当前位置: 仪器信息网 > 行业主题 > >

药物先导化合物

仪器信息网药物先导化合物专题为您整合药物先导化合物相关的最新文章,在药物先导化合物专题,您不仅可以免费浏览药物先导化合物的资讯, 同时您还可以浏览药物先导化合物的相关资料、解决方案,参与社区药物先导化合物话题讨论。

药物先导化合物相关的论坛

  • 【精品资料】天然产物作为先导化合物近25年来的总结之作

    [size=4][color=#DC143C]天然产物作为先导化合物近25年来的总结之作,从事新药研发同仁们的宝贝啊!希望对大家有所帮助~[/color][/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=173039]Natural Products as Sources of New Drugs over the Last 25 Years.pdf[/url][img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909251532_173041_2961690_3.gif[/img]

  • 【分享】药物筛选的基础知识

    【分享】药物筛选的基础知识

    [font=Times New Roman][size=4][b]药物筛选[/b]是现代[color=#ba0000]药物开发[/color]流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的实验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。药物筛选的过程从本质上讲就是对化合物进行[color=#ba0000]药理活性[/color][color=#002bb8]实验[/color]的过程,随着药物开发技术的发展,对新化合物的生理活性实验从早期的验证性实验,逐渐转变为筛选性实验,即所谓的药物筛选。作为筛选,需要对不同化合物的生理活性做横向比较,因此药物筛选的实验方案需具有标准化和定量化的特点。随着[color=#002bb8]组合化学[/color]和[color=#002bb8]计算化学[/color]的发展,人们开始有能力在短时间内大规模合成和分离多种化合物,因而在现代新药开发流程中药物筛选逐渐成为发现先导化合物的主要途径之一。[/size][/font][align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006171011_225210_1623423_3.jpg[/img][/align]

  • Nature:一种关键酶将薄荷来源的化合物转化成抗癌药物

    科学家们发现了一种酶能使得来源于薄荷中的一种化学物质成为一种抗癌药物长春花碱。这一发现开启了制造廉价和有效化学药物的道路。相关研究成果公布在11月22日Nature杂志上。 东英吉利大学Sarah O'Connor博士说:数千种化学品均来自环烯醚萜合酶的酶。战略性地利用这些环烯醚萜类化学品,可用于破坏蚜虫的繁殖周期,其在医学和农业上都有一定的运用价值。现在发现环烯醚萜合酶是马达加斯加长春花属植物抗癌成分长春新碱硫酸生成过程中的一个重要步骤。但长春碱产量处于非常低的水平,药物也有很多副作用。因此希望找到一种方法可以更低廉的生成一种化学结构物质,同时减少副作用。奥康纳O'Connor.博士说:我们需要确定更多的酶来分析这些酶在化合物生成过程中的作用。所有的环烯醚萜骨干由两个稠合环组成,科学家们一直在试图追查是什么维持了这个环系统。实验表明,环烯醚萜类是稠合环生成的关键性酶。 O'Connor和她的同事也将试图确定哪些酶催化Diels-Alder反应,以更好地理解环烯醚萜类合成酶如何作用的,有助合成新的药物化合物。(

  • 运用反向药理学揭示药物研发新途径

    科技日报 2013年05月21日 星期二 以天然产物药物发现、民族药理学和传统医药为基础的战略选择,被认为有望克服以往药物发现中由时间、成本和毒性这三个因素造成的主要障碍。新的战略选择催生了被称为反向药理学的跨学科研究领域。 反向药理学指的是药物发现先于对其作用方式和机制了解的研究模式,即以长期使用来治疗疾病,并已被证实具有很高安全性和功效的传统药物为化合物资源,通过跨学科的探索性研究,整合已证实的临床经验和实验观察,并通过进一步的预临床和临床研究将先导物开发为候选药物的严格科学方法。 这一过程中“安全”是最重要的出发点,效应变成有待确认的事情。反向药理学将以往的“实验室——临床”的药物发现过程颠倒为“临床——实验室”的相反路径。这种研究模式的创新性在于将有生命力的传统知识和现代科学技术处理结合起来,更快地提供更好和更安全的先导物。 然而各民族传统药物一般为多种化合物的混合物,且往往具有多种药理效应,使得阐明或识别它们的药效成分、生物活性及其药理机制极为困难。中南民族大学生物医学工程学院教授刘向明认为,传统药物研究中亟待解决的关键问题,在于传统药物的药理研究既要阐明其产生药理效应的作用机理,又要确定其产生特定药理效应的药效物质基础,必须从物质基础和作用机理二者的相关性着手,来阐明传统药物临床效应的科学根据。 刘向明以傣药龙血竭的镇痛效应研究为生物学背景,提出了以传统药物本身的药理效应为参照、 将药物的化学成分(组合)的效应与药物本身的效应进行比较,寻求能替代产生原药物效应的化学成分(组合)作为研发新药的先导物这一反向药理学方法的基本原则,充分证明了龙血竭的镇痛效应由它的三种成分协同作用产生。 在纪念化学疗法创始人Paul Ehrlich获诺贝尔奖100周年大会召开之际,大会主席Fritz Sorgel教授邀请刘向明出席时表示,刘向明的工作是卓越的,为药物相互作用的研究做出了重要贡献。(曾露)

  • 【分享】甲烷和金属首次合成化合物 开创药物研发新工艺

    美国亚利桑那大学的科学家首次成功地将金属原子插进了甲烷气体分子中,并精确地测定了所得到的“金属-甲烷化合物”分子的结构,为有机化合物的合成特别是新药研制开创了新的制造工艺,新发现也能让人们更好地理解金属在活性生物体内的工作模式。研究发表在《美国化学学会杂志》上。  有机物衰败会产生甲烷,科学家一直希望利用丰富的甲烷来生产其他化学产品。但是作为最简单的碳氢化合物,甲烷在和其他分子相互作用时会有点“内向”,需要各种方法来“激活”。领导这项研究的亚利桑那大学化学家露西·兹瑞斯表示,金属插入会让甲烷分子更活跃,即将金属插入甲烷分子中激活甲烷,使其更容易和其他物质发生化学反应,比如利用被激活的甲烷分子制造乙醇。  兹瑞斯研究团队将锌加热成气态,让其蒸发进一个真空室,接着再向真空室添加甲烷气体。在一个放电设备提供的能量下,锌和甲烷组成的气体混合物变成发光的等离子体,金属-甲烷化合物分子瞬间形成。

  • 求赠比较新的手性化合物/药物

    我在作手性药物拆分,但是目前可用的手性药物都比较常见了,有没有新的手性药物可以赠送给我们一点(也考虑给一定回报,但购买能力有限,所以希望试剂公司不要联系了)。或者我们互通有无。如果有的话,可以发信给我:sillyrain@tom.com或者直接在下面回帖子。谢谢关注!

  • 【转帖】无机金属与药物

    无机金属与药物古代医药大都取材于自然界,不仅取自植物,动物,矿物也常被药用。但由于重金属砷、汞、锑等无机化合物的毒性较大而逐渐被合成有机药物所替代。近年来,随着科技发展、认识深化和新的发现,对以金属为基础的药物有了新层次的认识。1965年美国Rosenberg在研究电场对大肠杆菌生长速度的影响时,发现所用的铂电极与营养渡中的成分形成的六氯合铂和一些顺式的含铂络合物能够抑制大肠杆菌的细胞分裂,但对细菌生长的影响却很小。这一偶然的发现引起了广泛的关注,美国癌症研究所立即组织对这些络合物进行广泛的研究和临床试验。结果表明,含铂络合物抑制癌细胞的分裂有显著疗效。现已证实多种顺铂 ([Pt(NH3)2Cl2])及其一些类似物对子宫癌、肺癌、睾丸癌有明显疗效。在中药复方中有使用金属金的经验,但不知其机理。最近发现含金化合物的代谢产物[Au(CN)2]-有抗病毒作用,而且金化合物可以抑制NADPH氧化酶,从而阻断自由基链传递,有助于终止炎症反应。另外中药复方中使用砒霜和雄黄,最近发现三氧化二砷促进细胞凋亡,使现代医学接受了用砷化合物做治疗用的可能性。目前用钒化合物治疗糖尿病、用锌化合物预防治疗流感,都已成功的在临床试用。人们处在无机药物的复兴时期。这些金属化合物被发现具有药物的治疗作用,说明人们对无机金属及其化合物的药理作用已在深化和逐步认识。特别是我国含矿物的中药复方,其治疗效果是肯定的,但其中的药理作用和化学问题尚须不断研究和进一步深入,这一领域在21世纪将会成为医药研究的一个重要发展方向。

  • 【求助】救助关于化合物的红外图谱问题

    大家好,本人想问问同一药物的不同盐或水合物,其红外图谱是否一致?比如,埃索美拉唑镁,埃索美拉唑镁盐二水合物,埃索美拉唑镁盐三水合物,该三者化合物的红外图谱是否一致?还有埃索美拉唑镁和埃索美拉唑纳的的红外图谱是否一致?谢谢!

  • 【转帖】化学药物的专利战略

    化学药物主要包括化学合成的原料药物(即药物化合物)及其制剂。化学药物发明专利申请就包括原料药物及其制剂本身的发明。也包括这些化合物及其制剂的制备方法和用途的发明。一、化学药物发明专利申请的概况  1、申请的数量  2001年涉及药物的总申请量(包括药物化合物、西药、中药、生化药物)为5155件,其中国内为3776件,国外1379件;我们西药处2001年申请总量1733件,PCT申请985件,占56.84%,国内申请612件,占35.31%。 2、国内外比例  对于制剂而言,94年之前,国内外申请比例约为1:l;94年之后,我国加入国际合作条约之后,PCT申请进入我国的申请量剧增,占据制剂申请总量的60%,再加上非PCT的国外申请,国外申请占申请总数的70%以上;国内申请只占30%以下。而对于原料药物的专利申请来说,国外申请所占比例更大。加入WTO后,更多国外企业将来我国需求市场,这样必定有更多的专利申请进入我国。

  • 我们真的需要这么多药物吗?

    电影的诞生始于科技的发明,从默片到有声、从黑白到彩色、从2D到3D、微电影等,都离不开科技的推动。药物的发展轨迹与电影也有些相似,因为技术的进步,药物的发现经历了从研究天然物质发现新药,转向天然物质修饰,到合成化学合成全新化合物,从筛选化合物中得到新药等历程。在药物筛选方面,许多新方法新手段已经改变了传统的药物研究,诸如计算机化学、组合化学、用生物技术高速化合物筛选方法等等,让新药的发现更加便利,新化合物的数量也以爆炸式的方式出现,并且很多大型制药企业都有了自己的化合物数据库。数据显示全球每年制药研发人员需要对数万种化合物进行研究,问题来了,我们真的需要这么多药物吗?

  • 【求助】急,检测化合物问题?

    急-------各位,帮帮忙啊!我是做天然药物的,最近分到一个化合物,样品量很少,不纯,只溶解于石油醚和氯仿中,考虑到夏天氯仿挥发很严重,而且对身体伤害也很大,所以想用石油醚装个Sephadex LH-20凝胶柱。所以想问问各位用这种方法可以吗?还有若要装的话,它的溶胀率是多少啊?帮帮忙啊。

  • 药物含量及相关物质测定

    药物含量及相关物质测定http://www.dikma.com.cn/Public/Uploads/images/yaowu3(3).jpg迪马科技推出的Diamonsil、Spursil、Platisil系列反相HPLC色谱柱(包括C18和C8)具有广泛的通用性,能够满足大多数药物分析项目,并能得到对称的峰形、较好的分离度和超高的柱效,成为药物分析工作者的首选产品。Diamonsil 2(钻石二代)系列反相HPLC色谱柱键合工艺领先,键合密度和碳载量为同类产品中最高者较高的碳载量使Diamonsil 2系列色谱柱具有优异的选择性和分离度,分析时间却未延长粒径均匀、表面光滑的硅胶基质使Diamonsil 2系列色谱柱具有超高柱效(N/100,000 /m)采用了最新的封端技术,固定相表面残余的硅羟基被抑制,碱性化合物也能得到完美峰形Diamonsil 2系列色谱柱能够耐受1.5 - 9.0的pH值,应用领域更加广阔Spursil(思博尔)系列反相HPLC色谱柱科学家们将极性基团键合到反相固定相中,得到了全新的Spursil色谱柱,使极性药物分析变的简单Spursil色谱柱上可观的极性基团与极性化合物间存在较强作用力,增强了对极性药物的保留能力Spursil色谱柱的碳载量为24%,仍高与普通C18柱,对弱极性、非极性化合物同样具有较好的分离能力因极性基团和非极性基团的同时存在,Spursil在100%水相~100%有机相范围内均具有卓越表现Spursil色谱柱在峰形对称性和pH值(1.5~10)耐受性方面表现优秀Platisil(铂金)系列反相HPLC色谱柱另一款极性改性的反相色谱柱,对极性化合物具有较强保留能力在1-11的pH范围内具有稳定的表现由于键合技术独特,不易发生固定相塌陷,可在纯水相下长时间操作固定相表面的硅羟基最大程度去活,化合物峰形对称性极好为了方便分析工作者选择色谱柱,我们按照2010版中国药典提供的分析条件,对多个药品品种的含量和相关物质进行了测试,并汇编成谱图集,分析工作者可根据自己的分析项目迅速找出合适的色谱柱。

  • DNA编码分子库药物筛选

    DNA编码化合物库(DNA Encoded compound Library,简称DEL)合成与筛选的概念是美国Scripps 研究院的Sydney Brenner(2002年诺贝尔生理学及医学奖获得者)和 Richard Lerner(时任 Scripps 研究所所长)于1992年提出并申请了发明专利。具体地,组合化学的优势是可以快速地产生巨大数量的化合物汇合体,但在筛选过程中无法得知起作用的化合物信息。如果将一个具体的化合物与一段独特序列的DNA在分子水平连接(即对小分子化合物进行DNA编码),在筛选完成后,通过高通量DNA测序仪对筛选出小分子独特的DNA序列进行识别,从而解决由组合化学产生的巨型化合物库无法用于筛选的问题。中文名 DAN编码分子库药物筛选技术背景:药物筛选包括传统高通量药物筛选和DNA编码分子库药物筛选等,分子库是药物靶点筛选的起点和支撑。DNA编码分子库药物筛选技术在近5-7年内逐渐发展起来,已经成为创新药研发中的一种较为成熟的新兴前沿技术,并走出大学实验室,得到各大药物公司的广泛接受,在实际创新药研发中起着越来越重要的作用。已经在香港大学化学系李笑宇教授课题组完成了深入的研究工作,并取得了良好的成果。该技术的基本路线、参数已经成熟,不再需要进行验证研究,可以直接用于实际的药物筛选。李笑宇课题组曾经和拜耳、默克等世界知名药企进行过合作,并将该DNA编码分子库方法应用于实际的药物研发中,针对一些重要的恶性肿瘤的药物靶点,成功地筛选出了一系列高活性的药物候选化合物。这些实际应用充分验证了该技术的可行性、适用性和成熟性。取得发明专利。技术优势:(在李笑宇教授与拜耳的合作中已得到验证):1、大幅提高成功概率 2、大幅降低研发成本 3、大幅缩短研发周期主要工艺范畴为这些领域所包含的化学合成工艺、蛋白质表达与表征、DNA的固相自动合成与纯化、细胞间操作工艺,以及一些DNA测序的样品处理工艺等。本项目的各个技术环节均已经较为成熟,在多年中和各个大型制药企业的合作中已经得到了充分的验证。下一步将在实践中,进一步将技术细节、工艺流程等方面标准化、自动化,以提高分子库合成与筛选的效率。技术对比:传统高通量药物筛选:分子库数量有限,主要筛选中心:5-6 百万化合物  二十年以上的积累 价格非常昂贵,分子库的维护极为复杂。筛选周期长 (6-12个月/靶点); 高通量筛选在新药研发中需求巨大,但是在实际应用中却存在巨大的壁垒。DAN编码分子库药物筛选:超高通量 (千万~千亿级),分子库可以随时构建:百万级/月; 价格适中,分子库的维护极为简单:一个 -80°C 冰箱; 筛选周期短:1 天/靶点; 低门槛:无需任何特殊仪器设备。市场概括:DNA编码分子库的报道:国际DNA-encoded化学库研讨会每两年在瑞士举行一次 。第四届在2014年召开时,仅有英国葛兰素史克、瑞士罗氏、丹麦vipergen、丹麦Nuevolution、美国百时美施贵宝、瑞士Philochem、美国辉瑞、美国X-CHEM等大公司参加 。第五届将于2016年8月26日召开,国际知名公司:强生、辉瑞制药、诺华、赛诺菲、罗氏、默沙东、葛兰素史克、拜耳、 安进、阿斯利康、礼来、雅培、艾伯维、美敦力、百时美施贵宝、梯瓦、利洁时、武田、百特、吉利德、默克雪兰诺、赛默飞世尔科技、诺和诺德、柯惠医疗等均已报名参加同类公司对比:1.葛兰素史克 (GSK) :GSK在约10年前收购美国波士顿的Praecis公司的DNA编码分子库技术平台之后,一直致力于将本技术在药物研发中的应用。GSK在本领域的的技术为传统的组合化学的split-mix-split方法与酶连标记相结合。他们的分子库的特点为数目极大,为几十亿量级。分子库所筛选的靶点也种类繁多,涵盖了基本上所有的疾病类型。然而,GSK多年以来分子库虽然化合物数目巨大,但是化学结构上只有一种类型:三嗪类杂环化合物。因此较大的限制了GSK分子库的应用。2.Ensemble Therapeutics: 该公司与2002年开始运行,在美国波士顿,由哈佛大学的David Liu教授所创立。Ensemble使用DNA模板控制技术来合成分子库,主要集中在大环多肽分子库,数目并不大,每一个库大约5万个化合物,至今构建了大约几十万个大环多肽。Ensemble和罗氏、辉瑞、GSK、施贵宝都有过或是正在有药物研发合作。但是Ensemble公开的信息不多,所进行的药物筛选基本集中在癌症靶点。3.X-Chem: 同样位于美国波士顿。X-hem的分子库合成技术与GSK类似,但采取化学连接而不是酶连来进行分子库中的编码。X-Chem的分子库的数目更大,据报道已经达到了上万亿个化合物的级别。然而,从公开的数据来看,X-Chem分子库的化合物仍然集中在易合成的肽类、杂环,或是两者结合的结构类型。X-Chem和多个大型药企都有筛选的合作。4.DiCE Molecule: 位于美国加州,由斯坦福大型的Pehr Harbury教授刚刚创立。DiCE的技术主要在于将DNA编码分子库和微流控、自动化结合起来。由于该公司刚刚成立,信息非常少。从Harbury教授发表的论文来看,分子库基本上都是多肽,化合物数量在几十万左右。5.Vipergen:位于丹麦哥本哈根。该公司利用DNA分子自组装来合成分子库的技术。虽然该公司成立了近10年,但是公开信息也较少。大部分分子库也是多肽类化合物,并和若干大药企建立了筛选合作。6.NuEvolution:同样位于丹麦哥本哈根,发展历史和Vipergen非常类似。即基于一种专利技术,进行分子库的合成,同大药企进行合作。NuEvolution也是做大型分子库的公司,分子库数量在几十亿量级。7.Philochem:位于瑞士苏黎世,为瑞士联邦理工学院Dario Neri教授创立。Philochem在本领域中比较特殊,他们用DNA编码分子库做fragment-based drug discovery,即基于碎片的药物发现。Philochem公开的信息也较少,从文献和专利来看,他们研究的方向非常的集中,主要在1-2个癌症靶点上,并且很少和大药企进行合作。2015年药物筛选市场份额 国内:70~105亿人民币 国际:80~120亿美元基于DNA编码分子库的药物筛选占有药物筛选市场的10%左右,预计保持100%的平均年复合增长率。

  • 手性化合物绝对构型的确定方法

    [b]手性(chirality)[/b]是三维物体的基本属性,三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系。具有手性的化合物即称为[b]手性化合物[/b],手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。一般来说,如果分子既无对称面也无对称中心,分子就具有手性。手性分子绝对构型的确定是一个极其重要且长期存在的问题。目前确定手性分子绝对构型的方法主要有四类:(1) 有机化学法;(2) 核磁共振法;(3) X射线衍射法;(4) 光谱法,如旋光光谱法、圆二色谱、振动圆二色谱等。[b]1. 有机化学法[/b]有机合成是最早的确定分子手性的方法,主要为化学相关法。即将目标分子反合成分析,从初始已知手性的化合物开始,通过手性控制的有机化学反应,将其转化为目标化合物的方法,然后从他们旋光符号或者相应的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱推导出其绝对构型。很多富有挑战性的复杂手性化合物的合成如今已被有机化学家们所攻克,然而有机合成始终是一项繁琐而辛苦的选择。[color=#000000][b]2. 核磁共振法(NMR)[/b][/color][color=#000000]NMR 技术是获的化合物结构的首选方法,其耦合常数和NOE谱图是获取化合物相对构型的重要手段,适用于刚性结构非对映体的构型确认。但是对于光学(对映)异构体而言,一般情况下其NMR谱的信号是相同的,即应用NMR 谱无法直接将其区分,也不能确定其绝对构型。近年来发展了一些间接方法,借助NMR法,通过手性样品的衍生物来测定对映异构体的绝对构型。[/color][color=#000000]在应用NMR法测定手性化合物绝对构型的方法中,以Mosher 法最为常用。即通过将样品衍生化为非对映异构体或类似于非对映体,测定样品分子与手性试剂反应后产物的[sup]1[/sup]H-NMR 或[sup]13[/sup]C-NMR 位移数据,得到其化学位移的差值并与模型比较,最后推定底物分子手性中心的绝对构型。例如,Mosher法是将待测样品的手性仲醇基(或仲胺基)与([i]R[/i])或([i]S[/i])-α-甲氧基-α-三氟甲基-α-苯基乙酸(亦称Mosher 酸,缩写MTPA,见图1)反应生成相应的酯或酰胺,然后测定该酯或酰胺的核磁共振氢谱。根据MTPA芳香环的屏蔽效应,比较待测物与MTPA成酯(或酰胺)前后[sup]1[/sup]H-NMR 或[sup]13[/sup]C-NMR信号的化学位移差,由谱中化学位移的差值和模型图来推测仲醇(或仲胺基)的绝对构型。[/color][align=left]手性衍生物的NMR法的样品用量少,衍生物合成简单,测定迅速、准确,在手性醇、手性胺、手性羧酸的绝对构型确定中已经非常成熟。由于目前所开发的手性识别剂主要针对于手性中心中的某些基团(如羟基、氨基、羧酸),并且需要昂贵的手性试剂进行衍生化,其应用范围有所局限。 [/align][color=#000000][b]3. X-射线衍射法(X-raydiffraction)[/b][/color][color=#000000]普通的X-射线法(钼靶)仅能构筑化合物的相对构型,不能区分对应异构体。如果分子中含有重原子(一般原子序数大于16)或在分子中引入一个重原子,就可用X-射线来测定该重原子的手性分子绝对构型。此外,通过引入另一个已知绝对构型的手性分子也可获得结构的绝对构型。随着技术的发展,采用CuKa作为入射光源的X-射线单晶CCD衍射仪,对于测定相对分子量在1000以下、含C、H、N、O原子有机分子的绝对构型已可实现了。[/color][color=#000000]在单晶结构分析中,目前国际公认表征绝对构型的参数称为Flack 参数,当结构分析进入到最后的精修阶段时,如果该参数等于或接近0,或其参数在± 0.3之内,那么一般认为绝对构型就被确定了。[/color][color=#000000]采用单晶X-衍射法样品用量少、测定迅速、结果可靠直观,可以作为最终的立体构型的确定方法。但是由于测试的仪器价格昂贵,对单晶有严格要求,也限制了X-射线衍射法的应用。[/color][color=#000000][b]4. 光谱法[/b][/color][color=#000000]在光谱分析方法中,现有最有名和应用最广泛的手性分子构型确定法为旋光光谱法(ORD) 和圆二色谱法 (CD),该法对样品要求不高 (如纯度、官能团、结晶等)、测量过程无损失,因而得到了广泛应用。近几年,振动圆二色谱法 (VCD)取得了巨大的发展,逐渐成为一项鉴定手性分子绝对构型的重要工具。[/color][color=#000000][b]4.1 旋光光谱法(ORD)[/b][/color][color=#000000]早期的手性光学法是旋光谱法。当平面偏振光通过手性物质时, 能使其偏振面发生旋转,这种现象称之为旋光。 用仪器记录通过手性化合物溶液的平面偏振光的振动面偏转的角度,即为旋光度α,我们平常所测定的旋光即为波长在589.6 nm的Na灯的黄光下的比旋光度。旋光度随波长的变化而变化就可获得旋光光谱(ORD)。[/color][color=#000000]在同系物中,相同的化学反应使旋光值按相同的方向改变,而不改变其旋光的方向,因此通过比较相关化合物的旋光性,可得到手性化合物的构型信息。在采用该方法测定药物绝对构型时,应与绝对构型已知且与待测药物结构相同或相似化合物,在相同的实验条件下测定旋光光谱,以保证比较结果的可靠性。[/color][color=#000000]相比圆二色谱法(CD)而言,CD谱形尖锐、简单明了、易于分析,ORD现已被现代手性光学技术CD所取代。[/color][color=#000000][b]4.2 圆二色谱法 (CD)[/b][/color][color=#000000]传统的圆二色谱所用的平面偏振光的波长范围一般在紫外区(200~400 nm)。手性化合物(溶液)在左旋和右旋圆偏振光的吸收系数(ε)之差随入射偏振光波长的改变而改变, 得到的图谱即是圆二色光谱(CD),又称为电子圆二色谱(ECD)。[/color][color=#000000]该方法主要是通过测定光学活性物质(待测物)在圆偏振光下的Cotton效应,根据Cotton效应的符号获得药物结构中发色团周围环境的立体化学信息,并与一个绝对构型已知的与待测药物结构相似化合物的Cotton效应相比较,或者借助计算化学的方法,对比实验测值和理论计算值,即可能推导出待测物的绝对构型。[/color][color=#000000]长期以来,电子圆二色谱由于其干扰少、容易测定而被广泛应用。但该法使用的前提条件是待测化合物的手性中心含有合适的发色团(有紫外吸收),或者能够引进合适的发色团。对于手性中心无发色团或无法引入发色团的化合物,则不适宜采用该方法。[/color][color=#000000][b]4.3 振动圆二色谱法 (VCD)[/b][/color][color=#000000]传统的圆二色谱要求手性分子必须有紫外吸收,这一点成为限制其应用的重大问题。在20世纪70年代,Holzwart,Nafie和Stephens等先后成功测定了红外光区频率下的圆二色谱,即振动圆二色谱(VCD)。当平面偏振光的波长范围在红外区(4000~750 cm-1)时,由于其吸收光谱是分子的振动转动能级跃迁引起的,VCD谱即为红外光中的左旋圆偏光和右旋圆偏光的吸收系数之差∆ ε随波长变化所给出的图谱。[/color][color=#000000] 由于振动光谱谱图的复杂性, VCD很难象传统圆二色谱 (electronic circular dichroism, ECD)那样发展出合适的理论来进行结构-谱图的对应解释,主要依靠理论计算值和实测值对比来判断手性分子的绝对构型。[/color][color=#000000]与ECD相比,VCD的最大优势就是不需要分子中含有生色团 (紫外吸收),几乎所有手性分子都在红外区有吸收,都会产生VCD谱图。此外,VCD测试是在溶液状态测定,不需要单晶,样品中的非手性杂质也不影响测定结果。随着越来越多的关注和研究,振动圆二色谱法将成为一项鉴定手性分子绝对构型的强有力的工具。[/color][color=#000000]除上述的四大经典构型确定法外,红外光谱、紫外光谱法也用于辅助测定化合物的构型。更多的方法还望同行们共同探讨总结,希望大家在讨论区多多给予意见,谢谢![/color]本帖摘自“手性专家”微信公众号。

  • 【求助】环氧类化合物的分离

    不知道有没有人做过环氧丙烷,二苯基环氧乙烷等环氧类化合物的分离一般用什么类型的柱子,我有看过一些环境中检测这类物质好像用624的柱子我这里是药物中间体,不知道是不是一样左旋右旋环氧丙烷是不是用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分不了呢?

  • 表面张力仪对理化分析药物的关键参数

    化合物的开发、定量构效关系和药物吸收/毒性的研究要求考核化合物的真正分子特性。 应用Kibron公司的Delta-8高通量表面张力仪为您的研发工作摆脱繁琐的实验劳动并大大提升数据分析的效率。 Delta-8高通量表面张力仪是一款真正的实用的表面化学分析仪器,真正的高通量筛选技术,例如开展先导物优化研究。 Delta-8高通量表面张力提供了表面化学研究的关键参数临界胶束浓度CMC、真正表面积As、疏水性Kaw,量化化合物不能穿透细胞磷脂双分子层的原因,为改进化合物分子结构提供依据。400-862-0005 气液界面两亲性分子吸附降低了表面张力,界面张力随着浓度的变化曲线图为吸附等温线。不同的吸附模型等温线可获得不同的参数: 1、疏水性(Kaw) 2、真正表面积(As) 3、临界胶束浓度(CMC) 4、表面吸附量 化合物真正的表面积As 化合物分子定向和折叠决定了极性和非极性基团之间的对抗和平衡,通过真正表面积TSA(=每个吸附分子的平均面积)来反映。表面积来源于吸附等温线,即在表面饱和的表面过剩浓度(最大吸附值)。 疏水性Kaw,真正表面积As和临界胶束浓度CMC与生物大分子(生物膜、蛋白) 相互作用和物质跨膜过程有关。每种分子有不同的体内壁垒,例如血脑屏障BBB和肠道壁。通常具有高表面积As的分子没有辅助的情况下很难穿透细胞膜(被动转运)。http://www.xianjichina.cn/include/upload/fck/1.jpg 化合物临界胶束浓度CMC 两亲分子吸附在空气-水界面,极性部分在水中,非极性部分在空气中,形成了表面活性剂分子的单分子层。疏水作用是主要的驱动力。作为独立的亲水脂分子,溶解度限制促使形成微胶团。非极性基团隐藏在胶团中心极性基团露在胶团外部。微胶团的行程降低了系统的自由能。临界胶束浓度CMC很大程度上是由疏水基团决定的,同时也存在着反对胶束形成的抵抗力。 Delta-8高通量表面张力仪测量12个经稀释的样品的表面张力,获得吸附等温线剖面图,软件自动获得CMC值。http://www.xianjichina.cn/include/upload/fck/2.jpg 化合物疏水性Kaw Kaw代表了化合物在界面的亲和力。Kaw值越高疏水性越高。化合物缺乏或只有几个功能基团时被动扩散能够与氢键在界面吸附。亲脂性化合物可以保留在细胞膜中。http://www.xianjichina.cn/include/upload/fck/3.jpg

  • [讨论]:多肽类药物的质谱分析

    随着生化学科的发展,肽类药物必然要越来越受到大家的重视,但肽类的质谱分析却是比较难的,大家都来谈谈肽类药物质谱分析的经验。我有个同学在坐一个肽类化合物,代谢物从分析液相接出来,质谱直接进样,却没有响应,大家说如何提高它的响应呢?

  • 新型化合物可制造高效低毒生物农药

    近日,中国农业科学院烟草研究所植物功能成分与综合利用创新团队在烟草内生真菌中发现了抑菌、杀虫活性显著且毒性较小的异戊烯基化吲哚类活性化合物,为具有自主知识产权的高效低毒生物农药的研发提供了模板化合物。相关研究成果在线发表在《农业与食品化学杂志(Journal of Agricultural and Food Chemistry)》。  据张鹏副研究员介绍,传统化学合成农药在为农业生产带来巨大经济效益的同时,也对生态系统造成了一系列弊端。微生物源农药因具有高效低毒、环境友好等特点,在植物病虫害防治中的作用日益明显。植物功能成分与综合利用创新团队从一株烟草来源内生真菌接骨木镰刀菌TE-6L中分离获得6个异戊烯基化吲哚类代谢产物,其中包括2个新结构化合物。研究表明,该类代谢产物能够显著抑制多种植物病原菌并具有杀虫活性;同时,该团队以斑马鱼胚胎为模型,首次评估了该类化合物的发育毒性。该类化合物结构新颖、活性显著且毒性较低,具有开发成为新的生物农药的潜力。  该研究得到国家自然科学基金和中国农科院科技创新工程资助。

  • 【求助】血清中的药物被酶解了 怎么办?

    各位大虾: 我用Agilent 12oo 作关于测定一个腺苷衍生物的药代动力学研究。 结果发现: 1 在体外 ,药物与血浆一混合后就测定不到 。在血清中遇到同样的情况。即使 冰上操作 不到30min 就上样分析 也同样测定不到。 2 如果将血浆或者血清的蛋白沉淀后 再加入等量的化合物 结果可以测定的到。 3 通过目前的实验 我可以确定的是 样品处理的方法的PH值 温度 加入甲醇的体积等对药物是没有影响的。 因为在方法2中能测到药物就说明操作的环境对药物是没有影响的。 4 这个药物是腺苷的类似物 含有酯键 酚羟基 嘌呤环等。 5 这个药物是非水溶性的 而腺苷是水溶性的。 6 新化合物 没有任何关于其药代动力学的文献。 不知道下一步该怎么办了 急求各位大虾相助 完成其药代动力学研究。[em09509]

  • 欧洲7大制药公司联合学术机构共同进行药物研发

    http://img.dxycdn.com/cms/upload/userfiles/image/2013/02/08/424366159_small.jpg欧洲制药团体正在加快发动药物研发的引擎。这个包含有30个合作伙伴的团体,正采用众包、开放式创新模式,发起一次新的活动以推动新的治疗药物的开发,该团体包括了拜耳、强生旗下杨森和5个其它制药巨头。7家合作伙伴计划献出至少30万个化合物,研究机构及其它合作方也计划开发大约20多万个化合物,目的是对该团体中的参与者共同分享药物研发成果,研发战略,这与以往制药集团传统的、秘密进行的药物研发方式形成了鲜明对比。“对制药公司来说,这是一个很大的改变,因为他们的化合物数据库通常被秘密保存,”荷兰非营利组织TI制药公司科学主管Ton Rijnders说。“他们这样做是因为这种方式与以往建立自己更大的化合物数据库相比成本更低,而且参与该团体的学术机构把他们的创新理念也输送了进来。”事实上,制药集团已经变得更加开放,正在与外部组织一起来扭转消极的药物研发趋势。由欧盟10亿欧元支持的创新药物计划(IMI)也对这个新的药物研发团体进行了支持,并取得了较大进步,引入了大型制药公司参与到这个行列。例如,创新药物计划支持了2012年10月份宣布的、由罗氏领头10家主要制药公司参与的一项活动,该活动目的是借助干细胞开发出人类疾病模型,帮助神经疾病和糖尿病药物的开发。这次最新的1.96亿欧元的药物研发活动,有8000万欧元来自欧洲委员会第七框架研究计划,剩余预算由制药企业、大学及其它合作方完成。TI制药对该药物研发活动正在进行组织协调。7个主要制药企业包括阿司利康、拜耳、丹麦灵北、杨森、默沙东、赛诺菲及比利时优时比公司。

  • 【求助】急,天然药物问题?

    急-------各位,帮帮忙啊!我是做天然药物的,最近分到一个化合物,样品量很少,不纯,只溶解于石油醚和氯仿中,考虑到夏天氯仿挥发很严重,而且对身体伤害也很大,所以想用石油醚装个Sephadex LH-20凝胶柱。所以想问问各位用这种方法可以吗?还有若要装的话,它的溶胀率是多少啊?帮帮忙啊。

  • 如何确定混标里各药物的适宜浓度

    想让各个药物的响应比较一致,同时满足谷浓度的测定要求。预实验是配了各个药物的浓度一致的,响应有明显比较高和低的我是根据响应还是峰面积还是说标曲去调整浓度呢?为了让响应比较一致的话,是不是分开进不同浓度的单标,看一下在哪个浓度里单标可以达到比如说e6这样子?为了到时候做标曲比较方便的话,我的混标是不是统一为目标化合物的线性范围的最高浓度这样比较好呢?但是这些药物的谷浓度差别比较大,有些谷浓度只有几ug/ml,有些都到150 ug/ml了,如果我按照统一为各个目标化合物的线性范围的最高浓度/最低浓度进,那响应很有可能差别很大?那我到底是用哪个浓度进比较好呢?

  • 药物高通量筛选技术

    简单介绍一下关于药物高通量筛选技术的知识一.概念高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整个体系运转的技术体系。二. 高通量筛选技术体系的组成1. 化合物样品库化合物样品主要有人工合成和从天然产物中分离纯化两个来源。其中,人工合成又可分为常规化学合成和组合化学合成两种方法。2.自动化的操作系统自动化操作系统利用计算机通过操作软件控制整个实验过程。操作软件采用实物图像代表实验用具,简洁明了的图示代表机器的动作。自动化操作系统的工作能力取决于系统的组分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。3.高灵敏度的检测系统检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪等。4.数据库管理系统数据库管理系统承担4个方面的功能: 样品库的管理功能;生物活性信息的管理功能; 对高通量药物筛选的服务功能; 药物设计与药物发现功能。三. 高通量筛选模型常用的筛选模型都在分子水平和细胞水平,观察的是药物与分子靶点的相互作用,能够直接认识药物的基本作用机制。1. 分子水平的药物筛选模型:受体筛选模型;酶筛选模型;离子通道筛选模型1.1受体筛选模型:指受体与放射性配体结合模型。以受体为作用靶的筛选方法,包括检测功能反应、第二信使生成和标记配体与受体相互作用等不同类型。1.2酶筛选模型:观察药物对酶活性的影响。根据酶的特点,酶的反应底物,产物都可以作为检测指标,并由此确定反应速度。典型的酶筛选包括1) 适当缓冲液中孵化;(2)控制反应速度,如:温度,缓冲液的pH值和酶的浓度等;(3)单时间点数器, 需测量产物的增加和底物的减少。1.3离子通道筛选模型: (1)贝类动物毒素的高通量筛选,其作用靶为Na+通道上的蛤蚌毒素结合位点,用放射性配体进行竞争性结合试验考察受试样品。(2)用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。2.细胞水平药物筛选模型观察被筛样品对细胞的作用,但不能反映药物作用的具体途径和靶标,仅反映药物对细胞生长等过程的综合作用。包括: 内皮细胞激活; 细胞凋亡; 抗肿瘤活性; 转录调控检测; 信号转导通路; 细菌蛋白分泌; 细菌生长。四.问题及展望高通量筛选技术与传统的药物筛选方法相比有以下几个优点:反应体积小;自动化;灵敏快速检测;高度特异性。但是,高通量筛选作为药物筛选的一种方法,并不是一种万能的手段,特别是在中药研究方面,其局限性也是十分明显的。首先,高通量筛选所采用的主要是分子、细胞水平的体外实验模型,因此任何模型都不可能充分反映药物的全面药理作用;其次,用于高通量筛选的模型是有限的和不断发展的,要建立反映机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。但我们应该相信,随着对高通量筛选研究的不断深入,随着对筛选模型的评价标准、新的药物作用靶点的发现以及筛选模型的新颖性和实用性的统一,高通量筛选技术必将在未来的药物研究中发挥越来越重要的作用。

  • 手性化合物分离

    有做手性化合物分离的大佬吗?提供些手性化合物分离思路呗?感觉手性化合物分析起来不容易(要分离的化合物种类比较多,有多环类的,有氨基酸,多肽等)。

  • 【转帖】液相色谱-质谱联用系统用于小分子化合物分析时的几点体会。

    液质联用仪因其对大部分化合物的高灵敏度得到越来越广泛的应用,适合于体内药物、体内有毒物质、药物的杂质等物质的定性和定量分析等领域。与传统的色谱分离检测器(紫外、荧光、视差、蒸发光散射、电化学等)检测的分析手段比较,质谱属于液相色谱的广适性检测器,具有明显的优势,该方法适用范围更广,灵敏度和高通量的特点,能够满足多个领域的定性和定量要求。 液质联用仪用于小分子化合物定性已有多年历史,普通高效液相系统只能对已知化合物(有标准品的化合物)通过峰位来定性,对于未知化合物却无能为力。而高效液相色谱—质谱联用仪可以对化合物作多级质谱,通过多级质谱的分析来推测化合物的结构,从而对已知和未知化合物均可以较准确的定性。液质联用仪还可用于小分子化合物定量,且与用普通高效液相系统对化合物进行定量相比,其不需要定量的化合物必须与样品中的其它有类似性质的成分完全分离,而高效液相色谱—质谱联用仪对化合物间的分离度没有要求,不但对保留时间不一致的物质能区分开,即使保留时间完全一致也同样互不干扰,只要过滤出想测的物质即可;且该方法可在数分钟内对几十个化合物同时定量,简便、快捷、灵敏、可靠。 质谱仪的定量原理是在电压和气流的作用下把待测物加氢离子(正离子方式)或减氢离子(负离子方式)后带电荷,仪器检测到的是一定质核比(m/z)的物质,即选择离子监测(SIM),其他质量数的物质能被滤掉,其他原理及要求同一般色谱要求。目前多使用的一般仪器是单位质量分辨,可将分子量相差1的物质完全可以区分,专属性高,用单四级杆质谱仪就可以定量;有时为了进一步保证检测的准确性,把待测物加能量打碎,产生碎片离子(子离子),对母离子和子离子同时进行检测,采用三重四级杆质谱仪,也就是用选择反应监测(SRM)定量,母离子和子离子均完全一样的物质非常少见,因此定量的准确性更好,检测限更低。

  • 【金秋计划】+解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同?

    [font=微软雅黑][size=16px][color=#444444]合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,欢迎关注漫游药化,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。[/color][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制