当前位置: 仪器信息网 > 行业主题 > >

线性扫描极谱法

仪器信息网线性扫描极谱法专题为您整合线性扫描极谱法相关的最新文章,在线性扫描极谱法专题,您不仅可以免费浏览线性扫描极谱法的资讯, 同时您还可以浏览线性扫描极谱法的相关资料、解决方案,参与社区线性扫描极谱法话题讨论。

线性扫描极谱法相关的论坛

  • 线性扫描与锯齿扫描

    本单位欲购薄层色谱扫描仪,但听说德国Desaga的只有线性扫描,想请教线性扫描和锯齿扫描的区别与实际应用时的选择,谢谢。

  • 怎样用线性扫描伏安法测阳极极化曲线

    线性扫描伏安发如何的到阳极极化曲线,是否要取电流大于0的那部分又如何从软件上分析线性扫描伏安法的腐蚀电流呢,塔费尔法得到的图为强极化区的极化曲线,可以直接称它为极化曲线吗>我的阳极电位设到2.5V,从Tafel上发现了从1.5V到2.5V很好的,这样的结果准吗.通常随着时间的增加电位正移,电流减小,这当然很好.可是电位正移,电流又增大这样的现象该如何解释,我做的塔费尔图很可能超出了塔费尔区,目的是为了观察钝化,这样宽的电位范围是不是不合适呢

  • 溶出伏安法可否用恒电位和线性扫描拼凑

    我用这个BASEpsilonEC落后的不行,上面虽然写了好多方法,但是很多方法都不能用,仪器商说标着DEMO的方法都不能用。我想用溶出伏安法那么我想用上面现有的恒电位催化法,上面需要填写,电位和时间两个参数,我觉得恒电位催化可能就是恒电位吧,例如我填 -1.3 V, 时间 100 s然后恒电位之后,再选用现行扫描法 LSV, 需要填写 起始电位和扫描速度那么我填 -1.1 V. 到 -0.6 V。 扫速只能选0.1 V/S,再大了都是锯齿或者在恒电位后施加方波伏安法, 参数框如下所示。 从来没有听说这样做溶出伏安法的,不知道我这样做是否可行,存在什么问题?http://ng1.17img.cn/bbsfiles/images/2011/08/201108120939_309935_1823838_3.gif

  • 【求助】是否可以用线性扫描研究镀层的耐蚀性

    我研究的课题是化学镀层,学校有一台电化学工作站,但是这是用来研究电极材料的催化活性的。其中有线性扫描,我其中的原理和极化曲线的差不多所以考虑是否可以用线性扫描代替极化曲线研究镀层的耐蚀性。但还不时很明白,是否有人做过这方面的研究,紧急谢谢!

  • 关于单扫描极谱法的几个问题

    1,为什么要保证汞滴定时滴落?怎样保证?2,能否用于定性分析?3,单扫描极谱法的灵敏度大于经典极谱分析法的,为什么?

  • 【求助】求助拉曼光谱选择扫描范围和激发波长 急!!!

    各位好:求助拉曼光谱选择扫描范围和激发波长 急!!!我作了个样,用拉曼光谱表征,物质为硅胶负载有机物(对甲苯磺酸盐类),但好像荧光比较明显,干扰大,检测老师叫我提供扫描范围和激发波长,不是太懂,真的很急,请各位虫虫帮忙 谢谢!!!

  • 【转帖】痕量尼莫地平测定的紫外薄层色谱扫描法

    以V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5为展开剂, 建立了薄层色谱扫描法测定痕量药物尼莫地平的新方法。 其Rf值为0.48。 扫描波长为365 nm, 该法的最低检出限为0.005 μg,相对标准偏差为2.94%, 工作曲线的线性范围为0.005~1 μg。 用该法测定了加有尼莫地平的血清和尿样, 尼莫地平的平均回收率为96.7%~103%。关键词 尼莫地平, 紫外薄层色谱法  尼莫地平(nimodipine)为一钙离子拮抗剂, 能有效地调节细胞内钙的水平, 具有抗缺血和抗血管收缩作用[1], 是近年来治疗高血压和脑血管疾病的一种新药, 其结构式如右所示。   有关该药的测定方法, 曾报道过的有高效液相色谱法[2]、 分光光度法[3], 但用紫外薄层色谱扫描法测定尼莫地平至今未见文献报道。 本文首次采用紫外薄层色谱法, 以氯仿-甲醇-二氯甲烷-正己烷为展开剂, 对尼莫地平的测定进行了研究。 该法具有简单、 快速、 灵敏、 准确的特点, 我们成功地做了血清和尿样中不同浓度的加标回收实验, 结果令人满意。 该法可用于临床作为测定尼莫地平血药及尿药浓度的一种简单、 有效的新方法。1 实验部分1.1 仪器与材料  CS-9000双波长薄层色谱扫描仪(日本岛津); 毛细管定量点样器(美国Drummond); UV-1型紫外分析仪(上海顾村电光分析仪器厂); 硅胶GF254 板(青岛海洋化工厂); 尼莫地平(山东新华制药厂提供)。  其它试剂均为分析纯以上规格。1.2 实验方法  用1 μL定量毛细管点样, 标样与试样点于同一板上 待溶剂挥发后, 放入盛有展开剂的层析缸中, 用蒸汽预吸附3~5 min, 然后用展开剂展开, 展开剂为V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5, 展开到距板上端1 cm处, 展距9 cm 取出板, 待溶剂挥发干净, 置于紫外分析仪, 在254 nm波长下可观察到样品暗红色斑点, 尼莫地平的Rf值为0.48 然后用薄层色谱扫描仪扫描, 以外标两点法定量。  紫外薄层扫描条件: 以尼莫地平光谱λmax=365 nm为测定波长,锯齿扫描, 数据累加4, 数据平滑11,高灵敏度。2 结果与讨论2.1 展开剂的选择  我们根据Glajch三角形最优化法[4]及参照Snyder溶剂参数法[4]对展开剂的组成及配比进行了选择,确定了以氯仿-甲醇-二氯甲烷-正己烷作为四元混和展开剂,其配比为V氯仿∶V甲醇∶V二氯甲烷∶V正己烷=2.6∶1.2∶1∶5 。

  • [求助]扫描范围和参数设定的问题

    1. 阻抗谱测试,参数设定的起始电位是?2. 我的线性扫描电势得到的E-I曲线,怎么全部是线性区? (可以保证扫描范围已经很大)3. 电势阶跃(计时电流)法参数设定的起始电位是?脉冲宽度设定?4. 循环伏安的扫描范围是?比如研究溶液对工作电极的氧化等作用, 扫描起始电位应该高于开环电势还是怎么设定?多谢!!!

  • 场发射扫描电镜和热发射扫描电镜电子枪性能问题

    场发射扫描电镜和热发射扫描电镜电子枪性能问题

    扫描电镜高质量应用,意味着高分辨高信噪比,在一定扫描电镜时间内,追求小束斑大电流,对于钨灯丝和六硼化X阴极材料的热发射枪扫描电镜,束斑尺寸增加,束斑电流增大,图像信噪比提高,但分辨率降低。束斑尺寸和束斑电流关系如下图LaB6和W,二者呈线性关系,很好理解。但场发射枪扫描电镜,高分辨范围内,在束斑尺寸也就是分辨率变化很小情况下,束斑电流变化两个数量级,接近100倍,这是什么原因呢? 见下图 Feild Emssion Gun 曲线小驰请有操作经验的兄弟姐妹解惑,谢谢!http://ng1.17img.cn/bbsfiles/images/2017/03/201703161732_01_3123849_3.jpg

  • 四级杆质量分析器扫描电压

    在四级杆质量分析器的质量标尺校正中遇到了个疑问:四级质谱的质量和扫描电压是线性关系的,也就是说每一瞬间的DC/RF电压对于一个质量离子,那么这里有疑问的是所谓的扫描电压是指DC电压?还是RF电压?还是DC/RF?

  • 【转帖】薄层色谱扫描法测定复印纸中单糖的研究

    《分析试验室》2008年S1期 薄层色谱扫描法测定复印纸中单糖的研究 李继民 王彦吉 邹宁 姚丽娟   建立了通过薄层色谱扫描法测定复印纸样品水解液中的单糖含量鉴别纸张的新方法。复印纸样品水解后点样在以丙酮处理过的硅胶G薄层板上,以V(正丁醇)∶V(乙酸乙酯)∶V(异丙醇)∶V(乙酸)∶V(吡啶)∶V(水)=7∶20∶12∶7∶6∶5为展开剂,以苯胺-草酸为显色剂,测定了单糖的Rf值,以双波长反射吸收锯齿扫描测定(λS=510 nm,λS=610 nm),外标法定量。该法的线性关系较好,木糖和葡萄糖的检出线分别为4.1、2.5 ng,混合单糖标准品在同一薄层板上的峰面积的相对标准偏差(RSD)为2.3%和2.1%,两种单糖的样品加标回收率为98.09%和98.18%。该方法具有分离效果好,操作简便,可用于复印纸样品水解液中两种单糖的同时测定,从而为法庭科学中复印纸的检验提供了可靠的依据。【作者单位】:中国刑警学院法医系 沈阳110035(李继民 邹宁 姚丽娟) 中国人民公安大学 北京100038(王彦吉)【关键词】:薄层色谱扫描法 单糖 复印纸【基金】:国家高技术产业发展(计高技20012492)项目资助【分类号】:TS77【DOI】:CNKI:SUN:FXSY.0.2008-S1-139

  • 关于发射波长和激发波长的扫描

    我使用液相的荧光检测器扫描氟喹诺酮药物的激发光谱和发射光谱。可是,在我扫描发射光谱的时候,比如250-400nm的范围时,那个固定的发射波长是在大于410nm的范围内随便选取的吗?有没有什么规则??

  • 【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    【原创大赛】从“单道扫描与全谱值读”看未来ICP发展方向

    ICP光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法, 由于仪器检出限低、测试范围广、动态线性范围宽等优点,越来越广泛应用于含量范围宽、精度要求高的技术领域,如食品、卫生、医药、化妆品、土壤、钢铁等精密分析及基础研究中。 想具体了解ICP仪器在检测方式:单道(多道)扫描与全谱直读的区别,首先先来看看各自的检测器在工作原理上的不同之处吧---- 单道扫描型光谱仪:从光源发出的光穿过入射狭缝后,反射到一个可以转动的光栅上,该光栅将光色散后,经反射使某一条特定波长的光通过出射狭缝投射到光电倍增管上进行检测。光栅转动至某一固定角度时只允许一条特定波长的光线通过该出射狭缝,随光栅角度的变化,谱线从该狭缝中依次通过并进入检测器检测,完成一次全谱扫描,和多道光谱仪相比,单道扫描光谱仪波长选择更为灵活方便,分析样品的范围更广,适用于较宽的波长范围。但由于完成一次扫描需要一定时间,因此分析速度受到一定限制。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561708_3025342_3.png 全谱直读型光谱仪:光源发出的光通过两个曲面反光镜聚焦于入射狭缝,入射光经抛物面准直镜反射成平行光,照射到中阶梯光栅上使光在X向上色散,再经另一个光栅在Y向上进行二次色散,使光谱分析线全部色散在一个平面上,并经反射镜反射进入面阵型CCD检测器检测。由于该CCD是一个紫外型检测器,对可见区的光谱不敏感,因此,在光栅的中央开一个孔洞,部分光线穿过孔洞后经棱镜进行Y向二次色散,然后经反射镜反射进入另一个CCD检测器对可见区的光谱(400~780nm)进行检测。这种全谱直读光谱仪不仅克服了多道直读光谱仪谱线少和单道扫描光谱仪速度慢的缺点,而且所有的元件都牢固地安置在机座上成为一个整体,没有任何活动的光学器件,因此具有较好的波长稳定性。http://ng1.17img.cn/bbsfiles/images/2015/08/201508201530_561709_3025342_3.png 近年来,由于全谱直读型仪器能更大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布的同时测量,有利于多谱图校正技术的采用,有效消除光谱干扰,提高选择性和灵敏度,越来越多的科研和工业企业选择全谱直读的仪器,来获取最快,最精确的测量分析结果。 德国派克最新款的ARCOS光谱仪,以独一无二的全新MultiView等离子体接口,第一次在同一台仪器上实现了真正的轴向和径向直接观测,拥有真正全谱记录同时测量的性能,将电感耦合等离子体发射光谱仪(ICP-OES)的效率和性能推向了新的高度。

  • 实验室分析仪器--质谱仪器扫描质谱数据的处理介绍

    对于逐点扫描得到的一段质谱数据,数据处理的首要任务是峰位置的判别。其实质是峰数据与既有模型的匹配过程,这与质谱仪的特性、扫描参数以及数据的统计信息等多种因素有关系。简单情况下,连续几个数据都大于设定的阈值(如最大值5%)即可认为该段数据是峰数据,而剩余的数据可认为是本底。在峰位置判别的基础上,根据本底数据判断谱段的基线。可将感兴趣谱段的非峰数据(未被标记)的平均值作为基线。但对于大范围的质谱扫描谱,可能存在不同谱段本底不同的现象,因此当处理几十个质量扫描范围质谱数据时,应注意基线的波动。对于每个具有一定幅度的质量峰,确定其峰中心位置是数据处理的重要一环。质量峰的位置准确,才能正确地反映离子流强度的变化。对于左右对称的峰,其峰中心一般取两个半高横坐标的中心;对于左右不对称的峰,可分别对峰两侧的斜坡作延长线,两延长线的交点位置即可作为峰中心。在作峰中心时,数据的涨落往往给计算结果带来显著的偏差,这也是峰中心标定的误差来源。对于平顶不明显的谱图,可以使用二次曲线拟合得到离子流强度。对于每个峰位置,原始数据的横坐标可能是计算机设定的DAC数值,也可能是按照时间排列的序列数。要通过计算机自动标定每个峰位置对应的质量数,除了要求一定的峰数据的量,还必须有对应的扫描参数和数据库支持。可人工指定几个峰位置对应的质量数,再由计算机根据扫描参数与质量数之间的线性或非线性关系算出其他相邻峰的位置,从而可画出峰强度质量谱图。对扫描峰离子信号的强度计算,第一种是峰高法,用峰中心位置的数据(或连续几个数据的均值)减去基线数据作为离子信号强度;第二种是峰面积法,用该峰数据(一般选大于5%峰高的数据)和基线围成的面积作为离子信号强度;第三种是采用窗口数据累加,即以峰中心位置开始向大质量数和小质量数寻找固定长度,确定一个质量范围,将该质量范围内的数据平均值减去基线数据作为离子信号强度。离子峰数据的涨落和基线的涨落都对测试数据有较大的影响,比较而言,峰面积法的精度高于其他方法。通过对峰数据的分析,还可得到其他质量峰的特征参数:①半峰宽。是反映仪器分辨本领的参数之一。谱图在一半峰高处的质量数之差就是半峰宽。②峰顶平坦度。反映探测器的稳定度。只有梯形峰谱图才能计算,计算公式为平顶位置处的离子流强度的极差与峰高的比值。该值越小表明探测器越稳定。③峰形系数。是反映仪器分辨本领的参数之一。定义为10%峰高处的峰宽与90%峰高处的峰宽之差与峰半高全宽的比值,该值用百分比表示。

  • FWS-1000型ICP单道扫描光谱仪

    FWS-1000型ICP单道扫描光谱仪电感耦合等离子体 (inductively coupled plasma) 简称ICP。ICP单道扫描光谱仪作为大型分析仪器,与其他的光谱分析仪器相比,具有许多优点:光源稳定,再现性好,检出限低,一般可达PPb(10亿分之1)级,工作曲线的线性范围广,可达5—6个数量级,测定精度远比经典发射光谱法高,还能同时进行多元素分析,分析速度极快,应用面广,几乎可分析周期表中所有金属和部分非金属元素。 北京丰益求实仪器有限责任公司作为分析仪器的专业制造厂商,最新推出了FWS-1000型单道扫描光谱仪。该型仪器稳定性好,测量范围宽,检出下限低,分辨率高,灵敏度高。广泛应用于稀土分析、贵金属分析、环境保护、水质检测、合金材料、建筑材料、医药卫生、高等院校等科学领域作元素定量分析。 产品特点1.分析速度快 一分钟分析10个元素以上2.精密度高 相对标准偏差RSD≤2%3.检出限低 见后附65种代表元素检出限表4.分析元素多 可对72种元素进行定量分析5.操作便捷 操作方便的中文分析软件更加符合国人使用习惯 6.可做定性分析

  • 激光扫描模组

    条码扫描模组在外国已经使用很久了,现在已经发展到中国内部。这种技术的发明带来了更多的工作改革潮流。促进了自动化的步伐,大大简化人类工作流程,减少更多的脑力负担。扫描模组属于二次开发产品,兼备识别条码并加以扫描和解码的功能,然后还可以植入更多的应用行业的功能程序。外形构造小巧,高度集成材料,可以置入手机、平板电脑,打印机和一些医疗设备等各行各业的机械设备中。一般情况,条码扫描模组分为二大类,第一个就是激光扫描模组,第二个就是红光扫描模组。 现在对激光扫描模组进行分析下,激光扫描模组是通过辐射出一个激光光源点,然后按照激光发射的原理打成激光光线照遭条码上,在经过解码转化成为数字信号,加而给电脑读取信息。但是相对于红光扫描模组来说就比价精确点了。在强烈的阳光下,一般情况都是用激光扫描模组,因为红光不是红外线,就是单单的红色的光。阳光中可以算什么光线都有,会对红光扫描模组发射出来的LED灯光造成很大的影响,导致扫描的结果不准确。 如果在结构上来说呢,红光扫描模组要比激光扫描模组好一点而且价格实惠。激光扫描模组里面的结构是靠点胶固定的机械装置,因此就有很大的结构固定,易碎行,抗硬性就不是很好了。红光扫描模组里面就没有一些所谓的机械装置固定,所以耐用性比价好,但是总体来说,激光扫描模组的用途是比较多的,红光的就有很多局限性。看个人的用处所在. 本文出自 www.yuanjingda.com 转载请注明出处!

  • 质谱计扫描速度是什么?

    质谱计扫描速度是什么?

    (转载引用请注明出处)质谱计扫描速度是什么? 这是安捷伦公司提供的一幅两种质谱检测结果表示方法的对照和说明:http://ng1.17img.cn/bbsfiles/images/2017/10/2015033009161697_01_2991869_3.jpgQuadrupole DescriptionProfile versus spectrum scansIn the upper plot, a profile scan of an ion at m/z 109 is shown. In a typical benchtop mass spectrometer, abundance measurements are collected at 0.10 m/z increments as shown.When this data is presented in a mass spectrum, a single line is shown. The height and position are derived from the profile scan. Notice that in the plot of the spectrum, a single line is used to indicate that a single mass is present.译文: 四级杆简介 峰截面轮廓曲线图与与之相对应的各质谱图数据子集扫描 在上面的图中, 展示了对m/z 109离子的扫描结果。 在标准的台面型质谱计中, 丰度测得值是以0.1 0 m/z为单位步进收集的。 当这一数据集以质量谱图的形式表达时, 我们只能看到一根直线。 直线的高度和位置来自对峰截面轮廓线式扫描结果的解释。 注意在谱线式图形中, 只用了一根直线表示只存在一种质量数。 这段文字说明了什么意思呢? 说明了一般所讲的质谱计扫描速度, 指的是“驱动不同质量离子的动力变化速度”。 什么东西能以“0.1m/z”为单位步进呢? 击中探测器的离子数不行, 离子的质量数都大于1。 在高分辨质谱图中最少也是一点几几几, 在低分辨率质谱图中就是1(氢)、 2(氦)、 ... ... 、 12(碳), 等等之类。 探测器也只会记录电脉冲数, 分不出来离子质量。 “机器的检测时间(莫专家语)”不行, 时间的单位是时、分、 秒、 毫秒(ms)、 纳秒(ns)等等之类。 只有使不同质量的离子分开的加在四级杆和离子阱上的电压可以。 电压是可以“步进”并被精准记录的, 可电压的单位是伏特(V), 那么, 只有将可以只驱动0.1m/z质量的微粒进入四极杆飞向探测器, 或者只可以将0.1m/z质量的微粒驱出离子阱飞向探测器的电压伏特数, 在质谱计中可能是“纳伏数”, 计算转换表达为m/z值, 就有了“以0.1 0m/z为单位步进收集”的“丰度测得值”。 为什么上面的“峰截面轮廓线图”会变成下面的“直线图”呢? 这是因为在电压以0.1m/z步进到到109m/z之前, 因为没有107.99、108.00、 108.10、 108.20的离子, 高分辨力质谱计的高灵敏探测器能测到108.***的离子和109.***的离子, 低分辨力质谱计的探测器啥也测不到, 所以这时没有“丰度”被探测器收集到; 在109m/z之后, 同样没有109.10、 109.20、 ... ...、 110.00、110.10之类的离子, 探测器又啥都收集不到了, 只有在电压步进到109.00m/z时, 探测器才能收集到m/z 109的离子, 在低分辨力质谱计中将109.00左边的108.5**以上的离子和右边的109.500以下的离子(大致是这样吧)统统归入这个m/z109离子的计数值(丰度), 再将其与质量数对应起来, 就是下面的“直线图”或曰“柱状图”。 我们知道, 质谱计的探测器只能记录电脉冲数,1amu的氢离子是一个脉冲, 几千amu的蛋白质分子也是一个电脉冲, 如果只从探测器的结果记录, 则只有时间-电脉冲数记录, 而这些电脉冲是多大质量的离子产生的, 则无法分辨。 那么只有让一种质量的离子在一个时间段到达探测器, 才能分辨出来时间序列上的每组计数的离子质量(m/z值)。 用什么办法使不同质量的离子在一个时间段有序到达探测器呢, 只有改变施加在四级杆和离子阱上的控制电压, 射频(RF)或者直流(DC), 才能做到, 而电压的变化是能被仪器精确记录的, 精确记录的电压与粒子质量是精确对应的, 所以就可以将由小到大变化的, 驱动质量由小大的离子顺序飞向探测器的电压变化速度表达为单位时间内质量数的变化率, 也就是质谱计的以amu/秒为单位的“扫描速度”, 质谱计的5600amu/sec的扫描速度的意思, 就是仪器可以在一秒钟之内顺序将质量数从1amu到5600amu的离子顺序驱离出阱或者分质量过杆, 只是这个扫描速度是驱动离子分质量“过杆”或者“弹出离子阱”的电压变化速度, 不是探测器实际测到的脉冲数。 安捷伦公司的文章作者和译员喜欢将“驱动离子出阱”写成“扫描离子出阱”, 在这里, 我不愿意用“scan”这个词。

  • 【原创大赛】分光光度计全谱扫描技术应用探讨

    【原创大赛】分光光度计全谱扫描技术应用探讨

    [align=center]分光光度计全谱扫描技术应用探讨[/align][align=center]山西省产品质量监督检验研究院 李学哲[/align] 一说扫描分析技术我们想到最多的是扫描数字计算机、扫描电子显微镜、计算机断层扫描器等。扫描方式有电子扫描、机械扫描;常见的扫描我们称之为:光扫描、螺旋扫描、电子束扫描、无线电波扫描、机械扫描等。 紫外可见分光光度计一般有三种分析方式,固定波长的比色分析法,测量的是在特定波长处的光吸收度,可以对物质进行定性或定量分析。全谱扫描是在一定波长范围内的全谱比色分析法,是一定波长范围内,对同一浓度的溶液,在不同波长的吸收度能力分布比较分析,可以对物质进行定性分析、最佳的波长吸收度范围选择。时间扫描是在特定波长处的不同时间的光吸收度变化情况分析,时间扫描可以对物质的稳定性等进行分析。 化学分析中基本就是用第一种比色分析法,很少用到全谱和时间扫描。近期我们在对艾草的全分析过程中用到了全谱扫描技术,发现由于溶剂不同,扫描结果有很大区别,这一技术的应用我们发现有可能在鉴别试验、定性分析上可以有所突破,下面我们把结果报告给大家,愿与大家共同去再发现、去讨论。 方法介绍:我们用三支50mL比色管中,用感量0.01克的天平,称取艾绒1克,分别加入50mL的甲醇(无水)、丙酮和异辛烷,震荡20分钟左右,溶解艾绒的有效成分进入液体中。把液体倒入10-20mL离心管中,约3000 转/分钟,离心分离液体后,用有全谱分析能力的分光光度计分析,结果见下面的图谱1-3图,其中图1 是丙酮溶剂;图2 是甲醇溶解;图3 是异辛烷。[img=,690,238]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011454380876_3707_2345874_3.jpg!w690x238.jpg[/img] 结果分析:从图1-3上我们可以看到丙酮和异辛醇在410纳米下有特征峰,从峰的图形上看吸光强度丙酮大于异辛烷,峰的特征明显。从我们的分析上不难看出丙酮的结果较为理想,我们随后又做了不同浓度和不同年份采摘的艾草的丙酮溶解艾绒的全谱扫描试验,在410纳米左右也均有相似的谱图,就是吸收强度有区别,放置一年后的艾草的吸收值约低了1倍左右。 从目前的分析结果看,建议分光光度计的全谱扫描技术应用在艾草的鉴别实验上的可能性还是有的。需要说明的是在互联网的输入关键复合词“分光光度计+全谱扫描”只检索到黄梅珍,倪一,林峰等撰写的《高速紫外-可见分光光度计的研制》论文一篇。在官方标准检索网站检索到的相关标准结果是0。

  • 【转帖】为什么离子阱质谱的采集速度不由扫描速度决定?(经典忍不住转了)

    [size=4]中国人比较理解四极杆质谱,空间的嘛,离子从哪里产生,从哪里进,从哪里出,一看就明白。所以,常常推而论之,对于离子阱质谱,大家常常用四极杆的一些评价标准衡量。比如,我们这里说的扫描速度。这里,要谈的一个问题就是:离子阱采集谱图的快慢,不由扫描速度决定。离子阱的一个scan cycle的时间(即我们通常理解的获得一张质谱图的时间,在离子流色谱图上,即意味着采集一个点的时间),是由以下几点因素决定的。1-A[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 预扫描时间(大约为几十个毫秒,在Thermo的离子阱中,使用A[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]技术,主要为了自动地预估阱内离子数多少,控制离子进入阱的那个“门”的大小,从而防止离子在离子阱中过载,因为过载后会引起空间电荷效应,带来谱图和线性的扭曲)在Bruker和Agilent的离子阱中,使用ICC技术,是直接在离子注入离子阱的时候,一边注入,一边通过内插算法调节离子门大小,所以没有这个时间。2-离子“注入”的时间(Inject time,这个时间是最长的,因此是速率决定步骤)3-母离子分离和做MSn所需要的母离子激发的时间4-把子离子依次扫描出离子阱的时间(这个时间由扫描速度决定,我们平时说的扫描速度在这里体现,即把离子从质量分析器逐出的速度)完成一次scan cycle的真实情况见下图示意。[/size][img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910022229_174038_1619176_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910022230_174039_1619176_3.gif[/img]注:T=Thermo;Ag=Agilent;Br=BrukerAB的线性阱,具体参数不了解,但应该注入时间也大大减小。通过以上分析,我们可以得知:不管是什么样的离子阱,只要速率决定步骤(即离子“注入”的时间)没有得到很大提高,扫描速度快慢与否,跟实际采集一个峰的点数关系并不大。这就好比开车从家到单位,从家到上高速前要堵40分钟,上了高速跑5分钟,下来再堵10分钟到单位。在高速上,即使开车速度提高1倍,对于整个行程时间的贡献也很小。瓶颈在从家到单位啊。新型仪器二维线性阱之所以好,是因为“注入”时间Injection time,即决定速率的步骤,比所有的三维离子阱快很多,所以整个Scan Cycle的时 50次的扫描。

  • 【原创】光谱仪器的波长扫描机构介绍

    【原创】光谱仪器的波长扫描机构介绍

    [B][center]作者:anping nemoium [/center][/B]绪:anping老师又提供了一种新的波长扫描机构---凸轮机构,原来的贴名---[B]正弦机构[/B]就不合适了,所以此帖就作为波长扫描机构有关资料的整理贴,大家讨论一下。最后,感谢anping老师的帮助。[color=#00008B][B]关键词[/B]: [/color]波长扫描机构 正弦机构 余割机构 凸轮机构 波长扫描机构 光栅方程[size=4][B]正文[/B][/size] [color=#6495ED][B] 波长扫描机构介绍[/B][/color] 波长扫描机构用于将分光系统分离出来的单色光依序输出并显示其波长值。[B]对波长扫描机构的要求是:使输出光束的波长按线性变化,以获得波长坐标为均匀刻度的谱图。[/B] 常用的波长扫描机构有凸轮机构、正弦机构、余割机构等。扫描机构与光栅座连接,可使光栅工作面绕其中心轴转动。一.正弦机构介绍(一)正弦机构简介 正弦机构是波长扫描机构的一种。 [B]正弦机构能令与单色光衍射角正弦成正比的波长输出读数变成简单的线性。[/B]目前多数[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]器的波长扫描使用正弦机构。 正弦机构是[B]机械系统中杠杆传动[/B]中的一种。正弦机构具有精密度和可靠性高的特点。[color=#00008B][B](二)正弦机构图示[/B][/color][B]正弦机构的实物图[/B] 图1是上海精科的AA320的背部图。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901132122_128796_1786353_3.gif[/img][/center][center]图1-a[/center][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901212234_130115_1786353_3.jpg[/img] [/center][center]图1-b anping老师提供[/center]注:图1-b并不是图1-a的内部图。正弦尺的结构示意图如图2、3.[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901132122_128797_1786353_3.gif[/img][/center][center]图2[/center][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901132122_128798_1786353_3.gif[/img][/center][center]图3-a[/center][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901212235_130116_1786353_3.jpg[/img] [/center][center]图3-b anping老师提供[/center][color=#6495ED][B](三)正弦机构的工作原理[/B][/color] 如图3-a,光栅平面转动中心与一被称为正弦尺的金属杆的A端连接,杆的B端装有滚动轴承, 正弦尺的A点到B点距离,即光栅平面转动中心与轴承转动中心间距离,设为L。滚动轴承靠近丝母C的端面,当精密丝杆转动时,使螺母沿丝杆移动,X值(丝母沿丝杆移动的距离)变化,最终推动正弦杆带着光栅绕其中心轴转动,从而AB线和CA线间的夹角即光栅的衍射角β随之改变。以图1-b为例来说明:波长马达通过传动皮带驱动精密丝杆转动,丝杆带动滑块移动,由于正弦臂杆是靠在滑块上的,所以正弦臂杆也跟着转动,从而带动光栅转动。 [color=#00008B][B](四)波长的线性化[/B][/color] 图3-a的简化图如图4。为了便于说明,以下的说明基于李特洛型光栅单色器或者闪耀光栅。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901132122_128799_1786353_3.gif[/img][/center][center]图4[/center] [B]光栅型单色器依据的原理是光栅方程 mλ=d(sinα+sinβ)。[/B] [B]光栅方程[/B] [color=#DC143C] mλ=d(sinα+sinβ)[/color] m为光谱级次,λ为衍射光波长,d光栅常数,α为入射角,β为衍射角。 入射角α和衍射角β的正负号规定为:衍射光和入射光在法线的同一侧时,入射角和衍射角同号,否则异号。 m=0为零级光,零级光两侧均有光谱,m0的为正级光谱,m0的为负级光谱。光栅方程mλ=d(sinα+sinβ),可以写成 mλ = 2 * d * sin[(α+β)/2] * cos[(α-β)/2] 式1-1设计单色器系统以使上式简化,对于正弦机构,设计机构,使 (α-β)为一常数。 [color=#6495ED][B]对于李特洛型光栅单色器或者闪耀光栅,衍射角β和入射角α相等,即α=β。[/B][/color][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901132123_128800_1786353_3.gif[/img][/center][center]图5[/center] 式1-1简化为: [center] mλ=2d(sinβ) 式1-2[/center] 根据图4可以看出, [center]sinβ = X / L 式1-3[/center] 得 [center]mλ = 2d(X/L) 式1-4[/center] 对于一定的光谱级次m和固定的正弦杆长度L;对于固定的光栅,d固定。 可以看到 [color=#00008B][center]λ = KX 式1-5[/center][/color] [color=#DC143C] 衍射波长λ和丝母沿丝杆移动的距离X成正比。[/color]这意味着波长随丝杆转动而线性变化,从而使波长读数值呈线性变化成为可能,如图1-b, 7.5nm/周,波长被线性化了。 现代仪器一般采用精密步进电机驱动丝杆,如图1-b,步进电机转动的角度由微处理器计算,这样也就可以算出相应的波长。 参考文献:1. [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url] 章诒学 何华焜 陈江韩2. 光学原理与应用 廖延彪3. 精密机械设计 徐峰4. WGD-8A多功能光栅光谱仪结构和原理5. 上海精科AA320使用说明书6. 光谱仪器原理 后记:现在想想以前看见别的师傅在做[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]波长校正时,调节正弦尺,用游标卡尺量距离,我想是确定光栅的初始角度。如图1-b中的12.667,用游标卡尺就是确定这个距离。有了这个距离,仪器在初始化时,可以确定各个波长时光栅要转过的角度,如图1-b左下角表格。为了确定波长和角度的关系,必须有个参考位置,参考位置可以是零级光或者闪耀波长处,有了参考位置,由于光路、光学组件固定,光谱图中各个波长的间距是可以计算出来的。当然,前提是必须找到参考位置,仪器驱动步进电机必须在某个步数内找到零级光或者闪耀处,用游标卡尺量就是使光栅的初始角度能使仪器在指定步数内找到零级光或闪耀处。另附分光光度计723的波长自动定位原理。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901141807_128919_1786353_3.gif[/img][/center][center]图6[/center]注,由于723中未采用正弦机构,所以,723计算机输出与波长成正弦关系的脉冲步进数。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901141807_128920_1786353_3.gif[/img][/center][center]图7[/center][size=3][B]二.凸轮机构介绍[/B][/size][color=#6495ED][B](一)凸轮机构简介[/B][/color] 作为一种机械构件,凸轮机构的特点是:只要选择合适的凸轮轮廓曲线,就可以使从动件(这里可以简单理解为光栅)的位移、速度、加速度严格的按照预订的规律变化,而机构却比较简单紧凑。 尤其在主动件(驱动凸轮机构)作连续运动,而从动件必须做重复往复运动时,用凸轮机构实现预定的运动规律最简单。[color=#6495ED][B](二)凸轮机构示意图[/B][/color][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901201936_129997_1786353_3.gif[/img][/center][center]图8 凸轮机构简视图[/center][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901201940_129999_1786353_3.gif[/img][/center][center]图9 凸轮波长扫描机构未加注释 anping老师提供[/center][center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901201941_130000_1786353_3.gif[/img][/center][center]图10 凸轮波长扫描机构加了注释 anping老师提供[/center]图10中的光电断续器一般由发光二极管和光敏三极管组成,这样,当凸轮旋转时,挡光板不断的遮住光,微处理器就可以检测到一串脉冲串了,就是图中所说的pulse。如图中的,0~200nm,355pulse ,可能是指凸轮转到200nm时,光电断续器输出355个脉冲。200nm~900nm,3500pulse,就是输出3500个脉冲了。图中的,cam : 0.2nm/nm 、4.800 pulse(one rotation) ,其中 0.2nm/nm不知道什么意思。是凸轮曲线每走1nm,波长变化0.2nm吗?? 4.800pulse是不是应该为4800pulse??是说凸轮转动一圈(one rotation)光电断续器输出4800个脉冲??Gear ratio :1/6就是指,大小齿轮的齿轮数比。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901201941_130001_1786353_3.gif[/img][/center][center]图11 凸轮机构实物图 anping老师提供[/center]具体的凸轮机构的波长线性方法,请参考《光谱仪器原理》这个附件的第211页。[size=3][B]三.余割机构介绍[/B][/size]待整理.......

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制