当前位置: 仪器信息网 > 行业主题 > >

研究开发与基础研究

仪器信息网研究开发与基础研究专题为您整合研究开发与基础研究相关的最新文章,在研究开发与基础研究专题,您不仅可以免费浏览研究开发与基础研究的资讯, 同时您还可以浏览研究开发与基础研究的相关资料、解决方案,参与社区研究开发与基础研究话题讨论。

研究开发与基础研究相关的资讯

  • 国家基础研究重大科学研究支持方向发布
    关于发布国家重点基础研究发展计划、国家重大科学研究计划2010年度项目申报指南的通知 国科基函〔2010〕2号 各有关单位:   国家重点基础研究发展计划是以国家重大需求为导向,对我国未来发展和科学技术进步具有战略性、前瞻性、全局性和带动性的基础研究发展计划。国家重大科学研究计划是《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《规划纲要》)部署的、引领未来发展、对科学和技术发展有很强带动作用的基础研究发展计划。   围绕落实《规划纲要》,科技部2010年将继续部署国家重点基础研究发展计划和国家重大科学研究计划项目。现将2010年度项目申报指南予以公布,请你们根据2010年度申报指南组织项目,并按照编写提纲填报项目申请书(项目申请书编写提纲在国家科技计划项目申报中心网站“973计划”专栏下载)。   2010年项目实行网上申报(网上申报流程和有关事项将于2010年2月下旬在国家科技计划项目申报中心网站上另行通知),受理日期为3月8日8:00至3月22日17:00,逾期不予受理。   按照工作安排,2010年遴选立项的项目将于2011年启动。2010年拟结题项目的承担人员可以参加2010项目申报。   国家科技计划项目申报中心网站:http://program.most.gov.cn   咨询电话:010-58881072 58881073 58881557 58881076   受理部门:科技部基础研究管理中心   传 真:010-58881077   电子邮件:jcc973@vip.sina.com   附件:  1. 国家重点基础研究发展计划、国家重大科学研究计划2010年度重要支持方向  2. 国家重点基础研究发展计划、国家重大科学研究计划2010年项目申报要求   科技部基础研究司   二O一O年一月十九日   附:与仪器直接相关的国家重点基础研究发展计划、国家重大科学研究计划2010年重要支持方向   重要科学前沿领域   重点支持经过自然科学基金等前期培育取得重要进展,应用前景较为明朗,可望取得重大突破的科学前沿研究 基于国家重大科学工程开展的前沿科学研究 基于重大国际合作计划开展的基础科学前沿研究 其他可望取得重大突破的科学前沿交叉综合研究。例如:化学和材料科学中理论、计算和前沿数学问题,支撑若干国家重大战略需求的应用数学研究,新概念高增益、高效率自由电子激光重大基础研究,超强光场与物质相互作用新效应、新机理的研究,分子电子学的基础与应用探索研究,日地空间物理研究和应用,若干重大地质环境突变的地球生物学过程,神经生物学研究中的重大前沿问题等。   蛋白质研究   1.蛋白质生成、定位、转位、修饰及降解的分子机制   围绕蛋白质生成、定位、转位、修饰及降解的基本过程,重点研究它们发生的普遍规律和调控机制,以及它们与基因表达调控、细胞生长和凋亡、细胞异常增殖、细胞自噬、个体发育分化、个体衰老及疾病发生等的关系。   2.蛋白质相互作用网络与信号转导   针对某种重要生理或病理过程,重点开展生物大分子复杂网络的结构及其动力学分析 开发整合基因调控网络、蛋白质网络、代谢网络和信号转导网络的计算生物学方法。   3.重要蛋白质、蛋白质复合物及膜蛋白的结构与功能   重点研究与能量转换和膜转运相关蛋白质、受体蛋白及通道蛋白,以及与真核基因表达调控、DNA损伤修复、氧化应激、神经信号转导相关的蛋白质及其复合物的结构及调控机制,同时关注上述蛋白质及复合物三维结构与生理功能和疾病发生过程的关系。   4.重要生理或病理过程相关的蛋白质组研究   针对重要动植物、微生物和人类重要生理或病理过程,进行动态和比较蛋白质组研究,阐明其中重要功能蛋白质群(组)的变化规律及其生理、病理学意义。   基于与欧盟第七框架计划合作的中欧科技合作协议,开展重大疾病发生发展过程中的蛋白质修饰及其动态变化研究,规模化筛选磷酸化、糖基化、泛素化、甲基化等修饰蛋白质及相关酶,发现并发展系列诊断标志物和治疗靶标。(委托重点基地)   5.代谢调控及相关疾病的分子机理   研究机体代谢的分子调控机制及其在重要生命现象和重大疾病发生过程中的生物学功能,阐明代谢调控的重要途径和调控网络,揭示代谢调控相关蛋白与重要生物信号通路的相互作用,寻找代谢相关疾病的分子靶标。   6.蛋白质研究的新技术和新方法   发展蛋白质结构测定、功能分析、组学研究的新技术和新方法,包括蛋白质特异标记和高时空分辨的在体动态研究、蛋白质定量检测、核酸适配体识别等新技术新方法,特别关注合成生物学的新技术新方法。   7.蛋白质及配体分子大规模制备和高容量公共资源库的建设   大规模、系统性地收集、制备和建立若干重要物种(含人类)的全长cDNA库、蛋白质库、抗体库,建立与之相关的多糖、多肽、核酸、天然及合成小分子化合物等蛋白质配体分子公共资源库。   8.依托国家重大科学设施的蛋白质研究   依托国家重大科学设施,发展:高通量和高精度的同步辐射数据收集、处理和结构解析系统 基于高亮度光源的微小晶体的结构测定技术 探索高效的蛋白质结晶和晶体衍射质量改善的新技术方法 核磁共振、顺磁共振、小角散射和计算生物学相结合的结构解析和动力学研究技术等,完成一批蛋白质、蛋白质复合物及蛋白质-核酸复合物的结构与功能研究。   纳米研究   1.纳米材料的基础科学问题   围绕重要应用,开展基本科学问题、关键技术、微观结构特征与奇异特性关系、性能调控的研究,设计、制备新型纳米材料,探索其潜在应用 研究具有特定性能的纳米材料和结构的大尺寸、高有序度的自组织生长机理和关键技术,制备具有特定功能的纳米材料自组装结构。   2.纳米碳材料及宏观材料的制备与应用   围绕具有重要应用前景的纳米碳材料,发展可控、宏量和低成本制备技术,研究应用过程中的关键技术 发展宏观材料的结构可控和低成本纳米化技术,研究此类材料的结构和性能稳定性,探索在特定领域中的应用。   3.新型纳米制备技术和表征方法   探索可重复、低成本的新型绿色纳米制备原理方法、关键技术 发展有特色的高精度纳米加工与可控组装技术 发展基于新原理纳米表征技术和测试方法。   4.纳米技术标准和标准物质   重点开展纳米材料和纳米结构的检测、计量技术的国际与国内技术标准研究与制定 纳米检测用标准样品与标准物质的研制与批量制备 发展纳米检测技术的量值溯源方法,并开展比对测量、纳米检测方法的标准化。   5.碳基器件和电路及新型纳米传感器件   探索基于新原理、新结构的碳基纳米器件和电路 研究应用目标明确的高灵敏度、高可靠性、高选择性纳米传感器、光电探测器 发展重点疾病早期检测的纳米生物器件、植入式微纳传感器件等。   6.具有重要应用前景纳米材料的生物效应与检测技术   研究具有重要应用前景的纳米材料在生物体内的过程与行为,发现生物效应 在分子、细胞等层面上研究纳米材料对生物作用的机理及安全性 发展应用目标明确的基于新原理的生物检测技术以及生物功能修复材料。   7.提高能源使用效率和节能的纳米材料与技术  重点研究基于纳米结构与技术的提高能源使用效率的新方法和原理,发展基于纳米结构与纳米技术的节能新技术,推进纳米技术及材料在新型能源转换与存储等方面的重要应用。   8.低成本、高效率净水纳米材料与技术   针对饮用水的深度净化,发展具有高吸附效率的净水纳米材料,研究吸附和脱附过程机理及宏量制备技术 发展成本低、性能稳定、寿命长并无次生污染的实用净水纳米技术。
  • 国家“973”项目《陆相致密油高效开发基础研究》成果检查会暨核磁技术交流会在苏州落下帷幕
    国家“973”项目《陆相致密油高效开发基础研究》成果检查会暨核磁技术交流会在苏州落下帷幕 2018年5月25-28日,初夏之时,国家“973”项目《陆相致密油高效开发基础研究》2018年成果检查会暨核磁共振技术交流会在美丽的太湖之滨——苏州高新区落下帷幕。来自全国的近60位专家和学者,汇聚一堂,针对该项目的学术和技术问题做了细致的讨论,参会课题组分别来自中国石油大学(北京),中国石油大学(华东),西南石油大学,东北石油大学,北京大学,中科院力学所,中石油勘探院,新疆油田公司及苏州纽迈分析仪器股份有限公司。国家重点基础研究发展计划(973计划)是由国家科技部领导的旨在解决国家战略需求中的重大科学问题,以及对人类认识世界将会起到重要作用的科学前沿问题的专项研究。 本次“陆相致密油高效开发基础研究”是国家973计划为国家能源安全设置的研究项目,这个项目共分为6个课题,课题下包括了24个专题研究。 973项目会议代表在苏州高新区科技城合影973项目首席科学家为中国石油大学(北京)姜汉桥教授,由姜教授和973 项目跟踪专家罗治斌教授等组成的专家组对24个专题进行了逐一检查。首先,各专题长对所负责的专题做了主要技术成果、进展、下一步工作和经费情况等做了汇报;接下来,专家组针对汇报的内容做了提问、探讨以及下一步工作的详细指导。973项目的6个课题组经过近4年的研究努力,在《陆相致密油高效开发基础研究》项目上取得了可喜的研究成就,尤其是在SCI论文发表的数量、发明专利和软件著作权方面均已完成或提前完成了项目预定指标,部分成果已经应用于现场。 该项研究的标志性成果包括了以下六个方面,它们是陆相致密油甜点成因机制及精细表征;多相多尺度流动机理及渗流理论研究;储层人工缝网形成与重复压裂改造控制机理研究;提高储层采收率机理与方法研究;高效开发油藏工程理论与方法研究;以及典型陆相致密油藏高效开发模式研究。这些研究的完成将为中国的陆相致密油藏的开发和创新做出巨大的贡献。 973项目汇报课题组汇报 首席科学家中国石油大学姜汉桥教授及跟踪专家罗治斌教授中国仪器仪表学会分析仪器分会核磁共振仪器专业委员会和苏州纽迈分析受973项目管理办公室的委托,协办了本次会议,借助于973项目平台,纽迈分析的技术专家和973 会议代表对核磁共振测试技术和发展做了深入的交流。在会议开幕式上纽迈分析杨培强董事长和李向红副总经理致辞,欢迎国家973项目的专家和学者们;就核磁共振技术在石油能源领域内的快速发展,纽迈分析国家级博士后工作站站长燕军教授汇报了“核磁共振的原油含水率快速测试分析的新方法",纽迈分析吴飞博士介绍了纽迈公司核磁共振应用的常规和新技术的发展近况。 纽迈分析专家和技术人员在973会议上的报告学术讨论会场一角27日下午,973项目代表参观了纽迈分析坐落在苏州高新区科技城的核磁共振研发基地、CNAS核磁共振分析测试实验室、核磁设备的生产工厂和仪器调试车间等,对苏州纽迈在核磁共振领域的飞速发展,973专家们给予了高度的赞扬。 973项目代表参观苏州纽迈分析设备研发基地和实验室973项目代表参观纽迈分析的CNAS核磁实验室和调试车间最后,我们预祝国家973项目《陆相致密油高效开发基础研究》顺利完成课题各项研究目标,在2019年圆满结题,并期待该项目的诸多研究成果早日投入到我国的石油工业致密油的开发应用之中。纽迈专注于“低场核磁共振”技术及应用推广、具备强大的研发能力、完备的生产、服务和成熟的运营管理体系。公司自主开发多款核磁共振分析仪器并已获得多项国家奖项和资质认证,产品广泛应用于农业食品、能源勘探、高分子材料、纺织工业、生命科学等行业领域,获得业界一致认可。
  • 赛默飞支持中国癌症基础研究发展
    ——赛默飞与清华大学邓海腾教授签订全球科研合作伙伴协议 2014年1月16日,北京 —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于1月15日宣布与清华大学生命科学学院邓海腾教授签署了全球科研合作伙伴协议。双方将就“通过对肿瘤组织进行定量磷酸化蛋白质组学分析,发现癌症诊断和预后的生物标记物”项目进行长期的合作与研究。全球科研合作伙伴-授权书授予仪式该合作是赛默飞全球科研合作伙伴项目的重点之一。期间,赛默飞将为邓海腾教授提供蛋白质组学相关的试剂、耗材、及其质谱技术的支持,包括赛默飞10-plex串联质谱标记试剂,轨道阱质谱仪,Q Exactive 和Orbitrap Fusion等技术。配合清华大学生命科学学院在蛋白质组学领域的科研团队,包括国家重点实验室,发现用于肿瘤早期诊断和预测预后的生物标志物、为肿瘤的早期诊断和治疗奠定基础。“赛默飞是科学服务领域的世界领导者,始终致力于推动全球范围内的科学发展。此次与清华大学生命科学学院邓海腾教授的合作正是我们践行这一使命的重要举措,”在全球科研合作伙伴授权仪式上,赛默飞分析技术集团首席科学官良科灵(Klaus Lindpaintner)说道,“我们与邓海腾教授将在磷酸化蛋白质组学鉴定及肿瘤标志物等研究领域共享技术资源、实现优势互补,通过追踪和研究肿瘤组织发现一系列与肿瘤诊断、预后及化疗耐药性相关的生物标记物,推动我们目前癌症基础研究的发展。”赛默飞分析技术集团首席科学官良科灵讲话“清华大学生命科学学院是我国最具特色和最有影响力的生命科学研究和教学基地之一,培养和造就了一批知名的生物科学家,产生出一批在世界范围内颇具影响力的研究成果。”邓海腾教授在签约仪式上表示,“赛默飞拥有世界一流的质谱设备仪器和耗材,并拥有全球领先的研发和服务能力。我坚信此次合作必定会推进我国肿瘤诊断以及抗肿瘤药物的研究,并进一步促进基础研究的成果推向临床应用,造福于广大癌症患者。”清华大学生命科学院邓海腾教授讲话赛默飞、清华大学生命科学院合影赛默飞全球科研合作伙伴项目计划在全球范围内多个国家和地区实施,目前在中国已经全面启动,每年将会为签订此项目的科学家或机构提供高达25000美元的项目基金。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity? Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2500名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 北化院成立基础研究所,聚焦化工新材料领域
    3月20日,中国石化北京化工研究院基础研究所正式成立。该研究所将聚焦化工材料领域前沿基础科学和优势领域基础研究,发展模拟计算和AI机器学习技术方法,加快解决催化科学和高分子材料共性问题,着力提升原创技术源头供给能力,助力化工新材料领域关键核心技术攻关。化工新材料领域基础研究所的成立,是落实中石化集团公司党组书记、董事长马永生提出的“直属研究院要发挥好基础研究主力军作用,切实履行主体责任,探索设立基础研究中心”要求的具体行动,是北化院承担起提升基础研究效能,集聚力量进行原创性引领性科技攻关,推动集团公司化工新材料领域高质量发展重任的重要一步。据了解,北化院作为中石化集团化工新材料领域基础研究的主力军,持续关注培育新领域、发展新技术、开发新材料的关键科学问题,近年来开展了多项基础研究课题攻关,培养相关领域基础研究人员上百人。北化院表示,将积极加快关键核心技术攻关,加强科研领域布局和学科建设,加速高质量科研平台建设,加大高水平科技领军人才、专家人才、青年科技人才、基础研究人才引进和科研团队建设,打造化工新材料领域重要人才集聚中心和创新高地;锚定把基础研究所打造成为全国化工材料领域“排头兵”的总目标,充分发挥基础研究科技创新基石作用,为中国石化高质量发展提供强有力的技术支撑。
  • 2013年世界科技发展回顾——基础研究
    美 国   原子物理研究取得进展,暗物质研究更加接近突破,天文研究活跃。   丁肇中团队观察到宇宙射线流中正电子存在的比率符合关于暗物质存在理论的预测,向最终找到暗物质存在的可靠证据又迈进了一步。   欧洲大型强子对撞机及美国明尼苏达地底实验室报告了锁定暗物质的初步线索。计算结果表明其是大质量弱相互作用粒子(WIMP)的可能性为99.81%,也就是确定性为3西格玛水平。   美国桑福德地下研究中心的大型地下氙探测器(LUX)实验发布实验报告,宣布排除了大质量弱相互作用粒子(WIMPs)作为暗物质候选者。   美研究人员利用开普勒太空望远镜数据寻找到88亿个半径是地球半径的1到2倍、背景辐射量是地球1到4倍的行星,另一项研究统计银河系中围绕各自红矮星运行的行星为600亿颗。这些星体在其不同阶段可能适合生命存在。   美国和瑞士的独立研究都报告了一颗有着极短轨道周期、围绕天鹅座Kepler-78运行的行星,其大小、质量和组成成分和地球高度相似。美国国家航空航天局宣布迄今最宜居和最接近太阳系的类地行星分别为开普勒-62e和开普勒-62f。测算显示它们温度适宜,表面覆盖着海洋。   美加天文学家借助夏威夷凯克天文台的望远镜,发现环绕太阳系外恒星HR8799运行的一颗行星的大气中含有水蒸气和一氧化碳,但没有甲烷。   研究表明,元素钼的一种氧化矿物对生命的起源至关重要,而已知这种氧化物只存在于火星。   美国研究人员在银河系中心黑洞边缘处首次观测到恒星形成的图像。美国一研究小组探明了超大质量黑洞附近大质量恒星间相互作导致黑洞吸积率低的机制。   研究人员在恒星团中首次发现了&ldquo 凌日&rdquo 行星,确认木星土星内漂浮有大量钻石矿物,提出了月表特殊矿物来自陨星撞击残余的理论。一项联合研究首次确定了一颗系外行星的真实颜色。   加利福尼亚大学伯克利分校的物理学家们证明能够使用一个铯原子的高频物质波测量时间及确定物质性质。   英 国   英科学家获得诺贝尔物理学奖,新的宇宙膨胀理论诞生,基础物理研究和天文学出现新成果。   英国科学家彼得· 希格斯因其在量子理论方面的发现与比利时共同学者获得了2013年诺贝尔物理学奖。   爱丁堡大学两位科学家提出了新的宇宙膨胀理论,对宇宙大爆炸遗留下的宇宙微波背景辐射的温度波动现象提出新解释,指出宇宙在空间上应该呈现马鞍一样弯曲的形状。   由美英研究人员组成的国际小组成功地造出了一种桌面级别、能喷出短促正电子脉冲的反物质实验装置,可被用来模拟黑洞或脉冲星释放的辐射。   圣安德鲁斯大学科学家使用&ldquo 牵引光束&rdquo 技术,首次在不调节光线焦点的前提下实现微观层面上牵引目标物体,将聚苯乙烯微粒移向了牵引光束。   英美科学家利用氡-220和镭-224的短光束,首次观察到了部分原子核能分布为不对称的梨形。   英国科学家发现,当冰体彗星与岩石行星相撞,或岩石陨星与包裹着冰层的行星相撞时,会产生氨基酸。   科学家从距离地面约27公里的大气层中发现了单细胞硅藻的残存片段,有观点认为这是地外生命来到地球的首个证据。   英国天文学家从150光年外一颗白矮星周围的星体碎片中发现了氧、镁、硅、铁等元素的痕迹,显示这些碎片可能是一颗含有大量水分的行星留下的残骸。   牛津大学研究人员找到了一种测量量子比特状态之后原则上部分恢复测量之前状态的方法,能够在很大程度上解决量子计算系统最大挑战之一的量子退相干现象。   俄罗斯   科学院大规模改组,基础科研投入加大。   2013年俄罗斯科学院经历了大规模改组。俄罗斯联邦总统普京批准了《关于俄罗斯科学院、改组国有科学院及对部分联邦法律进行修订》的联邦法,同时还签批了《关于联邦科研机构管理署》总统令,成立直属于俄联邦政府的权力执行机构,负责俄罗斯科学院各研究所人员和国有资产的管理工作。   俄罗斯对科研部门的财政支持也在加大。普京在年底表示:&ldquo 没有任何一个国家能在科学工作所有方面同样成功运作,特别在基础科学研究方面,因此必须明确首要方向,国家资金的主要部分将集中在这些首要方向上。&rdquo 并表示未来3年将通过俄罗斯科学基金投入近480亿卢布发展基础科学研究。   德 国   德国在原子物理、微磁体研究方面获得突破,人工智能等领域取得重要进展。   数据存储方面,慕尼黑工业大学等发现Skyrmionen自漩磁区可以在磁单极子的帮助下被删除。而汉堡大学则成功透过自旋极化电流来产生及消灭单一skyrmion,实现了在有无skyrmion的状态之间切换。此外,汉堡大学还通过特定的原子操作构建出只有5个铁原子的世界最小磁铁,并展示其磁化方向的长期稳定性。   哥廷根大学等开发了一种可以存储和读取超短电脉冲的只有几纳米厚的薄层系统,使用短激光脉冲冲击薄层材料,实现自旋电流的流动、定位和存储。   于利希研究中心等成功绘制了迄今为止最精细的人类大脑三维数据模型(BigBrain)。这个模型分辨率为20微米,由1万亿字节的数据整合而成。   比勒费尔德大学制造出有学习能力的纳米忆阻器元件用于人工智能模拟,大小只有人类头发直径的600分之一。而伯恩斯坦计算神经科学中心则研发了一种新的数学模型来描述视觉神经元处理图像的行为模式。   斯图加特大学的研究记录下了电子在原子云中留下的痕迹。一个研究小组拍摄到了一个离子型分子晶体在激光照射后由电绝缘体变为导体的全过程。   慕尼黑工业大学全新发现并表征了一类纳米尺度上的摩擦,称之为&ldquo 解吸粘结&rdquo ,阐述了摩擦表面的化学属性和溶液性质对摩擦的影响。基尔大学发现了不相溶的液体之间有一个厚度小于1纳米的有序晶体层。慕尼黑大学发现PGRL1在光合作用的循环电子传递调控中起到至关重要的作用。   德国学者首次重构了埃姆间冰期时段的杂乱冰层,分析出了埃姆间冰期时期格陵兰岛的温度和结冰情况。   研究人员利用一块在西班牙发现的距今大约40万年的古人类腿骨成功破译出迄今最古老人类家族DNA。   欧洲核子研究中心(CERN)的物理学家们使用大型强子对撞机(LHC)进行的质子&mdash 铅离子对撞实验产生出了有史以来最小的人造液滴&mdash &mdash 仅为3个到5个质子大小。目前认为,这种液滴与紧随宇宙大爆炸之后出现的物质&mdash &mdash 夸克&mdash 胶子等离子体的原生状态非常相似。   维也纳大学的物理学家们11月发表论文称,他们完成了迄今最宏观的波粒二象性观察实验,观测了一个巨大的卟啉核全氟烷基链树样分子的波动性,分子中包含超过800个原子。   法 国   法国学术界通过密切的合作开展研究工作,在地球物理、量子物理等领域接连取得成果。   李宏策 (本报驻法国记者)法国国家科研中心统一协调科研院所、大学与企业的基础研究工作。该中心与法国地质矿业研究局(BRGM)在共同研究领域制定确立了10个优先合作项目,以加强地质学基础研究和应用研究。   法国研究人员将几微米大小的铁粒置于两块金刚石的尖端,借助欧洲同步加速器辐射研究所的高速X射线衍射技术,测定出超高压下铁的熔点,并估算出地核内部温度约为6000摄氏度。   法国科学家首次完成了两个原子之间的范德华力的直接测量。研究中实现了对具有高激发态电子的原子的精确控制,从而直接测得了范德华力。这一成果为量子信息设备的研发与制造开辟了道路。   加拿大   境内最大的射电望远镜开工,首次探测到宇宙大爆炸中辐射出的光发生的扭曲。   加拿大30年来第一座最大研究用射电望远镜在不列颠哥伦比亚省彭蒂克顿开始兴建,该项目计划绘制70亿到110亿光年、迄今最深远的3维宇宙空间图。   一个由美国和加拿大科学家组成的国际研究小组,提出了一种为陷落反氢原子制冷的新方法,能使反氢原子温度比现在所能达到的温度低25倍,可能大大推动反物质实验研究。   加拿大麦吉尔大学牵头的一个国际天文小组成功探测到了来自宇宙大爆炸的光在旅途中发生的扭曲。   加拿大滑铁卢市圆周理论物理研究所的天体物理学家推测,当一颗四维恒星塌缩为一个黑洞时,其喷射的残骸形成了我们的宇宙&mdash &mdash 这一假设或许有助于解释宇宙为何从所有方向看起来都是如此一致。   日 本  发现&ldquo 水滑石&rdquo 可以吸取、吐出空气中的二氧化碳,分析出地球会从两极向宇宙发射波长为千米级的电波。   日本北海道大学的研究人员利用金属中自由电子的活动规律开发出一种新型&ldquo 光镊子&rdquo ,用这种镊子可以自由的捕捉到比细胞还要小的高分子粒子。该研究有利于化学合成以及生物DNA的深入研究。   日本海洋研究开发机构开发出可设置在11000米深的深海海底的&ldquo 超深海型&rdquo 海底地震仪。该地震仪采用球形设计,解决了深海中使用的耐压性问题。目前该仪器已经在宫城县附近的日本海沟海域成功进行了测试。   日本物质材料研究机构的研究人员发现,被称为&ldquo 水滑石&rdquo 的粘土矿物具有可以吸取、吐出空气中的二氧化碳的所谓&ldquo 呼吸&rdquo 特性。该研究对于全球规模的碳循环研究提供了新的思路。   日本北海道大学的研究人员发现了产生南极底层水的新区域。南极底层水是南极海水深3000米之下低温高密度的底层流动水体,也是推动全球规模的深海海流大循环的主要力量。以往人们已经发现了三处产生南极底层水的区域。此次发现对海洋环境、海底地形塑造、矿产资源形成等方面的研究有重要影响。   日本理化学研究所的研究人员与中国、英国的研究人员通过研究全遗传信息发现,在进化中,与蜥蜴类和蛇类相比,龟类动物与鳄鱼和恐龙具有更近的起源。   日本东北大学、名古屋大学、京都大学等的研究人员通过长期分析日本地球磁场观测卫星发回的数据,发现地球会从两极向宇宙空间连续发射波长为千米级的电波,该电波的频率还会随地球的自转发生变化。   日本东北大学与丹麦哥本哈根大学的研究人员组成的一个研究小组从格陵兰西南部的一块已经有38亿年历史的岩石中,发现了生活在当时海洋中的微生物的痕迹,这也是世界上最古老的生命的痕迹。   韩 国   加速器项目取得进展,高技术项目获得了一批成果。   2013年韩国浦项加速器研究所正式启动第四代放射光加速器(PAL-XFEL)项目。开工建造的第四代放射光加速器使用0.1纳米(百亿分之一米)波长的X光,能量达到10GeV。   2013年,韩国政府提出让防卫事业与创造经济相结合的口号,加大在国防产业上的基础研发投入,并不断实现突破。   3月,韩国防卫事业厅宣布韩国型机动直升机正式研发成功。该国家科研项目,共耗资1.3万亿韩元(约合72亿元人民币)。机载设备包括三维电子地图和4轴自动飞行操作装置。   7月,韩国现代重工宣布通过多家机构的共同研究成功为新一代船舶用上数字雷达。分辨率比同类产品高2倍,恶劣条件下可探知10公里之外大约70厘米大小的物体。   以色列   密码学研究获殊荣,外太空气象探测有进展,航天监测空气污染有新方法,最小超导磁场测量仪诞生。   以色列魏兹曼科学院数学研究所的研究人员与一位美国学者共同获得2012年图灵奖。   魏兹曼科学院的科学家发现,天王星和海王星表面的极速风暴高度有限且只向行星表面和内部延伸。   特拉维夫大学的研究人员宣布了一种使用通用卫星数据监测城市空气污染状况的技术。该技术可以快速提供大城市污染趋势的可靠分析,也可分析碳排放量。   魏兹曼科学院的科学家研制出了世界上最小的超导磁场测量仪,其灵敏性和分辨率打破了世界纪录。
  • 李克强:强化基础研究和应用基础研究
    p   国务院总理李克强5日在作政府工作报告时说,加快建设创新型国家。把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力。 /p p   加强国家创新体系建设。强化基础研究和应用基础研究,启动一批科技创新重大项目,高标准建设国家实验室。鼓励企业牵头实施重大科技项目,支持科研院所、高校与企业融通创新,加快创新成果转化应用。国家科技投入要向民生领域倾斜,加强雾霾治理、癌症等重大疾病防治攻关,使科技更好造福人民。 /p p   落实和完善创新激励政策。改革科技管理制度,绩效评价要加快从重过程向重结果转变。赋予创新团队和领军人才更大的人财物支配权和技术路线决策权。对承担重大科技攻关任务的科研人员,采取灵活的薪酬制度和奖励措施。探索赋予科研人员科技成果所有权和长期使用权。有悖于激励创新的陈规旧章,要抓紧修改废止 有碍于释放创新活力的繁文缛节,要下决心砍掉。 /p p   促进大众创业、万众创新上水平。我国拥有世界上规模最大的人力人才资源,这是创新发展的最大“富矿”。要提供全方位创新创业服务,推进“双创”示范基地建设,鼓励大企业、高校和科研院所开放创新资源,发展平台经济、共享经济,形成线上线下结合、产学研用协同、大中小企业融合的创新创业格局,打造“双创”升级版。设立国家融资担保基金,支持优质创新型企业上市融资,将创业投资、天使投资税收优惠政策试点范围扩大到全国。深化人才发展体制改革,推动人力资源自由流动,支持企业提高技术工人待遇,加大高技能人才激励,鼓励海外留学人员回国创新创业,拓宽外国人才来华绿色通道。集众智汇众力,一定能跑出中国创新“加速度”。 /p
  • 我国化学科学发展的战略思考与建议丨战略性基础研究
    化学是一门以实验为基础的自然科学,在原子、分子、纳米等跨尺度、多层次上研究物质世界的组成、结构、性质、互作过程和演变规律。化学对整个科技领域的发展起到了强有力的支撑和推动作用,现代社会经济发展中的材料、能源、环境、生命与健康、资源与可持续发展等问题,均需要化学的理论与方法。当今很多科技创新活动面临的“卡脖子”问题的本质是化学问题,如微纳加工技术、芯片加工技术的光刻胶、特高纯化学试剂等。我国历来高度重视化学学科建设和发展,同时注重化学科学的基础研究与重大应用任务相结合,产生了诸如人工合成结晶牛胰岛素、人工合成酵母丙氨酸转移核糖核酸、青蒿素的提取等重大成果,为科技和经济社会发展作出了重要贡献。目前,我国化学人才队伍和论文数量均居世界前列,但仍然没有改变关键核心技术被“卡脖子”的局面。未来,仍需要加强化学的基础研究,加速与化学密切相关的重大科学问题和技术挑战的研究,加大化学领域的重大原创成果产出与应用,促进我国化学科学的快速发展。为此,本文在分析化学科学基本特征和领域发展历史经验的基础上,围绕我国化学科学发展的问题与挑战,结合优势与短板,提出我国化学科学的新研究架构,并提出适应新架构的对策与建议。1化学科学的基本特征1化学是一门承上启下的中心科学化学不仅是一门理解化学现象、发现化学过程的独立科学,更是一门连接物质科学和应用科学的“中心科学”(central science),其在人类认识世界、改造世界中的作用是无可替代的。其他门类的自然科学之间,以及自然科学与工程技术之间的联系都需要以化学为中间媒介。例如,自然科学中的物理科学,需要通过化学作为中介,才能更好地开展生命科学和材料科学的研究;信息工程也需要将化学的基础性知识与信息传输、转换、存储等材料加工工艺、制造过程等相结合,才能实施高水平建设。化学作为一门中心科学,并不是指化学在所有学科中最重要,而是说明化学在社会和科学系统中的多边关系和地位,是一门承上启下的学科。2化学是一门既传统又不断发展的基础科学,新的化学交叉分支不断涌现化学是创造新物质、新材料的基础科学,同时也与物理学、生物学、地理学、医学等学科相互渗透、相互促进发展。例如,化学与生物学的交叉科学问题研究一直是当代科学中一个极其重要和备受关注的领域。合成生物学、仿生化学、生物化学、酶化学和化学生物学等与生命科学密切相关的研究领域在我国越来越受到化学领域研究人员的关注和重视。又如,纳米科学与技术在纳米尺度研究和精准控制物质世界的组成、结构、性质、互作过程和演变规律,是当今最为热门的研究领域之一,几乎渗透到物质研究的各个方面。3化学是一门渗透于经济社会发展各个方面的实用科学化学已经渗透到国民经济发展和人民物质文化生活改善和提高的几乎所有方面,无论是高新尖端技术,还是国民经济发展的各种支柱性和支撑性产业,或是人们的衣食住行、生活休闲、医疗保健,无不与化学科学的发展密切相关。化学塑造了世界,在能源、材料、微电子、环境、化工、医疗等各行业领域的科技支撑作用愈发显著。根据国际化工协会联合会 2019 年发布的《全球化学工业:催化增长并解决我们的全球可持续性挑战》显示,化学工业几乎涉及所有生产行业,通过直接、间接和诱发影响为全球国内生产总值(GDP)作出了 7% 的贡献,是全球第 5 大制造业。2主要国家化学科学发展的历史经验当前,世界大国正在把构建引领未来的能力,作为科技创新的战略导向。科技和创新,已经成为大国之间争霸的主要领域,全球正面临发展格局的新演变阶段。过去 70 多年,科学及其所服务的社会发生了巨大变化,政治、经济、安全、气候等全球性问题凸显。化学作为渗透到各个领域的中心科学,尤其备受关注;世界主要国家纷纷加大投入,且积极研究化学科研资助形式是否适应当今的社会变革和科技发展趋势,更新完善化学科学发展政策,不断升级化学科学研究规划。理论研究和实际应用结合使得德国化学率先占据领先地位作为现代自然科学的重要基础,现代意义上的化学发轫于 18 世纪的欧洲,英国和法国先后成为化学的学术中心;从 19 世纪 30—40 年代开始,德国逐渐成为化学的学术中心,直到二战之前德国化学一直保持世界领先地位。1901—1939 年的共 40 位诺贝尔化学奖得主中,德国学者有 17 位,远超同期英国和法国诺贝尔化学奖学者的数量。德国化学保持世界领先地位长达 1 个世纪之久,除了其先进的教育制度、科学的教育方法和优越宽松的科研环境外,最重要的原因是德国非常重视化学的基础理论研究和实际应用研究的结合。以染料工业为例,在德国政府的支持下,于 1877 年成立了德国国立化工研究所;该研究所以有机结构理论为指导,进行煤焦油的综合利用,使德国的染料工业及制药、香料工业迅速赶超英国。产业化应用实践及其带来的经济收益使得化学基础研究的课题源源不断,基础研究成果又迅速转化应用,形成正向循环。自 2006 年起,德国政府陆续出台了“高技术战略”(High-tech Strategy),包括“纳米行动计划”“氢和燃料电池技术国家创新计划”“能源战略 2050”等,聚焦尖端技术发展领域,体现了较强的国家需求导向。在科技计划和项目管理中,德国采用分类分级管理的方式,对不同的科技计划采取不同的组织模式。德国对化学的支持嵌入在各类科技计划中,很好地体现了化学的中心地位和领域交叉的特征;其分类分级管理方式增加了项目管理的灵活性,有利于将企业、高校、科研机构等更多主体纳入管理中来,更好地促进了基础研究与实际应用的结合。长期稳定支持造就了美国成为全球的化学研究中心二战之前,美国一直以应用研究为主,而基础研究主要依靠欧洲。二战以后,美国逐渐认识到,依靠他国输入新知识在科技领域不可能长期发展。以 1945年《科学:无止境的前沿》为发端,美国政府一直在有计划、持续、高强度地支持基础科学研究;由此,美国化学的基础研究在世界上占有绝对的优势和稳固的地位,逐渐成为全球的化学研究中心。美国联邦政府通过采用合同制、科研资助制等方式来确定研究方向,从而影响和引导科研机构和大学开展化学研究的内容,以此来体现国家意志,达到用经济手段控制和指导国家科技发展的目的[8]。美国政府以重大科学项目为依托,遴选最优秀的科研骨干,开展高水平的持续攻关,有效推动了化学的快速崛起。例如,在“曼哈顿计划”的牵引下,美国芝加哥大学的化学团队在著名化学家 Glenn Theodore Seaborg 带领下,为制备超铀、分离钚、诱导铀核裂变等提供了决定性的技术支持。过去 80 年,美国及其培养的化学家获得了约 2/3 的诺贝尔化学奖,彰显了美国成为世界化学创新源头的地位。进入 21 世纪前后,美国又密集部署了多项战略性研究计划,如 “国家纳米计划”“材料基因组计划”等,有些通过立法保证稳定支持。例如,2000 年美国开始实施“国家纳米科技行动(NNI)计划”;到 2020 年,美国政府先后 6 次发布“国家纳米科技研究战略”,仅联邦政府就累计投入 280 亿美元。持续的投资反映了美国对创新战略的优先支持,并大力促进了美国化学研究率先进入学科交叉领域并引领全球的发展方向。美国体制决定了其科技计划制定具有如下特点:有效的分权与制衡。各联邦部门以国家目标和优先领域为指导,在白宫的协调下,编制本部门的研发计划。2.科技计划具有较强的连续性和稳定性。跨部门研发计划通常具有较长的时间周期,从而确保了联邦研发计划的总体稳定。
  • 李灿院士:建议设立基础研究和应用基础研究两项国家杰出青年基金
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/b20760a6-beb0-4753-8bf7-183bbb6149b4.jpg" title=" 2018-03-12_224355.jpg" width=" 500" height=" 336" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 336px " / /p p style=" text-align: center " 全国政协委员、中科院院士李灿 /p p   今年政府工作报告中明确提出:“加快建设创新型国家。强化基础研究和应用基础研究。” 然而在基础科学研究领域,目前却依然存在着人才培养和选拔“以论文为导向的一刀切”的现象。 /p p   10日下午,全国政协委员、中科院院士李灿在接受记者采访时表示:“如此下去,尽管我国研究队伍进一步扩大、文章数量继续攀升,但仍不一定能做出相应的创新性成果,不利于加快创新型国家的建设。” /p p   因此李灿委员建议,将目前的国家杰出青年基金改进重组为“基础研究”和“应用基础研究”两项国家杰出青年基金。 /p p   strong  加快创新型国家的建设 评价体系不能一刀切 /strong /p p   国家杰出青年基金自90年代初成立以来,激励和培养了一大批优秀科技工作者,极大促进了我国基础研究工作。但随着我国科技的发展,一些不足也暴露出来。 /p p   李灿委员认为,目前国家杰出青年基金在人才培养和选拔上存在的问题就是“以论文为导向的一刀切”。 /p p   “比如很多做应用基础研究的学者,为了完成评价体系的论文数量要求,也会拿一些文章出来。”李灿委员表示。 /p p   “另一方面,这也造成了另一些做基础科学研究的学者,不能静下心来坐冷板凳,针对重大的前沿基础科学问题做研究,长线的去坚持。” /p p   “不可否认,论文是需要的,但完全依靠这一个指标,就会在实践中略显偏颇。”李灿委员指出:“其实除了论文之外,应用基础研究学者的优秀专利,或者其研究成果在实践中表现出来的成效,都可以作为评价标准。” /p p   李灿委员认为:“评价体系本身就是具有导向作用,以论文为核心就会导致一些年轻工作者上不着天、下不着地,既没有去攻克基础课学里的难题,又没有解决应用科学中的核心问题。如此下去,尽管我国研究队伍进一步扩大、文章数量继续攀升,但仍不一定能做出相应的创新性成果,不利于加快创新型国家的建设。” /p p    strong 建议:国家杰出青年基金改进重组 /strong /p p   “我国学术界往往混淆了基础研究的内涵,将基础科学研究(Fundamental Research)和应用科学的基础研究(Basic Research)放在一起评审。对于不同领域,不同性质的研究均‘一刀切’,以论文和论文影响因子为主要判据,这就使一些应用基础研究领域的工作和人才队伍受到严重影响。评审工作简单化,缺乏对研究工作本身的判断,弱化了对工作本身的意义和价值的评价。” /p p   最近中办、国办也发布《关于分类推进人才评价机制改革的指导意见》,旨在分类健全人才评价标准,改进和创新人才评价方式。 /p p   因此李灿委员建议,将目前的国家杰出青年基金改进重组为“基础研究”和“应用基础研究”两项国家杰出青年基金。两项基金各有侧重,使得人才和成果的评价更加科学化和精准化。 /p
  • 2021我国基础研究研发投入比首超6%
    “近年来我国基础研究投入快速增长,年均增幅达到16.9%,基础研究占研发投入比重首次超过了6%。”昨天上午举行的2021中国生物材料大会上,国家自然科学基金委员会副主任高瑞平介绍。“当前,我国基础研究水平大幅提升,化学、材料、物理等学科处在世界前列。”高瑞平说,这一领域,发达国家的投入比重在15%左右。在这一大背景下,如何更好地创新研究范式,完善评估体系,是亟待解决的问题。研究范式变革需与时俱进。内容上,从静态平均向动态结构转化、从局部现象向系统行为分析。方法上,从定性分析到定量预测、从单一学科到学科交叉。研究范畴上,则从追求细节拓展为尺度关联、从层次分科发展为探索共性。科学研究的评估体系,也需进一步完善。以国家自然科学基金项目评审为例,2020年,自然科学基金委员会成立交叉科学部,组织拟订跨科学部领域的发展战略及资助政策,并提出交叉科学优先资助方向。同时,原创探索计划今年资助近4.9亿元,不断优化双盲评审、预申请、评审结果反馈及答复等机制,发掘并资助具有颠覆性、非共识等特征的原创思想。今年国家自然科学基金项目评审将引导更多评审专家不断积累信誉,构建良好的评审环境,提高公正性。目前,通讯评审专家人工智能辅助指派系统建设已经全面推进,引入人工智能、大数据挖掘等新技术手段,综合考虑专业领域、回避要求、利益冲突因等等因素,实现评审专家与申请书的高效准确匹配。记者 彭德倩
  • 2008年世界科技发展回顾-基础研究-科技政策
    1 基础研究    美国:基础研究颇有建树,发现新的三夸克粒子,建造超大原子与混合型态分子、产生数十亿反物质粒子,研制超强激光、完成黑洞撞击合并模拟实验,发现许多重大天文现象,首次拍到系外行星。   2008年1月,美国卡内基研究所宣称,古代火成岩证据显示,板块漂移曾至少停顿过一次,而且这种停顿今后可能还会再次发生。该发现对板块漂移不会停止的传统板块构造学说提出了挑战。该所还在恒星HR4796A周围的宇宙尘埃中,首次发现太阳系外复杂有机分子Tholins(它是构建生命的有机生物分子的前身)存在的痕迹。研究此类恒星系统能为理解行星形成以及生命演化提供新思路。   美国国家海洋大气局宣布,新一轮为期11年的太阳活动周期到来,随着太阳黑子活动加剧,太阳风暴将在未来数年逐年增加,届时全球的电力系统,军用、民用航空通信,全球定位系统信号,甚至手机和银行自动取款机都可能受到干扰。   2月,美国密歇根大学打造出超强激光束,瞬间能量相当于用一面巨型放大镜将太阳射向地球的所有光束集中到一个沙砾上。该成果将为医疗和前沿科技提供强有力的新武器。   3月,美国宾州大学科学家在距地球约75亿光年的牧夫星座,捕捉到迄今最为强烈的恒星伽马射线爆发,这是有史以来人类在宇宙中能用肉眼观察到的最明亮物质,其爆炸所释放的能量甚至可和宇宙大爆炸媲美。   美国科学家利用红外天文望远镜在太阳系发现最古老小行星。这3颗小行星形成于太阳系诞生之初,是未来太空探测任务的首选目标,通过收集和返回其样本,可深入了解太阳系在最初几百万年间的情况。   4月,美俄克拉荷马大学提出一种M维超立方体结构,有可能成为搭建纳米计算机的结构框架。M维超立方体是每个结点有M条连线的超立方体变量,M随计算需要的状态量的个数而定,它能像积木一样,搭建任意大小和复杂度的逻辑门。   美国加州大学欧文分校探测到一个距地球114亿光年,尚处于婴儿期的星系团,这是迄今所知的最远星系团。这个名为LBG-2377的星系团由三个星系融合而成。该发现为研究最亮星系团祖先的属性和组成个体提供了难得机会,也为验证大星系由小星系互相作用融合而成的星系形成理论提供了有利证据。   美国罗切斯特理工学院首次按照广义相对论,成功完成世界首次三个黑洞撞击合并模拟实验。结果表明:三个黑洞在彼此撞击之后可以合并为一个黑洞,而且将会辐射出独特的重力波。黑洞撞击现象在宇宙恒星丛中时有发生,所带来的能量冲击是宇宙中最为“惊心动魄”的现象。   5月,近30年来的主导理论“后增薄层假说”遭到挑战。美科学家通过重新构建地球构造模型,发现地幔中分布有钯和其他亲铁元素,证明地球在形成的阶段,除了陨石轰击外尚有其他方式。   6月,美国加州大学圣迭戈分校证明存在一种称为激子的粒子,因其在衰变时可发出闪光,有可能被应用于一种新形态的运算,从而加快通信速度。   国际天文学联合会决定给予2006年8月被“逐出”行星行列,降级为“矮行星”的冥王星以正式身份。今后凡是位于冥王星外侧,又不满足行星标准的类似冥王星的天体都将被称为“冥王星型天体”(plutoid)。其定义指轨道在海王星之外、围绕太阳运转周期在200年以上的星体。   7月,美国普渡大学创造出一种混合形态分子,其量子态可人为操纵。以此创造量子比特,将使半导体领域量子计算机的大门自此敞开。   继丹麦物理学家波尔1913年首次创立氢原子模型后,美国莱斯大学利用高激发态里德伯原子和一系列脉冲电磁场,成功获得直径接近1毫米、与波尔的经典力学原子模型极其相似的超大原子。该成果对未来计算机开发,经典和量子混沌学的研究,均具有潜在应用价值。   美国天文学家发现,古老的NGC6791星团中存在不同年龄的恒星群,这一结果可能从根本上挑战估算星团年龄的传统方法,意味着白矮星的演变机制还存在未知之谜。   美国钱德拉X射线中心7月宣称,美天文学家找到一种给宇宙中超大质量黑洞“称重”   的新方法,并在计算NGC4649星系超大质量黑洞的质量中得到验证。该法借助钱德拉X射线观测数据,利用“质量—温度峰值”效应计算出星系中心黑洞的质量。其推算结果与传统称重方法一致,确认了称重的准确性,在天文学上意义重大。   美国能源部斯坦福线性加速器中心第一次探测并测量出底偶素(由正反底夸克构成的束缚态)家族能量最低的粒子ηb。这是首次在底夸克系统中观测到Υ(1S)与ηb之间的超精细分离,将对理解基本粒子的强作用产生重大影响。   8月,“哈勃”太空望远镜完成环绕地球的第10万圈飞行。“哈勃”于1990年4月24日升空,   向地球传送了无数珍贵照片,被认为是改写天文学教科书的最重要太空观测器之一。   美国加州大学尔湾分校通过对围绕银河系旋转的黯淡小星系发出的光线进行观察,成功找到迄今质量最小的星系。这些星系属于矮星系,尽管其亮度和外形迥异,但质量却惊人一致,约为太阳的1000万倍。这些星系可能是最小单元的暗物质组合,该研究对揭密暗物质很有帮助。   9月,美国能源部费米国家加速器实验室发现一个新的三夸克粒子,名叫Omega-sub-b(Ωb)。该粒子由两个奇异夸克和一个底夸克(s-s-b)组成,是质子的“远亲”。这一发现有助于更好、更准确地理解夸克如何形成物质,也使“重子周期表”更为完善。   美国天文学家发现迄今宇宙最“暗”星系———银河系中名为Segue1的伴星系,其中包含的可见恒星数量少得可怜,亮度极低,是银河系的十亿分之一,但因暗物质在其质量构成中占统治地位,质量却大得出奇,是迄今发现的暗物质所占比例最大的星系。发现类似Segue1这样的超暗星系,将为研究宇宙间星系的形成和演化提供新线索。   10月,美国天文学家发现,太阳并非完美球体,体形有点扁,其赤道半径比两极半径略大,而且太阳表面比较粗糙,存在称作“瓜皮纹”的褶皱。   美国劳伦斯利弗莫尔国家实验室利用短脉冲、高强度激光照射1毫米大小的黄金,产生数十亿反物质粒子样本,使反物质研究到达一个新领域,今后可以借助短脉冲激光得到比其他实验方式多得多的反物质粒子。   两个天文学家小组2008年11月13日宣称,他们利用哈勃太空望远镜,首次拍摄到太阳系以外的4颗行星照片。过去已发现300多颗太阳系外行星,但都依靠间接手段。这次发现是哈勃望远镜最新的一次重大发现,是在探寻类地行星以及查清其上是否有生命存在的道路上迈出的重要一步。   德国:基础研究收获颇丰,测出移动单个原子所需的力,物质第五态研究获突破性进展,从粒子学角度证明爱因斯坦质能公式,发现超导材料存在能量空隙,制出世界最快阿秒级光脉冲,参与绘制世界最大宇宙3D图。   2008年3月,美国IBM公司专家和德国科学家借助原子力显微镜,测出移动单个原子所需的力:拿起一枚3克重的铜制硬币大约需要0.03   牛顿的力,这大约是在金属铜表面移动单个钴原子所需之力的20亿倍。这是世界上首次获得移动单个原子所需力的相关数据。   10月,德国科学家哈拉尔德措尔豪森因在研究子宫癌方面作出杰出贡献,和另外两位法国科学家共同获得2008年诺贝尔生理学与医学奖。这是德国科学家阔别9年后再次获得该奖项。他在1983年和1984年期间发现lPapillomaviren病毒,该病毒可通过直接接触传播,在粘膜和皮肤上形成肿瘤,如子宫癌。根据这项发现,2006年医学界已研制出一种针对这种病毒的有效免疫药。   物质除固态、液态、气态和等离子态四态外,还存在“玻色—爱因斯坦冷凝物”。德国美因茨大学对物质第五态的研究取得突破性进展,首次成功观察到“玻色—爱因斯坦冷凝物”中单个原子的空间分布。这一成果将加深对物质第五态的了解,并可应用于对超新星爆发与黑洞的模拟研究。   德国马普量子光学研究所研制成功世界最快的阿秒级光脉冲,其闪光时间仅为80阿秒(1阿秒为10-18秒),可被用于捕捉激光脉冲的影像及观察较大原子周围的电子运动。以此为基础,仄秒光脉冲也终将实现,届时可捕捉到原子核内部粒子的运动影像,原子单位将不再神秘。   德国马普固体研究所在对铅和铌的超导性能测试中发现一些新细节:电子在超导体费米表面运动时会构成能量空隙,大小与费米表面的形态有关。发现超导材料存在能量空隙是对超导理论的完善,有助于对超导材料加深研究。   多国天文学家正在绘制迄今世界最大的宇宙3D图,称之为“斯隆3计划”,是最新的太空探测项目,目标是绘制距地球80亿光年之遥的上百万个发光星系的位置,也   是第一次试图探测星系间气体丛。结合超新星的观测资料和其他天文学数据,“斯隆3计划”将对宇宙谜团提供解释,揭示暗能量之谜。   凭借“蓝基因”超级计算机的运算能力,法国、德国和匈牙利物理学家发现:95%的质子质量由夸克和胶子的能量转化而来,以此确认了描述粒子间强相互作用理论的有效性,并从粒子学角度证明了爱因斯坦著名的质能公式:E=mc2完全合理。标志着粒子间强相互作用的研究已具备一定成熟度,允许在超越当前模型的情况下,进行基础物理的新探索。   英国:基础研究可圈可点,构建标准粒子物理学模型,在保形映射数学领域取得突破,天文学研究收获甚多,协同他国绘出首张暗物质路线图。   英国科学家协同日美合作伙伴,利用超级计算机构建了标准粒子物理学模型。该模型比以往更为精确,是目前描述基本粒子最成功的理论,具有里程碑意义,使标准模型理论离基础物理的完全理论越来越近。   英国帝国理工学院在保形映射数学领域取得突破,改善了“施瓦茨-克里斯托费尔”公式,使这一公式能应用于更广泛的领域。保形映射是复变函数理论中重要的概念,也是重要的数学理论工具,可用于许多领域,如复杂机翼气流模型构造,神经系统研究等。   英国卡迪夫大学天文学家归纳出宇宙星系之间的共同特征,意图打造关于星系形成的通用规则。随机调查的结果显示,虽然这200个星系的亮度、形状、大小以及含气量等所有特点都各不相同,但这些特点都受到质量控制,只要测定某星系的大小,就可推导出该星系亮度、含气量等值。以此规则为契机,应重新审视宇宙的演化行为。   英国天文学家发现众多红色漩涡星系,推翻了红色星系多为椭圆星系的理论,填补了对宇宙认知中“迷失的一环”。   英国杜伦大学成功观测到一个距地球5亿光年,名为REJ1034+396星系中的巨大黑洞正向外放射强烈的X射线脉冲。小型黑洞放射X射线脉冲十分常见,但这是首次在超大型黑洞中确认同种脉冲放射现象,将有助于理解更多超大黑洞的成长活动,并为未来破解少数超大黑洞放射X射线脉冲的真正原因奠定基础。   英国圣安德鲁斯大学发现迄今温度最高和运行速度最快的一颗行星———WASP-12b,其表面温度高达2250℃,已和某些恒星的温度相当。其体积约为木星的1.5倍,与自己恒星的距离约为地球距离太阳的1/40,围绕自己恒星运转一周只需一天。这一发现将挑战目前行星距离自己围绕的恒星最近距离的有关认识。WASP-12b的体积也不容易解释,其最大直径是木星的1.8倍,数值超过了理论能够解释的范围,令人惊愕不已。   一个有英国科学家参与的国际科学团队用计算机模拟了银河系的形成和进化过程,输入了各种对暗物质的预测结果,结果产生出首张暗物质藏身何处以及如何探寻它们的宇宙图。研究小组已向费尔米天文望远镜提供了这张探寻暗物质的详细路线图,供其按图索骥。   日本:天文学研究获较大进展,绘出全月球地形图和月球背面重力场图,发现最遥远的活跃“造星”星系,提出海底是地球的“第三生物圈”,成功产生μ介子束,2008年诺贝尔奖出现丰收年。   美日科学家2008年1月2日宣布发现白矮星AEAquarii自转时会放出高能量X射线,挑战了以往认为白矮星是一种晚期恒星,会慢慢冷却、晶化,直至最后“死亡”的共识。   日本宇宙航空研究开发机构2008年1月10日宣布,探月卫星“月亮女神”对月面下的地层进行成功探测,声呐捕捉到月表地下500米、密度和性质不同地层重叠的多个反射面,有助于了解月球演变过程。进而绘制出了全月球地形图和月球背面重力场图。   日本高能加速器研究机构和原子能研究开发机构利用放射性离子加速器,在世界上首次成功加速两种自然界并不存在的放射性同位素———铟123和钡143,有助于探究超新星爆发时的元素合成。   美日科学家2008年7月表示,在距地球约123亿光年的区域发现一个新的罕见“怪物星系”,以比银河系快数百倍的速度产生星球,是迄今发现的最遥远的活跃“造星”星系。这个在宇宙诞生14亿年之后出现的星系的形成可能是由于宇宙形成初期暗黑物质和气体的密度在宇宙的各区域中分布不均所致,这对研究星系形成理论具有重要意义,证明星系的形成还有另外一种方式,即自我逐渐成长。   日本海洋研究开发机构证实,在海床350米以下缺乏氧气与养分的海底淤泥中,生存有大量古生菌。据推算,这些微生物的数量相当于地面所有植物的1/6。海底的地下实际上是一个堪与陆地和海洋相媲美的“第三生物圈”。这对解开生命进化与生物适应环境之谜具有重要意义。   美籍科学家南部阳一郎、日本科学家小林诚及益川敏英,以其物理学领域的卓越贡献,共同分享了2008年诺贝尔物理奖。美籍日裔科学家下村修,则因对绿色荧光蛋白的发现与研究荣获2008年诺贝尔化学奖。   日本科学家靠原子力显微镜,在室温下用12个直径0.7纳米的硅原子排列出了迄今世界最小的字母符号———硅元素的符号“Si”。这项新技术有助于提高半导体性能,或设计精密程度达到原子级的集成电路。   从仙女座星系中心开始,大量恒星汇聚成带状,绵延40万光年,酷似星系中心涌出的一滴眼泪。日美联合研究小组提出推测:“眼泪”是10亿年前撞击仙女座星系的小星系的残骸,大概在距今约5亿年前成形,在未来数亿年后将会变成圆形。   日本大强度质子加速器(J—PARC)的核心设备2008年12月23日启用,首次成功产生μ介子束。利用该装置可探究物质的细微构造,帮助开发新药、高温超导材料、纳米材料以及燃料电池新材料等。有关科研机构已获准利用J—PARC开展61项课题研究。   法国:基础研究取得一定成就,积极参与国际合作项目,获取黑洞深处观测信息,位于法国、瑞士边境的欧洲大型强子对撞机正式启动。   2008年4月,一国际研究小组成功获取迄今关于黑洞深处最清楚的观测信息,确定出自黑洞的粒子束的形状与理论推测的完全相符,证明特大质量的黑洞喷射出的巨大粒子束呈螺旋状,提出扭曲的磁场推动和限定了从黑洞喷出的粒子束。   法国科学家弗朗索瓦丝巴尔-西诺西和吕克蒙塔尼因共同发现人类免疫系统缺陷病毒(HIV),即艾滋病病毒,与德国科学家哈拉尔德楚尔豪森一道,荣膺2008年诺贝尔生理学与医学奖。   欧洲空间局进行的太空实验表明,暴露在极端脱水和强烈宇宙辐射的太空真空中的缓步动物(俗称水熊虫,一类极微小动物,属于多细胞无脊椎动物)仍能顽强存活,这是第一种经实验证明可在太空条件下存活的动物。水熊虫生命力极强,几乎存在于地球所有的生态系统,可经受反复脱水而顽强存活。科研人员希望弄清水熊虫拥有超强生命力的秘密,有关其遗传物质修复的知识,对医药研究将有重要价值。   9月10日,第一束质子束流被注入位于法国、瑞士交界的日内瓦郊区的欧洲核子研究中心的大型强子对撞机(LHC),标志着LHC正式启动。欧洲大型强子对撞机研究项目被称为近年来世界规模最庞大的科学工程,LHC利用高速粒子束相撞产生的巨大能量,重建“大爆炸”后的宇宙形态,是世界目前最大的粒子加速器,来自全球30多个国家的5000多名科学家和工程师参与该研究项目,总投入约80亿美元。   加拿大:打造出世界最强大电子显微镜,超固体现象研究取得突破,发现一颗正常脉冲星经过剧烈变化变成磁星。   加拿大麦吉尔大学与美国宇航局合作发现,一颗正常的脉冲星经过剧烈变化后,变成一颗磁星。这种磁星是恒星的一个变型,之前从未被观测到。脉冲星和磁星同属中子星,是超新星死亡和爆炸后的形成物。银河系内已知的脉冲星超过1800颗,但磁星的数量要低很多。   加拿大阿尔伯塔大学通过实验发现,温度条件越低,冷却固态氦表现得越硬。在研究可能存在的新物态———超固体现象上取得新突破。   加拿大麦克马斯特大学打造出目前世界最强大电子显微镜———提坦80—300立方体,其威力相当于哈勃太空望远镜,具有空前的清晰度,能轻易识别原子,测量其化学状态。有助于在基础生物学和物理学领域导致许多新发现,更好地了解疾病特性,探索医治疾病的新线索。探测固体材料的原子水平结构,用于帮助制造更加有效的照明设备和更好的太阳能电池,研究蛋白质和针对癌症治疗的送药材料。将评估大气微粒,帮助制造更轻和更结实的汽车材料、更有效的化妆品和更高密度的存储器。   俄罗斯:保持对基础科研的支持力度,12家俄罗斯研究所约700位物理学家参与大型强子对撞机项目,联手他国制成由硅28构成的完美球体。   2008年,俄罗斯政府继续保持对基础科学研究的支持力度。2008年是俄政府制定的2008—2012基础科学研究五年计划的第一年。2008年初,俄制定了2008年至2012年的基础科学研究计划,其中规定,俄政府将在2008年至2012年间投入2500亿卢布用于基础科学研究计划。   9月10日,欧洲大型强子对撞机正式启动。俄罗斯科学家对该项目的建成做出了重要贡献,共有12家俄罗斯研究所约700位物理学家参与。大型强子对撞机项目被认为是目前世界基础研究领域最具代表性的项目之一。   由俄罗斯、德国、澳大利亚等国科学家联合进行的“阿伏伽德罗计划”获得重要进展,制成由硅28构成的完美球体。其诞生具有重要科学意义,科学家希望借其重新定义质量单位“千克”,极有可能取代已经沿用近120年的重量标准。   南非:开展一系列人类基因组学研究,启动古人类学国际合作研究。   南非拥有巨大的人类基因多样性资源,正在开展一系列人类基因组学研究,研究对象主要集中于当地居民,大多围绕如HIV和结核病等易感性疾病,以及药物的新陈代谢进行。   位于南非约翰内斯堡西部山区的一系列考古遗址被称为“人类摇篮”遗址,这里发现的人类先祖化石约占全球总数的一半,为探索人类起源提供了重要线索。其中最著名和最重要的斯泰克方丹岩洞是全球南方古猿化石最丰富、年代最古老的遗址,迄今已发掘出600余件人科化石、9000余件石器和丰富的动物化石。2008年,南非金山大学和中国科学院古脊椎动物与古人类研究所正式启动古人类学国际合作研究。 2 科技政策   美国:加强对能源、环境、气候变化、航天和海洋领域研究的支持力度,更加关注《美国竞争力法案》的实施。   2008年,美国联邦预算加强了对能源、环境、气候变化、航天和海洋领域的研究支持力度,对基础科学、生命科学、纳米技术和农业科技等领域的研究支持力度保持稳定,但同时对研究重点有所调整。还组织了关于未来国家科技政策的讨论,更加关注《美国竞争力法案》的实施、科技外交以及科技决策等问题。   2008年,美国出台了《美国海洋大气局2009—2014战略计划》,确定了海岸和海洋生物系统、气候变化、天气和水文、海洋和空中交通等4个重点领域,提出加强卫星建设、增强船队和飞行服务能力、整合对地观察系统、提高自身素质等措施。   2008年间,美国各方对未来国家科技政策进行了探讨。白宫科技政策办公室举办了题为“科技与美国竞争力:进展和展望”的国家科技峰会,提出全面实施《美国竞争力法案》及其经费投入目标。伍兹威尔逊中心在《白宫科技政策办公室2.0版》报告中,建议美下届政府应重视和加强白宫科技政策办公室的职能,建立以国家科技委员会、总统科技顾问委员会、创新和竞争力委员会、国家科学院系统、联邦—州科技委员会为架构的总统科技决策和咨询机制。   当前美国正着力加强科技外交的统筹协调、重视全球科技资源利用以保持科技的全面领先优势,以能源、环境、健康等为优先目标开展全球合作。其对外科技合作的战略目标主要包括:保持并继续提高美国的科研水平 进入世界科技前沿领域:帮助美科学家超越国界进入世界前沿科学 用好科技人才:支持美国科学家与世界一流科学家合作,提高美国的科学生产力 增强本国科技人力资源:通过访问、交换、移民的方式,使其他国家的优秀科学家为美国的强大做出贡献 通过科技支持来提升国家安全:通过帮助其他国家提高科技能力来保障美国的国土安全和经济持续繁荣 使用杠杆原理撬动美国科技发展:通过在全世界范围内开放,结合自身资源寻求科技发展机会,从而加速提升美国科技发展进程。   作为国家战略的延续,美外交政策也做出相应调整,认为应该放宽外国学生和学者赴美签证。在签证申请中,有40.5%是工程、物理、数学、计算机和生命科学专业,这些学生学成后可形成高素质人力资源储备,还可带来不同的文化和经验,有利于科技创新。美国两院正酝酿新的法案,放宽外国专业人士赴美签证。   2008年,美国新当选总统奥巴马提出了系统的科技政策,认为科技创新具有巨大的变革性力量,应最大限度地发挥科技的作用,发展气候友好型能源、改善卫生与健康、提高教育质量、确保美国保持世界创新中心地位,以带动经济增长、增加高质量就业、创造财富。他承诺新一届政府将是拥护科学技术的政府,将致力于投资科学,促进自主创新,鼓励美国人民最大限度地发挥独创性和企业家精神,确保美国科技产业的竞争力。并承诺增加政府对科技的直接投资,重点是基础科学、清洁能源与低碳技术、卫生健康、农业先进技术、科学技术工程和数学教育(STEM)、劳动力培训、现代化信息基础设施、公共安全领域的科学技术等。   俄罗斯:加大对科技领域的支持力度,民用科学拨款逐年递增,科技人才外流现象大幅减少。   2008年,俄罗斯政府对科技领域的支持力度进一步加大,对民用科学的拨款逐年递增,2008年约为1250亿卢布。由于资金投入保持上升趋势,科研机构对人才的吸引力也不断提升,俄罗斯科技人才外流现象大幅减少,越来越多的海外俄罗斯科学家回流祖国。   6月,俄政府审议通过“俄罗斯创新产业科学与科学教育人才”2009—2013年联邦专项计划,准备采取一系列具体措施吸引青年专家从事科研创造,包括保障科研项目的拨款、恢复支持青年人从事科研创造的机制等。   11月,并支持各人类科学研究单位之间的合作和联系。   而制定《天文地理优势法案》是为了保留和保护南非境内那些适合光学天文学和射电天文学研究的独特的地理区域,并就南非重要的天文学研究优势区域所涉及到的事项提供政府间合作和公众咨询。包括为南非天文学及其相关科学研究提供方法,培养技能、能力和专家人才 勘查并保护那些适合天文学研究的地理区域 为建立一套全国性的天文学优势地理系统提供框架,以恰当地保护、保留和管理那些因为条件独特(如高大气透明度、低水平光污染、低人口密度以及极小的无线电频率干扰等)而特别适于开展天文学及相关科学研究的地理区域 授权南非科技部参与天文学优势区域的保护工作,并协调在这些区域内进行的天文学研究。   另外一部议会审议已通过,正在等待总统签署的法案是《南非航天局法案》。根据该法案,南非将成立国家航天局,推动太空的和平利用以及与太空活动相关的国际合作,支持建立在政府政策框架内有益于太空技术产业化发展的环境,培育和开展太空科学、通讯、导航和空间物理研究,通过人力资本发展超越计划和基础设施建设来提升南非的科学、工程技术水平和竞争力。   2008年4月,《先进制造技术战略(AMTS)》旗舰项目展在比勒陀利亚举行。通过实施AMTS,南非在轻型材料、先进电子、先进生产技术(如机电一体化、机器人、数字和微型制造技术)、人力资源开发、技术转移等方面取得众多最新成果,使汽车和航空零部件产业、电子产业、核产业以及下游矿业部门受益。南非政府今后还将设立生物复合材料、传感器技术、钛金属和核技术等能力中心,使AMTS成为培育未来竞争力,为制造业提供机会的有力杠杆。
  • 国家重点基础研究发展计划发布2009年度项目申报指南
    日前,国家重点基础研究发展计划(含重大科学研究计划)通过国家科技计划项目申报中心(http://program.most.gov.cn/)和973计划网站(http://www.973.gov.cn/),对外公开发布了2009年度项目申报指南。   围绕贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,科技部2009年将继续加强面向国家重大需求的基础研究工作,组织实施973计划和蛋白质研究、量子调控研究、纳米研究、发育与生殖研究四个重大科学研究计划,部署一批重大项目,并将支持重点进一步明确在解决国家重大需求中的关键科学问题、解决现有技术中的瓶颈科学问题、为未来高新技术发展提供科学基础等方面。   在2009年项目申报中,973计划和重大科学研究计划仍强调申报项目应围绕国家重大需求提炼关键科学问题,突出研究重点,明确研究目标,创新研究思路 要求项目组织国内优势力量和优秀研究团队,利用重点研究基地的研究条件开展研究工作 要求项目研究队伍精干,结构合理,体现优势集成 鼓励多学科的交叉综合研究,鼓励跨部门组织研究队伍。   国家重点基础研究发展计划2009年项目受理日期为3月16日8:00至3月31日17:00。
  • 五部门印发加强“从0到1”基础研究工作方案 强调高端科学仪器自主研发与创新
    p   日前,科技部、发展改革委、教育部、中科院、自然科学基金委五部门印发《加强“从0到1”基础研究工作方案》。方案中特别指出,加强“从0到1”的基础研究,开辟新领域、提出新理论、发展新方法,取得重大开创性的原始创新成果,是国际科技竞争的制高点。“从0到1”原创性突破,既需要长期厚重的知识积累与沉淀,也需要科学家瞬间的灵感爆发 既需要对基础研究进行长期稳定的支持,也需要聚焦具有比较优势的领域,进一步突出重点,有所为、有所不为。 /p p   突出问题导向,坚持以人为本,注重方法创新,优化学术环境,强化稳定支持,在这些原则的指导下,工作方案从优化原始创新环境、强化国家科技计划原创导向、加强基础研究人才培养、创新科学研究方法手段、强化国家重点实验室原始创新、提升企业自主创新能力、加强管理服务等各个方面详细部署。 /p p   工作方案中特别强调,要适应大科学、大数据、互联网时代科学研究的新特点, strong 注重科研平台、科研手段、方法工具和高端科学仪器的自主研发与创新,提高基础研究原始创新能力 /strong 。 /p p   在强化国家科技计划原创导向方面,工作方案指出国家科技计划要突出支持关键核心技术中的重大科学问题。面向国家重大需求,对关键核心技术中的重大科学问题给予长期支持。重点支持人工智能、网络协同制造、3D打印和激光制造、重点基础材料、先进电子材料、结构与功能材料、制造技术与关键部件、云计算和大数据、高性能计算、宽带通信和新型网络、地球观测与导航、光电子器件及集成、生物育种、高端医疗器械、集成电路和微波器件、 strong 重大科学仪器设备等重大领域, /strong 推动关键核心技术突破。 /p p   在创新科学研究方法手段方面,要加强重大科技基础设施和高端通用科学仪器的设计研发。聚焦空间和天文、粒子物理和核物理、能源、生命、地球系统与环境、新材料、工程技术等世界科技前沿和国家战略急需领域,布局建设一批重大科技基础设施。依托重大科技基础设施开展科学前沿研究,解决经济社会发展重大科技问题。充分发挥设施的集聚作用,吸引国内外创新资源,促进科技交叉融合,形成国际顶尖科研队伍。 strong 培育具有原创性学术思想的探索性科学仪器设备研制,聚焦高端通用和专业重大科学仪器设备研发、工程化和产业化研究,推动高端科学仪器设备产业快速发展。 /strong /p p   详细内容请查看下文: /p p style=" text-align: center " strong 加强“从0到1”基础研究工作方案 /strong /p p   为贯彻落实党的十九大精神和《国务院关于全面加强基础科学研究的若干意见》(国发〔2018〕4号),切实解决我国基础研究缺少“从0到1”原创性成果的问题,充分发挥基础研究对科技创新的源头供给和引领作用,制定工作方案如下。 /p p   一、总体考虑 /p p   当前,新一轮科技革命和产业变革蓬勃兴起,国际竞争向基础研究竞争前移,科学探索不断向宏观拓展、向微观深入,交叉融合汇聚不断加速,一些基本科学问题孕育重大突破,可望催生新的重大科学思想和科学理论,产生颠覆性技术。加强“从0到1”的基础研究,开辟新领域、提出新理论、发展新方法,取得重大开创性的原始创新成果,是国际科技竞争的制高点。“从0到1”原创性突破,既需要长期厚重的知识积累与沉淀,也需要科学家瞬间的灵感爆发 既需要对基础研究进行长期稳定的支持,也需要聚焦具有比较优势的领域,进一步突出重点,有所为、有所不为。 /p p   (一)指导思想。以习近平新时代中国特色社会主义思想为指导,面向世界科技前沿、面向国家战略需求、面向国民经济主战场,围绕重大科学问题和关键核心技术突破,以人为本、深化改革、优化环境、稳定支持、创新管理,强化基础研究的原创导向,激发科研人员创新活力,努力取得更多重大原创性成果,为建设世界科技强国提供强有力的支撑。 /p p   (二)基本原则。 /p p   突出问题导向。围绕基础前沿领域和关键核心技术重大科学问题,坚持需求导向和前瞻引领。从国家战略需求出发,强化重点领域部署,鼓励跨领域、跨学科交叉研究,形成关键领域先发优势。 /p p   坚持以人为本。遵循人才成长规律,创新人才评价制度,深入实施人才优先发展战略,注重青年人才和创新团队的培育,激发青年人才创新活力。不唯帽子、不唯名气、不唯团队大小。 /p p   注重方法创新。适应大科学、大数据、互联网时代科学研究的新特点,注重科研平台、科研手段、方法工具和高端科学仪器的自主研发与创新,提高基础研究原始创新能力。 /p p   优化学术环境。遵循基础研究的规律与特点,推动基础研究分类评价,探索支持非共识项目的机制。鼓励自由探索,赋予科研人员更多学术自主权。弘扬科学精神,营造勇于创新、敢于啃硬骨头和学术民主、宽容失败的科研环境。 /p p   强化稳定支持。优化基础研究投入结构,依托国家重点实验室和国家科技计划等,对关系长远发展的基础前沿领域加大稳定支持力度,努力取得重大原创性成果和关键核心技术突破。 /p p   二、优化原始创新环境 /p p   (三)建立有利于原始创新的评价制度。一是推行代表作评价制度。对人和创新团队的评价,注重评价代表作的科学水平和学术贡献,让论文回归学术,避免唯论文、唯职称、唯学历、唯奖项倾向。二是建立国家重点实验室新的评价制度。坚持定期评估和分类考核制度。将完成国家任务情况和创新效能作为重要的评价标准,建立以创新质量和学术贡献为核心的评价制度。三是建立促进原创的基础研究项目评价制度。基础研究项目重点评价新发现、新原理、新方法、新规律的原创性和科学价值,注重评价代表性成果水平 应用基础研究项目重点评价解决经济社会发展和国家安全重大需求中关键科学问题的效能和应用价值。在高校、科研院所开展评价试点。 /p p   (四)支持高校、科研院所自主布局基础研究。高等学校与科研机构结合国际一流科研机构、世界一流大学和一流学科建设,遵循科研活动规律,自主布局基础研究,扩大高等学校与科研机构学科布局和科研选题自主权。鼓励科学家围绕重要方向开展长期研究,不追热点,把冷板凳坐热。鼓励和支持科学家敢于啃硬骨头,敢于挑战最前沿科学问题,在独创独有上下功夫,努力开辟新领域、提出新理论、设计新方法、发现新现象。推动科教融合,围绕重大科技任务加强科研育人。 /p p   (五)改革重大基础研究项目形成机制。根据改革完善科技计划项目形成机制的有关要求,完善国家重大基础研究项目形成机制,在指南编制方式、有效竞争、开放性、项目评审机制、评审专家队伍建设等方面完善基础研究项目形成方式和管理方式。充分重视科学研究过程的灵感瞬间性,对原创性课题开通项目申报、评审绿色通道,建立随时申报的机制。对于在重大原创性突破研究过程急需解决的关键问题实行滚动立项。国家重点研发计划对港澳机构开放,国家自然科学基金进一步研究向港澳特区科研人员开放基金项目申请的具体方案并逐步实施。 /p p   (六)深化国际合作与交流。深化政府间科技合作,建立国际创新合作平台,联合开展科学前沿问题研究。加大国家科技计划开放力度。鼓励国际科研合作交流,积极参与国际大科学计划和大科学工程。 /p p   (七)加强学风建设。提倡学术自由和学术民主,坚持严谨、求实的良好作风,力戒浮躁张扬之风,树立诚信、严谨的正确导向,弘扬爱国奉献、诚实守信、淡泊名利的科学精神。加强科研活动全流程诚信管理,对违背科研诚信要求的行为责任人开展失信惩戒,加大对科研造假等学术不端的惩治力度。 /p p   三、强化国家科技计划原创导向 /p p   (八)强化国家自然科学基金的原创导向。稳定支持各学科领域均衡协调可持续发展,加强对数学、物理等重点基础学科的支持,稳定支持一批基础数学领域科研人员围绕数学学科前沿问题开展基础理论研究,夯实发展基础。坚持自由探索、突出原创,科学问题导向和需求牵引并重,引导科学家将科学研究活动中的个人兴趣与国家战略需求紧密结合,实现对科学前沿的引领和拓展,全面培育源头创新能力。坚持学科建设的主方向,推进跨学科研究,强化学科交叉融合,培育新的学科发展方向。稳定支持面上项目、青年科学基金项目和地区科学基金项目,鼓励在科学基金资助范围内自主选题。为原创项目开辟单独渠道,采取专家或项目主任署名推荐、不设时间窗口接收申请,探索实施非常规评审和决策模式,着重关注研究的原始创新性,弱化对项目前期工作基础、可行性等要求,优化完善非共识项目的实施机制。 /p p   (九)国家科技计划突出支持重要原创方向。坚持全球视野,把握世界科技前沿发展态势,在关系长远发展的基础前沿领域前瞻部署。在重大专项和重点研发计划中突出支持基础研究重点领域原创方向,持续支持量子科学、脑科学、纳米科学、干细胞、合成生物学、发育编程、全球变化及应对、蛋白质机器、大科学装置前沿研究等重点领域,针对重点领域、重大工程等国家重大战略需求中的关键数学问题,加强应用数学和交叉研究,加强引力波、极端制造、催化科学、物态调控、地球系统科学、人类疾病动物模型等领域部署,抢占前沿科学研究制高点。创新“变革性技术关键科学问题重点专项”的组织模式和机制,加强变革性技术关键科学问题研究,支持我国科学家取得原创突破、应用前景明确、有望产出具有变革性影响的技术原型,加大对经济社会发展产生重大影响的前瞻性、原创性的基础研究和前沿交叉研究的支持,推动颠覆性创新成果的产生。 /p p   (十)国家科技计划突出支持关键核心技术中的重大科学问题。面向国家重大需求,对关键核心技术中的重大科学问题给予长期支持。重点支持人工智能、网络协同制造、3D打印和激光制造、重点基础材料、先进电子材料、结构与功能材料、制造技术与关键部件、云计算和大数据、高性能计算、宽带通信和新型网络、地球观测与导航、光电子器件及集成、生物育种、高端医疗器械、集成电路和微波器件、重大科学仪器设备等重大领域,推动关键核心技术突破。 /p p   四、加强基础研究人才培养 /p p   (十一)建立健全基础研究人才培养机制。要创新人才培养、引进、使用机制,真正选对人、用好人。加快培养一批在国际前沿领域具有较大影响力的领军人才,赋予领军人才技术路线决策权、项目经费调剂权、创新团队组建权。重视培养基础研究领域的青年人才,对青年人才开辟特殊支持渠道,重点支持淡泊名利、献身科学、潜心研究的优秀青年人才。推动教育创新,改革培养模式,把科学精神、创造能力的培养贯穿教育全过程。重视素质教育养成,加强基础研究人才创新能力的教育培养,培育一批具有基础研究创新能力的人才。支持高校、科研院所、企业多方引才引智,广聚天下英才。 /p p   (十二)实施青年科学家长期项目。统筹利用现有渠道,聚焦重点研究方向,准备支持一批30—40岁具有高级职称或博士学位、有志于长期从事科学研究的优秀青年科学家,瞄准重大原创性基础前沿和关键核心技术的科学问题,在数学、物理、生命科学、空间科学、深海科学、纳米科学等基础前沿领域和农业、能源、材料、信息、生物、医药、制造与工程等应用基础领域开展基础研究。按方向选人,按人定项目。青年科学家人选由一线科学家推荐。被推荐人根据确定的重点方向提出项目。项目负责人自主确定研究内容和技术路线。对项目进行全程跟踪、服务。承担单位对项目团队成员可实行年薪制等灵活分配方式。 /p p   (十三)在国家科技计划中支持青年科学家。抓住中青年时期这一实现原创性突破的峰值年龄,依托国家科技计划培养青年人才。在重点研发计划中加大对35岁以下青年科学家的支持。国家自然科学基金加强对“青年科学基金项目”“优秀青年科学基金项目”“杰出青年科学基金项目”等资助计划的支持,鼓励青年科学家自主选题,开展基础研究工作,构建分阶段、全谱系、资助强度与规模合理的人才资助体系,加大力度持续支持中青年科学家和创新团队。加大对博士后的支持力度,积极吸引国内外优秀博士毕业生在国内从事博士后研究。 /p p   五、创新科学研究方法手段 /p p   (十四)加强重大科技基础设施和高端通用科学仪器的设计研发。聚焦空间和天文、粒子物理和核物理、能源、生命、地球系统与环境、新材料、工程技术等世界科技前沿和国家战略急需领域,布局建设一批重大科技基础设施。依托重大科技基础设施开展科学前沿研究,解决经济社会发展重大科技问题。充分发挥设施的集聚作用,吸引国内外创新资源,促进科技交叉融合,形成国际顶尖科研队伍。培育具有原创性学术思想的探索性科学仪器设备研制,聚焦高端通用和专业重大科学仪器设备研发、工程化和产业化研究,推动高端科学仪器设备产业快速发展。 /p p   (十五)大力支持科研手段自主研发与创新。加大力度支持科研平台、科研手段、方法工具的创新,提升开展原创研究的能力,大力加强实验材料、数据资源、技术方法、工具软件等方面的创新。着力开展高端检测试剂、高纯试剂、高附加值专用试剂研发和科研用试剂研究,加强技术标准建设,完善科研用试剂质量体系。完善科技资源库(馆)的建设和运行管理机制,提升科技基础资源整理加工、保藏鉴定以及对科技创新和经济社会发展的支撑保障能力。鼓励研发国产高端设计分析工具软件,保证研发设计过程自主安全可控。在重大研发任务中加大对高端试剂、可控软件研发和基础方法创新的支持。 /p p   六、强化国家重点实验室原始创新 /p p   (十六)发挥国家重点实验室的辐射带动作用。发挥国家重点实验室创新平台作用,作为国家重大科技任务的提出者和组织者,牵头组织全国相关领域的科技力量,发挥集群优势,开展协同攻关,承担起行业领域的辐射带动作用。探索建立国家重点实验室作为独立责任主体申请和承担国家科技任务的机制。 /p p   (十七)支持国家重点实验室长期积累。支持国家重点实验室围绕孕育重大原始创新、推动学科发展和解决国家战略重大科技问题,在特定优势领域长期持续开展科技创新,在重点学科领域和关键技术领域形成持续创新能力。强化国家重点实验室的独立性和自主权,鼓励国家重点实验室在重要领域开展前沿探索,提出新方向,发展新领域。加大对国家重点实验室稳定支持力度,聚焦前沿、长期积累、突出原创。 /p p   七、提升企业自主创新能力 /p p   (十八)推动企业加强基础研究。鼓励企业面向长远发展和竞争力提升,前瞻部署基础研究。鼓励企业与高等院校、科研机构等基础研究机构合作,共建各类研究开发机构和联合实验室,加强企业实验室与高校、科研院所实验室紧密衔接和实质性合作,促进基础研究、应用基础研究与产业化对接融通,提高企业研发能力。重视企业内部创新环境建设,鼓励企业引进高层次人才,与高等院校和科研院所共同培养基础研究人才。发挥国家科技计划的导向作用,在重大专项、重点研发计划论证和实施过程中,组织企业家、产业专家和科技专家共同凝练来自生产一线、关系经济社会发展的关键重大科学问题,支持企业承担国家科研项目。 /p p   (十九)引导企业加大投入。切实落实企业研发费用按75%比例税前加计扣除等财税优惠政策。在具备条件的企业建设国家重点实验室,衔接基础研究和应用需求。做强国家自然科学基金企业创新发展联合基金,推动科研院所与高等院校围绕企业技术创新需求,解决企业发展中面临的重大科学问题和技术难题。 /p p   八、加强管理服务 /p p   (二十)加强组织协调和统筹实施。组建基础研究战略咨询专家委员会,加强基础研究顶层设计和统筹协调,研判基础研究发展趋势、凝练基础研究重大需求,在推进重大工作部署中发挥战略咨询作用。建立部门间沟通协调机制,统筹各类科技计划支持基础研究的资助政策与管理机制。强化中央和地方协作联动。发挥知识产权制度激励作用,推动知识产权权属改革,加强知识产权运用和保护。 /p p   (二十一)加大中央财政的稳定支持力度。中央财政加大对基础研究的稳定支持力度,建立健全稳定支持和竞争性支持相协调的投入机制。探索实施中央和地方共同出资、共同组织国家重大基础研究任务的新机制。 /p p   (二十二)加大地方政府和社会力量对基础研究的投入。鼓励和支持地方政府结合自身优势和特色,制定出台加强地方基础研究和应用基础研究的政策措施,加大对基础研究的支持力度。探索共建新型研发机构、联合资助、慈善捐赠等措施,激励企业和社会力量加大基础研究投入。北京、上海、粤港澳科技创新中心和北京怀柔、上海张江、合肥、深圳综合性国家科学中心应加大基础研究投入力度,加强基础研究能力建设。 /p p   (二十三)改进管理部门工作作风。科技管理部门要提高站位、做好统筹,坚持“抓战略、抓规划、抓政策、抓服务”,进一步推进政府职能转变和“放管服”改革。科研院所和高等院校的科研管理部门全面提升微观管理服务水平,在放权上求实效,在监管上求创新,在服务上求提升,努力营造有利于基础研究的科研生态。 /p p br/ /p
  • 加强基础研究,从“评人”和“投钱”入手
    p   “我国的基础研究存在一些问题必须要改革。”在6日的科技界联组会议上,中科院院士、地球物理学家朱日祥委员争取到了一个主题发言的机会,他要说说他最关注的基础研究。他的发言很快受到不少委员的当场“点赞”。中国科学院空间科学与应用研究中心主任吴季委员也发言表示,“进一步加强由政府主导、有组织的定向基础研究”。 /p p   这几天,科技界的小组讨论中,“基础研究”一直都是热词。政府工作报告明确提出要强化基础研究和应用基础研究,更让委员们“激动”和“期待”。 /p p    strong 人才评价,从评“帽子”转为评“创新” /strong /p p   “在基础研究领域,出现了‘帽子’人才满天飞、原始创新乏力的尴尬局面。”在朱日祥看来,基础研究面临的众多问题中,人才评价体系是最亟待解决的。 /p p   更让他着急的是,最近几年,这个问题反而因为“双一流”带来的高校人才抢夺战而愈演愈烈。他表示,为了评上“双一流”,高校都在抢夺“帽子人才”,挖人的看重数量,被挖的看重待遇,这种乱象蔓延十分不利于基础研究的发展。 /p p   千人计划、青年千人计划、长江学者、优秀青年科学基金、国家杰出青年科学基金等正是被频繁提及的“帽子”。朱日祥提出,这些种类繁多的“帽子工程”扰乱了正常的学术生态,加剧了学术界的浮躁学风,不利于青年人才心无旁骛地做研究。 /p p   朱日祥认为,为了营造长效机制,国家应尽快建立以科学贡献量为核心的人才考核。他说,基础研究有很多难以预料的可能性,更要鼓励青年人才大胆探索创新。创新人才的培养不能靠大跃进,让优秀青年人才享受宽松的科研环境和探索过程才是关键。要实现这一目标,必须要把帽子品牌转向创新品牌。 /p p    strong 资金投入,从政府为主转为多元化 /strong /p p   基础研究的投入一直是各界关注的话题。政府工作报告中特别指出,要“启动一批科技创新重大项目,高标准建设国家实验室”,这让科学家们很振奋,但这背后需要大量资金投入。“钱从哪里来”一直是不少科研人员必须面对的问题。 /p p   一直以来,我国的基础研究以政府投入为主。基础研究投入多、周期长、回报慢且具有极大的不确定性,让企业和个人都望而却步。朱日祥表示,下一步应该加入一些资金投入的解决途径,比如制定相关政策,引导社会和民间资本进入基础研究,创新基础研究的结构,只有这样才有民族创新的能力。 /p p   也有委员表示,这个问题可以学习美国的基础研究投入体系,毕竟像盖茨基金会在癌症研究领域投入巨资的案例,曾经广为传播。 /p p   科技部政策法规与监督司司长贺德方也参加了当日的联组会,他表示,基础研究投入的问题,相关政策很快就会出台。下一步科技部将和地方政府建立联动投入机制,与此同时,还将在广泛调研基础上出台相关财税政策,引导企业和基金对基础研究进行投入。 /p p   就在两会召开前夕,国务院发布《关于全面加强基础科学研究的若干意见》,对许多基础研究管理中存在的“顽疾”都提出了解决方案。这让吴季对基础研究的未来充满期待,但他也表示,在强调自发性兴趣基础研究的同时,也要强调有组织的大型项目。吴季建议,加强有组织的定向基础研究。他希望,政府部门把眼光放得更长远。如果要实现科技强国,必须有科技前沿的成果,而这些成果大多是长线的。 /p p br/ /p
  • 国家基础研究发展“十二五”专项规划解读
    一、《国家基础研究发展“十二五”专项规划》颁布实施有何重要意义?   “十二五”是我国创新型国家建设的攻坚阶段,加快转变经济发展方式,最根本的是要依靠科技的力量,最关键的是要大幅提高自主创新能力,必须更加重视基础研究的源头创新作用。只有扎实搞好基础研究,推动创新链与产业链的互动,才能建立高附加值的产业体系,提高产业核心竞争力,从中国制造走向中国创造 只有在能源、资源、材料、生物、地球、环境等科学领域的基础研究取得新突破,解决制约国民经济和社会可持续发展的瓶颈问题,才能避免走高投入、高能耗、高污染的传统工业化老路,建设资源节约型、环境友好型社会。   “十二五”是我国基础研究发展的重要战略机遇期,为深入落实《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《规划纲要》)任务部署,推动基础研究繁荣发展,按照《国家“十二五”科学和技术发展规划》的部署,特制定《国家基础研究发展“十二五”专项规划》(以下简称《专项规划》)。   二、“十二五”期间我国基础研究的发展思路是什么?   高举中国特色社会主义伟大旗帜,以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,按照“求真探源、人才为本,发展基地、营造环境,双力驱动、重点突破”的方针,以提高原始创新能力为核心,全面落实《规划纲要》战略部署 瞄准科学前沿,鼓励自由探索,冲击世界科学难题 围绕国家重大战略需求,着力解决制约国家经济和社会发展的关键科学问题 全面推进知识创新体系建设,营造有利于原始创新的环境,培养造就高层次人才和优秀创新团队,建设国际一流的研究基地和世界先进的重大科技基础设施,充分发挥基础研究在建设创新型国家中的引领作用,显著提升我国在世界科学中的地位。   三、“十二五”期间我国基础研究的发展目标有哪些?   “十二五”基础研究发展的总体目标是:知识创新体系更加完善,科研条件和环境大幅改善,原始创新能力大幅提升,引领经济社会发展作用显著增强,基础研究整体水平进入世界前列。   具体目标包括:进一步提升学科整体水平,攻克一批制约经济社会发展的关键科学问题,突破若干重要科学前沿的科学难题,建设一批世界一流的基础研究基地,提升科技基础性工作的支撑能力,形成一批有国际影响力的人才和团队,不断提高科研产出质量等。   四、《专项规划》对“十二五”期间我国基础研究部署了哪些发展重点和主要任务?   “十二五”期间我国基础研究的发展重点和主要任务包括7个方面:   一是学科发展布局。系统规划了19个学科在“十二五”的发展重点和主要任务。   二是基础科学前沿领域的8个重点方向。继续围绕《规划纲要》确定的重点方向加强部署。   三是国家重大战略需求中的基础研究重点领域。围绕农业、能源、信息、资源环境、健康、材料、制造与工程、综合交叉等8个领域,着力解决制约国家经济社会发展的关键科学问题。   四是国家重大科学研究计划和专项,继续在纳米、量子调控、蛋白质、发育与生殖、干细胞、全球变化和磁约束核聚变能等重要科学前沿领域进行强化部署。   五是基础研究创新基地,加强国家(重点)实验室体系、国家重大科技基础设施、国家野外科学观测研究台站(网络)体系等基础研究基地建设。   六是科技基础性工作专项,注重科学考察和调查,志书、典籍、图集的编研和标准规范的研制,提升对我国科技创新、经济发展的支撑能力。   七是基础研究人才队伍建设。坚持“以人为本”,建立一支规模适度、整体水平素质较高、人员配置结构合理的基础研究人才队伍。   五、“十二五”期间国家重大战略需求中的基础研究重点领域如何部署?   在农业、能源、信息、资源环境、健康、材料、制造与工程、综合交叉等重点领域部署具有战略性、前瞻性、全局性和带动性的基础研究工作,更加聚焦国家重大战略需求、更加强化科学目标导向、更加注重优秀团队建设、更加注重青年科学家的培养,着力解决制约国家经济社会发展的关键科学问题。   六、“十二五”期间国家重大科学研究计划和专项有哪些考虑?   根据世界科学发展趋势和我国重大战略需求,持续强化部署纳米研究、量子调控研究、蛋白质研究、发育与生殖研究、干细胞研究、全球变化研究六个国家重大科学研究计划和磁约束核聚变能研究专项,努力冲击世界难题,力争取得系列突破,显著提升我国国际竞争力,抢占未来科学技术发展制高点。   七、“十二五”期间在基础研究创新基地方面有哪些重点部署?   “十二五”期间,国家(重点)实验室体系将在“开放、流动、联合、竞争”运行机制和“共建共享”思路指导下,继续加强顶层设计和布局,规范和完善管理措施,进一步发挥其在科技创新中的骨干和引领作用。   坚持综合统筹、科学布局、现有设施高效利用和新建设施并重相结合、设施发展与人才培养相结合,加强体制机制保障,进一步完善国家重大科技基础设施体系。   进一步完善国家野外科学观测研究台站的布局,新建一批野外台站和综合研究中心,注重在海洋、极地等区域加强部署。建立野外台站稳定经费支持机制,加大支持野外台站进行科学研究、开放运行、设备更新等。   八、“十二五”期间科技基础性工作有哪些重要部署?   重点开展对科技和经济社会发展具有重大影响的,跨部门、跨学科、跨区域的综合性科学考察与专项调查,注重新技术、新方法的应用 支持科技资料整编与科学典籍、志书和图集的编研 支持标准物质与科学规范研制 支持有关对公益性行业部门重要工作、有关重点领域和学科创新发展具有重要支撑作用的其他科技基础性工作 继续推动科学数据共享工程的深入发展,加强科学数据汇交和共享机制建设,提升对我国科技、经济发展的支撑能力。   九、“十二五”期间在基础研究人才队伍方面有哪些重点部署?   坚持“以人为本”,建立一支规模适度、素质较高、结构合理的基础研究人才队伍,形成基础研究人才区域布局和人才流动的合理机制。通过实施相关人才计划,创新体制机制、优化政策环境、强化保障措施,培养和造就一批具有世界水平的科学家、高水平领军人才和优秀创新团队。   十、为保障《国家基础研究发展“十二五”专项规划》顺利实施的政策措施有哪些?   主要包含6个方面的保障措施。一是加强统筹协调,加强科技计划的顶层设计 二是深化计划管理改革,强调稳定支持与竞争择优相协调 三是营造有利于原始创新的环境,支持科研人员潜心研究 四是保持基础研究投入较快增长,加大对基础研究的投入力度 五是加强基础研究国际合作,推动多层次、全方位和高水平的国际合作 六是推动区域和行业创新发展,充分调动行业、部门和地方开展基础研究的积极性。
  • “十三五”国家基础研究专项规划印发 聚焦高端通用仪器产业化
    p   基础研究是整个科学体系的源头,是所有技术问题的总机关。一个国家基础科学研究的深度和广度,决定着这个国家原始创新的动力和活力。党的十八大提出实施创新驱动发展战略,统筹部署以科技创新为核心的全面创新,主动适应科技革命和产业变革的新趋势,积极谋求掌握新一轮全球科技竞争的战略主动。“十三五”期间,经济社会发展和国家安全各领域对源头创新的巨大需求将集中释放,迫切需要基础研究发挥战略引擎作用。为加快建设世界科技强国、大力推动基础研究繁荣发展,按照《国家创新驱动发展战略纲要》和《“十三五”国家科技创新规划》的总体部署,特制定本专项规划。 /p p    span style=" color: rgb(255, 0, 0) " strong 一、形势与需求 /strong /span /p p   “十二五”期间,我国基础研究工作全面贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》部署,通过实施国家自然科学基金、973计划、国家重大科学研究计划等国家科技计划和知识创新工程、985工程、211工程,持续加大投入力度,全国基础研究投入年均增长保持在20%以上。基础研究持续快速发展,学科布局进一步优化,科研力量和基础条件建设进一步加强,科研产出持续规模化发展,整体科研实力和原始创新能力显著提高,进入世界领先或先进水平的领域不断增多,取得了一批具有世界影响的重大原创成果,国际影响力大幅提升,整体上呈现从量变到质变的加速发展态势,已发展成为具有全球重要影响力的基础研究大国,在国家经济社会发展中发挥了重要的引领作用,为创新型国家建设作出了重要贡献。主要表现在: /p p   ——基础研究水平大幅提升。学科体系、人才队伍、科研基地和条件保障能力建设进一步加强,一批研究院所成为有重要国际影响的科研机构,一些研究型大学跻身世界一流大学行列。国际科技论文数量连续多年稳居世界第2位,2015年,我国国际科技论文总量为29.68万篇,占全球的份额从2004年的5.4%增长至2015年的16.3%。我国国际科技论文被引用次数稳步增加,影响力显著增强,2006年至2016年9月,我国论文共被引1489万余次,居世界第4位。农业科学、化学、计算机科学、工程技术、材料科学、数学、药学与毒物学、物理学等8个学科领域的论文被引用次数排名世界第2位。 /p p   ——学科布局进一步优化。数学、物理、化学、天文、地学、生物学等基础学科稳步发展,信息、空间、资环、海洋等综合学科,以及认知科学、纳米科学、数据科学、管理科学等交叉学科得到高度重视并加快发展,基础医学、农学、材料、能源和工程科学等应用基础学科得到大力支持,学科布局不断完善,多学科以及跨学科之间的交叉融合日益显著并取得重要进展,部分学科水平进入国际先进行列。 /p p   ——原始创新成果不断涌现。在量子调控、纳米、蛋白质科学、干细胞、发育与生殖、全球变化等领域取得重要进展,基础研究重大原始创新成果呈加速产出的趋势。获得了一批诸如铁基超导、多自由度量子体系的隐性传态、量子反常霍尔效应、中微子振荡、四夸克物质发现、细胞剪接体等一批重要蛋白质的精细结构解析、小分子化合物诱导体细胞重编程为多潜能干细胞、小鼠-大鼠异源杂合二倍体胚胎干细胞构建等在世界上具有重大影响的原创成果。 /p p   ——对经济社会发展的支撑引领作用不断增强。在重大传染病防控基础研究体系建立、农业生物遗传改良和农业可持续发展、油气资源高效利用等领域取得重大突破 理论基础和前沿技术的突破对载人航天、南水北调、应对气候谈判等领域提供有力支撑 材料科学、信息科学、制造科学等前瞻性研究,推动了我国传统产业的改造升级和战略性新兴产业的培育与发展 能源科学、生态科学、环境科学以及对深海、深地、深空、极地的探索等,为我国解决可持续发展和改善民生的重大瓶颈问题奠定了科学基础。 /p p   ——基础研究队伍建设不断加强。从事基础研究的全时人员总量由2006年的13.13万人年增长到2014年的23.54万人年。吸引国外优秀人才回国,领军人才快速成长,中青年科学家成为主力,后备人才队伍逐步成长,一批优秀团队正在崛起。 /p p   ——国际影响力进一步提升。我国科学家越来越多地参与国际热核聚变实验堆(ITER)、大型强子对撞机(LHC)、全球海洋观测计划(ARGO)、国际大陆钻探(ICDP)、国际大洋钻探(IODP)、全球综合地球观测系统(GEOSS)、人类蛋白质组研究等国际大科学研究计划,发挥重要作用。大亚湾中微子实验、地球空间双星探测等我国科学家提出的重大国际合作项目逐步增多,国际科学影响力不断提升。在国际学术组织和国际知名科技期刊担任重要职务的人数明显增加。 /p p   经过持续努力,我国基础研究总体水平已进入世界先进行列。同时,我国基础研究发展尚存在一些突出问题:重大原创成果偏少 支撑产业技术创新的应用基础研究薄弱 在引领前沿方向、主导国际大科学计划和大科学工程等方面欠缺 基础研究队伍结构不够合理,具有世界影响力的科学家数量匮乏 基础研究经费稳定性支持的机制有待完善,科研评价机制和创新环境有待进一步改善。 /p p   当今世界正处于发展、变革和调整的关键时期,新一轮科技革命加速演进,一些基本科学问题孕育重大突破,产生新的重大科学思想和科学理论,催生颠覆性技术,可望引发世界经济格局的重大深刻调整。国际科技竞争日益加剧,综合国力的竞争已前移到基础研究。切实加强基础研究,提升原始创新能力,对于提升我国综合国力、建设科技强国具有不可替代的重要作用。 /p p   我国经济发展进入速度变化、结构优化和动力转换的新常态。推进供给侧结构性改革,促进经济提质增效、转型升级,迫切需要依靠科技创新解决产业共性技术基础问题,提升产业核心竞争力,培育发展新动能。来自经济社会发展和国家安全各领域对源头创新的巨大需求将集中释放,迫切需要基础研究发挥战略引擎作用。 /p p   面对新形势新任务,我们必须切实加强基础研究,提升原始创新能力,着力解决我国基础研究发展过程中的问题,在提出原创科学思想、探索重大科学前沿、解决国家战略需求和产业共性技术基础等重大科学问题、完善科研基地建设以及引领重大国际科学合作等方面取得重大突破,造就一流的基础研究人才队伍,引导企业加强基础研究,推进我国基础研究实现从量变向质变的跃升,为全面提升自主创新能力、建成创新型国家提供知识基础、人才储备和发展动力。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、总体要求 /strong /span /p p    strong (一)指导思想 /strong /p p   高举中国特色社会主义伟大旗帜,全面贯彻党的十八大和十八届三中、四中、五中和六中全会精神,以马克思列宁主义、毛泽东思想、邓小平理论、“三个代表”重要思想、科学发展观为指导,深入贯彻习近平总书记系列重要讲话精神,坚持“五位一体”总体布局和“四个全面”战略布局,坚持创新、协调、绿色、开放、共享发展理念,全面贯彻落实全国科技创新大会精神、《国家创新驱动发展战略纲要》和《“十三五”国家科技创新规划》部署,遵循科学发展和创新活动的规律和特点,坚持继承与创新,强化基地和能力建设,培养一流人才,着眼未来国家竞争力,聚焦在创新链的前端,坚持把强化基础研究、提升原始创新能力作为根本任务,发挥基础研究对建设创新型国家和世界科技强国的重要引领作用。 /p p    strong (二)基本原则 /strong /p p   坚持鼓励自由探索和目标导向相结合。面向科学前沿,进一步加大对好奇心驱动基础研究的支持力度,引导科学家将学术兴趣与国家目标相结合,解决重大科学问题。面向国家重大需求和国民经济主战场,针对事关国计民生、产业核心竞争力的重大战略任务,超前部署基础研究,促进基础研究与经济社会发展需求紧密结合,为创新驱动发展提供源头供给。 /p p   坚持把加速赶超引领作为发展重点。把握世界科技前沿发展态势,在关系长远发展的基础前沿领域,超前规划布局,强化原始创新。鼓励科学家在独创独有上下功夫,勇于挑战最前沿的科学问题,提出更多原创理论,做出更多原创发现。在重要科技领域实现跨越发展,解决产业共性技术基础,跟上甚至引领世界科技发展新方向,掌握新一轮全球科技竞争的战略主动。 /p p   坚持把深化体制机制改革作为核心动力。尊重科学研究的灵感瞬间性、方式随意性、路径不确定性等特点,着眼长远,鼓励科学家自由探索、认真求证。完善基础研究分类评价机制,改进人才评价考核方式,赋予学术领军人才更多的学术自主权,完善基础研究投入结构和动态调整机制。 /p p   坚持把不拘一格发挥人才作用作为本质要求。牢固树立科学人才观,深入实施人才优先发展战略,遵循人才成长规律,完善更加开放、更加灵活的人才培养、吸引、使用机制,努力培养造就一大批科技领军人才,优秀青年科技人才,建设一批优秀创新团队。 /p p   坚持把全球视野作为重要导向。坚持开放发展,主动融入全球创新网络,共同应对全球关注的重大科学挑战,充分利用全球科技资源,在更高水平上开展基础研究创新合作。积极参与和组织实施国际大科学计划和大科学工程,提高国际话语权和影响力,为世界科学发展作出贡献。 /p p    strong (三)总体目标 /strong /p p   基础研究原始创新能力和国际竞争力显著提升,重要领域方向跻身世界先进行列,整体水平向并跑和领跑为主转变,支撑引领创新驱动发展源头供给能力显著增强,为我国到2020年进入创新型国家行列奠定坚实的基础。 /p p   主要目标如下: /p p   ——持续稳定支持基础研究,基础研究占全社会研发投入比例大幅度提高。 /p p   ——形成全面均衡的学科体系,科学产出的水平、质量和国际影响力大幅提升。学科整体水平进入世界前三名,部分学科学术影响力达到世界领先,国际科技论文被引次数达到世界第二。 /p p   ——在若干重大创新领域组建一批国家实验室 优化国家重点实验室布局,完善国家重点实验室体系,显著增强科学创新基础能力。 /p p   ——建设一流的人才队伍,形成一批跨学科、综合交叉的创新团队。 /p p   ——在科学前沿重要领域取得一批重大原创成果 解决一批面向国家战略需求的前瞻性重大科学问题,基础研究对经济社会发展引领支撑作用显著增强。 /p p   span style=" color: rgb(255, 0, 0) " strong  三、发展重点与主要任务 /strong /span /p p    strong (一)加强自由探索研究与学科体系建设 /strong /p p   加强原创导向,激励新概念、新构思、新方法、新工具的创造,力争在更多领域引领世界科学研究方向。加强科学前沿探索,进一步加大对好奇心驱动基础研究的支持力度,加大对非共识创新研究的支持力度,鼓励质疑传统、挑战权威,重视可能重塑重要科学或工程概念、催生新范式或新学科新领域的研究。 /p p   构筑全面均衡的学科体系,为我国实现从科学大国迈向科学强国奠定扎实的学科基础。推动学科均衡协调和交叉融合发展,统筹基础学科、应用学科、新兴学科、交叉学科布局,形成多学科均衡协调可持续繁荣发展局面,促进基础研究百花齐放。 span style=" color: rgb(255, 0, 0) " 推动数学、物理学、化学、天文学、地学、生命科学等基础学科持续发展,推进能源科学、环境科学、海洋科学、材料科学、工程科学和临床医学等应用学科发展,加强信息、纳米等新兴学科建设,鼓励开展跨学科研究,促进学科交叉与融合。 /span /p p    strong (二)组织实施重大科技项目 /strong /p p   “十三五”期间,着眼于更长远的国家重大战略需求,凝练事关我国未来发展的重大科技战略任务,构建未来我国科技发展制高点,组织若干项基础研究类重大科技项目,努力实现以科技发展的重大突破带动生产力的跨越发展。 /p p    strong 1. 量子通信与量子计算机 /strong /p p   奠定我国在新一轮信息技术国际竞争中的科技基础和优势方向。量子通信研究面向多用户联网的量子通信关键技术和成套设备,率先突破量子保密通信技术,建设超远距离光纤量子通信网,开展星地量子通信系统研究,构建完整的空地一体广域量子通信网络体系,与经典通信网络实现无缝链接 量子计算机研究解决大尺度量子系统的效率问题,研发量子系统、量子芯片材料、结构与工艺、量子计算机整体构架以及操作和应用系统,实现量子信息的调制、存储、传输和计算,最终实现可实用化的量子计算机原型机 量子精密测量研究利用量子通信和量子计算所发展的量子探测、测量和操纵技术,实现对重力、时间、位置等的超高灵敏度测量,大幅提升卫星导航、潜艇定位、医学检测、引力波探测等的准确性和精确性。 /p p    strong 2. 脑科学与类脑研究 /strong /p p   围绕脑与认知、脑机智能和脑的健康三个核心问题,统筹安排脑科学的基础研究、转化应用和相关产业发展,形成“一体两翼”的布局,并搭建相关关键技术平台。以脑认知原理(认识脑)为主体,阐述脑功能神经环路的构筑和运行原理,绘制人脑宏观神经网络、模式动物介观神经网络的结构性和功能性全景式图谱 发展类脑计算理论,研发类脑智能系统(模仿脑)。基于对脑认知功能的网络结构和工作原理的理解,研究具有更高智能的机器和信息处理技术 促进智力发展、防治脑疾病和创伤(保护脑),围绕高发病率重大脑疾病的机理研究,揭示相关的遗传基础、信号途径和治疗新靶点,实现脑重大疾病的早期诊断和干预。 /p p    strong (三)加强目标导向的基础研究和变革性技术科学研究 /strong /p p   针对事关国计民生的农业、能源资源、生态环境、健康等领域,以及事关产业核心竞争力、整体自主创新能力和国家安全的领域,进一步聚焦国家目标,充分发挥基础研究的战略支撑作用。同时,围绕战略性、基础性、前瞻性重大科学问题,对科学和技术发展有很强带动作用的基础研究进行重点部署,为创新发展提供源头供给。 /p p    strong 1. 加强国家重大战略任务部署基础研究 /strong /p p   面向现代农业、健康、资源环境和生态保护、高新技术产业、节能环保和新能源、新型城镇化等领域的国家重大战略任务,选择可有力带动基础研究、重大共性关键技术和重大应用示范结合的战略性、全局性、长远性的方向进行全链条设计一体化组织,强化基础研究对经济社会发展的支撑作用。 /p p    strong (1)在现代农业方面 /strong ,围绕粮食丰产增效、农业面源污染和农田综合防治修复、智能农机装备、食品加工及粮食收储运、林业资源培育及高效利用、海洋(蓝色)粮仓、作物优质高产、化学肥料和农药减施增效、七大农作物育种、主要畜禽水产动物育种、农业病虫害防治等重点任务,部署精确栽培、分子遗传变异、优良性状形成机理、种间互作和定向培育等基础研究。 /p p    strong (2)在节能环保和新能源方面 /strong ,围绕煤炭清洁高效利用和新型节能技术、可再生能源与氢能、先进核能与核安全、智能电网、深层油气勘探开发、能源基元与催化,加强碳基能源清洁转化、源网荷协同机制、深层油气成藏机理和生态监测预警等基础研究的支撑引领。 /p p    strong (3)在产业转型升级方面 /strong ,围绕网络协同制造、3D打印和激光制造、智能机器人、重点基础材料、先进电子材料、材料基因工程、制造基础技术与关键部件、云计算和大数据、高性能计算、宽带通信和新型网络、网络空间安全、地球观测与导航、光电子器件及集成、科技服务业、新能源汽车、重大科学仪器设备、精细化学品生产、功能分子材料与器件部署基础研究,解决产业共性关键技术基础问题,为培育战略性新兴产业提供科学支撑。 /p p    strong (4)在资源环境和生态保护方面 /strong ,围绕土壤及地下水污染防治、生态修复、深地资源勘探开发、废物处置与资源化、海洋环境安全、深海技术装备、重大自然灾害监测预警与防范、水资源综合利用、大气污染成因与控制、青藏高原多层圈相互作用及其资源环境效应、海洋生态环境与可持续发展、土壤-生物系统功能及其调控等开展重大科学问题研究。 /p p    strong (5)在健康方面 /strong ,面向重大慢性非传染性疾病防控、精准医疗、生物制品与生物治疗、中医药现代化研究、生殖健康及重大出生缺陷、人口老龄化、生物安全关键技术、移动医疗与健康促进、生物医用材料与组织器官修复替代、食品药品安全、数字诊疗装备、个性化药物、典型污染物的环境暴露与健康危害机制等重大社会公益性研究,全链条部署自主神经干预、基因组学、三维微环境营造、分子设计和超快激光制造等基础研究。 /p p    strong (6)在新型城镇化方面 /strong ,围绕物联网与智慧城市、综合交通运输与智能交通、先进轨道交通及其关键部件、绿色建筑及建筑工业化、公共安全风险防控与应急技术装备等领域的科学问题,强化基础研究与共性关键技术、示范应用的衔接。 /p p   strong  2. 加强战略性前瞻性重大科学问题研究 /strong /p p   围绕世界科学前沿的重点方向,凝练战略性前瞻性重大科学问题,以实现重点跨越、引领未来发展为目标,重点部署基础研究。 /p p    strong (1)量子调控与量子信息 /strong /p p   认识和了解量子世界的基本现象和规律,通过对量子过程进行调控和开发,在关联电子体系、小量子体系、人工带隙体系等重要研究方向上建立突破经典调控极限的全新量子调控技术,实现量子相干和量子纠缠的长时间保持和高精度操纵,实现可扩展的量子信息处理。 /p p   strong  (2)纳米科技 /strong /p p    span style=" color: rgb(255, 0, 0) " 围绕纳米科学重大基础问题,新型纳米制备与加工技术,纳米表征与标准,纳米生物医药,纳米信息材料与器件,能源纳米材料与技术,环境纳米材料与技术等方面开展研究,加强基础研究与应用研究的衔接,推动纳米科技产业发展。 /span /p p    strong (3)蛋白质机器与生命过程调控 /strong /p p    span style=" color: rgb(255, 0, 0) " 揭示蛋白质机器复杂的结构和功能、调控网络、以及动态变化规律,发挥蛋白质科学研究设施的支撑优势,围绕重要细胞器及生物膜相关蛋白质机器等重大科学问题,高分辨率冷冻电镜、磁共振技术等重大技术方法,以及肿瘤、免疫类等疾病防治等重大应用研究领域部署研究任务。 /span /p p    strong (4)全球变化及应对 /strong /p p   围绕全球变化关键过程、机制、趋势与表现,全球变化影响、风险、减缓和适应,数据产品及大数据集成分析,地球系统模式和高分辨率气候系统模式的开发、改进与应用等开展研究,提升我国全球变化研究的竞争力和国际地位,为应对全球变化国家战略提供科技支撑。 /p p    strong (5)干细胞及转化研究 /strong /p p   以增强我国干细胞转化应用的核心竞争力为目标,以我国多发的神经、血液、心血管、生殖等系统和肝、肾、胰等器官的重大疾病治疗为需求牵引,重点部署多能干细胞建立与干性维持,组织干细胞获得、功能和调控,干细胞定向分化及细胞转分化,干细胞移植后体内功能建立与调控,基于干细胞的组织和器官功能再造,干细胞资源库,利用动物模型的干细胞临床前评估,干细胞临床研究。 /p p    strong (6)大科学装置前沿研究 /strong /p p   依托我国已建成的专用和平台型大科学装置,主要支持粒子物理、天文等领域探索物质世界的结构及其相互作用规律等的重大前沿研究,以及 span style=" color: rgb(255, 0, 0) " 依托 /span span style=" color: rgb(255, 0, 0) " 先进光源、先进中子源、强磁场装置等为多学科交叉前沿提供先进实验技术和方法,推动大科学装置向社会用户开放共享。 /span /p p    strong (7)合成生物学 /strong /p p   围绕生命体计算设计、合成再造与人工调控等核心科学问题,面向提升人工生物装置与系统的设计构建能力,创建一批具有特定功能的人工基因线路、人工生物器件、人工细胞等人工生物体,构筑智能疾病诊疗、人工生物固碳、药物高效规模合成、重要化工材料构建等重大应用的科学支撑,促进生物产业创新发展与经济绿色增长。 /p p    strong (8)发育编程及其代谢调节 /strong /p p   面向科学前沿及健康和农业发展需求,以生命体发育和代谢的精准调控机制为主线,揭示胚胎和组织器官发育、成年组织器官可塑性及衰老、胚胎和组织器官发育的代谢调控等规律,鉴定发育与代谢的关键调控因子,创建大动物遗传修饰品系,揭示大动物发育与代谢的重要调控机制。 /p p    strong (9)微生物组学 /strong /p p   开展微生物组形成、遗传稳定性及与环境互作机制研究,农业微生物组与作物生长和发育的相互关系、抵抗环境压力和病虫害的机理研究,基于生态环境污染监测与预警的微生物组技术研发,我国人群体内微生物组及健康相关功能研究。推动科学前沿发展,为我国健康、农业、环境可持续发展提供支撑。 /p p    strong (10)催化科学 /strong /p p   在催化理论、催化剂的理性设计与表征、催化新方法与新反应、资源的绿色催化转化与高效利用等相关催化领域中获得重大原始创新和重要应用成果,提高自主创新能力和研究成果的国际影响力 为解决能源、环境、资源以及人口健康等领域的关键问题提供物质基础以及技术支撑。 /p p    strong (11)极端制造的科学基础与创新技 /strong 术 /p p   围绕极端制造需求和技术发展面临的关键科学问题,研究超大规格高柔性高性能航天复杂构件一体化制造和高均匀性近零残余应力航空构件制造, span style=" color: rgb(255, 0, 0) " 10纳米以下集成电路器件三维集成制造和光子集成器件制造,复杂曲面强光光学元件的抗损伤纳米精度制造和光学元件微纳结构的超快激光制造 /span ,热电高效转化的热防护构件制造、高性能复合声学结构制造和生机电一体化制造。为中国制造2025的顺利实施提供科学基础和支撑。 /p p    strong (12)磁约束核聚变能发展 /strong /p p   以参加国际热核聚变实验堆(ITER)计划为契机,全面吸收消化关键技术,以聚变堆未来科学研究为目标,加快国内聚变发展,开展高水平的科学研究,开展聚变堆工程设计和关键技术预研,发展氚技术、聚变材料等ITER未涵盖的聚变堆技术。加快我国磁约束核聚变能的基础与应用研究,培养并形成一支高水平核聚变能研发队伍,大力提升我国核聚变能发展研究的自主创新能力,在2020年前后具备自主建造聚变工程堆的能力,适时启动高效安全聚变堆研究设施建设,加快聚变能走向应用进程,跨入世界核聚变能研究开发先进行列。 /p p    strong (13)空间科学系列卫星计划 /strong /p p   研制并发射3-4颗新的空间科学卫星,在黑洞、暗物质、时变宇宙学、地球磁层-电离层-热层耦合规律、全球变化与水循环、量子物理基本理论和空间环境下的物质运动规律与生命活动规律等方面取得重大科学发现与突破。 /p p   strong  3. 加强面向培育变革性技术的科学研究 /strong /p p   以实现“重点科技领域战略领先”为目标,围绕重要科学前沿或我国科学家取得原创突破、学科交叉创新带动的特征明显、有望产出具有变革性技术原型的基础研究和应用基础研究,进行前瞻部署,建立快速响应机制、创新组织管理模式,培育有望推动产业变革和经济发展模式转变的变革性技术,抢占未来经济社会跨越发展的先机。 /p p    strong (四)加强国家科技创新基地和科研条件建设 /strong /p p   “十三五”期间,以提升原始创新能力为目标,完善科学与工程研究类国家科技创新基地建设与布局,在重大创新领域组建若干国家实验室,推进国家重点实验室的优化布局和发展。进一步推进国家重大科研基础设施的建设和运行,加强野外科学观测研究站建设和科技基础资源调查,夯实孕育原始创新的物质技术基础。 /p p    strong 1. 建设国家实验室,加强国家重大战略性基础研究能力 /strong /p p   国家实验室是体现国家意志、实现国家使命、代表国家水平的战略科技力量,是突破型、引领型、平台型一体化的大型综合性研究基地。主要任务是突破世界前沿的重大科学问题,攻克事关国家核心竞争力和经济社会可持续发展的核心技术,率先掌握能够形成先发优势、引领未来发展的颠覆性技术,确保国家重要安全领域技术领先、安全、自主、可控。 /p p    strong 2. 加强国家重点实验室体系建设 /strong /p p   面向世界科技前沿、面向国家重大需求、面向经济社会发展主战场,立足体系建设和能力提升,强化开放共享和协同创新,构建定位清晰、任务明确、布局合理、开放协同、分类管理、投入多元的国家重点实验室建设发展体系,实现布局的结构优化、领域优化和区域优化。 span style=" color: rgb(255, 0, 0) " 深化学科国家重点实验室改革,带动省部共建、企业、军民共建和港澳伙伴实验室等国家重点实验室发展。 /span 主要任务是面向前沿科学、基础科学、工程科学开展基础研究、应用基础研究和竞争前共性技术研究,推动学科发展,促进技术进步。提高实验室原始创新能力,加强引领带动作用,为科技创新由跟跑为主向并跑、领跑为主转变提供支撑。 /p p   strong  3. 加强国家重大科技基础设施建设 /strong /p p   聚焦能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域,以提升原始创新能力和支撑重大科技突破为目标,布局建设一批重大科技基础设施。强化国家重大科研基础设施绩效评估,形成以开放共享为核心的运行机制,提高成果产出质量和效率。 /p p    strong 4. 建设完善野外科学观测研究站,提升野外观测研究示范能力 /strong /p p   围绕生态保障、现代农业、气候变化和灾害防治等国家需求,建设布局一批野外科学观测研究站,完善国家野外观测站体系,推动野外科学观测研究站的多能化、标准化、规范化和网络化建设运行,促进联网观测和协同创新。开展科技基础资源调查,为认识自然现象、发现科学规律、推进基础学科发展奠定基础。 /p p    strong 5. 加强科研条件研发,增强基础支撑能力。 /strong /p p    span style=" color: rgb(255, 0, 0) " 鼓励和培育具有原创性学术思想的探索性科研仪器设备研制,聚焦高端通用和专业重大科学仪器设备研发、工程化和产业化 加强国家质量技术基础的研究,研发具有国际水平的计量、标准、检验检测和认证认可技术 加强实验动物新品种(品系)、动物模型的研究与应用 注重研发具有自主知识产权的通用试剂和高端高纯专用试剂 组织开展跨学科、跨区域的重大科学考察与调查 强化夯实科技创新的物质条件基础。 /span /p p    strong 6. 完善科技资源共享服务平台体系。 /strong /p p   根据科技资源类型,对现有国家科技基础条件平台进行优化整合 面向重大科技创新需求,在重大领域新建一批共享服务平台,完善平台布局 建设一批具有国际影响力的国家级科学数据中心、生物种质和实验材料资源库(馆),形成覆盖重点领域的科技资源支撑服务体系。 /p p    strong (五)加强基础研究人才队伍建设 /strong /p p   “十三五”期间,遵循人才成长规律,加强基础研究人才引进和培养,凝聚和造就一批具有国际影响力的高水平领军人才、青年人才、实验技术人才和优秀创新团队。 /p p    strong 1. 培养高水平领军人才 /strong /p p   在我国具有优势的重要领域,选择有较大发展潜力的科学家设立杰出科学家工作室,进一步推进“国家杰出青年科学基金项目”、“千人计划”和“万人计划”等高层次人才培养和引进计划的实施,加快培养一批在国际前沿领域具有较高影响力的领军人才。 /p p    strong 2. 加强中青年和后备人才培养 /strong /p p   瞄准世界科学研究前沿,培养和支持一批中青年科学家。实施“国家自然科学基金青年科学基金项目”、“国家自然科学基金优秀青年科学基金项目”、“长江学者奖励计划青年学者项目”、“中青年科技创新领军人才”“国家重点研发计划青年科学家专题”等青年人才资助计划,加强优秀青年人才的培养。加大博士后支持力度,积极吸引国内外优秀的博士毕业生在国内从事博士后研究。推进国家科研机构与大学合作培养基础研究后备人才。 /p p   strong  3. 稳定高水平实验技术人才 /strong /p p   加强实验技术人才培训工作,提升实验技术人员技术能力和水平。建立健全符合实验技术人才及岗位特点的评价体系和激励机制,提高实验技术人才的地位和待遇。优化实验技术人才队伍,形成合理的科研队伍组成结构。 /p p   strong  4. 培育和支持优秀科技创新团队 /strong /p p   聚焦科学前沿,支持高水平大学和科研院所组建一批跨学科、综合交叉的科研团队,加强协同合作,提升创新实力。发挥国家重点实验室等研究基地的凝聚作用,稳定支持一批优秀创新团队。结合科技重大专项、国家科技计划的实施和重大科技设施的建设与运行,加大对优秀创新团队的培育和支持力度。 /p p    strong (六)组织和加强重大国际科技合作与交流 /strong /p p   “十三五”期间,以全球视野谋划我国基础研究发展,积极融入和主动布局全球创新网络,有效利用和整合全球创新资源,服务“一带一路”重大战略需求,推动基础研究多层次、全方位和高水平的国际合作服务国家战略,提升国际话语权和影响力,使我国成为引领科学前沿、解决重大全球性问题的主导国家之一。 /p p    strong 1. 发起和组织国际大科学计划和大科学工程 /strong /p p strong   /strong  加强顶层设计,长远规划,择机布局,重点在数理天文、生命科学、地球环境科学、能源以及综合交叉等我国已相对具备优势的领域,研究提出未来5至10年我国可能组织发起的国际大科学计划和大科学工程。调动国际资源和力量,在前期充分研究基础上,力争发起和组织若干新的国际大科学计划和大科学工程,为世界科学发展作出贡献。 /p p    strong 2. 积极参与国际大科学计划和大科学工程 /strong /p p   面向基础研究领域和重大全球性问题,结合我国发展战略需要、现实基础和优势特色,积极参与国际热核聚变实验堆(ITER)计划、平方公里射电望远镜(SKA)建设、大型强子对撞机(LHC)、地球观测组织(GEO)、国际大洋发现计划(IODP)等国际大科学工程和大科学计划合作研究,“以我为主”创新参与模式,在共享国际优势科技资源的同时,提高我国的科研能力和大科学工程、大科学计划项目管理能力。 /p p    strong 3. 积极支持双边、多边基础研究科技合作 /strong /p p   深化基础研究领域政府间合作,完善合作机制,加强双多边基础研究科技合作。加大国家科技计划、国家重点实验室等对外开放力度。鼓励和支持国际联合实验室和研究中心建设。 /p p    strong 4. 走出去,请进来,吸引海外人才 /strong /p p   深化基础研究领域科研人员国际交流,支持和推荐我国科学家到国际学术组织交流和任职,选派优秀青年科研人员到国外一流研究机构深造。大力引进从事科学前沿探索和交叉研究、具有创新潜质的优秀科学家,支持高校、科研院所在重点学科领域建立联合研究中心或创新团队,支持国际知名高校、科研机构来华开展科研合作,成立研究中心。 /p p    strong 5.促进基础研究活动国际化 /strong /p p   鼓励国际科研合作交流,共同开展基础研究,合作发表论文 研究基础研究评审活动国际化,建立基础研究国际同行专家库,邀请国际高水平科学家参与项目评审,开展国际同行评议。 /p p    span style=" color: rgb(255, 0, 0) " strong 四、保障措施 /strong /span /p p    strong (一)加强顶层设计,完善管理机制 /strong /p p   加强顶层设计和整体布局,建立部门间沟通协调机制,按照新的国家科技计划体系对基础研究工作进行全面部署。统筹国家自然科学基金、国家科技重大专项、国家重点研发计划、国家基地和人才专项等国家科技计划系统支持基础研究,建立健全各类科技计划支持基础研究的资助政策与管理机制。 /p p   strong  (二)建立基础研究多渠道经费投入和分配机制 /strong /p p   建立基础研究多元化资助体系,多渠道增加基础研究投入。加大中央财政对基础研究的支持力度,完善稳定支持和竞争性支持相协调的机制 引导和鼓励地方、企业和社会力量增加对基础研究的投入,建立对非共识的探索性风险资助机制,提高基础研究占全社会研发投入比例。 /p p    strong (三)支持高等学校与科研机构自主布局基础研究 /strong /p p   结合国际一流科研机构、世界一流大学和一流学科建设,支持高等学校与科研机构自主布局基础研究,扩大高等学校与科研机构学术自主权和个人科研选题选择权,鼓励开展长周期、高风险的基础研究。 /p p    strong (四)引导和鼓励企业加强基础研究 /strong /p p   引导有条件的企业特别是大中型企业和企业化转制院所重视并开展基础研究。建立企业国家重点实验室,开展应用基础、前沿技术和共性技术研发。在企业内与高校、院所建立联合实验室,围绕自主创新能力建设,开展基础性、前沿性创新研究。鼓励社会力量通过设立科学研究基金、捐赠等形式支持基础研究。 /p p    strong (五)推动区域基础研究发展 /strong /p p   鼓励地方把基础研究纳入地方总体发展规划,围绕区域发展的实际需求和在资源、产业等方面的优势研究确定基础研究发展模式和路线。引导地方加大对基础研究的投入,结合国家目标、行业发展方向和区域创新发展需求,开展有特色和优势的基础研究,提升行业未来竞争力、公共服务水平和区域创新能力。 /p p   strong  (六)进一步优化科研和学术环境 /strong /p p   改善学术环境,建立符合基础研究特点和规律的评价机制。强化分类评价和第三方评价,建立长效评价机制,确立以学术贡献和创新价值为核心的评价导向,让学术评价回归学术。建立以原创性和学术水平评价考核人才的机制,探索科研人员代表作制度,避免以人才计划“头衔”评价考核科研人员。探索有别于传统同行评审的特别项目甄别与评价方式,建立包容和支持“非共识”基础研究项目的制度。加强科技成果权益管理改革,允许科研人员依法依规适度兼职兼薪。 /p p    strong (七)促进科技资源开放共享 /strong /p p   促进国家重大科研基础设施和大型科研仪器向社会开放,完善开放共享的评价考核和管理制度 开展考核评价,落实后补助激励机制 积极探索仪器设施开放共享市场化运作新模式,培育一批从事仪器设施专业化管理与共享服务的中介服务机构。 /p p   推进国家实验室、国家重点实验室等基础研究基地的对外开放与共享,完善开放共享机制,加大开放力度,强化面向科学研究和创新创业的高水平服务,提高全社会利用基础研究资源的效率和效益。 /p p   制定国家科学数据管理与开放共享办法,在保障知识产权的前提下推进资源共享。加强生物资源和实验材料收集、加工和保藏的标准化,提高资源存储数量和管理水平,完善开放模式,提高服务质量和水平,为国家科技创新、重大工程建设和企业创新提供坚实的资源保障支撑。 /p
  • 生命科学发展需要基础研究长期投入
    挂职北京市卫计委副主任,会不会耽误正常的科研和教学?&ldquo 21世纪是生命科学的世纪&rdquo &mdash &mdash 30多年前的预言今天是否实现?4月9日下午,在科技日报社、科技部机关党委联合主办的第二期《科技创新大讲堂》上,中科院院士、清华大学生命科学学院院长施一公教授,敞开心扉作了题为&ldquo 生命科学与人类探知未来&rdquo 的主题讲座。   此次大讲堂由科技部党组成员、科技日报社社长王志学主持。北京协和医院副院长、心内科教授张抒扬带领该院20余位知名专家莅会。面向300多位听众,施一公说,&ldquo 我最根本的是一个科学家,大约50%时间用在研究上&rdquo &ldquo 生命科学是21世纪最重要的自然及应用科学学科,中国要抓住机遇,加强基础研究的投入,注重人才培育,但科学研究不能拔苗助长&rdquo 。   关于科研时间:大约50%时间用在研究上   &ldquo 科研人员的科研时间哪去了&rdquo ,一直是施一公关注的话题。   在一个月前的全国两会上,施一公曾对媒体分析原因,&ldquo 现在的高校的确是高度行政化,每办一件事,都可能有很多行政环节&lsquo 作梗&rsquo 。也因为大学行政化的存在,产生了很多机构,多出来很多会议,很多教授、科研人员每天真正用在科研和教学上的时间有限&rdquo 。   从去年年底开始,施一公挂职北京市卫计委副主任。这会不会耽误他正常的科研和教学?在《科技创新大讲堂》上,施一公对此进行了回应:&ldquo 确实比较忙,但我在这里解释一下,我在北京市卫计委的工作只是挂职,不坐班,只是在力所能及的范围内,帮助一些医院在医学问题研究上尝试着找一条路。在有限的时间里,抽出一点时间,了解政府决策的过程,我认为是有意义的。&rdquo   对于自己科研时间,施一公说:&ldquo 我最根本的是一个科学家,不管外面事情有多忙,都会抽出50%的时间做科研。我是清华的教授,一年还要讲100学时的课,这是必须承担的。我的平衡就是留出足够的科研时间和教学时间。我经常会很不好意思地推掉很多事,诸如从评审到开会。这个平衡很难,但要保证教学同时保障50%的科研时间,一些事情只能往外推。&rdquo   关于生命科学:注重投入但不能拔苗助长   &ldquo 生命科学是21世纪最重要的自然及应用科学学科,也是比例最大的学科。&rdquo 施一公认为,从本质上说,生命科学是研究生命现象,揭示生命活动规律和生命本质的科学。它的研究对象可以是生物大分子,如蛋白质和核酸分子,细胞、组织和器官,如植物的根茎叶或人体的内脏器官 也可以是生物个体,如植物、动物、人类等,甚至是生态系统和生物圈。   &ldquo 生命科学属于实验学科,它与我们人类的生活密切相关。目前人类面临的一系列重大问题,如人口膨胀、食物短缺、能源危机、环境污染及疾病危害等的改善,很大程度上将依赖于生命科学和生物技术的进步与发展。&rdquo 在回答科技日报记者提问时,施一公认为,&ldquo 21世纪将是生命科学的世纪&rdquo 这一预言正在逐步变成现实,但中国在不少方面和美国等国还有差距。   &ldquo 清华大学图书馆统计了1998年到2008年的SCI科学论文发表情况,在全世界范围内,大生命科学的论文占50%左右 美国的数字和世界基本吻合,但在排名前十的美国综合性大学里这一比例是61% 中国则是20%。这个就是区别。这个数字反映出中国当时的现状,有它的真实性和客观性,而且是需求造成的。我觉得,要重视生命科学,但不能拔苗助长。&rdquo   施一公又谈到了政府科研经费投入的比例:&ldquo 美国政府大约50%左右的科研经费用于大生命科学的研究。中国的数字我不全有,但有一些。比如说,我们的自然基金委,在上世纪90年代的投入,可能在10%左右 现在生物学加医学是30%以上。可以看出,我国政府对于生命科学的投入在不断加入。&rdquo   施一公认为:&ldquo 这些并不是拍拍脑袋做出来的决定。国家一点一点加大生命科学的投入,这是应该的。因为生命科学与百姓的生活和健康息息相关,高端创新制药要发展起来,生物科技要做起来,都需要基础研究的长期投入,用以培养尖端人才。&rdquo   关于教育:让孩子觉得&ldquo 科学很酷&rdquo 而不是&ldquo 赚钱很酷&rdquo   人们眼&ldquo 见&rdquo 的就是真实的吗?   施一公用科学进行反驳:&ldquo 人们普遍认为,三原色是红、绿、蓝,其实人的视网膜细胞上的感光蛋白最敏感的三原色更接近黄、绿、紫。因为我们的眼睛里主要有三种感光蛋白。视觉仅仅是人眼对390纳米到700纳米的电磁波的接收,无法感受到这一狭窄波长范围之外的电磁波。我们看到的宇宙,看到的世界,有可能完全是这样一个主观的偏见,是真实世界的一小部分。&rdquo   随后,施一公又进行了一系列发问:&ldquo 人们为什么要睡觉?&rdquo &ldquo 人们知不知道暗物质可以轻易穿过身体?&rdquo   在一个个故事里,施一公向社会传递着一种声音,&ldquo 科学很酷,非常有意思&rdquo 。   &ldquo 我小时候,在河南农村驻马店,想的是成为科学家,而不是电影明星 听的都是陈景润、张广厚、华罗庚的故事。&rdquo 施一公说,&ldquo 现在的年轻人崇拜财富,但很少崇尚科学,这是很可怕的。&rdquo   在施一公看来,中国最需要的是针对中小学生进行大规模的普及教育,&ldquo 要让孩子们在成长过程中觉得科学很酷,而不是赚钱很酷。这个社会的原动力是知识,这个社会到了崇尚科学的时候,到了宣传&lsquo 科学很酷&rsquo 的时候了&rdquo 。
  • 访徐旭东、施一公、王晓东:基础研究有什么用
    制图:蔡华伟   每当我国科学家在某个基础研究领域取得重大进展、相关论文在国际权威刊物上发表时,经常会听到这样的声音:这个研究有啥实际用处?能治疗肿瘤还是能多打粮食?   类似的声音还有许多:中国仍处在社会主义初级阶段,能不能少搞点玄妙的基础研究、多搞些实用的技术研发?中国的基础研究搞了那么多年,为什么没有一项成果获得诺贝尔奖?&hellip &hellip   针对不少读者关心的这些问题,从今天起,我们推出连续报道&ldquo 四问基础研究&rdquo ,诚请大家共同关注和探讨。   &mdash &mdash 编者   从普通科研人员到中科院院长白春礼,高智商的精英们经常被一个简单的问题问倒:基础研究有什么用?   那些玄妙深奥的新发现、新突破,既不创造经济效益,也不解决实际问题&mdash &mdash 除了发发文章,基础研究还能有什么用?   基础研究是技术创新的源泉   如果没有电磁理论,就不会有后来的电动机和无线通信   在基础研究、应用研究和技术开发三大类科研活动中,基础研究既不像应用研究那样有明确的目的性,所产出的新知识、新原理、新定律也不像技术开发所产生的新产品、新方法、新技术、新材料那样具有实用价值。   &ldquo 但技术创新不是凭空产生的,它们的源头和根基,就是基础研究所产出的新知识、新原理、新定律。&rdquo 中科院水生生物研究所副所长徐旭东告诉记者,&ldquo 特别是第二次工业革命之后,所有重大的技术创新和发明创造,都是依赖于基础研究创造的重大发现。&rdquo   &ldquo 如果没有电磁理论,就没有今天的电和无线通信。&rdquo 徐旭东举例说:19世纪20年代,英国科学家法拉第发现了电磁感应现象,并据此在1831年研制出世界上第一台发电机 在法拉第电磁理论的基础上,英国科学家麦克斯韦把数学方法引入这一研究,预言了电磁波的存在,这一预言得到德国物理学家赫兹的实验证实 1895年,意大利电气工程师马可尼据此发明了世界上第一台实用的无线电报系统,人类由此进入无线电通讯时代。   &ldquo 没有牛顿的万有引力定律,就没有今天的载人航天 没有巴斯德发现微生物,就不会有今天的疫苗。&rdquo 徐旭东说,&ldquo 基础研究对人类生产、生活所产生的巨大影响,远远超出了人们包括科学家本人的想象。&rdquo   &ldquo 基础研究是科技之本,没有好的基础研究,一定不会有杰出的技术创新。&rdquo 清华大学教授施一公说,无论是美国、英国,还是日本、以色列,世界上所有科技强国的基础研究都非常强 反过来看,也没有哪一个国家基础研究很好、技术创新很差。&ldquo 对于一个国家的科技事业来说,基础研究相当于地基 如果没有厚实的地基,是盖不出高楼大厦的 即使勉强盖起来了,也一定是海市蜃楼。&rdquo   基础研究是培养创新人才的捷径   如果没有钱学森、赵九章、郭永怀等著名科学家,就不可能有震惊世界的&ldquo 两弹一星&rdquo   施一公有中科院院士和美国科学院、美国人文与科学学院外籍院士等三个院士头衔,但他最看重的,还是&ldquo 清华大学教授&rdquo 这一个。&ldquo 我回到清华大学的主要目的,就是从事研究、培养学生。&rdquo   &ldquo 说到人才的重要性,&lsquo 两弹一星&rsquo 是最好的例子。&rdquo 施一公说,如果当初没有钱学森、赵九章、郭永怀、邓稼先、周光召等著名科学家回国效力,就不可能有我们今天仍然引以为豪的&ldquo 两弹一星&rdquo 。&ldquo 在&lsquo 两弹一星&rsquo 元勋中,大部分科学家在国外留学时都是从事基础研究的。回国后他们服从国家需求,转入应用研究和技术开发。他们研制&lsquo 两弹一星&rsquo 所凭借的,正是在国外跟从导师做研究时所接受的严格的科学训练、扎实的理论功底。&rdquo   施一公认为,基础研究是培养创新人才最好的方式。   不搞基础研究的教授不是照样能培养出创新人才吗?   &ldquo 当然可以,但层次可能很不一样。&rdquo 施一公说,从事基础研究需要接触最前沿的科学进展、运用最新的科学仪器和科研方法,在这个过程中培养出的学生创新能力,与只接受旧知识、旧方法的学生肯定是有很大差别的。&ldquo 基础研究最能培养年轻人的逻辑思维、创新思维,激发他们的创造潜力。&rdquo   &ldquo 基础研究的第二个直接产出就是人才。&rdquo 徐旭东说,学生们在基础研究中接触了前沿的科学知识,掌握了先进的实验方法和实验技能,独立工作后根据各自的兴趣、特长,既可以继续从事基础研究,也可以转入下游的应用研究和技术成果转化。&ldquo 如果没有基础研究培养出的各类创新人才,创新驱动就很难实现。&rdquo   基础研究是孕育科学精神的摇篮   如果多数民众具备理性、求真、独立思考的科学精神,可能就不会有&ldquo 大师&rdquo 闹剧和PX恐慌   在科学家看来,基础研究不仅推动了技术进步、培养了创新人才,还孕育了不容忽视的科学精神。   &ldquo 基础研究特别是实验科学,讲究的是证据和逻辑,靠的是独立思考,而这些都是科学精神的内核。&rdquo 北京生命科学研究所所长、美国科学院院士王晓东认为,科学精神不仅对科学研究至关重要,也是现代公民成熟的重要标志。&ldquo 是否具备科学精神,不仅关乎科学自身,还关乎一个国家的健康发展。&rdquo   &ldquo 求真、理性、独立思考的科学精神是培养杰出科学家和产生重大科学发现的土壤,一个国家如果缺乏这种精神,就很难成为科学发现和科学思想的发源地。&rdquo 徐旭东说,&ldquo 当科学精神渗入民众的思想、内化成他们的行为,所带给整个国家的滋养将远远超出科学领域。&rdquo   近年来频繁上演的张悟本、李一、王林等&ldquo 大师&rdquo 闹剧,以及沸沸扬扬的PX困局和转基因口水战,让很多外国友人大跌眼镜。王晓东和徐旭东认为,如果多数公众具备理性、求真、独立思考的科学精神,可能就不会发生这些现象。&ldquo 你不懂不要紧,可以去查寻、求证。什么事情都可以讨论,但要摆事实、讲道理,不能像小孩子吵架,不顾事实、不讲道理。&rdquo 王晓东说。   &ldquo 令人担心的不仅是科学精神缺乏,还有科学信仰危机。&rdquo 徐旭东说,在许多事关科学的事件中,许多人不相信科学家的解释,却对非专业人士的话信奉有加。&ldquo 一个国家基础研究很弱、缺少科学大家,怎能让民众建立对科学的信仰?如果我国的基础研究非常强,科学家像明星大腕那样受人推崇,情形会完全不一样。&rdquo   在乘凉的同时也要种树   如果中国在科学上做不出像样的贡献,教科书中的定理、定律都是外国人发现的,怎么让别人尊重你?   &ldquo 评判基础研究的价值,必须要有整体观、大局观,不能只用实用主义和功利主义的尺子。&rdquo 王晓东说,&ldquo 科学史上的每一次重大发现,都极大地拓宽了人类视野,改变了人类对自然界及人类自身的认识。它不仅极大推动了科学自身的发展和技术的巨大进步,也对文学、艺术、哲学等产生了深远的影响。&rdquo   回顾科学发展史,这样的例子不胜枚举:哥白尼的日心说推翻了&ldquo 地球是宇宙中心&rdquo 的错误认识,达尔文的进化论推翻了&ldquo 神创论&rdquo 和物种不变说,门捷列夫的化学元素周期律使人类对物质世界有了更深层的认识,细胞学说的建立不仅推动了生物学的发展,也为辩证唯物论提供了重要的自然科学依据。   &ldquo 基础研究所获得的重大突破和重大发现,不仅可以直接拉动本国的技术研发,也让一个国家为人类文明做出了积极贡献 不仅极大提高了本国国民的民族自豪感,也会显著提升这个国家在国际大家庭中的地位和影响。&rdquo 徐旭东说,&ldquo 一个国家、一个民族要想真正赢得世界的尊重,必须对人类文明做出应有的贡献。如果教科书中的定理、定律都是外国人发现的,怎么让人家尊敬你?&rdquo   &ldquo 搞基础研究要有前人栽树、后人乘凉的长远眼光,也应该有&lsquo 自己栽树、别人乘凉&rsquo 的广阔胸襟,不能只管乘凉、不愿栽树。现在中国已成为世界第二大经济体,是该在基础研究中为人类文明做出贡献的时候了。&rdquo 王晓东说。
  • 基金委发布双碳目标下制氢储氢基础研究项目指南
    关于发布工程与材料科学部“双碳”专项项目(一)——“双碳目标下制氢储氢基础研究”项目指南的通知为推动面向国家“碳中和”战略目标的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)工程与材料科学部拟设立“双碳”专项项目(一)——“双碳目标下制氢储氢基础研究”,针对低碳/零碳制氢和地下大容量储氢的核心科学问题,开展多学科交叉研究,为发展制氢脱碳的能源系统、可再生能源制氢途径、高效地下储氢技术奠定理论基础,推动“双碳”目标下制氢储氢技术发展。一、科学目标本专项项目围绕化石燃料低能耗制氢、可再生能源制氢系统源荷波动自适应控制以及地下多孔储层高效储氢,从制氢与碳协同转化入手,探索化石燃料低能耗制氢的新原理和新方法,降低制氢脱碳能耗;探究可再生能源直流离网制氢系统可靠运行保护控制方法与高效变流机制,提高可再生能源制氢系统效率;揭示氢气在地下多孔储层中传质与输运机理和特性,提高地下储层储氢性能。二、资助方向(一)制氢与碳的协同转化。阐明化石能源制氢中燃料化学能源头捕集CO2的机理,提出化石燃料制氢脱碳的协同转化理论与减少不可逆损失的调控方法,进行制氢与脱碳耦合的机理与方法验证,大幅降低制氢及碳捕获能耗。(二)可再生能源离网制氢电能传输与变换。揭示波动性可再生能源直流离网制氢系统能量传输分配规律与直流网络中源-氢接口暂态电磁耦合机理,提出可再生能源直流离网制氢系统拓扑构建方法与快速协同保护控制机制,攻克可再生能源直流离网大规模制氢系统高效变流与可靠经济运行关键技术。(三)地下多孔储层中氢气输运与调控。阐明氢气与地下多孔储层流体多相多组分传质与输运机理,揭示不同地层深度和压力下氢气-地层流体-岩石-微生物的化学反应与流动传质耦合机制及损耗规律,提出地下多孔储层中氢气演化运移的预测方法与减小损耗的调控方法。三、资助期限和资助强度本专项项目资助期限3年,申请书中研究期限应填写“2023年1月1日-2025年12月31日”,平均资助强度约300万元/项,拟资助3~4项。四、申请要求及注意事项(一)申请资格。1. 具有承担基础研究课题的经历。2. 具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项规定。1. 本专项项目从申请开始直到自然科学基金委做出资助与否决定之前,不计入申请和承担总数范围,获资助后计入申请和承担总数范围。2. 申请人和主要参与者只能申请或参与申请1项本专项项目。3. 申请人同年只能申请1项专项项目中的研究项目。(三)申请注意事项。1. 申请人在填报申请书前,应当认真阅读本“专项项目指南”《国家自然科学基金专项项目管理办法》《2022年度国家自然科学基金项目指南》的相关内容,不符合项目指南、管理办法和相关要求的申请项目不予受理。2. 本专项的申请提交时间为2022年11月8日-11月11日16时,以国家自然科学基金网络信息系统(以下简称信息系统)提交时间为准,晚于截止时间提交的申请将不予受理。3. 申请人应登录信息系统https://grants.nsfc.gov.cn,按照撰写提纲及相关要求撰写申请书。没有信息系统账号的申请人请向依托单位基金管理联系人申请开户。4. 申请人在进入信息系统后中首先选择“在线申请”-“新增项目申请”-“申请普通科学部项目”。申请书中的资助类别选择“专项项目”,亚类说明选择“研究项目”,附注说明选择“科学部综合研究项目”。根据申请的具体研究内容选择相应的申请代码(以E06或E07开头的申请代码),附注说明选择“科学部综合研究项目”。以上选择不准确或未进行选择的项目申请将不予受理。5. 本专项项目实行无纸化申请,申请人完成申请书撰写后,在线提交电子申请书及附件材料。依托单位只需在线确认电子申请书及附件材料,无须报送纸质申请书,但应对本单位申请人所提交申请材料的真实性和完整性进行认真审核。依托单位在截止时间前通过信息系统逐项确认并提交本单位电子申请书及附件材料;在截止时间后24小时内在线提交本单位项目申请清单。项目获批准后,依托单位将申请书的纸质签字盖章页装订在《资助项目计划书》最后,在规定的时间内按要求一并提交。签字盖章的信息应与信息系统中的电子申请书保持一致。6. 本专项每个项目的合作研究单位数合计不超过2个。五 、咨询联系方式1. 填报过程中遇到的技术问题,可联系自然科学基金委信息中心协助解决,联系电话:010-62317474。2. 其他问题,可咨询自然科学基金委工程与材料科学部,咨询电话:010-62327131,邮箱:guanyg@nsfc.gov.cn。
  • 国家自然科学基金:加大基础研究投入与支持临床医师创新研究
    2023年12月18日,国家自然科学基金委员会发布2024年度国家自然科学基金改革举措,包括:深化人才资助体制机制改革、优化分类申请与评审模式、持续激励原始创新、继续开展“负责任、讲信誉、计贡献”(RCC)评审机制试点工作、不断完善多元投入机制、持续推进国际(地区)科技合作与交流、做好重大类型项目资助统筹、持续落实科研经费管理改革、持续优化申请要求,减轻申请与评审负担、加强依托单位管理、严明评审纪律,深入推进评审专家被“打招呼”顽疾专项整治工作。近期,国家自然科学基金委员会发布基金要闻两则:一、国家自然科学基金委员会主任窦贤康:改革支持青年科学家,尤其是女性研究人员 |《自然》专访1. 拓展了“杰出青年科学基金”(DYS)项目,提供五年资助,部分项目可申请第二个五年支持。2. 将申请“杰青”的女性年龄限制放宽3年至48岁。3. 国家自然科学基金委员会有两大任务:资助基础研究项目和支持优秀的青年科学家。4. 改革的宗旨是提供长期稳定的资助。5. 2023年,青年科学基金和面上项目共资助了4万多人。6. 中国政府一直很重视基础研究。2024年,政府的科技预算增加了10%,国家自然科学基金委员会收到了363亿元。7. 中国对基础科研的投入与其他国家的差距,主要在于私营领域的投入有限。两个扩大基础科研资助的计划,一是向中央政府申请更多经费,二是与企业和当地政府共建基金,由双方共同出资,通过共同启动基础科研项目的做法,最终惠及企业和当地政府。8. 国家自然科学基金委员会成立了国际科研资助部,鼓励中国研究者开展国际合作,也鼓励国外科学家来中国发展。二、国家杰出青年科学基金项目面向临床医师单独设立新赛道—— “鼓励医生把更多时间留给病人”1. 国家自然科学基金委员会首次为临床医师单独设立了国家杰出青年科学基金的新赛道。2. 旨在支持临床医师开展创新性研究工作,让医生回归临床并基于临床实践开展科学研究,以解决临床问题、提高诊疗效果为目标,推动更多真实、可靠、有价值的医学科技创新。3. 评什么?怎么评?现场评审专家中2/3为一线医生,1/3为基础科学家,评审关注申请人标志性成果三项要点——“发现或发明了什么”、“发现的科学意义或发明的价值”以及这些发现或发明的“真实可靠性”。
  • 后摩尔时代新器件基础研究重大研究计划2022年度项目指南发布
    国家自然科学基金委员会现发布后摩尔时代新器件基础研究重大研究计划2022年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申请。 国家自然科学基金委员会 2022年2月17日 后摩尔时代新器件基础研究重大研究计划2022年度项目指南  “后摩尔时代新器件基础研究”重大研究计划面向芯片自主发展的国家重大战略需求,以芯片的基础问题为核心,旨在发展后摩尔时代新器件和计算架构,突破芯片算力瓶颈,促进我国芯片研究水平的提升,支撑我国在芯片领域的发展与创新。  一、科学目标本重大研究计划面向未来芯片算力问题,聚焦芯片领域发展前沿,拟通过信息、数理、工程材料、生命等多学科的交叉融合,在超低能耗信息处理新机理、载流子近似弹道输运新机理、具有高迁移率与高态密度的新材料、高密度集成新方法以及非冯计算新架构等方面取得突破,研制出1fJ以下开关能耗的超低功耗器件和超越硅基CMOS载流子输运速度极限的高性能器件,实现算力提升2个数量级以上的非冯∙诺伊曼架构芯片,发展变革型基础器件、集成方法和计算架构,培养一支有国际影响力的研究队伍,提升我国在芯片领域的自主创新能力和国际地位。  二、核心科学问题  本计划针对后摩尔时代芯片技术的算力瓶颈,围绕以下三个核心科学问题展开研究:  (一)CMOS器件能耗边界及突破机理。需要重点解决以下关键问题:探寻CMOS器件进行单次信息处理的能耗边界,研究突破该边界的新机理,实现超低能耗下数据的计算、存储和传输。  (二)突破硅基速度极限的器件机制。需要重点解决以下关键问题:在探索同时具备载流子长自由程和高态密度的新材料体系基础上,研究近似弹道输运的器件机理,实现突破硅基载流子速度极限的高性能器件。  (三)超越经典冯∙诺依曼架构能效的机制。需要重点解决以下关键问题:探寻计算与存储融合的机制与方法,并结合新型信息编码范式,实现新型计算架构,突破冯∙诺依曼架构的能效瓶颈。  三、2022年度资助的研究方向  (一)培育项目。  围绕上述科学问题,以总体科学目标为牵引,2022年度拟资助探索性强、选题新颖、前期研究基础较好的申请项目,研究方向如下:  1.新原理超低功耗器件。  针对1fJ以下的开关能耗目标,研究超越CMOS的新原理逻辑、存储、感知器件及其材料、集成技术;研究高传输效率、低能量耗散的芯片级互连技术;研究极端物理条件下的极低功耗信息处理与存储机制及模型。  2.具有长自由程与高态密度的半导体新材料和器件。 探究弹道输运机制,寻求超越传统硅基沟道自由程和高态密度的半导体材料,研究并实现高弹道输运系数的新型场效应器件。  3.新型计算与存储架构。  探寻突破冯∙诺伊曼能效瓶颈的新型计算架构和存储架构,研究面向存内计算新架构的设计方法学。  (二)重点支持项目。  围绕核心科学问题,以总体科学目标为牵引,2022年拟资助研究基础较好、对总体目标有较大贡献的申请项目,研究方向如下:  1.低功耗新材料DRAM器件技术。  研制出CMOS后道集成工艺兼容的高速低功耗无电容DRAM单元,读写时间小于10ns,动态保持时间1小时以上,实现多bit存储。  2.基于新材料的近似弹道输运器件。  研究超越单晶硅沟道平均自由程,同时具备高态密度的新沟道材料,实现与CMOS工艺兼容且逼近弹道输运极限的新沟道材料互补场效应晶体管。室温下,栅极过驱动电压和漏极电压小于0.75 V时,弹道输运系数大于0.5,注入速度大于5×106cm/s,驱动电流超过500μA/μm。  3.可重构的混合编码计算架构及电路复用技术。  研究包含随机数、时间域、频率域、模拟域等两种或多种新型编码机制、数据精度可配置的混合编码计算架构,以及编码可重构、硬件可复用的电路设计技术,研制基于CMOS或新型非易失器件的混合编码芯片,实现与数字电路相当的计算准确率,完整芯片的能效在低精度和高精度计算任务中分别达到50TOPS/W和5TOPS/W。  4.单片三维集成的存算一体架构及关键技术。  研究近存计算与存内计算融合的单片三维集成架构,高带宽的存储与计算层间数据流,以及硅基关键电路设计技术,实现堆叠3层以上、包含硅基CMOS和多种后段逻辑、存储器件的存算一体芯片,存储阵列规模不小于100Kb,完成复杂计算时的全系统能效大于10TOPS/W。  四、项目遴选的基本原则  围绕核心科学问题,本重大研究计划侧重:  (一)紧密围绕核心科学问题,鼓励有价值的前沿探索和创新研究。  (二)优先资助能解决芯片中的实际难题、具有应用前景的研究项目。  (三)鼓励多学科交叉研究。  (四)资助具有良好研究基础和前期积累、对总体目标有直接贡献的研究项目。  五、2022年度资助计划  2022年度拟资助培育项目8项左右,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”;拟资助重点支持项目4项左右,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”。  六、申请要求及注意事项  (一)申请条件。  本重大研究计划项目申请人应当具备以下条件:  1.具有承担基础研究课题的经历;  2.具有高级专业技术职务(职称)。  在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。  (二)限项申请规定。  执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。  (三)申请注意事项。  申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。  1.本重大研究计划项目实行无纸化申请。申请书提交日期为2022年3月18日-3月20日16时。  (1)申请人应当按照科学基金网络信息系统(以下简称信息系统)中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。  (2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。  (3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“后摩尔时代新器件基础研究”,根据申请的具体研究内容选择相应的申请代码。  培育项目和重点支持项目的合作研究单位不得超过2个。  (4)申请人在申请书“立项依据与研究内容”部分,应当首先明确说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。  如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。  2.依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年3月20日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于3月21日16时前在线提交本单位项目申请清单。  3.其他注意事项。  (1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。  (2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。  (四)咨询方式。  国家自然科学基金委员会信息科学部四处  联系电话:010-62327351
  • 通知 | 上海市2021年度基础研究领域项目立项清单出炉!
    根据《关于发布上海市2021年度“科技创新行动计划”基础研究领域项目申报指南的通知》(沪科指南〔2021〕19号)要求,经推荐申报、形式审查、专家评审、立项公示等程序,现对“基于超薄忆阻器的低功耗感存算控功能一体化神经形态网络的研究”等66个项目予以立项。附件:立项清单.pdf  请各项目承担单位做好项目组织实施和管理工作,确保按期完成项目研究任务目标。
  • 田中群院士与厦大学生论重点实验室里的基础研究
    12月3日上午,厦门大学漳州校区主楼群三号楼小报告厅,中国科学院院士田中群就大学里的重点实验室与基础研究和同学们展开了思维的讨论。   讲座开始时,田院士从自身的读书经历切入,与同学们探讨“为什么要在大学从事科学研究和建立国家重点实验室”这一问题。他说:“大学是一个不断更新的学术基地,不断为科研机构输送着新鲜的血液。”他以厦门大学固体表面物理化学实验室为例,介绍了该实验室如何成长为国家优秀实验室、教育部物理化学学科首位的辉煌历程。   他还提到,正是实验室里这样一支协作能力强的团队,通过不断进行方法的自主创新,建立和发展了固体表面物理化学的实验方法和理论体系,为催化化学提供了科学基础,解决了能源短缺等重大问题,取得了一系列喜人的科研成果。此外,他还简要介绍了厦门大学取得的重大科研成果和其他优秀的团队。   随后,田院士由许多自身的工作经历和心得体会,与同学们共同探讨学习与成长的问题。他还提出了同学们应在学习和人生的各个阶段不断改变自身定位的观点。他说:“我们在中学时期跟着老师学习,取得了好成绩。大学本科阶段,就不能再依赖老师上课的讲授而已,更多的是通过自学,从教科书中主动吸收和接受知识。读到研究生硕士时,除了导师指路带路外,我们还要参阅很多的学术论文,从而拓宽视野,丰富学识。在接受之余,还要带着批判的态度去分析、思考和总结。而博士导师能做的仅仅只是指出方向,博士生们需要自己去探索道路,自己去寻找方法。所以,我们要善于在不同的阶段转化学习的角色,这样才更利于同学们的成长成才。”   在观众提问环节中,许多同学就“如何处理实验、科研与应试的关系”、“如何看待逻辑思维与想象力”等问题表达了自己对科研的困惑和未来的迷茫。田院士有条不紊地与同学们展开了交流与探讨。他提到,大学生首先应该要打好扎实的学科基础,制定一个较为细致的人生规划,才能更明确未来的人生道路。他还说:“当今我国许多科学家,包括我自己在内,逻辑思维能力都很强,而想象力就受到了或多或少的局限。”他鼓励同学们要敢想、敢问、敢做,善于观察和发现,充分发挥年轻人的奇思妙想,并将其应用于实践。   田院士还说道:“我们厦门大学的学生生源质量在全国名列前茅。我们应该在平时激励自我,发挥潜能,才能更好的进行学习与创造。” 一席话博得了同学们的阵阵掌声。
  • 重点支持11个领域!广东省组织申报2023年度省基础与应用基础研究重大项目
    广东省科学技术厅关于组织申报2023年度广东省基础与应用基础研究重大项目的通知粤科函基字〔2022〕1324号各有关单位:为深入贯彻落实习近平总书记系列重要讲话精神,按照省委省政府关于全面加强基础研究的决策部署,围绕构建“基础研究+技术攻关+成果转化+科技金融+人才支撑”全过程创新生态链,以增强原始创新能力和产业技术源头供给为目标,根据我省基础研究十年“卓粤”计划有关要求,启动2023年度广东省基础与应用基础研究重大项目的组织申报工作,通知如下。一、总体要求广东省基础与应用基础研究重大项目组织实施遵循多元导向原则,即坚持需求导向,强化应用牵引,鼓励由科技界和产业界共同围绕广东经济社会发展重大需求凝练科学问题,催生重大技术创新;又坚持原创导向,紧扣国际前沿,加强前沿探索和“从0到1”的基础研究。项目旨在提升我省基础研究原始创新能力,凝聚和培养有国际影响力的基础学科人才,实现重大原创成果“点”的突破。二、支持方向瞄准世界科技前沿,强化原创导向,坚持需求牵引,重点支持半导体器件和集成电路、前沿基础新材料、新一代通信网络、未来计算、先进制造、合成生物学、干细胞与再生医学、绿色低碳能源、资源与环境、现代种业、数理与前沿交叉11个领域。申报人可登录“广东省科技业务管理阳光政务平台”,在预申报书填报页面查看各领域具体的资助研究方向(研究方向内容只供申报人作为申报参考使用,请注意保管,严禁转载发布)。三、项目类别项目分为“旗舰”、“基石”两类,“旗舰”项目拟支持10项左右,每项资助经费1000~2000万元,按实际需求申请预算;“基石”项目拟支持20项左右,每项资助经费为500万元。项目实施周期均为5年,资金分批次拨付。1.“旗舰”项目:支持领军科学家集中和整合优势科研资源,有组织的开展原创研究,力争产出一批国内领先、国际一流的重大原创成果。2.“基石”项目:支持从事基础研究的中青年学术带头人,在已有较好基础的前沿方向进一步开展系统性研究,取得一批原创性成果,推动若干重要领域取得突破。四、申报方式项目采用预申报制,通过预申报评审的项目,再组织正式填写申报书。预申报环节主要报送项目选题,包括科学问题陈述、主要研究内容、创新点、研究基础等内容,材料要求如下:(一)科学问题陈述。围绕广东经济社会发展中的重大需求,立足11个重点领域及主要研究方向,进一步凝练亟待解决的关键核心技术中的重大科学问题,提出明确的预期目标,内容不超过1000字。(二)主要研究内容。围绕重大科学问题的内涵和难点,阐述项目研究的思路、方法和重点,内容不超过1000字。(三)创新点。分析与国内外先进研究水平的对标情况,重点阐述项目前沿创新点,内容不超过1000字。(四)研究基础。围绕预期目标,重点阐述牵头申报单位的科研基础、团队基础、科研设施基础等,内容不超过1000字。五、申报条件要求(一)项目负责人及核心成员。1.“旗舰”项目负责人应具备以下条件:是本领域内有较深学术造诣和影响力,且仍活跃在科研一线的领军科学家;具有较强的宏观把握能力和大兵团作战组织能力;非企业牵头申报的项目负责人应有主持国家基础研究重大、重点项目或国外、港澳地区同级别以上基础研究项目经验,企业牵头申报的项目负责人应有从事基础研究的经历;申请当年1月1日未满60周岁[1962年1月1日(含)以后出生],中国科学院、中国工程院院士申请当年1月1日未满65周岁[1957年1月1日(含)以后出生]。2.“基石”项目负责人应具备以下条件:是本领域内具有持续发展潜力的中青年优秀学术带头人,有从事基础研究的经历,已形成较稳定的研究团队,在相关基础研究领域已取得突出成绩;申请当年1月1日未满45周岁[1977年1月1日(含)以后出生];具有高级专业技术职务(职称)。3.项目负责人应是广东省内登记注册的法人单位的全职聘用人员,能实质性承担项目的组织实施,可保证项目研究的主要时间和精力。4.核心成员不超过15人,以中青年科学家为主,具有高级专业技术职务(职称)或博士学位的人数不低于80%,牵头申报单位的全职核心成员比例应不低于1/3,杜绝出现不实质参与科研活动的知名科学家挂名的情况。5.“旗舰”、“基石”的项目负责人及核心成员不能重复。(二)申报单位。1.牵头申报单位应为项目负责人的受聘单位,是广东省内注册的高校、科研院所和企业等,具有独立法人资格,在申报领域具有显著优势,具备开展重大基础研究的条件,在项目实施中承担核心科研任务。2.牵头申报单位为企业的,应为科技领军企业,具备较强的国际竞争实力和自主创新能力,有开展基础与应用基础研究的意愿和保障能力,拥有省级及以上企业重点实验室或技术创新中心;2019~2021年年度R&D经费占营业收入比例不低于3%,且费用不低于1500万元。企业集团内具有独立法人资格的母公司或子公司,满足申报条件的均可牵头申报项目,但不得借用集团内非本公司资源,如核心技术所有权、科研人员、资产、业绩等进行申报。3.牵头申报单位及参与单位应有良好合作基础,在预申报时附上合作研究协议,明确资金分配、成果归属等情况,并将协议上传至“广东省科技业务管理阳光政务平台”(预申报阶段可不提供签章,待进入正式申报时需签章完整并与预申报文稿一致),数量合计不超过3家。鼓励联合港澳、国外一流团队共同申报(国外人员以个人身份参与项目申请,且须在“广东省科技业务管理阳光政务平台”中上传“境外人员知情同意函”的电子扫描件,模板在“附件清单”中下载)。鼓励已处于行业技术前沿的科技领军企业为解决发展的技术瓶颈提出需求、投入资金,联合高校、科研院所组建创新联合体共同申报项目。4.牵头申报单位原则上分配省级财政资金最大份额。企业牵头申报,自筹经费与申请资助的财政总经费比例不低于1:1;企业参与申报,须有自筹经费投入。(三)申报限制要求。申报单位应加强组织引导,充分考虑基地—团队—人才一体化布局,对项目负责人的申请资格和申请材料的真实性负责,确保推荐高水平的项目选题和科研团队,“旗舰”项目每个领域推荐不超过1项,合计推荐不超过5项;“基石”项目每个领域推荐不超过2项,合计推荐不超过10项。有以下情形之一者不得进行申报(以下所列“在研”项目指本次申报开始日前,项目验收申请书未在“广东省科技业务管理阳光政务平台”提交,或验收申请书已提交但未经项目承担单位审核通过的项目):1.项目负责人有逾期一年未验收的省科技计划项目;2.项目负责人在研主持的省科技计划项目数合计达3项(含)以上(平台类、普惠性政策类、后补助类项目除外);3.项目负责人有以下任意1项(含)以上在研主持项目:省基础与应用基础研究重大项目、省重点领域研发计划项目(项目获省财政支持总额度500万元及以上)、省级重大人才工程团队项目、省自然科学基金研究团队项目、省市联合基金粤港澳团队项目、NSFC—广东联合基金及国家自然科学基金区域创新发展联合基金(广东)集成项目;4.项目负责人已申报2023年度省自然科学基金卓越青年团队项目;5.项目负责人或申报单位在省级财政专项资金审计、检查过程中发现重大违规行为;6.同一项目通过变换课题名称等方式进行多头或重复申报(如在以往项目基础上提出的新项目,应在“预申报书—研究基础”中简明阐述二者的异同及发展关系);7.项目负责人或申报单位有尚在惩戒执行期内的科研严重失信行为记录或相关社会领域信用“黑名单”记录;8.项目负责人或申报单位有违背科研伦理道德及科研诚信的行为。六、其他事项申报单位按要求组织团队编写预申报材料,于2022年10月25日24:00前(系统将于2022年9月29日8:00开放申报填写),通过“广东省政务服务网”或“广东省科技业务管理阳光政务平台”(http://pro.gdstc.gd.gov.cn/egrantweb/)提交。申报单位按要求完成项目推荐后,需在系统上传由申报单位加盖公章的“推荐函”(推荐函模板可在“附件清单”中下载)。预申报阶段无需报送纸质材料,通过预申报的项目,再提交正式申报书、详细实施方案等材料,相关要求另行通知。预申报操作指引:项目负责人账号登录—申报管理—填写申请书—新增项目申请—基础与应用基础研究—广东省基础与应用基础研究重大项目预申报;单位管理员账号登录—申报管理—项目管理—审核申请书—进入审核广东省基础与应用基础研究重大项目预申报。七、联系方式(一)申报业务咨询。龙吟、王依莉,020-83163452、83163881(二) 阳光政务平台技术支持。联系电话:020-83163338广东省科学技术厅2022年9月24日
  • 六部门印发加强基础研究若干重点举措通知 强调试剂研发应用等
    p   近日,科技部、财政部、教育部、中科院、工程院、自然科学基金委共同制定了《新形势下加强基础研究若干重点举措》。文件指出基础研究是整个科学体系的源头,学科交叉、跨界合作、产学研协同成为趋势。经济高质量发展急需高水平基础研究的供给和支撑,需求牵引、应用导向的基础研究战略意义凸显。为进一步加强基础研究,提升我国基础研究和科技创新能力,实现前瞻性基础研究、引领性原创成果重大突破,特提出十点举措,包括加强基础研究统筹布局、完善国家科技计划体系、尊重科研人员的科研活动主体地位、支持企业和新型研发机构加强基础研究、改革项目形成机制、改进项目实施管理、改进基础研究评价、推动科技资源开放共享、加大对基础研究的稳定支持、完善基础研究多元化投入体系。 /p p   其中,十项举措中特别提到推动科技资源开放共享和科研试剂研发——在营造有利于基础研究发展的创新环境部分,文件提到要 strong 加强科研设施与仪器国家网络管理平台建设,深化新购仪器设备购置查重评议,加快推进科研设施与仪器开放共享。加强实验动物资源和科研用试剂的研发与应用等。 /strong /p p   此外,文件还提到未来要完善基础研究支持机制, strong 重构国家实验室和国家重点实验室体系 /strong ,形成以重大问题为导向,跨学科领域协同开展重大基础研究的稳定机制。 /p p br/ /p p   详细内容请查看下文: /p p style=" text-align: center " strong 新形势下加强基础研究若干重点举措 /strong /p p   基础研究是整个科学体系的源头,是所有技术问题的总机关。现代科学技术发展进入大科学时代,科学、技术、工程加速渗透与融合,科学研究的模式不断重构,学科交叉、跨界合作、产学研协同成为趋势。经济高质量发展急需高水平基础研究的供给和支撑,需求牵引、应用导向的基础研究战略意义凸显。新形势下进一步加强基础研究,要以习近平新时代中国特色社会主义思想为指导,尊重科学发展规律,突出目标导向,支持自由探索,优化总体布局,深化体制机制改革,创新支持方式,营造创新环境,提升原始创新能力,努力攀登世界科学高峰,为创新型国家和世界科技强国建设提供强大支撑。 /p p   为落实《国务院关于全面加强基础科学研究的若干意见》,进一步加强基础研究,提升我国基础研究和科技创新能力,实现前瞻性基础研究、引领性原创成果重大突破,特提出以下重点举措。 /p p   一、优化基础研究总体布局 /p p   1. 加强基础研究统筹布局。坚持基础研究整体性思维,把握基础研究与应用研究日趋一体化的发展趋势,注重解决实际问题,以应用研究带动基础研究,加强重大科学目标导向、应用目标导向的基础研究项目部署,重点解决产业发展和生产实践中的共性基础问题,为国家重大技术创新提供支撑。强化目标导向,支持自由探索,突出原始创新,强化战略性前瞻性基础研究,鼓励提出新思想、新理论、新方法。制定基础研究2021—2035年的总体规划。 /p p   2. 完善国家科技计划体系。充分发挥国家自然科学基金的作用,资助基础研究和科学前沿探索,支持人才和团队建设,加强面向国家需求的项目部署力度,提升国家自然科学基金支撑经济社会发展的能力。面向国际科学前沿和国家重大战略需求,突出战略性、前瞻性和颠覆性,优化国家科技重大专项、国家重点研发计划、基地和人才计划中基础研究支持体系,强化对目标导向基础研究的系统部署和统筹实施。 /p p   二、激发创新主体活力 /p p   3. 切实把尊重科研人员的科研活动主体地位落到实处。完善适应基础研究特点和规律的经费管理制度,坚持以人为本,增加对“人”的支持。重点围绕优秀人才团队配置科技资源,推动科学家、数学家、工程师在一起共同开展研究。落实科研人员在立项选题、经费使用以及资源配置的自主权,释放人才创新创造活力。切实保障科研人员工作和生活条件,强化对承担基础研究国家重大任务的人才和团队的激励,落实以增加知识价值为导向的分配政策,探索实行年薪制和学术休假制度,对科研骨干在内部绩效工资分配时予以倾斜。加快推进经费使用“包干制”的落实落地。认真落实《关于优化科研管理提升科研绩效若干措施的通知》,安排好纯理论基础研究、对试验设备依赖程度低和实验材料耗费少的基础研究项目间接费用。 /p p   4. 支持企业和新型研发机构加强基础研究。引导企业面向长远发展和竞争力提升前瞻部署基础研究。扫除高校、科研院所和企业间人才流动的制度障碍。支持企业承担国家科研项目。支持新型研发机构制度创新,在科研模式、评价体系、人才引进、职称评定、内控制度等方面积极探索,先行先试。支持新型研发机构建设创新平台、承担国家科研任务。推动产学研协作融通,形成基础研究、应用研究和技术创新贯通发展的科技创新生态。 /p p   三、深化项目管理改革 /p p   5. 改革项目形成机制。健全基础研究任务征集机制,组织行业部门、企业、战略研究机构、科学家等共同研判科学前沿和战略发展方向,多方凝练经济社会发展和生产一线的重大科学问题。提高指南开放性,简化指南内容,不限定具体技术路线,对原创性强的研究探索以指向代替指南。合理把握项目规模,避免拼凑和打包,保证竞争性和参与度。推行评审专家责任机制,强化“小同行”评审,应用目标导向类基础研究评审须增加应用和产业专家。推进评审活动国际化。优化完善非共识项目的遴选机制和资助机制,建立非共识和颠覆性项目建议“网上直通车”,全时段征集重大需求方向建议。对于具备“颠覆性、非共识、高风险”等特征的原创项目,应单独设置渠道,创新遴选方式,探索建立有别于现行项目的遴选机制。对原创性项目开通绿色评审通道。 /p p   6. 改进项目实施管理。在调整参与人员、研究方案、技术路线和经费开支科目方面赋予项目负责人更大的自主权。实施“减表行动”,简化预算测算说明和编报表格。建立定期评估与弹性评估相结合的评估制度,减少评估频率,可依项目自主申请开展中期评估,三年以下的项目不再进行中期评估。建立项目动态调整机制,强化全程跟踪,对实施好的项目加强滚动支持,对差的项目要及时调整。项目完成情况要客观评价,不得夸大成果水平。将科学普及作为基础研究项目考核的必要条件。稳步提升基础研究计划、项目和基地的对外开放力度。推动基础研究人才、项目等多层次、全方位、高水平交流和国际合作。 /p p   四、营造有利于基础研究发展的创新环境 /p p   7. 改进基础研究评价。创新人才评价机制,建立健全以创新能力、质量、贡献为导向的科技人才评价体系。注重个人评价和团队评价相结合,尊重和认可团队所有参与者的实际贡献。基础研究评价要符合科学发展规律、反映基础研究特点,实行分类评价、长周期评价,推行代表作评价制度。注重基础研究论文发表后的深化研究、中长期创新绩效评价和成果转化的后评价工作。对自由探索和颠覆性创新活动建立免责机制,宽容失败。高校、科研院所要严格落实《关于深化项目评审、人才评价、机构评估改革的意见》要求,破除“唯论文、唯职称、唯学历、唯奖项”的倾向。 /p p   8. 推动科技资源开放共享。加强科研设施与仪器国家网络管理平台建设,完善开放共享的评价考核和后补助机制,深化新购仪器设备购置查重评议,强化管理单位主体责任,加快推进科研设施与仪器开放共享。推进国家科技资源共享服务平台建设,建设一批国家科学数据中心和国家科技资源库(馆)。加强实验动物资源和科研用试剂的研发与应用。构建完善的国家科技文献信息保障服务体系。 /p p   五、完善支持机制 /p p   9. 加大对基础研究的稳定支持。完善基础研究投入机制,加大对长期重点基础研究项目、重点团队和科研基地的稳定支持。支持优秀青年科学家长期稳定开展基础研究,坚持本土培养和从外引进并举。认真落实《关于扩大高校和科研院所科研相关自主权的若干意见》,支持高校和科研院所围绕重要方向,自主组织开展基础研究。重构国家实验室和国家重点实验室体系,形成以重大问题为导向,跨学科领域协同开展重大基础研究的稳定机制。 /p p   10. 完善基础研究多元化投入体系。拓宽基础研究经费投入渠道,逐步提高基础研究占全社会研发投入比例。中央财政持续加大对基础研究的支持力度。通过部省联合组织实施国家重大科技任务和共建科研基地等方式,推动地方加大基础研究投入,强化地方财政对应用基础研究的支持。积极推动与各行业设立联合基金,解决制约行业发展的深层次科学问题。引导和鼓励企业加大对基础研究和应用基础研究的投入力度。鼓励社会资本投入基础研究,支持社会各界设立基础研究捐赠基金。 /p
  • 基金委发布功能基元序构的高性能材料基础研究重大研究计划2022项目指南
    10月19日,国家自然科学基金委员会发布功能基元序构的高性能材料基础研究重大研究计划2022年度项目指南。该项目2022年度资助研究方向包括:功能基元序构新材料的设计理论、方法和物理基础;下一代信息技术核心材料及器件;超高性能结构材料;面向未来的高性能能量转换与存储新材料及器件。对于有比较好的创新性研究思路或比较好的苗头但尚需一段时间探索研究的申请,将以培育项目方式予以资助。鼓励对功能基元序构材料基本原理、材料逆向设计、太赫兹材料器件和超高性能结构材料方向的探索性研究。2022年度拟资助培育项目10项,直接费用平均资助强度约60万元/项,资助期限为3年。对于有较好研究基础和积累、有明确的重要科学问题需要进一步深入系统研究、体现学科交叉特征的申请,将以重点支持项目的方式予以资助。2022年度拟资助重点支持项目8项,直接费用平均资助强度约300万元/项,资助期限为4年。指南全文如下:功能基元序构的高性能材料基础研究重大研究计划2022年度项目指南 功能基元序构的高性能材料是指以功能基元为基本单元,通过空间序构构成具有突破性、颠覆性宏观性能的高性能材料。“功能基元”是在原子/分子尺度和宏观尺度之间引入具有特定功能的中间结构单元,序构指“功能基元”通过人工设计制造而成的特定的空间堆垛、排列方式,如有序结构、长/短程有序结构、梯度结构等。功能基元序构的材料可以突破元素种类的限制,为探索具有变革性和颠覆性的高性能材料提供了更大的空间。一、科学目标本重大研究计划瞄准材料科学前沿,通过功能基元序构构建高性能新材料,满足信息、结构、能源等应用领域对材料的需求,解决其中的关键科学问题与技术问题,揭示功能基元序构材料中蕴含的规律,建立相应的理论,发展材料设计的新原理和先进制备技术,逐步实现按需设计变革性和颠覆性新材料的目标。在此基础上,探索和发展“功能基元序构的高性能材料”的研究新范式,提高我国在国际材料科学前沿的整体创新能力。二、核心科学问题本重大研究计划将组织材料、信息、数理、化学等学科的科学家共同开展研究,拟解决的核心科学问题如下:(一)功能基元的本征特性(如物理化学性质、微纳结构、形态、尺寸、分布等)对宏观性能的影响规律及其调控机理。关注功能基元的临界尺寸效应和量子限域效应;明确功能基元(如铁电畴、铁磁畴、孪晶、组分、结构、低维量子材料、人工谐振单元等)与材料宏观性能(如力、热、光、声、电、磁)之间的关联;发现和构筑影响材料宏观新奇物性的关键功能基元。(二)序构对材料宏观性能优化增强的作用规律。研究序构(如有序结构、长/短程有序结构、梯度结构、无序结构等)引发的功能基元间的耦合、增强效应;明晰序构对材料宏观性能的影响机制。(三)功能基元序构的协同关联效应。揭示功能基元序构的协同关联作用机制;发现超越功能基元本身的高性能甚至全新的性能;阐明“功能基元+序构”与宏观性能的关联;建立按需设计功能基元序构的高性能材料的方法。(四)功能基元序构高性能材料的制备科学与表征技术。发展“自上而下”“自下而上”制备功能基元序构高性能新材料的方法与技术;发展人工序构材料的结构和性能表征技术。三、2022年度资助研究方向(一)功能基元序构新材料的设计理论、方法和物理基础。1. 研究“功能基元-人工序构-超越性能”三者之间关系的物理基础,探索功能基元序构导致变革性材料的新规律、新理论和计算方法。包括功能基元结构和性能(力、热、光、声、电、磁等)的特征尺寸效应、量子限域效应等;基元之间的关联和耦合效应;序构导致的合作、增强和突现性效应等。2. 基于功能基元序构的突破性和变革性新材料体系,发展功能基元序构高性能材料的系统性设计理论和逆向设计方法,形成相应的设计软件和数据库等。(二)下一代信息技术核心材料及器件。1. 为满足下一代信息系统应用的迫切需求,探索解决光波和电磁波等信息载体在发射、探测和成像中的瓶颈问题, 发展基于“功能基元+序构”的太赫兹波段的高效辐射及探测材料和原型器件。研究如下高性能材料及器件:室温条件下,工作频率范围在0.6-1THz的高功率、连续波输出的自由电子太赫兹相干辐射器件;基于二维电子栅控小尺度可编码有源动态超构表面的高速高阶太赫兹调制器;基于人工表面等离激元超构材料的太赫兹片上高通量信道传输原型器件;工作频率范围在0.1-6THz、具有大动态范围和高辐射功率、在通讯波段下工作的光电导太赫兹源和探测器。2. 发展基于紫外光学材料的超构透镜设计方法和加工技术,制备大尺寸、多阵元、高效率的紫外超构透镜光学系统原型器件。3. 调控极性拓扑畴的自发序构,研究和发现拓扑畴三维空间的原子构型及其新奇特性(如负电容、太赫兹谐振等效应),制备可重构、低功耗、高集成度的新型信息功能器件。(三)超高性能结构材料。1. 发展针对高性能结构材料的功能基元序构的理论方法,建立相关的理论模型和设计软件。重点研究高性能结构材料中功能基元的特征尺寸、序构方式与宏观力学性能之间的定量关系,探索序构后功能基元间的耦合所呈现的强韧化新效应,发展相应的数值模拟方法,研发先进的材料制备技术;通过研究高性能材料的变形、断裂等力学行为,验证设计理论与方法的实用性,形成功能基元序构高性能结构材料的逆向设计和优化方法、软件和数据库等。2. 为满足航空航天和国家重大工程等应用的迫切需求,基于“功能基元+序构”的途径,重点解决传统材料强度与塑性和韧性的矛盾,发展出综合性能优异的金属和无机材料及其制备技术;发现超轻、超弹、超强、高温隔热、吸/透波等新材料,满足极端服役条件对材料性能的苛刻要求,加强对结构-功能一体化塑性陶瓷的探索。(四)面向未来的高性能能量转换与存储新材料及器件。1. 研究功能基元序构热电材料中电子/声子相互作用动力学的新过程、新机制、新规律和新效应,为新一代热电材料的结构设计和创制、热电性能的颠覆性突破提供重要的理论指导;设计和制备多场作用的电-磁-热多功能基元序构而成的热电材料,研究序参量互作用增强的耦合效应,发展高效固态制冷材料。2. 基于功能基元序构新原理,研究用于固态电池、光电转化和高效催化的关键材料及器件。四、项目遴选的基本原则为确保实现总体科学目标,本重大研究计划要求申请项目的研究内容必须符合本指南要求,围绕“功能基元+序构”的研究思路,以“突破性”“颠覆性”性能为研究导向,提炼其中的基础科学问题,开展创新性研究。(一)在申请书中需要明确“功能基元”和“序构”的定义。“功能基元”的性能可以是寻常的,但“功能基元+序构”导致的宏观材料的性能应该超越功能基元本身,力争实现变革性或颠覆性性能。(二)提出并研究“功能基元+序构”导致新效应和高性能的科学和技术问题。(三)要明确对实现本重大研究计划总体科学目标和解决核心科学问题的贡献。(四)鼓励开展实质性的国际合作。五、2022年度资助计划对于有比较好的创新性研究思路或比较好的苗头但尚需一段时间探索研究的申请,将以培育项目方式予以资助。鼓励对功能基元序构材料基本原理、材料逆向设计、太赫兹材料器件和超高性能结构材料方向的探索性研究。2022年度拟资助培育项目10项,直接费用平均资助强度约60万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”。对于有较好研究基础和积累、有明确的重要科学问题需要进一步深入系统研究、体现学科交叉特征的申请,将以重点支持项目的方式予以资助。2022年度拟资助重点支持项目8项,直接费用平均资助强度约300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”。六、申请要求及注意事项(一)申请条件。本重大研究计划项目申请人应当具备以下条件:1. 具有承担基础研究课题的经历;2. 具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1. 本重大研究计划项目实行无纸化申请。申请书提交日期为2022年11月18日-11月23日16时。(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划将紧密围绕核心科学问题,对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的核心科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“功能基元序构的高性能材料基础研究”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。(4)申请人在申请书“立项依据与研究内容”部分,应当首先说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。2. 依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年11月23日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于11月24日16时前在线提交本单位项目申请清单。3. 其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。(四)咨询方式。国家自然科学基金委员会工程与材料科学部材料科学一处联系电话:010-62327144
  • 国家重点基础研究发展计划09申报指南发布
    国家重点基础研究发展计划09申报指南发布 含重大科学研究计划项目申报指南 科技部基础研究司日前发布了《关于发布国家重点基础研究发展计划(含重大科学研究计划)2009年度项目申报指南的通知》。 国家重点基础研究发展计划是以国家重大需求为导向,对我国未来发展和科学技术进步具有战略性、前瞻性、全局性和带动性的基础研究发展计划,主要支持面向国家重大需求的基础研究领域和重大科学研究计划。 科技部2009年将继续部署国家重点基础研究发展计划项目。现将2009年度项目申报指南予以公布。 国家重点基础研究发展计划项目实行网上申报(网上申报流程和有关事项将于2009年2月下旬在973计划网站上另行通知)。2009年度项目受理日期为3月16日8:00至3月31日17:00,逾期不予受理。 按照973计划工作安排,2009年遴选立项的项目将于2010年启动。2009年拟结题项目的承担人员可以参加2009年项目申报。 973计划网站:http://www.973.gov.cn 咨询电话:010-58881072 58881073 58881557 58881076 受理部门:科技部基础研究管理中心 传 真:010-58881077 电子邮件:jcc973@vip.sina.com 附件: 1.国家重点基础研究发展计划(含重大科学研究计划)2009年度重要支持方向 2.国家重点基础研究发展计划(含重大科学研究计划)项目申报要求
  • 2012年我国基础研究投入达498亿元
    量子反常霍尔效应、中微子振荡、诱导多功能干细胞&hellip &hellip 近一年来,我国基础研究领域高水平的成果频出。基础研究投入大、耗时长,许多成果还不能立即转化为社会生产力,但却是一个国家科技发展水平的风向标。改革开放35年来,我国基础研究水平上升明显,国际影响力显著提高,从一个方面体现了我国整体科研水平的巨大进步。   科技部部长万钢指出,经过多年积累,中国科技逐步从跟随者转变为并行者,在一些领域已有领跑能力。作为基础研究成果标志性的指标,SCI收录的中国科技论文数量快速增长,连续4年居世界第二位,且引用率也有大幅增长,一些重要的基础科学研究成果,引起国际科技界高度关注,在世界科学论坛上中国的话语权逐年提高。   据介绍,改革开放以来,我国的基础研究科技计划及管理不断调整和完善,基本适应了各个阶段科技发展的要求,反映了不同时期发展和改革的重点,相继设立了国家自然科学基金、组织实施攀登计划,国家重点基础研究发展计划(简称973计划)、重大科技研究计划,基础研究重大专项等等。形成了自由探索和国家目标相结合的基础研究计划布局,为经济社会发展和科技自身发展做出了重要贡献。   近年来,我国基础研究学科体系愈发完备,新兴学科和交叉学科得到更多重视,形成了较为合理、多层次的科研和学科布局。物理、数学、信息、生命等学科领域的交叉研究获得更多资助,各学科整体水平进步较大,部分学科进入世界前列。   在注重学科布局的同时,也注重基础科研设施的建设,中央财政投入大幅增长。自然科学基金、973计划经费快速增长,中国基础研究投入在2012年已经达到498.8亿元,5年间年均增长22.6%。国家重点实验室、国家重大科技基础设施和大科学工程等基础研究创新基地发展迅速,已成为我国基础研究、应用研究和公益性研究的骨干基地,在国家自主创新能力建设中发挥越来越重要的作用。   任何科研成果的取得都离不开人,改革开放以来,我国基础研究人才队伍不断壮大,不仅培养和造就了一批领军人才和优秀团队,也注重从海外吸引众多高层次创新人才,形成了一支规模适度、创新能力较强的基础研究队伍。   基础研究水平的提高,也为经济社会发展提供了更大的引领作用。我国载人航天、青藏铁路、南水北调等各项重大工程的巨大成功,都离不开基础研究的长期积累和多学科的综合交叉。在材料科学、信息科学、制造科学领域取得的前瞻性基础研究成果,推动了我国传统产业的升级换代和高新技术及新兴产业的发展。在能源科学、农业科学、生命科学、环境科学的深入研究以及对深海、深地、深空的认识不断深化,则为解决粮食安全、气候变化、资源短缺、生态脆弱等制约我国可持续发展的瓶颈问题奠定了重要的科学基础。
  • 习近平:加强基础研究,实现高水平科技自立自强
    基础研究处于从研究到应用、再到生产的科研链条起始端。习近平总书记在中央政治局第三次集体学习时指出:“加强基础研究,是实现高水平科技自立自强的迫切要求,是建设世界科技强国的必由之路。”习近平总书记的重要论述深刻阐明了加强基础研究的重大意义。作为国家战略科技力量的重要组成部分,高水平研究型大学要始终胸怀“国之大者”,坚持把加强基础研究作为重大使命,强化创新策源功能,努力攀登世界科技高峰,为夯实科技自立自强根基贡献高校力量。加强高水平有组织科研。习近平总书记指出:“世界已经进入大科学时代,基础研究组织化程度越来越高,制度保障和政策引导对基础研究产出的影响越来越大。”我国高校要充分发挥优势,加快科研组织模式和范式变革,全面加强创新体系建设,在服务国家战略和区域经济社会发展中提升高水平自主创新能力。一是坚持目标导向和自由探索相结合。凝练关键科学问题是基础研究高质量发展的前提。提出一个问题往往比解决一个问题更重要,因为提出新的问题就意味着新的可能性。高校既要鼓励支持科研人员立足科学前沿、发现新的重大问题,也要鼓励支持他们把科技前沿与重大需求前景结合起来,从重大应用研究中凝练高水平基础科学问题,完善问题聚焦、任务耦合、路径协同、成果集成的联合攻关机制,持续提升基础研究整体效能。二是优化基础学科建设布局。基础学科是所有学科的基石,是高校发挥基础研究主力军作用的基础载体。既要给予数学、物理、化学、生物学等基础学科更多支持,深耕细作、倾心浇灌,激活传统学科潜能,孵化新兴前沿学科,也要推动基础学科与应用学科协调发展,鼓励跨学科研究,促进学科交叉融合,不断开辟新领域新赛道,构筑学科发展新优势。三是强化国家战略科技力量建设。国家战略科技力量代表国家科技创新的最高水平,是国家创新体系的中坚力量,对于我国进入创新型国家前列、建设世界科技强国至关重要。高校要积极参与国家实验室建设,推进全国重点实验室重组工作,建好国家自然科学基金基础科学中心。聚焦科研范式变革超前部署,大力推进工具软件迭代、方法算法革新、模型标准建构和高端仪器装备研制等基础性研究,加大大科学装置、大数据平台、检测分析平台等设施布局建设力度。营造良好创新生态。习近平总书记强调:“要深化科技体制改革,大力培育创新文化,健全科技评价体系和激励机制,为创新人才脱颖而出、尽展才华创造良好环境。”推动基础研究实现高质量发展,离不开良好创新生态的孕育滋养。要不遗余力打造引领、原创、开放、包容的学术生态和制度环境,打通创新链条、集聚创新要素,让科学家心无旁骛做研究、大胆创新攻难关。一是弘扬科学家精神。科学家精神是科技工作者在长期科学实践中积累的宝贵精神财富,科学成就的取得离不开科学家精神的支撑。我们要传承弘扬老一辈科学家以身许国、心系人民的光荣传统,大力宣传新涌现的先进典型,引导科技工作者涵养卓越自主的胆气、寂寞深究的静气、团结协作的大气,追求真理、勇攀高峰,弘扬优良学风,把论文写在祖国大地上。二是健全科技评价体系。有什么样的评价体系,就会有什么样的科研活动。要着力推行代表性成果评价制度,摒弃简单量化的评价模式,健全以创新能力、质量、实效、贡献为导向的科技人才评价体系,不断完善评价方法。完善长周期评价制度,加强对长期研究项目、重点团队和研究基地的稳定支持,形成鼓励潜心创新的良好氛围。三是优化创新制度环境。基础研究往往面临着方法不确定、失败率比较高的问题,营造宽容宽松的研究环境显得更为重要。完善政府、企业、社会对基础研究的多元投入和风险分担机制,发挥好科技领军企业“出题人”“答题人”“阅卷人”作用。通过设立校企联合实验室、打通人才旋转门、成立科创母基金等,实现难题共答、平台共建、资源共聚、风险共担、成果共享。培养造就基础研究拔尖人才。习近平总书记强调:“加强基础研究,归根结底要靠高水平人才。”拔尖人才是基础研究最关键的战略资源、最核心的基础支撑、最强劲的驱动力量。高校在培育人才、集聚英才方面承担着重要责任,要为国家为社会源源不断培养造就拔尖人才,让更多基础研究拔尖人才竞相涌现。一是提升人才自主培养能力。基础研究人才培养周期长,须花大气力完善招生培养联动、本硕博贯通的全周期全链条培养体系。近年来,复旦大学厚植基础学科人才培养沃土,高质量推进“基础学科拔尖学生培养计划”“强基计划”等,构建“高精尖缺”研究生教育格局,有效提升了自主培养拔尖人才的能力。今后,要进一步探索超常规、长链条的基础研究未来顶尖人才培养模式,对有潜质学生早发现早培育,推动教育链与创新链、人才链深度融合。二是努力汇聚天下英才。坚持引育并举,广泛延揽战略人才和青年英才,围绕顶尖人才建设创新平台和团队。抓住国际人才转移“窗口期”,提高精准荐才引才能力,千方百计引进全球优秀人才。同时,尊重人才成长规律和科研活动规律,根据人才发展不同阶段需要和个性化需要,全周期、全方位培育人才,落实资源跟着人才走,让人才引得进、长得快、干得好。
  • 10年100亿!腾讯出巨资长久支持这两大领域基础研究
    据介绍,在国家有关部门的指导下,“新基石研究员项目”由科学家主导,腾讯公司出资支持。腾讯公司将在未来10年为该项目投入100亿元人民币,并将探索永续运营模式,长久支持基础研究。该笔资金来源于腾讯在去年推出可持续社会价值创新战略后设立的千亿专项资金。“新基石研究员项目”旨在长期稳定地支持一批杰出科学家自主选择研究方向,鼓励他们潜心研究、勇于挑战,聚焦“从0到1”的原始创新。“新基石研究员项目”严格遵循“科学家主导”的原则,设立科学委员会作为核心机构,中国科学院院士、西湖大学校长施一公担任首届科学委员会主席。施一公表示:“未来10-20年将是中国科技发展从量的积累、迈向质的飞跃的关键时期。基础研究是科学之本,这要求基础研究领域率先实现更多突破。该项目将在未来10年稳定支持200至300位杰出科学家,为他们的自由探索提供最大空间。期待这些科学家能够提出和解决重大的科学问题,推动理论创新,领跑学科前沿,开拓新的研究方向和领域,成为科学界新的学术领头人。”该项目将设置“数学与物质科学”“生物与医学科学”两大领域,支持在中国内地及港澳地区全职工作的科学家。“许多基础研究的重大突破,来自科学家长期积累后的潜心之作。”中国科学院院士、北京大学教授、“新基石研究员项目”科学委员会委员谢晓亮表示,“本项目将通过‘选人不选题’的方式,长久、稳定支持富有潜力的科学家,给予他们充分自由,将有助于他们潜心探索,收获原始创新的硕果。”大力支持基础研究是腾讯的长期坚持。2018年,腾讯与多位中国科学家联手发起“科学探索奖”,资助青年科技人才。“新基石研究员项目”是腾讯“可持续社会价值创新”战略的又一重要实践。社会资金的这一支持模式,是对国家基础研究投入的有益补充。中国科学院院士、中国科学技术大学常务副校长、“新基石研究员项目”科学委员会委员潘建伟认为:“这一项目响应了科学界长久以来的期待。自由探索瞄准不确定性,往往难度大、风险高、耗时长,社会资金更具有灵活性,能够为专注自由探索的科学家雪中送炭。”据了解,“新基石研究员项目”的申报资格、申报渠道等更多信息将陆续公布,并在年内正式启动申报。中国科学院院士、上海交通大学李政道研究所所长、“新基石研究员项目”科学委员会委员张杰表示:“期待这个项目能够支持一批杰出科学家聚焦原创性、引领性的基础研究,拓展科学认知边界。希望中国科学家推动基础研究领域的突破和进步,造福全人类!”
  • 中国新批123个基础研究项目 拟投入32亿
    中新社北京十月十九日电 中国科学技术部十九日在北京召开国家重点基础研究发展计划(九七三计划)和重大科学研究计划二00九年项目实施会宣布,二00九年围绕农业、能源、信息、资源环境、人口与健康、材料、综合交叉和重要科学前沿八个领域,共批准八十四个项目立项,并在蛋白质研究、量子调控研究、纳米研究、发育与生殖研究四个国家重大科学研究计划中,批准三十九个重大科学研究计划项目立项,总投入预计三十二亿元人民币。   中国科技部副部长曹健林说,作为国家基础研究领域的“旗舰”计划,今年九七三计划项目立项具有“强化节能减排、气候变化基础研究”、“针对中国国民经济和社会发展重大问题进行部署”、“针对国际科学前沿问题进行重点安排”、“注重与国家重大科技专项协调衔接”等特点,旨在进一步解决国家未来经济社会发展中的瓶颈问题、提升中国科技的原始性创新能力。   二00九年新立项的九七三计划项目包括“暗物质的理论研究和实验预研”、“航空航天用高性能轻合金大型复杂结构件制造的基础研究”、“重要病毒的入侵机制研究”、“高效规模化太阳能热发电的基础研究”、“重离子治癌关键科学技术问题研究”等;国家重大科学研究计划项目包括“免疫相关重要蛋白质的生物学研究”、“基于分子和分子体系的量子调控”、“新型纳米复合磁性材料及其应用的关键基础研究”等。   当天的项目实施会上,中国科技部还向项目首席科学家代表颁发聘书,并要求首席科学家在其领衔的项目团队内加强交流与合作、营造有利于创新的学术氛围,把培养优秀人才和创新团队放在重要位置。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制