当前位置: 仪器信息网 > 行业主题 > >

药物霉酚酸酯

仪器信息网药物霉酚酸酯专题为您整合药物霉酚酸酯相关的最新文章,在药物霉酚酸酯专题,您不仅可以免费浏览药物霉酚酸酯的资讯, 同时您还可以浏览药物霉酚酸酯的相关资料、解决方案,参与社区药物霉酚酸酯话题讨论。

药物霉酚酸酯相关的资讯

  • iCMS2018第九届质谱网络会议圆满结束 食品分析与药物分析会场
    p style=" text-align: justify line-height: 1.5em "   仪器信息网讯 为促进国内外质谱工作者的学术及技术交流,由仪器信息网主办的& quot 第九届质谱网络会议(iConference on Mass Spectrometry,iCMS2018) 于2018年12月7日圆满闭幕。 /p p style=" text-align: justify line-height: 1.5em "   本届质谱网络会议为期5天(12月3日-7日),共有近50位质谱专家及企业技术人员分享了质谱新技术在生命科学、食品、环境、药物分析等领域的研究进展。会议也的得到了广大网友、质谱领域工作者的热情关注,参会人次超万次,创历史新高。在会议期间,听众也与报告主讲人通过问答的形式积极互动,就质谱的相关技术和应用等问题交流讨论。 /p p style=" text-align: justify line-height: 1.5em "   在会议的最后一天,举行了质谱在食品分析中的应用及质谱在药物分析中的应用两个分会场。在上午举行的质谱在食品分析中的应用专场,中国农业科学院农业质量标准与检测技术研究所的王培龙、沃特世公司的应用工程师黄德凤博士、天津海关动植物与食品检测中心赵宏博士、浙江大学章宇教授带来了精彩报告。在下午的质谱在药物分析中的应用专场,来自清华大学的梁琼麟副教授、SCIEX公司的于怀东、中日友好医院王晓雪博士、安捷伦公司卢俊钢、清华大学林金明教授则带来了药物分析方面的精彩分享。 /p p style=" text-align: justify line-height: 1.5em "    span style=" font-size: 20px color: rgb(255, 0, 0) " strong 质谱在食品分析中的应用 /strong /span /p p style=" text-align: justify line-height: 1.5em " span style=" font-size: 20px color: rgb(255, 0, 0) " strong /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5fd6d273-3f8e-41a2-8f68-189298f35ee4.jpg" title=" 2018-12-07_093241.png" alt=" 2018-12-07_093241.png" / /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 中国农业科学院农业质量标准与检测技术研究所& nbsp 王培龙 /span /strong /p p style=" line-height: 1.5em text-align: center " strong span style=" color: rgb(79, 129, 189) line-height: 1.5em text-align: center " 《饲料及畜产品质量安全质谱分析技术》 /span /strong /p p style=" line-height: 1.5em text-align: justify " & nbsp & nbsp & nbsp & nbsp 饲料安全影响畜禽产品质量安全。质谱技术作为高灵敏度、选择性分析技术在饲料畜产品质量安全监测中发挥了重要作用。报告主要介绍了课题组在饲料毒理学、饲料质量安全分析基础及持久性有毒污染物分析毒理方面的研究。发明了系列分子印迹新材料,解决了确证分析受样品基质干扰,准确度低的关键技术问题。创制了微球、膜和磁性微球等系列分子印迹样品前处理材料4种,解决了类特性识别、模板渗漏和传质速率等技术难题,有效的消除样品基质干扰。并结合液相色谱-串联质谱仪研究建立了饲料及畜产品中β-受体激动剂的确证分析技术。基于多重机制杂质吸附原理,开发了新型高效复合净化材料,建立了饲料中26种霉菌毒素同步确证检测技术。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/c2591313-a72c-475a-af10-0798a8111c08.jpg" title=" 2018-12-07_095732.png" alt=" 2018-12-07_095732.png" / /p p style=" text-align: center line-height: 1.5em "    span style=" color: rgb(79, 129, 189) " strong 沃特世高级应用工程师 黄德凤 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 《原位电离技术拓展食品环境领域的创新分析》 /strong /span /p p style=" text-align: justify line-height: 1.5em "   报告主要介绍了沃特世的原位电离技术REIMS(快速蒸发电离质谱)、DESI(解吸电喷雾电离质谱)的主要技术特点以及在食品环境领域的应用实例。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/492d729d-568c-4b06-9db5-ba4af733bfb2.jpg" title=" 2018-12-07_103639.png" alt=" 2018-12-07_103639.png" / /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 天津海关动植物与食品检测中心& nbsp 赵宏 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 《基质辅助激光解析电离飞行时间质谱技术在食品致病微生物鉴定中的应用》 /span /strong /p p style=" text-align: justify line-height: 1.5em "   随着进口乳粉制品的需求不断增长,保证进口产品的食用安全,成为口岸检测机关的当务之急。报告主要介绍了对进出境食品中的几种食源性致病微生物进行基于基质辅助激光解析电离飞行时间质谱的鉴定的方法。以常见几种食品中的食源性致病菌为目标菌,同时分离未知菌,通过基质辅助激光解吸附电离飞行时间质谱进行鉴定,并与标准的生化鉴定法比对分析,得出基质辅助激光解吸附电离飞行时间质谱能快速对未知细菌进行鉴定结合GB/T33682-2017标准要求介绍本实验室的实践情况及问题。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6950aeff-9eda-4db7-88fc-b759f4688ac2.jpg" title=" 2018-12-07_105824.png" alt=" 2018-12-07_105824.png" / /p p style=" text-align: center line-height: 1.5em "    strong span style=" color: rgb(79, 129, 189) " 浙江大学& nbsp 章宇 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 《质谱技术在食品加工来源污染物体内暴露及靶向代谢组学中的应用》 /span /strong /p p style=" text-align: justify line-height: 1.5em "   现如今,将内外暴露研究相结合来开展人群对于污染物的暴露来源、暴露剂量、生物利用率和健康效应的研究成为研究趋势。食品加工来源污染物是食品原料在加工过程中自发产生的危害物质,一直以来,由于缺乏对加工过程中物理、化学和生物性危害物形成和转化规律的认识,使得加工导致的安全问题层出不穷,是我国食品安全领域的关注焦点。 /p p style=" text-align: justify line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 报告主要介绍了课题组以典型食品加工来源污染物丙烯酰胺的系统研究为代表,采用液相色谱-串联质谱方法对丙烯酰胺体内巯基尿酸加合物、血红蛋白加合物和DNA加合物这三个水平上的暴露生物标志物进行解析,构建了质谱学同步方法应用于动物和人体生物样本的生物监测研究;此外,采用同位素示踪技术,应用Q-Extractive Orbitrap高分辨质谱方法靶向解析丙烯酰胺体内暴露谱,在尿液代谢水平发现了新型标志物,对于解析丙烯酰胺体内暴露以及内外暴露关联机制十分重要。同时,低分辨与高分辨质谱的联合应用为构建食品典型污染物生物监测的研究平台提供了关键的技术支持。 /p p style=" text-align: justify line-height: 1.5em "    span style=" color: rgb(255, 0, 0) font-size: 20px " strong 质谱在药物分析中的应用专场 /strong /span /p p style=" text-align: justify line-height: 1.5em " span style=" color: rgb(255, 0, 0) font-size: 20px " strong /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/8a80a804-58bf-4611-93da-09abae1355b3.jpg" title=" 2018-12-07_143546.png" alt=" 2018-12-07_143546.png" / /p p style=" text-align: center line-height: 1.5em "    span style=" color: rgb(79, 129, 189) " strong 清华大学& nbsp 梁琼麟 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 《分类扫描的质谱分析方法及其在生物医药分析中的应用》 /strong /span /p p style=" text-align: justify line-height: 1.5em "   传统的分析主要关注的是对目标化合物(靶标分子)的高选择性高精度的定性定量分析。随着复杂系统的研究得到越来越广泛的关注,多种“组学”的方法方兴未艾,其共同点都是从整体层面研究特定目标物质群的组成特征及相互关系。因此发展分类扫描的质谱分析策略和方法具有重要的价值。报告主要包括课题组所发展的能量梯度扫描串联质谱、分类标记扫描质谱法等研究成果,并对近期相关研究进展和应用进行综述,探讨分类扫描的质谱分析策略和方法在组学分析、中药分析等生物复杂体系研究中的应用前景。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2b4b35fe-1440-4722-864b-f5505f1a7290.jpg" title=" 2018-12-07_143709.png" alt=" 2018-12-07_143709.png" / /p p style=" text-align: center line-height: 1.5em "    strong style=" color: rgb(79, 129, 189) line-height: 1.5em text-align: center " SCIEX 亚太区技术支持中心 于怀东 /strong /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 《SCIEX离子淌度技术在药物分析领域应用进展》 /strong /span /p p style=" line-height: 1.5em " span style=" color: rgb(79, 129, 189) " span style=" color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp & nbsp 报告主要介绍了SCIEX SelexION 离子淌度的原理及技术特点,并以对光敏性化疗药物福大赛因的4种同分异构体的拆分及定量分析以及对前列腺素异构体的拆分和FIA定量分析为例,介绍了离子淌度技术的最新应用。 /span strong br/ /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/9d80a726-26c9-427a-8adb-0963d03af3e2.jpg" title=" 2018-12-07_150925.png" alt=" 2018-12-07_150925.png" / /p p style=" text-align: center line-height: 1.5em "   strong span style=" color: rgb(79, 129, 189) "  中日友好医院& nbsp 王晓雪 /span /strong /p p style=" text-align: center line-height: 1.5em " strong span style=" color: rgb(79, 129, 189) " 《质谱技术在肺移植患者治疗药物监测中的应用》 /span /strong /p p style=" text-align: justify line-height: 1.5em "   肺移植术已成为终末期肺部疾患的终极治疗选择,是当前最为复杂和病死率最高的手术之一,排异和感染是影响术后病死率的主要原因。通过治疗药物监测(Therapeutic Drug Monitoring,TDM)手段合理应用免疫抑制剂和抗菌药物是提高肺移植患者生存率的重要保证。报告主要介绍了中日友好医院药学部针对肺移植患者常用的免疫抑制剂(他克莫司、环孢霉素A、霉酚酸等)和抗菌药物(碳青霉烯类、三唑类等)进行TDM。利用超高效液相色谱-三重四极杆串联质谱技术测定临床血药浓度,结合TDM结果与患者病理、生理状态为术后治疗提供个体化用药建议,以提升患者术后用药的安全性与有效性。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6c168901-9cac-4836-ba50-d743328c00ce.jpg" title=" 2018-12-07_155610.png" alt=" 2018-12-07_155610.png" / /p p style=" text-align: center line-height: 1.5em "  安捷伦 卢俊钢 br/ /p p style=" text-align: center line-height: 1.5em " 《浅谈安捷伦轮廓分析之优势--应用于医药包材分析》 /p p style=" line-height: 1.5em " br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7e51ef2e-93b9-47c9-ac42-5d254e0bf7b8.jpg" title=" 2018-12-07_162907.png" alt=" 2018-12-07_162907.png" / /p p style=" text-align: center line-height: 1.5em "   span style=" color: rgb(79, 129, 189) " strong  清华大学 林金明 /strong /span /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(79, 129, 189) " strong 《微流控芯片质谱联用细胞共培养及其药物代谢分析方法研究》 /strong /span /p p style=" text-align: justify line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 微流控芯片技术因其具有的一系列优点,如样品试剂消耗少、结构功能多样化、集成化程度高、与细胞尺度接近等优点,近来广泛应用于细胞相关研究领域。通过结合不同的分析检测方法以及集成不同的功能结构单元,取得了显著的研究进展。其中相对传统方法,微流控芯片最大的优势是其集成化的功能,能够将多种不同的细胞或组织有序地整合为一个体系,而这也是当前细胞相关研究的一个重要发展方向,将体内状态下相关的多种细胞共培养并进行相互作用,可以更好地保持细胞的功能及生物学特性,这对于建立更完善的体外生物模型具有重要的意义。在报告中,林金明教授介绍了基于微流控芯片质谱联用的细胞共培养、生物微环境模拟及其药物代谢分析方法的部分研究成果。 /p p br/ /p
  • 知名药物研究专家汇聚药谷张江研讨药物创制关键技术
    2019年5月17日,“2019第六届新药创制高层学术研讨会”在位于上海张江的中国医药工业研究总院文思楼隆重召开,美中医药开发协会(SAPA)和岛津企业管理(中国)有限公司联合举办的本次大会得到了中国医药工业研究总院、浙江省药学会药剂专业委员会等单位的大力支持。本次大会旨在探讨药物研发中的关键技术和关键质量属性,促进我国药物研发与国际接轨,为我国制药企业、研发机构及科研院所提供一个与世界知名药企与国内一流药物研究、监管单位建立合作的桥梁和纽带。 药物创制关键技术对于促进我国药物研发,推动医药产业国际化发展具有十分重要的意义。根据FDA “质量源于设计”(QbD)的理念,药品从研发开始就要考虑最终产品的质量。在此背景下,来自国内外的近三百位药物研发界专家出席大会,围绕着药物研发中的关键技术和质量属性,从不同侧面进行广泛学术交流。 在大会开幕式上,岛津公司分析测试仪器市场部吕冬部长率先发表致辞,他表示:今天能够在美中药协、中国医药工业研究总院和浙江省药学会药剂专业委员会的共同组织下,将活跃在业界的各位专家聚集在此,共同对新药创制过程中的关键问题进行探讨,是一件非常有意义的事情。提升药品质量、促进药品研发,实现医药产业的健康发展,是我们共同的目的。他强调:岛津公司坚持开拓创新,将包括ICPMS、串联质谱、显微镜成像质谱等多项尖端分析技术应用到药物分析的各个相关领域中,以先进分析技术提供有针对性的整体解决方案。 在开幕式上,大会会议主席、华海药业副总裁李敏博士介绍美中医药开发协会(SAPA)的成长历史、及其开展的卓有成效的活动以及所取得的可喜成果。 浙江中医药大学中医药科学院副院长李范珠博士代表浙江省药学会发表致辞,在致辞中呼吁产学研紧密结合,共同提高我国药物创制水平。 简短的开幕式结束后,大会进入报告环节,由李敏博士和SAPA终身会员、岛津美国公司吕迎春博士共同主持。本届研讨会邀请了来自海内外著名高校,大型制药企业,药检所和药物科研机构等多位具有丰富实践经验的专家作大会报告,内容涵盖药物杂质研究和分析策略,注射剂一致性评价和包材相容性研究,先进制剂技术及工艺等多方面内容。 中检院化学药品检定首席专家、国家药典委员、药物分析领域的著名专家胡昌勤研究员率先做了题为《仿制药一致性评价杂质分析策略》的报告。他在报告中介绍了仿制药一致性评价与杂质谱分析、杂质谱控制相关法规与流程、杂质谱分析的关注点。他强调,仿制药一致性评价中,杂质谱分析是应被予以高度关注的项目;杂质谱不仅与药品的安全性密切相关,且常与药品生产过程的关键质量属性(QCAs)、关键原辅料参数(CPPs)相关联,表征产品的工艺控制水平等;对影响杂质谱分析关键因素的认知是杂质谱分析的关键。 美国罗格斯大学 (Rutgers University) 公共卫生学院教授洪钧言博士做了题为《药物杂质的毒性问题探讨》的报告。他在报告中介绍了药物杂质类型、药物杂质毒性以及药物杂质的规管,特别针对基因毒性的研究、试验与评估进行了深入探讨。 上海医药工业研究院分析测试中心副主任潘红娟研究员做了题为《化学原料药 CQA 和分析控制策略》的报告。她在报告中以大量实例,从药物分析工作者角度探讨了质量研究问题,指出:1. 识别CQA并进行风险评估具有挑战性,但有助于控制策略的确立;多团队的合作是非常有必要的。2. 有效的质量控制策略可以保障药品质量体系的稳定。3. QbD设计的关键要素包括QTPP、CQA、产品和工艺理解、工艺开发控制理解、控制策略,以促进产品质量在其生命周期内不断提高。4. QbD 方法并不否定传统方法,而是对传统方法的强化。 岛津公司分析测试仪器市场部经理吴国华博士做了题为《塑料包装材料相容性研究分析探讨》的报告。他在报告中对塑料药包材相容性研究中的分析技术进行了探讨。他指出,包材相容性研究是药品关键质量属性研究的内容之一,药包材和药品之间可能产生物理、化学和生物的作用,发生物质的迁移、吸附或产生新的物质,影响药品的质量或者服用者的健康,所以要做相容性研究。他回顾了药包材相容性研究的背景、主要国家和组织的政策标准、技术指导原则,不同包材的风险等级和药包材的研究对象和研究方法,并通过塑料的生产过程,介绍了塑料药包材相容性研究的对象,然后针对这些研究对象提出药包材研究对分析技术的需求。最后,他分享了岛津公司为应对这些分析需求而提供的整体解决方案。 中国科学院上海药物研究所研究员张馨欣博士做了题为《化学药注射剂一致性评价技术探讨》的报告。她在报告中介绍了注射剂一致性研究研发要求概况与一致性评价研究主要内容,并通过大量实例解读了复杂注射剂一致性研究的研发技术。 浙江中医药大学中医药科学院副院长、二级教授李范珠博士做了题为《微透析技术在体内分析领域研究中的应用》的报告。他首先介绍了该研究的背景概况,随后介绍了微透析的原理、装置与适用范围,通过多个分析实例说明了微透析的特点。并从普通药物的在体分析、局部给药制剂的在体分析、植物生理机能在体分析、靶向制剂的在体分析、中药及复方有效物质的寻找等角度详尽介绍了微透析在体内分析的应用。最后展望了未来微透析技术在体内分析领域研究中的应用。 华海药业副总裁、分析领域首席科学家李敏博士做了题为《基因毒杂质的挑战与控制策略-从ICH指导纲领到实际操作层面》的报告。他在报告中首先介绍基因毒性杂质是能够直接或间接与DNA产生化学反应的物质,介绍了基因毒性杂质的研究历史与指南历史,解读了警示结构,他在报告中以原料药为例全面介绍了基因毒性杂质的风险评估、控制与策略、毒理学评估以及分析方法。 大会的最后环节为圆桌讨论,知名专家和与会者进行了长达一个半小时的热烈互动,针对与会者提出的药物研发中关键技术和质量属性的相关问题以及目前工作中的困惑,专家们依据个人丰富的实践经验给予了全面、深入的解答,令与会者收获颇丰。
  • 日程详览|第四届药物研发及分析技术网络会议之【药物代谢专场】
    随着生命科学、分子药物学、材料科学及信息科学的迅猛发展,各学科之间不断交叉渗透,药物制剂的新技术、新工艺、新材料等不断涌现,科学的发展为我们提供了更多更好的技术、方法和手段应用于药物研发分析及质量控制。为帮助制药领域用户快速了解、高效学习药物分析相关技术方法,仪器信息网将于2023年11月21-23日举办第四届“药物研发及分析技术”网络会议,设置药物代谢、生物分析、药品质量控制及安全性研究、药物分析技术新进展等专场,邀请多位业内专家做精彩报告,为广大制药领域从业人员搭建一个即时、高效的交流和学习的平台。11月21日药物代谢专场主持人吴彩胜(厦门大学 实验室与设备管理处副处长/教授)刁星星(中国科学院上海药物研究所 研究员)报告日程9:00-9:35刁星星(中国科学院上海药物研究所 研究员)《从2018-2023年我国上市新药解读》【摘要】放射性药物代谢技术是国际制药行业公认的研究创新药物“物质平衡、组织分布、代谢物鉴定”的“金标准”。美国FDA批准的新药,几乎全部使用放射性标记技术来做药物代谢研究,而我国这一比例在IND阶段很低。此技术的落后,严重制约了我国创新药物的发展。 报告将通过2018-2023年我国上市新药及发表的文献,来解读2023年7月24日发布的《放射性标记人体物质平衡研究技术指导原则(征求意见稿)》。并通过多个国产创新药的实例,阐明放射性同位素标记在新药研发中的重要作用,为新药研发提供全新的思路和解决方案。9:35-10:10顾景凯(吉林大学 药物代谢研究中心主任)《PEG化长循环脂质体的体内命运与相关技术指南解读》【摘要】纳米药物递送系统(NDDS)是与创新药物并驾齐驱的最受瞩目、最具前景的药物发展方向之一,但存在“高投入、低产出”的突出问题。究其主要原因,在于目前缺乏前瞻性的理论指导与有效的分析方法,无法为NDDS的设计与生物效应评价提供最基本的药代动力学数据指导。 本研究突破了阿霉素脂质体在组织水平上的游离与包裹药物定量分析的“卡脖子”问题,并成功揭示了嵌入脂质体中的DSPE-PEG2000 体内命运及PEG-脂质的脱落动力学。 报告还将基于我们以往的研究经验,尝试解读FDA与CDE有关NDDS的药代动力学指南。10:10-10:40张劭阳(赛默飞世尔科技中国有限公司 高级应用支持工程师)《高分辨质谱在ADC抗体药物中的全面表征方案》【摘要】 1、ADC药物分子量及DAR值检测 2、ADC药物肽图分析 3、HCP的鉴别和定量10:40-11:15唐崇壮(苏州锐迪欧医药科技有限公司 总经理)《抗体偶联药物ADC的代谢研究难点、对策和案例分析》【摘要】 ADC药物的代谢研究可以为药效学机制、毒性机理及DDI研究提供关键信息。 在ADC药物发现阶段,选择合适的体外体系,并综合利用非靶标性和靶标性的LC-HRMS方法鉴定ADC在体外释放的载荷及其代谢物,对选择和确认毒理种属和开展代谢物表型研究至关重要。在非临床阶段,放射性标记载荷在动物的ADME结果可以用于预测ADC的载荷在人体的ADME和相关临床DDI。 由于ADC的载荷体内浓度低,代谢物结构难以预测,载荷的体外代谢和体内ADME研究模型和代谢物鉴定方法与小分子代谢有很大的区别,为此锐迪欧建立了支持ADC研发和申报的代谢研究策略和方法,并成功应用到多个ADC研发的项目上。11:15--11:50邹灵龙(康维讯生物技术有限公司 创始人、董事长、CEO)《抗体药的生物分析与药代动力学研究》【摘要】 抗体药是生物药中最主要的品种,FDA迄今批准了一百多款抗体药,包括单抗、双抗、ADC和抗体片段。本报告将介绍常见抗体药的药代动力学简况以及相应的生物分析方法学,包括但不限于适用于临床前研究的通用型检测方法。扫码报名,免费参会解锁更多精彩专场报告时间上午下午11月21日药物代谢生物分析11月22日药品质量控制及安全性研究专场11月23日药物分析技术新进展
  • 药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)
    药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)病毒变异vs抗病毒药物病毒是一种以DNA或RNA为遗传物质,无独立营养代谢系统,需寄生于宿主内,进行复制和生存的类生物体。病毒在自然界内与宿主共生的过程中,一些病毒可逃脱宿主免疫防御系统,导致宿主发病致死。病毒遗传物质突变几率非常高,可帮助病毒逃脱不断升级的宿主免疫系统。根据病毒进化论学说,病毒发展史要远超过人类进化史,相比之下,人类对病毒知之甚少。随着分子细胞生物学的发展,目前发现病毒种类7000多种,其中可感染人类的病毒有300多种。病毒感染类疾病占传染类疾病的3/4,严重威胁人类健康。从上个世纪60年代开始,已有广谱类的抗病毒药物出现,但由于病毒突变速度非常快,随后陆续产生病毒耐药性和副作用,导致对病毒类感染疾病无特异性有效药物进行临床治疗。瑞德西韦——人民的希望?2020年伊始,COVID-2019肆虐,开发特异性抗新冠病毒药物迫在眉睫。2月1日《新英格兰杂志》发表论文中,报道美国第一例新冠肺炎患者病情恶化后,经瑞德西韦(Remdesivir/GS-5734)静脉注射同情用药后病情好转[1]。2月6日,瑞德西韦“双盲临床实验”在武汉市金银潭医院、市肺科医院和协和医院等入组761例患者进行临床评价[2]。“人民的希望”——瑞德西韦抗新冠肺炎临床疗效,需等至4月底揭晓谜底。瑞德西韦是由一直致力于抗病毒领域的吉利德科学公司研发(抗流感药物奥司他韦,商品名达菲,最早也由吉利德研发,后卖给罗氏进行全球销售)。2013-2016年(西非)和2018-2019年(刚果)埃博拉病毒肆虐期间,全球各大制药公司掷重金进行抗埃博拉病毒药物研发。由美国陆军传染病医学研究所,吉利德科学公司,美国CDC和波士顿大学医学院四家业内顶级实验室联合进行的瑞德西韦抗埃博拉病毒临床前药效学研究,于2016年发表在《自然》杂志[3]。瑞德西韦分子机制——前药(Prodrug)三磷酸代谢物有效制止RdRp酶活性RNA依赖型RNA聚合酶(RNA-dependent RNA-polymerases, RdRp)为广谱的抗病毒药物开发靶点,目前以RdRp为靶点的抗冠状病毒药物多为核苷类似物或RNA干扰类[4]。瑞德西韦以前药(Prodrug)形式进入细胞后,通过三步转化为三磷酸代谢物NTP,NTP和天然ATP竞争结合病毒RdRp,插入RNA合成链中,引起病毒RNA合成终止,并抑制RdRp酶活性(下图a)[3]。瑞德西韦结构上的1‘-氰基,一方面针对RdRp酶提供更好的针对ATP竞争的结合活性,另一方面针对病毒RdRp酶提供了比人源RNA聚合酶II和人源线粒体RNA聚合酶(h-mtRNAP)更好的选择性抑制。在Hela细胞水平,瑞德西韦对两种埃博拉病毒和另外三种病毒都有显著浓度依赖型抑制(下图c);且在分子水平,瑞德西韦活性分子NTP能选择性抑制病毒RdRp酶活性(下图e蓝色),而对人源RNA聚合酶II(下图e黑色)和线粒体RNA聚合酶(下图e红色)无明显抑制作用[3]。瑞德西韦细胞活性——高效选择性抑制病毒在细胞内复制研究人员又通过进一步的细胞学实验,分别在不同的细胞模型上评价了瑞德西韦(GS-5734)对埃博拉病毒和其他RNA病毒的抗病毒活性。数据显示,瑞德西韦可在五种细胞模型,包括原代巨噬细胞上有效抑制埃博拉活性;并对呼吸道感染病毒,如RSV和MERS,以及出血热感染病毒,如JUNV和LASV病毒有一定抑制作用;但对其他病毒如CHIV,VEEV和HIV-1,无明显抑制(下表)[3]。2019年,在《柳叶刀传染病》杂志报道,美国CDC科研人员建立的Zoanthus绿色荧光蛋白(ZsG)标记的埃博拉病毒体外细胞表型快速评价方法(下图左),再次验证了瑞德西韦可在低浓度抑制两个品系(Ituri/Makona)的埃博拉病毒复制,并对细胞活性无明显影响(下图右)。对Ituri品系埃博拉病毒,EC50为12nm,SI(selectivity index,SI)为303倍;对Makona品系埃博拉病毒,EC50为13nm,SI为279倍[5]。 瑞德西韦体内药效——快速扩散至病灶区,提高模式动物存活率在恒河猴(rhesus monkeys)动物模型上,按10mg/kg计量静脉注射给药后,检测健康恒河猴体内瑞德西韦(下图a黑色) 及其代谢物,丙氨酸代谢物(下图a红色), 单磷酸代谢物Nuc(下图a蓝色)和三磷酸代谢物NTP(下图a绿色),在不同时间点的血药浓度。数据显示瑞德西韦前药在体内两个小时内达到峰值,随后很快被清除;而其三磷酸活性代谢物NTP在体内,特别是外周血单核细胞(PBMCs)内,可在更长的时间内维持高血药浓度。通过同位素14C标记瑞德西韦药物后,进一步研究药物在体内分部发现,药物可快速到达睾丸、附睾、眼睛和脑部(下图b)[3]。通过病毒暴露动物模型实验,瑞德西韦通过静脉注射给药后,可显著提高恒河猴实验动物的存活率,特别是在病毒暴露3天后按10mg/kg计量的给药组,其28天后存活率和空白对照组同样可达100%(下图d),且通过核酸定量方法进一步验证,给药组体内的病毒RNA拷贝数与空白对照组相比得到明显抑制(下图e)[3]。瑞德西韦抗病毒药物机制总结瑞德西韦以RdRp酶为药物靶点,在广谱抗病毒核苷类似物抑制剂中脱颖而出,主要归因于以下三点:1) 对其药物靶点RdRp酶,比其天然底物ATP有更高的竞争亲和性;2)在体外细胞水平,可高效选择性的抑制RNA病毒在细胞内复制,并无明显细胞毒性。3)在体内动物水平,有良好的药代学基础,其活性代谢物NTP可快速扩散至病灶,抑制体内RNA复制,提高病毒暴露后模式动物存活率。试验方法珀金埃尔默仪器&试剂方案RNA聚合酶活性检测[a-32P]-GTP 同位素标记细胞内病毒感染评价高内涵细胞成像表型分析平台Opera/Operetta细胞成像专用微孔板抗病毒药物细胞毒性评价多模式读板仪 EnVision药物组织分布[14C]GS-5734 同位素标记同位素液闪计数仪病毒基因组测序分析自动化NGS文库制备工作站 Sciclone G3抗病毒药物实验设计及仪器&试剂摘录列表[3,5]“工欲善其事,必先利其器”。在以上瑞德西韦抗病毒药物研发实验设计及检测过程中,珀金埃尔默在每一个环节都给一线的科学家们提供了高效的“实验武器”:经典的同位素标记技术,准确分析RdRp活性和药物组织分布;业内金标准EnVision多模式读板仪和高内涵成像表型分析平台Opera/Operetta,快速进行细胞内病毒感染和药物毒性评价;自动化NGS文库制备工作站Sciclone G3,加速病毒基因组快速分析。扫描下方二维码,即可查看珀金埃尔默病毒感染疾病研究整体解决方案。参考文献1.First Case of 2019 Novel Coronavirus in the United States. NEJM Jan 2020.2.http://www.wuhan.gov.cn/2019_web/whyw/202002/t20200207_304511.html3.Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.NatureMarch 2016.4.Coronaviruses — drug discovery and therapeutic options. NATURE REVIEWS DRUG DISCOVERY May 20165.Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. The Lancet Infectious Diseases July 2019
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 2023年药物制剂前沿技术高峰论坛闭幕,诺禛科技全面展出药物溶出装置
    2023年7月20-21日,由北京大学药学院主办,诺禛科技(上海)有限公司等承办的2023年药物制剂前沿技术高峰论坛于北京圆满落幕! 本次会议主要围绕微纳米注射剂和外用半固体制剂两个专题的关键制剂技术,结合药剂学科前沿最新进展、基础研究、开发应用、临床研究以及监管审评中的关键科学问题,技术难点等,分享药物制剂的最新进展和应用转化,邀请了药品监管部门、科研院所、院校以及制药企业的相关专家、学者、从业人员前来分享、交流、学习,在线观看高峰论坛直播超21万人次。诺禛科技(上海)有限公司作为参展商参加了本次论坛,并在论坛中展出了ANDISSO品牌的D1200 PRO 12位溶出自动取样装置、R3000往复筒法释放装置、T1200 12位透皮扩散装置、纳米药物分离试剂盒、NOVOZEN超高密度溶出滤芯等产品,并为到场老师提供了全面、专业的药物溶出及透皮扩散解决方案:D1200 PRO 12位溶出自动取样装置可以作为药品质量检测的重要工具,用于检验药品中药物成分的释放情况是否符合国家标准和相关法规,确保药品的质量和安全性。R3000 PRO往复筒法释放自动取样装置可以以一定速度在药物样品和固态药品之间往复运动,以模拟消化道中的搅动和运动,从而测量药物在人体消化系统中的溶解度。T1200 PRO 12位透皮扩散自动取样装置可以模拟人类皮肤的生理条件,并能够对药物、化妆品等物质在透过人类皮肤时的透过速度和透过量进行测量和评估。NOVOZEN超高密度溶出滤芯可适配目前各主流品牌溶出仪,同时也适用于多种药物的溶出实验。孔径精准,同时具有超高开孔率,过滤效果高。产品洁净度高、溶出析出少,药物相容性好,耐各种试剂和药品,且无颗粒脱落。纳米药物分离试剂盒通过分离试剂(SR)与纳米药物表面 PEG 间的亲和作用,破坏 PEG 化纳米药物水化层,促使 PEG 化纳米药物聚沉,通过低速离心即可实现纳米药物中负载型药物与游离型药物的分离。关于诺禛:诺禛科技(上海)有限公司是一家科学仪器行业整体解决方案提供商。诺禛专注于药检仪器、制药工业设备及实验室解决方案等领域,以品牌市场推广、OEM业务、实验室易耗品等三大板块为主营业务,为制药企业、日化企业、CRO企业、政府监管机构、高等院校及科研院所等客户群体提供极具价值的产品与服务。公司始终奉行“一诺成禛”的行为准则,敢于承诺,勇于践行,力争与客户携手共赢。一直以来,公司通过不断优化管理结构,积极探索新的发展模式,在确保经营业绩稳健增长的同时,完成了渠道拓展、深化品类的业务布局,在传统业务向平台化、服务化转型的过程中取得了丰硕成果。目前已在沈阳、北京、青岛、武汉、广州、成都等地设立办事处。公司聚焦发展的同时,积极践行实现员工价值的发展理念,建立以人为本的人才策略,成为有社会责任感、有市场竞争力、有长远生命力的企业!关于ANDISSO:ANDISSO专注于药物制剂体外释放装置的研发和生产领域,并提供相配套的技术服务。我们立足于中国,并吸取国际先进技术经验,自主研发并制造了USP装置1-7法,包括通用溶出装置系列、往复筒法装置系列、往复支架法装置系列、流池法装置系列和透皮扩散装置系列产品。品牌设计师来自于国际知名药物递送系统装置的首席专家,拥有打造多款体外释放装置长达15年的丰富经验。ANDISSO拥有某国际知名药物递送系统装置的多项技术专利授权,并得到欧美和亚太地区主流学界学者支持。ANDISSO品牌将致力于领先技术与艺术美感的结合,让设计更美感,让技术更领先,让质量更可靠是我们不变的信念。我们将着眼于品质与创新,旗下全线产品皆秉承于这一宗旨,拥有卓越品质的同时,将持续不断地根据市场需求与客户体验打磨、更新产品,为中国及全球客户提供最可靠的产品和最优质的解决方案!
  • 揭幕仪式| 德祥集团与药物制剂国家工程研究中心建立药物制剂联合实验室
    医药制造业是关系国计民生的重要产业,在加快推进健康中国建设精神的指导下,近年来我国政府对于医药制造业的重视程度与支持力度都在不断提升,制药行业的市场规模持续增长。而作为制药行业的重要组成部分之一,药品制剂也在快速发展,有越来越多的企业与研究机构投入到药物制剂的研究中。 2021年7月20日,德祥集团与中国医药工业研究总院旗下的药物制剂国家工程研究中心举办了药物制剂联合实验室的揭幕仪式。中国医药工业研究总院陆伟根副院长、药物制剂国家工程研究中心何军副主任和德祥集团ceo朱智华先生、总经理金莹瑛女士、副总经理金捷女士出席了揭幕仪式。 揭幕仪式合影 药物制剂国家工程研究中心是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于有自主知识产权的制剂产品和技术开发。德祥集团致力于将全球制药领域先进的技术引入国内科研院校。此次共建的药物制剂联合实验室,旨在加深德祥集团与药物制剂国家工程研究中心在药品质量控制方面的合作,同时联合实验室将作为平台和纽带,为后期双方多元化、以及更深层次的合作奠定坚实的基础,同时未来将对促进我国药物创新、推动制药工业发展具有重要意义。 中国医药工业研究总院陆伟根副院长 在揭幕仪式上,首先是中国医药工业研究总院陆伟根副院长致辞,他感谢了德祥对中国医药工业研究总院旗下药物制剂国家工程研究中心工作的支持,强调新剂型的发展离不开各个环节的支持,尤其是生产设备和评价设备。陆副院长表示本次合作对于中国医药工业研究总院药物制剂国家工程研究中心未来的剂型发展以及整个制药行业的发展都能发挥很好的作用,并期待此次合作能够为国家制药工业和制剂工业的发展做出新的贡献。 德祥集团ceo朱智华先生 随后,德祥集团ceo朱智华先生致辞,首先他对药物制剂国家工程研究中心能够与德祥集团建立药物制剂联合实验室表示感谢。从1992年成立到现在,德祥已经有将近30年的历史。作为一家代理公司,德祥将很多欧美与日本的品牌引入中国,为中国的科研院所提供先进的设备和技术服务。他表示,此次建立药物制剂联合实验室对德祥来说是一个重大的里程碑,标志着德祥从一家纯粹的代理商公司转变为实体公司,使德祥能够把更好的、更完善的解决方案提供给中国的制药企业,从而更快地在当下高速发展的制药市场中占据一席之地。在发言的结尾,他再次感谢中国医药工业研究总院以及旗下药物制剂国家工程研究中心的支持,并衷心地希望双方能在药物制剂联合实验室中进行更深入的合作。 参观实验室 揭幕仪式结束后,出席本次仪式的领导们参观了药物制剂联合实验室。仪器设备在药物的研发生产与质量控制中发挥着重要作用,德祥为实验室的仪器配置提供了重要的协助。在参观过程中,双方领导都十分关注实验室的设备情况。参观过后,双方就行业的人才、市场等现状以及双方发展情况进行了密切的交流。双方还谈及未来的合作,将在仪器、实验基地等多方面开展合作项目。 交流活动 参与建立药物制剂联合实验室的除了现场出席的双方代表以及幕后团队之外,还有一位不得不介绍的“小伙伴”:德国pharma test全自动纳米溶出仪。 德国pharma test全自动纳米溶出仪 德国pharma test 溶出仪符合usp、ep等要求设计,满足片剂、胶囊等制剂溶出度的测试。其优良的性能保证溶出实验结果的高度准确性和良好重现性。携带pt-dr释放器可对纳米级别颗粒的样品进行溶出实验。 期待未来还有更多的“小伙伴”们加入到药物制剂联合实验室中,为药品质量检验与控制添砖加瓦。 关于德祥集团 自1992年创办以来,德祥就一直是科学仪器行业内颇受尊敬的*供应商。公司业务包含仪器代理,维修售后,自主产品研发生产销售售后。实验室分析仪器、工业检测仪器及过程控制设备是德祥主营的产品,现已覆盖高校、科研院所、政府组织、检验机构及工业、企业等客户,涵盖制药、石化、食品饮料和电子等各个行业。 我们设有 13个办事处和销售点(含越南),3个维修中心,1个样机实验室,致力于为每一位客户提供*的服务。 关于药物制剂国家工程研究中心 药物制剂国家工程研究中心隶属于中国医药工业研究总院,是国内最早从事药物制剂研究的机构,也是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于具有自主知识产权的制剂产品和技术开发,在口服、注射、透皮等释药系统产业化方面形成了独特的技术优势,是国内给药系统研究的领航者。
  • 揭幕仪式| 德祥集团与药物制剂国家工程研究中心建立药物制剂联合实验室
    医药制造业是关系国计民生的重要产业,在加快推进健康中国建设精神的指导下,近年来我国政府对于医药制造业的重视程度与支持力度都在不断提升,制药行业的市场规模持续增长。而作为制药行业的重要组成部分之一,药品制剂也在快速发展,有越来越多的企业与研究机构投入到药物制剂的研究中。 2021年7月20日,德祥集团与中国医药工业研究总院旗下的药物制剂国家工程研究中心举办了药物制剂联合实验室的揭幕仪式。中国医药工业研究总院陆伟根副院长、药物制剂国家工程研究中心何军副主任和德祥集团CEO朱智华先生、总经理金莹瑛女士、副总经理金捷女士出席了揭幕仪式。 揭幕仪式合影 药物制剂国家工程研究中心是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于有自主知识产权的制剂产品和技术开发。德祥集团致力于将全球制药领域先进的技术引入国内科研院校。此次共建的药物制剂联合实验室,旨在加深德祥集团与药物制剂国家工程研究中心在药品质量控制方面的合作,同时联合实验室将作为平台和纽带,为后期双方多元化、以及更深层次的合作奠定坚实的基础,同时未来将对促进我国药物创新、推动制药工业发展具有重要意义。 中国医药工业研究总院陆伟根副院长 在揭幕仪式上,首先是中国医药工业研究总院陆伟根副院长致辞,他感谢了德祥对中国医药工业研究总院旗下药物制剂国家工程研究中心工作的支持,强调新剂型的发展离不开各个环节的支持,尤其是生产设备和评价设备。陆副院长表示本次合作对于中国医药工业研究总院药物制剂国家工程研究中心未来的剂型发展以及整个制药行业的发展都能发挥很好的作用,并期待此次合作能够为国家制药工业和制剂工业的发展做出新的贡献。 德祥集团CEO朱智华先生 随后,德祥集团CEO朱智华先生致辞,首先他对药物制剂国家工程研究中心能够与德祥集团建立药物制剂联合实验室表示感谢。从1992年成立到现在,德祥已经有将近30年的历史。作为一家代理公司,德祥将很多欧美与日本的品牌引入中国,为中国的科研院所提供先进的设备和技术服务。他表示,此次建立药物制剂联合实验室对德祥来说是一个重大的里程碑,标志着德祥从一家纯粹的代理商公司转变为实体公司,使德祥能够把更好的、更完善的解决方案提供给中国的制药企业,从而更快地在当下高速发展的制药市场中占据一席之地。在发言的尾声,他再次感谢中国医药工业研究总院以及旗下药物制剂国家工程研究中心的支持,并衷心地希望双方能在药物制剂联合实验室中进行更深入的合作。 参观实验室 揭幕仪式结束后,出席本次仪式的领导们参观了药物制剂联合实验室。仪器设备在药物的研发生产与质量控制中发挥着重要作用,德祥为实验室的仪器配置提供了重要的协助。在参观过程中,双方领导都十分关注实验室的设备情况。参观过后,双方就行业的人才、市场等现状以及双方发展情况进行了密切的交流。双方还谈及未来的合作,将在仪器、实验基地等多方面开展合作项目。 交流活动 参与建立药物制剂联合实验室的除了现场出席的双方代表以及幕后团队之外,还有一位不得不介绍的“小伙伴”:德国Pharma Test全自动纳米溶出仪。 德国Pharma Test全自动纳米溶出仪 德国Pharma Test 溶出仪符合USP、EP等要求设计,满足片剂、胶囊等制剂溶出度的测试。其优良的性能保证溶出实验结果的高度准确性和良好重现性。携带PT-DR释放器可对纳米级别颗粒的样品进行溶出实验。 期待未来还有更多的“小伙伴”们加入到药物制剂联合实验室中,为药品质量检验与控制添砖加瓦。关于德祥集团自1992年创办以来,德祥就一直是科学仪器行业内颇受尊敬的优质供应商。公司业务包含仪器代理,维修售后,自主产品研发生产销售售后。实验室分析仪器、工业检测仪器及过程控制设备是德祥主营的产品,现已覆盖高校、科研院所、政府组织、检验机构及工业、企业等客户,涵盖制药、石化、食品饮料和电子等各个行业。 我们设有 13个办事处和销售点(含越南),3个维修中心,1个样机实验室,致力于为每一位客户提供优质的服务。 关于药物制剂国家工程研究中心 药物制剂国家工程研究中心隶属于中国医药工业研究总院,是国内最早从事药物制剂研究的机构,也是我国从事给药系统研究有且仅有的的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于具有自主知识产权的制剂产品和技术开发,在口服、注射、透皮等释药系统产业化方面形成了独特的技术优势,是国内给药系统研究的领航者。
  • 2018第十二届药物制剂大会落下帷幕---锘海生命科学助力药物制剂研发
    为获取全球最前沿的药物制剂研发技术信息,把握药物制剂研究领域发展的国内外新动态,促进药物制剂行业交流与合作,提高我国药剂学研究水平,推动我国药剂学科的快速发展,中国药学会于2018年11月30日至12月2日在广东省广州市举办了第十二届中国药物制剂大会。锘海生命科学作为行业内供应商和服务商,为科研和企业药物研发人员提供纳米药物制造、生产、分析及药物体内外评价整体解决方案。 锘海带来的行业科技和产品吸引众多科研和企业行业人士,展位人气爆棚! 展出产品◆ 药物制造和表征分析 ◆加拿大 Precision Nanosystems 纳米药物载体制造系统世界TOP25大药企的选择!通过微流控芯片技术制造纳米颗粒包裹体,可包裹药物,mRNA、siRNA,CRISPR,DNA,蛋白等,从低通量至高通量均可覆盖,适合于临床及临床前研究,并可在纳米颗粒表面添加marker制造靶向药物。西班牙Bionicia静电纺丝及静电喷雾设备通过电流体动力学制备纳米/微纤维和颗粒流程(EHDA)俗称静电纺丝(纤维)或电喷雾(颗粒)。并且提供与之相关的产品和服务(CRO\CMO)。美国 Spectradyne 高分辨纳米微米颗粒分析仪Astra Zeneca的选择!测量纳米颗粒时应用电学性质识别混悬介质中的粒子,而无需依赖其光学参数。该仪器可测量单个粒子并快速整合粒子尺寸、定量浓度以及Zeta电荷的统计数据。这一特殊性能将nCS1与市面上其他纳米分析仪区分开来。◆ 药物体外筛选 ◆瑞士regenHU3D 生物打印机Novartis的选择!高性价比的3D生物打印平台,3D Discovery系列为高端医用活性细胞组织材料打印制造系统,可以按需制造出符合个体需求的单个器官或组织,真正实现医学的个性化需求。美国etaluma全自动活细胞成像系统FDA、Amgen、Merck的选择!Lumascope?720 三色激发光源全自动荧光显微镜具有更自动化的产品性能与更高端的三色荧光成像系统,精确的X-Y载物台控制系统,可进行自动对焦,还可置于培养箱中。高内涵筛选选择! ◆ 药物体内筛选 ◆法国 VILBERNEWTON 7.0 小动物荧光/生物发光成像系统Novartis、Pfizer、Roche、Boehringer Ingelheim的选择!采用7通道 LED双光源激发,双磁控溅射镀膜的滤光片技术,可进行高效的光谱分离,检测光谱范围可以从400nm至900nm,可同时实现GFP,YFP, Dyelight 680, Cy5.5, Cy7等多种染料标记的小动物荧光/生物发光成像。美国 Photosound小动物3D光声/荧光成像系统(PAFT)可同时实现近红外一区&近红外二区3D光声成像 具有100 um等向分辨率、高通量 (256个电子通道)、灵敏度高(60nM ICG )、桌面式设计,方便使用、成像速度快 (完成一次3D扫描只需30秒)的特点。比利时 Molecubes临床前成像PET/SPECT/CTPET/SPECT/CT能够实现小鼠(4只)和大鼠高灵敏度全身3D成像。PET具备出色的分辨率和灵敏度;SPET系统拥有高分辨探测器和专利准直器;CT系统能够以超低放射剂量获取很高的图像对比度。长按识别二维码关注我们关于锘海锘海生物科学仪器(上海)股份有限公司(Nuohai Life Science)成立于2004年,总部设在上海,并陆续在北京,广州,成都等地设立了8个办事处。锘海致力于提供先进的实验/研究与生产仪器、相关试剂耗材, 并提供专业的应用和技术服务支持。不断促进生命科学领域新技术发展,及时引进国外新的技术和产品。同时,锘海生命科学为科研及企业客户提供全方位的CRO/CMO 服务,满足产业中的研发和生产需求。
  • 见微知著:药物晶型控制中的奥秘
    p style=" text-align: justify text-indent: 2em " 药物晶型与药物质量关系密切。固体药物由于制备工艺的不同,制剂后药物的分子可能会形成不同的晶型。由于晶型的不同,药物的有些性质比如:熔点、溶解性、吸湿性、稳定性还有生物利用度等会受到影响。 /p p style=" text-align: justify text-indent: 2em " 2020年版《中国药典》即将正式实施。其中,关于药品质量控制这一方面在不断地重视。在本次药典更新中,可以找到很多例子。关于药物晶型方面也有不少修订,无论从使用的方法还是仪器检测技术都有更新。 span style=" color: rgb(0, 176, 80) " strong 0981 结晶性检查法 /strong /span 中规定了三种方法:第一法(偏光显微镜法);第二法(粉末X射线衍射法);第三法(差示扫描量热法)。 /p p style=" text-align: justify text-indent: 2em " 关于药物晶型和其质量控制的 span style=" color: rgb(0, 112, 192) " strong 实验仪器 /strong /span 有以下几类: span style=" color: rgb(0, 112, 192) " strong DSC(差示扫面量热)仪器,偏光显微镜,XRD(X射线衍射仪),熔点仪以及溶出度仪 /strong /span 等等。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 424px height: 247px " src=" https://img1.17img.cn/17img/images/202010/uepic/9814e73e-2766-4a41-bf22-7dbaaa26a831.jpg" title=" X射线衍射.png" alt=" X射线衍射.png" width=" 424" height=" 247" / /p p style=" text-align: center " span style=" color: rgb(89, 89, 89) font-size: 14px " strong 图为I晶型的阿托伐他汀钙的X射线粉末衍射图 /strong /span /p p span style=" color: rgb(89, 89, 89) font-size: 14px " strong br/ /strong /span /p p style=" text-align: center margin-top: 15px " span style=" color: rgb(89, 89, 89) font-size: 14px " strong /strong /span a href=" https://www.instrument.com.cn/zc/73.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 505px height: 375px " src=" https://img1.17img.cn/17img/images/202010/uepic/232e36f4-0749-4600-a5d5-01d756e5d8ab.jpg" title=" XRD.png" alt=" XRD.png" width=" 505" height=" 375" / /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong XRD-X射线衍射仪: /strong /span 当一束单色X射线入射到晶体时,原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级。故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,可以反映晶体的结构。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(89, 89, 89) font-size: 14px " strong /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/zc/63.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 499px height: 374px " src=" https://img1.17img.cn/17img/images/202010/uepic/7462bd01-457b-4eef-b71c-bae6ce3f71c1.jpg" title=" DSC.png" alt=" DSC.png" width=" 499" height=" 374" / /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong DSC-差示扫面量热仪: /strong /span 热分析法,在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。 /p p style=" text-align: justify text-indent: 2em margin-top: 5px " DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。它可以用来研究生物膜结构和功能、蛋白质和核酸构象变化等。 /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/zc/57.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 504px height: 372px " src=" https://img1.17img.cn/17img/images/202010/uepic/958ea864-5bc1-4220-b287-a67dd2d4ec7a.jpg" title=" 偏光显微镜2.png" alt=" 偏光显微镜2.png" width=" 504" height=" 372" / /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong 偏光显微镜: /strong /span 双折射性是晶体的基本特征。偏光显微镜被广泛地应用在矿物、高分子、纤维、玻璃、半导体、化学等领域。在生物学中,很多结构也具有双折射性,这就需要利用偏光显微镜加以区分。在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。 /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/JX1028/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 586px height: 195px " src=" https://img1.17img.cn/17img/images/202010/uepic/3a7dde76-6eca-489c-a8d3-f5152e2b5e6a.jpg" title=" w1035h345.png" alt=" w1035h345.png" width=" 586" height=" 195" / /a /p p style=" text-align: justify text-indent: 2em " 为加强药物晶型控制有关最新研究和技术交流,为来自企业、科研院所、高校与政府监管部门的相关用户搭建交流与沟通平台,仪器信息网将于 strong 2020年10月28日 /strong 举办“药物晶型控制分析”主题网络研讨会。【点击即可报名】 /p
  • 瑞士华嘉与晶云药物联合将为中国制药界用户提供药物固态表征领域的一系列高端讲座
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。其中固态表征领域的产品就包括粒度仪,密度计,旋光计,接触角测量仪,BET比表面积测量仪等各种高端进口仪器。 “中国政府正在大力增加制药行业的投资力度,以提高中国在药物研发领域的能力和国际竞争力”,晶云首席执行官陈敏华博士说,“在药物的高级研发方面,中国制药业尚处于起步阶段。导致这个现象的部分原因是国内制药行业在对原料药和制剂的研发认知上,与美国和欧洲的制药行业尚有不小差距。虽然不少中国制药公司有能力购买昂贵的固态表征和其它分析仪器,但他们并不一定懂得如何正确的使用这些仪器,合理的阐释实验数据,并深刻理解其所提供的信息和对药物研发的作用。” 苏州晶云药物科技有限公司是中国首家并且也是目前唯一一家专注于药物晶型研究和提供药物固态信息领域研发方案的技术服务公司。晶云的科研人员拥有丰富的原料药和制剂的研发经验。无论是以研发创新药物为主的全球各大制药公司,还是以生产仿制药(包括原料药和制剂)为主的国内各制药公司,晶云都可以成为其在药物固态研发领域的紧密合作伙伴,为其提供药物固态研发领域的各种解决方案,其中包括药物晶型研究,盐型/多晶型/共晶型筛选,单晶的生长和结构鉴定,结晶工艺的优化,手性药物的结晶提纯,临床前制剂的研发,无定形药物制剂的研发等各个方向。晶云不局限于简单的为客户操作实验和提供实验结果,更重要的是给客户提供一个适合其需求并完全满意的全套研发方案。 晶云技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。晶云即将为华嘉客户提供的讲座和培训不仅包含了药物固态表征技术的基本理论,还将集中讨论如何利用这些仪器解决药物研发生产中碰到的实际问题,并辅以大量的制药行业中的案例分析。晶云和华嘉的一个共同使命就是帮助广大中国制药公司在新药研发领域迅速赶上欧美制药公司水平。相信由两家公司联合举办的讲座和培训将为成为实现这一使命的重要平台。 晶云药物科技有限公司 晶云药物科技有限公司(Crystal Pharmatech)总部设立在苏州工业园区内的生物纳米科技园,在美国新泽西州建有分部。核心团队由中美科学家及管理人员共同组成,拥有在全球前三大制药公司数十年的丰富研发和生产经验。团队利用掌握的核心技术开发出中国在药物晶型研究及提供药物固态信息研发方案的首个高新技术平台,并通过该平台为全球制药公司提供该领域的高级技术研发服务。公司拥有的享有自主知识产权的高新技术和高新仪器,结合团队目前已经完全掌握的该专业领域的核心技术,将保证技术平台不仅可以填补国内在该领域的空白,而且使技术平台处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,主要包括原料药及其中间体的成盐,共晶和多晶的筛选,原料药和制剂的表征和评估,晶型药物结晶工艺流程的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 想了解更多信息,敬请登陆: http://www.crystalpharmatech.com/ 华嘉(香港)有限公司——隶属大昌华嘉大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。"科技的市场智慧”是对华嘉公司形象的准确概括。高品质的产品,专业的应用及完善的售后服务,对各种客户文化背景的深刻理解以及娴熟的市场贸易技巧使得客户获得的不仅是经济上的利益,而且是技术上的进步。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 想了解更多信息,敬请登陆:http://www.dksh-instrument.cn/
  • 创新药物研发新热点之糖类药物研究——访北京大学药学院李中军教授
    糖,是组成生物体的基本物质之一,与蛋白质、核酸并称为三大生物大分子。然而,由于糖结构的高度复杂性和多样性,糖类物质的研究进展相对缓慢,从基础研究到功能解析,甚至包括糖类药物的开发和应用方面,都远远滞后于蛋白质和核酸。近年来随着糖科学的发展,尤其是寡糖合成手段的进步和各类探针分子的应用,使得糖类的功能逐步得到解析,糖化学与糖类药物的开发也逐渐成为生命科学与制药领域的研究热点之一。日前,笔者有幸采访到了日本东京理化的一位重要客户——北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授,并与李教授聊起了糖化学及糖类药物的相关研究,以及李教授课题组在教学研究中经常用到的一些仪器设备等,陪同采访的还有东京理化中国贸易公司,埃朗科技售后服务部技术总监张京明先生。北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授糖化学相关研究的意义与挑战李中军教授可以说是一位地地道道的“北医人”,从1982年开始就读于北京医科大学(后并入北京大学)药学院化学专业,本、硕、博都是在北医完成,后留校任教从事教学和科研工作,长期以来从事糖化学、糖化学生物学及相关创新药物的研究。对于糖在生物医药中的重要作用,李教授引用了两个重要的例子,一个是人类ABO血型真正的区别其实就是血红蛋白外面糖链结构的差别;另一个是肿瘤细胞的糖链结构会发生异常改变,是进行早期肿瘤诊断的生物标记物,同时也是抗肿瘤药物疗效及预后的重要指标。而要进行糖的功能研究,首先要解决糖的来源问题,就是寡糖的获得性。制备纯度高、结构清楚的寡糖可以说是影响糖类学科发展的瓶颈,近年来受到越来越多的关注。寡糖的制备方式主要有三种,一种是从天然产物中分离,另一种是酶促法,还有一种就是化学合成法。由于天然产物中的多糖分布不均匀且结构复杂,因此分离难度非常大。而酶促法虽然可行性高,但酶来源受限,价格昂贵。所以寡糖制备大多数采用的是化学合成法。传统的寡糖合成步骤特别长、成本非常高,譬如法国制药巨头赛诺菲获得专利的一个抗凝血肝素类药物——磺达肝素,可有效用于临床手术中防治血栓形成或栓塞性疾病,光合成步骤就有60步,每公斤合成成本高达600万元以上,这种步骤繁琐且高成本的制备方式严重制约了糖类药物的发展。李中军教授团队长期关注寡糖合成新方法及快速组装新策略的研究。譬如,人体内的凝血包括外源性和内源性,外源性凝血可阻止伤口不断出血,而内源性凝血则容易引起血栓等,肝素类药物虽然具有出色的抗凝血活性,每年全球销售额高达数十亿美元,但由于其口服无活性,且同时作用于内、外源性凝血,存在潜在出血风险,因此被局限于医院等专业医疗机构用于临床手术方面。近年来科学家从天然海参中提取到肝素的结构类似物——岩藻糖基化硫酸软骨素(FuCS),研究表明FuCS九糖片段具有市售低分子量肝素相当的抗凝血活性,且由于其独特的化学结构,使其具有口服抗凝活性,且药理活性机制表明其可选择性激活内源性凝血通路,因此在出血倾向方面比肝素具有更高的安全性,通过优化改造之后有望发展成为新一代肝素抗凝药物。李中军教授研究团队通过采用降解加修饰的半合成策略,开发了一种可以简便合成FuCS九糖的化学合成工艺。这一工艺的实现可以提高FuCS的可获得性,降低目标药物的获取难度,合成步骤和成本大大减少,实现了高效、简洁的寡糖合成,为后期药物筛选与中式放大提供了最优合成路线,应用前景非常好,目前已实现技术转让。除此之外,李中军教授研究团队还致力于各种生物活性寡糖的合成及活性评价,基于糖类的天然产物合成及不对称合成研究以及创新药物研究等。糖化学研究的主力——小型仪器近年来,糖类药物的研究越来越热,由于我国具有丰富的生物资源,糖类药物来源广泛,因此在糖类药物研究方面也取得了一系列的重要进展,相关研究团队的数量也在逐渐增多。正如李中军教授所说,20年前国内做糖的没有一个组织,而现在各类相关学会下面已经有4个糖药物专委会,由此可见糖药物在国内的发展速度。而由于糖链结构的复杂性,目前获得糖链的主要方法还是提取或化学合成,没用通用性的合成方法,难以像核酸和蛋白质那样进行高效、准确的自动化化学合成,也不能像核酸PCR扩增或蛋白质表达那样大量制备。虽然从2000年左右开始陆续有科学家发明糖的合成仪,但基本上都是一些模型机或验证设备,还没有通用的商品化糖合成仪。在糖类药物合成的实验室研究中,目前用到的基本上都是一些小型的仪器设备,主要包含搅拌器、旋转蒸发仪、冻干机、真空泵等,而李教授实验室中有大半的这些仪器设备来自于东京理化。据李教授介绍,他与东京理化仪器的渊源要追溯到上世纪90年代中期,那时候他还在北医做学生,就开始使用东京理化的旋转蒸发仪了,而东京理化那时也还没有正式进入到中国,是通过代理商进行合作的。左:埃朗科技售后服务部技术总监张京明 右:北京大学药学院李中军教授寄语东京理化对于东京理化的产品,李教授认为最重要的一点就是性价比高,譬如,同样性能的旋转蒸发仪,东京理化产品的价格要比欧洲同类产品便宜不少,而且后期的售后服务和维修成本也相当值得称道。李教授提到,有些国外的大品牌,将仪器售后委托给代理公司,由于代理公司的频繁变动和工作人员的更换,培训工作难以到位,有时候售后价格昂贵不说,售后人员的专业性还大打折扣。譬如,隔膜泵有时候真空上不去,明明不一定是膜片的问题,可能只是单向阀需要调整一下,但售后人员一来就要换膜片,且每次报出来的价格都不一样,四百、五百、六百都有可能。因此长期使用下来,用户对于这些品牌的后期印象非常差。而在这一点上,东京理化由于在国内设立了多个分支机构(包括生产工厂),在售后方面有稳定的人员保障,能够提供相对较好的用户培训和售后服务。此外,东京理化的产品也非常耐用,据介绍,北医最久的一台东京理化的旋转蒸发仪,目前已经使用了20余年,虽然中间也换过配件,但现在仍然还在实验中为老师和学生们服务。在谈到对于当下产品的改进建议上,李教授认为,像旋转蒸发仪、冻干机等这类仪器,从技术水平上来说,并不是什么高精尖的仪器设备,在功能开发方面其实已经做得非常好了,目前更需要做的其实是用户培训。因为很多时候你会发现,其实用户对于仪器已有功能的了解还是很不够的。譬如像冻干机的使用,当样品冻干到一定程度时,冻干速度会越来越慢,而为了保持冻干速率,其实厂商在每个托盘底上都加了一个加热装置,通过适当加热可以提高升华速度,而这个功能很多学生并不知道。因此很多时候学生从外面看产品好像已经干了,结果拿出样品才发现底部还是有一些冰块。当然,这个问题目前已经通过歧管瓶的方式解决了。但这个例子充分说明了用户对于仪器功能的不了解。后记在采访即将结束的时候,李教授向笔者表示,在提高仪器耐用性方面,特别是对于那些实验常用的仪器设备,仪器使用者和仪器制造商,双方都有提升的空间。对于使用者而言,尤其是年轻的科研人员,要掌握正确的仪器设备使用方法。而对于厂商而言,则要不断提高一些易损件(例如:隔膜泵的膜片、旋蒸仪的密封件等)的耐用性。同时,在仪器功能的开发方面,则应尽可能向简便、实用方向发展。
  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 国内药物研发与质控对杂质研究用力过猛
    p   国内近些年之所以专注于杂质研究(尤其是有机杂质)、并逐渐呈现“面面俱到、尽善尽美”之态势,盖因大部分研发者认为杂质与药物不良反应息息相关,并习惯性地认为“杂质越小/越少、临床不良反应发生几率就会越小/越少”,进而在进行杂质研发与控制时陷入“精益求精、追求完美”的学术思维窠臼。殊不知,药物不良反应与杂质的关联性并非想象得那样密切,甚至是基本无关。 br/ /p p   在ICH组织于2002年9月12日颁布的《疗效--M4E(R1)人用药品注册的通用技术文档:模块2的临床回顾和临床概述与模块5:临床研究报告》中有如下阐述:“对看起来与药物有关的较常见的不良反应(例如,显示出剂量-效应和/或药物和安慰剂组发生率明显差异的事件),应对下列相关因素给予更多关注。这些因素包括:剂量 单位剂量 给药方案 疗程 总剂量 人口统计学特征 联合用药 其他基础特征 效能特性 药物浓度。”可见,药物不良反应主要与主成分的不合理使用和患者个人体质差异相关,而与杂质无关。 /p p   下面笔者解读不同给药方式下杂质与药物不良反应间的关系: /p p   1口服给药 /p p   此种给药方式使得药物在进入人体血液循环系统过程中具备了最为坚固的消化道屏障,因此这是一种最安全的给药方式,适量的杂质几乎不会带来安全性问题,临床不良反应多为药物自身引起。因为“是药三分毒”,当用法用量不当、超出安全用药浓度上限时,将对人体带来伤害、产生不良反应(如治疗窗狭窄药物就常发生此情形)。这些不良反应均是主成分所为,而非杂质所为。 /p p   而目前我国此类药物的主要问题是:部分仿制药质量与原研药存在较大差距,此差距是对于各种患者体内生物利用度的差距,绝非杂质差距 而生物利用度又与体外溶出行为密切相关。国家食品药品监管总局自2008年起开展“国家药品评价性抽验”工作至今,已发现国内已上市的部分口服固体制剂体外多条溶出曲线与原研制剂具有显著性差异,这也为临床差距提供了强有力的佐证。 /p p   至于少量杂质会阻碍药物靶点/结合点、影响药物有效性的观点,笔者认为这是没有任何根据的臆断。 /p p   2静脉滴注给药 /p p   很多同仁认为,静脉滴注给药方式已无生物利用度问题,此时不良反应与杂质密切相关,故应着重关注。其实这种认知是偏颇的。 /p p   静脉滴注给药方式使得药物进入人体封闭血液循环系统过程中,外来物质一股脑儿地侵入,此时人体必然产生应激反应,其中呈现出的不良反应强弱和患者的身体机能与主成分自身毒性/用法用量息息相关,与杂质基本无关。因此,此种给药方式带来的不良反应是必然存在的。虽然这些不良反应为“小概率事件”,但由于其发生率依然远高于肌肉注射和口服给药方式,所以世界卫生组织早在多年前就已制订“能吃药不打针(系指肌肉注射,此时存在肌肉组织屏障)、能打针不输液”的用药准绳。 /p p   然而过去的十多年间,我国临床用药由于某些主观因素,导致大量无序地使用静脉滴注给药方式,且还往往使用至最高剂量与频次,这就使得临床不良反应发生率无限增高,最终使得“小概率事件”在某种程度上变成了“大概率事件”。 /p p   但令人遗憾的是,在探求注射剂不良反应根源时,很多专家将其归咎于杂质,并逐渐形成一种思潮,于是自2008年起拉开了对杂质研究的大幕:科研立项、投入巨资,并购买大量高精尖设备,甚至很多科研工作者已趋于吹毛求疵之状态。 /p p   此外,2002~2006年间,很多五类“改装”仿制药堂而皇之上市 同时,我国药物上市后的再评价也很不到位,使得因药物自身毒性、只能采取口服给药方式的药物,在我国却长期采用注射给药方式,结果导致不良反应发生率较高。 /p p   3其他给药方式 /p p   对于如软膏剂、滴眼剂等外用剂型,杂质对于临床而言无足轻重,更是无需投入过多精力去研究。 /p p br/ /p
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 助力生物药研发,浅谈ADC药物DAR值测定
    导语从上世纪初德国医学家、诺贝尔奖得主Paul Ehrlich(保罗埃尔利希)提出ADC(Antibody-Drug Conjugate,抗体药物偶联物)的概念至今,ADC药物已经发展至第三代,一系列特异性偶联技术使得生产工艺变得更加稳定,能够得到稳定药抗比的药物,对于ADC药物的疗效和安全性都有很大的贡献,推动了ADC药物的研发。抗体药物偶联物ADC是具有靶向作用的单克隆抗体与具有特定药理学特性(如细胞毒作用)的化合物的结合,两部分通过连接子偶联为一个整体。DAR(Drug-to-Antibody Ratio,药物抗体比值)是抗体药物偶联物的一个关键属性,是ADC药物研发过程重要的质控环节。 ADC药物 带您了解DAR值如何检测 ADC药物从本质上讲是混合物,是由连接不同个数小分子药物的单抗组成,DAR代表的是每个单抗上连接小分子药物的平均数量,DAR直接影响ADC药物的疗效和安全性,药物研发阶段应尽量缩小DAR值的变动区间。 ADC药物的偶联位点分为单抗赖氨酸残基上的氨基和半胱氨酸残基上的巯基。通过赖氨酸偶联的DAR往往比较小,而潜在的偶联位点却很多,偶联反应具有随机性,产物异质性较大;ADC药物研发使用的单抗有4对链间二硫键,抗体通过部分还原使链间二硫键转换成游离的半胱氨酸残基,半胱氨酸残基中的巯基与连接子中的马来酰亚胺基反应形成ADC,一般连接的小分子数量为0、2、4、6和8,如图所示。 半胱氨酸偶联的ADC药物DAR分布 DAR测定的方法有多种,可分为光谱法、色谱法和质谱法,可根据ADC的特性及偶联工艺等因素选择合适的方法,具体如下: 紫外/可见光谱法(UV/Vis)紫外/可见光谱法是检测DAR值最简单稳定的方法,这种方法需要抗体和小分子药物具有不同的最大吸收波长,分别计算二者的浓度进而得到ADC的DAR值,适用于多种ADC。 色谱法色谱法包括疏水作用色谱(HIC)和反相高效液相色谱法(RP-HPLC)两种,适用于测定半胱氨酸偶联的ADC。疏水作用色谱法能将不同DAR值的组分根据疏水性的差异分离开,且保持ADC分子的结构完整性;反相高效液相色谱法需要先将抗体还原得到轻、重链再进行分析,可用于补充验证疏水作用色谱法的结果,并且适用于质谱分析。 质谱法质谱法适用于赖氨酸偶联的ADC的DAR值测定,包括液相色谱串联质谱和MALDI-TOF-MS。赖氨酸偶联的ADC具有较强的异质性,增加了质谱谱图解析的难度,通常在测定前需对ADC进行额外的前处理,如去糖基化和去除C端赖氨酸异质性。 我们能做什么?疏水作用色谱法解决方案我们使用生物兼容液相系统(Nexera Bio)建立了一种疏水作用色谱方法用于抗体药物偶联物(ADC)中药物抗体比值(DAR)和药物分布的测定。 生物兼容液相系统(Nexera Bio) Nexera Bio系统通过对关键部位的惰性化升级,在耐受高压的前提下,升级的惰性表面降低了生物大分子在管路进样针、检测器中的吸附,并且可耐受高盐洗脱体系,更适合于生物大分子样品的分析。通过梯度洗脱,降低盐浓度,增加有机相比例,可将偶联不同药物数量的ADC分离,未偶联药物的抗体疏水性最弱,最先被洗脱,连接8个药物的抗体疏水性最强,最后被洗脱。峰面积百分比代表特定药物数量连接的ADC的相对分布。通过峰面积百分比和偶联药物数量计算加权平均DAR。 我们将此方法应用于实际药物的分析,并进行了重复性考察,发现液相系统稳定,方法重复性良好。 实际样品色谱图 表2. 6次进样数据重复性结果我们还能做什么? 岛津的产品线比较全面,包括紫外-可见吸收光谱、高效液相色谱、LCMS-Q-TOF以及MALDI-TOF质谱,可满足不同用户对于仪器的需求,较全面覆盖ADC药物DAR值测定以及其它生物制品的研发质控。 结语 经历了几十年的发展,ADC药物研究取得了巨大进展,已上市药物数量达到了12个,在研管道300多种。无论是赖氨酸偶联还是半胱氨酸偶联的ADC药物,都是复杂的混合药物,应该通过工艺的改进更好地控制DAR值变动区间,降低ADC药物的异质性。岛津一直关注生物药行业的发展,希望以我们的仪器平台为产品研发助力,推动新药安全、有效地走向临床,造福社会。
  • 二十七期质谱沙龙成功举办
    仪器信息网讯 2010年6月5日下午,第二十七期质谱沙龙活动在第二炮兵总医院药学部举行。该质谱沙龙活动由第二炮兵总医院和北京师范大学、AB SCIEX公司共同组织主办。10余位来自第二炮兵总医院、北京师范大学、空军总医院、安贞医院、AB SCIEX公司等单位的一线研究人员等参加了此次沙龙,仪器信息网亦应邀参加。   此质谱沙龙以专题报告和讨论为主,参与者均为从事液质联用工作的一线实验人员,着重于质谱应用技术的交流,大家将自己所做的工作以及工作中遇到的难题、积累的经验等提出来,讨论交流、相互帮助,开拓思路、解决问题。 质谱沙龙活动现场   第二炮兵总医院李鹏飞老师首先做题为“免疫抑制剂及其合并用药LC-MS/MS高通量检测方法研究”的报告。如今,“器官移植”已经成为治疗各种器官衰竭的有效手段,而为“器官移植学”三大支柱之一的免疫抑制剂的发展与应用,仍是器官移植成败的关键,免疫抑制剂的长期应用及其不良反应的控制仍是临床移植医学研究的重点。利用LC-MS/MS方法高通量同时检测免疫抑制剂及合并用药在人血中的浓度,可以为临床个体化给药提供依据,进而为验证或确认药物之间的相互作用提供方法支持,更好地为临床服务。 第二炮兵总医院李鹏飞老师   李鹏飞老师的报告中介绍了其在研究工作中,分别比较了选择1-2种不常用药物、选择1种非药物、选择同位素内标这三种内标物各自的优缺点,以及沉淀蛋白法、固相萃取法、液-液萃取法、固相微萃取法四种样品前处理方法的各自优势。并在此基础上,建立了霉酚酸酯、霉酚酸、硫唑嘌呤等10多种药物的同时检测样本的前处理方法、同时检测多种药物浓度的色谱条件、拟测定药物各自的质谱条件、定量分析方法的验证,并用建立的检测方法检测未知生物样本。   北京师范大学分析测试中心田菲菲博士做题为“混合炸药种类识别及溯源方法研究”的报告。田菲菲博士是北京师范大学分析测试中心谢孟峡教授的学生,谢孟峡教授近年进行的主要科研工作中包括公安部科研项目——爆炸物研究以及法医鉴定等。掌握爆炸案件现场爆炸残留物的检验方法,对于严厉打击利用爆炸进行的犯罪活动有着十分重要的意义。我国2007年各种工业炸药的总产量达2864906吨,其中乳化炸药和铵油炸药所占比例最多,分别是47.4%、39.1%,而乳化炸药和铵油炸药主要成分为硝酸铵。 北京师范大学分析测试中心田菲菲博士   田菲菲博士在研究工作中收集了77种工业硝铵炸药,采用GC/MS方法分别对其非炸药成分、爆炸残留物进行分析。结果表明:25种铵锑炸药中只有7种含有碳质燃料复合蜡,铵油炸药的废炸药成分主要为柴油等。24种乳状乳化炸药根据乳化剂的差异实现个体识别。乳状乳化炸药种类识别机溯源研究发现:乳化剂经过酯交换、硅烷化衍生得到的衍生产物具有灵敏度高、选择性的优点,且能排除环境的干扰。在乳化炸药原药及其300g、600g药量残留物中均检测到山梨醇硅烷酯、油酸甲酯和复合蜡等特征成分,能够实现炸药的溯源,也验证了次方法是可行的。   美国AB SCIEX中国公司市场部产品经理赵贵平先生做了题为“液相色谱基础—基础知识介绍”的报告。AB SCIEX公司虽然没有液相色谱,但其公司以液质联用产品为主,并且赵贵平先生在报告一开始即指出,色谱的分离效果严重影响整个实验的分析结果。 美国AB SCIEX中国公司市场部产品经理赵贵平先生   赵贵平先生的报告中从色谱法的起源、基本原理及术语概念、色谱图常见问题等开始讲解,继而介绍了液相色谱实验技术、液相色谱柱的选择及其使用保养、液相色谱方法开发。赵贵平先生凭借其多年分析仪器行业从业经验所做的液相色谱系统知识报告,对初学者以及实验室第一线的工作人员有很大帮助。
  • “抗非典”药物已研制成功
    饶子和作新药发现报告:“抗非典”药物已研制成功 新药如能顺利通过临床实验,将作为国家的战略储存药物   5月16日上午,应南方科技大学(筹)邀请,中科院院士、南开大学校长饶子和在南科大启动校区作主题为蛋白质结构与新药发现的学术报告会,他透露,“抗非典”药物已经研制成功。   饶院士在报告中介绍了自己对SARS病毒的研究成果,他说,SARS病毒是世界上发现的26种冠状病毒中的一种,也是唯一能对人体造成巨大危害的冠状病毒。其他冠状病毒还普遍存在,而SARS却“走”了,不过也难说一定不会再回来。所以自2003年以来,对SARS的研究从未停止。他透露,他所带领的团队已经研究出效果显著的“抗非典”药物,如果能顺利通过临床实验,将作为国家的战略储存药物。   饶子和校长是我国著名生物学家,主要从事与重要病毒和肿瘤相关的蛋白质结构、功能以及创新药物的研究,取得了一系列重要的原创性研究成果,在SARS病毒、禽流感病毒和膜蛋白的三维结构与功能的研究中有突出贡献。   饶子和校长在报告会后与南科大朱清时校长座谈。饶子和说:“南开大学历史悠久,学术成果丰厚,在许多学科领域有自己的优势,相信可以对南科大的创建提供有力帮助,这算是‘南南联合’。”本次讲座是继3月中旬我国著名物理学家陈应天来南科大讲座之后的第二场讲座。据校方相关人员介绍,今后,南方科技大将不断邀请国内国际高端人才来校交流,以营造浓厚学术氛围,促进带动学科繁荣发展。
  • 药物传输系统(DDS)中脂质体的测定
    1. 前言药物的传递系统DDS近年来备受人们的关注,人们期望利用它提高药物疗效。脂质体是一种基于双层膜的纳米囊状结构,由于它良好的生物安全性和对药物的容纳性,常作为DDS中的药物载体。图1 脂质体模型为了判断脂质体是否适用于药物传递系统(DDS),需要评估它的膜流动性和相变温度。常用的评估方法是在脂质体中引入荧光探针,测量荧光各向异性来评价膜的流动性和相变温度。 日立具有超高灵敏度和高扫描速度的荧光分光光度计,可以选配荧光偏振附件和控温附件,准确获取脂质体的荧光各向异性。 2. 应用实例样品:DPPC脂质体荧光探针:DPH/TMA-DPH附件:带有控温装置的样品池支架 荧光偏振附件仪器:日立荧光分光光度计 测量模式:定量分析图2 荧光偏振附件(左)和程序控温附件(右)使用荧光分光光度计和荧光偏振附件测定脂质体样品的荧光各向异性,对于相变变温度的确定,通过可编程控温样品池支架来逐渐改变样品温度,结果如图所示。图3 样品荧光各向异性随温度的变化在不同温度下的荧光各向异性测量结果证实,当温度高于42.5oC时,各向异性会发生变化。 该结果表明该脂质体的相变温度为42.5oC。3. 总结日立荧光分光光度计F-7100具有超高灵敏度和60000nm/min的扫描速度,而且可以选用多种附件,为生物领域的研发提供多种解决方案。
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 三问水产品药物残留:药残为何难控制
    “网闻”回放  不久前北京发生的活鱼下架事件和食药监总局正在12个城市开展的水产品专项整治行动,使水产品的违规用药问题再次成为舆论焦点。尽管国家和地方的多个抽检数据显示,水产品合格率近年来一般都维持在95%以上,但那些不合格的少数产品里,总能找到违禁药物,尤其是抗生素的身影。  用药有无必要  早在2002年,农业部先后发布公告,将孔雀石绿、硝基呋喃、氯霉素等药物纳入食用动物的禁用清单,对恩诺沙星等要求限量使用。2014年,国家卫生计生委在修订《食品中可能违法添加的非食用物质名单》时,专门列了抗菌药物一栏,将硝基呋喃、四环素等六类抗菌药物纳入,并明确指出它们被违法添加到鲜活水产品的目的在于“杀菌,防腐”。  “就像人一样,鱼虾等水产动物也会生病,生病了就要用药,无论是治病还是防病,都可能使用药物。”南京农业大学动物科技学院水产系主任刘文斌告诉记者。  比如恩诺沙星,在预防和治疗动物的细菌性感染及支原体病方面有良好效果,而且代谢快,是一种低毒、低蓄积药物,但长期摄入会引起胃肠道刺激,甚至肝损害。因此农业部规定其在水产动物肌肉、脂肪中的残留不能超过100微克/千克。而硝基呋喃、氯霉素等,虽然对许多病原菌有较强的抑制作用,但由于毒理作用太大,不允许在水产品中使用。  中国农业大学食品科学与营养工程学院院长罗云波也认为,养殖业用药是有必要的,如果不使用药物,一些疾病可能形成人畜共患的局面。合理用药可保证水产品的健康,最终保证人的健康。近年来,水产品抽检的合格率都非常高,风险可控,不用过度担心。  刘文斌根据他们的实验研究指出,抗生素、重金属等污染物,主要集中在水产品的肝脏、肾脏、肠道等部位,肌肉中很少有残留。“我们平时吃鱼也主要是吃肌肉,很少吃内脏,还是比较安全的。”刘文斌说。  药残为何难控制  其实,国外的水产养殖也会使用抗生素等药物,但很少出现药残超标等情况。为什么我们的水产品不时地被检出药残超标?专家认为,这与养殖模式有关。  “过去国内百姓的动物蛋白比较短缺,水产品是动物蛋白的重要来源,为保障水产品的供应,普遍追求高密度养殖。水产品产量虽然提高,但发病的可能性也随之增加。”上海海洋大学食品学院院长王锡昌告诉记者。  刘文斌解释,养殖密度过大,水产动物很容易产生一些重大的应激反应和疾病。他去英美等国家考察发现,当地水产养殖的池塘亩产量一般不超过600斤。产量若太高,水产动物健康受到威胁,会被怀疑违规使用药物。“国内很多鱼类的亩产量最高能达到6000斤,这种大密度的养殖很容易产生疾病感染,使用药物的可能性会增加。”但他坦言,这与我们“人多地少”的国情有一定关系。  不过,使用药物并不一定就意味着不安全。只要规范合理、控制好药物残留,食用农畜水产品的安全性会得到保证。  王锡昌解释,水产品使用药物之后会在体内有所残留,关键是要严格控制休药期(指动物从停止给药到许可上市的间隔时间)。在药物还没有完全代谢的情况下,水产品不宜作为食物资源投入市场。“但一些生产经营者缺乏这种意识,看到卖得好,休药期没到就投入市场”。  “违规使用药物的还是少数,主要是小范围的养殖散户。”刘文斌说,他们的技术水平相对较低、自控手段也比较少。  解决之道在哪儿  水产养殖是否能完全避免使用抗生素等药物?很难,但各界在努力。  疫苗被认为是水产动物病害防治的必由之路,它不仅能提高水产动物机体的特异性免疫水平,有效预防疫病发生,且没有药物残留,不污染环境。目前,国外已针对鲑鳟鱼类、欧洲鲈鱼、大西洋鳕鱼等主要水产养殖品种开发出了相应的商品化疫苗。但我国在水产疫苗这条路上起步晚,走得也比较艰难。  “我国水产疫苗的开发与应用步履蹒跚,与世界第一水产养殖大国的称号极不相称。”广东海洋大学水产学院王忠良等人2015年发表在《生物技术通报》的文章介绍,我国现有近30家科研单位在开展水产疫苗相关研究,有4个疫苗获得国家新兽药证书,分别为草鱼出血病细胞灭活疫苗、鱼用嗜水气单胞菌灭活疫苗和牙鲆溶藻弧菌、鳗弧菌、迟缓爱德华菌病多联抗独特型抗体疫苗以及草鱼出血病活疫苗。而全球商业化生产的水产疫苗2012年就已超过140种。  除了疫苗,还有其他相对安全的方式来预防水产动物生病。“比如在饲料中添加一些植物源性的免疫增强剂、中草药,也可以提高水产动物的免疫力,降低生病的风险。”刘文斌说,还可以筛选培育一些抗逆抗病的水产品种。  不过,刘文斌认为,最切合当下实际的做法还是生态养殖,适当降低养殖密度。“现在不提倡增产增收,而是要提质增效,通过提高质量来增加收益。这就要求养殖户不再追求高密度养殖、高产量。”他说。事实上,市场机制也在倒逼着养殖户这么做。随着消费者和加工企业对水产品的品质要求越来越高,很多养殖户正在不断调整养殖模式,提升水产品的品质和安全水平。  此外,国务院食品安全办等多部门今年8月至明年12月在全国范围内集中开展畜禽水产品抗生素、禁用化合物及兽药残留超标整治行动,将对具有抗生素功能的禁用化合物建立实名购买和流向登记制度,实施严格管控。
  • 【文献速递】厦门大学占艳艳副教授团队揭示浸润性黏液型肺腺癌治疗新靶点
    近日,国际权威肿瘤学杂志Cancer Research(IF=12.701)在线发表了厦门大学医学院抗癌研究中心占艳艳副教授团队的最新研究成果“The HNF4α-BC200-FMR1 positive feedback loop promotes growth and metastasis in invasive mucinous lung adenocarcinoma”。该论文揭示了核受体HNF4α在浸润性黏液型肺腺癌(invasive mucinous lung adenocarcinoma,IMA)生长和转移过程中的作用及相关分子机制,并从FDA批准上市药物库筛选到能有效抑制IMA生长和转移的新型HNF4α拮抗剂,为IMA治疗提供新靶点和策略。△ 图1国际权威肿瘤学杂志Cancer Research(IF=12.701)IMA是一种恶性程度较高的肺腺癌亚型,因初期极易被误诊为肺炎、肺结核等而耽误治疗,确诊时常处于中晚期。此时手术切除可能性低,常以放化疗为主要手段,毒副作用大,疗效差。近年来,分子靶向抗肿瘤药物在肺腺癌临床治疗中取得可喜的疗效,代表性药物如EGFR抑制剂易瑞沙和泰瑞沙等。这类药物具有特异性强、用药量低、毒副作用小、人体耐受性好等优点,应用前景广泛。但肺腺癌可细分为原位腺癌、微浸润腺癌、IMA、实体型腺癌等十余种分型,具有高度的组织学和遗传学异质性,必须进行个体化精准治疗。例如,IMA无EGFR突变却常具KRAS突变(非KRAS G12C);对其而言,EGFR抑制剂不适用,但以KRAS突变为靶标又难以成药。因此,更多新的IMA分子靶点及相应靶向药物亟需研发。核受体HNF4α在人正常肺组织中不表达,而在约90%IMA中出现异常表达,可作为IMA辅助诊断标志物。然而,HNF4α在IMA发生发展中的作用及机制尚不清楚。本研究中,他们发现IMA细胞系及临床样本中表达的是由P2启动子驱动的HNF4α,并通过细胞水平和小鼠模型证实HNF4α依赖于其转录激活活性促进IMA的生长、侵袭和迁移。进一步研究发现,HNF4α转录激活lncRNA BC200的表达;而BC200作为HNF4α的下游分子,介导了HNF4α促IMA生长和转移的作用。在IMA细胞质中,BC200作为“桥梁”促进mRNA结合蛋白FMR1与肿瘤相关基因如EGFR和Twist等的mRNA的结合来调节这些mRNA的稳定性,从而促进IMA的生长、侵袭和迁移。反过来,BC200还能通过介导HNF4α mRNA与FMR1的结合来增强其稳定性,从而正反馈调控HNF4α的表达。基于上述发现,他们还从FDA批准上市药物库中筛选出了HNF4α新型拮抗剂前药霉酚酸酯(MMF),并通过体外及体内实验证实MMF的活性代谢物霉酚酸(MPA)能通过拮抗HNF4α来抑制BC200的表达和IMA生长及转移,具备开发成IMA靶向药的潜力。△ 图2 文章提出的HNF4α-BC200-FMR1反馈环在IMA生长和转移中的作用模型△ 图3 M和N分别为每组裸鼠肺内荧光素酶表达的图像和定量结果。文章中,体内验证MMF在IMA中的抗生长和抗转移作用的活体成像实验,使用了AniView100多模式动物活体成像系统进行拍摄。论文链接https://cancerres.aacrjournals.org/content/81/23/5904.abstract
  • 岛津:液质联用技术在药物杂质分析中的应用
    p   药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。 /p p   因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。 /p p   2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会,此次会议中岛津液相/液质应用工程师宋玉玲将带来《液质联用技术在药物杂质分析中的应用》的报告。 /p p   strong  报告摘要: /strong /p p   药物杂质分析相关技术介绍,包括UHPLC技术与相关应用系统、、杂质制备纯化技术、SFC技术和二维液相色谱技术及质谱技术 /p p   报告人姓名: /p p    strong 报告人简介: /strong /p p   担任岛津液相/液质应用工程师,在药物分析、生物样本分析方面具有多年丰富经验 /p p   欲了解本次会议的详细日程请点击: /p p    a title=" " href=" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target=" _self" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/ /a /p p /p
  • 药物基因组学致力于人类基因组与现代药物安全性和有效性
    根据美国疾病控制和预防中心(CDC)的数据,每年有130多万美国人因药物不良反应(ADR)而住院。每年有超过10万人死于药物不良反应(ADR),这使其超过肺病、糖尿病、艾滋病、意外和车祸成为第四大死因,并且已经成为CDC、NIH和制药公司开始通过药物基因组学来解决的一个关键性的患者安全问题。药物基因组学——一个专注于人类基因组与现代药物安全性和有效性之间相互作用的新科学研究领域,可以为所有患者营造更为公平的环境。药物基因组学致力于帮助医生选择最适合每位患者的药物和剂量。虽然目前的大多数研究都集中于针对诸如心血管疾病、阿尔茨海默病、癌症、艾滋病和哮喘等疾病的药物反应上,但对于患有神经精神疾病(如抑郁症、精神分裂症和躁郁症)的患者来说,也带来了曙光,这些患者即使在停药后也常常会受到药物严重的副作用影响。 据肯恩大学(Kean university)新泽西科学、技术与数学中心的副院长Mike Tocci博士介绍:“每个人都有一套独特的基因,因此疾病在每个个体身上的表现方式以及个体身体对特定药物治疗的反应都是不同的。” Part 1医学的未来Tocci是一位资深的分子生物学家、免疫学家,也是赛诺菲公司(Sanofi)基因组科学和生物制品的前负责人,在其职业生涯的大部分时间里都在从事药物发现和临床前开发方面的工作,他认为药物基因组学是“个性化医学”的一个主要组成部分。“我们正在研究药物在个体体内代谢和实现疗效的方式,以及通过基因了解药物的疗效是如何因患者个体或患者群体的不良反应而受到限制。医生和药物研究人员正在快速了解患者对某些化合物的反应,以便更好地治疗疾病。”“我们没有针对所有类型癌细胞的生物标记物,也还没有很好地了解哪些类型的细胞对不同类型的药物有反应,但我们正在更多地研究不同类型的细胞在人体中的功能,因此最终我们将更好地了解我们的基因组如何影响特定药物的作用,”Tocci博士解释道。 与这项研究相关的范围和成本引出了一个合理的问题,即无论从短期还是长期来看,谁将从这种方法中受益最多。接受癌症治疗的患者是一个主要的受益群体,但自身免疫性疾病(包括糖尿病和心血管疾病)患者也已有一定的受益。随着对如何使用更有效的药物更好地治疗患者和降低不良反应的风险有更深刻的理解,医生也将是一个主要的受益群体。 虽然在早期阶段患者的治疗费用可能很高,但随着时间的推移,药物基因组学将通过增加生物标记物、基因表达谱分析和细胞图谱研究来降低成本,从而彰显在医疗保健和药物开发方面的益处。假以时日,药物的疗效和安全性都将得到改善,到时候患者的治疗费用也就降低了。 消费者已经从美国食品药品监督管理局(FDA)批准的关于药物安全性的药物基因组学研究中受益。已有超过200种药物被标记有新的基因组生物标记物信息,这些信息还描述了药物使用和临床反应的差异性、不良反应的风险、特定基因型的个体化剂量、药物作用的机制和试验设计的特征。这项新的研究已被纳入临床试验,并对参与化合物开发的公司产生了影响。药物基因组学严重依赖分子生物学,且涉及许多过程,包括PCR、蛋白质鉴定(蛋白质印迹法、ELISA)、确定基因表达、基因和蛋白质图谱分析技术、细胞分选方法、细胞分离技术(离心)、细胞成像方法,以及在人和动物模型中分析和描绘疾病组织中细胞的能力。Part 2前进的障碍 虽然几乎所有关于药物基因组学的消息都令人鼓舞,但仍有一些因素阻碍着该领域的发展。在动物模型中进行的试验并不总是能够预测人类的反应,获得足够数量的患者样本,以及对患者隐私有关的社会和伦理考量可能会限制某些群体的参与。与药物基因组学研究相关的风险和成本是两个很重要的因素,它们会限制哪些人可以进行研究或负担得起实施此类治疗的费用。 “药物基因组学的长期效益将是巨大的。未来的工作将能为患者提供更有效和更安全的药物进行个性化治疗,有望通过限制副作用和不良反应来延长寿命、或改善生活质量。我们最关心的是确保我们从伦理的角度推进科学的发展,并保证所有人都能从中受益并负担得起,”Tocci博士说道。Tocci博士担任肯恩大学新泽西科学、技术和数学中心的研究副院长,协助监督STEM学位教育,在这些学位教育过程中,他们采用多学科方法教授科学,将生物、化学、物理、数学和计算机科学整合入课程。STEM项目为学生提供通过在实验室体验科学而不是仅仅通过教科书来学习解决问题的机会。STEM学生可以与教职员工一起研究我们不知道答案的问题。目前的研究包括对癌症生物学的研究,以更好地了解生物标记物;对药物化学的研究,以了解如何阻止癌细胞转移;以及对基因组学的研究,以了解药物如何与基因产物相互作用。 全球视角,行业分析,处处是机遇! 您可联系奥豪斯 400-891-5989,我们竭诚为您服务!▼
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • “抗体药物研制国家重点实验室”落户华北制药
    日前,国家科技部公布了56家第二批企业国家重点实验室建设计划名单,华药集团抗体药物研制国家重点实验室位列其中。在抗体药物领域同时获批的还有上海张江生物技术有限公司。   抗体药物是现代生物制药的核心组成部分,以靶向性好、疗效高、副作用小等优点日益受到重视,凭借快速的市场增长率已成为当今国际生物技术药物发展的主流。我国在此领域与国际先进水平差距巨大,攻克以抗体药物为重点的重大疾病防治和新药创制的关键技术,被列为国家中长期科技发展的战略目标之一。建设抗体药物研制国家重点实验室的目的在于,通过建立起国际水平的抗体药物开发基地,开发出具有自主知识产权的抗体药物及其生产工艺,实现我国在抗体药物开发技术领域的跨越式发展,改变我国生物技术药物低水平重复的局面。   华北制药集团自1985年以来相继开发出基因工程乙肝疫苗、吉姆欣、吉赛欣、济脉欣等产品,并建成符合国际GMP标准的现代化模块式生物制药产业化基地金坦公司。近年又开发多个生物技术药物,其中重组人源抗狂犬病毒抗体是我国第一个具有自主知识产权的重组人源抗体,作为国家一类新药已获国家药监局临床批文 重组人血白蛋白也已进入临床申报并开始建设产业化基地。目前,华药已建成了较为完整的生物技术药物研发体系,并拥有按照国际标准建设的完整的生物技术药物质量控制及检测平台,为国内生物技术药物研发提供了与国际接轨的通道。
  • 药物代谢研究热点?跨国制药大咖逐一“揭秘”
    p strong 仪器信息网讯 /strong 2017年4月12日,第八届化学和药物结构分析上海年会(CPSA Shanghai 2017)在上海开幕,当日举行的是会前workshop部分。会议日程包括主题分别为“仿制药一致性评价指导原则与实践”和“药物代谢与药代动力学热点话题”的两个分论坛,以及主题为“全球及中国生物分析形势的转变”的圆桌讨论环节。 /p p   “药物代谢及药代动力学热点话题”论坛由来自Janssen公司的 Dr. Naidong Weng主持,并受到了Sciex公司的赞助。 /p p style=" text-align: center " img title=" 分论坛2.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/706becb1-6196-4390-8cee-2bd1165e1f16.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 会议现场 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center " img title=" 主持人.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/aab641f3-5c73-4650-94c3-b4850b329b2c.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Janssen 公司 Dr. Naidong Weng /span /strong /p p   首先由 Bristol-Myers Squibb公司的& nbsp Dr.Xiaohui(Sophia)Xu带来题目为“Bioanalytical Challenge of Measuring Highly Protein Bond Drugs”的报告。 /p p style=" text-align: center " img title=" 报告1.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/9a68203c-4662-4399-87c5-69ed747be4fb.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Bristol-Myers Squibb公司& nbsp Dr.Xiaohui(Sophia)Xu /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p   针对高蛋白结合药物,报告介绍了对试验实施与法规政策的考虑、游离药物的测定技术、高蛋白结合化合物测定所面临的挑战、研究实例以及未来的研究方向。 /p p   Roche公司的& nbsp Dr.Shaolian Zhou带来 题目为“Bioanalytical Strategy for MIST Coverage: Human Unique Metabolites”的报告。 /p p style=" text-align: center " img title=" 报告2.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/51be93f1-b221-4eb4-8c95-e32fd7bd9c03.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Roche公司 Dr. Shaolian Zhou /span /strong /p p   报告强调了FDA关于药物代谢产物安全性评价的全新指导原则的意义以及它对生物分析的影响。报告还举了几个关于药物代谢测定新方法的具体的实例,并讨论了符合MIST指南的生物分析策略。 /p p   Genentech公司的 Dr. Shuguang Ma 带来题目为“The Use of Microtracers in Clinical Development”的报告。 /p p style=" text-align: center " img title=" 报告3.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/d78b5a31-277c-4caf-8641-d724607cf797.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Genentech公司 Dr. Shuguang Ma /span /strong /p p   生物利用度测量的是药物的活性成分被吸收的程度及速度。目前,欧洲、美国及日本药检机构对于新化学实体的绝对生物利用度的法规要求越来越严格,且自2006年开始,澳大利亚TGA也要求NDA的申请中需包含此项内容。报告介绍了一种药物申报临床研究设计中可获得绝对生物利用度数据的全新方法。 /p p   Genentech 公司的 Dr. Yuan Chen带来题为“PBPK Application in Drug Development”的报告。 /p p style=" text-align: center " img title=" 报告4.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/cd0d3e4a-6f0c-40e2-a9fc-4889673ec313.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Genentech 公司 Dr. Yuan Chen /span /strong /p p   在过去的五年中,越来越多的制药企业以及药监机构开始关注PBPK模型的研究。PBPK模型是支持药物研发的一个非常有效的工具,PBPK模型的细化建立需要相关的药物代谢知识以及针对项目的个体化策略。报告分别介绍了药监机构及制药企业对PBPK模型的看法、PBPK模型对药物研发的影响以及PBPK模型的研究前景。 /p p   Bristol-Myers Squibb 公司的 Dr.Ming Yao带来题为“Fast and Sensitive Quantitation of Low Levels of Intracellular Substrates in Uptake Transporter Assays using Liquid Chromatography Mass Spectrometry”的报告。 /p p style=" text-align: center " img title=" 报告5.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/3988c034-57d9-4d7d-a281-295a1f3553fc.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Bristol-Myers Squibb 公司 Dr.Ming Yao /span /strong /p p   体外转运蛋白底物定量测定是药物研发中非常普遍的做法,为了满足试验的高灵敏度要求,通常采用放射性标记化合物来完成。报告介绍了为了快速、灵敏地完成体外转运蛋白底物测量所开发的全新LC-MS方法。该方法的优势有:减少了放射性化合物的使用、样品处理及分析均实现自动化、提高了试验质量,而且适用于无法使用放射性标记化合物的转运蛋白抑制测定。 /p p   Genentech公司 的Dr. Keyang Xu带来题为“ Bioanalytical and Biotransformation of ADC Drugs”的报告。 /p p style=" text-align: center " img title=" 报告6.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/a9e28a0e-7cf1-4454-a852-1a08ccdbd694.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " Genentech公司 Dr. Keyang Xu /span /strong /p p   报告讨论了体内抗体偶联药物的复杂性,另外介绍了目前用以评价抗体偶联药物代谢及转运的主要分析方法,根据不同的生物分析目标,报告还举例进行了阐述。 /p p   随后会议进入圆桌讨论环节。 /p p style=" text-align: center " img title=" 圆桌讨论现场.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/336e9479-9398-4263-aa28-dadfcee4add5.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 圆桌讨论现场 /span /strong /p p   随着全球化的日益发展以及越来越多的制药企业的合并,生物分析也快速发展,全球范围内出现了更多的外包资源、仪器技术等,甚至有关生物分析的定义也趋于多元化。传统中的大分子和小分子概念也被用来支持ADC或PDC等。生物分析为更新的仪器平台提供了更多的可能性、更高的灵敏度、更高的分辨率以及更丰富的数据采集。圆桌会议讨论了生物分析学家如何适应科学验证的概念、何为药物研发的正确生物分析方法、新一代科学仪器的有效利用、世界范围内尤其是中国法规的处理方式、世界范围内及中国CRO公司未来如何规划等问题。 /p p   轻松愉快的晚餐由药明康德赞助,并由Bristol-Myers Squibb 公司的Renuka Pillutla带来了题为“Getting More Drugs to Patients Faster - The Power of Technology Applications”的报告。 /p p style=" text-align: center " img title=" 晚餐报告.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/8a8686c2-8b80-41b1-b2e7-59bec6573b24.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong Bristol-Myers Squibb公司Renuka Pillutla /strong /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center " img title=" 晚餐.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/1ce4d9d3-4fd5-4e1c-b615-75c434ad21fc.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 晚餐会现场 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center " img title=" SCIEX展位.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/e05b6949-c684-4142-8aca-468a3041232d.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " SCIEX展位 /span /strong /p p br/ /p
  • 以三大mRNA制药公司分析mRNA药物前景
    p   随着mRNA修饰和制剂等技术的不断突破,mRNA制药行业日渐成熟。Moderna、BioNTech和CureVac等公司都已拥有丰富的mRNA药物产品线,布局在肿瘤疫苗和抗感染疫苗等领域。本文将以这三家公司的技术平台和产品线为切入点,讲述mRNA药物的发展现状、核心技术及行业前景。 /p p    strong mRNA药物简介 /strong /p p   mRNA药物一直被寄予厚望,从上世纪90年代初步证实mRNA的药效开始,大量的精力投入到了mRNA药物的研发中。mRNA可以快速地在细胞内翻译,表达所需蛋白,适用于制作抗感染疫苗和肿瘤疫苗。然而,mRNA非常不稳定,进入体内后很快会被降解,成为困扰行业多年的症结,mRNA药物的研发一直在艰难中前行。 /p p   随着技术不断发展与成熟,多种技术被用于产生更稳定的mRNA。首先,是用人工合成的非天然核糖核酸替换天然核糖核酸来合成mRNA,这样可以逃避免疫系统的清除。其次,加上5’帽子、3’ poly(A)n尾和UTR序列等也能稳定mRNA,并增加翻译效率。再者,特殊的新型制剂技术可以有效地保护mRNA,并且促进免疫反应的产生。 /p p style=" text-align: center " img width=" 554" height=" 216" title=" 微信图片_20180807094631.jpg" style=" width: 451px height: 180px " src=" http://img1.17img.cn/17img/images/201808/insimg/96973997-f88d-4807-806e-3426ba5592ba.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " mRNA常用的结构修饰技术 /span /p p   mRNA药物技术的进步使行业进入了快速发展期,近几年,BioNTech、Moderna、CureVac和Arcturus等mRNA制药企业获得了大量的投融资,多个项目进入临床阶段,产品主要布局在肿瘤疫苗和抗感染疫苗等领域。 /p p   肿瘤疫苗是技术难度最大,需求最迫切的疫苗,其开发过程也非常曲折坎坷,最初的肿瘤疫苗通常使用肿瘤相关抗原,即正常组织中低表达,肿瘤组织中高表达的抗原,如MUC家族蛋白、PSA和NY-ESO-1等,然而,这些疫苗在上世纪90年代至2010年间几乎都在临床试验中失败。新一代的肿瘤疫苗使用肿瘤新抗原(neoantigen),即肿瘤的突变分子,如KRAS突变等,它们只存在于肿瘤细胞中,正常组织中没有表达,能够提高对肿瘤细胞的特异性。而最新的个性化疫苗通过对病人肿瘤样本测序后获得肿瘤新抗原信息,并针对最有价值的新抗原制定个性化治疗方案,实现精准医疗。目前,mRNA、多肽和DNA都可用于制备肿瘤疫苗,后文将讲述mRNA疫苗的优势。 /p p   这里,我们对mRNA疫苗领域最大的三家公司——Moderna、BioNTech和CureVac进行比较介绍,并着重讲述在肿瘤疫苗方面的进展,由此展开对整个行业的展望。 /p p   strong Moderna /strong /p p strong  1.公司简介 /strong /p p   Moderna Therapeutics成立于2010年,总部位于美国马塞诸塞州剑桥市,公司雇员500余人。公司首席执行官Sté phane Bancel 2011年加盟,寻求了大量融资,为公司迅猛发展功不可没。 /p p   2010年,Moderna的创始人之一Rossi发明了一种利用修饰的mRNA制作干细胞的方法。基于这项技术的巨大潜能,Rossi等人创立了Moderna。但使用非天然核糖核酸合成RNA的方法已有专利限制, Moderna的首要任务就是尝试新的RNA合成方法,避开专利限制。经过大量的尝试之后,Moderna开发了用1-甲基假尿嘧啶合成mRNA的方法。此后,Moderna又陆续开发了一系列新的mRNA合成修饰技术。 /p p   Moderna公司是RNA领域炙手可热的新星,该公司自2013与阿斯利康签订2.4亿美元的技术合作之后,又与Alexion Pharmaceuticals(亚力兄制药)、默克等制药公司签订技术合作,以及风险投资等融资方式,获得近20亿美元资金用于技术开发与临床研究, span style=" color: rgb(255, 0, 0) " 创下3年内融资14.25亿美金的全球生物医药领域私募股权融资的最高纪录。 /span 而这些在相当程度上得益于Moderna的CEO Sté phane Bancel,他在融资和资本运作上有相当出色的能力。 /p p strong   2. 产品线 /strong /p p   该公司成立之后的相当长一段时间内都保持神秘,直到2017年1月才首次公布其产品线。该公司有四个不同研究方向的子公司: strong Valera /strong (感染性疾病), strong Onkaido /strong (肿瘤免疫治疗), strong Caperna /strong (个体化肿瘤疫苗),及 strong Elpidera /strong (罕见病),各子公司均以mRNA技术平台作为药物开发的基础。 /p p   Moderna已有包括肿瘤免疫、心血管疾病、肝病、治疗传染病和传染病疫苗的丰富的产品线。 /p p style=" text-align: center " img width=" 555" height=" 246" title=" 微信图片_20180807094627.jpg" style=" width: 461px height: 147px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/4ce7799f-6304-43e8-9d77-33936167c0e0.jpg" / /p p style=" text-align: center " img width=" 553" height=" 297" title=" 微信图片_20180807094622.jpg" style=" width: 463px height: 173px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/4982c9a8-bdcb-400a-9e6e-ad2a2d782ee7.jpg" / /p p style=" text-align: center " img width=" 556" height=" 96" title=" 微信图片_20180807094613.jpg" style=" width: 465px height: 67px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/7462e2f3-3de5-4a39-8d53-1dcd6e42f0e6.jpg" / /p p br/ /p p style=" text-align: center " img width=" 556" height=" 392" title=" 微信图片_20180807094610.jpg" style=" width: 464px height: 185px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/58e651d6-5e63-4c5f-b8d0-f1e498cd4dc3.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " Moderna公司产品线 /span /p p    span style=" color: rgb(255, 0, 0) " mRNA-4157是个性化肿瘤疫苗, /span 于2017年11月开始I期临床试验。mRNA-5671是靶向Ras突变的肿瘤疫苗,该项目是目前唯一公布的KRAS RNA疫苗, span style=" color: rgb(255, 0, 0) " 2018年5月3日,该项目获得Merck 1.25亿美元的投资。 /span /p p   strong  3. 递送技术与专利 /strong /p p   Moderna采用脂质体纳米粒(LNP)递送技术,可以较好地维持RNA的稳定性。Moderna在Ras突变体序列、RNA结构元件和制剂等方面都有专利布局。 /p p    strong BioNTech /strong /p p strong   1. 公司简介 /strong /p p   BioNTech是一家德国生物技术公司,成立于2008年,员工650人。其创始人Ugur Sahin是德国美因茨大学的教授,也是Ganymed的创始人和Claudin 18.2抗体的研究发起者。 /p p   strong  2. 技术平台与产品线 /strong /p p   BioNTech主要研发mRNA肿瘤治疗性疫苗,也有 CAR-T细胞治疗、双特异抗体及小分子药物项目。BioNTech于2017年在《Nature》上发表的个性化肿瘤疫苗的良好疗效引起一时轰动 span style=" color: rgb(255, 192, 0) " [1] span style=" color: rgb(0, 0, 0) " 。 /span /span /p p style=" text-align: center " img width=" 555" height=" 259" title=" 微信图片_20180807094606.jpg" style=" width: 478px height: 195px " src=" http://img1.17img.cn/17img/images/201808/insimg/39834cc4-b86b-4b6f-af62-eb60e3ac6ca5.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " BioNTech公司产品线 /span /p p   BioNTech在肿瘤疫苗方面有3种mRNA药物平台:①FixVAC& reg 是多种肿瘤相关抗原混合的肿瘤疫苗,不具有个性化 ②RNA-Warehouse是制作好包含多种抗原的疫苗库,鉴定病人的肿瘤特异性抗原后,选取对应抗原的疫苗治疗,有一定的个性化性质 ③IVAC& reg -Mutanome是通过测序得到病人所有的肿瘤特异性抗原,然后以此制定个性化的疫苗方案,再合成表达相应蛋白的mRNA作为疫苗,是个性化程度最高的疫苗,该类疫苗去年在临床试验中取得非常好的结果 span style=" color: rgb(255, 192, 0) " [1] span style=" color: rgb(0, 0, 0) " 。 /span /span span style=" color: rgb(255, 0, 0) " 这3个平台产品的个性化程度越来越高。 /span /p p style=" text-align: center " img width=" 419" height=" 282" title=" 微信图片_20180807094601.jpg" style=" width: 473px height: 253px " src=" http://img1.17img.cn/17img/images/201808/insimg/c0bdd319-0890-43ff-a5c2-0e7178d6ea5f.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " BioNTech的3个mRNA疫苗平台,个性化程度依次增加 /span /p p   BioNTech还有通过RNA编码双特异抗体的技术平台DuoBody& reg ,该类RNA采用静脉注射给药,在体内表达双特异性抗体分子,目前处于临床前研究阶段。动物体内实验数据表明RNA分子能够在体内有效表达双特异抗体分子,并且有效抑制肿瘤的活性,结果于2017年发表在《Nature》上[ span style=" color: rgb(255, 192, 0) " 2] span style=" color: rgb(0, 0, 0) " 。 /span /span 该平台选择了CD3× CLDN6,CLDN18.2× CD3,EpCAM× CD3等分子组合作为靶点。 /p p   BioNTech还有CAR-T细胞治疗和小分子药物的技术平台,但具体技术和靶点没有公布。 /p p   strong  3. 制剂与专利 /strong /p p    span style=" color: rgb(255, 0, 0) " BioNTech采用的脂质体运载Lipoplexes(LPX)技术很先进,可以很好地稳定mRNA。 /span BioNTech在RNA结构元件和制剂等方面布局了一系列专利。 /p p    strong CureVac /strong /p p strong   1. 公司简介 /strong /p p   CureVac由Ingmar Hoerr博士于2000年创立,专注于RNA药物的研发与产业化。CureVac总部位于德国T?bingen,有将近400名员工,已成为RNA制药行业的领军企业,是全球首家建立符合GMP标准的RNA生产线的公司。 /p p   strong  2. 技术平台与产品线 /strong /p p   CureVac有4种RNA技术平台:RNActive、RNArt、RNAntibody和RNAdjuvant。 /p p   1)RNActive是编码抗原的mRNA疫苗。在肿瘤治疗领域,通过mRNA编码多种常见的肿瘤相关抗原,激活免疫系统攻击肿瘤细胞。在研项目有肿瘤治疗性疫苗CV9202。该平台还有用于预防病毒感染的疫苗,如预防狂犬病、流感和HIV感染的疫苗。 /p p   2)RNArt是编码蛋白的RNA,可以补充或替换原来细胞中的蛋白,目前有一个用于治疗浅表肿瘤的项目处于临床前研究阶段。 /p p   3)RNAtibody是编码抗体的RNA,与BioNTech的技术类似,但CureVac的在研项目应是编码单抗而不是双抗。 span style=" color: rgb(255, 0, 0) " 细胞内表达的抗体可以靶向胞内的蛋白,阻断蛋白之间的相互作用,这是目前的抗体药物无法做到的。 /span RNA在细胞内编码的蛋白有人体的翻译后修饰,更易于制备多种抗体的混合物,有更好的药代动力学,可以保持高AUC,能持续、稳定地产生抗体。再者,用RNA生产抗体更简单、快速,CMC工艺稳定性更好。 /p p   4)RNAdjuvant是促进免疫反应的Long non-coding RNA。用于激活免疫反应。 /p p   基于以上四大技术平台,CureVac有丰富的产品线,主要分为3个大类,包括肿瘤治疗,预防病毒感染和基于RNA的分子治疗。 /p p style=" text-align: center " img width=" 555" height=" 593" title=" 微信图片_20180807094555.jpg" style=" width: 494px height: 359px " src=" http://img1.17img.cn/17img/images/201808/insimg/8fc7be8c-a29a-4f36-8270-331582db0f97.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " CureVac公司产品线 /span /p p   CureVac肿瘤方面的在研产品进展最快的是肿瘤疫苗CV9202和免疫佐剂CV8102。 /p p   CV9202是编码NY-ESO-1,MAGE-C2,MAGE-C1,Survivin,5T4,MUC1等常见肿瘤相关抗原的RNA混合物,通过激活免疫反应治疗肿瘤。值得注意的是CureVac之前有类似的编码PSA,PSMA,PSCA,STEAP,ACPP,MUC1等肿瘤相关抗原的肿瘤疫苗项目CV9104,已由于临床II期试验疗效不佳而终止研发。 /p p   CV8102是由长非编码RNA制成的免疫佐剂。该药物通过瘤内注射给药,刺激TLR 7,8和RIG-I等先天免疫信号通路,激活免疫反应。与免疫检查点抑制剂如PD-1抗体联用有协同效应。 /p p   strong  3. 制剂和专利 /strong /p p   CureVac最初使用鱼精蛋白制剂技术,这种制剂对RNA的保护较弱,不是理想的制剂。后来CureVac与Acuitas Therapeutics合作,使用其LNP制剂技术代替原来的鱼精蛋白制剂技术,可以使疫苗激活的免疫反应提高约10倍。 /p p    span style=" color: rgb(255, 192, 0) " 三大公司比较 /span /p p    strong 1. 产品线比较 /strong /p p   在肿瘤疫苗方面, span style=" color: rgb(255, 0, 0) " BioNTech的产品最全面 /span ,覆盖肿瘤相关抗原疫苗(FixVAC& reg )、半个性化疫苗(RNA-Warehouse)和个性化疫苗(IVAC& reg -Mutanome), span style=" color: rgb(255, 0, 0) " 且其个性化疫苗进展最快 /span 。Moderna的疫苗包括个性化疫苗和肿瘤新抗原KRAS突变疫苗。CureVac的肿瘤疫苗都是肿瘤相关抗原疫苗,相对更为保守。 /p p   strong  2. 制剂技术比较 /strong /p p   制剂技术是mRNA制药的核心技术与门槛之一。BioNTech采用的LPX技术可以很好地稳定RNA,并且制剂自身应有免疫佐剂的作用,是很好的制剂技术。Moderna和CureVac现在使用的LNP制剂技术也能稳定RNA。值得一提的是CureVac此前采用的鱼精蛋白制剂并不能很好地保护RNA,因此他们与Acuitas Therapeutics合作获得了LNP技术,并更换了以前许多产品的制剂。 /p p   strong  3. 专利布局比较 /strong /p p   专利方面,BioNTech对UTR序列和3’ poly(A)n尾等RNA结构元件进行了专利保护,Moderna则有一系列专利保护RNA核苷酸的修饰方式。BioNTech和Moderna都有一系列制剂专利,包括纳米脂质体和阳离子试剂等。 /p p    strong 4. 生产工艺 /strong /p p   RNA的生产比较简单,核酸药物虽然归属于生物制品,但其通过合成制备,因此在生产上兼具大分子和小分子药物的特性。通常治疗所需mRNA的量很低,通过高通量合成可以轻松制备,但纯度检测是一大挑战,常见的杂质包括模板DNA和合成不完全的RNA等。目前FDA和ICH还没有专门对于核酸药物质量的期望和标准,在国内外都是暂行参照基因治疗的相关规定进行申报。 /p p   三家公司作为专业的mRNA制药公司,在生产上都有成熟的体系,建立了符合GMP标准的mRNA生产线。CureVac更是于2006年就建立了全球首个GMPmRNA生产线。最近,这几大公司都在扩建mRNA生产规模,以满足更大的临床需求。 /p p    span style=" color: rgb(255, 192, 0) " mRNA药物发展前景 /span /p p   mRNA作为新技术药物,具有一些原有药物种类不具备的优势。mRNA翻译快速,会在体内自动降解,并且本身也有激活免疫反应的作用,再者,其易于改造插入基因片段。同时,mRNA还生产简单,合成快速,成本较低。mRNA相较于DNA的优势在于不局限于分裂细胞,没有整合宿主基因组的风险,且起效更快。多肽也是制作疫苗的一种选择,但其抗原呈递受到MHC单倍型的限制,且半衰期较短。对于制作个性化疫苗,mRNA的快速合成的特性使其成为节约时间非常合适的选择。除了用作疫苗,mRNA药物也可作为蛋白补充或替代疗法,治疗其他多种疾病。在解决mRNA的稳定性和递送问题后,它已成为一种非常理想的药物形式,表现出其独特的优势。 /p p   个性化疫苗技术的日趋成熟也使mRNA药物炙手可热。个性化疫苗是一种高度定制的精准医疗方法,特别适用于癌症这种异质性极高的疾病。个性化疫苗涉及多个领域,需要整合不同的资源,诸如测序、分析、药物快速合成和医院的资源。随着近年来测序和分析技术的快速发展与成本降低,个性化疫苗的研发也迅速兴起。去年发表的个性化疫苗临床试验的良好疗效使mRNA疫苗形势大好。 /p p   然而,该领域的技术门槛较高,有经验者极少,不仅要解决mRNA的稳定性和递送问题,还要建立一套完整的检测分析、质控和验证方案,并与CDE充分沟通。目前国内只有屈指可数的如上海斯微和江苏健安等企业在进行mRNA药物的研发,较高的风险与较低的成熟度使大多数企业望而却步。 /p p    span style=" color: rgb(255, 192, 0) " 总体而言,mRNA药物已进入发展的黄金时期,具有广阔的前景,是一个值得投入期望的领域。 /span /p p span style=" color: rgb(255, 192, 0) "   参考文献: /span /p p   1. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specifictherapeutic immunity against cancer. Nature547, 222-226 (2017). /p p   2. Stadler,C.R. et al. Elimination of largetumors in mice by mRNA-encoded bispecific antibodies. Nat Med 23, 815-817(2017). /p p style=" text-align: right " span style=" font-size: 12px " 作者 l 悟行 编辑 l 细胞房间 /span /p p span style=" font-size: 14px " & nbsp /span /p
  • 中国医学科学院药物研究所成立仿制药一致性评价中心
    p   提高 a style=" TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" span style=" COLOR: rgb(255,0,0) TEXT-DECORATION: underline" strong 药品 /strong /span /a 质量是利国利民的头等大事。国务院启动仿制药质量一致性评价工作,药物所积极响应,专门成立了仿制药一致性评价研究中心。 /p p   建国以来,我国仿制药物的研发与产业化实现了从无到有的长足发展,确保了医院用药的基本需求。随着我国经济社会的发展,社会和政府对仿制药的质量提出了更高的要求。 /p p   根据国务院办公厅印发《关于开展仿制药质量和疗效一致性评价的意见》精神,药物所学术委员会结合蒋建东所长牵头组织的农工民主党中央药学和生物技术专委会2015年重点调研课题“仿制药的质量问题与对策”的研究结果,探讨了目前仿制药一致性评价研究在技术、组织和支撑方面存在的问题,提出药物所作为国家级院所对这项重要任务责无旁贷的要求,应该面向一线,有效地为国内制药企业提供必要和可行的技术支撑。 /p p   经学术委员会讨论,同意建立仿制药一致性评价中心的方案,建议药物所成立基于质量源于设计(QbD)理念的药物研发综合技术一致性评价中心,逐步与国际接轨,切实提高我国常用药品的质量。 /p p   药物所多年来一直注重解决实际问题,坚持开展创新药物及仿制药的研究,积累了大量的经验和技术储备。“十一五”以来,先后承担了科技重大专项、863专项、卫生部行业基金、科技部支撑计划等几十项研究课题,其中的药品质量评价相关的专项课题,可很快应用到仿制药一致性评价的研究中。 /p p   仿制药一致性评价中心成立后,药物所将利用自身的技术优势,解决一致性评价的关键科学和技术问题。作为第三方,与企业和政府协同工作,推动仿制药一致性评价重大战略决策的实施,为提高医疗质量、保障人民健康发挥公益性研究所应有的作用。 /p p br/ /p
  • CPSA上海2010之讨论主题:药物开发中生物标志物的检测与利用
    仪器信息网讯 2010年4月7日-9日,第一届化学和药物结构分析上海研讨会(CPSA Shanghai 2010,the 1st Annual Shanghai Symposium on Chemical and Pharmaceutical Structure Analysis)在上海锦江饭店顺利举行;来自国内外的100多位学者和专家到会;仪器信息网作为特邀媒体参加了此次研讨会。   一年一度的CPSA会议起始于1998年,通过制药工业有关问题的公开讨论,对其创新技术与工业实践进行回顾,分享他们各自的高新技术实践经验以及对当前学术发展前景的看法。本届上海研讨会主题为“分析性能研究进展:创新应用和新型工作流程”。   【讨论主题:药物开发中生物标志物的检测与利用】 Christine Miller博士 Paolo Vicini博士 Hequn Yin博士   相关主题报告:   Optimizing Peptide Quantitation in Drug Discovery   主讲人:Christine Miller博士(安捷伦科技,Agilent Technologies)   Intergrating Data to Generate Knowledge for Drug Discovery: A Role for PK-PD and Translational Research   主讲人:Paolo Vicini博士(辉瑞Pfizer)   Use of Biomarkers in Proof of Concept Trials   主讲人:Hequn Yin博士(诺华Novartis)   相关观点/见解:   (1)ADME研究进展大大改善药物开发过程中的损耗率;   (2)与其它小分子相比,多肽类的参数优化应采用不同的方式;利用多反应监测(MRM)为基础的方法,肽定量可用于药品重要性靶蛋白的多元实验;   (3)生物标志物可以帮助个性化用药等制定方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制