的定义范围也在无限缩小。相信有一天,我们一定会见到更多品类手机仪器的诞生。
  • 见微知著——电子显微镜技术专业火爆的背后
    在河南省开封市东京大道北侧的职业教育园区里,坐落着一所特别的学校——河南化工技师学院。这所以现代化工技术为专业特色的技工院校因电子显微镜而“放大”了其在科研领域的知名度。电子显微镜可以帮助人类直接看到物质的原子结构或生物蛋白结构,是现代科学技术中不可缺少的重要工具,广泛应用于生命科学、材料科学、航空航天、医学、冶金学、考古学、刑侦学等领域。2023年4月19日,观众在《阅壤——月壤科研成果主题艺术展》展览上,观看月壤颗粒扫描电子显微镜背散射全景照片。新华社记者 黄博涵 摄国内唯一的以电子显微镜及相关科研领域为展览内容的博物馆——开封市电子显微镜博物馆就位于河南化工技师学院的校园里。漫步其约1500平方米的展厅,不仅可以回望电子显微镜的发展史,也能了解中国在电子显微科研领域的成长历程。河南化工技师学院拥有全国职业教育院校中唯一的电子显微镜技术专业(以下简称电镜专业),这也是学院招生最为火爆的专业。据河南化工技师学院党委副书记、院长袁巧红介绍,电镜专业的毕业生绝大多数就职于北大、清华、中科院等国内知名高校、医院和科研院所,为中国现代科学的科研一线提供了大量电镜技术人才。对于电镜专业的火爆需求,该专业的授课老师郭颖深有感触,“在我授课的一年级新生里,已经有两位被就业单位预定了。还有一位本科毕业的外聘教师被电镜专业的就业前景所吸引,在前年成了这个专业的学生。”据介绍,今年该专业原本计划招生40人,因报考和市场需求火爆,最后扩大招生至100人。电镜专业热门的背后是不断增长的电镜技术人才需求,而电镜技术人才稀缺的背后则是中国在材料科学、生命科学、半导体工业等前沿科学及工业领域不断加大的研发投入。继2022年中国全社会研发经费支出首次突破3万亿元、研发投入强度首次突破2.5%之后,2023年,全国全社会研发经费支出同比增长8.1%,研发投入强度达2.64%,基础研究投入比重连续5年超过6%。技术工人队伍是支撑中国制造、中国创造的重要力量。今年初,拥有自主知识产权的首台国产场发射透射电子显微镜正式发布,标志着中国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力。据了解,河南化工技师学院电镜专业的部分师生也参与了相关研发工作,为这一重大科研突破作出了贡献。电镜专业的火爆反映了社会对技能人才的不断认可。目前中国技能劳动者超过2亿人,其中高技能人才超过6000万人。按照规划,“十四五”时期末,中国技能人才占就业人员的比例将达到30%以上,高技能人才占技能人才的比例达到1/3。以职业教育大省河南为例,该省在2021年提出推动实施“人人持证、技能河南”建设。河南省连续15年技工院校年招生突破10万人,越来越多的劳动者特别是青年一代选择走技能成才之路。仅河南化工技师学院就培养出两位被誉为“世界技能奥林匹克”的世界技能大赛获奖选手,贺江涛曾获得世界技能大赛工业控制项目铜牌,姜雨荷则为中国夺得世界技能大赛化学实验室技术项目金牌,两人如今都在学校任教。“三百六十行,行行出状元”。这句老话在现代同样适用。
  • 大湾区显微科学与技术联盟成立:多校联合发起,聚焦电子显微技术
    2023年9月26-27日,大湾区显微科学与技术联盟启动会暨首届学术与技术研讨会在东莞召开。中国科学院院士、松山湖材料实验室主任汪卫华,东莞市委副书记、松山湖党工委书记刘炜,松山湖材料实验室大湾区电镜中心负责人马秀良,以及来自南方科技大学、中山大学、香港理工大学、澳门大学等高校、科研院所和企业的代表共100余人参加了联盟启动仪式,仪式由松山湖材料实验室党委书记、副主任冯稷主持。会上,大湾区显微科学与技术联盟正式成立,其宗旨是以显微技术(尤其是电子显微技术)为切入点,联合大湾区电子显微领域中的优势单位,培养电子显微学领域的人才队伍,建立电镜技术智库,促进电镜技术发展,支撑相关领域科技创新。松山湖材料实验室主任汪卫华院士在致辞中说到,松山湖材料实验室大湾区显微科学与技术研究中心是实验室重大科学装置平台之一,于2022年7月开启高端设备开放共享。实验室显微科学与技术研究中心联合香港科技大学、澳门大学、华南理工大学、南方科技大学等自愿发起成立大湾区显微科学与技术联盟,有利于整合粤港澳显微科学与技术相关创新资源,加强大湾区显微科学与技术设备共享与交流合作。东莞市委副书记、松山湖党工委书记刘炜表示,松山湖科学城作为综合性国家科学中心先行启动区的重要组成部分,是创新驱动的源头,希望以大湾区显微科学与技术联盟的成立为契机,大学、科研院所、产业界更多更紧密地联合起来,开放共享仪器设备,加强合作交流,开展更为活跃的科技和产业创新。松山湖材料实验室研究员马秀良介绍了大湾区显微科学与技术联盟的成立背景和意义。在他看来,联盟不仅仅是粤港澳交叉开放的一个新窗口,而是一个新的范式,一个大的平台,有利于打造世界一流的显微技术创新与服务平台和显微技术人才培养基地。首届学术与技术研讨会上,共有来自17家高校研究所及电镜厂商的20位专家学者做了学术报告。20余家与电子显微学相关的厂商参加了本次会议并做了产品和技术推介。本次会议旨在开展技术交流与培训,促进自主创新与技术推广,加强技术人才培养,服务广东省电镜技术发展战略研究。与会学者普遍认为,本次会议报告精彩、讨论热烈、学术氛围浓厚,在与专家及知名学者的直接交流中夯实了电子显微学专业知识技术、开阔了学术视野、提高了学术品位。会议于2023年9月27日圆满闭幕。
  • 强强联合!牛津仪器显微分析技术高级研讨会暨牛津仪器-甬江实验室显微分析联合实验室揭牌仪式在宁波顺利举办!
    为促进高层次显微分析技术发展,更好地服务于高新技术创新,2023牛津仪器显微分析技术高级研讨会暨牛津仪器-甬江实验室显微分析联合实验室揭牌仪式于2月21日在宁波甬江实验室举行。本次研讨会围绕扫描电镜、拉曼光谱、原子力显微镜、能谱等技术的原位表征和多技术联用对材料进行全方位的表征及分析的研究思路、进展和应用等主题,旨在助力材料表征与分析技术的深层次发展和培养更多热爱显微表征及技术的学者,为不同领域科技发展做出更大的贡献。本次活动不仅有来自甬江实验室和牛津仪器的专家分享最新成果进展,更是宣告了牛津仪器-甬江实验室联合实验室的成立,未来将服务于浙江省的材料领域技术创新。甬江实验室现场签到活动现场甬江实验室副主任 乌学东甬江实验室副主任乌学东首先代表甬江实验室欢迎到场的各位嘉宾,甬江实验室位于宁波,是新材料浙江省实验室,定位是前瞻创新,从0到1控制产业,造福社会,以开展材料前沿科学研究,突破材料关键核心技术,贯通材料创新全链条,引领产业高质量发展和使命。甬江实验室致力于建设成为高水平的平台型、开放型的重大科研平台,成为新材料领域和国家战略科技力量的重要组成部分,为我国的新材料科创事业和产业高质量发展提供支撑。甬江实验室与牛津仪器此次共同举办显微分析技术论坛,希望促进各位专家与牛津仪器技术专家的深入交流,为科研和企业材料的表征问题提供新的解决方案。此外,甬江实验室也非常重视仪器技术人才的培养,将与牛津仪器合作成立显微镜技术学院,争取对培养高端仪器人才提供更加有利的环境和土壤。乌学东希望未来材料分析测试平台能够推动现代分析测试技术领域的合作与交流,不断地提高专业技术水平,培养更多的专业化人才,为工业界和全世界提供更多的专业化检验测试方案,更好地服务宁波市乃至全国的材料领域技术创新。牛津仪器MAG中国区销售总监 李霄飞牛津仪器MAG中国区销售总监李霄飞首先欢迎了到场的各位嘉宾,随后介绍了牛津仪器的基本情况以及发展历程,展示了微区分析、拉曼显微镜、电子显微镜、台式核磁等部门的最新成果,李霄飞谈到,牛津仪器与甬江实验室的合作,今天应该仅仅是开始,双方未来将着眼于产业的研究,更好地服务于科技工作者们的科研创新与浙江省的产业发展。牛津仪器应用科学家马岚介绍了微区元素的EDS定性表征、定量分析以及WDS定量定性技术。牛津仪器高级应用科学家徐宁安介绍了厘米级、微米级以及纳米级的EDS及EBSD定性和定量分析方法。甬江实验室研究员邓必为以气凝胶、点阵材料、柔性金属材料等材料体系为例,介绍微纳结构材料原位测量方法以及未来在极端条件或多场作用下材料行为研究中的应用趋势。牛津仪器高级应用科学家竺仁介绍了高分辨原子力显微镜、快速原子力显微镜的最新技术进展以及原子力显微镜在工业研发中的应用。牛津仪器技术销售工程师苏虹羊介绍了牛津仪器WITec显微多功能解决方案以及共聚焦拉曼成像技术在材料研究中的应用。甬江实验室材料分析与检测中心主任吴杰介绍了甬江实验室材料分析与检测中心的定位及使命、目标与特色、中心架构与运营模式、中心现有能力、中心服务领域及服务方案等。牛津仪器-甬江实验室显微分析联合实验室揭牌仪式甬江实验室材料分析与检测中心主任吴杰表示,此次牛津仪器显微分析技术高级研讨会暨牛津仪器-甬江实验室显微分析联合实验室揭牌仪式的举办,既是促进专家学者与企业交流互动的一次很好的机会,也是甬江实验室与分析仪器制造商密切合作的生动展示,希望未来能与更多的分析仪器制造商展开深度的交流合作。牛津仪器MAG中国区销售总监李霄飞表示,这次不仅仅是牛津仪器和甬江实验室的强强联合,也是希望通过加深合作为科研工作者以及产业工作者带来更多更好的服务,为科研以及企业研发与检测带来更好的解决方案。合作仅是一个开始,双方未来仍可期。至此,本次牛津仪器显微分析技术高级研讨会暨牛津仪器-甬江实验室显微分析联合实验室揭牌仪式圆满结束。甬江实验室参观合影留念
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。  DM 2500P 技术参数  1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光  2. 目镜:10X/22mm视域  3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度  5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um  6. 可双向调中孔位的物镜转盘,5孔位  7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺  8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱  9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱  DM 2500P 主要特点  1. 无限远光学校正系统,图像清晰,高反差  2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱  3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力  4. 检偏镜可180度旋转  5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整  7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护  8. 调节工具可放在镜体上方便随时取用  9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变  10. 各种滤片都经过防热处理  11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动  江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。  工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。  摘自南通醋酸纤维素工程技术研究中心网站
  • 冷冻显微镜:制药研究中最酷的技术
    在过去的二十年中,冷冻显微镜方法已经成为生命科学家、制药研究人员等广泛使用的有效工具,用于检查接近其原生状态的生物结构1。冷冻显微镜能够可视化蛋白质和蛋白质复合物等物质的生物分子结构,是对现有的方法如x射线晶体学和核磁共振(NMR)等的有价值的补充。确定蛋白质和蛋白质复合物的结构是药物发现的一个重要部分,这对研究药物靶点非常有意义,也是深入了解疾病机制的重要课题。在这篇文章中,我们将阐述冷冻显微镜技术的使用,包括冷冻光学电子显微镜(cryo-CLEM),冷冻干燥显微镜(FDM),药物研究中的低温保存,以及温度控制显微镜如何使研究人员能够在低温下推进药物发现和开发研究。冷冻光学电子显微镜(Cryo-CLEM)电子显微镜(EM)使用微量材料,具备接近原子的分辨率,可以研究不同功能状态下的分子。冷冻电镜(Cryo-EM)使用极低温度,克服了真空条件下使用电子束测量高含水量生物标本的难题。在20世纪80年代冷冻电镜商业化之前,生物标本是通过化学固定或染色等方法制备的,但这些方法存在保存伪影,会影响图像分辨率。快速冷冻通常用于将样品保持在与自然生理环境相似的冷冻状态,在临床前阶段取得的结果必须在临床研究中可复制,这在药物研究中尤其重要。Cryo-CLEM结合低温荧光技术和冷冻电镜技术,提高了活检细胞内生物、化学和遗传过程的灵敏度。Cryo-CLEM能够对冷冻固定样品中的分子或分子组件(如细胞内膜、DNA或细胞结构元件)进行直接荧光标记和靶向,精确定位区域,以便后续使用EM进行高分辨率成像。为了使生物样品与EM中发现的真空条件兼容并保存结构细节,样品被嵌入玻璃状的冰中,需要保持在-140°C以下。必须避免与空气中水分接触,因为一旦接触会形成冰晶并污染样品。在低温条件下,荧光信号的结构细节被保留,光漂白显著减少。冷冻光学电子显微镜技术的进步体现在它包含了创新的冷冻荧光级,如Linkam CMS196,它能够自动获取整个电镜网格的高分辨率荧光图。这也用于样品导航,并将cryo-CLEM的案例情况与EM或与x射线显微镜等其他技术相关联。西班牙巴塞罗那的一组研究人员和临床医生使用荧光显微镜、透射电子显微镜(TEM)和低温软x射线断层扫描(cryo-SXT),可以观察到抗癌药物顺铂在极低浓度下的有效性,确定产生效果所需的最低剂量,以最大限度地降低毒性2。该小组在荧光显微镜上对低温冷冻的细胞样本进行成像,使用CMS196冷冻荧光台在液氮温度下将它们玻璃化,然后使用cryo-SXT对样本进行分析,这使得在纳米尺度上进行3D研究成为可能。得益于现有的低温成像技术,研究结果表明,三甲碱(研究的两种佐剂之一)促进了顺铂在较低剂量下的有效治疗,这可能为化疗治疗的发展铺平了道路,减少了对患者的副作用。冻干显微镜许多药物生产为冻干或冻干配方,以增加稳定性和延长保质期。药物开发人员必须为新的药物化合物创建一个优化的冷冻干燥过程,这可能是一项复杂而昂贵的工作。为了简化流程和开发更高效的冷冻干燥循环,了解三个主要冷冻干燥步骤的温度和压力要求是很重要的。使用冷冻干燥显微镜(FDM),研究人员可以直接可视化每个步骤,并确定药物产品在不同热条件下的行为。FDM包括一个专用的光学显微镜和一个专用的热工作台,它可以准确地控制样品的温度和压力,并允许实时进行热测量。冷冻干燥的一个关键参数是塌陷温度(Tc),即产品失去结构完整性并导致加工缺陷的温度。FDM使药物开发人员能够密切监测样品并快速有效地调整冷冻干燥方案。英国国家生物标准与控制研究所(NIBSC)的一个研究小组正在利用先进的FDM技术研究冷冻干燥药物的复杂性。该小组由Paul Matejtschuk博士领导,正专注于研究优化冻干脂质体药物的配方。由于冻干脂质体药物物理和化学性质不稳定,这对开发提出了挑战。Matejtschuk博士和他的团队使用安装在光学显微镜上的专用冷冻台(FDCS196, Linkam科学仪器)(图1),通过估计冻结、塌陷和融化温度,预测脂质体-冷冻保护剂混合物的理想的冷冻干燥条件3。图1:NIBSC实验室的仪器配置。Linkam FDCS196冷冻干燥冷冻台,T94控制器和液氮泵,真空泵,奥林巴斯BX51光学显微镜。图像显示FDM系统的旧版本图2: Linkam FDCS196冻干显微镜系统的最新版本这样的实验对于继续努力开发快速、可转移和可扩展的冷冻干燥方法来稳定脂质体等药物化合物至关重要。低温贮藏储存用于研究的生物标本有赖于有效的保存技术,以保持细胞的物理和生物完整性。冷冻或冷冻样品可能会导致冰晶的积聚,导致终端细胞损伤。冷冻保护剂是在冷冻过程中通过降低水的熔点来防止细胞损伤的重要物质。许多生物,如极地昆虫、鱼类和两栖动物,会产生自己的冷冻保护剂或防冻化合物。科学家们正在研究这些化合物,以开发新的冷冻保护剂来保存研究用的细胞。例如,由Matthew Gibson博士领导的英国华威大学的研究人员,正在研究防冻剂(糖)蛋白(AFP),目的是开发新的合成AFP模拟化合物。该实验室使用低温生物学工作台(BCS196,Linkam Scientific Instruments)来测量细胞中的冰晶生长,依靠该仪器的温度控制能力来观察AFP。Gibson博士研究了使用金纳米颗粒作为探针来测量冰再结晶抑制活性现象,使用低温生物学工作台来改变温度,并开发出一种高通量方法来筛选类似AFP具有结构特征的材料。4诸如此类的发现为开发新型冷冻保护剂提供了潜力,这种保护剂可以防止冷冻保存细胞中冰的生长,从而保持细胞的完整性,因此在生物医学和药学研究中具有潜在用途。未来药物研究本文中描述的技术强调了目前已有的各种冷冻显微镜方法的选择,这些方法有助于推进药物研究。Cryo-CLEM结合了cryo-EM和低温荧光的力量,作为一种相对较新的技术,它的成功依赖于专用冷冻工作台的发展,从而促进了Cryo-CLEM工作流程。这种工作台能够在液氮温度下保持玻璃化样品,使它们在从荧光显微镜移动到冷冻电镜成像时保持无污染。其他专用的冷冻台可与广泛的显微镜技术兼容,如FDM,可在成像过程中精确控制样品的温度,低至-196°C。这些创新为制药研究人员新疗法和生产工艺评估,以及生物样本保存以供未来研究等大量应用提供了工具。 作者:Linkam Scientific Instruments销售及市场部经理Clara Ko参考文献:1. Booy, F. and Orlova, E.V. Cryomicroscopy, in: Chemical Biology: Applications and Techniques (eds Larijani, B., Rosser, C.A., and Woscholski, R.) 2007.2. Gil, S., Solano, E., Martinez-Trucharte, F., et al. Multiparametric analysis of the3. effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS ONE. 2020 15(3): e0230022.4. Hussain M.T., Forbes N., Perrie Y., Malik K.P., Duru C. and Matejtschuk P. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. International Journal of Pharmaceutics 573, 2020 118722.5. Mitchell, D. E., Congdon, T., Rodger, A., and Gibson, M. I. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Scientific Reports, 2015 5: 15716.
  • 引进德国技术,所有显微镜均可升级到三维超景深显微镜
    上海江文国际贸易有限公司公司引进德国技术和组件,结合自主研发的三维超景深显微镜软件,推出三维超景深显微镜升级方案UMS300-3D,可将几乎所有类型的光学显微镜升级为三维超景深显微镜。UMS300-3D 三维超景深显微镜升级方案是超景深三维显微镜的最新一代产品。UMS300-3D 三维超景深显微镜升级方案三维引进德国进口高性能三维超景深显微镜组件和技术,结合本公司的三维超景深软件,可将显微镜的景深提高几百倍,UMS300-3D 三维超景深显微镜升级方案可获得样品的三维形貌,可进行三维重构和测量。UMS300-3D 三维超景深显微镜升级方案是三维光学数码显微镜的最新代表。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可获得样品的三维形貌,并可进行三维重构和测量,可应用于半导体、微纳米器件、机械制造、材料研究等领域的实验研究;如微芯片三维形貌分析,刻蚀试样三维形貌,封装材料,二元光学器件数据分析,机械、光学、镀膜、热处理等表面精确测量、材料显微压痕的三维测量分析、磨损表面质量评定、薄膜厚度测量、材料断口分析、金属材料和复合材料、生物材料研究等。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,满足材料表面形貌的观察,平面或三维测量,可以用于材料实验室或生产现场观测;用于金属材料断口、裂纹,磨损,腐蚀情况的三维超景深金观测, 青铜器, 陶瓷,织物,木材,纤维,古字画,壁画等方面的研究.。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可大大降低样品制样的要求,多数样品无须制样即可以获得三维超景深的三维观察,三维拍照,三维分析效果。对于颗粒赝品的三维超景深显微图像的颗粒三维分析,粉末三维超景深图像和三维分析都可以获得良好的三维超景深显微镜效果。UMS300-3D 三维超景深显微镜升级方案还可以大大降低客户购买三维超景深显微镜的成本,使用UMS300-3D 三维超景深显微镜升级方案的成本,大约为新购买进口三维超景深显微镜成本的10%。UMS300-3D 三维超景深显微镜升级方案还具备以下强大的显微测量功能:1、 组织成分分析、相含量测量自动识别组织成分、自动测量相含量、最后得出分析报告。常用于岩石、金相、孔隙分析、夹杂分析等。例如:成分分析,根据相含量的分布,给出三角统计图形,根据三角形分布判别种类。2、 全自动颗粒分析与统计提供功能强大的颗粒分析、统计工具。自动识别颗粒、自动测量颗粒面积、粒度、圆度、最大卡规直径、形态特征等大量参数。按照参数进行分类统计,给出统计柱状图和报告。3、 强大的辅助探测工具提供强大的颗粒探测工具(包括魔术棒和颜色吸管),方便用户进行手动识别颗粒,观察局部特征颗粒等应用。 能根据外形、颜色等特征,识别测量颗粒与组织。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制