当前位置: 仪器信息网 > 行业主题 > >

显微组织分析

仪器信息网显微组织分析专题为您整合显微组织分析相关的最新文章,在显微组织分析专题,您不仅可以免费浏览显微组织分析的资讯, 同时您还可以浏览显微组织分析的相关资料、解决方案,参与社区显微组织分析话题讨论。

显微组织分析相关的论坛

  • 【原创】金属材料组织分析方法-金相组织分析法-金相显微镜分析方法

    金属材料组织分析方法-金相组织分析法-金相显微镜分析方法金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。 众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段 。

  • 金相显微镜分析材料显微组织应注意的若干特性

    分析材料显微组织应注意的若干特性 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。 1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等; 2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等; 3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征; 4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要; 5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点; 6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

  • 金相显微镜分析材料显微组织应注意的若干特性

    金相显微镜分析材料显微组织应注意的若干特性: 金相显微镜光学金相组织呈板条状,为板条马氏组织,X-射线衍射物相分析及透射分析表明,淬火组织中还存在残余奥氏体,残余奥氏体主要存在于马氏体板条之间,用X射线法定量测试残余奥氏体含量为4.5%。淬火后低温回火处理可以提高马氏体板条间残余奥氏体的稳定性,改善材料的强韧性。另外,马氏体板条之间存在的奥氏体薄膜,是韧性相,金相显微镜在外力作用下会发生塑性变形和相变诱发塑性效应(TRIP效应,消耗能量,阻碍裂纹的扩展或使裂纹尖端钝化,获得较好强韧性配合。因此淬火回火后强度较高的同时,冲击韧度值也较高,这与淬火后形成的马氏体组织存在残余奥氏体有关。在实际金相分析研究中,适当注意材料显微组织的如下特点是很有好处的,尤其有助于实验方案设计的系统性和严谨性,以及减少对表观显微组织形态的误解和不合理分析的可能性。1、材料显微组织结构的多尺度性:原子与分子层次,位错等晶体缺陷层次,晶粒显微组织层次,细观组织层次,宏观组织层次等;2、材料显微镜组织结构的不均匀性:实际显微组织常常存在几何形态学上的不均匀性,化学成分的不均匀性,微观性能(如显微硬度、局部电化学位)的不均匀性等;3、材料显微组织结构的方向性:包括晶粒形态各向异性,低倍组织的方向性,晶体学择尤取向,材料宏观性能的方向性等多种方向性,应予以分别分析和表征;4、材料显微组织结构的多变性:化学组成改变,外界因素及时间变化引起相变和组织演变等均可能导致材料显微组织结构变化,从而,除需要对静态显微组织形态进行定性、定量分析外,应注意是否存在对固态相变过程、显微组织演变动力学和演变机理研究的必要;5、材料显微组织结构可能具有的分形(fractal)特性和特定金相观测可能存在的分辨率依赖特性:可能导致其显微组织定量分析结果强烈依赖于图像分辨率,当进行材料断口表面组织形态进行定量分析以及对显微组织数字图像文件进行存储和处理时更应注意这一点;6、材料显微组织结构非定量研究的局限性:虽然显微组织的定性研究有时尚可满足材料工程的需求,但材料科学分析研究总是还需要对显微组织几何形态的科学进行定量测定以及对所得定量分析结果的进行误差分析。

  • 【分享】为什么要用金相显微镜做实验分析金相内部组织

    [b][font=宋体][/font][/b][font=Times New Roman][/font][font=宋体]金相组织[/font][font=宋体]用[/font][color=black][font=Arial][font=宋体]金相显微镜[/font][/font][/color][font=宋体]方法观察到的金属及合金的内部组织[/font].[font=宋体]可以分为[/font]:1.[font=宋体]宏观组织[/font].2.[font=宋体]显微组织[/font]. [font=''Arial''][/font][font=''Arial'']1.[/font][font=宋体]奥氏体-碳与合金元素溶解在γ[/font]-fe[font=宋体]中的固溶体,仍保持γ[/font]-fe[font=宋体]的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处[/font] [font=''Arial''][/font][font=宋体]珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在[/font]a1~650[font=宋体]℃[/font][font=宋体]形成的珠光体片层较厚,在[/font][color=black][font=Arial][font=宋体]金相显微镜[/font][/font][/color][font=宋体]下放大[/font]400[font=宋体]倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在[/font]650~600[font=宋体]℃[/font][font=宋体]形成的珠光体用[/font][color=black][font=Arial][font=宋体]金相显微镜[/font][/font][/color][font=宋体]放大[/font]500 [font=宋体]倍,从珠光体的渗碳体上仅看到一条黑线,只有放大[/font]1000[font=宋体]倍才能分辨的片层,称为索氏体。在[/font]600~550[font=宋体]℃[/font][font=宋体]形成的珠光体用[/font][color=black][font=Arial][font=宋体]金相显微镜[/font][/font][/color][font=宋体]放大[/font]500[font=宋体]倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大[/font]10000[font=宋体]倍才能分辨的片层称为屈氏体。[/font] [font=''Arial''][/font][font=''Arial'']10.[/font][font=宋体]回火马氏体-马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的[/font]a-[font=宋体]相混合组织它由马氏体在[/font]150~250[font=宋体]℃[/font][font=宋体]时回火形成。[/font] [font=''Arial''][/font][font=宋体]这种组织极易受腐蚀,蔡康光学[/font][font=宋体]显微镜[/font][font=宋体]下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子[/font][font=宋体]显微镜[/font][font=宋体]下才能看到极细小的碳化物质点。[/font] [font=''Arial'']11.[/font][font=宋体]回火屈氏体-碳化物和[/font]a-[font=宋体]相的混合物。[/font] [font=''Arial''][/font][font=宋体]它由马氏体在[/font]350~500[font=宋体]℃[/font][font=宋体]时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学[/font][font=宋体]显微镜[/font][font=宋体]下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。[/font] [font=''Arial''][/font][font=宋体]它是经球化退火或马氏体在[/font]650[font=宋体]℃[/font]~a1[font=宋体]温度范围内回火形成。其特征是碳化物成颗粒状分布在铁素体上。[/font] [font=''Arial'']15. [/font][font=宋体]魏氏组织-如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织。亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。它出现在奥氏体晶界,同时向晶内生长。过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部[/font][font=''Arial''][/font]

  • 显微金相组织分析

    [font=&][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-14217.html[/url]金属及其合金在工[/color][/font][font=&][size=0px][color=#333333]袭[/color][/size][/font][font=&][color=#333333]业、农业、交通、国防及民用等各个方面是应用[/color][/font][font=&][color=#333333]最广[/color][/font][font=&][color=#333333]泛的材料。合金的成分、热处理工[/color][/font][font=&][size=0px][color=#333333]2113[/color][/size][/font][font=&][color=#333333]艺、冷加工工艺直接影响金[/color][/font][font=&][color=#333333]属材[/color][/font][font=&][color=#333333]料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此[/color][/font][font=&][color=#333333]用金[/color][/font][font=&][color=#333333]相[/color][/font][font=&][color=#333333]分析[/color][/font][font=&][color=#333333]的方法[/color][/font][font=&][size=0px][color=#333333]5261[/color][/size][/font][font=&][color=#333333]来观察检验金属内部的组织结构是工业生产中[/color][/font][font=&][size=0px][color=#333333]4102[/color][/size][/font][font=&][color=#333333]的一[/color][/font][font=&][color=#333333]种重要手段,金相检验常用于原材料检验、生产过程中的[/color][/font][font=&][size=0px][color=#333333]1653[/color][/size][/font][font=&][color=#333333]质量控制、产品质量检验、失效分析等方面。[/color][/font]目的:主要用于检查金属材料微观的组织构成、评判热处理质量。应用范围:铸铁、钢、铜合金、铝合金、镁合金、镍合金、钛合金等。测试步骤:取样→清洗→镶嵌→研磨→抛光→微蚀→观察。

  • 【分享】分析电子显微学导论 课件共享

    《分析电子显微学导论》作者:戎咏华 王晓东 黄宝旭 李 伟出版社:高等教育出版社 分析电子显微学是揭示材料介观和微观世界的有力工具,它能对材料显微组织的形貌、结构、成分进行三位一体的原位分析,是材料研究的重要现代技术之一。本书是材料科学与工程专业硕士生的课程教材。全书共分六章,内容包括分析电子显微镜的构造及其功能,样品的制备方法,电子衍射花样的特征和标定方法,晶体衍射中的数学处理,电子衍射衬度运动学和动力学理论及其应用,高分辨和高空间分析电子显微术的原理和应用以及分析电子显微学的进展。 本教材是掌握分析电子显微术原理和应用的入门书,故注重基本的物理概念和相关的数学推导,并附许多实例和思考题、练习题以便读者理解和掌握重点。本书配有电子课件和练习答案的光盘,便于教师授课。本教材也可作为正在从事该领域学习和研究的科技人员的参考书。如有需要该书的课件,可以留下邮箱,发给大家共享!![em31]

  • 倒置金相显微镜|软件分析

    倒置金相显微镜|软件分析

    一、概 述 4XC-BW金相显微镜用于鉴别和分析各种金属和合金材料的组合结构,广泛应用在工厂或实验室进行铸件质量的鉴定;原材料的检验或材料处理后的金相组织分析;以及对表面喷涂等一些表面现象进行研究工作。是钢铁、有色金属材料、铸件、镀层的金相分析;地质学的岩相分析;以及工业领域对化合物、陶瓷等进行微观研究的有效手段,是金属学和材料学研究材料组织结构的必备仪器,也广泛应用于生物、医学和教学等领域。越来越多的研究已不满足常规的金相显微及照相方式,将显微成像输入微机,由微处理器对图像作各种后期处理,是同步于当今世界在显微领域新技术。图像金相显微镜,接入了高清晰度的CCD摄像系统,由计算机对图像进行处理、编辑、保存和输出(如打印等)或进入多媒体系统及电子信箱。如果进一步接入图像分析计算机操作系统,还可以进一步对金相图谱进行研究分析,或对图像作精密测量,及多功能的图像形态分析、统计及输出图文报告。《金相自动分析系统2014》是为从事金相检验的单位或个人专门开发的一套计算机软件系统,它的基本原理是:用视频采集卡或数码相机等硬件设备,采集到金相显微镜中的金相图片,再对该图片进行处理和分析,得到相关检验结果。 二、金相显微镜4XC-W技术参数 名 称规 格配置主 机 4XC-BW倒置金相显微镜主机●观 察 筒 铰链式双目镜筒,30°倾斜;● 三目镜筒,瞳距和屈光度可调目 镜 10X/Φ18mm 平场场目镜;●物镜转换器 四孔物镜转换器●长焦距平场消色差物镜 10X/0.25 有效工作距离:8.9mm● 20X/0.4 有效工作距离:3.75mm● 40X/0.65 有效工作距离:2.69mm● 100X/0.90 有效工作距离:0.44mm●调焦机构 粗微动同轴调焦 微调格值:0.002mm● 行程(从载物台表面焦点起):30mm●载 物 台 台面尺寸:200mm×152mm● 平台压片壹只● 小平台:小孔、大孔各一●机械移动平台 移动范围:15mm×15mm●照 明卤素灯20W/6V,中心、光亮度连续可调● ●附件 物镜测微尺(精度为0.01mm)● 0.5X适配镜● 300万像素● 金相自动分析系统● 三、图像金相显微镜4XC-BW配置1、金相显微镜4XC2. 图像适配镜3. 图像传感摄像机4. 金相分析软件5、电脑和打印机(选配)《金相自动分析系统2014》 软件介绍一、简介金相分析软件是我单位联合材料学院联合开发,最新跟新到2014版本,现有金相组织模块438个,覆盖了现有的所有金相检验.详见金相模块目录。金相图像分析系统配置的“专业定量金相图像分析计算机操作系统”对采集的试样图谱进行处理和实时比对、检测、评级、分析、统计及输出图文报告。软件融合了当今先进的图像分析技术,为金相显微镜和智能分析技术的完美结合,系统测量、评定结果快速、正确,符合国标(GB) 和其它相关行业标准 (JB/YB/HB/QC/DL/DJ/ASTM 等)。系统全部中文界面,简洁明了和操作方便,经过简单培训或对照使用说明书,就可自如操作。并为学习金相常识和普及操作提供了快捷方法。二、主要功能:◇图像编辑软件:图像采集,图像存储等十多种功能;◇图像软件:影像增强,图像叠加等十多种功能;◇图像测量软件:周长、面积、百分含量等几十种测量功能;◇输出方式:数据表格方式输出,直方图输出,图像打印输出。专用金相软件包:◇晶粒度测量评级(晶界提取,晶界重建、单相、双相、晶粒度测量、评级);◇非金属夹杂物测量、评级(其中包括硫化物、氧化物、硅酸盐等);◇珠光体、铁素含量测量、评级;球墨铸铁石墨球化率测量评级;◇脱碳层、渗碳层测量,表面涂层厚度测量;◇焊缝熔深度测量◇铁素体、奥氏体型不锈钢中相-面积测量;◇高硅铝合金初晶硅与共晶硅分析;◇钛合金材料分析……等;◇包含进行比对的近438种常用金属材料的金相图谱,适应绝大多数单位金相分析和检验的要求;◇鉴于新材料和进口牌号材料的不断增加,对于软件中尚未录入的材料及评定标准,可以度身定制和录入。《金相自动分析系统2014》 软件介绍一、简介金相分析软件是我单位联合材料学院联合开发,最新跟新到2014版本,现有金相组织模块438个,覆盖了现有的所有金相检验.详见金相模块目录。金相图像分析系统配置的“专业定量金相图像分析计算机操作系统”对采集的试样图谱进行处理和实时比对、检测、评级、分析、统计及输出图文报告。软件融合了当今先进的图像分析技术,为金相显微镜和智能分析技术的完美结合,系统测量、评定结果快速、正确,符合国标(GB) 和其它相关行业标准 (JB/YB/HB/QC/DL/DJ/ASTM 等)。系统全部中文界面,简洁明了和操作方便,经过简单培训或对照使用说明书,就可自如操作。并为学习金相常识和普及操作提供了快捷方法。二、主要功能:◇图像编辑软件:图像采集,图像存储等十多种功能;◇图像软件:影像增强,图像叠加等十多种功能;◇图像测量软件:周长、面积、百分含量等几十种测量功能;◇输出方式:数据表格方式输出,直方图输出,图像打印输出。专用金相软件包:◇晶粒度测量评级(晶界提取,晶界重建、单相、双相、晶粒度测量、评级);◇非金属夹杂物测量、评级(其中包括硫化物、氧化物、硅酸盐等);◇珠光体、铁素含量测量、评级;球墨铸铁石墨球化率测量评级;◇脱碳层、渗碳层测量,

  • 【分享】焊缝组织观察及分析

    [color=#DC143C][size=4]目的:[/size][/color]观察焊缝宏观组织,观察焊缝,热影响区及母材金属的显微组织; 了解焊缝金相检验方法。一般把焊缝组织划分宏观组织和微观组织,因此焊缝接头的金相检验一般也分为宏观分析和显微分析两种。焊接接头的宏观组织可分为三个部分:(1)中心焊缝区;(2)靠近焊缝的热影响区(3)母材金属。(一)焊缝区的重复显微组织 在显微镜下观察,焊缝凝固后的组织主要特征之一是形成柱状晶。其生长有明显的方向性,与散热最快的方向一致,即垂直于熔合线向焊缝中心发展。对于常用的焊接结构钢(低碳钢)从液态向固态的一次结晶形成柱状晶奥氏体,然后进一步冷至室温还要经历二次结晶过程,呈柱状晶的奥氏体在冷却过程中分解为铁素体和珠光体。由于含碳较低,由先共析体素体沿奥氏体晶界析出,把原奥氏体的柱状晶轮廓勾画出来,也称为柱状铁素体。柱状铁素体十分粗大,其间隙中为少量珠光体,往往成魏氏组织形态。若为多层焊接,焊缝二次结晶组织变为细小铁素体加少量珠光体。这是由于后一层焊缝相对前一层焊缝进行加热,使其发生相变再结晶,从而柱状晶消失,形成细小的等轴晶。合金钢二次结晶的组织,则受到合金元素和焊接条件的影响而会出现不同的组织一般焊缝中合金元素较多,淬透性较好或冷却速度加快时出现贝氏体-马氏体组织。焊接接头的显微组织

  • 【原创大赛】SA738GrB板GMAW焊接工艺接头微观组织分析

    【原创大赛】SA738GrB板GMAW焊接工艺接头微观组织分析

    SA738GrB板GMAW焊接工艺接头微观组织分析摘要:通过对三代核电AP1000 CV筒体SA738板纵缝自动气保焊焊接接头微观组织分析,探讨大尺寸焊接接头微观组织分析方法,微观组织下辨别贝氏体和马氏体方法以及魏氏组织对焊接接头性能影响。试验结果表明焊缝组织以细小均匀的针状铁素体为主、热影响区为贝氏体。魏氏组织对焊接接头力学性能影响不大。关键词:AP1000; SA738Gr.B;ER90S-G;针状铁素体;贝氏体;马氏体;魏氏组织1 前言 三代核电AP1000 CV筒体在设计上采用45mm厚的低合金SA738Gr.B型钢板,其纵向拼装采用自动气保焊,填充ER90S-G焊丝进行焊接,具有生产效率高、操作简便等优点。但不同的工艺参数对接头力学性能及组织有较大影响,对接头的显微组织进行分析,是判断接头力学性能的重要依据。受焊接热循环、热输入、冷却速度、化学成分偏析等因素影响,焊接接头各个区域获得单一的典型显微组织比较困难,多为混合组织,微观形貌难以辨别;另外,对于厚板类大尺寸焊接接头如何选择检验部位,对结果的正确评定也有较大影响。2 母材材质、热处理工艺 显微组织分析第一步是确认母材平衡态组织。这就需要确定母材种类、化学成分、热处理工艺。SA738Gr.B属于美标ASTM A738,B级钢板,若对此类美标材料不熟悉,但通过分析其化学成分(见表1)和力学性能(见表2),可以与国标材料进行对应,从而初步判断其平衡态组织。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092217413570_01_2593418_3.png 通过分析对比,可以得出SA738Gr.B属于低合金高强度钢,相当于国内Q460等级钢。通过查阅出厂材质书,确定热处理工艺为调质(淬火+回火)。至此,可以初步判断其平衡态组织为回火贝氏体。目前,SA738Gr.B钢板已经国产化,其最佳热处理工艺为920℃淬火+630℃回火,得到平衡态组织为细小均匀的板条贝氏体,见图1。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092217450166_01_2593418_3.png 母材平衡态组织决定接头热影响区组织。但不等于说平衡态组织就是热影响区组织。因为热影响区组织受到焊接热作用与工厂热处理相差巨大。只能在母材平衡态组织基础上结合热影响区显微组织形貌进行具体分析。3 冷却对组织的影响 在对组织进行显微分析时,可能会碰到由于组织复杂,组织形貌难以辨别的情况,或者一些组织的微观形貌在显微镜下很相似,增加了辨认难度。而不同的组织转变温度不同,如果分析出冷却过程对组织析出的这种影响,则有利于对显微形貌进行正确辨认。冷却过程对转变产物的影响可在准确的在“CCT”曲线上体现。CCT曲线即过冷奥氏体连续冷却转变曲线,反映的是过冷奥氏体在不断地降温过程中发生的相变。每个钢种均对应相应的CCT曲线。如果知道该钢种CCT曲线,就能知道在不同冷速下对应的组织产物。影响CCT曲线因素很多,如C元素含量、合金元素含量,且绘制CCT曲线较为复杂,这里不做深入讨论。但应掌握几类常见钢种CCT曲线,有利于分析几中基本相的形成区间。如马氏体需要通过快冷的方式获得。在CCT曲线反映是,(见图2,为共析钢CCT曲线,)以大于临界冷速的冷却速度,如水淬,过冷奥氏体不经过珠光体(P)转变区,而直接过冷到马氏体(M)转变区(Ms—Mf)。掌握这一理论,有利于后面分析热影响区是否存在马氏体。 低合金钢焊接冷却一般为空冷,但要注意接头的焊后热处理方式。不同的热处理方式对接头的微观组织有较大影响。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092217474369_01_2593418_3.png4微观组织分析4.1 检验点的选择 对于焊接接头,原则上选择接头最薄弱部位且能有代表性地反映该钢种,并在现行施焊工艺条件下所获得的焊接接头区域的典型显微组织形貌。生产实践得出如下原则: (1)、对于空淬性小的低碳钢,焊缝金属应选择盖面的最后焊道并未受重结晶热作用焊道中心部位,或封底最后焊道中心部位。热影响区通常选取盖面或封底最后焊道最差的过热重结晶区的显微组织作为热影响区组织。 (2)、对于空淬性较强的焊接接头,则选择第一条焊道的焊缝金属未受重结晶热作用的焊缝中心作为焊缝金属显微组织的检验部位。 (3) 对于有高韧性要求的焊接接头,通常也都是空淬性较强的低合金钢。除了按(2)要求选择显微检验点外,还要加上最后焊道及其母材热影响区的检验点。 除按以上原则选择检查区域外,还应沿着接头熔合线扫查,因为熔合线处最易产生微裂纹和紧挨熔合线的母材热影响过热区是整个接头性能最薄弱的区域。 SA738 Gr.B钢板具有较强的淬透性(其化学成分中添加Mo等合金元素就是提高其淬透性),另有还要求其具有高的低温冲击韧性。所以按照以上原则,选择了以下重点检查区域(见图3,SA738 Gr.B GMAW焊接工艺接头微观组织检查区域):区域1:盖面焊道融合线;区域2:盖面焊道中心至接头厚度1/4;区域3:接头厚度1/4处至接头中心。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092217501796_01_2593418_3.png4.2 显微组织分析 显微镜检查前,首先应对整个接头进行目测,对有怀疑缺陷的区域应在显微镜下确认。目测未发现异常,则用低倍镜头(宜为200~250倍)沿熔合线进行扫查。之所以用低倍镜头,一方面是低倍镜头可视区域更大,特别是针对从下方观察试样的老式金相显微镜,有利于快速找到熔合线;另一方面,可以清晰的观察熔合线及两侧区域(母材过热影响区和焊缝区)。 如图4,为200倍下盖面焊道熔合线区域(区域1)。该视域下,熔合线清晰可见,其左侧为焊缝组织,大量的均匀细小的针状铁素体+少量先共析铁素体(白色呈网状)之所以为网状是先共析铁素体沿奥氏体晶粒析出的原因。200视域下不宜清楚观察到针状铁素体形态。选用500~800倍镜头进行进一步观察与确认。如图6,800倍视域下,针状铁素体清晰可见。值得注意的是,倍数越高,对制样要求越高。 熔合线右侧为母材热影响区过热组织。200倍视域下,可以看见条状、块状组织。结合第2章的分析,母材平衡态组织为板条贝氏体。板条贝氏体属于下贝氏体,具有高的强度,同时具有良好的塑性和韧性的综合机械性能。由于受到焊接热影响,母材细小均匀的板条变成条状、块状。所以,可以初步判断热影响区为下贝氏体。为了进一步确认,在800倍显微镜下观察母材热影响过热区,见图5,块状贝氏体形貌更明显。可对比图1,母材平衡态板条贝氏体进行观察,由于受焊接热作用,块状贝氏体尺寸更大。 对区域2进行分析,从盖面焊道中心至接头厚度1/4区域进行扫查。仍然采用低倍+高倍配合的方式。低倍进行扫查,不能确认的组织,用高倍进行确认。此区域由细小均匀针状铁素体组成,组织形态与图6相同。 对区域3进行分析,从接头厚度1/4处至焊缝中心由细小的块状铁素体组成,尺寸较图6中铁素体稍大,有大量碳化物析出,见图7。大量碳化物析出跟焊接热作用循环有关。 按照以上方法对另一侧焊缝进行分析,得出相同结论。整个接头区域未发现微裂纹及影响接头力学性能的非正常组织。影响接头力学性能的非常组织包括非金属夹杂物、网状渗碳体等。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092217522946

  • 铝钛硼显微组织不同级别

    铝钛硼显微组织不同级别

    放大倍数:100倍材质:铝钛硼1、一级显微组织http://ng1.17img.cn/bbsfiles/images/2013/03/201303120956_429504_1753235_3.jpg2、二级显微组织http://ng1.17img.cn/bbsfiles/images/2013/03/201303120957_429505_1753235_3.jpg

  • 【分享】电气线路火灾中铜导线一次短路与二次短路的显微组织特征

    [color=#DC143C][size=6]电气线路火灾中铜导线一次短路与二次短路的显微组织特征[/size][/color]摘 要:对电气线路火灾中铜导线的一次短路与二次短路的显微组织特性进行了对比分析,利用二者之间微结构形态上的差异来分析鉴定火灾的起因,为公安消防部门侦破火灾案件提供了有利的科学证据,可使案件侦破率及破案速度大大提高。因而,将此项工作加以推广有十分重要的意义。与金相显微镜比较,用电镜进行观察分析具有放大倍数连续调节范围大,景深大,分辨率高,同时具有图象更清晰,立体感更明显的特点。关键词:一次短路 二次短路 熔珠 熔痕 柱状晶 等轴晶电镜观察分析是研究金属材料,半导体材料及一切固体材料和生物医学材料的表面形态,内部组织及其结构的一门科学。在上述学科中电镜已得到了广泛的应用。而将它的科学理论,技术方法和仪器设备应用到消防部门,用于电气火灾原因分析中,则是一种比较新的方法。通常,火灾现场的金属残留物很多,在什么部位取样是很重要的。取样部位的恰当与否,直接影响到检查结果的准确性。因而,必须提取带有融化痕迹的物证。由电气线路、设备故障引起的火灾,在故障点高温作用下,绝大多数的铜、铝甚至钢铁及其它合金等,都会出现熔化现象。分析这些金属或导线残留物熔痕的表面形态和其内部的组织结构,对于认定火灾起因才有意义。本文仅对电气线路火灾中铜导线的一次短路与二次短路的显微特征进行比较分析。1 实验部分1.1 导线短路痕迹的形成及其表现形式电气线路中的不同相或不同电位的两根或两根以上的导线不经负载直接接触称为短路。由于短路的瞬时温度可达2000℃以上,而常用的铜导线的熔点为1083℃,因此,短路强烈的电弧高温作用可使铜导线局部金属迅速熔融,气化,甚至造成金属熔滴的飞溅,从而产生了导线短路熔化的痕迹。导线短路形成的熔痕可分为两种:一种是发生在火灾之前的短路,称为一次短路熔痕:另一种是着火后,火灾火焰或火灾热使导线绝缘破坏而形成的短路,称之为二次短路熔痕。由于短路电流的大小及作用时间的不同,因而短路熔痕的外观状态相当复杂,常见的有以下几种:(1)短路熔珠 (2)尖状熔痕 (3)凹坑状熔痕 (4)喷溅熔珠。

  • 求助:研究材料的显微组织

    我制备的原样品是经甩带做出来的薄带,大约宽度为5mm,厚度少于1mm。很脆。但是还想研究它的显微组织,我应该怎么做呢?能做镶嵌磨试样看晶相吗?各位帮帮忙,谢谢!

  • Al-TI-B的显微组织

    Al-TI-B的显微组织

    AL-TI-B的显微组织,用电解抛光腐蚀仪电解后的组织,和大家分享一下。http://ng1.17img.cn/bbsfiles/images/2012/06/201206141745_372444_2456616_3.jpg

  • 5182扁锭显微组织

    5182扁锭显微组织

    下图是5182铝合金扁锭显微组织,放大倍数200倍,都有哪些相或化合物存在http://ng1.17img.cn/bbsfiles/images/2014/06/201406031018_501116_1753235_3.jpg 图1http://ng1.17img.cn/bbsfiles/images/2014/06/201406031019_501117_1753235_3.jpg 图2

  • 5083铝合金扁锭显微组织

    5083合金扁锭,均质处理后的显微组织,见下图:http://ng1.17img.cn/bbsfiles/images/2017/10/2015052008350586_01_1753235_3.bmp 图1 200倍 组织http://ng1.17img.cn/bbsfiles/images/2017/10/2015052008373011_01_1753235_3.bmp 图2 100倍 晶粒

  • 铝合金4043显微组织

    牌号4043,铝合金线材,直径9.5mm,200倍显微组织[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709280845_01_1753235_3.bmp[/img] 图1 边部[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709280846_01_1753235_3.bmp[/img] 图2 中心

  • 金相显微镜的结构、原理及应用解析

    金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段。 金相显微镜主要由光学系统、照明系统、机械系统、附件装置(包括摄影或其它如显微硬度等装置)组成。 根据金属样品表面上不同组织组成物的光反射特征,用显微镜在可见光范围内对这些组织组成物进行光学研究并定性和定量描述。它可显示500~0.2m尺度内的金属组织特征。早在1841年,俄国人(п.п.Ансов) 就在放大镜下研究了大马士革钢剑上的花纹。至1863年,英国人(H.C.Sorby)把岩相学的方法,包括试样的制备、抛光和腐刻等技术移植到钢铁研究,发展了金相技术,后来还拍出一批低放大倍数的和其他组织的金相照片。索比和他的同代人德国人(A.Martens)及法国人(F. Osmond)的科学实践,为现代光学金相显微术奠定了基础。至20世纪初,光学金相显微术日臻完善,并普遍推广使用于金属和合金的微观分析,迄今仍然是金属学领域中的一项基本技术。 金相显微镜是用可见光作为照明源的一种显微镜。分立式和卧式,见图1。它们都包括光学放大、照明和机械三个系统。 放大系统是影响显微镜用途和质量的关键。主要由物镜和目镜组成。 显微镜的放大率为: M显=L/f物×250/f目=M显×M目式中M显——表示显微镜放大率;M物、M目和f物、f目分别表示物镜和目镜的放大率和焦距;L为光学镜筒长度;250为明视距离。长度单位皆为mm。 分辨率和象差透镜的分辨率和象差缺陷的校正程度是衡量显微镜质量的重要标志。在金相技术中分辨率指的是物镜对目的物的最小分辨距离。由于光的衍射现象,物镜的最小分辨距离是有限的。德国人阿贝(Abb)对最小分辨距离()提出了以下公式 d=λ/2nsinφ式中为光源波长; n为样品和物镜间介质的折射系数(空气;=1;松节油:=1.5);φ为物镜的孔径角之半。 从上式可知,分辨率随着和的增加而提高。由于可见光的波长在4000~7000之间。在角接近于90的最有利的情况下,分辨距离也不会比0.2m更高。因此,小于0.2m的显微组织,必须借助于电子显微镜来观察(见),而尺度介于0.2~500m之间的组织形貌、分布、晶粒度的变化,以及滑移带的厚度和间隔等,都可以用光学显微镜观察。这对于分析合金性能、了解冶金过程、进行冶金产品质量控制及零部件失效分析等,都有重要作用。 象差的校正程度,也是影响成象质量的重要因素。在低倍情况下,象差主要通过物镜进行校正,在高倍情况下,则需要目镜和物镜配合校正。透镜的象差主要有七种,其中对单色光的五种是球面象差、彗星象差、象散性、象场弯曲和畸变。对复色光有纵向色差和横向色差两种。早期的显微镜主要着眼于色差和部分球面象差的校正,根据校正的程度而有消色差和复消色差物镜。近期的金相显微镜,对象场弯曲和畸变等象差,也给予了足够的重视。

  • 金相显微镜的图像分析

    调焦于某一物面(称为对准平面)时,如果位于其前后的物平面仍然能被观察者看的很清楚,则该两平面之间的距离就称为金相显微镜的景深。 根据理论推算,显微镜的景深,也是金相显微镜的景深有公式计算的。它由眼睛的调节状态不变时金相显微镜的景深数值,人眼调节能力贡献的对金相显微镜观察所附加的景深值(是按30岁左右的正常眼的平均调节能力计算的)等组成计算公式。其中物镜与试样间介质的折射率,金相显微镜的视放大率,物镜的数值孔径等都是比较重要的数值。 金相显微镜中的金相试样在大多数情况下不会是一个平面,因为在金相检验中,试样经过侵蚀以后某些地方会出现侵蚀坑,而某些像碳化物那样硬的质点则高于侵蚀表面。只要视场内的这些高低面其距离仍在景深范围以内,便可以使各层组织都能清晰地同事映现出来。不过在操作中不要过分地选择小数值孔径的物镜,或过分调小孔径光阑来提高景深,因为这样会损害金相显微镜的分辨能力。提高景深和提高分辨能力对数值孔径提出了相反的要求,在金相检验操作中,应按检验要求对这两方面适当予以照顾。

  • 【原创大赛】【微观看世界】+不锈钢焊缝的显微组织

    【原创大赛】【微观看世界】+不锈钢焊缝的显微组织

    不锈钢材料焊接的显微组织在论坛体现的很少,这次正好手头有个不锈钢S31603材料的焊接试验项目,顺便做了个金相,来此给各位分享下。母材材质:S31603(相当于00Cr17Ni14Mo2),焊材:E316L焊接形式:双面手工埋弧焊。试验浸蚀方法:王水乙醇溶液浸蚀。显微镜放大倍数:200~500X显微镜型号:Nikon MA-100http://ng1.17img.cn/bbsfiles/images/2014/09/201409191014_514511_1622447_3.jpg图1为焊接接头的宏观组织。http://ng1.17img.cn/bbsfiles/images/2014/09/201409191023_514523_1622447_3.jpg图2为母材组织形貌,奥氏体组织,部分晶粒呈孪晶分布http://ng1.17img.cn/bbsfiles/images/2014/09/201409191032_514526_1622447_3.jpg图3为焊缝区组织形貌奥氏体和呈树枝状的铁素体http://ng1.17img.cn/bbsfiles/images/2014/09/201409191036_514527_1622447_3.jpg图4放大至500X的焊缝区组织形貌,奥氏体+树枝状铁素体http://ng1.17img.cn/bbsfiles/images/2014/09/201409191044_514530_1622447_3.jpg图5焊缝与母材交界处的形貌http://ng1.17img.cn/bbsfiles/images/2014/09/201409191048_514532_1622447_3.jpg图6依然是焊缝熔合线处的组织形貌,左侧为奥氏体区,右侧上下为奥氏体+铁素体

  • 默克显微分析产品大揭秘

    默克显微分析产品大揭秘

    提到德国默克,大家会想到什么呢http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif"质量好","价格高"。。。http://simg.instrument.com.cn/bbs/images/brow/em09503.gif其实,大家忽略了很关键的一点,那就是德国默克拥有齐全的实验室基础产品,除了色谱柱,液相气相质谱溶剂,水质产品,多肽合成和有机合成产品,还有显微分析产品哦我们平时耳熟能详的“革兰氏染色”、“巴氏染色”、“H&E染色”、“吉姆萨染色“,这些都属于默克的Microscopy系列当然,Microscopy系列的产品远远不止这些,按照应用不同,分为“细菌染色”、“血液染色”、“细胞染色”、“组织染色”四大类。http://ng1.17img.cn/bbsfiles/images/2012/04/201204261028_363456_2491887_3.jpg

  • 【原创大赛】2015年度显微镜和显微分析(M&M)大会(多图现场报道+分析总结)

    【原创大赛】2015年度显微镜和显微分析(M&M)大会(多图现场报道+分析总结)

    【原创】首发仪器信息网,转载注明来源 2015年度显微镜和显微分析(M&M)大会 http://ng1.17img.cn/bbsfiles/images/2015/07/201507281037_557490_1982636_3.jpg【M&M大会简介】M&M大会(Microscopy and Microanalysis Meeting)是由美国显微学会 MSA(Microscopy Society of America)主办的全球最大的显微技术和分析科学大会。作为全球最重要的显微设备展览之一,每年都会吸引超过100家厂商参展。在连续五天的会议中,大会将组织超过40个不同主题的研讨会,包括了显微前沿科学和技术的各个领域。各大显微设备厂商也都会带着最新的产品参展。这不光是学术界也是产业界的一次大聚会。你可以看到学术界的最新进展,也可以实地试用最新的仪器设备,还有不错的培训讲座和很丰富的社交活动。我已经连续参加了四届,每次都会收获良多。今年的大会于8/2-8/6在玫瑰之城波特兰Portland举行,而这里也正是著名的半导体大厂Intel和电镜大厂FEI总部的所在地。过去一年中电镜行业出现很多新技术和新趋势,结合这次大会的现场体验和在这里大家分享一下我的感受。 http://ng1.17img.cn/bbsfiles/images/2015/07/201507281039_557491_1982636_3.jpg【最新应用趋势】 近年来对材料进行超微尺度的研究依然热门,对于同时拥有高分辨和微分析能力的透射电镜和扫描电镜的需求持续强劲。各大研究所和高校在电镜的投入上也越来越大,高分辨率冷场带球差矫正的TEM/STEM已经可以在很多地方见到。在物理/材料领域,美国国内有大量的研究都集中在新能源材料领域特别是对电池材料的探索。这很大程度上得益于美国能源部DOE近年来在各大国家实验室的大力投入。这个带来的相应结果是,原位电镜技术Insitu-TEM已经成为了在材料学应用中的热点。去年的展会中出现了很多可用于单一或多体系气相,液相,电化学,力学和热学实验的原位样品杆以及配套设备。生物和生物材料交叉领域也出现了两个热点,一个是改进的冷冻电镜技术(cryoTEM)结合三维重建在结构生物学中的应用,另一个就是逐渐成熟的可完成多尺度分析的相关显微技术(correlative microscopy)。原来在生物样品中存在的低衬度,易受电子损伤等问题在冷冻技术下都得到了一定程度的改善。新的tomography三维成像样品杆和改进的软件和算法让三维重建变的更加便捷和有效,高分辨原子尺度的三维冷冻电镜已经可以实现。对于多尺度的研究,许多电镜厂商已经开始提供完整的相关显微方案以实现在同一样品上结合光学和电子信息的收集和分析。http://ng1.17img.cn/bbsfiles/images/2015/07/201507281045_557495_1982636_3.gifhttp://ng1.17img.cn/bbsfiles/images/2015/07/201507281045_557496_1982636_3.jpg【2014年大会回顾】 1)TEM/SEMTEM方面,FEI作为全球最大的电镜供应商依然占据着很大一部分电镜市场。经过2013年产品线的重新排布,现在已经由经典的Tecnai和Titan系列又延伸出了加强了3D和元素分析功能的紧凑型Talos系列和针对半导体行业的Metrios系列。再根据材料学和生物学的不同要求演化出了Titan Themis和Titan Krios这样的细化型号。同时还有特殊的环境电镜Titan ETEM,拥有脉冲电子束实现4D数据观察的Tecnai Femto UEM,以及全球唯一的内置荧光显示CLEM系统的Tecnai iCorr生物电镜。FEI的产品线已经非常全面,也针对不同用户都有相应的解决方案。日本电子JEOL拥有性价比极高的2100系列和高端的ARM200F及最新发布的ARM300F,一直在中端市场表现不错,依然是电镜分析实验室日常应用的首选。日立Hitachi在TEM方面没有什么新的机型,俨然重点已经转向SEM,集中加强自己在冷场SEM中的优势。蔡司Zeiss在2013年选择全面退出TEM的市场,开始专注经营自己的SEM/Dual Beam市场。早先Zeiss 的libra系列有着不错的设计和性能,内置的omega filter和kohler照明系统更是独门利器,着实可惜。Zeiss现在依然在开发独家的氦离子电镜和X光电镜,未来都可能成为亮点。SEM方面各家竞争愈发激烈,战线都已经延长到了dual beam FIB/SEM 和特殊的correlative SEM。Tescan全面发力,在美国设置独立服务机构的同时开发了许多新型号的SEM。最引人注目的是和Witec合作开发的全球首款集合了Raman和SEM的RISE系统,去年在MM大会首发并得到了今年光学界大奖Photonics Prism Award。http://ng1.17img.cn/bbsfiles/images/2015/07/201507281045_557497_1982636_3.jpg2)STEM 对于国内不太熟悉的Dedicated STEM, 去年的NION着实让业界惊叹。配合多级球差校正系统,传统UltraSTEM系列早已拥有了超高的分辨率和稳定性。可惜对于电子能量损失谱EELS的分辨率一直不够理想,普遍仅仅能维持在1eV左右。而目前装了单色器monochromator的TEM已经可以轻松达到0.15eV甚至0.1eV。传奇人物Krivanek(Nion和Gatan的创始人,EELS谱仪的发明人之一),他重新设计了monochromator并实现了在新的Nion HERMES上的惊人的20meV(0.02eV,传言说目前已经逼近6meV)EELS分辨率!记得在去年大会中,NION远程操作位于ASU的UltraSTEM100,现场演示了0.02 eV的分辨率,十分惊人。这意味着EELS已经可以拥有了和XAS类似的分辨率,可以捕捉到更加丰富的价态信息和对轻元素的定量分析,包括各种coreloss范围的键态信息,low-loss范围的surface plasmon,甚至exiton等信息。http://ng1.17img.cn/bbsfiles/images/2015/07/201507281046_557498_1982636_3.jpg3)其他EM设备去年伴随着Insitu,cryo和correlative类技术的发展,各大EM设备供应商都推出了很多有特色的产品。第一个值得注意的是EM设备的大厂Gatan推出了适应于serial block-face SEM (SBSEM)的3View系统,结合了一个装在SEM内部的超薄切片机可以更方便的实现各个尺度的三维重建。Zeiss已经是第一个支持这个系统的厂家,未来将在更多厂家上支持。第二个是Protochips推出的最新insitu样品杆,可以提供精确控制气压,气体组成和温度,对于需要研究原子尺度的反应大有帮助。另外,Fischione推出了最新的cryo holder让人眼前一亮。全新的样品装载装置比传统样品杆更为简便快捷,打破了原来Gatan的垄断的cryo holder市场。http://ng1.17img.cn/bbsfiles/images/2015/07/201507281050_557499_1982636_3.png【2015大会总结】 今年的M&M从重量级的开场嘉宾开始,华人诺贝尔化学奖得主钱永建的在会议第一天作了题为" New Molecular Tools for Light and ElectronMicroscopy"的报告。报告着重提到了CorrelativeEM在生物领域的最新进展和传统EM的最新引用。会议依旧按照三大主题安排:显微新技术,物理类显微分析和生物类显微分析。在TEM新技术方面,主要是围绕in-situ,low-voltage还有dynamic 4D技术展开。在SEM方面,多种新技术包括新的光学关联显微技术,空气SEM和连续切片显微技术都吸引了很多关注。物理应用方面大量的研究依旧集中在新能源材料和二维碳基材料领域。生物方面并没有太多的亮点,cryo和3D依然是中心。另外,会议还特别开辟了针对EELS分析和模拟实验结合的议题。产品方面,SEM依然是厂商火力最集中的地方。新发布的SEM系统和设备包括Zeiss Gemini500系列和特殊的MultiSEM多电子束快速SEM,JEOL的JSM7200和最新的Soft X-ray探测器,Hitachi在SU92

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制