当前位置: 仪器信息网 > 行业主题 > >

相比电痕化指数

仪器信息网相比电痕化指数专题为您整合相比电痕化指数相关的最新文章,在相比电痕化指数专题,您不仅可以免费浏览相比电痕化指数的资讯, 同时您还可以浏览相比电痕化指数的相关资料、解决方案,参与社区相比电痕化指数话题讨论。

相比电痕化指数相关的资讯

  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 长春应化所承担的微、痕量有害金属智能电分析化学方法和仪器项目通过验收
    近日,由中科院长春应用化学研究所承担的“微、痕量有害金属智能电分析化学方法和仪器”项目在北京通过了专家验收。  该项目建立了多种重金属离子的电化学分析方法,并将纳米材料作为增强单元修饰在电化学系统的电极表面,实现了重金属离子的高灵敏检测。项目组同时还研究出一套适用于RoHS限制使用的有害金属离子及临床医学实用的在线监测电化学系统,并研制出一套小型金属离子智能电化学分析装置和配套的数据采集与分析软件,有效用于铅、镉、汞、镉和砷等离子的电化学检测。
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限0.5 ppb,是一种非常可靠的解决方案。同时结合PLSV嵌入式密封阀技术(对整个系统性能有着重要作用),和我们先进创新的信号处理以及先进的GC平台,大大提高了整体技术,成为现市场中强大而简单的解决方案。未来几个月,将有更多类似的系统投入全球使用。案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 0.5ppb 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质1ppb):纯化5N氦气方案应用详情请联系:fzhu@asdevices.cn
  • 多地环保指数超标 2011上半年水环境与空气质量公告发布
    环境保护部公告  公告 2011年 第55号  关于发布《2011年上半年重点流域水环境质量状况》和《2011年上半年环境保护重点城市环境空气质量状况》的公告  为加强环境信息公开,促进地方政府依法对辖区内环境质量负责,现发布《2011年上半年重点流域水环境质量状况》和《2011年上半年环境保护重点城市环境空气质量状况》。  特此公告。  附件:1.2011年上半年重点流域水环境质量状况     2.2011年上半年环境保护重点城市环境空气质量状况  二○一一年七月二十二日  主题词:环保 重点流域 重点城市 环境质量 公告  发送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,各环保重点城市环境保护局。  附件一:2011 年上半年重点流域水环境质量状况  2011 年上半年,重点流域水环境质量总体为轻度污染,主要污染指标为氨氮、高锰酸盐指数和五日生化需氧量。Ⅰ~Ⅲ类水质断面占48.8%,劣Ⅴ类水质断面占15.9%(见图1)。与上年同期相比,Ⅰ~Ⅲ类水质断面比例提高0.2 个百分点,劣Ⅴ类水质断面比例降低3.5 个百分点。  2011 年上半年,全国地表水高锰酸盐指数平均浓度为4.8 毫克/升,好于地表水Ⅲ类水质标准。与上年同期相比,下降0.3 毫克/升,降幅为5.9%,保持持续下降趋势。氨氮平均浓度为1.43 毫克/升,劣于地表水Ⅲ类水质标准。与上年同期相比,下降0.33 毫克/升,降幅为18.8%。  自2011 年起,地表水水质采用21 项(河流20 项)进行评价。  2011 年上半年,全国地表水有13 项指标出现超标现象(不计化学需氧量)(见图2)。其中,总磷、氨氮、五日生化需氧量和高锰酸盐指数超标较为严重,超标断面占断面总数的20%以上。  2011 年上半年,七大水系水质总体为轻度污染,主要污染指标为高锰酸盐指数、氨氮和五日生化需氧量。Ⅰ~Ⅲ类水质断面占53.9%,劣Ⅴ类占17.6%(见图3)。与上年同期相比,Ⅰ~Ⅲ类水质断面比例提高1.9 个百分点,劣Ⅴ类水质断面比例降低4.4 个百分点。支流污染普遍重于干流,支流Ⅰ~Ⅲ类水质比例为22.2%,比干流低31.7 个百分点 劣Ⅴ类水质比例为40.0%,比干流高22.4 个百分点。七大水系中,长江、珠江Ⅰ~Ⅲ类水质断面比例在75%~90%,水质良好 海河劣Ⅴ类水质断面比例超过40%,为重度污染 其余河流为中度或轻度污染。  2011 年上半年,七大水系高锰酸盐指数平均浓度为5.3 毫克/升,氨氮平均浓度为1.91 毫克/升(见图4)。与上年同期相比,高锰酸盐指数浓度平均浓度下降0.4 毫克/升,降幅为7.0% 氨氮浓度下降0.40 毫克/升,降幅为17.3%。七大水系中,珠江水系高锰酸盐指数平均浓度最低,为2.1 毫克/升,海河、松花江水系高锰酸盐指数平均浓度高于Ⅲ类水质标准  长江水系氨氮平均浓度最低,为0.63 毫克/升,黄河、海河、辽河、淮河、松花江等水系氨氮平均浓度高于Ⅲ类水质标准。  一、长江  2011 年上半年,长江干流总体水质为优(见图5)。与上年同期相比,水质无明显变化。长江主要支流总体水质为轻度污染,主要污染指标为总磷、氨氮和化学需氧量。与上年同期相比,水质无明显变化。十大支流中,雅砻江、嘉陵江和汉江水质为优,大渡河、沅江、湘江和赣江水质良好岷江、沱江为轻度污染,乌江为重度污染。长江省界断面总体水质良好。19 个断面中,Ⅰ~Ⅲ类和劣Ⅴ类水质的断面比例分别为78.9%和5.3%。与上年同期相比,水质有所下降。污染最严重的断面是位于黔-渝交界的乌江沿河断面,水质为劣Ⅴ类,主要污染指标为总磷。  二、黄河  2011 年上半年,黄河干流总体水质为优(见图6)。与上年同期相比,水质无明显变化。黄河主要支流总体水质为重度污染,主要超标项目为石油类、氨氮、化学需氧量。与上年同期相比,水质无明显变化。主要支流中,除伊河、洛河和沁河水质为优,伊洛河和灞河为轻度污染,湟水、大黑河、北洛河为中度污染,其余支流为重度污染。渭河下游西安段和渭南段,湟水河西宁下游段,汾河太原段、临汾段和运城段,涑水河运城段污染严重。黄河省界断面总体水质为中度污染。11 个断面中,Ⅰ~Ⅲ类和劣Ⅴ类水质断面比例分别为54.5%和36.4%。渭河渭南潼关吊桥断面(陕-晋)、汾河运城河津大桥断面(晋-陕)和涑水河运城张留庄断面(晋-陕)污染严重,其中渭河渭南潼关吊桥断面(陕-晋)主要污染指标为氨氮、石油类、五日生化需氧量,汾河运城河津大桥断面(晋-陕)主要污染指标为挥发酚、氨氮、五日生化需氧量,涑水河运城张留庄断面(晋-陕)主要污染指标为氨氮、五日生化需氧量、总磷。  三、 珠江  2011 年上半年,珠江干流总体水质良好(见图7)。与上年同期相比,水质无明显变化。珠江广州段为轻度污染,主要污染指标为石油类和氨氮。珠江主要支流总体水质为优。与上年同期相比,水质无明显变化。海南岛内河流万泉河水质为优,海甸溪为轻度污染。珠江省界断面:总体水质为优。7 个断面中,5 个为Ⅱ类,2 个为Ⅲ类。与上年同期相比,水质无明显变化。  四、松花江  2011 年上半年,松花江干流总体水质为轻度污染,主要超标项目为氨氮、高锰酸盐指数和总磷(见图8)。与上年同期相比,水质无明显变化。松花江主要支流总体水质为中度污染,主要超标项目为氨氮、高锰酸盐指数和总磷。与上年同期相比,水质无明显变化。松花江省界断面总体水质为轻度污染。5 个省界断面中,Ⅱ类水质断面1 个、Ⅲ类水质断面2 个、Ⅳ类水质断面2 个。  五、 淮河  2011 年上半年,淮河干流总体水质良好(见图9)。与上年同期相比,水质无明显变化。淮河主要支流总体水质为中度污染,主要超标项目是五日生化需氧量、高锰酸盐指数和氨氮。与上年同期相比,水质有所好转。主要一级支流中,史灌河水质良好,浉河、潢河、西淝河、沱河和浍河为轻度污染,洪河和洪河分洪道为中度污染,颍河和涡河为重度污染。淮河省界断面总体水质为轻度污染,主要污染指标为五日生化需氧量、高锰酸盐指数和总磷。32 个断面中,Ⅰ~Ⅲ类和劣Ⅴ类水质的断面比例分别为31.3%和15.6%。与上年同期相比,水质明显好转。  六、 海河  2011 年上半年,海河干流总体水质为重度污染(见图10)。海河大闸断面为劣Ⅴ类水质,三岔口断面为Ⅳ类水质。主要超标项目为高锰酸盐指数、氨氮和总磷。与上年同期相比,三岔口断面水质明显好转,由劣Ⅴ类好转为Ⅳ类。海河水系其他主要河流总体水质为重度污染,主要超标项目为氨氮、高锰酸盐指数和五日生化需氧量。主要河流中,永定河水质为优,滦河水质良好,漳卫新河中度污染,大沙河、子牙新河、徒骇河、北运河和马颊河为重度污染。海河省界断面总体水质为中度污染,主要污染指标为氨氮、高锰酸盐指数和五日生化需氧量。16 个断面中,Ⅰ~Ⅲ类和劣Ⅴ类水质断面比例分别为43.8%和37.5%。  七、 辽河  2011 年上半年,辽河干流总体水质为轻度污染,主要超标项目为石油类、五日生化需氧量和化学需氧量(见图11)。老哈河和东辽河水质良好,辽河为轻度污染,西辽河为中度污染。与上年同期相比,老哈河、东辽河和西辽河水质无明显变化 辽河4 个断面水质由上年同期的劣Ⅴ类变为Ⅳ类或Ⅴ类,水质明显好转。辽河主要支流总体水质为中度污染,主要污染指标为总磷、高锰酸盐指数和氨氮。西拉沐沦河为轻度污染,招苏台河为中度污染,条子河为重度污染。大辽河总体水质为重度污染。主要污染指标为氨氮、石油类和五日生化需氧量。浑河沈阳段、太子河鞍山段和大辽河营口段污染严重。与上年同期相比,水质无明显变化。大凌河总体水质为轻度污染。主要污染指标为氨氮、高锰酸盐指数和五日生化需氧量。与上年同期相比,水质明显好转,由中度污染变为轻度污染。辽河3 个省界断面中,Ⅱ类水质、Ⅳ类水质、Ⅴ类水质断面各1个。与上年同期相比,已无劣Ⅴ类水质断面,水质明显好转。  八、重点湖(库)  ① 太湖  2011 年第二季度,太湖全湖为Ⅳ类水质,轻度富营养状态。2011 年上半年,太湖五里湖、东部沿岸区为Ⅲ类水质,梅梁湖、湖心区为Ⅳ类水质,西部沿岸区为Ⅴ类水质,全湖为Ⅳ类水质。主要污染指标为总磷和化学需氧量。营养状态评价表明,全湖平均为轻度富营养。与上年同期相比,水质和富营养化程度均无明显变化。  ② 巢湖  2011 年第二季度,巢湖全湖为Ⅴ类水质,轻度富营养状态。2011 年上半年,巢湖东半湖为Ⅳ类水质,西半湖为Ⅴ类水质,全湖为Ⅴ类水质。主要污染指标为总磷、石油类、化学需氧量。营养状态评价表明,全湖平均为轻度富营养。与上年同期相比,水质有所下降,富营养化程度无明显变化。  ③ 滇池  2011 年第二季度,滇池全湖为劣Ⅴ类水质,中度富营养状态。2011 年上半年,滇池草海、外海为劣Ⅴ类水质,全湖为劣Ⅴ类水质。主要污染指标为总磷、高锰酸盐指数和五日生化需氧量。营养状态评价表明,全湖平均为中度富营养。与上年同期相比,水质无明显变化,富营养化程度由重度富营养变为中度富营养。  ④ 其他大型淡水湖泊  2011 年上半年,监测的10 个其他大型淡水湖泊中,洱海为Ⅲ类水质,博斯腾湖、洞庭湖、镜泊湖、兴凯湖、鄱阳湖为Ⅳ类水质,洪泽湖、南四湖、白洋淀为Ⅴ类水质,达赉湖为劣Ⅴ类水质。营养状态评价表明,洱海、博斯腾湖、洞庭湖、镜泊湖、鄱阳湖为中营养,洪泽湖、南四湖、白洋淀为轻度富营养,达赉湖为中度富营养。  ⑤ 城市内湖  2011 年上半年,监测的5 个城市内湖中,东湖、西湖、大明湖为Ⅲ类水质,玄武湖为Ⅳ类水质,昆明湖为Ⅴ类水质。营养状态评价表明,东湖、西湖、大明湖、昆明湖为中营养,玄武湖为轻度富营养。  ⑥ 大型水库  2011 年上半年,监测的10 个主要水库中,千岛湖为Ⅰ类水质,丹江口水库、密云水库、门楼水库、石门水库、大伙房水库为Ⅱ类水质,董铺水库、崂山水库、于桥水库为Ⅲ类水质,松花湖为Ⅳ类水质。营养状态评价表明,丹江口水库、密云水库、董铺水库、门楼水库、千岛湖、于桥水库、大伙房水库为中营养,崂山水库、松花湖为轻度富营养。  九、国控断面重金属超标情况  2011 年上半年,19 个地表水国控断面共出现31 次重金属超标现象。从流域看,超标断面主要分布在海河流域和西南诸河。其中,海河流域重金属超标现象最为严重,超标断面占总超标断面的36.8%。分省区看,超标断面分布在云南、天津、山东、安徽、江苏、内蒙古、河北、西藏、四川。其中,云南超标断面数最多,超标断面占总超标断面的21.0% 云南和天津超标频次最多,均占总超标次数的25.8%。  在重金属超标断面中,汞超标断面12 个,共超标23 次 砷超标断面3 个,共超标4 次 硒和锌超标断面均为2 个,各超标2 次。各超标断面重金属污染程度不同,汞超标倍数在0.4~25.2 倍,最大超标倍数出现在富民大桥断面(云南省) 砷超标倍数在0.2~1.4倍,最大超标倍数出现在东嘎断面(西藏自治区) 硒超标倍数在0.8~1.5 倍,最大超标倍数出现在合钢二厂下游断面(安徽省) 锌超标倍数在0.2~0.4 倍,最大超标倍数出现在碳研所断面(四川省)。  2011 年上半年,“锰三角”地区酉水河、清水江、石龙河、锦江河、舞阳河、溶溪河和龙潭河的锰均存在不同程度的超标现象。其中溶溪河的溪口断面、清水江治乌、石花村和茶洞断面以及龙潭河妙泉入口断面锰超标较严重,最大超标倍数分别为30.0、18.7、13.6、10.3 和18.6 倍。  附件二:2011 年上半年环境保护重点城市环境空气质量状况  2011 年上半年,113 个环保重点城市空气中二氧化硫、二氧化氮和可吸入颗粒物平均浓度分别为0.044 毫克/立方米、0.037 毫克/立方米和0.091 毫克/立方米。与2010 年上半年相比,二氧化硫平均浓度下降2.2%,二氧化氮平均浓度上升5.7%,可吸入颗粒物平均浓度持平。  在113 个环保重点城市中,有68 个城市达到二级标准(评价标准依据《环境空气质量标准》(GB3095-1996)中的年均值标准。),占60.2% 45 个城市空气质量超标,占39.8%,其中1 个城市空气质量级别为劣三级。重点城市中二氧化硫平均浓度达到一级标准的有湖州、福州、泉州、深圳、珠海、汕头、湛江、海口、拉萨、克拉玛依等10 个城市,占8.8% 达到二级标准的有86 个城市,占76.1% 二氧化硫平均浓度超标的城市数量为17 个,占15.1%,其中乌鲁木齐二氧化硫浓度为劣三级。与2010 年上半年相比,年均浓度下降的城市数量为51 个,占45.1%。113 个重点城市的二氧化氮平均浓度均达到二级标准,其中达到一级标准的城市有71 个,占62.8% 达到二级标准的有42 个城市,占37.2%。与2010 年上半年相比,年均浓度下降的城市数量为38 个,占33.6%。  重点城市中可吸入颗粒物平均浓度达到二级标准的城市有78个,占69.0% 可吸入颗粒物平均浓度超标的城市数量为35 个,占31.0%。与2010 年上半年相比,年均浓度下降的城市数量为57 个,占50.4%。  2011 年上半年环保重点城市环境空气质量状况统计
  • 与HPLC相比,用TOC分析进行清洁验证的优势
    科技的发展和生产成本的提高使全球制药工业开始衡量提高效率和产量的其他途径。在这个竞争激烈的行业中,至关重要的是降低过高的成本,消除那些不必要且冗长的验证工作,同时最大限度地确保药品质量。过去几年里,将总有机碳TOC分析这种非专属性方法用于清洁验证的做法受到了越来越多关注,因为事实证明,高效液相色谱(HPLC)之类的专属性分析检测是清洁验证过程中的瓶颈,在很大程度上造成了设备在清洁之后的停工期。本文探讨:与传统的分析方法相比,用非专属性方法进行清洁验证的优势,帮助制药行业认识到使用TOC分析这种新方法后,资源生产力的增强、产量的提高、设备停工期的减少和收入的增加。为什么采用TOC进行清洁验证?进行清洁验证越来越多的公司利用TOC分析来进行清洁验证,因为它比其它方法更快速、简便和经济。TOC方法可以获得较高的样品分析量,减少清洁验证规程的执行时间。即使是对一般认为不溶于水的化合物和生物技术行业里常见的大分子蛋白也同样实用。此外,FDA已经将TOC方法1规定为检测污染物残留的标准程序。在清洁验证调查中,经常需要根据一个以上的目标残留物或化合物建立接受标准限制。HPLC的局限性在于,它在一次试验中,只能检测一种残留物。因此在清洁验证中,多种化合物就需要多个分析实验才能完成。在这些实验中许多无法预料到的污染物和清洁剂可能会被忽略,在色谱中就会显示出许多不明的峰。由于TOC是一种非专属性方法,所以可检测到超过一种的目标化合物。HPLC的最大缺点:假峰、管制审查、高额的维修费用由于设置和分析耗时过长,使用HPLC的结果经常是,要花一两天的时间才能认证设备符合清洁标准,由此造成生产停机。(HPLC)不明的峰以及高额的维修费用都是导致停工的原因。另外,在对制药设施进行检查后,FDA发出的警告信中,HPLC是被引用最多的分析方法。近期的警告信所提到的问题有,HPLC方法会导致不充分的检测,无法确定不明的峰,无法在使用之前校正仪器,检测的线性程度低,仪器准确度的不足,无法在分析之前使仪器达到合适状态等等。2实验室运行HPLC仪器的操作人员培训及认证程度不足也受到高度关注。一封最近的警告信写道:“......HPLC测试的流程不全面,因为样品的运行时间和保留时间......在你们提供的实验方法里没有确定。我们的调查员发现贵实验室的员工习惯性地在活性峰洗脱后停止色谱的运行,导致不能检测到在活性峰之后洗脱的峰。”3加强这方面的监督,说明FDA意识到了HPLC的缺点。这些认识在FDA “Guide to Inspections of Pharmaceutical Quality Control Laboratories"(《FDA药品质量控制实验室审查指南》)中得到了进一步体现。“有时公司员工没有受到充分的培训,也没有充分的时间去弄清需要进一步调查和解释的情况。所以他们在遇到色谱中无法解释的峰时,就将其忽略,而不是进一步确认。”4众所周知,用HPLC分析进行清洁验证会有许多不确定因素。不明的峰,也就是“假峰”,是不确定因素之一,可导致冗长的排除困难时间和验证操作的失败。以往的进样、污染物、气泡、柱内的污垢,磨损的保护柱,以及样品中痕量的污染物和清洁剂都是导致HPLC需要更换组件的因素。比如,磨损的聚合物接头或管材,被污染的保护柱会影响峰形,需要更换。根据峰形的变化,保护柱需要每周甚至每天更换,这大大地增加了计划外的维修费用。使用成本一般情况下,一台TOC分析仪的价格比一台HPLC仪器低37%。大部分制药设施中都有在线TOC分析仪用于确认USP标准的纯水使用。同一台分析仪可用于纯水检测和清洁验证,节省了一大笔购买资金。另外,TOC分析的操作费用也要比HPLC仪器低40%到80%。TOC不会占用额外的时间来进行频繁的维修,无需更换柱子以及去除污染物,更不使用具有良好脱气性的溶剂,及每天进行柱子的平衡和检测器的校正等。由于有不能确定的化合物以及仪器正常运行所需的众多复合组件,HPLC的操作费用会增加。由HPLC引起的停产所耗成本表1显示的“停工期计算”比较了制药工业中常用于清洁验证的分析方法所引起的停产造成的相关费用。“停工期计算”显示制药公司使用HPLC和TOC按315个生产日(每个工作日24小时,每周工作7天),生产一种“大受欢迎”的制剂。5使用750种资源进行药物产品生产,产品年毛利为$2,500,000,000。用TOC来进行清洁验证,制药企业由停产所造成的花费可降低97%。表1.停工期计算非专属性方法的简便性HPLC操作要求随时关注样品的分析,员工需进行专门的培训。TOC分析不需要专门的培训,将分析方法开发时间降低60%。TOC还可以减少最终用户的决定点,消除停工期和人工造成的错误,优化清洁验证和认证过程。简化的TOC备案过程可确保合规性和促进实时备案,这样可以加快所检查仪器、检查结果的认可过程。因此可以尽快恢复生产,这一点对制药企业来说是非常重要的。不溶有机物的回收率百分比对于非专属性方法的使用,有人认为如果有不溶有机物,用TOC进行清洁验证的回收率较差,回收百分比不可能超过50%。表2比较了用HPLC和TOC对三种“不溶有机物”进行分析的棉签法回收百分比。表2.棉签法回收6TOC在20毫升水中回收浓度为4μg/cm2或百万分之一的试样,反应有效率在50以上。6清洁验证支持包在美国与欧洲,经过了20多年对清洁验证工作的探索,目前有大约超过一半的药企,采用总有机碳TOC法进行清洁验证。为了更好地帮助制药企业采用简单便捷的TOC方法,开发清洁验证的SOP,Sievers分析仪专门编写了《清洁验证支持包》,支持您快速使用TOC方法,建立清洁验证的SOP。如您对采用TOC进行清洁验证的方法感兴趣,或有任何疑问,点击文末的“阅读原文”填写信息,我们的应用专家将尽快与您联系,协助您简化清洁验证。参考文献1.FDA网站:www.fda.gov/cder/guidance/cGMPs/equipment.htm#TOC。2."The Gold Sheet." FDC报告,2005年3月。3.FDA网站:www.accessdata.fda.gov/scripts/wlcfm/indexdate.cfm。4.FDA指导文档 : Guide to Inspections of Pharmaceutical Quality Control Laboratories。5.假设生产设备的例行维护造成停产,相关计算可联系Sievers分析仪获取。6.Andrew W. Walsh 为本文提供了内容。◆ ◆ ◆联系我们,了解更多!
  • Nature亮点 | Phenoptics™ 组织微环境分析方案深度解析肿瘤免疫细胞分型
    最近数十年以来肿瘤的免疫治疗相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点抑制剂的治疗方案表现尤为突出。但是即便如此,肿瘤的免疫治疗领域仍然面临巨大的挑战,比如治疗效果的不确定性、患者反应的不可预估性、免疫治疗耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的精准有效治疗。Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫治疗障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及治疗耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤精准治疗的基础,也是在精准医学时代背景下亟需解决的难题。独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记、Vectra多光谱成像和inForm智能组织定量分析技术,可以实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。2019年6月26日,Nature杂志在线发表了巴黎大学Jér?me Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发生发展进行调控和精准治疗,为提高肿瘤免疫治疗的有效率提供了新的技术思路和方法。Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0该研究工作的领导者Jér?me Galon教授利用PhenopticsTM组织微环境分析方案进行肿瘤免疫治疗研究和新的免疫治疗组合策略方案开发。附图来自Jér?me Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和精准治疗提供重要的参考依据。来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和精准治疗提供可靠依据。Phenoptics™ 组织微环境分析方案—Opal 9色荧光标记示例图关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 浙中北多个检测点PM2.5指数爆表
    本来,秋天里暖洋洋的阳光是最治愈系的了,到西湖边走走、看看北山路上的落叶,多少惬意!可是昨天的杭州让人空对着一窗好阳光却不敢出门。  昨天,在省环保厅网站的全省环境空气质量指数(AQI)发布平台上,可以看到紫红色、大红色、橙色的小圆点密密麻麻覆盖了浙中北,这些都是空气质量监测点,颜色越红,代表空气质量越差,红得发紫,代表重度污染。昨天全省有20多个点位出现重度污染,连大海中的嵊泗岛都出现了中度污染,浙中北的PM2.5浓度连连爆表……  浙北多个监测点PM2.5 一度超国标1倍以上  昨天晴空万里无云,阳光真心不错,照在身上暖洋洋的。杭州市气象台说,昨天杭州能见度还算可以,在5公里以上,平均相对湿度80%以下,有轻微霾出没。看看远处的天空,果然有淡黄色的霾让远处的楼群变得朦朦胧胧。雾霾是看得见的,其实还有更多看不见的污染物也飘荡在空气中。  昨天中午1点,我打开全省环境空气质量指数(AQI)发布平台,真是吓了一跳,浙中北已经被一片橙色、大红、甚至紫红色的圆点覆盖。这些圆点分别代表轻度污染、中度污染和重度污染。这些圆点就像一盏盏高悬的红灯提醒大家:灰霾来袭,请勿外出!几乎所有的首要污染物都是臭名昭著的PM2.5。  让我们从北往南看下来:  嘉兴市区,包括嘉兴学院在内的3个点位都是重度污染 湖州市区,2个点位重度污染 杭州市区,下沙重度污染,包括朝晖五区、和睦小学在内的7个点位重度污染 宁波市区,三个点位重度污染,其余中度污染 就连空气一向洁净的舟山,5个点位轻度污染,嵊泗中度污染,住在桃花岛上的黄药师估计也要发飙了!  全省只有温州、台州、丽水的情况好一些。  浙中北各个城市的PM2.5指数也是连连爆表,昨天中午1点的时候,嘉兴学院PM2.5浓度(24小时均值)达到了逆天的181微克/立方米(国家标准75微克/立方米),超国标几成大家自己算算看吧。  昨天傍晚5点,杭州朝晖五区PM2.5浓度(24小时均值)达到了140微克/立方米,滨江146微克/立方米、下沙147微克/立方米,浙中北一片PM2.5爆表的霹雳巴拉声。  秋冬季是空气污染频发期  大气环流吹来北方污染物  话说11月1日起,我省试发布县级城市环境空气质量指数,全省空气质量监测站点从53个增加到153个,覆盖到每一个县级城市。截至昨天,这张全省空气质量“地图”已试运行一周,整体空气质量还是不错的。为何昨天突然“变脸”,全省各监测点位中甚至出现了重度污染?到底我们是得罪了哪路神仙,导致昨天突然污染物大爆发、PM2.5大爆表呢?  其实不光我们浙江,昨天整个长三角的空气质量都好不到哪里去。”杭州市环境监测中心站高级工程师洪盛茂说,昨天浙江周边的上海、南京,空气质量状况也不佳。反倒是前几天污染很厉害的北京,昨天的空气质量还不错。  在他看来,本月已经进入秋冬季的空气污染频发阶段,这次是由于大气环流,将上游的污染物输送到了这里,加上风力微小,大气扩散条件差。两者共同影响作用,导致空气污染。  省环境监测中心的工作人员说,空气质量的评价要一个阶段的数据累计才能得出,仅仅看一某个时间点、一天的意义并不大。举例来说,11月1日,海盐的空气质量名列前茅,但昨天海盐的监测点位上就出现了重度污染。  今天杭州仍是灰霾天气  冷空气君,你快快来吧  什么时候空气质量才能好转?这就得看冷空气君的脚程快不快了,因为目前,只有冷空气君有实力和灰霾斗一斗。  根据预报,今天杭州多云,气温13到25℃。今天全省也是多云为主,早晨局部地区有雾。今天杭州空气污染气象条件是四级,较差,不利于空气污染物稀释、扩散和清除。看来今天灰霾还会继续缠住我们阴魂不散。  大家千呼万唤的冷空气君什么时候到?省气象台说,本周日受较强冷空气影响,全省有一次弱降水、大风和明显的降温天气,过程降幅大部地区可达7到9℃。到时候灰霾天会被吹散,好空气才会重新登场。省疾控中心提示:雾霾天气尽量减少户外活动,适当注意防护。
  • 济南四站点监测PM2.5指数 目前尚无国家标准
    城市上空常常出现的灰霾天气元凶是谁?美国驻华使馆和北京市环保局关于监测数据谁更准确的争论,让“PM2.5(直径小于等于2.5微米的颗粒物)”这个名词迅速“走红”。  记者获悉,其实作为试点城市,济南监测PM2.5已经快一年的时间,因为没有国家相应标准,无法对外公布。“如果省里确定明年公布,我们将一并执行,这也需要具体的空气质量标准出台,对市民才有指导意义。”济南市环保局副局长侯翠荣表示。  PM2.5定了标准才能测定危害  研究显示,PM2.5是造成灰霾天气的首要“元凶”,大多含有重金属等有毒物质,可以进入肺部,对呼吸系统、心血管、免疫系统、生育能力、神经系统和遗传等都有广泛影响。济南市环保局环境监测站专家侯鲁健告诉记者,据统计,机动车尾气和扬尘对PM2.5污染贡献率都很大。  “PM2.5纳入监测后,对空气质量的反映肯定更准确。”侯鲁健说,由于PM2.5监测的是城市大气中更为细微的颗粒,与目前PM10数据标准相比,城市的空气良好天数肯定会下降。  “经常有市民问,为啥空气明明是灰蒙蒙的,但发布的空气质量指标却声称达到了良好?”侯鲁健解释,这样的空气质量不好往往是因灰霾天气,而灰霾天气的原因是空气中有大量PM2.5颗粒物,由于公布的是PM10的数据,造成市民对空气质量的感觉跟空气监测数据不一致的情况。  侯鲁健说,济南之所以一直没有公布PM2.5指数,不是因为没有检测能力,而是因为目前尚无PM2.5国家标准。“我们公布说PM2.5指数是100、200、300,如果没有相应国内PM2.5空气质量标准,什么程度算污染也就无法衡量,市民也就看不懂。”
  • Webinar | 仪器化压痕测试
    仪器化压痕测试如果您已经学习过如何使用压痕测试,并且想知道如何测试更加挑战的样品?或者您已经测量了一些样品,希望了解更多有关测量方法以及如何优化测量方法的信息?那么,仪器化压痕测试的高级线上研讨会就是为您准备的。知识点发展至今,Anton Paar TriTec团队研发了不同系列的仪器化压痕测试仪,其中包括MCT3(微观测试仪)、NHT3(纳米压痕仪)、UNHT3(超高性能纳米压痕仪)、UNHT3 Bio(生物纳米压痕仪)等。线上研讨会将阐述先进的力学性能测试方法,同时Jiří Nohava, PhD.和 Pavel Sedmak, PhD.还会使用Anton Paar推出的一系列仪器化压痕仪对具有挑战性的样品进行实践。从本次研讨会可学习到以下知识点:认识那些重要的却易被忽略的参数矩阵测试方法如何获取大量信息颗粒的力学表征该如何进行小尺寸样品该如何表征如何优化动态力学测试条件(sinus)生物软材料如何进行力学表征在液体浸没的环境下如何完成相关力学表征实验......时间/报名时间:2021-09-28, 15:00 - 18:30 语言:English主讲人:Jiří Nohava, PhD., Pavel Sedmak, PhD., Bin Zhang, Evelin Frank报名方式:点击下方“阅读原文”安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 《国家创新指数报告2010》发布 中国创新指数世界第21
    根据2月24日在京公布的《国家创新指数报告2010》,美国、瑞士、韩国和日本在去年“国家创新指数”排位中分居前4位,中国创新指数为57.9,在全球40个主要国家中排名第21位。报告指出,与传统发展模式相比,创新型国家有着明显特征:其经济发展和国民财富增长,主要依靠以科技投入、知识创造、知识传播和应用为标志的创新活动来驱动 企业主要依靠创新获得竞争优势 政府在营造良好的创新环境中发挥着主导作用。  据介绍,为监测和评价创新型国家建设进程,中国科学技术发展战略研究院从2006年起开展了国家创新指数的研究工作,今年是该院首次向社会公开发布相关成果。相关研究借鉴了国内外关于国家竞争力和创新评价等方面的最新研究成果,参考世界经济论坛、瑞士洛桑国际管理发展学院等权威机构的评价方法,建立了包括“创新资源”、“知识创造与应用”、“企业创新”、“创新绩效”和“创新环境”等5个一级指标和31个二级指标的评价指标体系。报告选择占世界R&D经费总量98%、占全球GDP总量88%的40个国家作为评价对象,以2000~2008年的统计(调查)数据为基础,测算了40个国家的创新指数。  从主要科技指标表现看,我国R&D经费总量已位居世界第四位,R&D人员总量位居世界第一,被SCI数据库收录的论文数居第二位,国人发明专利年度授权量进入世界前三,高技术产业增加值位居世界第二位,高技术产业产品出口稳居世界首位。  在国家创新指数的5个一级指标的国际排名中,我国创新资源指数排名第33位,比2000年提升5位,以2000年为基数,创新资源指数平均增速为12%,反映了我国对科技创新的投入持续增加,为国家创新能力的提升提供了基础保障 知识创造指数排名第33位,比2000年提升6位,该指数年均增速达24%,反映我国基础研究能力大大增强,知识的创造和技术的转化应用给予创新越来越强的支撑 企业创新指数排名第12位,比2000年提升13位,但该指数本身增长相对较慢,平均增速为10%,这也说明我国产业结构调整的任务还很艰巨,企业的创新能力还有待加速提高 创新绩效指数已迅速跃升到世界第9位,比2000年提升23位,指数年均上升速率为14%,反映我国科技创新的成果显著增长,创新效率明显提升 创新环境指数排名第23位,比2005年提升4位,我国在市场经济体制、知识产权保护等方面的环境明显改善。  数据表明,我国在创新资源和知识创造方面虽具有规模优势,但许多相对指标如效率指标、强度指标、质量指标方面,与主要创新型国家相比仍有较大差距。  而我国在企业创新和创新绩效方面的排名进步,较多地依靠了资金和自然资源要素的投入以及三资企业出口的拉动所带来的经济绩效的提高,对国外先进技术依赖程度依然较高,自然资源要素的利用效率依然很低。  在创新环境方面,我国在创新融资、反垄断等方面的改善尚不明显。
  • 制造业采购经理指数连续5月高于临界点
    国家统计局、中国物流与采购联合会8月3日发布的信息显示,7月份全国制造业采购经理指数(PMI)为53.3%,高于上月0.1个百分点。这是PMI连续5月高于50%这一经济扩张与收缩的临界点,并大体在53%的水平平稳运行。中国物流与采购联合会表示,这表明我国制造业经济总体企稳向好态势日趋明显。  调查显示,7月份PMI中,生产指数、新订单指数均连续6月在临界点之上,表明自2月份以来我国制造业生产逐月回复,市场需求逐步回暖。
  • 2021全球创新指数排名中国上升2位居第12
    9月20日,世界知识产权组织(WIPO)在日内瓦发布了2021年全球创新指数(GII)。中国延续了去年取得的进步,排名升至全球第12位。  报告显示,在新冠肺炎疫情造成巨大的人员伤亡和经济损失的情况下,世界上许多地方的政府和企业加大了创新投资。这说明人们日益认识到,新想法对于克服疫情以及确保后疫情时代的经济增长而言至关重要。  2020年的科学产出、研发支出、知识产权申请和风险资本交易在疫情前强劲表现的基础上继续增长。值得注意的是,与以往的衰退相比,研发支出在与疫情相关的经济衰退期间展现出更强的韧性。  然而,根据全球创新指数的新功能“全球创新跟踪器”显示,危机对各行各业的影响很不均衡。产出包括软件、互联网和通信技术、硬件和电气设备以及制药和生物技术的企业加大了创新投资和研发力度。与此相反,一些受到疫情防控措施严重打击、商业模式依赖亲身体验模式的企业和部门(如运输和旅游业)削减了相关支出。2021年全球创新指数显示,前沿技术进步带来巨大希望,新冠肺炎疫苗的快速发展就是最好的例证。  世界知识产权组织总干事邓鸿森说:“在世界期待从疫情中重建之际,我们知道创新对于克服我们面临的共同挑战、建设更美好的未来,发挥着不可或缺的作用。全球创新指数是一种独特的工具,可以指导政策制定者和企业界制定计划,确保我们摆脱疫情并变得更加强大。”  全球创新指数在对全球经济体创新能力和创新产出的年度排名中显示,仅有少数经济体(大多为高收入经济体)始终名列前茅。不过,包括中国、土耳其、越南、印度、菲律宾在内的部分中等收入经济体正在迎头赶上并改变创新格局。  瑞士、瑞典、美国和英国继续领跑创新排名,在过去三年内均位列前五。韩国于 2021年首次跻身全球创新指数前五,此外,新加坡排名第8、中国排名第12、日本排名第13。  北美洲和欧洲继续在全球创新格局中遥遥领先。东南亚、东亚和大洋洲的创新表现在过去10年中最为活跃,是唯一与领先者缩小差距的地区。  中国仍是前30位中唯一的中等收入经济体国家。自2013 年以来,中国的全球创新指数排名稳步上升,已经确立了作为全球创新领先者的地位,接近前十名。中国拥有19 个全球领先的科技集群,其中深圳—香港—广州和北京分别位居第二和第三。  报告显示,创新投资在大流行病之前达到了历史最高峰,研发在 2019 年增长了 8.5%,实属非凡。  2020年,有数据可查的研发支出最高的经济体在此方面的政府预算分配持续增长。全球研发支出最高的企业在2020年的研发支出增长约10%,有60%的研发密集型企业报告了研发支出增长。  2020年,风险资本交易量增长5.8%,超过了过去10年的平均增长速度。亚太地区的强劲增长不仅弥补还超过了北美和欧洲地区的下降。非洲及拉丁美洲和加勒比地区也出现了两位数的增长。2021年第一季度数据表明,2021年风险资本活动更加活跃。  2020年,全球科学文章出版增长7.6%。  “2021年全球创新指数的主要研究结论中,位居前列的经济体所发生的变化非常显著。除了韩国的惊人跃升(从第10位到第5位)外,法国(11)和中国(12)延续了去年取得的进步,这两者目前都有望跻身全球创新指数排名的前十。这三个例子强调了政府政策和激励措施对于促进创新的持续重要性。总的来说,新冠疫情并没有中断2019至2020年的既定趋势,因为对于创新企业而言,融资继续保持相对充足,即便该企业属于卫生和生物科学领域之外。”欧洲工商管理学院全球指数执行董事布吕诺朗万说。  据悉,2021年全球创新指数是第十四版,由产权组织与Portulans研究所合作出版。其核心是提供衡量表现的指标并对132个经济体的创新生态系统进行排名。该指数以国际公私部门的81个指标集合为基础。  2021年GII是以两个次级指数的平均值计算的。创新投入次级指数衡量的是支持和促进创新活动的经济要素,这些要素共分为五大类:制度,人力资本与研究,基础设施,市场成熟度,商业成熟度。创新产出次级指数体现的是经济中创新活动的实际成果,分为两大类:知识与技术产出,创意产出。  该指数提交给欧盟委员会联合研究中心进行独立的统计数据审计。
  • 基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用
    基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用在国家环保市场利好的大环境下,环境检测数据质量要求不断提高、检测任务不断加重,人员配置不断缩减,引发环保检测领域对于自动化分析设备的持续大力投入,实验室分析检测作为短期内不可变更的检测需求,传统人工分析检测方法的弊端已经日益凸显,作为依循标准的自动化检测设备对于终端实验室具有极强的适用性。安杰科技的APA-500 全自动高锰酸盐指数分析仪,依循《GBT 11892-1989 水质 高锰酸盐指数的测定》设计开发,专用于《GB 3838-2002地表水环境质量标准》、《GB 5749-2006 生活饮用水卫生标准》 等标准中水质高锰酸盐指数的自动化分析检测,能够实现无人值守式流程操作、数据分析、待机维护、数据推送等人性化、智能化功能,从繁琐的手工分析操作中彻底解放实验员。由于APA-500拥有成熟三轴移液模块、样品杯架模块、多通道注射进样模块和滴定分析功能,同时根据市场的需求,在APA-500的基础上拓展了两个滴定实验的项目,分别是:总硬度 GB/T 7477-1987《水质钙和镁总量的测定 EDTA滴定法》,食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》。水质总硬度是指水中Ca2+、Mg2+的总量,标准中规定用EDTA滴定法测定地下水和地面水中钙和镁的总量。在pH 10的条件下,用EDTA溶液络合滴定钙离子和镁离子。铬黑T作指示剂,与钙和镁生成紫红色或紫色溶液。滴定中,游离的钙离子和镁离子首先与EDTA反应,跟指示剂络合的钙离子和镁离子随后与EDTA反应,到达终点时溶液的颜色由紫变为天蓝色。此过程可以完全使用APA-500进行自动化分析。人工只需做以下操作:准备试剂,将管路放入试剂中;使用样品杯量取样品放入样品盘中;进行样品信息设置等软件操作。APA-500测试总硬度时加快了滴定速度,其测试单个样品的平均时间为2min,测试30个样品只需要1h。对自来水和2.5mmol/L的样品进行9次测试,滴定体积差均小于GB7477-87上±0.2滴(±0.04mmol/L)的测试要求,测定不同浓度的在质控均在范围内。碘是人体正常新陈代谢是必不可少的一种微量元素,在食盐中加入碘酸钾可以保证碘的摄入,因此食盐中的碘是食品检测重要的项目。食品安全国家标准《食用盐碘含量》GB 26878-2011中明确,在食用盐中加入碘强化剂后,食用盐产品(碘盐)中碘含量的平均水平(以碘元素计)应为20mg/kg-30mg/kg。依据食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》3.1直接滴定法。在酸性介质中,试样中的碘酸根离子氧化碘化钾,析出碘单质。使用淀粉溶液做指示剂,用硫代硫酸钠标准溶液进行滴定,从而测定碘的含量。滴定过程中的颜色变化:样品+碘化钾+磷酸→黄色(颜色深浅与浓度有关)+硫代硫酸钠→黄色变浅+加淀粉→蓝色+硫代硫酸钠→蓝色消失(终点)。同样,此过程可以完全使用APA-500进行自动化分析。仪器的测试范围是5~40mg/kg。对市售食盐进行7次测定,结果绝对差值小于标准中给出的2.0mg/kg。对12.1mg/kg和12.1mg/kg质控样品进行测试,均在指控范围内。以上是APA-500的两个扩展应用,该仪器将进行更多扩展应用。充分发挥仪器的优势。为推动仪器行业发展贡献绵薄之力。
  • 展示前沿产品与应用 | 安东帕举办先进纳米压痕技术交流研讨会
    先进纳米压痕技术交流研讨会时间:2019.6.27-28地点:上海市合川路2570号科技绿洲三期2号楼11层虽然上周会议已经结束,没有来到现场的老师,也不用遗憾,让我们一起回顾下安东帕先进纳米压痕技术交流研讨会的精彩一刻!纳米压痕已被证明是最实用和有效的小体积机械测试方法之一。Oliver和Pharr理论已成为纳米压痕数据分析基本理论方法。Anton Paar一直努力为其提供最可靠和最具有创新性的测量设备,在这次研讨会上,我们介绍了最前沿的商品化的高温超纳米压痕仪, 同时国外同事还针对纳米压痕的各种不同应用进行讲解与展示。公司介绍奥地利安东帕始建于 1922 年,在全球有 32 家销售分公司,全球业务分为三大部分:表征业务、测量业务和解决方案。其中,表征业务主要包含材料表征仪器,即流变测量、颗粒特性分析、材料表面力学特征、纳米表面特性/原子力显微镜等。安东帕TriTec前身为瑞士微电子研究中心(CSEM),2013 年被安东帕收购,目前在世界各地有超过 5000 台的仪器。现场报道安东帕中国表面力学产品专家为现场参会人员带来“安东帕表面力学产品”和“纳米压痕测试基本原理”的精彩报告先进的表面力学测试涉及压痕测试,划痕测试,摩擦磨损测试等,通过以上测试我们可以获得材料表面机械性能:硬度、弹性模量、断裂韧性、涂层结合力以及表面的摩擦磨损性能。安东帕提供丰富的测试可能性,既有多模块设计组合,也有专用的定制化设备,用户可以获得最完整的表面力学解决方案。安东帕中国原子力显微镜产品经理 为现场参会人员带来“基于原子力显微技术的纳米力学测量”的精彩报告原子力显微镜始于1985年,由Binning等人在IBM和斯坦福大学发明。原子力显微镜利用纳米尺度的针尖扫描样品表面,与其他显微镜,如光学显微镜、电子显微镜等相比,原子力显微镜能够实现三维成像,在横向和纵向均具有较高的分辨率。现场介绍了力曲线,力曲线测量过程,力曲线解读,力曲线应用实例等。其中,Force-Dist曲线代表力和扫描器伸长量的关系,Force-Sep曲线代表力和探针-样品表面相对位置的关系,两者可以转化。原子力显微镜:Tosca 系列使用原子力显微镜进行纳米压痕测量,首先要进行探针选择。其中,长悬臂探针具有较低的弹性系数,因此对大部分样品有更好的测量灵敏度;短悬臂探针在黏附力影响下相对能有更好的控制;尖锐的探针相比钝探针而言,更容易是样品产生塑性形变,并不容易受黏附干扰。原子力显微镜纳米压痕测试具有微区测量定位精准、操作灵活的优点,同时也有测量稳定性相对偏弱、硬质材料测量受限的缺点。安东帕表面力学(划痕)产品经理(国外同事)远程连线带来关于“纳米压痕动态力学分析原理及典型应用”的精彩报告,涵盖动态测量原理和不同针尖类型的使用及标定的先进压痕理论,聚合物快速点阵模式等典型应用等。安东帕深入浅出的报告丰富的内容使现场参会人员受益匪浅现场讨论环节解开了技术人员的诸多疑问仪器参观活动让参会人员更直观深入的了解纳米压痕测试仪和原子力显微镜没有来参会的老师,也无需遗憾,可报名参与2019.09.18-20 安东帕纳米压痕、划痕 (兰州站)技术交流研讨会
  • 对”氧指数“你了解多少?
    1、氧指数和极限氧指数分别是什么意思,有什么意义?  极限氧指数是指在规定的试验条件下,氧氮混合物中材料刚好保持燃烧状态所需要的最低氧浓度,也称为限氧指数、氧指数。值得注意的是,氧指数并不是指氧气占氧气氮气混合气体的体积分数,此为氧浓度值。  氧指数高表示材料不易燃烧,氧指数低表示材料容易燃烧,一般认为氧指数22属于易燃材料,氧指数在22---27之间属可燃材料,氧指数27属难燃材料。  2、极限氧指数怎么计算?  以体积百分数表示极限氧指数 LO I, 按以下式子计算:  LO I = cF十K d  式中: LO I— 极限氧指数, %   CF一测试时的最后一个氧浓度, 取小数一位, %   d一测试时两个氧浓度之差, 取小数一位, %   K 一 系数,查表得到。  报告LO I时, 取小数一位, 计算标准差e时, LO I应计算到小数二位。  3、极限氧指数测试时K值如何确定?  如果进行试验测得的最后五个氧指数值, 第一个反应符号是“X”, 在下表第一栏中找出所对应的最后五个测定的反应符号, 从(a) 项中再找出“ O ” 数目相应的K 值数。  4、氧指数测试仪或极限氧指数测定仪是用来测试什么的?  用来测试材料的极限氧指数,以评价材料的燃烧性能, 适用的材料范围包括均质固体材料、层压材料、泡沫材料、软片和薄膜等。  5、氧指数测试仪适用的标准是什么?  ISO 4589-2,ASTM D2863,GB/T 2406,GB/T 5454  6、氧指数测试仪的原理?  试样垂直固定在向上流动的氧、氮混合气体的透明燃烧筒里,点燃试样顶端,观察试样的燃烧特性,把试样连续燃烧时间或试样燃烧长度与给定的极限值相比较,通过在不同氧浓度下的一系列试验,测得维持燃烧时以氧气百分含量表示的最低氧深度值。  资料来源:http://www.oindex.cn
  • 2017年自然指数正式出炉!
    p  8月31日,英国自然出版集团正式更新了2017年自然指数(统计时间节点为2016.1.1至 2016.12.31)。中国内地共有71家科研机构位列全球前500位,其中内地高校46所。/pp  2014年11月,自然出版集团首次以全新的“加权分值计数法”(WFC,weighted fractional count)指数方式发布了全球“自然指数”。自然指数的分析是基于前一年各科研机构在Nature系列、Science、Cell等68种自然科学类期刊上发表的研究型论文数量进行计算和统计,它追踪了约6万篇优质科研论文的作者单位信息,涵盖全球2万多家科研机构。68种来源期刊由全球在职科学家所组成的两个独立评选小组选出,分为化学、地球与环境科学、生命科学和物理学四类。/pp  本期青塔统计了2017年自然指数中国内地高校TOP100的情况,其中北京大学、南京大学和清华大学位居前三位,进入前十名的高校还包括中国科学技术大学、浙江大学、复旦大学、南开大学、中国科学院大学、厦门大学和苏州大学。/pp  值得一提的是,在2017年自然指数TOP100名单中,出现了不少地方重点高校,包括苏州大学、南京工业大学、山东师范大学、河南师范大学、济南大学、深圳大学、常州大学、江西师范大学、杭州师范大学等高校,表现不俗。/pp  与去年数据相比,2017年自然指数排名中,南京大学、清华大学、中国科学技术大学等数十所高校加权文章总值出现一定程度的增加。不过,也有相当多高校加权文章总值相比去年同期出现了减少。/pp  2017年自然指数综合中国内地高校排名TOP100的排名如下(中国地质大学和中国石油大学在自然指数中没有按照地区进行区分 排名按照Nature Index官网公布的结果整理):/pp style="text-align: center "img width="600" height="3333" title="" style="width: 600px height: 3333px " alt="" src="http://img1.17img.cn/17img/images/201709/uepic/faa2e997-7046-456b-95f9-06aca2c384f4.jpg" border="0" vspace="0" hspace="0"/?img width="600" height="3529" title="" style="width: 600px height: 3529px " alt="" src="http://img1.17img.cn/17img/images/201709/uepic/be990ce6-a6d7-4503-aace-bac7d1f76a13.jpg" border="0" vspace="0" hspace="0"//p
  • 2022自然指数年度榜单:全球10强,中国占4席
    6月16日,2022自然指数年度榜单(Nature Index 2022 annual tables)揭晓,展示了不同国家和科研机构在自然科学领域的高质量科研产出情况。其中,中国科研机构和高校的表现可圈可点。在自然指数机构榜单中,中国科学院、中国科学院大学、中国科学技术大学和北京大学位居全球10强。在国家和地区榜单中,根据自然指数的关键指标贡献份额,中国位居第二,在排名前十的国家中增幅最大。此外,2020—2021年上升最快的50家机构中,前31家机构来自中国。2021年国家10强(按照自然指数指标Share测量的2021和2020年科研产出对比)。图片来源:英国《自然》杂志网站针对中国科研机构的优异表现,《自然》网站发表分析文章指出,最新发布的这份榜单表明,中国政府对科研的长期投资正结出“累累硕果”,中国科研界的表现有望在未来几年保持下去。中国科研产出表现优异《自然》在报道中指出,中国的科研产出呈现井喷之势,江苏大学的表现就是一个例子。在2022年自然指数年度榜单上,江苏大学“调整后的份额”分数在2020—2021年期间飙升了118%。自然指数是显示机构科研表现的一个指标,采用论文数(Count)和贡献份额(Share)这两个衡量标准,依据某个机构或国家/地区在82本《自然》科学期刊上发表的论文,由知名科学家组成的独立委员会挑选出来。在新发布的自然榜单上,有多所跟江苏大学一样表现亮眼的中国机构。榜单中2020—2021年上升最快的50家机构中,上升最快的前31家机构都来自中国,且这50家机构中只有10家来自中国以外。这与2021年的榜单相比出现了显著变化,去年上升最快的前10家机构中中国仅占两席。此外,中国科学院连续十年在自然指数中居机构榜单之首,2021年的贡献份额为1963.00,是排名第二的哈佛大学的两倍多。中国科学院大学排名第8位,首次跻身机构榜单全球前十。其他两家位居全球10强的中国机构是中国科学技术大学(排名第9位)和北京大学(排名第10位)。而且,与其他科研强国相比,中国的整体表现也同样值得关注。美国以19857.35的贡献份额位居榜首,但其2021年的科研产出较上一年下降了6.2%,是前十名中降幅最大的国家,这也是其2017 年以来的最大降幅。中国位居第二,贡献份额为16753.86,2021年科研产出增长了14.4%,是新榜单排名前十的国家中增幅最大的——去年的增幅仅为1.2%。位居第3至第10的国家依次是德国、英国、日本、法国、加拿大、韩国、瑞士和澳大利亚。中国加大科研投入据《自然》网站报道,自然指数创始人大卫斯文班克斯表示:“最新发布的这份自然指数年度榜单表明,中国通过其大型、现已发展成熟的机构对研究进行的投入,正在自然科学领域持续不断地产生研究成果。”宁波诺丁汉大学科学政策研究员曹聪表示,2021中国政府在科研领域的投资持续增加,占国内生产总值的2.4%。世界银行提供的数据显示,中国政府在科研领域的支出占中国国内生产总值的比例从1996年的0.56%稳步上升到2018年的2.14%。中国研发投入占其国内生产总值的份额一直稳步上升。图片来源:英国《自然》杂志网站1995年,中国启动“211工程”,开始了对科研的大规模投入,面向21世纪、重点建设的100所左右的高等学校获得了大量资金来发展其研究能力。三年后,中国启动“985工程”,首批“985工程”建设高校共9所,目前获批建设的“985工程”高校总计39所。2019年11月28日,教育部官网发布声明:已将“211工程”和“985工程”等重点建设项目统筹为“世界一流大学和一流学科”建设。文章援引清华大学高等教育研究主任哈米什科茨的说法,中国源源不断的资金投入产生了影响,这意味着研究人员可以为未来几年制定计划。例如,“双一流”战略体现了政府在2050年之前对科学的承诺,科茨说:“这发出了一个信号,即政府了解科学是如何进行的。”文章还称,对于中国科研人员来说,在高质量科研期刊发表论文对其职业发展有很大帮助,这种对发表论文促进职业发展的高度重视,或许也能部分解释中国的科研机构在增长最快名单中占据主要地位。《自然》最后指出,鉴于中国在研发方面持续不断加大投资,中国的科研产出未来可能也会保持比较强劲的增长势头。
  • 哈希发布哈希痕量金属分析仪 EZ6000 新品
    - 工作原理:Hach EZ6000 的分析技术为阳极溶出伏安法(ASV),是一种经过时间检验的,灵敏的电化学分析方法,根据电极表面氧化过程中的电流-电压曲线行分析。此方法包括金属离子向电极表面的富集和溶出,溶出阶段在此电极上会发生选择氧化反应。分析过程的所有步骤,包括采样,样品传输,清洗和数据交换均通过工业级PC面板进行控制。- 应用行业:地表水、饮用水、矿泉水、污水排口- 仪器特点:? 灵活的分析性能? 内置样品消解装置,用来处理含复杂金属物质水样或高有机物含量的水样? 操作简单,维护便捷? 电子气元件和仪表湿区实现了完全分离? 最多可达八通道分析? 通过工业面板计算机进行控制和通讯? 具有扩展数据通信和交换功能? 较低的样品和试剂消耗? 与标准实验室方法的关联性优异? 高级设置:自动校准和自动清洗功能? 工厂配置,测试和校准创新点:哈希EZ6000痕量金属分析仪是一款阳极溶出伏安法(ASV)重金属检测仪,灵敏的电化学分析方法,性能优良,操作简单。该重金属检测仪内置样品消解装置,用来处理含复杂金属物质水样或高有机物含量的水样,相比其他重金属检测仪,EZ6000痕量金属分析仪对样品和试剂消耗更低。哈希痕量金属分析仪 EZ6000
  • 中国科学仪器市场“仪器创新活力指数”TOP30企业排行榜公布,上海仪电科仪入选
    科技是国家强盛之基,创新是民族进步之魂。在科学仪器行业,创新更是企业赖以生存的源泉和持续发展的不竭动力,而新产品则历来都是用户关注的焦点之一。近日,仪器信息网公布了中国科学仪器市场“仪器创新活力指数”TOP30排行榜,上海仪电科仪入选榜单。“仪器创新活力指数”排行榜汇总了2008年以来1162家企业所发布的6585台仪器新产品统计记录,并结合仪器信息网中国科学仪器行业年度“优-秀新产品”和“绿色仪器”评选结果,编制而成。排行榜综合反映中国科学仪器市场上市新产品的创新度,并从一个侧面反映各企业对中国科学仪器市场的重视程度及企业创新能力。在“仪器创新活力指数”排行榜榜单中,国外企业占比2/3,国内企业占比1/3。赛默飞、安捷伦科技、岛津、聚光科技、瑞士万通、珀金埃尔默、安东帕、德国耶拿、马尔文帕纳科、沃特世等位列榜单前十。Top30排行榜完整榜单见下表。 中国科学仪器市场“企业仪器创新活力指数”Top30排行榜 TOP企业1赛默飞世尔科技2安捷伦科技3岛津4聚光科技5瑞士万通6珀金埃尔默7安东帕8德国耶拿9马尔文帕纳科10沃特世11梅特勒-托利多12日立13HORIBA14济南海能15上海仪电科仪16江苏天瑞17美国TA仪器18默克20青岛崂应21牛津仪器22SCIEX23东西分析24莱伯泰科25麦克默瑞提克26苏州纽迈27中科科仪28上海屹尧29丹东百特30卡尔蔡司——企业简介: 上海仪电科学仪器股份有限公司(原上海精密科学仪器股份有限公司)是上海仪电(集团)有限公司旗下的一家股份制重点企业,2015年,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司。目前,是集研发、制造、销售和服务为一体的高科技企业,覆盖光谱仪器、色谱仪器、物理光学仪器、电化学仪器、环保水质监测、系统集成等产品线,拥有“上分”、“雷磁”、“仪电物光”等自主品牌。近年来“仪电科仪”致力于由“专业的科学仪器制造商”向“领-先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”全方位发展。
  • 网友组织液相比对实测 数据详细
    仪器信息网讯 仪器信息网网友选取2010年药典二部及美国药典中典型方法及食品添加剂国标方法(原帖:国产液相色谱仪与进口液相色谱仪测试比对报告),对上海伍丰EX1600高效液相色谱仪和Waters 1525液相色谱仪的各项性能与应用进行了完整的测试,并公布了测试结果。以下为仪器信息网摘选该网友发表的部分测试内容(原帖请见:国产液相色谱仪与进口液相色谱仪测试比对报告)。  表1 测试项目和比对指标  选择苏丹红ⅠⅡⅢⅣ、双氢青蒿素、阿托伐他汀钙、可可碱与茶碱、维生素A、氨基酸作为衡量输液系统、检测器、整机及软件性能综合指标优劣的标准测试样品,其特有的测定条件及测定结果可以综合反映色谱仪的稳定性(见表2)。  表2 优势测定条件与测定结果反映的综合指标列表  根据各品牌液相色谱仪的软件功能特性确定软件测试内容(见表3)。  表3 软件测试项目和内容  最终实际比对结果如下(见表4)。  表4 最终对比结果  实战对比结论:  1. 仪器性能的对比表明EX1600流量稳定性占优,但流量准确度、噪声和漂移较差 检出上限相当,EX1600在灵敏度上稍占优势。由于流量仅与泵相关,流量结果说明EX1600的泵较为稳定(特别是混合时流量更稳定),但准确性较差 噪声和漂移的结果表明EX1600在泵更稳定的情况下噪声还是不如Waters,间接说明EX1600的检测器较差。  2. 应用性能的对比表明EX1600在定性定量重复性、梯度误差上占据优势,但在检出限、流速影响上处于劣势。  3. EX1600整机重复性较好的结果印证了上面仪器性能的结果,也说明泵是目前影响定性定量重复性的主要因素,噪声更好的Waters反而没有获得更好的稳定性结果 EX1600检出限上的劣势主要由于噪声水平不佳引起的,而流量不准也降低了流速影响的评价 特别的,在复杂梯度条件下EX1600的检出限、重复性等均表现更好,间接说明在梯度条件下,泵的质量相对检测器更能对整机的指标作出贡献。  4. 软件性能的对比表明,EX1600工作站操作界面直观,在线监测与数据处理为单独模块,使用便捷 尤其数据处理较人性化,较Waters工作站简单明了。但Waters项目管理模式值得借鉴,保证了数据的完整性与永久性,保障了系统的高容错率。而软件使用带有一定的主观性,最重要的还是要看目标用户的操作习惯。  由此,EX1600和Waters1525液相色谱相比:  1. EX1600泵的稳定性很好,并导致了更好的定性定量重复性及梯度误差,在多元体系和梯度检测方面有一定优势。  2. 检测器灵敏度较高,但噪声也相对较差。常规测试(等度、优势波长段)时灵敏度的提高不足以抵消噪声的劣势,导致检出限较差。  3.工作站操作界面直观,数据处理较人性化,使用便捷。  另外还使用岛津与安捷伦对苏丹红ⅠⅡⅢⅣ、可可碱与茶碱、维生素A三项分别检测。由于条件限制,仅从定性定量性及检出限两个指标上进行对比,由比对结果可知:  1. EX1600的定性定量重复性与其他三种仪器相比仍占优势,证明在泵的稳定性及整机稳定性方面EX1600确实表现更好 而安捷伦在检测的两个项目重复性上与EX1600无明显差异,说明安捷伦在使用年代较长的前提下,泵及整机的稳定性仍然很好。  2. 苏丹红ⅠⅡⅢ Ⅳ的检出限Waters岛津EX1600 可可碱与茶碱的检出限WatersEX1600安捷伦 而维生素A的检出限为EX1600Waters安捷伦,证明在低能量波长范围(400-550nm)、优势波长段,Waters检测器处于领跑地位 EX1600在正相体系检测中占优势   总体而言,EX1600相对其他仪器在稳定性指标上具有优势,但在噪声与漂移、检出限等指标上存在一定问题,特别是在简单应用条件(等度或简单梯度)和非优势波长段(400-550nm)不如进口仪器。同时应该注意的是对比所用的进口仪器均使用年代较长,对指标应有一定影响。另外从使用情况来看,安捷伦仪器故障率较高(可能和使用年限长有关),而EX1600的单向阀也出现过几次故障。(撰稿人:傅晔)
  • 2021国际科技创新中心指数在中关村论坛发布
    9月25日,清华大学产业发展与环境治理研究中心联合自然科研(Nature Research),在2021中关村论坛全体大会上发布国际科技创新中心指数2021(Global Innovation Hubs Index, GIHI)。报告通过科学中心、创新高地、创新生态等三大维度32个指标,对全球50个城市(都市圈)的创新能力进行测度。 GIHI指数逐年跟踪国际科技创新网络的动态演化,并且不断优化指标体系。清华大学产业发展与环境治理研究中心主任、GIHI指数首席科学家陈玲介绍,今年GIHI指标体系从评估范围、指标测度、数据粒度等方面进行了大幅提升。评估城市(都市圈)由30个增加到50个,从而反映出全球创新网络中二级梯队的变化趋势。指标体系保持3个一级指标、12个二级指标不变,优化了31个三级指标中的14个,并新增“电子政务水平”三级指标。GIHI2021还采用更多微观可测量的数据集,深度拓展数据测度范围,并聚焦数字创新多层次业态。测算结果显示,GIHI2021综合排名前十的城市(都市圈)依次为:旧金山-圣何塞、纽约、伦敦、北京、波士顿、东京、粤港澳大湾区、巴黎、西雅图-塔科马-贝尔维尤、巴尔的摩-华盛顿。与GIHI2020相比,北京的综合排名从去年的第5上升到第4,由深圳、香港、广州等“9+2”城市合并的粤港澳大湾区首秀惊艳,排名第7。全球领先的50个国际科创中心,有23个在亚洲,有9个在中国。通过综合评估全球主要科技创新中心城市(都市圈)表现,GIHI报告得出一系列结论:全球创新网络格局正在发生改变,亚洲城市科技创新领域的上升态势持续增强。美国在科学中心仍具有压倒性优势,欧洲城市的创新生态积淀深厚、生机勃勃,而亚洲城市在创新经济中展现新的活力,形成厚积薄发之势。一大批中国城市作为国际科技创新中心的新兴力量正在崛起。报告发现,新冠疫情没有阻断数字经济的蓬勃发展。疫情推动高技术制造业、互联网行业以及相关产业的井喷式增长。随着数字技术应用场景的拓展以及平台经济的扩张,网络宽带连接速度将成为数字经济时代创新生态建设的重要内容。
  • 《2022年全球创新指数报告》出炉 中国排名持续攀升
    9月29日,世界知识产权组织发布的《2022年全球创新指数报告》显示,中国排名继续攀升,从2021年的12位升至全球第11位,在36个中高收入经济体中位列第一。“中国创新能力综合排名较上年提升1位,与2012年相比跃升了23位。”科技部战略规划司副司长邢怀滨在接受科技日报采访时说,这十年,得益于我国创新驱动发展战略深入实施,科技体制改革纵深推进,关键核心技术攻关全面展开,有力支撑经济社会发展,科技实力跃上新的大台阶。党的十八大以来,以习近平同志为核心的党中央把创新作为引领发展的第一动力,摆在国家发展全局的核心位置,我国科技事业发生了历史性、整体性、格局性重大变化,成功进入创新型国家行列。创新产出多项指标领先全球此次报告评价结果表明,中国企业创新主体地位持续强化,全社会R&D经费中企业资金占比全球排名第3位,较上年提升1位。与此同时,高校创新能力不断提升,北京大学、清华大学、复旦大学连年入围“QS全球教育集团高校排名”前50强,这三所大学平均得分保持在世界第3位;高校与产业研发合作排名第5位,较2012年提升4位。“科技部会同相关部门扎实落实党中央关于创新驱动发展的顶层设计,持续深化计划管理、成果转化、资源共享、评价奖励、收入分配等改革。”邢怀滨解释说,而今,科技体制改革143项重点任务全面完成,各类主体创新动力显著增强,国家创新体系整体效能持续提升。与此同时,全国科技界贯彻新发展理念,面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,加强基础研究、应用基础研究和关键核心技术攻关,强化国家战略科技力量,一批重大创新成果竞相涌现。报告指出,中国的创新与发展呈现出良好的正向关系,创新投入转化为更多更高质量的创新产出。中国科学技术发展战略研究院院长张旭表示,聚焦“四个面向”,中国在科技创新产出方面多项指标全球领先,一如报告评价所示,在制度、基础设施、人力资本和研发、市场成熟度等7个维度中,中国知识和技术产出方面表现最好,居世界第6位。此外,我国单位GDP的本国人发明专利申请量、实用新型专利申请量、工业品外观设计申请量、商标数量均居世界第1位;产品出口位居世界前列,高技术产品净出口占贸易总额比重排名第4位,等等。中国进入全球百强的科技集群数量达21个中国商业环境综合得分排名第13位,创业政策与文化指标居第9位;国内市场规模排名保持世界首位,为私营部门提供信贷金额占GDP比重排名第4位,较2012年上升16位;为初创和成长型企业提供资金支持排名第9位… … “数字上升的背后,是我国持续深化政府职能转变,保护创新、激励创新的制度环境持续优化,各相关部门相继出台多项减税降费、助企纾困政策,持续优化营商环境,完善现代化市场监管,有效激发了市场活力和社会创造力。”邢怀滨指出。值得关注的是,在132个经济体中,中国进入全球百强的科技集群数量达到21个,较2017年增加14个,数量首次与美国持平,居全球首位。“区域创新发展成效显著,21个科技集群进入全球百强,成为此次报告的一大亮点。”张旭说,按照以习近平同志为核心的党中央关于国际科技创新中心建设的战略部署,构建京津冀、长三角、粤港澳大湾区协同创新共同体,开展中关村新一轮政策先行先试,建设雄安创新驱动发展引领区,推进东西部科技创新合作,区域创新高地建设取得显著成效,初步形成全方位、多层次的区域创新格局。报告还提到,北京、上海和粤港澳大湾区三大国际科技创新中心优势突出,科技实力进入国际领先行列。深圳-香港-广州排名第2位,北京居第3位,上海-苏州排名第6位。这些地区PCT专利申请量占世界份额达到13%,科学论文产出占世界份额的7.7%。不仅如此,长三角协同创新共同体建设持续加强,南京和杭州排名第13位和第14位,比上年分别提升2位和4位;成渝和武汉科技创新中心加速推进,黄河流域主要城市群科技创新能力不断提升。“郑州较上年上升15位至83位,青岛和厦门各上升12位,分别是第34位和第91位,在‘全球百大科技集群’榜单中上升幅度最大。”张旭说,值得一提的是,兰州首次成功进入百强行列,排名第100位。东北老工业基地加快转型的表现同样不俗,哈尔滨、长春、沈阳、大连4个城市进入全球科技集群百强。报告显示,瑞士、美国、瑞典、英国和荷兰位列全球创新指数排名前五,新兴经济体保持强劲表现。在邢怀滨看来,实现高水平自立自强,建设世界科技强国,我国要着力提升原始创新能力,加快推进关键核心技术攻关,进一步强化创新人才培养,不断优化资源配置,构建更加开放的创新生态。
  • 全自动网络化植被指数自动测量系统—VINet
    table width="627" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="125" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="503" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"全自动网络化植被指数自动测量系统—VINet/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="125" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京师范大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="125" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="152" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"屈永华/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="147" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="204" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"qyh@bnu.edu.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="125" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="125" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="503" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 √合作开发 □其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="627" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/30bcc8b5-d02d-4603-9d07-37a2bf46042c.jpg" title="11.png" style="width: 500px height: 238px " width="500" vspace="0" hspace="0" height="238" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"植被指数是反映植被与土壤背景反射差异性的指标,可以定量描述植被生长状况。VINet由具有三通道(蓝光、红光、近红外)传感器,不仅能够进行NDVI测量,还可以计算植被大气阻抗植被指数、增强植被指数等多种植被指数;VINet基于Zigbee协议自动组网,支持GPRS远程数据传输与反向控制,可以实时查看数据质量情况。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family:宋体"VINet/span/strongstrongspan style=" line-height:150% font-family:宋体"观测节点:/span/strong/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"1./spanspan style=" line-height:150% font-family:宋体"六通道高敏光电传感器/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"2./spanspan style=" line-height:150% font-family:宋体"三通道太阳下行总辐射感应模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"3./spanspan style=" line-height:150% font-family:宋体"三通道植被反射上行辐射感应模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"4./spanspan style=" line-height:150% font-family:宋体"归一化植被指数测量模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"5./spanspan style=" line-height:150% font-family:宋体"大气阻抗植被指数测量模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"6./spanspan style=" line-height:150% font-family:宋体"增强植被指数测量模块/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family:宋体"VINet/span/strongstrongspan style=" line-height:150% font-family:宋体"无线控制中心/span/strong/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"1.Zigbee/spanspan style=" line-height:150% font-family:宋体"数据采集模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"2./spanspan style=" line-height:150% font-family:宋体"远程数据传输模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"3./spanspan style=" line-height:150% font-family:宋体"远程反向控制模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"4./spanspan style=" line-height:150% font-family:宋体"数据远程查看软件模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"5./spanspan style=" line-height:150% font-family:宋体"数据可视化软件模块/span/pp style="line-height:150%"span style=" line-height:150% font-family:宋体"6./spanspan style=" line-height:150% font-family:宋体"数据归档管理软件模块/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/be41a624-4bcb-40b1-8b5a-1307752aeddc.jpg" title="001.jpg"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1. /spanspan style=" line-height:150% font-family:宋体"具有蓝、红、经红外 三个波段,可以计算多种植被指数。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2 /spanspan style=" line-height:150% font-family:宋体"具有分布式自动观测能力,可以低成本实现植被指数联网观测。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3 /spanspan style=" line-height:150% font-family:宋体"具有统一的远程数据接收中心,很容易实现数据的汇总与分析。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4 /spanspan style=" line-height:150% font-family:宋体"结合高分辨率卫星数据,很容易实现地面观测与遥感卫星观测的关联。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="627" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"植被长势监测、遥感植被指数地面验证、智慧农业、长势监测、病虫害监测、物候监测等/span/p/td/tr/tbody/tablepbr//p
  • 哈希发布高锰酸盐指数(CODMn)预制管试剂
    哈希公司发布高锰酸盐指数(CODMn)预制管试剂,可用于测量较清洁水样(饮用水、自来水、水源水、地表水等)的高锰酸盐指数,具有准确、快速、方便、安全等特点。该试剂具有两个量程可供选择,低量程0.50 - 5.00mg/L,高量程4.50 - 15.00mg/L,可满足用户的不同需要。高锰酸盐指数代表水样中可被高锰酸钾氧化的还原性物质(主要是有机污染物)的总量,用O2 mg/L单位来表示,非常类似于化学需氧量(CODCr)。高锰酸盐指数越高,说明水体受到有机物污染的程度越严重。国际标准化组织(ISO)建议高锰酸钾法仅限于测定地表水、饮用水等较清洁水样,不适用于工业废水。高锰酸盐指数CODMn同化学需氧量CODCr一样,是我国环境水质的重要监测指标之一,因此对其测量非常重要。但传统的滴定法操作复杂,有许多不足,比如需要制备的试剂种类多、有危险试剂、容易引起人为误差、工作量大、废液多造成二次污染等。哈希公司的CODMn预制管试剂克服了这些不足,帮助用户可以更加准确、快速、方便、安全地进行高锰酸盐指数的测定。并且哈希公司在CODMn测试方面拥有一整套的测试分析系统,该系统包括哈希的分光光度计,DRB200消解器以及预制试剂和简单易懂的分析方法,可以让用户的测量工作更加高效。高锰酸盐指数预制管试剂的主要优势在于:准确测试 哈希拥有独特的试剂配方及完善的CODMn测试系统:从试剂,分光光度计到消解器和专业的分析方法,一体化的系统有助于在测试过程中减少干扰因素,得到准确可靠的结果。消解自动计时,温度控制准确。仪器自动读数,避免人为误差。测量快速,操作简便预制试剂省时省力,用户无需繁杂的自配试剂过程,开箱即用图文并茂的方法手册,简单易学的操作步骤,帮助用户快速完成测试拿到水样后约40分钟内可完成测量,得到读数。安全分析 省去了事先配制硫酸等危险试剂的步骤,提高安全性。密封试剂管可以防止有害物质溅出及提高测量的准确性,也确保了消解过程的安全性。每个样品废液量仅10mL,降低了对环境产生的二次污染。提高工作效率消解器容量大,可同时消解大批量样品。测量快速,减少用户繁杂的工作量,让更多精力集中在数据管理分析。相比传统方法无需其它的玻璃器皿,省去了大量清洗工作。兼容性好多款仪器(DR6000、DR5000、DR3900、DR2800),方法更新后即可进行测试。目前该产品已全面发售,详细信息请登陆http://www.hach.com.cn/promotion/gaomengsuanyan/index.html获取,更可参与精彩新品上市活动,抢夺试剂免费使用权、赢取丰厚礼品!-------------------------------------------------哈希公司(HACH)成立于1947年,总部设在美国科罗拉多州的拉夫兰市,为美国丹纳赫(Danaher)集团一级子公司。作为全球领先的水质分析解决方案专业提供商,哈希易用、准确、高质量的产品覆盖水循环的各个环节;完善的本地化团队为用户提供专业的解决方案。作为水质守护者,我们将一如既往地为中国水环境的改善做出我们的贡献。更多信息敬请登录网站、拨打客户热线或者关注微信:www.hach.com.cn 客服热线电话:800 840 6026/400 686 8899微信扫一扫,资讯全知道!搜索微信公众号:哈希公司或搜索微信号:hachchina
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 2008年全国制造业质量竞争力指数公报
    2008年全国制造业质量竞争力指数公报国家质量监督检验检疫总局  2009年12月9日  2008年,在党中央、国务院的正确领导下,各地区、各部门深入贯彻落实科学发展观,积极应对国际金融危机、特大自然灾害和食品质量安全突发事件的不利影响,坚持保增长、扩内需与调结构、上水平相统一,质量工作取得积极进展,全国制造业质量竞争力进一步增强,有效地支撑和促进了国民经济平稳健康发展。  一、全国制造业质量竞争力指数  根据对全国25万多家制造业企业相关数据的测算,2008年全国制造业质量竞争力指数为81.18,比上年提高0.19。其中,产品质量等级品率、产品监督抽查合格率、研究与试验发展经费比重、新产品销售比重、平均产品销售收入等5个统计指标的得分与2007年相比分别增加了0.46、4.59、1.30、1.36、1.70分,增长明显。1999~2008年全国制造业质量竞争力指数     二、制造业各行业质量竞争力指数  通过对制造业29个行业相关数据的测算,质量竞争力稳步增强的行业有:通信设备、计算机及其他电子设备制造业86.95,比上年提高0.95 橡胶制品业84.97,提高0.60 仪器仪表及文化、办公用机械制造业83.90,提高0.98 通用设备制造业83.53,提高0.10 交通运输设备制造业83.48,提高0.03 化学原料及化学制品制造业82.19,提高0.26 医药制造业81.33,提高0.04 化学纤维制造业81.31,提高0.08。  三、各地区制造业质量竞争力指数  通过对全国31个省(自治区、直辖市)的制造业相关数据的测算,广东、江苏、北京、上海、天津、浙江的制造业质量竞争力指数在85以上。质量竞争力指数在80以上的地区数量达到20个,比2007年增加了5个。新疆、宁夏、青海、甘肃、贵州、内蒙古和广西等边疆和少数民族省(区)的质量竞争力指数连续三年保持稳步增长,与发达省(市)的差距进一步缩小。从区域看,东、中、西部区域制造业质量竞争力指数分别为85.04、79.72、80.04,与2007年相比分别增加了0.22、0.73、1.04,东部区域继续保持质量竞争力的领先地位,中部和西部区域质量竞争力明显增强。  注:1.质量竞争力指数是按照特定的数学方法生成的、用于反映我国制造业质量竞争力整体水平的经济技术指标。按照原始数据统计范围的不同,可以相应形成全国制造业质量竞争力指数、制造业分行业质量竞争力指数和分地区制造业质量竞争力指数。  2.质量竞争力指数由2个二级指标、6个三级指标和12个统计指标构成。  3.测算质量竞争力指数的原始数据来自国家统计局和国家质量监督检验检疫总局,主要统计口径是大中型工业企业。  4.本公报中的各项统计数据均未包括香港特别行政区、澳门特别行政区和台湾省。2008年制造业各行业质量竞争力指数行业质量竞争力指数农副食品加工业75.11食品制造业78.26饮料制造业79.50烟草制品业79.68纺织业76.27纺织服装、鞋、帽制造业76.44皮革、毛皮、羽毛(绒)及其制品业76.41木材加工及木、竹、藤、棕、草制品业78.37家具制造业78.07造纸及纸制品业76.60印刷业和记录媒介的复制75.56文教体育用品制造业74.85石油加工、炼焦及核燃料加工业78.18化学原料及化学制品制造业82.19医药制造业81.33化学纤维制造业81.31橡胶制品业84.97塑料制品业79.05非金属矿物制品业75.83黑色金属冶炼及压延加工业83.29有色金属冶炼及压延加工业82.45金属制品业79.87通用设备制造业83.53专用设备制造业84.02交通运输设备制造业83.48电气机械及器材制造业84.41通信设备、计算机及其他电子设备制造业86.95仪器仪表及文化、办公用机械制造业83.90工艺品及其他制造业70.932008年各地区制造业质量竞争力指数地区质量竞争力指数北京86.90天津85.77河北80.09山西75.61内蒙古80.11辽宁82.56吉林80.30黑龙江79.47上海86.53江苏86.95浙江85.12安徽81.85福建81.12江西81.77山东83.47河南77.63湖北82.43湖南81.03广东87.26广西78.23海南77.15重庆84.69四川81.09贵州80.44云南74.69西藏64.99陕西80.57甘肃79.10青海79.49宁夏79.53新疆79.042008年全国制造业质量竞争力指数及各级指标的得分一级指标二级指标三级指标统计指标质量竞争力指数81.18质量水平84.39标准与技术水平85.29产品质量等级品率89.07微电子控制设备比重80.67质量管理水平82.85质量管理体系认证率71.27质量损失率90.57质量监督与检验水平85.10产品监督抽查合格率85.64出口商品检验合格率83.85发展能力77.97研发与技术改造能力75.70研究与试验发展经费比重78.66技术改造经费比重70.21核心技术能力76.94每百万元产值拥有专利数71.34新产品销售比重82.55市场适应能力80.43平均产品销售收入86.45国际市场销售率71.40
  • 国家统计局:2022年中国创新指数比上年增长5.9%
    为深入贯彻落实以习近平同志为核心的党中央关于深入实施创新驱动发展战略、加快建设科技强国的重大决策部署,国家统计局社科文司《中国创新指数研究》课题组进一步完善了中国创新指数编制方法并进行了测算。结果表明,我国创新能力较快提升,创新发展新动能加速聚集,为推动高质量发展提供了强大动力。一、我国创新能力较快提升测算结果显示,以2015年为基期,2022年中国创新指数为155.7,4个分领域指数创新环境指数、创新投入指数、创新产出指数和创新成效指数分别为160.4、146.7、187.5和128.2。与2015年相比,中国创新指数年均增长6.5%,比同期国内生产总值(GDP)增速快0.8个百分点;4个分领域指数年均增速分别为7.0%、5.6%、9.4%和3.6%。与2021年相比,中国创新指数增长5.9%,4个分领域指数分别增长5.7%、7.0%、9.2%和0.7%(详见表1)。图 2015—2022年中国创新指数及分领域指数(2015年=100)表1 2015-2022年中国创新指数情况(以2015年为100)二、创新环境明显优化“创新环境”领域包括每万人就业人员中大专及以上学历人数、人均GDP、理工类毕业生占适龄人口比重、科技拨款占财政拨款比重、享受加计扣除减免税企业所占比重等5个指标。以2015年为100,2022年我国创新环境指数为160.4,年均增长7.0%。分指标看,享受加计扣除减免税企业所占比重指数大幅提升,年均增速达18.7%,2022年指数值达332.4,在中国创新指数的全部18个指标中位列第一;理工类毕业生占适龄人口比重指数、人均GDP指数、每万人就业人员中大专及以上学历人数指数、科技拨款占财政拨款比重指数的年均增速分别为7.1%、5.4%、3.6%和1.0%,2022年指数值相应为161.7、144.6、128.2和107.2(详见表2)。表2 创新环境指数(以2015年为100)三、创新投入稳步提高“创新投入”领域包括每万人研究与试验发展(R&D,下同)人员全时当量、R&D经费占GDP比重、基础研究人员人均经费、企业R&D经费占营业收入比重等4个指标。以2015年为100,2022年我国创新投入指数为146.7,年均增长5.6%。分指标看,每万人R&D人员全时当量指数增长相对较快,年均增速为7.5%,2022年指数值为165.6;企业R&D经费占营业收入比重指数、基础研究人员人均经费指数、R&D经费占GDP比重指数的年均增速分别为7.0%、5.0%和3.1%,2022年指数值相应为161.0、140.5和123.7(详见表3)。表3 创新投入指数(以2015年为100)四、创新产出大幅增加“创新产出”领域包括每万人科技论文数、每万名R&D人员高价值发明专利拥有量、拥有注册商标企业所占比重、技术市场成交合同平均金额等4个指标。以2015年为100,2022年我国创新产出指数为187.5,年均增长9.4%。分指标看,每万名R&D人员高价值发明专利拥有量指数、拥有注册商标企业所占比重指数实现大幅提升,年均增速分别达12.5%和11.9%,2022年指数值分别为227.7和219.3,在全部18个指标中位列第二和第三;技术市场成交合同平均金额指数增长也较快,年均增速为9.9%,2022年指数值为193.2;每万人科技论文数指数年均增速为3.6%,2022年指数值为128.3(详见表4)。表4 创新产出指数(以2015年为100)五、创新成效进一步显现“创新成效”领域包括新产品销售收入占营业收入比重、高新技术产品出口额占货物出口额比重、专利密集型产业增加值占GDP比重、“三新”经济增加值占GDP比重、全员劳动生产率等5个指标。以2015年为100,2022年我国创新成效指数为128.2,年均增长3.6%。分指标看,新产品销售收入占营业收入比重指数增长相对较快,年均增速为8.8%,2022年指数值为181.0;全员劳动生产率指数、“三新”经济增加值占GDP比重指数、专利密集型产业增加值占GDP比重指数、高新技术产品出口额占货物出口额比重指数的年均增速分别为6.2%、2.3%、2.1%和-1.1%,2022年指数值相应为152.2、117.5、115.7和92.3(详见表5)。表5 创新成效指数(以2015年为100)中国创新指数最新测算结果表明,近年来,面对复杂严峻的国内外形势,我国坚持创新在现代化建设全局中的核心地位,深入实施创新驱动发展战略,不断完善创新体系建设,创新能力持续较快提升,为经济社会发展提供了有力支撑。下一步,要坚持科技是第一生产力、人才是第一资源、创新是第一动力,加快建设科技强国,努力实现高水平科技自立自强,全面塑造发展新优势,为推动高质量发展、实现中国式现代化而奋斗。附件中国创新指数指标体系及指数编制方法简要说明一、中国创新指数指标体系中国创新指数指标体系分成三个层次。第一个层次为我国创新总体发展情况,通过计算创新总指数反映;第二个层次为我国在创新环境、创新投入、创新产出和创新成效等4个分领域的发展情况,通过计算分领域指数反映;第三个层次为创新能力具体各方面的发展情况,通过上述4个分领域所选取的18个指标指数反映(指标体系框架详见附表)。简要说明如下:(一)创新环境该领域主要反映驱动创新发展所必备的人力、财力等基础条件的支撑情况,以及政策引导扶持等创新所需条件的情况。1.每万人就业人员中大专及以上学历人数指就业人员平均具备一定学历的人员数量。该指标用以反映我国劳动者综合素质情况。2.人均GDP指按人口平均的国内生产总值(GDP,不变价)。这是反映一个国家经济实力的最具代表性的指标,可以反映经济增长与创新能力发展之间相互依存、相互促进的关系。3.理工类毕业生占适龄人口比重该指标反映我国潜在创新人力资源情况。理工类毕业生指本科及以上理工农医类毕业生人数,适龄人口是指我国20-34岁人口数。4.科技拨款占财政拨款比重政府财政科技拨款对全社会创新投入和创新活动的开展具有带动和导向作用,该指标反映政府对创新的直接投入力度以及对重点、关键和前沿领域的规划和引导作用。5.享受加计扣除减免税企业所占比重企业研发费用税前加计扣除政策是鼓励企业加大研发投入最为直接和有效的普惠性政策之一。该指标可以反映政府有关政策的落实情况,从一个侧面反映企业创新环境情况。该指标的数据口径为规模以上工业企业。(二)创新投入该领域主要反映创新的人力财力投入规模及强度、关键领域的投入情况等。研发是实现创新的最重要环节,这里用研发投入指标反映创新投入。1.每万人R&D人员全时当量指按常住全部人口平均计算的R&D人员全时当量。该指标反映自主创新人力的投入规模和强度。R&D人员包括企业、科研机构、高等学校的R&D人员,是全社会各种创新主体的R&D人力投入合力。R&D人员全时当量是指按工作量折合计算的R&D人员。2.R&D经费占GDP比重该指标又称R&D投入强度,是国际上通用的、反映国家或地区科技投入水平的核心指标,也是我国科技创新相关规划中的重要指标。3.基础研究人员人均经费指按基础研究人员全时当量平均的基础研究经费。基础研究是科学技术发展的根基,其水平可在一定程度上代表一个国家原始创新能力。本指标体系以该指标来反映国家在加强原始创新能力上所作的努力。4.企业R&D经费占营业收入比重企业是创新活动的主体,而工业企业又在企业创新活动中占有主导地位。该指标反映创新活动主体的经费投入强度。该指标的数据口径为规模以上工业企业(三)创新产出该领域通过论文、专利、商标、技术市场等反映创新中间产出结果。1.每万人科技论文数科技论文是指企事业单位立项的由科技项目产生的、并在有正规刊号的刊物上发表的学术论文,是创新活动中间产出的重要成果形式之一。该指标反映研发活动的产出水平和效率。2.每万名R&D人员高价值发明专利拥有量指按R&D人员平均的高价值有效发明专利数量。专利是创新活动中间产出的又一重要成果形式。高价值发明专利指符合国家重点产业发展方向、专利质量和价值较高的发明专利,由国家知识产权局定义具体范围,体现了专利向高质量发展转变的导向。该指标同时为有关规划纲要监测内容,是反映研发活动的产出水平和效率的重要指标。3.拥有注册商标企业所占比重拥有注册商标企业指作为第一商标注册人拥有经境内外商标行政部门核准注册且在有效期内的商标的企业。该指标在一定程度上反映企业拥有自主品牌情况。该指标的数据口径为规模以上工业企业。4.技术市场成交合同平均金额指按技术市场成交合同项目数计算的平均技术市场成交金额。该指标反映技术转移和科技成果转化的质量与效率。技术市场成交额指全国技术市场成交合同项目的总金额。(四)创新成效该领域通过经济增长、经济转型、产品结构调整、产业国际科技竞争力等方面,反映创新对经济社会发展的影响。1.新产品销售收入占营业收入比重新产品销售收入是反映企业创新成果,即将新产品成功推向市场的指标,可用于反映创新对产品结构调整的效果。该指标的数据口径为规模以上工业企业。2.高新技术产品出口额占货物出口额比重高技术产业与创新具有互动关系。该指标通过高新技术产品出口的变化情况,反映创新对产业国际竞争力的影响效果。3.专利密集型产业增加值占GDP比重专利密集型产业体现了知识产权、科技创新与产业经济的紧密融合,是高质量发展的有力支撑和重要发展方向,其增加值占GDP的比重可从引导产业结构转型升级角度体现创新对经济发展的成效。4.“三新”经济增加值占GDP比重“三新”经济对推动高质量发展发挥了重要作用,其增加值占GDP的比重可从新兴经济带动经济转型发展、增强经济活力的角度体现创新对经济发展的成效。5.全员劳动生产率指一定时期内国内生产总值(GDP,不变价)与就业人员之比。创新是影响劳动生产率的重要因素,提高劳动生产率是创新的目的之一。该指标可用于反映创新对经济发展的促进作用。二、中国创新指数评价方法(一)选择基期年份在综合评估指标数据的可得性、一致性和连续性的基础上,选择2015年作为基期年份。(二)确定指标权数采用“逐级等权法”进行权数分配,即各分领域的权数均为1/4;某一分领域内指标权数为所属领域的1/n(n为该领域下指标的个数);每个指标的最终权数为1/4n。各指标的权数详见附表。(三)计算指标增速计算定基发展速度时,通常方法是计算各指标的增速后进行加权平均。本指数继续沿用原指数计算定基发展速度时将指标增速的基准值设定为指标两年平均值的方法,将各指标增速范围控制在[-200,200]的区间内,以增强数据稳定性,减少因某些指标数值波动过大而造成整个指标体系失真的情况。计算公式为:其中i为指标序号,t为年份,t=2016。(四)合成分领域指数和总指数1.计算各领域所辖指标的加权增速:其中i为指标序号,t为年份,Wi为各指标对其所属领域的权数,Vit为计算所得各指标增速,k为该领域内指标的个数,t=2016。2.计算定基累计发展各领域分指数:其中t为年份,t=2015,E2015=100。3.计算定基累计发展总指数:附表 中国创新指数指标体系框架
  • 有害痕量元素排放清单:为控污治污提供科学依据
    10月8日,国际烟草控制政策评估项目(ITC)组织公布的科研报告显示,我国13个卷烟品牌被检测出含有重金属(砷、镉、铅等),其含量与加拿大产香烟相比,最高超出三倍以上。  据《重庆商报》报道:香烟中的重金属可能来自烟草产区土壤中。相关研究表明:生物从环境中摄取重金属,可以经过食物链的生物放大作用逐级富集,并通过食物等形式进入人体,引发人体某些器官和组织产生病变。  有害痕量元素及其化合物排放已成为大气污染控制的一个新兴而前沿的研究领域。在国家自然科学基金的资助下,北京师范大学副教授田贺忠带领的研究小组对我国2005~2020年能源利用及有害痕量元素排放发展趋势进行了研究,为我国掌握典型有害痕量元素污染排放现状及空间、行业分布特征提供了基础数据,并为国家和地方政府制定相关痕量元素污染排放法规、标准及技术与经济政策等提供了科学依据。  痕量元素引关注  上世纪50年代,日本熊本县水俣湾附近发现了一种奇怪的病,这种病最初出现在猫身上,被称为“猫舞蹈症”。病猫步态不稳,抽搐、麻痹,甚至跳海死去,被称为“自杀猫”。随后不久,发现也有人患有这种病。患者由于脑中枢神经和末梢神经被侵害,口齿不清、步履蹒跚、面部痴呆、手足麻痹或变形、视觉丧失,严重者精神失常,或酣睡,或兴奋,身体弯弓高叫直至死亡。这种怪病就是日后轰动世界的“水俣病”。  “日本发生的水俣病(汞污染)和骨痛病(镉污染)等都和有害痕量元素污染有关。”田贺忠说,“尽管痕量元素在空气中含量很小,但它的浓度超过一定范围就会显示出极大的毒性。许多痕量元素毒性极大,而且化学稳定性好,具有迁徙性、沉积性。它们不仅会引发人体呼吸系统的严重疾病,而且会污染水资源、土壤,造成生态环境的破坏。”  1990年,美国在《清洁空气法(修正案)》中列出了189种有害空气污染物,其中包括11种痕量元素(空气中含量很少的元素,如锑、砷、铍、铬、铅、锰、汞、镍、硒等)。在这11种痕量元素中,汞、砷、硒三种挥发性有害痕量元素的排放污染尤其引人关注。  有研究者发现,近10年来北欧、北美内陆偏远地区无明显工业污染源的湖泊中,鱼体内汞浓度的升高是由于大气汞沉降造成的。  美国环境保护署的报告称:燃烧装置排放的大气污染物中主要是有害的有机成分如苯并芘(BaP)、硫化物、氮氧化物、未燃烬可燃物以及重金属元素,它们几乎是造成所有癌症的原因,其中尤其以亚微米级颗粒形式存在的重金属排放物具有最大的威胁性。  汞、砷、硒等属于挥发性有害痕量元素,在高温燃烧或热解过程中不会被分解,而是挥发成蒸气,进而在烟道下游温度降低时通过结核、凝结、冷凝等过程形成许多亚微米颗粒。研究表明,尽管亚微米颗粒仅占燃煤总飞灰质量的5%左右,却富集了总痕量元素质量的13%~61%。汞、砷、硒等痕量元素主要富集在这些亚微米颗粒表面,这些亚微米颗粒很难被各种常规的污染控制装置有效捕获。它们大部分会随同亚微米颗粒排放到大气中,而这些亚微米粒子在大气中主要以气溶胶形式存在,不易沉降,而且上面富集的大部分有毒痕量元素也难于被微生物降解,可长时间停留在大气中,不仅影响大气能见度,而且通过呼吸系统进入动植物和人体内并不断蓄积,并可转化为毒性很强的金属有机化合物,还会通过干湿沉降过程进入水体和土壤,从而对水和土壤生态环境产生污染危害。  因此,大气汞、砷、硒等挥发性有毒痕量元素污染排放、迁移、沉降及控制等,也成为国际学术界关心的大气污染防治新兴研究热点之一。  燃煤:排放痕量元素祸首  美国环保局(USEPA)科学家Linak曾指出:元素周期表中几乎没有什么元素不存在于煤中,它们都是煤的重要组分,根据其含量不同,通常可将煤的元素组分划分为主量元素、次量元素和痕量元素三大类。其中,包括多种有毒痕量元素,如硼、铍、锗、镉、钴、铜、锰、铅、镍、汞、铬等。其中,汞、砷、硒、铅、镉、铬等元素对环境的危害最大。  化石燃料和矿物中的痕量元素在高温燃烧或熔炼过程中因各痕量元素的浓度、赋存状态以及操作工况的差异所表现的热行为不同,其挥发性也表现不一。但在所有条件下,汞、砷、硒都具有挥发性。  “由于汞极易挥发, 在燃烧过程中极难控制,燃煤排放被认为是最大的人为大气汞污染源。大气中颗粒汞主要结合在细颗粒物上, 对人体的危害更大。特别是环境中任何形式的汞均可在一定条件下转化为剧毒的甲基汞。进入环境中的汞会产生长期的危害, 所以汞是煤中最主要的有害微量元素之一。”田贺忠说。  砷是一种蓄积性元素,是当前环境中使人致癌的最普遍、危害性最大的物质之一。砷可通过呼吸道、消化道和皮肤接触等进入人体,随血流分布于肝、肾、肺、脾、骨骼、肌肉等部位,特别易于在毛发、指甲中蓄积,从而引起慢性中毒。尽管砷在煤中的含量很低,但由于煤消耗量巨大,煤中砷长期排放的积累不仅对燃煤电厂附近产生污染,而且可通过远距离的传输对比较遥远的生物产生负面影响。  “我们的研究发现,抚顺、沈阳、兰州、贵阳、成都、重庆等城市的大气中砷含量高于其他地方就和燃煤有关。西南地区由于高砷煤的使用,曾造成3000多例砷中毒事件。”田贺忠说。  燃煤是大气中硒的主要来源。据估算,全球发电用煤所排放的硒量占人为硒排放量的50%以上。燃煤也是造成一些地区土壤、水、植物中硒含量过高的原因。硒对于动植物和人类来说是一种必需的微量元素,但硒含量过高同样会危害人体健康。在我国陕西安康、湖北恩施等地发生的人、畜硒中毒事件,就是由于开采和使用当地的富硒石煤所造成的。  弄清排放总量及时空分布  目前,我国正处于工业化社会的初期阶段,国民经济的快速发展和大规模基础设施建设,需要大量的电力、钢铁、水泥以及有色金属等材料,这就需要消耗大量的化石能源和矿物资源。  2008年我国用于直接燃烧的煤炭约27.4亿吨。另外,钢铁冶炼、有色金属冶炼、水泥生产、化工等行业对金属和非金属矿物的烧结熔炼过程也会使矿物中的有害痕量元素挥发,并富集在微细颗粒物上释放到大气中,从而对人体健康和生态环境产生危害。  “国外曾有学者指责中国燃煤对大气的影响。然而,由于种种原因,目前我国还缺乏对这些典型有害元素污染现状的全面认识,燃烧和工艺生产设施上缺少专门的污染控制措施,使得国家制定相关的法规、标准及污染控制对策缺乏有效依据。另外,有害痕量元素在大气中的传输扩散不仅与物理过程有关,还涉及更复杂的化学反应和二次污染,对有害痕量元素污染排放清单的研究是进一步开展有害痕量元素污染物传输、沉降、污染源排放标准、控制技术研究开发重点,也是制订控制对策的基础。因此,非常有必要开展我国有害痕量元素污染排放清单的研究。”田贺忠说。  据介绍,排放清单研究能定量得到各种源排放总量及其时空分布,是描述污染物排放特征的有效方法。田贺忠等人针对目前我国缺乏对汞、砷、硒等典型有害元素大气污染排放状况认识的现状,采用排放因子法,通过现场测试调查、文献调研、专家咨询等手段,进而根据国民经济活动水平、能源生产消费状况、有色冶金等各部门生产活动水平等,以及各种装置或工艺过程污染控制水平等因素,在国内首次比较全面系统地建立了1980~2007年我国典型有害痕量元素汞、砷、硒大气排放清单及历史趋势。  该小组以2005 年为基准年,利用部门分析法对2005年至2020年能源利用及有害元素排放发展趋势开展了情景分析。重点研究了各省区燃煤大气典型有害痕量元素(汞、砷、硒等)排放量。按经济部门、燃料类型、燃烧方式和污染控制技术对排放源进行分类,确定各类排放源的排放因子和能源消费量。研究各省区生产原煤、洗精煤、焦炭和型煤的痕量元素含量,建立各省区间原煤、洗精煤、焦炭和型煤的传输矩阵,从而确定各省区消费原煤、洗精煤、焦炭和型煤的有害元素含量。研究人员结合各省区内各类排放源的排放因子、燃料消费量和燃料中痕量元素含量,计算出其排放量,进而给出各省区和全国燃煤大气典型有害痕量元素污染排放清单。  此外,该小组还将对各地区的有色金属冶炼、钢铁、水泥生产、废物处置、生物质燃烧等非燃煤源导致的典型有害痕量元素排放情况进行估算,进而与燃煤源排放清单相加,即可获得中国人为源导致的大气典型有害痕量元素污染物排放清单,并进一步通过网格化处理,利用GIS技术得到中国有害痕量元素的空间分布特征。  该研究有助于了解和掌握我国典型有害元素排放现状、趋势、时空分布特征等,可作为进一步开展有害元素的环境空气质量模拟和生态环境及人体健康影响的基础,并可为国家和地方政府制定相关法律、法规及技术经济政策提供科学依据。
  • 上海仪电入选“仪器创新活力指数”Top30榜单
    p style="text-indent:28px"span style="font-family: 宋体 "近日,仪器信息网公布了中国科学仪器市场“strong仪器创新活力指数/strong”/spanTOP30span style="font-family: 宋体 "排行榜,上海仪电入选榜单。“strong仪器创新活力指数/strong”汇总了/span2008span style="font-family: 宋体 "年以来/span1162span style="font-family: 宋体 "家企业所发布的/span6585span style="font-family: 宋体 "台仪器新产品统计记录,并结合仪器信息网中国科学仪器行业年度/span“span style="font-family: 宋体 "优秀新产品/span”span style="font-family: 宋体 "和/span“span style="font-family: 宋体 "绿色仪器/span”span style="font-family: 宋体 "评选结果编制而成。本文对上海仪电的创新活力情况进行条分缕析,用仪器信息网大数据,带您领略上海仪电的创新“硬核”。/span/pp style="text-align:center"span style="font-family: 宋体 "img src="https://img1.17img.cn/17img/images/201904/uepic/b54a96f6-5bab-4de1-b2cd-42f1d40b61ef.jpg" title="创新活力指数企业图.png" alt="创新活力指数企业图.png" width="598" height="340" style="width: 598px height: 340px "//span/pp style="text-indent:28px"span style="font-family:宋体"中国科学仪器行业“优秀新产品”评选活动由仪器信息网发起,旨在将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观的展现给广大的国内用户。/spanspan style="font-family: 宋体 "评选活动自/span2006span style="font-family: 宋体 "年启动以来,已经成功举办了十三届。/span/pp style="text-indent:28px"span style="font-family:宋体"根据仪器信息网历史大数据分析,截至目前,上海仪电共在仪器信息网“新品首发栏目”发布新品/spanspan45/spanspan style="font-family:宋体"台,其中有/spanspan22/spanspan style="font-family:宋体"台进入当年“科学仪器优秀新产品”入围名单,/spanspan2/spanspan style="font-family:宋体"台成功入选“科学仪器优秀新产品”名单。/span/pp style="text-indent:28px"strongspan style="font-family:宋体"——新品介绍/span/strong/pp style="text-align:center text-indent:28px"strongspan style="font-family:宋体"上海仪电申报/spanspan2018/span/strongstrongspan style="font-family:宋体"年“新品首发”栏目产品名录/span/strong/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="272" valign="top" style="border: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"产品名称/span/p/tdtd width="142" valign="top" style="border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-image: initial border-left: none padding: 0px 7px "pspan style="font-family:宋体"所属分类/span/p/tdtd width="100" valign="top" style="border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-image: initial border-left: none padding: 0px 7px "pspan style="font-family:宋体"上市时间/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspana href="http://www.instrument.com.cn/netshow/sh100463/C309681.htm" target="_blank"DZB-715span style="font-family:宋体"span型便携式原位水质监测仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"水质分析/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2018/spanspan style="font-family:宋体"年/spanspan5/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspana href="http://www.instrument.com.cn/netshow/SH103881/C290346.htm" target="_blank"span style="font-family:宋体"span仪电物光/span/spanSGW® -537span style="font-family:宋体"span自动(高速、多波长)旋光仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"光学测量仪/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2018/spanspan style="font-family:宋体"年/spanspan6/spanspan style="font-family:宋体"月/span/p/td/tr/tbody/tablep style="text-align:center"strongspan style="color:#444444" /span/strong/pp style="text-align:center"strongspan style="font-family:宋体"上海仪电span style="color:#444444"入围/span/spanspan style="color:#444444"2015-2017/span/strongstrongspan style="font-family:宋体 color:#444444"年“/span/strongstrongspan style="font-family:宋体"科学仪器优秀新产品”仪器名录/span/strong/ptable border="1" cellspacing="0" cellpadding="0"tbodytr class="firstRow"td width="272" valign="top" style="border: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"产品名称/span/p/tdtd width="142" valign="top" style="border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-image: initial border-left: none padding: 0px 7px "pspan style="font-family:宋体"所属分类/span/p/tdtd width="100" valign="top" style="border-top: 1px solid windowtext border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-image: initial border-left: none padding: 0px 7px "pspan style="font-family:宋体"上市时间/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspan style="color: rgb(0, 112, 192) "a href="http://www.instrument.com.cn/netshow/SH103881/C243008.htm" target="_blank"span style="font-family: 宋体 "仪电物光/spanSGW-568span style="font-family: 宋体 "全自动高速旋光仪/span/a/spanspan style="font-family:宋体 color:red"(入选)/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"光学测量仪/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2016/spanspan style="font-family:宋体"年/spanspan7/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspana href="http://www.instrument.com.cn/netshow/sh100463/C255976.htm" target="_blank"span style="font-family:宋体"span雷磁/span/spanZDJ-5B-Tspan style="font-family:宋体"span型自动滴定仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"电化学仪器/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2016/spanspan style="font-family:宋体"年/spanspan7/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspana href="http://www.instrument.com.cn/netshow/sh100463/C255973.htm" target="_blank"span style="font-family:宋体"span雷磁/span/spanZDJ-5B-Gspan style="font-family:宋体"span型自动滴定仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"电化学仪器/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2016/spanspan style="font-family:宋体"年/spanspan6/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "pspana href="http://www.instrument.com.cn/netshow/sh100463/C243065.htm" target="_blank"span style="font-family:宋体"span雷磁/span/spanJPSJ-606Lspan style="font-family:宋体"span型溶解氧测定仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"水质分析/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2016/spanspan style="font-family:宋体"年/spanspan2/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "p style="line-height:18px"spana href="http://www.instrument.com.cn/netshow/SH100191/C213838.htm" target="_blank"spanspan style="font-family:宋体"span雷磁/span/spanDZS-708Lspan style="font-family:宋体"span多参数水质分析仪/span/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"水质分析/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2015/spanspan style="font-family:宋体"年/spanspan12/spanspan style="font-family:宋体"月/span/p/td/trtrtd width="272" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-image: initial border-top: none padding: 0px 7px "p style="line-height:18px"spana href="http://www.instrument.com.cn/netshow/sh100463/C234195.htm" target="_blank"span style="font-family:宋体"span雷磁/span/spanZDJ-5Bspan style="font-family:宋体"span型自动滴定仪/span/span/a/span/p/tdtd width="142" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan style="font-family:宋体"电化学仪器/span/p/tdtd width="100" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "pspan2015/spanspan style="font-family:宋体"年/spanspan2/spanspan style="font-family:宋体"月/span/p/td/tr/tbody/tablep style="text-indent:28px"span style="font-family:宋体 color:red" /span/pp style="text-indent:28px"span style="font-family:宋体 color:red"★/spanspan style="color:red"a href="http://www.instrument.com.cn/netshow/SH103881/C243008.htm" target="_blank"span style="font-family:宋体 color:red"span仪电物光/span/spanspan style="color:red"SGW-568/spanspan style="font-family:宋体 color:red"span全自动高速旋光仪/span/span/a/spanspan style="font-family:宋体 color:red":/span/pp style="text-align:center text-indent:24px"span style="font-size:12px" img src="https://img1.17img.cn/17img/images/201904/uepic/a03b587e-3101-4d6c-acc7-d322e7a696d3.jpg" title="18.jpg" alt="18.jpg" width="280" height="220" border="0" vspace="0" style="width: 280px height: 220px "/ /spanstrong/strong/pp style="text-indent:28px"span style="font-family:宋体"仪电物光/spanspanSGW-568/spanspan style="font-family:宋体"全自动高速旋光仪采用数字平台,保证了仪器的精度、重复性和可靠性;提高了测试样品响应速度,实现了高速测量,缩短了样品测量时间。/span/pp style="text-indent:28px"spanSGW-568/spanspan style="font-family:宋体"偏振器采用/spanspanGlan Thompson/spanspan style="font-family:宋体"棱镜,可测最低透过率达/spanspan0.01%/spanspan style="font-family:宋体"的深色样品,拥有大数据库,数据可以保存、传输、打印和溯源。用户可自行定义预存常用测量方法,仪器工作始终处于静音状态,可选配各类控温防腐蚀试管。/span/pp style="text-indent:29px"strongspan style="font-size:15px font-family: 宋体 color:black"——企业简介:/span/strong/pp style="text-indent:28px"span style="font-family:宋体"上海仪电科学仪器股份有限公司(原上海精密科学仪器股份有限公司)是上海仪电(集团)有限公司旗下的一家股份制重点企业,/spanspan2015/spanspan style="font-family:宋体"年,作为优质资产被纳入上海仪电(集团)有限公司旗下的上市公司云赛智联股份有限公司。目前,是集研发、制造、销售和服务为一体的高科技企业,覆盖光谱仪器、色谱仪器、物理光学仪器、电化学仪器、环保水质监测、系统集成等产品线,拥有“上分”、“雷磁”、“仪电物光”等自主品牌。/span/pp style="text-indent:28px"span style="font-family:宋体"近年来“仪电科仪”致力于由“专业的科学仪器制造商”向“领先的科学仪器制造商、检测溯源系统解决方案与运行服务提供商”全方位发展。/span/pp style="text-align:center"span style="font-family:宋体"img src="https://img1.17img.cn/17img/images/201904/uepic/65ed843e-ecdc-43d1-a242-c09707959380.jpg" title="上海仪电.png" alt="上海仪电.png"//span/pp style="text-indent:28px"span style="font-family:宋体 color:#444444"(注:中国科学仪器市场“仪器创新活力指数”/spanspan style="color:#444444"TOP30/spanspan style="font-family:宋体 color:#444444"排行榜其他入选企业及完整榜单详情将于近期在/spanspana href="http://www.instrument.com.cn/newproduct/" target="_self"span style="font-family:宋体 color:#00B0F0"span仪器信息网新品首发栏目/span/span/a/spanspan style="font-family:宋体 color:#444444"陆续公布,敬请期待!)/span/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制