当前位置: 仪器信息网 > 行业主题 > >

研究方法优化

仪器信息网研究方法优化专题为您整合研究方法优化相关的最新文章,在研究方法优化专题,您不仅可以免费浏览研究方法优化的资讯, 同时您还可以浏览研究方法优化的相关资料、解决方案,参与社区研究方法优化话题讨论。

研究方法优化相关的资讯

  • 地表水环境质量特定监测项目分析测试方法优化研究结题准备会召开
    2011年11月29日-12月1日,中国环境监测总站在重庆市组织召开了“十一五”水专项“地表水环境质量特定监测项目分析测试方法优化研究”子课题结题准备会。中国环境监测总站王业耀副站长、河南省环境监测中心徐广华站长、重庆市环境监测中心罗财红副站长出席会议,中国环境监测总站、河南省环境监测中心、重庆市环境监测中心等子课题承担单位相关研究人员参加了会议。   会议由中国环境监测总站滕恩江主任主持。水专项项目管理组王光介绍了课题结题的相关要求,子课题负责人吕怡兵汇报了总体研究进展情况及取得的成果,子课题参加人员汇报了各自承担项目的研究情况,并就监测技术与方法、实验技术与方法进行了广泛的交流和讨论。与会领导听取了子课题进展情况的汇报,认为子课题按照要求已基本完成考核指标,可以准备结题,为使研究工作更加完善,子课题参加人员还应进行如下研究:①补充实际样品的测定实验。②进一步凝练研究成果。
  • 基于HTRF方法的新药研发检测技术优化
    新药研发过程中的分析方法开发是一个耗时费力的过程。原因是在这个过程中,我们需要耗费大量的重复劳动和人力,用于确定和优化正确的分析条件和技术参数。为了解决这些问题,研究人员需要使用多种不同的技术和平台。珀金埃尔默建立一个一站式、全自动化配置优化的平台——JANUS® G3分析方法开发工作站平台,该系统基于均相时间分辨荧光技术(HTRF® )的蛋白质间相互作用(PPI)的检测和分析,且提供了⼀种便捷⾼效、⾼阳性率的单克隆抗体阳性克隆筛选方法,助力新药研发过程的高效优化。平台配置如下图1。图1:JANUS® G3分析方法开发工作站平台1扩展台面,支持复杂实验流程的微孔板制备2微孔板振荡功能,保证孔板里液体的高效混合3VICTOR® Nivo™ 微孔板检测仪,可读取分析数据4整合型机械抓手,可实现微孔板和其他实验耗材的抓取,并在工作站台面及VICTOR® Nivo™ 微孔板检测仪间自动转移5VariSpan™ 移液机械臂,可通过独立的通道液面检测精准地制备出微孔板什么是HTRF?均相时间分辨荧光(HTRF, Homogeneous Time-Resolved Fluorescence)是⽤来检测纯液相体系中待测物的⼀种常⽤⽅法。它提供了一种简单、免洗的方法,可在短短两个小时内检出靶蛋白并对其进行量化分析。它将荧光共振能量转移(FRET)和时间分辨测量的优点相结合,可消除短暂的背景荧光,成为分析方法学开发应用中的理想选择。在FRET实验中,生物分子(如蛋白等)被荧光基团供受体标记。当生物分子之间相互作用,供受体荧光基团的距离被拉近。此时,若供体被激发,它会传递它的发射光能量给受体。受体和供体的发射光具有不同的波长,可以被微孔板读板机区分,从而定量生物分子之间的相互作用。使用镧系元素荧光基团作为供体,发射光有很长的半衰期,HTRF可以利用时间分辨检测荧光,消除短半衰期背景荧光的干扰。在HTRF实验中,由于供体荧光基团发射光有较长半衰期,供受体荧光基团的激发和发射都可以在短半衰期背景荧光消失后再检测。典型的HTRF检测把铕穴状化合物用作供体,有机荧光团d2用作受体(技术原理如下图2)。图2:均相时间分辨荧光 (HTRF)原理图HTRF的优势?与传统检测技术相比, HTRF检测的主要优点:1灵敏度高,实验通量高2步骤简单,无需包被和洗板,无需避光,适用于贴壁细胞和悬浮细胞,只需将细胞进行刺激→裂解→加检测试剂→读板;(无需洗板机,不需要加热和避光孵育塔,成本降低,自动化程度高,Perkin Elmer提供一站式解决方案)3降低背景和提高信噪比,提高灵敏度,数据真实可靠4支持96或384孔板至更高通量分析检测5实验体系稳定,可耐受较宽的pH范围、二价金属离子、螯合物等,并可在48小时内反复多次检测HTRF的应用?检测可分析生物化学过程中的分子相互作用,被广泛用于研究激酶、细胞信号转导通路、蛋白相互作用PPI(protein-protein interaction)、DNA与蛋白的相互作用、细胞毒性以及受体与配体的结合。其中供体和受体可以被用于标记各种生物分子,应用范围包括表观遗传学,生物标志物定量,GPCR信号转导等。特别,该检测技术支持强大的混合-读数模式,无需进行任何清洗步骤。这一优点连同实验的稳定性,使该技术非常适用于自动化和筛选类应用。珀金埃尔默JANUS® G3分析方法开发工作站平台助力新药研发该平台基于均相时间分辨荧光技术(HTRF)。采用了TIBCO
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 菊花含量测定方法优化
    菊花菊花是中国十大名花之三,花中四君子(梅兰竹菊)之一,也是世界四大切花(菊花、月季、康乃馨、唐菖蒲)之一,产量居首。因菊花具有清寒傲雪的品格,才有陶渊明的“采菊东篱下,悠然见南山”的名句。中国人有重阳节赏菊和饮菊花酒的习俗。唐孟浩然《过故人庄》:“待到重阳日,还来就菊花。”在古神话传说中菊花还被赋予了吉祥、长寿的含义。菊花具有疏肝和中,化痰散结之功效。用于肝胃气痛,郁闷心烦,梅核气,瘰疠疮毒。文中参照中国药典2020年版一部,采用月旭Ultimate® XB-C18色谱柱,在对梯度进行药典范围内微调后,能满足检测需求。01 色谱条件 2、供试品溶液2.1 原标准条件第yi针样品图,红线框内主成分相领没有干扰峰。2.2 原标准条件第二针起的样品图,红框内主成分峰处,上一针保留过强没洗脱下来的强保留物质出现在了下一针的色谱柱中,干扰了主成分的检测。2.3 药典中对梯度洗脱方法的比例调整上写明:可适当调整流动相组分比例,以保证系统适用性符合要求,并且最终流动相强度不得弱于原梯度的洗脱强度。本项目中,三个主成分峰均在30分钟之前出峰,而对第二针产生的干扰峰是因梯度后段洗脱能力不够而干扰到了下一针,我们对主成分出峰后的30-40分钟的流动相比例进行调整,增加有机相的比例,以保证强保留杂质都被清洗出来,以避免干扰下一针。2.4 方法优化后,连续进样5针,样品图均能达到完全重现,不再出现干扰峰(附图为第三针样品图的效果)。03 结论 用月旭Ultimate® XB-C18(4.6×250mm,5μm),在此优化后色谱条件下测定,能满足检测的要求。04 订货信息
  • 新疆理化所在空气过滤材料的设计及优化研究中获进展
    燃气轮机是高效清洁的能源转换装置,被誉为工业装备制造业“皇冠上的明珠”。燃气轮机通过将干燥洁净的空气与燃油混合以产生能量,其进气过滤系统的主要功能是保护燃气轮机免受空气中颗粒物的污染,以保证燃气轮机发电机组安全可靠运行。纤维类材料具有比表面积大、孔径分布可控、体积蓬松、价格低廉等特点,是空气过滤领域的主流产品。针对复杂环境下的空气过滤需求,玄武岩纤维因优异稳定性,成为新型高效空气过滤材料。然而,由于纤维材料内部微观结构的复杂性以及过滤参数(颗粒直径分布、气流速度等)耦合作用,过滤效率和压降存在“trade-off”权衡关系,对过滤材料的设计和优化带来了挑战。   近期,中国科学院新疆理化技术研究所提出了一种基于计算流体力学(CFD)模拟与响应曲面法(RSM)相结合的纤维过滤过程预测与优化方法,对纤维过滤过程进行了可视化研究。该工作通过数字重构纤维过滤材料的三维微尺度模型,以CFD-DPM模型预测纤维介质的过滤性能,追踪粒子在滤材中的运动轨迹和特征流场,分析拦截、碰撞和布朗运动耦合过滤机理对粒子捕获的影响规律。进一步,该研究通过建立过滤性能与过滤参数之间的映射关系,结合RSM实现对过滤参数的多目标优化。RSM分析发现,过滤参数对过滤效率的影响存在耦合效应,利用过滤原理与Stk数和Pe数变化详细解释了其耦合效应。而压降随固体体积分数和气流速度的增大而增大,但不受颗粒直径的影响。综上,本研究通过CFD模拟与RSM优化相结合,阐明过滤参数之间的相互作用关系,这为高效筛选过滤材料和滤材设计与优化开辟了新途径。   近日,相关研究成果近日发表在《化学工程科学》(Chemical Engineering Science)上。新疆理化所为该工作的第一完成单位。研究工作得到新疆维吾尔自治区自然科学基金和新疆天山英才-科技创新领军人才项目等的支持。基于CFD-RSM方法的纤维过滤介质设计及优化流程
  • 中科院沈阳自动化所加热炉优化控制研究取得进展
    p style=" text-indent: 2em " 冶金行业一直是我国工业的能源消耗大户,是推进节能降耗的重点行业。高炉热风炉和加热炉等装置是节能降耗的关键环节,因此,其燃烧控制与优化问题一直是国内外专家学者研究和关注的重点。 /p p style=" text-indent: 2em " 11月6日,中国科学院沈阳自动化研究所发布消息,该所一项研究成果,为人工智能技术应用于冶金行业加热炉能耗优化控制提供了新方法。 /p p style=" text-indent: 2em " 据介绍,该所科研团队以加热炉的优化控制为切入点,提出了一种基于迁移学习的加热炉炉温预测算法。实现加热炉的优化控制,首先要克服加热炉生产过程中原料来源多样、生产条件多变、工况波动频繁等难题,对加热炉各个加热区的温度精准预测。同时,还需要满足工况对实时性的要求,对预测算法的计算效率和计算时间等性能指标提出了更高的要求。 /p p style=" text-indent: 2em " 为了应对这些挑战,研究团队设计了基于时间卷积网络和迁移学习技术的多区炉温预测框架,并通过生成对抗网络来提升预测精度,建立了实时的炉温预测模型。实例研究表明,团队所提出的基于迁移学习的炉温预测框架在每个加热区快速建模的基础上都能极大提升预测精度。相关学术成果发表于Sensors,也为人工智能技术应用于冶金行业加热炉能耗优化控制提供了新方法。 /p p style=" text-indent: 2em " 近年来,沈阳自动化所数字工厂研究室依托“中科云翼”工业互联网平台开展了基于工业大数据的人工智能方法研究,取得了一系列高水平研究成果,为人工智能和大数据技术与制造工艺的深度融合提供了理论方法和技术支撑。 /p p br/ /p
  • 用总有机碳TOC方法优化饮用水营养物去除工艺
    难题:饮用水中的硝酸盐美国环保局(EPA)乃至公众担心饮用水中的营养物质(例如含氮和磷的物质)含量过高,会危及公共健康,这就使得水处理厂必须改进处理工艺。对致力于满足法规规定的氮含量限值的水处理厂来说,如何降低来自径流、肥料、污水、发电厂、化学品厂的含氮化合物的浓度始终是个难题。当饮用水中的含氮量过高时,配水系统就会被富营养化,成为细菌的滋生地。硝酸盐危害婴儿、孕妇、酶缺乏症患者的健康,降低他们的血液送氧能力1,2。美国环保局规定的饮用水中的硝酸盐浓度限值为10 ppm,亚硝酸盐浓度限值为1 ppm2。工农业生产的废物和人类的排泄物排放到环境中,地表水和地下水中的硝酸盐含量越来越高,例如在美国加州的地下水井中就检测到高浓度的硝酸盐。因此,脱硝(脱氮)就成为水处理工艺的一个重要环节。方法:生物脱硝脱硝是通过添加碳源(也称为电子供体,例如源流中的甲醇、乙醇、MicroC® 、乙酸、糖浆、碳等),将硝酸盐还原成氮气的过程3。生物脱硝是其中一种脱硝方法,就是用厌氧细菌来消化碳源,从而降低硝酸盐含量3。与常规过滤和泥浆脱硝相比,生物脱硝有诸多优点,例如生物脱硝可以在连续过程中进行,且无需去除固体颗粒。生物脱硝对能源的需求极低,占用的工作面积小,还可以通过提高碳源的利用率来不断优化脱硝工艺。当细菌消耗掉硝酸盐之后,氮气便从水处理池中排出,就可以对脱硝后的水进行最终处理,然后将其送到配水系统中。这种生物处理方法也可以用来去除其它污染物,如铬酸盐、高氯酸盐、硒等。解决方案:TOC分析法的优势生物脱硝的关键在于优化碳源的用量。世界卫生组织在关于去除硝酸盐的文献中说,“控制碳源用量对工艺操作至关重要,可以使用在线型分析仪来监测处理后的水中的残留物浓度”4。在进行脱硝时,如果用碳量不够,就无法将硝酸盐全部还原成氮气,还会在水中留下大量的亚硝酸盐和氮氧化物。相反,如果用碳量过高,细菌就会进而分解水中其它化学物质,例如分解硫酸盐,产生硫化氢气体,不但气味难闻,还会造成有害后果。如果出水中有大量的细菌或碳,就会提高生物需氧量(BOD,Biological Oxygen Demand),增加有机消毒副产物(DBP,Disinfection Byproduct)的前体。最理想的情况是用碳量刚好能维持细菌的活性。因此,碳源使用的优化对于实现高效脱硝、节约成本、提高工艺效率来说至关重要。TOC分析仪在监测进水中的硝酸盐和出水中的硝酸盐/亚硝酸盐的含量时,能够给出给定碳源的除氮量。用TOC分析仪进行脱硝后的监测,能够以非专属的方法来快速测量碳源的除氮效率。生物脱硝的工艺流程如图1所示。TOC在线分析法能够实时显示用碳量和除氮量之间的关系变化和偏差。此分析法不仅可以保证水中的硝酸盐和有机物含量降到最低,还能节省操作设备所需的时间、资源、化学品、资金。连续监测法允许操作人员根据情况变化来及时调整工艺,而无需将样品送到第三方实验室进行分析,因而具有省时省力的优点。图1:生物脱硝流程示意图采用TOC在线分析法后,就不必再根据出水中的硝酸盐/亚硝酸盐的浓度来猜测碳源的使用效率。用此方法来监测脱硝结果还有一大优点,就是能够同下游水处理厂的工艺相匹配。对饮用水进行TOC分析,有助于水厂达到美国环保局对TOC去除率、DBP监测、工艺优化的规定指标。随着社会对经济饮用水的需求不断提高、水资源相对减少、人们的污染防范意识越来越强,水处理厂有必要优化工艺,以便高效去除水中的营养物质和有机污染物。参考文献“Rolling Revision of the WHO Guidelines for Drinking-Water Quality: Nitrates and nitrites in drinking-water.” July 2004. World Health Organization.“Consumer Factsheet on: NITRATES/NITRITES.” US EPA. http://www.epa.gov/ogwdw/pdfs/factsheets/ioc/nitrates.pdfNeethling, J.B. “Tertiary Denitrification Processes for Low Nitrogen and Phosphorus.” November 2010. Water Environment Research Foundation. “Water Treatment Processes for Reducing Nitrate Concentrations.” World Health Organization: Water Sanitation Health. http://www.who.int/water_sanitation_health/dwq/chemicals/en/nitrateschap6.pdf◆ ◆ ◆联系我们,了解更多!
  • 海洋光学 酿酒过程优化及调控研究室联合创新实验室正式成立
    2023年3月23日,海洋光学和四川轻化工大学酿酒过程优化及调控研究室举行联合创新实验室揭幕仪式。双方在现场正式签署合作协议,宣布建立联合创新实验室,共同开展在酿酒过程中的光谱分析和检测等方面的研究。海洋光学是应用光谱解决方案提供商,为全球范围内的科研及工业应用提供光学测量解决方案,致力于帮助研究人员和行业解决健康、安全和环境方面的重要问题,利用光的力量提供让世界更安全、更清洁、更健康的方案。四川轻化工大学酿酒过程优化及调控研究室是中国酿酒行业中的研究团队,在Sci等多个期刊发表过多篇文章,致力于研究酿酒过程中的优化和调控技术。本次合作旨在充分利用海洋光学在光谱分析和光学检测方面的优势和经验,与酿酒过程优化及调控研究室在酿酒工艺研究方面的专业知识,共同探索在酿酒过程中光谱分析和检测等领域的创新应用。此外,双方还将建立稳定的信息交流和研发平台,探索符合市场需求和学科发展的研究课题,在研发、市场推广和设备示范等方面展开合作。在签约仪式上,双方代表都对这次合作表示了高度的期待和信心。 海洋光学销售副总裁孙玲博士(左)酿酒过程优化及调控研究所所长宗绪岩教授(右)海洋光学销售副总裁孙玲博士表示:海洋光学是微型光纤光谱仪的发明者,并且不断的创新和开拓新的应用和解决方案,为多个行业和领域做出了巨大的贡献。同时,助力中国的科研力量开创新的技术,研究新的成果,开发新的产品,培养创新型人才。沿着旧地图找不到新大陆,海洋光学创新品质无处不在。这也是促成建立该联合创新实验室的重要因素之一。随着中国酿酒市场的日益发展将拥有更大的潜力,也迫切需要创新的技术支持助力产业的发展和升级。海洋光学将与酿酒过程优化及调控研究室密切合作,共同研究开发酿酒工艺优化和智能化的光谱应用和系统,为中国酿酒产业的升级和发展提供更具竞争力的解决方案以及更全面、更高效、更优质的技术支持和服务。酿酒过程优化及调控研究所所长宗绪岩教授表示:随着技术的进步,分析仪器不断发展,方法不断创新,酒类的分析也将迎来新的开端,我们也希望能够跟海洋光学共同进步,为酿酒行业,甚至为整个食品行业做出一些贡献。海洋光学始终是值得信赖的合作伙伴,以先进高质量的产品和服务助力我们进行分析和研究。我们很高兴进一步扩大与海洋光学的合作建立联合创新实验室,也感谢海洋光学对我们的认同。该联合创新实验室的成立标志着双方的合作进入了一个新的阶段,也将是中国酿酒产业技术创新的重要里程碑。我们期待通过双方的合作,为中国酿酒行业带来更多的科技创新和发展机遇。
  • 大连化物所提出优化光电离离子迁移谱技术性能的新方法
    近日,大连化物所仪器分析化学研究室质谱与快速检测研究中心(102组群)李海洋研究员团队基于自主研发的光电离迁移时间离子迁移谱(PI-IMS),通过理论建模研究了PI-IMS在不同气压条件下的响应特性,定量分析了离子复合过程和空间电荷对目标分析物甲苯信号强度的影响,提升了PI-IMS的检测灵敏度和线性动态范围。此外,理论建模研究揭示了光电离源分析性能的影响因素,从而深化对光电离源分析性能的认识,有利于优化高灵敏离子迁移谱的设计,并促进其在在线分析领域中的应用。光电离源作为一种高效电离技术,与离子迁移谱或质谱结合已广泛应用于临床诊断、食品控制、环境污染物监测和国家安全等各种现场分析领域。然而,在常压条件下,光电离源中的离子复合过程造成的离子损失会减小IMS检测的灵敏度及线性动态范围。本工作中,该团队开发了一种气压可变的PI-IMS,以甲苯作为模型分子,研究了在1至0.1bar的气压范围内降低气压对甲苯信号响应的影响。在理论模型的辅助下,团队确认了离子复合和空间电荷分别是高压和低压条件下离子损失的主要因素。此外,仅考虑离子复合过程的影响时,团队通过理论模型,建立了最佳灵敏度对应的气压条件与样品浓度和电离区电场强度条件之间的关系式,为不同实验条件下确定最优气压的大致范围提供参考,实现PI-IMS检测性能的快速优化。研究发现,相对于大气压,气压条件为0.4bar时,PI-IMS对0.716ppmv的甲苯样品检测灵敏度可提升四倍左右,同时其线性动态范围也扩大了两倍以上。相关研究以 “Improving the Sensitivity and Linear Range of Photoionization Ion Mobility Spectrometry via Confining the Ion Recombination and Space Charge Effects Assisted by Theoretical Modeling” 为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是我所博士研究生徐一仟。该工作得到了国家重点研发计划、国家自然科学基金、我所创新基金等项目的支持。文章链接:https://pubs.acs.org/doi/full/10.1021/acs.analchem.4c00605
  • 工艺优化:ControLyo®控制成核技术对散装材料冻干研究
    冻干过程中,冻结阶段冰核形成是一个随机过程,会导致产品冻结不均匀。样品通常在很宽的温度范围内成核,产生不同大小的冰晶,和不同的冰晶结构,导致干燥速度不同,*导致外观不同。高质量的冻干产品取决于层板温度、腔室压力和时间等明确可控的关键工艺参数(CPP)。随着工艺转移到大规模生产,这些参数可能需要优化,特别是产品容器发生变化时。 批量冻干通常使用金属托盘,其传热与普通西林瓶不同,具有较高的污染风险,多次重复使用以及灭菌在金属内的应力会导致托盘翘曲,传热效果发生改变。此外,散装托盘边缘样品可能与中心样品冻结的时间和温度不同,导致散装盘内出现不同尺寸的冰晶结构。CONTROLYO® 按需成核技术(NODT),是一项创新技术,在冻干机内冷冻期间,使用惰性气体对腔室进行加压和减压,以促进均匀成核。装载完成之后加压,待产品在设定的层板温度下稳定后减压,以产生瞬时的、均匀的冰核。在减压之后,通常在-5°C的温度下长时间保持,使冰晶缓慢生长,因此允许较大的冰晶尺寸产生。ControLyo® VS 常规冷冻方法研究散装托盘中不同材料的冻干过程,将ControLyo® 与常规冷冻方法进行比较。对晶体材料和和无定型配方进行了研究。晶体材料由甘露醇、USP(浓度为40 mg/mL)组成,无定型态由蔗糖、NF(浓度为40 mg/mL)组成。具体实验在100级(A级)环境中用0.22微米过滤器过滤溶液。将溶液分配到四个不锈钢托盘中,每个托盘的体积为2L。在4层层板(30×60cm)中试冻干机(SP Hull Model 8FS15C)中进行冷冻干燥。在不锈钢散装盘内不同位置以及托盘外部均放置热电偶测量产品温度。采用Controlyo® 工艺和常规冷冻工艺分别进行。这两个工艺,装载关闭腔门后,均在5°C搁板温度和大气条件下平衡。采用Controlyo® 工艺,在5°C下使产品达到平衡后,进行惰性气体吹扫。将系统加压至27.2psia并减压至17.2psia,同样进行二次吹扫。在第二次吹扫后,将腔室加压至33.2psia,并将搁板冷却至-3℃平衡4小时。由于溶液中测得的产品温度高于-3℃,因此将目标搁板温度调节至-5℃,以使产品温度在-3℃或更低的温度下达到平衡。保持1小时后,从33.2psia瞬间减压至16.2psia,促进成核,搁板温度在-5℃保持7小时促使冰晶生长。01 初次研究在最初的研究中,使用保守的一次干燥参数,以便直接比较结晶溶质甘露醇与无定型态溶质蔗糖的干燥。两种不同的冷冻技术在完成甘露醇一次干燥的时间上几乎没有差异。然而,不同的冷冻技术对蔗糖制剂的干燥结果有显著影响。02 第二项研究在第二项研究中,采用不同的一次干燥参数对甘露醇和蔗糖制剂进行试验。此一次干燥条件比*项研究的条件明显更激进,对不同组分的样品进行相同关键工艺参数CPP的研究,研究组分的影响。 图1:常规冷冻成核(不同温度下的随机成核) 图2:Controlyo® 成核(同时发生成核)热电偶迹线描述了常规冻结中成核的随机性质和ControLyo® 过程中的瞬时成核(如图1和图2所示)。成核事件是一个放热过程,释放的热量导致热电偶传感器读数瞬时增加,*接近层板温度。在常规冷冻过程中,成核随机发生,热电偶显示成核发生在不同的温度和时间下。控制成核技术中,当系统减压时,热电偶立即记录到同时成核的过程。需要认识到传感器只测量托盘的某些区域,可能不能代表托盘全部。 图3:蔗糖-常规冷冻(约72小时完成一次干燥) 图4:蔗糖–Controlyo® (约59小时完成一次干燥)在一次干燥阶段,使用热电偶传感器记录产品温度,以帮助确定一次干燥的终点。当使用控制成核技术时,蔗糖制剂一次干燥提前13小时结束(如图3和图4所示)。甘露醇制剂,无论使用何种冷冻技术和CPP,一次干燥时间仅有轻微的变化。在这些研究中,皮拉尼/电容压力计的数据判断初级干燥结束。ControLyo® 技术优势对两种配方的成核均匀性、冷冻干燥行为和成品属性进行了观察和比较。01 缩短一次干燥时间对蔗糖配方进行不同干燥条件的研究,采用Controlyo® 工艺,由于升华速率增加,缩短了一次干燥时间。在Controlyo技术允许形成较大的冰晶,可能是由于过冷减少,成核温度较高,允许冰晶缓慢生长。过冷被定义为平衡凝固点与溶液中冰晶首次形成时的温度之间的差值。当冰升华时,较大的晶体产生较大的孔,导致更大的路径,因此水蒸气穿过升华前沿上方的干燥层的阻力较小。这导致蔗糖干燥速率的显著差异。Controlyo® 技术将升华干燥的时间从67小时缩短到50小时。尽管发现蔗糖基配方在一次干燥时间上存在显著差异,但甘露醇基配方的表现并不相同。在使用保守CPP进行的初步研究中,传统冷冻和ControLyo® 冷冻的升华速率几乎没有差异。在使用激进性CPP的后续研究中,完成一次干燥的时间从20小时减少到16小时。02 蛋糕外观通过蔗糖和甘露醇冷冻干燥生产的冻干饼的物理外观在常规和控制成核策略之间有所不同。ControLyo® 产生了一致的蛋糕结构和外观。两种处理方法在甘露醇的外观上差异不大。然而,蔗糖蛋糕的外观有显著差异:未经控制的冷冻蛋糕上的裂缝更少,从托盘的一侧延伸到另一侧(图5)。当使用ControLyo® 时,蛋糕上的裂缝更宽,更均匀(如图6所示)。 图5:蔗糖非受控冷冻 图6:Sucrose Controlyo® 03 水分含量用库仑卡尔费休滴定法测定残余水分。结果显示,与标准方法相比,通过ControLyo® 处理的甘露醇的水分含量分别从0.5%到0.1% w/w。有趣的是,蔗糖的结果正好相反。不受控冷冻方案的蔗糖平均结果为2.41% w/w, ControLyo® 材料的平均结果为2.89% w/w。较高的蔗糖残留水分含量可能是由于表面面积减少,因此在二次干燥过程中解吸率降低。不太激进的二次干燥条件也会影响*的残留水分含量。*结论很明显,ControLyo® 影响散装材料的干燥行为和成品属性。这些影响包括缩短一次干燥时间,改变蛋糕外观,以及创造更一致和均匀产品的可能性。传统冷冻和ControLyo® 之间的差异程度也受到代表不同类型产品(结晶和无定型)的配方特性的影响。此外,配方特定成分的CPP对使用ControLyo® 进行控制成核的成功至关重要。需对每种特定配方进行对比研究,以量化ControLyo® 技术应用的相对效益。Controlyo® 控制成核技术SP Scientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合冻干PAT技术使漫长复杂的工艺摸索变得简单快捷有效。 PAT技术——Smart 全自动工艺开发技术,Controlyo® 控制成核技术,TDLAS实时水蒸汽测量技术。Controlyo® 控制成核技术在相同的温度下,以瞬间减压的方式在同一时间让所有小瓶瞬间成核,在较高的温度下成核,产生更大、更均匀的晶体尺寸,使干燥更加一致。● 提高批次均匀性;● 无引入污染或外来物质的风险;● 增加冻干产品的蒸汽通道尺寸,进而减少干燥层的阻力;● 加快主干燥过程;● 减少产品复水时间;● 改善冻干产品的外观。LYO INNOVATION莱奥德创冻干科技,赋能创新Lyo technology enables innovation 关于莱奥德创:上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多肽、脂质体、IVD、食品等领域。依托与合作伙伴美国SP Scientific和英国Biopharma Group的紧密合作,掌握先进的冻干理念与技术,使用*的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission :莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision :做冻干工艺的创新者,为生物医药开发提供*制剂产品解决方案。
  • AFM. 华中科大韩宏伟与港中大路新慧团队 p-MPSCs优化研究
    摘要可印刷介孔钙钛矿太阳能电池 (p-MPSCs) 由于其简单且经济高效的制备工艺,在实现大规模生产方面展现出巨大潜力。然而,在 p-MPSCs 中,填充在 TiO2 和 ZrO2 介孔层中的钙钛矿薄膜厚度通常达到 3 μm,这使得钙钛矿的结晶过程比一般的平面薄膜 (0.3–0.5 μm) 更复杂、更具挑战性。为了克服这一挑战,华中科技大学的 Hongwei Han 和 Xinhui Lu 研究团队在 Advanced Functional Materials 期刊上发表了一项研究成果,他们使用一种多功能氟化分子作为添加剂,有效改善了钙钛矿的结晶过程,提升了器件的效率,并增强了其工作稳定性。本研究推荐使用设备TPCV钙钛矿太阳能电池瞬态光电流光电压测试仪研究背景与核心概念钙钛矿太阳能电池 (PSCs) 凭借其高效率、低成本和可印刷性等优势,成为最有希望取代传统硅基太阳能电池的下一代光伏技术。近年来,钙钛矿太阳能电池 (PSCs) 的效率不断攀升,已突破 25% 的瓶颈,但其长期稳定性问题仍然是阻碍其商业化应用的关键因素。可印刷介孔钙钛矿太阳能电池 (p-MPSCs) 由于其简单的制备工艺和可扩展性,在实现大规模生产方面具有显著优势。然而,在 p-MPSCs 中,由于钙钛矿薄膜需要填充在 TiO2 和 ZrO2 介孔层中,其厚度通常达到 3 μm,这使得钙钛矿的结晶过程比一般的平面薄膜 (0.3–0.5 μm) 更复杂、更具挑战性。研究方法与主要发现为了解决 p-MPSCs 中的钙钛矿结晶问题,该研究团队开发了一种多功能氟化分子 (6FDA) 作为添加剂,以改善钙钛矿的结晶过程,提升器件的效率和稳定性。6FDA 分子具有以下特点:l缺陷钝化: 6FDA 的羰基可以与钙钛矿中的未配位 Pb2+ 形成强烈的配位作用,从而有效钝化缺陷,降低非辐射复合。l疏水性: 6FDA 的疏水性可以提高器件的抗水性,增强其长期工作稳定性。研究人员将 6FDA 添加到钙钛矿前驱体溶液中,并通过一系列表征手段,包括 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、X 射线光电子能谱 (XPS)、稳态/时间分辨光致发光光谱 (PL/TRPL) 等,对钙钛矿薄膜的结构、形貌和光电性能进行了分析。为了更深入地了解 6FDA 对器件载流子动力学的影响,研究人员还进行了瞬态光电流 (TPC) 和瞬态光电压 (TPV) 测试。TPC 测量可以评估器件中载流子的传输时间,而 TPV 测量可以评估器件的光电压衰减时间,从而进一步了解载流子复合和器件稳定性。研究结果与讨论研究结果表明,6FDA 的添加显著提升了 p-MPSCs 的效率和稳定性:提高器件效率: 添加 6FDA 后,钙钛矿的结晶质量得到改善,薄膜的均匀性和结晶度提高,从而提高了器件的效率。小面积器件 (0.1 cm2) 的功率转换效率 (PCE) 达到 20.15%。增强器件稳定性: 6FDA 的疏水性可以有效地阻止水分和氧气的入侵,提高了器件的工作稳定性。未封装的器件在室温下存放超过 1000 小时后,其 PCE 仍能保持 80% 以上。研究人员利用稳态 PL 和时间分辨 PL 证实了 6FDA 对钙钛矿薄膜的钝化作用,并通过测试器件的载流子寿命 (TRPL) 和光电压衰减 (TPV) 说明了 6FDA 对载流子复合和器件稳定性的积极影响。TPC 测试结果表明,6FDA 的添加可以有效地缩短载流子的传输时间,提高了器件的载流子传输效率。TPV 测试结果显示,添加 6FDA 后,器件的光电压衰减时间延长,说明了 6FDA 可以有效抑制载流子的复合,从而提高器件的稳定性。结论与展望该研究开发了一种多功能氟化分子作为添加剂,有效改善了 p-MPSCs 中钙钛矿的结晶过程,并显著提升了器件的效率和稳定性。这项研究为制备高效稳定的 p-MPSCs 提供了新的策略,并为 PSCs 的大规模产业化应用奠定了坚实的基础。未来,可以通过进一步优化添加剂的结构和性质,以及结合其他界面工程策略,进一步提升 p-MPSCs 的性能,推动其在光伏领域的应用。本文參數圖:Fig. 5_ 展示了 (a) 稳态 PL 和 (b) 时间分辨 PL,以及 (c) 器件的瞬态光电压衰减曲线,分别针对添加和未添加 6FDA 的 mp-TiO2/玻璃结构的钙钛矿。其重要性: 通过 PL 光谱和光电压衰减,评估了 6FDA 对钙钛矿薄膜光致发光特性和载流子寿命的影响,并说明了 6FDA 对缺陷钝化的效果。Fig.S6_展示了添加和未添加 6FDA 的器件的 J-V 曲线(正向扫描)。重要性: 比较了添加 6FDA 后器件的光伏性能,以及器件的效率提升。 原文出处: ADVANCED FUNCTIONAL MATERIALS 推薦設備_ TPCV_钙钛矿太阳能电池瞬态光电流光电压测试仪l高速时间分辨率-以纳秒计的快速上升和下降时间。l高信噪比-整合了二十年在光学与电学等讯号处理和降噪方面的专业知识,表现出色的杂讯抑制能力,有效减少各种杂讯以提高精度与准确度。l友善操作介面-使用特定的公式对讯号资料进行拟合和分析,以便解析和理解这些资料。 这个过程有助于我们深入了解钙钛矿或有机太阳能电池装置的性能。l 高性价比及效率-相较于自行搭建的费时费工,尚需要熟稔光路系统开发、准确讯号精密撷取,还要有资讯人员撰写专业的数据分析演算法开发等。光焱科技TPCV量测解决方案仅需经过一天的训练后即可使用,并有效专注于钙钛矿太阳能电池的研究
  • 黄岩谊小组DNA测序方法研究获重要突破
    p   北京大学生物动态光学成像中心/北京未来基因诊断高精尖创新中心/生命科学联合中心/工学院黄岩谊教授课题组日前在DNA测序方法的研究上取得重要突破。该团队在此前谢晓亮教授首创的荧光发生测序技术基础上发展了一种全新概念的测序方法——纠错编码(简称ECC)测序法。ECC测序法采取一种独特的边合成边测序(SBS)策略,利用多轮测序过程中产生的简并序列间的信息冗余,大幅度增加了测序精度。该进展于2017年11月6日以“Highly accurate fluorogenic DNA sequencing with information theory-based error correction”为题在线发表于《自然 生物技术》(Nature Biotechnology)期刊上。 /p p   ECC测序法的化学反应采用了荧光发生测序技术,该技术由谢晓亮课题组于2011年首次报道(Nature Methods (2011) 8, 575.),原理巧妙之处在于在DNA互补链合成时可以释放同所延伸核苷酸数目相等的荧光分子,利用这一反应可以实现低错误率的SBS。黄岩谊课题组在此基础上,过去几年对该方法进行了拓展(ChemBioChem (2015) 16, 1153.),为本次技术突破奠定了基础。该团队首先从化学原理上对荧光发生测序技术中的荧光标记分子进行了结构优化,设计合成了具有不同波长、更优性能的测序底物分子,并对聚合酶参与的各阶段反应动力学进行了细致的测量和建模 在深入理解荧光发生测序化学反应速度、完成度、副反应等关键技术细节的基础上,完善了ECC测序原理样机的搭建,不断迭代优化测序反应条件和信号采集流程 从数据入手,构建了精确的测序信号失相模型并提出了次级延伸理论,并据此开发出算法软件对测序反应失相过程做出了合理简化使其具备了实用性。 /p p   在ECC测序法中,序列信息的冗余来自黄岩谊课题组新发展的“对偶碱基荧光发生”SBS测序流程,该流程通过对测序试剂按对偶碱基分为两两匹配的三组,并对待测DNA序列进行三轮独立测序,继而产生三条互相正交的简并序列编码。这三条编码可互为校验,后续不但能够通过解码推导出真实碱基序列信息,而且具备对单轮测序错误位点的校正能力。ECC编码和解码策略已被广泛应用在信息通讯和存储等其它领域中,并被证实可以有效检测和纠正数据传输或存储时发生的错误。此次黄岩谊团队在测序技术中首次引入冗余编码概念,通过和低错误率的荧光发生测序技术巧妙结合,在实验室搭建的原理样机上获得了单端测序超过200碱基读长无错误的实验结果。 /p p   该论文作者包括北京大学博士后陈子天,博士研究生周文雄、乔朔、康力,段海峰副研究员,谢晓亮教授和黄岩谊教授 黄岩谊是这篇文章的通讯作者。该工作先后得到了北京市科委、国家科技部863计划、国家自然科学基金、北大-清华生命科学联合中心以及北京未来基因诊断高精尖创新中心的资助。 /p
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 刘燕华:创新方法研究与应用进入加速期
    “创新方法研究与应用工作经过前几年的探索和实践,已经进入加速发展时期,在师资不足、历史欠账较多的情况下,解决了一批自主创新中的实际问题,取得很多有益经验,并将创新方法理念传播到越来越多的高校、院所和企业,为积极应对国际金融危机提供重要的科技支撑。”9月29日,在南京举行的我国首次创新方法试点工作会议上,科技部副部长刘燕华指出,今后几年是创新方法工作的重要转折期,科技部将以产业结构调整和应对国际金融危机为着眼点,集成引导各方资源力量,在实践中进一步提高创新方法的研究、推广和应用力度。   据悉,这是2007年开展创新方法试点工作以来,科技部首次召开的工作座谈会。两年来,科技部启动了一批创新方法试点工作,会同相关部门开展了“10000个科学难题”征集活动,在黑龙江、四川等12个省(市)开展创新方法试点工作。此次会议邀请了试点省、市、自治区和钢铁研究总院、海尔等科研机构和企业代表,全面交流总结了创新方法试点工作以来的经验成效及下一步工作打算。   刘燕华在讲话中指出,创新方法工作在我国开展时间不长,但已经有了较好基础,江苏、黑龙江等省市和部分企业已经取得了很多有益经验,为企业创新解决了一批实际问题,研发诞生了一批专利成果,培育了一批专业技术人才。目前,全国各地关注创新方法、践行创新方法的社会氛围已经初步形成。但是,随着工作的逐步推进,一些深层次的矛盾也渐渐凸现出来。我国的创新方法工作仍然于新旧理念交融、现代与传统运作模式相冲突的阶段,科学思维培育相对落后,科技活动仍未摆脱跟踪模仿的局面,自主创新成果较少,高精尖科学仪器设备严重依赖进口,与加强自主创新、建设创新型国家的战略要求还不相适应。   他强调,今后几年将是创新方法工作的关键转折期,关系到建设创新型国家的长远大计,必须通过体制、机制创新来强化创新方法的研究和推广应用。下一步,要把关注点放在研究创新所要解决的问题上,结合国际金融危机和国内产业结构调整的大背景,研究我们所面临的紧迫问题,处理好创新的谋略、布局和技巧。要在实践中提高创新方法的研究与应用水平。创新方法不能把发表论文申请专利作为终点,而是要以解决当前企业、区域发展所面临的实际问题为根本目标,把创新方法贯穿于研发链、产业链和市场链中,形成良性循环、螺旋上升的良好局面,在市场中实现创新价值。要瞄准不同对象做好战略分析布局,解决技术创新能力较弱的问题,注重研发管理创新,最大程度优化创新资源的集成配置,面向有较强需求的广大企业开展创新方法研究和推广应用。   刘燕华要求,下一阶段要重点围绕创新方法的教材案例的规范、师资培养、基地建设、创新管理和创新工具等基本要素,各级科技部门和科研管理者要以包容、开放的心态,以创新的思路,倡导推广创新文化,强化创新能力建设,鼓励学科交叉,加强技术咨询队伍建设,建立形成推动创新方法的激励机制。
  • DDDC化学合成方法学研究取得重要进展
    近些年来,上海药物所药物发现与设计中心(DDDC)合成组研究生在柳红的带领和指导下,瞄准学科发展前沿,积极发展新的化学合成方法,并将其应用于药物合成,取得了一系列重要进展。 柳红带领研究生郭涤亮、黄河等采用廉价、环境友好的铁铜等催化体系,发展了几种快速高效的C–C键与C–N键偶联的方法,实现卤代芳烃与多种底物进行偶联。相关研究工作在Org. Lett. (2008, 10, 4513)、J. Org. Chem. (2008, 73, 9601)、J. Comb. Chem. (2008, 10, 358;2008, 10, 617)等重要杂志上发表多篇论文。他们发展的微波促进的钯催化体系,可以使惰性的氯代芳烃与多种底物进行快速高产率的偶联,适用于Sonogashira、Suzuki、Heck和Buchwald-Hartwig等偶联反应,具有较高的学术价值和应用价值,论文发表在J. Org. Chem. (2008, 73, 6037)后,获得国际同行的高度评价,被SYNFACTS和Organic Chemistry Porta作为重要有机合成进展报道(Synfacts, 11, 1201)。在此基础上,柳红带领研究生黄河、李召广等通过微波辅助的手段,建立了液相平行合成技术平台,快速构建出具有不同母核的多样性杂环化合物库,用于多种药物中间体的合成,相关结果在Org. Lett. (2008, 10, 3263)、J. Comb. Chem. (2007, 9, 197)、J. Comb. Chem. (2008, 10, 484)等杂志上。 柳红指导研究生邓光辉首次探索了Ni(II)螯合物诱导合成手性氨基酸的方法学工作,王江等人对该方法进行了优化,首次采用Ni(II)螯合物诱导,合成了β-氨基酸等单体、β2氨基酸、环状氨基酸、a,b-二氨基氨基酸及其衍生物,丰富了Ni(II)螯合物诱导合成手性氨基酸的应用范围。与其他手性氨基酸的合成方法相比较,该方法具有合成过程简洁方便、合成的氨基酸结构丰富、光学纯度高、收率好、操作步骤少、可直接得到游离氨基酸等优点,具有很高的应用价值。相关研究论文发表在J. Org. Chem. (2007, 72, 8932)、J. Org. Chem. (2008, 73, 8563)、Tetrahedron. (2008, 64, 10512)杂志上。 此外,柳红指导研究生叶德举等在合成抗流感药物Zanamivir及其衍生物的基础上,发展了一种双重立体选择性的2-O-脱乙酰化和4-胺化全乙酰基保护的唾液酸合成方法,以较高的产率得到C-4位环状二级胺取代的唾液酸衍生物以及C-4位哌嗪衍生物连接的唾液酸二聚体,从而为合成非天然唾液酸多聚体提供了新的途径,相关论文发表在Tetrahedron Lett. (2007, 48, 4023)、Tetrahedron (2008, 64, 6544)。 DDDC合成组有机合成化学方法学发展方面的研究成果,为创新药物研发奠定了重要的技术基础。
  • 能量天平激光干涉测量系统闲区长度测量方法研究
    自2019年5月20日起,新的国际单位制正式实施,其中质量的单位千克启用了基于普朗克常数的新定义。能量天平是我国自主的千克新定义复现方案,该方案由中国计量科学研究院张钟华院士提出。能量天平利用电磁力做功与电磁场能量变化之间的转换与平衡,建立普朗克常数与被测砝码质量之间的桥梁。图1 能量天平结构示意图与测量原理电磁力做功量的测量涉及电磁力大小的测量和线圈相对位移测量两方面。因此,悬挂线圈与激励磁体的相对位移测量系统至关重要。它不仅实现了能量天平对于“米”的量子化基准的溯源,而且在保证能量天平积分区间的一致性上也发挥了关键作用。能量天平采用外差激光干涉测量系统对悬挂线圈与激励磁体的相对位移进行测量(图2),但该干涉测量系统存在较大的光学闲区(图3),进而影响了能量天平在空气环境中运行时位移测量的准确性。图2 能量天平激光干涉测量系统图3 能量天平光学闲区示意图近日,发表于《计量科学与技术-中国计量科学研究院专刊(2022)》的文章“能量天平激光干涉测量系统闲区长度测量方法研究”,对能量天平干涉测量系统中闲区长度测量方法进行了分析与讨论。主要成果(1)提出了基于真空/空气环境光程差测量的光学闲区长度测量方法。该方法利用能量天平的真空系统改变光学闲区的空气折射率;利用激光干涉系统测量折射率改变过程中的光程变化,进而测得光学闲区的长度,将原毫米量级的闲区长度测量不确定度抑制至4 μm,大大提高了光学闲区长度的测量能力。(2)利用光学闲区长度表征的绝对距离,实现了对能量天平激励磁体与悬挂线圈间相对零位的测量,以保证悬挂线圈系统位于磁体的均匀区范围。该相对零位的标准测量不确定度达到了54.2 μm。此项研究得到了国家自然科学基金青年基金项目(51805507)的支持。能量天平科研团队简介重新定义千克曾被《Nature》列为世界性的科研难题。张钟华院士向这一科研难题发起了挑战,提出了基于全静态测量的能量天平方案,该方案被《Metrologia》列为国际三种千克量子化定义与复现方法之一。目前,能量天平由李正坤研究员带领的年轻团队接力攻关。该团队连续攻克了高匀场激励磁体设计、准静态磁链差测量、外磁屏蔽方法优化、真空超精密几何量测量、能量天平准直误差理论与技术、超高直线度重载驱动方法与装置等一系列科研难题,建立了第二代能量天平装置NIM-2,其实物图如图5所示。该装置于2019~2020年间,代表中国参加了千克新定义后的首次千克复现方法国际关键比对(CCM.M-K8.2019)。经国际计量局对各国的数据综合评定,能量天平的测量结果与比对参考值(KCRV)的相对偏差为1.17E-8,相对标准不确定度为4.49E-8,比对结果如图6所示。该测量数据已成功用于首个国际质量共识值(the Consensus Value)的评定,进而用于SI新定义后全球质量量值传递。能量天平的研究工作,为建立我国自主的质量量子化基准装置提供了重要的技术支撑。图5 能量天平装置实物图图6 首次千克复现方法国际关键比对(CCM.M-K8.2019)比对结果
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 基金委发布下一代人工智能方法重大研究计划项目指南
    近日,国家自然科学基金委员会发布了可解释、可通用的下一代人工智能方法重大研究计划2023年度项目指南。该项目指南资助研究方向如下:(一)培育项目:1. 深度学习的表示理论和泛化理论;2. 深度学习的训练方法;3. 微分方程与机器学习;4. 隐私保护的机器学习方法;5. 图神经网络的新方法;6. 脑科学启发的新一代人工智能方法;7. 数据驱动与知识驱动融合的人工智能方法;;8. 生物医药领域的人工智能方法;9. 科学计算领域的人工智能方法;10. 人工智能驱动的下一代微观科学计算平台。(二)重点支持项目:1. 经典数值方法与人工智能融合的微分方程数值方法;2. 复杂离散优化的人工智能求解器;3. 开放环境下多智能体协作的智能感知理论与方法;4. 可通用的专业领域人机交互方法;5. 下一代多模态数据编程框架;6. 支持下一代人工智能的开放型高质量科学数据库;7. 高精度、可解释的谱学和影像数据分析方法;8. 高精度、可解释的生物大分子设计平台。该项目指南全文如下:可解释、可通用的下一代人工智能方法重大研究计划2023年度项目指南(全文)可解释、可通用的下一代人工智能方法重大研究计划面向人工智能发展国家重大战略需求,以人工智能的基础科学问题为核心,发展人工智能新方法体系,促进我国人工智能基础研究和人才培养,支撑我国在新一轮国际科技竞争中的主导地位。一、科学目标本重大研究计划面向以深度学习为代表的人工智能方法鲁棒性差、可解释性差、对数据的依赖性强等基础科学问题,挖掘机器学习的基本原理,发展可解释、可通用的下一代人工智能方法,并推动人工智能方法在科学领域的创新应用。二、核心科学问题本重大研究计划针对可解释、可通用的下一代人工智能方法的基础科学问题,围绕以下三个核心科学问题开展研究。(一)深度学习的基本原理。深入挖掘深度学习模型对超参数的依赖关系,理解深度学习背后的工作原理,建立深度学习方法的逼近理论、泛化误差分析理论和优化算法的收敛性理论。(二)可解释、可通用的下一代人工智能方法。通过规则与学习结合的方式,建立高精度、可解释、可通用且不依赖大量标注数据的人工智能新方法。开发下一代人工智能方法需要的数据库和模型训练平台,完善下一代人工智能方法驱动的基础设施。(三)面向科学领域的下一代人工智能方法的应用。发展新物理模型和算法,建设开源科学数据库、知识库、物理模型库和算法库,推动人工智能新方法在解决科学领域复杂问题上的示范性应用。三、2023年度资助研究方向(一)培育项目。围绕上述科学问题,以总体科学目标为牵引,拟以培育项目的方式资助探索性强、选题新颖的申请项目,研究方向如下:1. 深度学习的表示理论和泛化理论研究卷积神经网络(以及其它带对称性的网络)、图神经网络、transformer网络、循环神经网络、低精度神经网络、动态神经网络、生成扩散模型等模型的泛化误差分析理论、鲁棒性和稳定性理论,并在实际数据集上进行检验;研究无监督表示学习、预训练-微调范式等方法的理论基础,发展新的泛化分析方法,指导深度学习模型和算法设计。2. 深度学习的训练方法研究深度学习的损失景观,包括但不限于:临界点的分布及其嵌入结构、极小点的连通性等,深度学习中的非凸优化问题、优化算法的正则化理论和收敛行为,神经网络的过参数化和训练过程对于超参的依赖性问题、基于极大值原理的训练方法、训练时间复杂度等问题,循环神经网络记忆灾难问题、编码-解码方法与Mori-Zwanzig方法的关联特性,发展收敛速度更快、时间复杂度更低的训练算法及工具,建立卷积网络、Transformer网络、扩散模型、混合专家模型等特定模型的优化理论及高效训练方法,深度学习优化过程对泛化性能的影响等。3. 微分方程与机器学习研究求解微分方程正反问题及解算子逼近的概率机器学习方法;基于生成式扩散概率模型的物理场生成、模拟与补全框架;基于微分方程设计新的机器学习模型,设计和分析网络结构、加速模型的推理、分析神经网络的训练过程。面向具有实际应用价值的反问题,研究机器学习求解微分方程的鲁棒算法;研究传统微分方程算法和机器学习方法的有效结合方法;研究高维微分方程的正则性理论与算法;研究微分方程解算子的逼近方法(如通过机器学习方法获得动理学方程、弹性力学方程、流体力学方程、Maxwell方程以及其它常用微分方程的解算子);融合机器学习方法处理科学计算的基础问题(求解线性方程组、特征值问题等)。4. 隐私保护的机器学习方法针对主流机器学习问题,结合安全多方计算、全同态加密、零知识证明等方法构建具备实用性的可信机器学习环境。发展隐私保护协同训练和预测方法,发展加密和隐私计算环境的特征聚类、查询和多模型汇聚方法,发展加密跨域迁移学习方法,发展面向对抗样本、后门等分析、攻击、防御和修复方法,研究机器学习框架对模型干扰、破坏和控制方法,发展可控精度的隐私计算方法。5. 图神经网络的新方法利用调和分析、粒子方程等数学理论解决深度图网络的过度光滑、过度挤压等问题,针对多智能体网络协同控制、药物设计等重要应用场景设计有效的、具有可解释性的图表示学习方法。6. 脑科学启发的新一代人工智能方法发展对大脑信息整合与编码的定量数学刻画和计算方法,设计新一代脑启发的深度神经网络和循环神经网络,提高传统神经网络的表现性能;建立具有树突几何结构和计算功能的人工神经元数学模型,并用于发展包含生物神经元树突计算的深度神经网络和循环神经网络,提高传统神经网络的表现性能;发展包含多种生物神经元生理特征和生物神经元网络结构特点的人工神经网络及其训练算法,解决图像识别、图像恢复、医学图像重构、地震波检测等应用问题。7. 数据驱动与知识驱动融合的人工智能方法建立数据驱动的机器学习与知识驱动的符号计算相融合的新型人工智能理论和方法,突破神经网络模型不可解释的瓶颈;研究知识表示与推理框架、大规模隐式表达的知识获取、多源异构知识融合、知识融入的预训练模型、知识数据双驱动的决策推理等,解决不同场景的应用问题。8. 生物医药领域的人工智能方法发展自动化程度高的先导化合物优化方法,建立生物分子序列的深度生成模型,准确、高效生成满足特定条件(空间结构、功能、物化性质、蛋白环境等)的分子序列;发展蛋白质特征学习的人工智能新方法,用于蛋白质功能、结构、氨基酸突变后亲和力与功能改变等预测以及蛋白质与生物分子(蛋白、肽、RNA、配体等)相互作用预测;针对免疫性疾病等临床表现差异大、预后差等问题,发展序列、结构等抗体多模态数据融合和预测的人工智能模型,用于免疫性疾病的早期诊断和临床分型等。9. 科学计算领域的人工智能方法针对电子多体问题,建立薛定谔方程数值计算、第一性原理计算、增强采样、自由能计算、粗粒化分子动力学等的人工智能方法,探索人工智能方法在电池、电催化、合金、光伏等体系研究中的应用。针对典型的物理、化学、材料、生物、燃烧等领域的跨尺度问题和动力学问题,通过融合物理模型与人工智能方法,探索复杂体系变量隐含物理关系的挖掘方法,建立构效关系的数学表达,构建具有通用性的跨尺度人工智能辅助计算理论和方法,解决典型复杂多尺度计算问题。10. 人工智能驱动的下一代微观科学计算平台发展基于人工智能的高精度、高效率的第一性原理方法;面向物理、化学、材料、生物等领域的实际复杂问题,建立多尺度模型,实现高精度、大尺度和高效率的分子动力学模拟方法;探索建立人工智能与科学计算双驱动的“软-硬件协同优化”方法和科学计算专用平台。(二)重点支持项目。围绕核心科学问题,以总体科学目标为牵引,拟以重点支持项目的方式资助前期研究成果积累较好、对总体科学目标在理论和关键技术上能发挥推动作用、具备产学研用基础的申请项目,研究方向如下:1. 经典数值方法与人工智能融合的微分方程数值方法设计融合经典方法和人工智能方法优势的新型微分方程数值方法。针对经典数值方法处理复杂区域的困难和人工智能方法效果的不确定性、误差的不可控性,发展兼具稳定收敛阶和简便性的新型算法;针对弹性力学、流体力学等微分方程,探索其解的复杂度与逼近函数表达能力之间的定量关系;开发针对三维含时问题的高效并行算法,并应用到多孔介质流等问题;发展求解微分方程反问题的新算法并用于求解实际问题。2. 复杂离散优化的人工智能求解器面向混合整数优化、组合优化等离散优化问题,建立人工智能和领域知识结合的可通用的求解器框架;建立高精度求解方法和复杂约束问题的可控近似求解方法;发展超大规模并行求解方法和基于新型计算架构的加速方法;在复杂、高效软件设计等场景开展可靠性验证。3. 开放环境下多智能体协作的智能感知理论与方法针对多模态信息融合中由于数据视角、维度、密度、采集和标注难易程度不同而造成的融合难题,研究基于深度学习的融合模型,实现模态一致性并减少融合过程中信息损失;研究轻量级的模态间在线时空对齐方法;研究能容忍模态间非对齐状态下的融合方法;研究用易采集、易标注模态数据引导的难采集、难标注模态数据的预训练与微调方法;研究大规模多任务、多模态学习的预训练方法,实现少样本/零样本迁移。4. 可通用的专业领域人机交互方法针对多变输入信号,建立自动化多语种语言、图像、视频等多模态数据生成模型,发展可解释的多轮交互决策方法;建立机器学习和知识搜索的有效结合方法;探索新方法在不同专业领域场景中的应用。5. 下一代多模态数据编程框架发展面向超大规模多模态数据(文本、图像、视频、向量、时间序列、图等)的存储、索引、联合查询和分析方法。发展一体化的多模态数据编程框架,建立自动化数据生成、评估和筛选方法,实现自动知识发现和自动模型生成性能的突破,并完成超大规模、多模态数据集上的可靠性验证。6. 支持下一代人工智能的开放型高质量科学数据库研究跨领域、多模态科学数据的主动发现、统一存储和统一管理方法。研究基于主动学习的科学数据、科技文献知识抽取与融合方法。研究跨学科、多尺度科学数据的知识对象标识化、语义化构建方法。研究融合领域知识的多模态预训练语言模型,开发通用新型数据挖掘方法。形成具有一定国际影响力的覆盖生命、化学、材料、遥感、空间科学等领域的高质量、通用型科学数据库,为人工智能驱动的科学研究新范式提供基础科学数据资源服务。7. 高精度、可解释的谱学和影像数据分析方法发展光谱、质谱和各类影像数据处理的人工智能方法。建立融合模拟与实验数据的可解释“谱-构-效”模型,开发人工智能驱动的光谱实时解读与反演软件;基于AlphaFold等蛋白结构预测方法,建立高精度冷冻电镜蛋白结构反演算法等。8. 高精度、可解释的生物大分子设计平台建立人工智能驱动的定向进化方法,助力生物大分子优化设计。发展兼顾数据推断和物理机制筛选双重优势且扩展性高的人工智能方法,辅助物理计算高维势能面搜索。在医用酶及大分子药物设计上助力定向进化实验,将传统实验时间降低50%以上,通过人工智能设计并湿实验合成不小于3款高活性、高稳定性、高特异性的新型医用蛋白。发展基于人工智能的新一代生物大分子力场模型,大幅提升大分子模拟计算的可靠性,针对生物、医药、材料领域中的分子设计问题,实现化学精度的大尺度分子动力学模拟。四、项目遴选的基本原则(一)紧密围绕核心科学问题,鼓励基础性和交叉性的前沿探索,优先支持原创性研究。(二)优先支持面向发展下一代人工智能新方法或能推动人工智能新方法在科学领域应用的研究项目。(三)重点支持项目应具有良好的研究基础和前期积累,对总体科学目标有直接贡献与支撑。五、2023年度资助计划2023年度拟资助培育项目25~30项,直接费用资助强度约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2024年1月1日—2026年12月31日”;拟资助重点支持项目6~8项,直接费用资助强度约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2024年1月1日—2027年12月31日”。六、申请要求(一)申请条件。本重大研究计划项目申请人应当具备以下条件:1. 具有承担基础研究课题的经历;2. 具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2023年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2023年度国家自然科学基金项目指南》和《关于2023年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1. 本重大研究计划项目实行无纸化申请。申请书提交日期为2023年5月8日—5月15日16时。2. 项目申请书采用在线方式撰写。对申请人具体要求如下:(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“可解释、可通用的下一代人工智能方法”,受理代码选择T01,根据申请的具体研究内容选择不超过5个申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。(4)申请人在“立项依据与研究内容”部分,应当首先说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划总体科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。3. 依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2023年5月15日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于5月16日16时前在线提交本单位项目申请清单。4. 其他注意事项(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动,并认真开展学术交流。(四)咨询方式。国家自然科学基金委员会交叉科学部交叉科学一处联系电话:010-62328382
  • 线上研讨会 | 粉体流动性检测方法研究
    Granutools 通过提供前沿的物理特性工具来提高对粉体的理解,“我们专注于粉体流动性表征”。我们的仪器结合了数十年的科学仪器和粉体特性基础研究的经验,具有严格的样品预处理方法和高自动化水平,使实验结果具有准确性、重复性和操作独立性。因此,这些可测项有助于对粉体物理机理的理解。我们的工具是为了帮助您回答以下问题而开发的:① 你们产品的流动特性是什么?从纳米粉体到颗粒状材料。② 您的粉体在加工、预处理和后处理后将如何工作?如受潮或受热,贮存和混合的效果。③ 如何优化配方的流动性?考虑粒度分布、化工产品的填充、混合。④ 生产过程是否得到控制?它们是否受到前道工序、原材料或工艺条件的质量影响?⑤ 颗粒材料、粉体和纳米粉体的流动特性是否随时间波动?因为它们取决于储存、处理条件、温度、湿度或静电条件影响。 讲座时间:8月11日 13:30-14:30参加方式:扫描以下二维码填写报名表
  • 中药研究系列专题——中药分析方法开发
    中医药是中国古代科学的瑰宝,具有数千年的悠久历史,凝聚着中华民族的博大智慧。凭借其独特的魅力,中医药早已走出中国,在世界医药舞台上绽放绚丽的光芒。 在我国加快推进中医药现代化、国际化过程中,现代化学和医学工作者面临越来越多的机遇和挑战,而借助现代科技的手段激活中医药的特色和优势显得格外重要。 中药分析方法开发 由于中药成分复杂,无论是有效成分的含量分析,还是未知化合物的结构鉴定,抑或是目标组分的制备纯化,获得良好的色谱分离都是顺利开展中药研究工作的必要途径。而众多性质相似的组分和手性化合物往往会给液相色谱方法开发带来困难。 Nexera Method Scouting超高效液相色谱方法开发系统 Nexera Method Scouting基于流动相和色谱柱自动切换的超高效液相色谱系统,以及智能化的色谱分离评价系统,可以自动获取最多192种流动相和色谱柱组合时的色谱条件,实现迅速、可靠的方法开发流程,大幅提升工作效率。 应用案例 方法开发系统优化人参皂苷色谱分离方法 由于人参皂苷类化合物结构相似,传统HPLC方法开发周期长、分离效果不佳,使用Nexera Method Scouting对4种色谱柱和16中梯度条件进行方法筛选,最终使6种人参皂苷在10分钟内实现基线分离。 6种人参皂苷的UHPLC色谱图 Nexera UC手性筛查系统 手性化合物在自然界中普遍存在,在中药材中也不例外。Nexera UC手性筛查系统则是手性化合物方法开发的不二选择,其通过对多达12根色谱柱、4种改性剂以及不同比例的流动相进行组合,自动生成大量的分析方法并进行筛选。同时,SFC的高速性能可大幅缩短方法开发所需的时间。 应用案例 Nexera UC超临界流体色谱质谱联用拆分手性麻黄生物碱 天然麻黄中主要含有左旋麻黄碱和右旋伪麻黄碱,只有左旋麻黄碱具有药理活性,故拆分麻黄碱对映体的工作具有重要意义。使用Nexera UC评价6种不同手性色谱柱和4种不同改性剂的效果,使得麻黄碱和伪麻黄碱手性异构体间获得良好分离。 6种色谱柱的分离效果对比图(左:麻黄碱,右:伪麻黄碱) 4种流动相的分离效果对比图(左:麻黄碱,右:伪麻黄碱) 结果显示,在Chiralpak IA-3 色谱柱上以scCO2 - MeOH进行分离时分离度最好。
  • 高通量检测的优化-网络讲座
    IDEX Health & Science 很高兴为您带来网络讲座有关: (时间:2010年7月1日 北京时间凌晨02:00 时长:60分钟 演讲语言:英语) 高通量检测的优化 主题:花费更少、效率更高的分析检测技术 名额有限,请立即注册! 该网络讲座将讨论: &bull 在改善和优化检测方法时,如何在初期投资和日常的操作成本间寻求平衡来满足高通量的检测需求 &bull 当前通用的移液技术介绍以及针对高通量应用实现快速、非接触式分液对仪器性能的要求 &bull AstraZeneca(阿斯利康公司)如何达到和解决检测优化的挑战 演讲者: Kevin Barrett, IDEX Health & Science精密分配系统的业务发展总监。在加入IDEX Health & Science之前,Barrett先生是Innovadyne Technologies的总裁,Innovadyne Technologies生产和销售非接触式,纳升到微升级的移液设备,为全球各大领先的药物开发公司提供服务。当Innovadyne 在2009年被IDEX Corporation 收购之后,Barrett先生被任命为现在这个职位,并负责开发IDEX Health & Science的精密分配系统的业务,包括Innovadyne的产品线。Barrett先生有着25年在研发仪器设备公司的工作经验,涉及药物开发以及生物技术市场。 Jonathan Wingfield 博士, 1990年毕业于威尔士大学,并取得博士学位。他在加入英国牛津大学的Yamanouchi研究机构前曾在美国辛辛那提的儿童医院完成了博士后的研究。他建立了全自动系统用于建立和测试高通量筛选。到了2003年,在高通量筛选中达到全自动设置的价值才被认识到,并且Wingfield博士作为先行者,被任命领导一个团队致力于完成全自动方案的研究和开发。在Jonathan的领导 下,该团队在2005年创建了集中式生化筛查平台。该团队如今在AstraZeneca负责建立癌症项目的所有二期生化筛查数据。Wingfiled博士如今则领导着一个团队在Alderley Park的癌症部门负责现有筛选技术的技术支持以及创建未来的技术策略。 请点击,进行注册
  • 加拿大研究人员开发出测量油藏中液体和岩石相互作用的新方法
    p   加拿大卡尔加里大学的地质学家开发出一种测量极小尺度下水和其它液体以及非常规油藏中岩石相互作用的新技术。他们利用微量注射系统和实时成像技术,第一次在微尺度水平上精确测量液体-岩石间被称为“润湿性”的相互作用。这一研究提高了对润湿性在油藏中如何变化的理解,有助于优化碳氢化合物的采收过程,并能带来提取非常规油气的新方法。相关研究成果《低渗透性油藏的微润湿性实验的实时成像》(Live Imaging of Micro-Wettability Experiments Performed for Low-Permeability Oil Reservoirs)发表在《自然· 科学报告》杂志上。 /p p   正确理解润湿性是优化采收石油和天然气包括非常规油气或“稠密”油藏的关键,因为岩石的低渗透性减少了石油和天然气流动的路径。最新成像技术的发展能够将岩石空隙结构和稠密油藏的组成放在亚微米尺度上进行分析。获得的相关信息用于孔喉尺度模型,可预测重要的油藏特性如渗透性(岩石通过孔和缝隙传输液体的能力)。 /p p   目前,各公司仍然在相对宏观的尺度上(毫米量级)将水滴、油滴或其它液滴置于岩芯的表面来测量润湿性,但这种宏观测量方法无法准确反映微观尺度上润湿性随岩石组分变化而变化的情况,在结合孔喉模型预测岩石中的多相流时会带来误导的结果。 /p p   该研究团队在微观尺度上用三种方法来测量来自萨斯喀彻温省生产稠油的油藏中岩芯样本的润湿性。第一种方法通过冷却和加热过程对蒸馏水的微液滴在岩石样本中凝结和蒸发进行成像。第二种方法让岩石样本吸入水或油,低温冻结后,然后再进行X光成像。第三种也是最具创新性的方法是在岩石样本的精确位置微注射纳升量级的水,控制液体流经微细管——一个比针头还要细的通道。 /p p   研究人员利用卡尔加里大学的一个环境场发射扫描电子显微镜(E-FESEM)捕捉使用这三种方法获得的实时视频图像。这种实时成像技术能够让研究人员确定精确的点来测量液体和岩石表面的接触角度。成像还能让研究人员测量岩石吸入液体的速度,这对利用水力压裂法提高非常规油气的采收率是非常重要的,因为它可以评估注入液体对油藏特性变化的影响。 /p p   研究团队的下一步工作是设计能够改变油藏岩石微润湿性的包含纳米颗粒或聚合物的液体。这将允许研究人员采用适合岩石类型的液体控制润湿性来提高稠密油气的采收率。 /p p br/ /p
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。许多标准制造方法无法在结构中产生空腔和底切,这就需要通过其他方法来优化3D打印材料。。01 通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一。1.1 3D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能。在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.2 3D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向。动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。02 利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:1. 制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)2. 加热材料以形成自由流动的熔体3. 通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型4. 冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺2.1 质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2 预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:1. 产品中使用的所有材料成分的相互作用2. 必要的工艺参数,包括温度、压力和流量2.3 轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism &hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • 张东晓:实现“双碳”战略的关键在于优化能源结构
    12月22日,2022网易未来大会创新力论坛在杭州举行,一众院士大咖相聚对量子、智能制造、医疗卫生、经济等等话题展开讨论。美国国家工程院院士、东方理工高等研究院常务副院长张东晓发表《智慧能源系统与科学机器学习》主题演讲,围绕能源科技革命及“双碳”战略、光功率预测技术、风功率预测技术、电力负荷预测技术、抽水蓄能电站智能选址技术展开介绍。他提到,能源安全是关乎国家经济社会发展的全局性、战略性问题,实现一次能源高效低成本开发,二次能源经济安全运行,是维护能源安全的首要任务和基础性工作。“双碳”战略的核心在于优化能源结构,实现一次能源高效低成本开发和二次能源经济安全运行。但可再生能源的不稳定性提升并网难度,限制了其大规模应用,核心在于供需平衡与稳定功能,我们应该由总量平衡转向实时平衡,比如说15分钟级别6-72小时预测。在张东晓看来,利用科学机器学习方法构建具有物理常识的知识与数据双驱动的人工智能模型,这些模型相对于市场主流模型准确率有大幅度的提升。另外,利用迁移学习等技术,可以基于短期历史数据进行建模,形成预测模型,将历史数据需求从6个月降低至3周。同时,利用在线学习技术,自主适应电站运行情况,降低设备老化和故障对预测结果的影响。用月度和日度的总量平衡转向实时平衡,比如15分钟级别的预测。他总结到,实现“双碳”战略的关键在于优化能源结构,其核心在于供需平衡,特别是对供给,像光伏、风能和需求(如电力负荷)进行准确预测。智慧能源系统需要综合优化调度、随机建模、时空序列预测、多尺度分析和科学机器学习等技术手段,实现自动闭环优化。“通过将复杂的各个领域知识以及多种来源数据相互融合,可以构建知识与数据双驱动模型,降低数据需求,提升可靠性与精度。智慧能源系统的关键就是刚才提到的知识嵌入和知识发现,智慧能源系统核心目标就是通过科学机器学习中的知识嵌入与知识发现,实现智慧能源领域中知识与数据的闭环,发展新一代人工智能技术,助力能源科技革命和“双碳”战略的实现。”
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。许多标准制造方法无法在结构中产生空腔和底切。添加模式可以轻松创造各类独特形状。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。01通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一[2]。1.13D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能[2]。 在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。 3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。 玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。 许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。 温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.23D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)[3]。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。 热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化[4]。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。 差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。 差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能[3]。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向[3]。 动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息[5]。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。1.3选择合适的3D打印热分析技术大多数3D打印生产线依赖于上述技术的组合。作为热分析领域的领跑者,沃特世品牌旗下的TA仪器是全球添加物制造商的首选仪器供应商。我们致力于帮助各行各业的用户找到适合其独特3D打印目标的仪器和方法。我们提供一系列性能卓越且易于使用的热分析仪器,TA仪器的综合热分析产品系列拥有所有必要的设备,可以完全表征基板的热性能和机械性能。 欲了解TA仪器的热分析仪可以如何满足您的应用需求,为您解决痛点,欢迎扫描文末“阅读原文”二维码与我们联系。02利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)加热材料以形成自由流动的熔体通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺。.1质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。对此,TA仪器的应用专家 Lukas Schwab指出,3D打印中使用的材料需要在黏度(液体流动性特征)和固体弹性之间实现精确的平衡。 将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:产品中使用的所有材料成分的相互作用必要的工艺参数,包括温度、压力和流量Waters的应用支持专家Marco Coletti在他的网络研讨会上解释了如何借助流变研究来优化 3D打印和增材制造工艺。扫描文末“阅读原文”二维码可获取该网络研讨会的视频链接。2.3轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。 Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”HR系列流变仪的核心部件可以轻松、安全、可靠地检测聚合物的粘弹性。制造工艺(包括3D打印)可在实验室规模上进行优化以获得理想的生产结果。43D打印的关键流变测量流变仪测量材料(液体或固体)在受力时的变形。应力、变形和剪切行为的结合构成了流变、材料变形科学的基础。TA仪器的Discovery HR系列混合流变仪是用于流变的多功能分析平台。其配置的专利技术,可以轻松测量直接张力、变形控制以及轴向力规格。Discovery HR系列混合型流变仪(HR10,HR20,HR30)进行旋转流变测量时,将样品放置在两个圆板之间的圆筒中并将圆板和样品压在一起。例如,之后可按规定的速度和方向旋转其中的一个圆板。TA仪器应用专家Lukas Schwab解释说:“旋转测量是确定材料黏度的合适方法,该方法可确定如在 3D 打印中的泵送和加工能力。” 相比之下,振荡测量(两个圆板中的一个以小振幅正弦方式来回移动)可提供有关样品平衡结构的更多信息,因此更多地用于确定材料的特性。振荡测量有助于解答不同产品批次的分子量或材料在较低力量作用下的行为等问题。 通常借助流变测量法来确定材料的黏度或黏弹性,Lukas Schwab总结道:“黏度是对内部摩擦引起的流动阻力的测量,其测量值取决于系统的微观特性,如粒径。反之,黏弹性是材料对变形力所作反应的特性的测量。就纯弹性材料而言,对其施加负载后不会耗散能量;反之,黏弹性材料由于材料变形,其应力-应变行为的效应存在一定程度的差异(滞后效应)。”Lukas Schwab解释说:在许多生产过程中将流变测量用作质量控制的方法,因为不良的黏弹性行为会导致材料性能不佳和变脆。黏弹性也可用于确定固体的耐久性和热机械分解行为。测量所有必要的特性(黏度、分子量、材料行为和黏弹性)可能看起来令人生畏,但Discovery HR系列混合流变仪以其行业领跑的准确性和易用性可为研究人员提供熔融或固体聚合物材料的完整图像。综上所述,无论您想要了解TA仪器在流变学或热分析领域有哪些卓越的产品和解决方案来满足您的应用需求,抑或想进一步观看流变学在3D打印优化上的作用,您都可以扫描文末“阅读原文”二维码与我们取得联系。阅读原文参考文献1.Trenfield, S. J., Awad, A., Madla, C. M., Hatton, G. B., Goyanes, A., Gaisford, S., Basit, A. W., Trenfield, S. J., Awad, A., Madla, C. M., & Hatton, G. B. (2019). Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opinion on Drug Delivery, 16(10), 1081–1094. https://doi.org/10.1080/17425247.2019.16603182.Mohammadizadeh, M., & Fidan, I. (2019). Thermal Analysis of 3D Printed Continous Fiber Reinforced Thermoplastic Polymers for Automotive Applications. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 899–906. https://utw10945.utweb.utexas.edu/sites/default/files/2019/078%20Thermal%20Analysis%20of%203D%20Printed%20Continuous%20Fiber%20Re.pdf3.Billah, K. M., Lorenzana, F. A. R., Martinez, N. L., Chacon, S., Wicker, R. B., & Espalin, D. (2019). Thermal Analysis of Thermoplastic Materials Filled with Chopped Fiberfor Large Area 3D Printing. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 892–898. https://utw10945.utweb.utexas.edu/sites/default/files/2019/077%20Thermal%20Analysis%20of%20Thermoplastic%20Materials%20Filled.pdf4.TA Instruments (2022) 3D Printing Webinar, https://www.tainstruments.com/3-d-printing-and-additive-manufacturing-process-optimization-a-thermal-approach/, accessed May 20225.Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, 106, 149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075
  • 理化所在热电材料性能优化方面取得进展
    热电能源转换技术可实现电能和热能的直接相互转化,具有安静、可靠、易维护和体积小等优点,在工业余废热的回收应用、全固态制冷等方面具有重要应用前景。将热电转换技术应用于实际的主要障碍是低转换效率,能量转换效率直接取决于材料的无量纲热电优值zT。优化热电性能的一般策略是改善电输运性能和破坏热输运路径。   熵工程是一种有效的方法,可以调节电输运性质和晶格热导率之间的微妙平衡,从而产生诸多不寻常的传输现象。当元素种类增加引起的△S大于焓增加量时,减小的吉布斯自由能使晶体结构稳定。能量的变化表现为,合金元素溶解度极限的扩展或熵驱动的结构稳定效应。稳定的结构可以保持原子的长程排列顺序,从而保持电输运框架。由于离子质量,尺寸和键态的不匹配使晶格严重畸变,材料中存在短程无序的问题。扭曲的晶格强烈散射热传导声子,极大地降低了晶格热导率,产生低的热输运特性。   近日,中国科学院理化技术研究所研究人员在SnTe热电材料中,使用Ge,Pb,Sb,Mn多重元素共合金化,在结构有序和无序之间得到平衡。多尺度层次结构使简单面心立方样品获得了低于无序界限的晶格热导率(0.3 W m-1 K-1)。中熵工程还促使能带汇聚,增加了能带有效质量,从而提高了功率因子。   该工作展现了中熵工程在SnTe基热电材料性能调控方面的应用,为后续优化材料热电性能提供了新思路。相关成果以Fast Fabrication of SnTe via Non-Equilibrium Method and Enhanced Thermoelectric Propertied by Medium-Entropy Engineering为题发表在《材料化学杂志C》(Journal of Materials Chemistry C)上。相关研究工作得到国家自然科学基金委员会、中国科学院的资助。热电性能随温度的变化
  • 开展新污染物监测方法标准体系构建研究 完善生态环境监测
    生态环境部华南环境科学研究所 韩静磊研究员“生态环境监测是生态环境保护的基础,是生态文明建设的重要支撑。生态环境监测标准是生态环境监测的‘度量衡’,为监测数据真实、准确、可比提供了技术依据和保障。目前,我国新污染物监测工作仍处于起步阶段,监测方法尚不成熟、监测标准体系不完善。因此,需开展新污染物监测标准体系构建研究,制定适合我国新污染物监测标准体系的技术框架,为推动和支撑国家新污染物监管监测及治理工作提供技术支撑。”在11月22日举办的中国环境科学学会环境标准与基准专业委员会2023年学术年会暨生态环境标准发展五十年回顾与未来展望研讨会分论坛上,生态环境部华南环境科学研究所研究员韩静磊这样表示。新污染物监测标准体系的构建是实施新污染物调查监测、评估新污染物治理成效的技术基础和保障。构建新污染物监测标准是推动落实习近平总书记系列重要指示、党和国家重大部署的需求。早在2020年10月,第十九届中央委员会第五次全体会议明确提出“重视新污染物治理”的要求。今年7月,生态环境部部长黄润秋在国新办举行的新闻发布会上提出“加强新污染物治理体系和治理能力现代化建设”。新污染物是指新近发现或被关注,对生态环境或人体健康存在风险,尚未纳入管理或者现有管理措施不足以有效防控其风险的污染物。有毒有害化学物质的生产和使用是新污染物的主要来源,主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素、微塑料等。要有效推进我国新污染物监测调查工作的需求,掌握环境中新污染物浓度水平和赋存状态,以精准识别环境生态风险较大的新污染物,进而为制定全过程环境生态风险管控措施提供数据支撑。据介绍,目前,生态环境部不断完善生态环境监测标准体系,已发布1500余项生态环境监测标准,为规范生态环境监测行为、保障数据质量提供了有力支撑。但是,新污染物复杂多样且分布广泛等特点,为我国新污染物监测标准体系构建工作带来挑战。客观来看,截至目前,围绕新污染物监测工作的开展仍存在监测方法体系尚未完善、技术支撑薄弱、体系构建研究投入不足等等问题。针对这些难点,韩静磊认为需从“强化标准体系构建顶层设计、推动新污染物定量监测方法制修订、加快筛查/快速监测方法研究”着手,推动我国新污染监测方法标准体系构建工作更好更快开展。会上,韩静磊认为,在新污染物监测方法标准体系表的制订上,要紧紧围绕实用性、科学性、系统性、协调性与时效性五大原则。为保证污染物监测方法标准体系构建工作的顺利进行,她认为要加强组织领导,共同发力加快完善新污染物监测方法体系;成立专家委员会,协同开展新污染物监测方法攻关;加强顶层设计,明确新污染物监测标准体系框架;创新管理模式,加快推动和优化新污染物监测标准制修订;坚持前瞻思维,探索开展新污染物监测新技术研究;完善机制体制,提升新污染物监测标准研究活力。
  • qPCR体系优化和常见问题分析
    前言聚合酶链式反应(PCR)是用于扩增特定DNA片段的分子生物学实验技术。实时荧光定量PCR(以下简称qPCR)作为第二代PCR技术,自1996年推出以来,已经广泛应用于基因表达分析、病原微生物检测、动植物育种等许多研究领域,为了获得最理想的检测结果,qPCR从样本采集、核酸提取、cDNA合成到上机检测的流程有许多可以优化的参数。qPCR实验的工作流程首先需要确定研究的目的,根据实验设计规划好实验分组、重复次数等细节。接下来分为样本准备和引物探针验证两个重要的步骤。样本准备主要是核酸提取逆转录等步骤,引物探针需要去测试特异性和效率。接下来需要使用qPCR仪来对样品中的目的核酸进行扩增qPCR结束后根据实验目的对目的核酸进行相对或者绝对定量。接下来讲的qPCR体系优化会围绕着这个流程展开。1.样本的采集与处理首先,提前做好功课,了解样本的不同分型,或者了解详细的细胞分群。如果条件允许尽可能覆盖所有的组织类型或者细胞类型。其次,尽可能增加样本数量,也就是生物学重复,从而更客观地反映生物变异程度。另外,qPCR实验也需要有技术重复来降低误差。采样是需要严格规划的过程,比如材料的时效性、珍贵程度等,都要纳入考量范围。样品要尽量新鲜,取样尽可能快速。戴手套操作,防止污染。如果不马上提取核酸,需要-80°C保存,并尽快处理。2.核酸的提取和检测模板的质量直接影响到检测性能。核酸提取需要有效地将RNA或DNA从其他混合物中分离。RNA样本中的污染物——基因组DNA、DNA结合蛋白、酚类化合物或在提取RNA过程中引入的外源杂质(如手套中的粉末)——都已被证明会抑制下游实验,如逆转录和PCR扩增。核酸提取需要使用无菌无酶的试剂耗材,避免RNase或DNase污染,并对内源RNAse或DNAse进行有效抑制;多糖多酚样品要考虑多糖多酚杂质的有效去除。低温保存防止RNA或DNA降解。降解或不纯的RNA会限制逆转录反应的效率,降低产量。部分降解的RNA可能不能给出准确的基因表达结果。对于基因的定量,必须使用高质量的RNA,这意味着需要非常仔细地检查RNA的浓度和质量。可采用高分辨率琼脂糖凝胶检测核酸质量和分光光度法(A260/A280=1.8和A260/A230=2.0)检测核酸纯度和浓度。3.cDNA合成RNA 质量对 cDNA 合成结果会产生重要影响。并且RNA 很脆弱,容易降解。为了保证 RNA 的完整性,我们需要非常注意,比如在冰上操作,用 RNase-free 的枪头和离心管,减少操作时间等。在反应体系中加入 RNase 抑制剂也能有效防止 RNA 降解。如何评价样品中的杂质对逆转录的影响呢?可以梯度稀释后绘制标准曲线,如果低浓度的样品点数值偏大比较明显,基本可以判定杂质影响显著。不同厂家的反转录试剂会有差异,对RNA中的杂质耐受程度也不同。逆转录酶在整个反转录体系中具有关键性影响。除了活性以外,逆转录酶的热稳定性同样很重要,在较高温度下进行逆转录,能够减少 RNA 的二级结构,增加逆转录的效率。除了掌握 RNA 的完整性之外,反转录之前还需要对 RNA 浓度进行测定。一般反转录试剂盒会对上样量有要求,建议 total RNA 上样量小于 5 μg。超过这个范围,会使反转录产物产生偏好性 (表达丰度高的基因优先被反转录) 而造成定量结果不准确。逆转录出来的cDNA可以直接放在4°C保存,若长期不用,可分装,然后-20°C保存。4.qPCR方法的建立① 定量方法绝对定量:检测起始模板数的精确拷贝数,需要标准品构建标准曲线。标准品可以是纯化的基因组DNA、质粒DNA或者体外转录RNA(cDNA),其作用是生成标准曲线,建立Ct值与浓度之间的线性关系。标准品与待测样品的PCR效率一致,且接近100%,与样品的性质尽可能接近,与样品相同的扩增条件(PCR体系、耗材、同一次扩增),大于或等于5个梯度稀释的标准品。相对定量:在一个样本中,目的基因相对于内参基因的量的变化。内参基因选择建议筛选不少于三个内参基因来归一化RT-qPCR数据。目的是消除外部样品偏差,例如总RNA含量,RNA稳定性,酶效率或样品装载量的变化。对候选的内参基因进行qPCR 实验,得出Ct平均值以及 Ct值的标准偏差,选择SD最小的基因作为实验内参。可通过geNorm 、 BestKeeper 、 NormFinder、RefGenes 等工具来评估您的内参基因。② 荧光标记方法染料法:利用能与DNA双链结合的染料来实现,如SYBR Green I。该染料在游离状态下呈现微弱的荧光,一旦与双链DNA的双螺旋小沟结合,其绿色荧光增强约1000倍。因此其总的荧光强度与双链DNA含量成正比,利用这一关系可以反映生成的PCR产物的量。TaqMan荧光探针:是一种寡核苷酸探针,荧光基团连接在探针的5' 末端,而淬灭剂则在3' 末端。PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,探针完整时,报告基团发射的荧光信号被淬灭基团吸收 PCR扩增时, Tag酶的5' -3' 外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。常用的荧光基团是FAM,TET,VIC,HEX。引物探针设计可以参考Gene π网站:https://www.gene-pi.com/item/primers-and-probes-2/③ 引物扩增效率验证标准曲线是评估PCR扩增效率最可靠和稳定的一种方法,该方法涉及到制作一系列的样品来控制目标模板的相对数量。最常用的是10倍梯度稀释样品,采用标准qPCR程序进行扩增获得Cq值,最后根据各样品浓度及相应的Cq值绘制标准曲线,得到线性方程Cq= -klgX0+b,扩增效率E=10(-1/k)-1。利用qPCR进行定量分析时,要求扩增效率范围在90%-110%(3.6>k>3.1)。④ 反应体系优化▶ 根据仪器类型,选择合适的耗材和qPCR试剂。▶ 每对引物先进行预实验,确定特异性以及最适浓度。▶ 配置不同的PCR反应体系,选择每个组分合适的浓度。▶ 设置温度梯度测试引物最合适的退火温度。▶ 实验设置NTC、NRT、 NEG和POS等对照组,来监控实验体系或污染。实时荧光定量PCR常见问题分析1.可疑的扩增曲线真正的扩增曲线,有特征的形状:首先背景信号,然后是三个增长阶段(指数增长期、线性增长期和平台期)。如果不是同时具有特征性的三个增长阶段,没有典型的指数增长期,那就不存在扩增。平台期很低也是常见的异常扩增曲线。可能是模板的浓度太低。通常如果模板的起始浓度太低, 反应体系中会形成大量的引物二聚体。大量引物二聚体的形成使得引物很快消耗完,从而造成扩增曲线的平台期很低。这种情况可通过调整引物和模板的比例。2.异常的荧光信号NTC出现荧光信号---引物二聚体形成或气溶胶污染,查看熔解曲线是否为单一峰。3.扩增效率过高或过低过低的扩增效率( 110%)可能存在的原因:▶ 移液器校准不良或移液技术差。▶ 不正确的稀释导致标准曲线出现错误。▶ 引物二聚体或非特异性扩增。▶ 标准曲线动态范围太小。▶ 基因组DNA污染。4.重复性差为精确定量,对每个样品都要做重复实验,复孔之间的Ct值不应超过0.5,标准偏差不大于0.2,这样,实验结果就有很好的精确度。造成重复性差的原因:▶ 加样误差(操作或者加样器导致)。▶ 没有将试剂和样品充分混匀。▶ 低拷贝的目的片段→泊松分布。▶ 基线阈值设定不合理。Cielo™ 实时荧光定量PCR系统Harness of the power of qPCR☑ 数据可靠性:连续1000次实验后,结果高度一致。☑ 应用灵活性:提供多种qPCR应用分析。☑ 流程智能化:中英文用户界面,触控操作,可多机联用。☑ 在线便捷性:主机可独立运行qPCR程序,数据可USB、Wi-Fi等网络传输。
  • 如何通过摩擦系数仪优化化妆品日化产品的滑爽性能
    引言在化妆品与日化产品领域,产品的使用体验是吸引并留住消费者的关键因素之一。其中,滑爽性能作为直接影响触觉感受的重要指标,其优化显得尤为重要。摩擦系数仪作为科学评估材料表面滑爽性能的专业工具,在化妆品与日化产品的研发与优化过程中扮演着不可或缺的角色。本文将深入探讨如何通过摩擦系数仪来优化这类产品的滑爽性能,旨在为行业内的研发人员提供一套系统的实践指南。一、理解摩擦系数仪的工作原理与应用1.1 工作原理概述摩擦系数仪通过模拟实际使用场景下的摩擦行为,测量样品表面与其他材质(如皮肤模拟物、包装材料等)之间的摩擦阻力,从而计算出摩擦系数。这一数值直接反映了产品表面的滑爽程度,是评估产品使用体验的重要指标之一。1.2 在化妆品日化产品中的应用在化妆品领域,摩擦系数仪可用于评估乳液、面霜、防晒霜等产品的涂抹顺畅度;在日化产品方面,则可用于检测洗涤剂、洗洁精等产品的去污能力及使用后表面的爽滑感。通过精确测量,研发人员可以更加科学地调整配方,以达到最佳的滑爽性能。二、摩擦系数仪测试前的准备工作2.1 样品的准备确保测试样品具有代表性,即能够真实反映产品整体的滑爽性能。同时,注意样品的储存条件,避免温湿度变化对测试结果的影响。2.2 测试参数的设定根据产品的特性和测试目的,合理设定测试速度、负载、滑动距离等参数。这些参数的设定将直接影响测试结果的准确性和可靠性。2.3 仪器的校准与维护定期对摩擦系数仪进行校准,确保其测量精度符合标准要求。同时,做好仪器的日常清洁与维护工作,避免外界因素对测试结果造成干扰。三、优化化妆品日化产品滑爽性能的策略3.1 调整配方成分通过改变配方中油脂、乳化剂、增稠剂等成分的种类和比例,可以有效调节产品的滑爽性能。例如,增加适量的硅油或天然油脂成分,可以显著提升产品的润滑感和滑爽度。3.2 优化生产工艺生产工艺对产品的滑爽性能同样具有重要影响。通过改进搅拌速度、温度控制、均质时间等工艺参数,可以使产品更加细腻均匀,从而提高其滑爽性能。3.3 引入新型材料随着科技的进步,越来越多的新型材料被应用于化妆品与日化产品中。这些材料往往具有独特的物理化学性质,能够显著改善产品的滑爽性能。例如,纳米材料、生物基材料等新型添加剂的引入,为产品的优化提供了更多可能性。3.4 数据分析与反馈利用摩擦系数仪获得的测试数据,进行深入的统计分析和趋势预测。通过对比不同配方、工艺条件下产品的滑爽性能差异,找出影响滑爽性能的关键因素,并据此制定针对性的优化方案。同时,建立反馈机制,及时调整优化策略,确保产品性能的持续改进。四、案例分析:某品牌面霜滑爽性能优化实践某知名化妆品品牌在其面霜产品的研发过程中,遇到了滑爽性能不佳的问题。为此,该品牌研发团队借助摩擦系数仪进行了深入的测试与分析。通过调整配方中的油脂比例、引入新型乳化剂以及优化生产工艺等措施,成功提升了面霜的滑爽性能。经过市场验证,优化后的面霜不仅涂抹更加顺畅,而且能够显著提升消费者的使用体验。这一成功案例充分展示了摩擦系数仪在化妆品日化产品滑爽性能优化中的重要作用。五、结论与展望综上所述,摩擦系数仪作为评估化妆品日化产品滑爽性能的重要工具,其在产品研发与优化过程中具有不可替代的作用。通过科学合理的测试与分析方法,结合配方调整、工艺优化等策略手段,可以有效提升产品的滑爽性能和使用体验。未来,随着科技的不断进步和消费者需求的日益多样化,化妆品日化产品的滑爽性能优化将成为一个持续的研究热点。我们期待更多的创新技术和方法能够应用于这一领域,为消费者带来更加优质、舒适的产品体验。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制