当前位置: 仪器信息网 > 行业主题 > >

旋转流体

仪器信息网旋转流体专题为您整合旋转流体相关的最新文章,在旋转流体专题,您不仅可以免费浏览旋转流体的资讯, 同时您还可以浏览旋转流体的相关资料、解决方案,参与社区旋转流体话题讨论。

旋转流体相关的论坛

  • 旋转流变仪的介绍

    流变仪,用于测定聚合物熔体,聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。流变仪,用于测定聚合物熔体,聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪、.转矩流变仪和界面流变仪。下面就让我来介绍一下旋转流变仪。A:控制应力型: 使用最多,如德国哈克(Haake) RS系列、美国TA的AR系列、英国Malven、奥地利Anton-Paar的MCR系列,都是这一类型的流变仪。前三家的产品马达采用托杯马达,托杯马达属于异步交流马达,惯量小,特别适合于低粘度的样品测试;Anton-Paar的流变仪采用永磁体直流马达,惯量稍大,但从原理上响应速度快,也是目前应力型流变仪的一种发展方向。这一类型的流变仪,采用马达带动夹具给样品施加应力,同时用光学解码器测量产生的应变或转速。   控制应力的流变仪由于有较大的操作空间,可以连接更多的功能附件。   B:控制应变型:目前只有美国TA的ARES属于单纯的控制应变型流变仪,这种流变仪直流马达安装在底部,通过夹具给样品施加应变,样品上部通过夹具连接倒扭矩传感器上,测量产生的应力;这种流变仪只能做单纯的控制应变实验,原因是扭矩传感器在测量扭矩时产生形变,需要一个再平衡的时间,因此反应时间就比较慢,这样就无法通过回馈循环来控制应力。   控制应变的流变仪由于硬件复杂,目前只有几种功能附件可供选择。

  • 【资料】旋转流变仪

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=38790]流变仪的运用[/url]本人现在负责美国TA公司的AR2000ex旋转流变仪的使用,希望有这方面测试或交流的朋友请和我联系。e-mail:chu_shenglin@126.com

  • 请教主流品牌旋转流变仪的特点

    请教各位大侠,我们想了解现在市场上主要旋转流变仪的特点,我们主要用来测定生物溶液和凝胶样品的粘度和剪切模量等基本参数,要求仪器测定结果准确,结果重现性好,最好能够进行界面流变的测定。如果能了解各品牌的惯量校正方法就更好了。先谢过!

  • TA公司的DHR—2旋转流变仪有熟悉的吗?

    刚接触到TA公司的DHR—2旋转流变仪,说明书、软件等全是英文,一点汉化的资料都没有。平常可能做的液体的设置参数标准也一点没有,全靠自己来摸索,很头疼······希望有熟悉的朋友,或者有汉化资料(作业指导书或者说明书等)的朋友帮忙给传点资料参考一下。万分感谢!QQ770135029 邮箱:jiang871029@126.com

  • 毛细管流变仪和旋转流变仪的使用和用途差距究竟在哪里

    [quote]原文由 [B]urumqi[/B] 发表:毛细管流变仪不能做动态的啊,所谓动态是指施加应力或应变以正弦波的方式进行,毛细管流变仪或者恒定切应力,或者恒定切变速率进行.上面urumqi提到毛细管流变仪或者恒定切应力,或者恒定切变速率进行,那么是不是说毛细管在恒定切应力的情况下,控制切变速率;恒定切变的时候控制应力。这样的话,旋转流变仪不也分应力控制型和应变控制型吗?我还是菜鸟的说。我的理解是不是旋转流变仪可以测的范围更广,甚至于固体都可以。控制的参数,得到信息也比较多,如果是这样,有没有哪位高手指点一下都多哪些东西呢?另外,如果我的主要目的是研究聚合物的加工,是不是毛细管就够了。

  • 求教---毛细管流变仪, 旋转流变仪的计量方法

    各位老师: 最近公司仪器需要自己做计量工作. 毛细管流变仪和旋转流变仪,我手头没有相关的计量方法.哪位老师肯赐教,将不胜感激! 非常感谢! 我的联系方式: TEL: 13636316539 021-57941941转24761 E-MAIL: tianyun_beifu@yahoo.com.cn 再次感谢!

  • 旋转流变仪平板系统测量固化曲线时的上样问题

    各位版友,有没有人用旋转流变仪的平板系统测试热固性树脂的固化的啊?我们在测试的时候,经常会遇到一些粘度较低的树脂样在做恒温固化曲线时,在一百多度的温度下会有很多气泡,因为含水率较高,这样转子跟样品之间会有气泡存在,做出来的曲线十分差,重复性也不好?有没有一些好的解决方案啊?

  • 非牛顿流体旋转粘度怎么了?

    公司生产的产品属于非牛顿流体,之前检测时,恒温20℃后,超声1~2分钟赶走气泡就直接测试了,粘度基本上都在6000~6100。领导视察时说我们没有按ASTM D2196来进行操作,要求我们必须按标准里步骤来操作。按照标准里,猛烈搅拌样品3~10分钟,然后在20℃里恒温60分钟,然后在5分钟内完成检测。考虑到样品恒温后还有大量气泡,因此我们超声了1~2分钟赶走气泡,然后测试。但是现在无论怎么测试都无法达到之前的数据,现在测试数据在3700左右。根据目前数据分析,样品是被剪切了,但是就是找不到原因。我们的疑虑是:1、非牛顿流体在测试粘度时是否要赶走气泡?2、超声会影响样品剪切吗?3、各位遇到类似的样品是怎么处理的?

  • 简单分析旋进漩涡流量计的工作原理

    旋进漩涡流量计具有国内领先水平的新型气体流量仪表。是利用流体旋涡的进动现象,采用压电晶体作传感元件,结合微机技术设计而成。广泛应用于石油、化工、电力、冶金、城市供气等行业测量各种气体的流量,是目前油田和城市天然气输配计量和贸易计量的首选产品。  旋进漩涡流量计的工作原理如下:  旋进漩涡流量计的流量传感器壳体剖面的型线类似文丘利管的型线,两头大中间小,入口侧的收缩段内有一组强制产生旋涡的导流叶片,出口侧有一个消除旋涡流的整流栅,使流体恢复轴向流动。当流体流入流量流量传感器时,入口处的导流叶片迫使轴向流动的流体旋转,并在收缩段内由于流体的加速流动使旋转流的中心产生旋涡流。这时,随着管截面的缩小,旋涡流集中在中心轴上,当旋涡流体进入扩散段时,由于流速减慢,旋转流体受到回流的作用,开始作二次旋转,旋涡流出现转折点(在这一点上流体的轴向速度分量为零),形成旋涡进动现象,故称旋进漩涡流量计。检测元件测得该进动频率信号后,由二次仪表显示出流量总量、温度、压力等。

  • 非牛顿流体粘度测量

    最近接触到一种高分子聚合物的溶液,是一种非牛顿流体,需要测定剪切与粘度变化关系,尝试了一下旋转粘度计,结果是得到了,但是速率可选择太少,准备试试流变仪,这个没有用过呢,需要补习一下资料先。欢迎有经验的童鞋不吝赐教哈。 现在的聚合物溶液粘度在6 rpm时候的粘度是20000cps。

  • 流体的粘度

    粘度是表示流体的内磨擦的物理量,是一层流体对另一层流体作相对运动的阻力。流体的粘度随温度而变,温度升高,液体粘度减小,而气体粘度增大。压力对液体粘度基本上无影响,而对气体粘度的影响只有在极高或极低压力下才比较明显,因此不注明温度条件的粘度是没有意义的。 对于流体,我们通常可以把它们分为两大类.1.牛顿流体,也就是理想流体,符合牛顿定律即两相邻流体层之间的单位面积上的内摩擦力(实际上是表面力中的切应力,又称剪应力,)与两流体层间的速度梯度dv/dy成正比,所有的气体和大部分低分子量(非聚合的)液体或溶液均属于牛顿型流体。.2.非牛顿流体,凡是不符合牛顿流体公式的流体,统称为非牛顿流体.其中,流变行为与时间无关的有:假塑性流体,胀塑性流体和宾汉(Bingham)流体.而流变行为跟时间有关的,又分为触变性流体和震凝性(即反触变性)流体粘度值的表示方法:a.绝对粘度:分为动力粘度和运动粘度。液体中有两层面积各为1平方厘米和相距1厘米的油液,相对移动速度为1厘米/秒时所产生的阻力,叫动力粘度。单位原是"泊"(P),实用单位是"厘泊"(CP)。换算成现行的法定计量单位用下式:1泊(P)= 0.1帕*秒(Pa*S)1厘泊(CP)= 0.01泊(P)= 1毫帕*秒(mPa*S)在同一温度下液体的动力粘度与其密度的比值即为运动粘度。单位原是"斯"(St),实用单位是"厘斯"(cSt)。换算成先现行的法定计量单位可用下式:1斯(St)= 10-4m2/s1厘斯(cSt)= 1mm2/sb.相对粘度:在工业生产中用各种特定仪器计量的粘度,例如恩氏的条件度,开口杯的时间。这些数值一般可通过公式转为绝对粘度。以上为收集资料

  • 粘度计——旋转粘度计的使用常识

    旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。 首先,简单介绍一下粘度计的测量原理: 旋转粘度计开机后首先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转,内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大,则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。

  • 粘度计在石油储运中的应用(一)

    石油的储存和运输简称石油储运。主要指合格的原油及其它衍生产品,从油田的油库、转运码头或外输首站,通过长距离原油输送管线、油罐列车或油轮等输送到炼油厂、石油化工厂等用户的过程。原油流变性是储存和管道运输工艺设计的重要参数。原油储存及输送过程中,由于粘度过高,通常需要降粘,改变其流变学特性,以方便储存和运输,同时也能控制输油的能耗。目前,国内外一般采用加入分散剂或降粘剂来降低稠油在开采和输送过程中的流动阻力,提高输送效率。Brookfield 的粘度计和流变仪,为油品储存和管道运输过程中的粘度和流变性问题提供了全面系统的实验室应用研究以及在线粘度实时监控的解决方案。管道输油特点l 运输量大;能耗小、运费低便于管理,易实现全面自动化,劳动生产率高;管线大部埋于地下,受地形地物限制小,能缩短运输l 距离;安全密闭,基本上不受恶劣气候的影响,能长期稳定、安全运行。l 运输方式不灵活,钢材耗量大,辅助设备多,适于定点、量大的单向输送。原油的粘度和流变性概念及特性石油的粘度:液体质点间流动的摩擦力,以 mPa.s 表示。粘度大小决定着石油在地下、管道中的流动性能。一般与原油的化学组成、温度和压力的变化有密切关系。通常原油中含烷烃多、颜色浅、温度高、气容量大时,粘度变小。而压力增大粘度也随之变大。地下原油粘度一般比地面的原油粘度小。原油是一种多组分烃类的复杂混合物。高温下,蜡晶被溶解,沥青质高度分散,原油可视为假均匀流体,表现出牛顿流体特性。随着温度降低,蜡晶析出并长大,原油成为一种以液态烃为连续相、蜡颗粒和沥青质为分散相的细分散悬浮液,显示出非牛顿流体特性。油温更低时,蜡油连成网络,出现屈服现象,显示出更复杂的非牛顿流体特性。非牛顿原油的流变特性与热历史、剪切历史有关。管道中,原油的流变特性管道内,原油流变性呈现两个阶段:较高温度段:原油仍呈现牛顿流体特性,其流变性与剪切历史、热历史无关;原油粘度较低,处于紊流光滑区流动。较低温度段:通过长距离海底和陆地管道泵输送含蜡原油,油温逐渐降低,蜡结晶量增加,油温已处在原油的反常点以下,原油呈现非牛顿流体特性(假塑性、触变性、屈服性等),其流变性与剪切历史、热历。Brookfield 仪器推荐针对原油储运过程中粘度和流变性的特性、国家标准要求以及储运全程自动化的发展要求,BROOKFIELD向您建议不同场合下所适用的最佳仪器。管道运输前:采用实验室方法测定特定的模拟管输条件下原油的流变性,是安全、经济地储存和运输原油的重要基础工作。管道运输中:采用在线粘度计实时监测自动化输送过程中原油的粘度变化状况,是确保原油经济、高效、低能耗地持续输送的重要手段。实验室仪器推荐:QC 型 --- DV2T 旋转粘度计DV3T 旋转流变仪R&D 型 --- RST 系列旋转流变仪在线粘度计推荐:旋转法 --- TT-100 在线粘度计

  • 【分享】旋转粘度计使用

    旋转粘度计使用中必须注意的几个问题旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。首先,介绍一下该类仪器的测量原理:旋转粘度计开机后首先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转, 内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大, 则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点:一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。二、特别注意被测液体的温度。 许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。四、正确选择转子或调整转速,使示值在20~90格之间。 该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。五、频率修正。 对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为:实际粘度=指示粘度×名义频率÷实际频率六、转子浸入液体的深度及气泡的影响。 旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求操作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时清洗,特别在测油漆和胶粘剂之后。要注意清洗的方法,可用合适的有机溶剂浸泡,千万不要用金属刀具等硬刮,因为转子表面有严重的刮痕时会带来测量结果的偏差。八、其他需注意的问题。1.大部分仪器需要调整水平,在更换转子和调节转子高度后以及在测量过程中随时注意水平问题,否则会引起读数偏差甚至无法读数。2.有些仪器需装保护架,仔细阅读说明书按规定安装, 否则会引起读数偏差。3.确定是否为近似牛顿流体,对于非牛顿流体应经过选择后规定转子、转速和旋转时间,以免误解为仪器不准。综上所述, 旋转粘度计虽然结构简单、使用方便,但如果不正确使用,一台检定合格的仪器却不能得到准确的测量结果,影响产品质量。

  • 【转帖】流体力学相关问题

    带着对科学存有怀疑的态度,我对伯努利方程产生了质疑,于是便自己总结了一些理论与其相对比。流体在未受到外力作用的情况下是相对静止的,压力为常量。称为静压力。当流体要流动时,必须受到外力的作用。这个外力只能是大于常量压力的压力,称为动压力,或小于常量压力的吸力,称为动吸力。流体不论是静止还是流动,静压力保持不变。当静止的流体一面受到大于常压的压力时,流体开始向另一面流动,在不受到任何阻力的情况下,始终向一个方向流动。当前方受到阻力时,流体向四周扩散,扩散的速度受压阻比影响,压力不变,阻力越大扩散越快,阻力越小扩散越慢。阻力不变,压力越大扩散越慢,压力越小扩散越快。流体受到的压力称为总动压力,它的力一部分压缩流体,一部分摩擦损耗,其余的推动流体流动,各部分的力的总和等于总动压力,称为动量守恒。总动压力加上静压力称为流体流动时的总压力。当静止的流体受到小于常压的吸力时,流体开始向吸力方向流动。在无任何阻挡的情况下,吸力向前方的各个角度作用,并逐步扩大吸力范围,使无阻挡的各处流体流向吸力。流体流动的速度与流体的运动横截面积和吸力大小相联系。吸力不变,横截面积越大流速越慢,横截面积越小流速越快。横截面积不变,吸力越大流速越快,吸力越小流速越慢。流体受到的吸力称为总动吸力,它的一部分稀薄流体,一部分摩擦损耗,其余的吸动流体流动,各部分的力的总和等于总动吸力,称为动量守恒。静压力减去总动吸力等于流体流动时的总压力。管道中的流体在受到压力做定常流动时,流体的动压力,流速,单位时间内的流量,管道的横截面积,流体扩散的速度之间的关系。1.流体在受到压力做定常流动时,同一管道内的各横截面流量相同。2.压力一定,流速一定,横截面积越大流量越大,横截面积一定,压力越大流量越大,流速越大。3.压力一定,流量一定,横截面积越大,流速越慢,横截面积越小流速越快。4.流体流经最小横截面以前,各处压力基本相同。流经最小横截面以后,压力减小,减小的比例为此最小横截面与下一最小横截面的比。此最小横截面与下一最小横截面之间的各处压力基本相同。5.压力一定,流速一定,流量越大流体扩散越快,压力一定,流量一定,流速越快扩散越慢。流体受到吸力时,各量的关系。1.流体在受到吸力做定常流动时,各横截面处流量相同。2.吸力一定,流量一定,横截面积越大流速越小。横截面积越小流速越大。3.吸力一定,流速一定,横截面积越大,流量越大。水流自上而下自然流动时,是一种吸力做功,吸力的做功点是随处而在。当水流的方向受到阻挡时,阻挡面以上的吸力便转变为压力。由此看来,流体的流速大小并不能决定压力的大小,更不能起到吸引其它物体的作用。因此,升力的形成并不是流速差引起的,而是另一种力的作用。这种作用是流体流经弧形表面时,做绕弧运动,从而产生了离心力,流体受离心力作用向外运动产生吸力做功,并从而形成了升力。流体做绕弧运动的原因是流体在翼片前端受阻向上压缩,过凸点后向下逐步扩散便顺着弧行面流动。空气的离心力究竟有多大呢,用扇子扇一下就知道了。当扇子直线运动时,没有离心力,感觉气流很小,当扇子弧形扇动时,气流受到离心力作用向外流动,会感觉到气流很强。我只是业余科学爱好者,由于时间关系,有许多细节没有讲清楚,以后有时间在补充。希望能有科学爱好者能对此进行实际验证。

  • 【求助】请问怎么测管内流体的温度

    请问高手,我想测内径为2mm的管路中的实际流体温度,流体大概温度为600多度,压力为4MPa。请问怎么测管内流体的温度啊?现在只能测管壁的温度。 谢谢。

  • 【资料】-超临界流体的共溶剂效应和混合流体研究进展

    [b]超临界流体的共溶剂效应和混合流体研究进展[/b][i]牟天成,韩布兴[/i]摘 要:共溶剂的出现极大地拓展了超临界流体的应用范围,推动了超临界流体科学与技术的发展。本文从相行为和分子间相互作用热力学的角度,对相行为测定、量热技术、光谱技术和分子模拟等在超临界流体中共溶剂效应的研究作了综述,主要介绍超临界流体中共溶剂的作用机理和混合流体在临界点附近热力学性质研究,并对其未来发展方向进行了展望。关键词:超临界流体 共溶剂 分子间相互作用 混合流体1 引 言最近20年以来,超临界流体科学和技术得到了快速发展,其理论和应用研究正处于快速增长阶段。随着人们对超临界流体本性认识的提高,超临界流体在萃取、化学反应、材料制备、分析技术、胶体和表面科学、生物技术等领域得到了广泛应用,其应用范围和领域还在不断扩大之中,而且必将有更为广阔的应用前景。超临界流体得到人们广泛关注,是因为它具有一些特殊性质:(1)超临界流体的密度可以从气态密度连续变化到液态密度,尤其是临界点附近,压力和温度的微小变化可导致密度成倍变化;(2)由于粘度、介电常数、扩散系数和溶解能力都与密度有关,可以通过调节温度和压力来控制超临界流体的物理化学性质。在超临界流体中,CO2的使用最普遍,原因如下:CO2溶解能力强;临界温度和临界压力适中;无毒无害,便宜易得;化学惰性,易分离等,是环境友好的绿色溶剂。[color=red]下面有全文的Word文档,需要的可以下载。[/color]

  • 锂离子电池集流体

    请教,锂离子电池中使用铜箔作为负极的集流体,铝箔作为正极的集流体,能反着使用吗?如果负极使用铝箔作为集流体,正极使用铜箔作为集流体,会怎样?

  • 【转帖】超临界流体定义、特点

    超临界流体定义、特点㈠定义超临界流体(supercritical fluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(supercritical fluid),又称为稠密气体(dense gas)或高压气体(high compressed gas),它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。㈡特点超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是首选的萃取剂。这是因为二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。超临界流体的特性① 无毒性、不燃性和无腐蚀性。超临界CO2流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。② 容易达到超临界条件。CO2临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,CO2的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

  • 【转帖】旋转粘度计的使用和维护

    旋转粘度计的使用和维护 来源:来宝网旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。首先,简单介绍一下该类仪器的测量原理:旋转粘度计开机后先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转, 内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大, 则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。 许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。 对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求操作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时清洗,特别在测油漆和胶粘剂之后。要注意清洗的方法,可用合适的有机溶剂浸泡,千万不要用金属刀具等硬刮,因为转子表面有严重的刮痕时会带来测量结果的偏差。 八、其他需注意的问题。 1.大部分仪器需要调整水平,在更换转子和调节转子高度后以及在测量过程中随时注意水平问题,否则会引起读数偏差甚至无法读数。 2.有些仪器需装保护架,仔细阅读说明书按规定安装, 否则会引起读数偏差。 3.确定是否为近似牛顿流体,对于非牛顿流体应经过选择后规定转子、转速和旋转时间,以免误解为仪器不准。 综上所述, 旋转粘度计虽然结构简单、使用方便,但如果不正确使用,一台检定合格的仪器却不能得到准确的测量结果,影响产品质量

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制