当前位置: 仪器信息网 > 行业主题 > >

显影液

仪器信息网显影液专题为您整合显影液相关的最新文章,在显影液专题,您不仅可以免费浏览显影液的资讯, 同时您还可以浏览显影液的相关资料、解决方案,参与社区显影液话题讨论。

显影液相关的方案

  • 感光性干膜(Dry film)显影液中的碳酸钠的检测
    在印刷电路板生产工艺上,用紧贴在印刷电路板曝光后的感光性干膜来显影。将其浸泡在碳酸钠溶液中,没有被曝光的干膜保护膜被碳酸盐溶解,以实现显影。
  • 四甲基氢氧化铵(TMAH)的测定 应用资料
    四甲基氢氧化铵(TMAH)的测定 应用资料SJ/T 11636-2016 电子工业用显影液中四甲基氢氧化铵的测定 自动电位滴定法。按 GB/T 9725 规定,将规定的指示电极和参比电极浸入同一被测溶液中,在滴定过程中,参比电极的电位保持恒定,指示电极的电位随被测物质的浓度的变化而变化。在化学计量点前后,溶液中被测物质浓度的变化,会引起指示电极电位的急剧变化,指示电极的突跃点即滴定终点。
  • MC方案:光刻胶溶解的实时监测
    为了优化半导体和光子器件的图形制作工艺,对光刻胶溶解过程的表征进行了不断的研究。溶出度的实时监测可为此类表征提供必要的信息。在本应用中,通过使用FR-Pro VIS/NIR和FR液体附件,对标准显影剂(AZ726MIF)中的抗蚀剂(AR-N7520.18)薄膜的溶解过程进行实时监控。
  • 离子色谱法分析麦汁和啤酒体系中苹果酸含量的研究
    溶剂及再生液的类型对色谱分离效果有明显影响。选用LiCl 作为再生液 ,并采用淋洗液作为样品溶剂时可有效降低水负峰对丙酮酸的影响,同时使各峰基本上达到基线分离 ,且能使各有机酸峰形有所改善。这可能主要是由于再生液的Li + 可取代高电导的 H+,从而降低了背景电导 同时再生液进入含样品的淋洗液流路,使弱离解的有机酸以盐形式进入电导检测器,提高了信噪比和电导检测的灵敏度[3] 。
  • 液压油空气释放值标准要求数据及测试步骤方法
    对于液压油来说,首先应满足液压装置在工作温度下与启动温度下对液体粘度的要求,由于润滑油的粘度变化直接与液压动作、传递效率和传递精度有关,还要求油的粘温性能和剪切安定性应满足不同用途所提出的各种需求。按照GB11118.1 液压油的技术标准要求,测量液压油的空气释放值是采用的SH/T0308这个标准的,润滑油空气释放值仪SH0308B 就是完全按照这个标准设计制作的。
  • 采用高效液相色谱法测定红葡萄酒中的柠檬酸
    ?柠檬酸的含量对食品的味道有很大影响,并且是某些食品品质的一项重要检测指标,例如其作为酸度调节剂在葡萄酒中的应用。在葡萄酒的酿造过程中,添加的柠檬酸可以帮助 SO2 防止葡萄酒变质、起抑菌作用、维持和稳定红葡萄酒的颜色。有人认为柠檬酸是安全无毒的,其实不然,经过多次实验证明,2.15 g/kg 的柠檬酸对小鼠的体重有明显影响,毒理实验也证实了柠檬酸对受试小鼠的肝脏有影响。GB 15037-2006 规定干、半干和半甜葡萄酒中柠檬酸的含量小于等于 1 g/L,甜葡萄酒中柠檬酸的含量小于等于 2 g/L。本文所述方法参照国标 GB/T 15038-2006 和进出口行业标准 SN/T 2007-2007 方法,建立了一种分析红酒中柠檬酸的高效液相分析方法。该方法使用 Agilent Poroshell 120 SB-AQ 极性改性反相色谱柱,可以长时间耐受 100% 水相流动相,并且在普通仪器上即可实现快速高效的分离,整个运行仅需 6 min,系统压力在 150 bar 以下。
  • 天津兰力科:双2[ 22吡咯( 乙氧基) ] 乙烷的合成及其电化学聚合
    以吡咯和二缩三乙二醇为原料合成了N 取代吡咯衍生物单体———双2[ 22吡咯(乙氧基) ]乙烷,并用循环扫描伏安技术研究了该单体的电化学聚合过程。结果表明:在乙腈/ 高氯酸锂溶液中,双2[ 22吡咯(乙氧基) ]乙烷在铟锡氧化物导电玻璃( ITO) 、Pt 、Au 、玻璃碳、石墨电极上均能顺利发生反应,形成一定厚度的聚合物膜。但聚合速率、膜的结构、膜的颜色有差异。溶剂水对聚合有明显影响。形成的聚合膜具有良好的电化学稳定性。
  • 扫描电镜在 PCB 失效分析中的应用(二)
    PCB 的制造过程,有与芯片相似的过程,需要进行曝光→显影→刻蚀。在 PCB 工艺中,使用图形转移的 关键材料是菲林(film),俗称贴膜工艺,分为干膜和湿膜。
  • 4,4′-二偶氮苯重氮氨基偶氮苯与Ag(Ⅰ)的显色反应及应用
    4,4′-二偶氮苯重氮氨基偶氮苯在Triton X—10 0存在下与Ag(I)的显色反应。在pH 10.0的硼砂-氢氧化钠缓冲溶液中,试剂与Ag(I)形成1: 1的红色配合物,其最大吸收波长为540nm,表观摩尔吸光系数为7.55×104Lmol-1 cm-1,Ag(I)的浓度在0~0.28mg/L范围内符合比耳定律。应用于显影废液 和钮扣电池液中Ag的测定,结果令人满意。关键词 4,4′-二偶氮苯重氮氨基偶氮苯 银 分光光度法中图分类号:0657.32 文献标识码:B 章编号:1004—8138(20 03)02—0205—04
  • 微波消解间硝基苯甲酰氯
    间硝基苯甲酰氯由间硝基苯甲酸与光气反应制得,为黄色针状结晶,有刺激性气味。间硝基苯甲酰氯是多种医药原料的中间体,也可生产染料用于皮革纸张,还能用于食品添加剂(奶粉调节剂)以及作为彩色显影剂等,其应用领域与人们的日常生活息息相关,对于硝基苯甲酰氯中的有害元素的检测是十分重要的。微波消解法具有样品溶解完全、速度快,试剂消耗少,空白低,元素损失小、回收完全等优点,采用此方法能够实现对间硝基苯甲酰氯的快速、完全消解,有利于后续的元素分析。
  • 固相微萃取结合GCMSMS法测定鱼塘水中的硫丹及其代谢物
    0.99,方法日内精密度为2.18%~17.53%,日间精密度为4.22%~18.48%。此方法操作简单,仅需使用2 mL样品,且测试过程对仪器污染小,连续进样180针之后待测物峰形、信噪比及方法检测灵敏度未受明显影响。
  • 解决方案 | 膜式SPE-GC-MS法测定饮用水中的有机磷
    有机磷农药是指用于防治植物病虫害的一类含磷的有机化合物,是一类较为重要的农药,常见的有敌敌畏、甲基对硫磷、毒死蜱、马拉硫磷、对硫磷等。因为其药效高、用途广、易分解、在人畜体内不易积累等优点,使有机磷农药在农业生产中得到了大量、广泛的应用,并取得了显著效果。有机磷农药对人和牲畜有极强的急性毒性,且有机磷农药的大量使用会污染水体,对其中部分动物的生长造成明显影响,还会进入饮用水中,危害人体健康。本方案参考《GB/T 5750.8-2023生活饮用水标准检验方法 第 8 部分:有机物指标》15.1的固相萃取气相色谱质谱法,使用47mm的C18膜进行富集,莱伯泰科Extrapid柱-盘手动固相萃取仪进行固相萃取,莱伯泰科MultiVap-10 定量平行浓缩仪进行浓缩,最后使用气相色谱质谱仪进行检测;加标回收率在74.33-95.58%,相对标准偏差在2.61-6.72%之间,满足相关要求。
  • 用实时直接分析(DART® )串联质谱定量测定血浆中的小分子
    最近,一种新的离子源,实时直接分析(DART® )已经面世,该技术可以将生物样品直接导入质谱(MS)系统中。免除了通常在MS分析前需要进行的样品制备和高效液相色谱(HPLC)分离,大大缩短了周转时间、减轻了对环境的影响,也减少了经济成本与人力成本。这一新技术已开始在各种定性分析中得到应用,直接检测固体表面、液体和气体中的各种化合物。在本研究中,我们把在大气压下以接地电位操作的DART离子源,直接安装在Sciex 4000串联质谱上,将血浆样品直接导入DART-MS/MS系统中进行分析。所测生理体液中各种化合物均获得了良好的精密度和准确度(%CV和 误差%均 10%)。此外,80%所测化合物的最低检测限均达到5 ng/mL或更低,完全可以支持药物开发研究。最后,我们对明显影响分析性能的实验条件进行了优化和限定。我们认为DART简便、数据获取速度快(3-5秒)、成本低,将在生物基质的定量药物分析中发挥重要作用。
  • 北京微讯超技:氯化钠对面条品质影响的研究
    摘 要:氯化钠能明显影响到面团的流变学特性及成品面条的质构和蒸煮品质。随氯化钠添加量的增加,面条的质构指标均呈先增大后减小的趋势,面条表面亮度增大,最佳蒸煮时间逐渐减小。研究结果表明,当氯化钠添加量达到4 %时,面条整体品质水平较为优秀。但当添加量过高时,氯化钠会阻碍面筋蛋白的充分水化,从而引起面条内部干燥,结构松散,最终导致面条品质的下降。关键词:面条品质 氯化钠 质构分析仪
  • 使用岛津iMScope TRIO进行毒性评价研究 胺碘酮给药后大鼠肺脏局部分析
    在药物研发过程中,候选化合物的药代动力学分析不仅能阐明药效药理学机制,从毒性评价的观点出发也能带来重要的信息。一般情况下,会采用放射自显影(Autoradiography: ARG)和荧光染料的方法,但ARG的费用十分昂贵,若将荧光剂作为标记试剂使用又可能会对药代动力学造成影响。于是,近年来,作为非标记检测候选化合物局部信息的方法,MS成像的分析技术备受瞩目。本方法不仅能在不进行标记的情况下进行各种物质的成像分析,还能在同一切片上同时进行原药和代谢物的检测,为新药研发带来突破。
  • 自动熔点仪法检测对苯二酚的熔点
    对苯二酚是一种有机化合物,主要用于制取黑白显影剂、蒽醌染料、偶氮染料、橡胶防老剂、稳定剂和抗氧剂。在有机化学领域中,对于纯粹的有机化合物一般都有固定的熔点,熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。在国家标准《工业用对苯二酚》中对对苯二酚的熔点测定方法和结果有明确的规定,本文采用全自动熔点仪法检测对苯二酚的熔点,操作简单、快速、结果准确。
  • 天津兰力科:氧电还原现场产生的H2O2环氧化环己烯的研究
    在以硫酸钠为支持电解质以及甲醇作为共溶剂的条件下,研究了环己烯在以硫酸钠为支持电解质以及甲醇作为共溶剂的条件下,研究了环己烯存在下氧气在玻碳电极上的循环伏安行为。探讨了甲醇和环已烯等物质对氧电还原过程的影响. 结果表明,甲醇的存在能在一定程度上加强氧的电还原过程,而环已烯对氧电还原并没有产生明显影响,说明用氧气电还原过程所产生的过氧化氢可以现场环氧化环已烯,环己烯电化学环氧化合成环氧环己烷是一个间接电合成反应。
  • 天津兰力科:苯二胺对聚苯胺电化学合成及其降解的影响
    运用循环伏安法和紫外2可见吸收光谱分别研究了邻、间、对3 种苯二胺单体对苯胺聚合及其生成膜降解过程的影响. 结果表明,对苯二胺在催化苯胺聚合的同时加速了膜的降解,而邻、间苯二胺对聚合与膜的降解均起抑制作用. 这可能是由于3 种苯二胺结构的不同影响了聚合机理,并在一定程度上改变了膜的化学物理性质所致. 扫描电镜显示,苯二胺的加入对聚合膜的形态结构也有明显影响,与纯聚苯胺膜相比,共聚膜变得更加致密、光滑.
  • 气相分子吸收光谱法测定印染废水中的氨氮
    , 纳氏试剂比色法测定印染废水的氨 氮, 减少废水的取样量能降低色度对氨氮测定的干扰。随着取样量的减少,相对标准偏差有所提高,说明取样量的减少对实验精密度会造成影响。气相分子吸收光谱法测定印染废水的氨氮,取样量的调整对氨氮浓度无明显影响,相对标准偏差也无明显区别。实验表明,气相分子吸收光谱法测定印染废水的氨氮,不需预处理,相比纳氏试剂比色法,方法简便,精密度高。
  • 微电子行业应用文集
    自1958年第一块集成电路诞生以来,以集成电路为核心的微电子技术被认为是信息社会发展的驱动器。为发展中国微电子产业,国家先后出台了多项政策和规划。微电子制造工艺狭义上是指在半导体硅片(晶圆)上制造出集成电路或分立器件的芯片结构等数十种加工工艺。这些工艺包括化学机械抛光、清洗、氧化、光刻、显影、刻蚀、扩散、离子注入、金属化等,而微电子芯片的制造正是重复多次前述的工艺才能完成。
  • TRILOS超高压纳米均质机在触摸屏用银浆和碳浆的应用
    目前常用的金属网格工艺是,通过显影、蚀刻等工艺在PET膜上得到预留凹槽;再将导电银浆刮涂入刻蚀的预留凹槽中,进行低温固化,形成金属网格触控电极及周边引线,得到金属网格电容式触摸屏。该工艺方法由于工艺简单,成本低、透光性好,产品柔性高等优势,逐步成为触摸屏柔性化、大尺寸、轻薄化发展的重要趋势。在上述工艺技术中,银浆是其核心原材料之一……
  • 酒石酸的应用及旋光度检测方法
    酒石酸最早从酿造葡萄酒的副产物酒石中提取,在制药工业中,酒石酸可作为医药中间体以及高效拆分剂。在化学工业上可用于生产酒石酸盐和酒石酸酯,可作为金属表面的清洁剂和抛光剂。在纺织工业中,酒石酸和单宁合用可作为酸性染料的谋染剂。此外,酒石酸在皮革、水泥、照相显影等行业也有重要的应用。
  • 谈谈玻璃薄膜固体材料折射率的测定方法—多波长阿贝的应用
    在选择测试方法与测试仪器时,首先应考虑测量范围和测试精度的要求,其次是实验室的测试条件与设备。本实验用ATAGO(爱拓)阿贝折射仪法来测光学玻璃的折射率。
  • 用于昆虫学实验的自动气压室:正压和负压的精密控制解决方案
    昆虫的行为模式会受气压变化的明显影响,为在可控气压条件下的气压室内模拟自然气压变化对昆虫行为进行准确和可重复的研究,需要气压室的气压变化可精确程序控制。本文针对客户提出的气压室压力精密程序控制要求,介绍了高精度真空压力控制仪解决方案。真空压力控制仪采用密闭容器进出气体动态平衡法工作原理,以高压气瓶作为高压气源,真空泵进行抽气,通过双通道真空压力程序控制器采集压力传感器并同时自动调节进气针阀和出气针阀的开度,实现任意设定压力变化程序的精密控制和长时间稳定运行。
  • 样本集选择对稻谷千粒重NIR模型预测精度的影响
    通过采用不同样品量不同定标集和验证集比例以3 2 5期 党文新等: 样本集选择对稻谷千粒重NIR模型预测精度的影响及不同定标集选择方法对稻谷千粒重NIR模型影响的试验研究,可以得出以下结论:样品数量对稻谷千粒重的NIR模型有明显的影响,采用合适数量的样品进行光谱扫描,可以提高模型的预测精度当样本总数一定时,定标集与验证集的比例不同,所建模型的预测能力有明显的差异在总样本中,以70%的样本建立定标模型,其余30%样本作为验证样本,可以获得较好的预测效果定标集选择方法明显影响稻谷千粒重NIR模型的预测能力在含量梯度法K-S算法和随机抽取法中,采用K-S算法选取定标集进行建模,稻谷千粒重的NIR模型具有较好的预测能力
  • 中草药类保健食品中膳食纤维含量测定的研究
    摘  要:由于目前保健食品中有关膳食纤维的研究日益增多 ,其保健功能及含量测定方法的研究具有迫切的现实意义 ,该研究对用中性洗涤剂法测定保健食品中膳食纤维含量进行了重复性、平行性试验。发现该法重复性、平行性良α 好。重复性试验 R.S.D.为2.28%~4.18%,双平行试验的 R.S.D.为0.37%~1.58%。另外还研究了方法中加入 - 淀(α )粉酶 - amylase 对测定结果的影响 ,认为淀粉类样品经洗涤剂处理后 ,需经淀粉酶来处理 ,用以水解残留淀粉 ,而非淀α 粉类样品 ,可省去用 - 淀粉酶的处理步骤 ,对结果无明显影响。关键词:膳食纤维 中性洗涤剂法 保健食品
  • 荧光光谱+纯有机光引发剂+开发
    “现有的超长有机室温磷光(UORTP)材料多以对磷光团进行羧基化、羟基化等改造,增强其在刚性基质聚乙烯醇(PVA)中的相容、分散性,加强其与基质间的分子间作用等,来获得高性能。但 PVA 易吸湿,这极大限制了其应用场景,例如需要水处理的光刻显影等领域。一旦将基质换为光刻领域所常使用的聚丙烯酸酯衍生物,则因基质较弱的刚性,材料的磷光性能显著下降。我们提供了一个在聚甲基丙烯酸甲酯(PMMA)基质中实现兼具长 τP 和高 ΦP 的 UORTP 发射的完整设计策略。”刘如意表示。刘如意师从四川大学卢志云教授,上述研究已经发表在《 AngewandteChemie International Edition》上。
  • 使用LC-MS/MS检测血浆中雌二醇
    雌激素,雌二醇,是一类有广泛生物活性的类固醇化合物,主要由卵巢、滤泡、黄体及妊娠胎盘生成,它不仅有促进和维持女性生殖器官和第二性征的生理作用,并对内分泌系统、心血管系统、肌体的代谢、骨骼的生长和成熟,皮肤等各方面均有明显的影响,测定雌激素对妇科疾病有一定价值。更年期综合症、动脉硬化、脑血管阻塞、骨质疏松症、早老性痴呆症、怠倦、腰痛、肩酸、性冷淡、月经不调、不孕症,乳房发育不良、皮肤干燥、皱纹、黄褐斑等等都雌激素分泌低下导致内分泌失调有关。雌激素也会对男性生殖系统产生明显影响,包括影响雄激素的水平,引发睾丸组织结构变化,引起睾丸癌,降低精液中的精子数量,造成男性乳房发育,导致内分泌紊乱。雌二醇偏高可能是由于卵巢疾病,心脏病,系统性红斑狼疮,肝硬化,男性肥胖症等原因。雌二醇偏低可能是由于卵巢疾病,垂体性闭经或不孕,甲低或甲亢,柯兴综合征等疾病。雌二醇的检测常规采用免疫学方法,但是免疫学的方法有很高的交叉反应,结果不准确,因此需要灵敏高、选择性好的方法测定雌二醇。沃特世开发了固相萃取(SPE)和LC-MS/MS的方法分析人体血浆中低浓度的雌激素。
  • 天津兰力科:固态汞合金电极吸附伏安法测定酪氨酸
    采用白合金粉与汞混合制成汞合金糊, 涂布在固体石蜡碳糊电极表面, 固化后制得固态汞合金电极,并首先应用于酪氨酸的测定。在含Co2 +的pH 912的硼砂- NaOH底液中, 用线性扫描伏安法在- 0180~ - 1130V范围内进行扫描, 酪氨酸于- 1105 V出现灵敏的还原峰, 酪氨酸的浓度与峰电流在110 ×10 - 7 ~110 ×10 - 5mol /L范围内呈线性关系。该法已用于复方氨基酸注射液中酪氨酸含量的测定, 加标回收率达96%~102%。该电极既保留了汞电极的优点, 又避免了汞电极有毒、使用不方便的缺点。
  • 新型高纯氧分析进样器及其应用方案
    在气体分析方法中,气相色谱法是应用最为广泛的技术方法,然而,气体中的氧和氩组份,在气相色谱分离中较难分开,往往是以氧和氩的总和(混合峰)表现出来,所以,在工业氢中氧、氩、氮的测定和电子工业用氧中的微量氩、氮的测定方法中都应用了脱氧柱技术,其中401脱氧剂在脱氧容量、脱氧深度(10-9级)及其可反复活化再生使用等优点,已被各气体分析标准方法中确定选用。但是,401脱氧柱的正常反复应用,必须对其进行100℃、200℃、300℃、400℃、450℃的长时间通氢活化处理,这就给分析工作带来不便,往往需要自己搭建一个气路控制系统和购置一个合适的高温炉来处理,而处理时必须将401脱氧柱从进样系统上拆装,在活化处理后的拆装过程中,难免脱氧剂要接触空气中的高浓度氧,就会造成活化好的脱氧柱的脱氧容量的损失。对于高纯氧分析,脱氧容量的减少,就会缩短活化周期和明显影响分析工作效率。为此,我们研发了新型的高纯氧分析进样器(专利技术)与科创GC8800H型气相色谱仪配套使用,实现了高效率工作分析高纯氧气体中的微量氩和氮。将双脱氧柱改为单脱氧柱,就可方便地实现工业氢中氧、氩、氮的测定。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制