当前位置: 仪器信息网 > 行业主题 > >

液体乳用黑白膜

仪器信息网液体乳用黑白膜专题为您整合液体乳用黑白膜相关的最新文章,在液体乳用黑白膜专题,您不仅可以免费浏览液体乳用黑白膜的资讯, 同时您还可以浏览液体乳用黑白膜的相关资料、解决方案,参与社区液体乳用黑白膜话题讨论。

液体乳用黑白膜相关的资讯

  • 液体输送的默契拍档:蠕动泵助力工业生产如虎添翼!
    液体输送是工业生产中至关重要的一环,而蠕动泵作为一种高效、可靠的设备,能够为工业生产提供强有力的支持和保障。无论是在化工、制药、食品、石油等行业,蠕动泵的广泛应用都为液体输送带来了更多可能性。本文将详细介绍蠕动泵的工作原理、优势以及应用领域,为大家全面展示这位默契的液体输送伙伴。  蠕动泵,顾名思义,就是通过蠕动运动将液体进行输送的一种设备。它采用了一种特殊的工作原理,即通过压缩蠕动管使得液体形成连续的蠕动流动,从而实现液体的输送。这种工作原理与传统的离心泵、齿轮泵等不同,使得蠕动泵在一些特定的场合具有独特的优势。  首先,蠕动泵具有极高的可靠性。由于蠕动泵没有旋转的部件,因此不存在泵的磨损和密封的问题,大大减少了泵的故障和维护的需求。同时,蠕动泵的结构简单,操作方便,不易受到液体中固体颗粒的影响,能够稳定地输送各种液体,从而保证了工业生产的连续性和可靠性。  其次,蠕动泵具有出色的耐腐蚀性。在化工行业中,很多介质具有强酸、强碱、强腐蚀性,而蠕动泵正是针对这些特殊介质而设计的。蠕动泵的蠕动管是由耐酸碱材料制成,能够承受各种腐蚀介质的腐蚀,确保了输送液体的纯净性和品质。  此外,蠕动泵还具有优异的输送能力。蠕动泵能够实现流量的调节和变化,通过调整蠕动管的挤压程度来改变流量大小,能够满足不同工业生产的需求和要求。同时,蠕动泵拥有较大的吸程和扬程范围,能够长时间稳定地输送液体,有效地提高生产效率,降低能耗成本。  蠕动泵的应用领域非常广泛。在化工行业,蠕动泵被广泛应用于酸碱液体的输送、悬浮液的过滤和输送等工艺过程中 在制药行业,蠕动泵可用于输送和稳定剂的加入 在食品行业,蠕动泵用于食品原料的输送、搅拌和稳定等 在石油行业,蠕动泵可以输送含油、含油水、稠油等液体。除此之外,蠕动泵还常用于环保、冶金、水处理等领域,满足不同行业的液体输送需求。  综上所述,蠕动泵作为液体输送的默契拍档,凭借其高可靠性、耐腐蚀性和优异的输送能力,在工业生产中发挥着重要的作用。无论是在化工、制药、食品还是石油等行业,蠕动泵都能够为生产过程提供稳定可靠的液体输送。相信在不久的将来,蠕动泵会有更广阔的发展空间,为工业生产带来更多的便利和效益。
  • 蠕动泵:引领液体输送,创造无限商机
    传统的液体输送方式在很多场景下存在一系列的限制,如泵送粘稠液体困难、易堵塞、泵送压力不足等问题。然而,通过蠕动泵的应用,这些问题迎刃而解,为液体输送领域打开了一扇崭新的大门。蠕动泵以其卓越的性能和无限的商机,正在成为行业翘楚。蠕动泵采用蠕动输送原理,即通过压缩树脂制成的管路,利用挤压与松弛的作用,实现液体的连续输送。相比传统的离心泵等设备,蠕动泵具有独特的优势。首先,在泵送粘稠液体方面,蠕动泵能轻松应对,无论是高粘度的胶状物还是含有颗粒的液体,都能稳定输送。其次,蠕动泵由于采用柔性管路,不易产生堵塞,大大减少了设备维护和清洗的频率,节省了时间和成本。再者,蠕动泵工作时的蠕动波动可有效地保护被输送物料的性质,不会引起剪切或破坏,确保物料的完整性。此外,蠕动泵无需庞大的压力系统,即可实现高压输送,并能逆向输送,灵活性极高。蠕动泵在各个领域都能发挥重要作用。在化工行业,蠕动泵可用于粘胶、涂料、颜料等高粘度物料的输送;在制药领域,蠕动泵可用于输送细胞培养液、生物制剂等灵敏物料;在环保工程中,蠕动泵可用于污水处理、固液分离等等。而且,随着新材料和新工艺的不断推陈出新,蠕动泵的应用领域还将继续扩大。除了性能上的优势,蠕动泵还有着较高的稳定性和可靠性。庞大的工业系统都需要运行稳定、无故障,而蠕动泵正是它们的首选。柔性的管路和简单的工作原理使得蠕动泵易于操作和维护,能够长期稳定运行,为用户带来极大的便利。而一流的品牌商更是能够提供全方位的售前售后服务,保障用户的利益。作为一种颠覆性的技术革新,蠕动泵将传统液体输送方式推向了全新的高度。它的优异性能和广阔应用前景,为液体输送领域带来了无限商机。无论是在工业生产还是商业领域,蠕动泵都发挥着重要的作用,推动着行业的进步和发展。随着技术的不断创新和改进,蠕动泵有望继续领跑液体输送领域,为人们带来更大的价值。
  • 蠕动泵灌装机:高效实现液体灌装的利器
    随着工业生产的不断发展,液体灌装技术也在开拓创新。其中,蠕动泵灌装机做为高效完成液体灌装的利器,越来越受企业的青睐与支持。  蠕动泵灌装机采用先进泵技术,可准确操纵流量和容积,完成所有液体的精确罐装。不论是脉冲液体或是高粘度液体,蠕动泵灌装机都能平稳地把它罐装到目标容器里,以保证产品质量和可靠性。  和传统灌装机对比,蠕动泵灌装机具有以下优点。最先,蠕动泵灌装机选用无阀设计,避免液体泄露和渗透难题,确保工作环境的清理安全 次之,蠕动泵灌装机使用便捷,只需设置参数和容积,即可自动实行全部罐装过程,大大提高效率 此外,蠕动泵灌装机具备灵活性强的特点,能适应不同规格和外观的容器,满足用户多元化的生产需要。  为了确保蠕动泵灌装机的稳定性和可靠性,厂家在设计和生产中重视细节的处理。比如,蠕动泵灌装机采用高性能液体测量传感器,能及时检验液体流量和压力,确保灌装精度 同时,蠕动泵灌装机配置前沿控制系统,实时监测设备运转情况,及时发现和处理事情,确保生产的可持续和安全性。  实际应用中,蠕动泵灌装机用途广泛。蠕动泵灌装机在护肤品、药业、食品、化工等行业都能发挥重要作用。尤其是对于高要求的生产企业,蠕动泵灌装机准确性和可靠性能够满足其对产品质量的向往,更有效地提高企业的竞争力。  总之,因其高效、平稳、靠谱的特征,蠕动泵灌装机已成为现代工业生产中不可缺少的设备之一。随着科学技术的不断的发展运用需求的增加,我们坚信蠕动泵灌装机的发展前景将更加广阔。相信在不久的将来,蠕动泵灌装机将于更多行业发挥重要作用,为企业发展提供强有力的运用。
  • 蠕动泵灌装机:打造高效、精准的液体灌装利器
    蠕动泵灌装机是一种利用蠕动泵技术实现液体灌装的高效设备。它具备精准控制、高效稳定、适应性强等优点,在化工、医药、食品等行业中广泛应用。本文将深入介绍蠕动泵灌装机的工作原理、结构组成以及应用场景,为读者全面揭示其优势和行业前景。蠕动泵灌装机的工作原理是利用蠕动泵的特性,通过橡胶管的蠕动挤压,将液体精确地输送到灌装容器中。其核心部件是蠕动泵,蠕动泵通过转子与橡胶管产生摩擦,使管道内的液体通过推进式运输,实现了准确的液体计量控制。相比于传统的灌装设备,蠕动泵灌装机具有更高的运输精度和响应速度,能够满足各种精细化灌装需求。蠕动泵灌装机的结构组成包括蠕动泵,电机驱动装置,橡胶管道,灌装喷头等。蠕动泵通过电机驱动装置带动转子旋转,使橡胶管不断蠕动,实现液体的输送。橡胶管道起到了连接蠕动泵和灌装容器的作用,而灌装喷头则是控制液体流动和停止的关键部件。这种结构紧凑、简单,运行稳定可靠,维护成本低。蠕动泵灌装机的应用场景非常广泛。首先,在化工行业,蠕动泵灌装机能够实现高精度化学液体的灌装,满足不同化学品的包装和生产需求。其次,在医药行业,蠕动泵灌装机能够精确灌装各类药品,确保药品的剂量准确,有效提高生产效率和药品质量。再次,在食品行业,蠕动泵灌装机被广泛应用于液体食品的灌装,如果汁、调味品等。其精确的灌装控制能够确保食品的安全与口感。蠕动泵灌装机作为一种高效、精准的液体灌装设备,其有着广阔的市场前景。随着工业的发展和技术的进步,越来越多的行业对液体灌装的要求越来越高,同时也对灌装效率和质量提出更高要求。蠕动泵灌装机凭借其独特的工作原理和优势,越来越受到行业的关注和认可。未来,蠕动泵灌装机有望在更多领域得到应用,为行业的发展做出更大的贡献。综上所述,蠕动泵灌装机以其高效、精准的液体灌装能力受到了广泛的应用。通过深入介绍其工作原理、结构组成以及应用场景,本文为读者呈现了蠕动泵灌装机的全貌。随着技术的不断进步和需求的增长,相信蠕动泵灌装机将在未来展现更加广阔的发展前景。
  • 实验室蠕动泵:高效、可靠、精确的液体传送利器
    实验室蠕动泵是一种广泛应用于科研实验室、医疗机构和工业领域的重要设备。它以其独特的工作原理和卓越的性能在液体传送领域发挥着关键作用。本文将为您详细介绍实验室蠕动泵的工作原理、特点、应用领域以及如何选购和维护,帮助您更好地了解和使用这个高效、可靠、精确的液体传送利器。一、工作原理实验室蠕动泵采用蠕动原理,通过泵头内的蠕动转子和管路之间的交替压缩和扩张,实现液体的吸入和排出。具体而言,当转子向前移动时,管路被压缩,液体被吸入 当转子向后移动时,管路扩张,液体被推出。这种蠕动运动的特点使得实验室蠕动泵具有很高的输送精度和泵头阻力几乎不变的特点,能够精确地控制液体的流量和压力。二、特点和优势1. 高效可靠:实验室蠕动泵采用先进的控制系统,能够实现高精度和稳定的液体传送,确保实验结果的准确性。同时,由于泵头与被输送液体完全隔离,不会发生任何交叉污染,确保实验的可靠性和一致性。2. 适应性强:实验室蠕动泵能够适应不同类型的液体,包括各种溶液、悬浮液、高粘度液体等。且泵的流量和压力可调,满足不同实验的需求。3. 操作简便:实验室蠕动泵采用智能化控制系统,具备人性化的操作界面和操作指南,使得使用者能够轻松快捷地操作和控制泵的运行。4. 维护方便:实验室蠕动泵的泵头易于拆卸和清洗,减少了维护和保养的工作量。同时,泵头材质多样,可根据不同液体的特性选择合适的泵头材质,延长泵的使用寿命。三、应用领域实验室蠕动泵在科研领域具有广泛的应用,包括但不限于以下方面:1. 生命科学研究:实验室蠕动泵可用于细胞培养、蛋白质纯化、基因测序等生物实验中的液体传送和微量反应。2. 化学分析:实验室蠕动泵可用于液相色谱、气相色谱及质谱等分析仪器中的溶液输送和流量控制。3. 制药工艺:实验室蠕动泵可用于药物合成、药物输送和药物检测等制药工艺中的精确液体传送。4. 工业领域:实验室蠕动泵广泛应用于化工、食品、环保等领域,可用于液体混合、加料、输送等工艺。四、选购和维护1. 选择合适的规格:根据实验需求和液体性质选择合适的规格和型号,确保满足实验的流量和压力要求。2. 注意泵头材质:根据被输送液体的特性选择合适的泵头材质,如PVC、PTFE等,以延长泵的使用寿命。3. 定期维护:定期清洗泵头和管路,并保持泵的正常工作状态。注意检查密封圈和蠕动转子的磨损情况,及时更换。4. 合理使用:避免过载工作和长时间连续运行,以免损坏泵头和控制系统。实验室蠕动泵凭借其高效、可靠和精确的液体传送能力,成为实验室和工业领域中不可或缺的设备。希望本文对您了解实验室蠕动泵,并在实践中合理选择和使用具有一定的帮助。
  • 史上五大“最赞”科学恶作剧,丝袜+黑白电视=彩电?
    又到了一年一度的愚人节/幽默节/玩笑节/反话节/撒谎节/恶作剧节。在为将饼干夹心换成芥末的小把戏沾沾自喜的时候,你是不是也好奇其他人都做过哪些犀利的愚人节玩笑?   半个世纪以来,世界各地的愚人节把戏可谓是百花齐放,坑遍每个领域的老实人。其中一些玩笑开得实在是既滑稽又逼真。在前已有古人后亦有来者的愚人节整人历史中,它们始终身处在&ldquo 最赞恶作剧&rdquo 的前列。   物理向:彩色电视DIY   1962年4月1日,瑞典电视上唯一的频道&mdash &mdash 瑞典电视台(SVT)跟瑞典的电视观众开了一个玩笑。这个黑白电视台向观众宣布,他们的&ldquo 技术专家&rdquo 谢尔&bull 斯坦松(Kjell Stensson)会向大家传授用黑白电视看彩色节目的绝招。   当时,斯坦松在电视上用各种术语向观众讲述了双缝干涉现象等光的性质。在观众不明觉厉之际,他宣布:研究者发现,只要在黑白电视前面蒙上一层布满细网孔的屏障,就能使图像呈现色彩。其中尼龙长筒袜的效果最好,只要剪开一双长筒袜并将它们罩在电视屏幕上,黑白电视一秒变彩色! 谢尔&bull 斯坦松在节目中示范如何让黑白电视&ldquo 变&rdquo 彩色。   那么简单就能将电视更新换代,何乐而不为?听到这,不少观众都准备掏剪刀了。而斯坦松则传授了更细致的窍门:观众必须坐在距屏幕特定的距离才能看到效果,他们需要非常小心地前后挪动自己的脑袋,以找到最佳的观看位置。   数千人在看了斯坦松的解说后加入了实验大军,结果自然是发现自己被骗了。现在不少瑞典成年人还能回忆起自己小时候看到自己的父母&mdash &mdash 尤其是爸爸们&mdash &mdash 满屋子找尼龙袜往电视上套的情景。   还好,这场玩笑的始作俑者也并没有让观众的心愿落空太久。1970年的4月1日,瑞典电视台开播彩色电视节目。   天文向:行星排排坐   听过&ldquo N星连珠&rdquo 地球就会怎样怎样的说法吧?近40年前,英国人就开始拿这说法开愚人节玩笑了。1976年4月1日,在BBC广播的晨间采访中,英国业余天文学家帕特里克&bull 穆尔爵士(Patrick Moore)宣布当天9点47分将有百年难得一遇的奇异天象发生。他称冥王星(那时人家还是行星呢)会从木星后面经过,那时的行星排列将导致地球的重力被削弱。   怎么证明?穆尔告诉听众们:如果他们踏准点在行星排成一线的时候跳起来,他们会体验到奇特的漂浮感。到了9点47分,广播电台开始收到数百个听众来电&mdash &mdash 倒不是怒斥他们骗人,而是告诉他们&ldquo 我真的感觉到了!&rdquo 更有甚者称自己坐在椅子上就腾空了,满屋子漂着。   但这显然只是个把戏。1974年的畅销书《木星效应》(The Jupiter Effect)里写到了&ldquo 行星连珠&rdquo 将导致1982年的地球发生大灾难。穆尔爵士希望用这个愚人节恶作剧对这一荒谬的伪科学理论表达嘲讽。 在天文界具有重要地位的穆尔爵士。   体育向:天降神投手   1985年4月1日,著名杂志《体育画报》画报发表了一篇文章,爆料称纽约大都会队招到了一个神一般的新人投手&mdash &mdash 席德&bull 芬奇(Sidd Finch)。在文中,芬奇有着传奇般的人生:在孤儿院长大 被考古学家收养,养父却坠机身亡 在哈佛读书,读一半跑到西藏拜师学艺&hellip &hellip 这名新人之前从没打过棒球,却因为从西藏的寺庙里习得了&ldquo 投球之艺&rdquo ,投出的棒球不但落位精准,而且时速可达270千米每小时&mdash &mdash 远超当时的速度纪录。   可惜这个人物完全就是杜撰出来的&mdash &mdash 文章作者乔治&bull 普林顿(George Plimpton)在文章的副标题上就埋下了提示:&ldquo He' s a pitcher, part yogi and part recluse. Impressively liberated from our opulent life-style, Sidd' s deciding about yoga &mdash and his future in baseball&rdquo ,在破折号之前,每个单词的首字母连起来就是&ldquo Happy April Fool&rsquo s Day&rdquo ,也即&ldquo 愚人节快乐&rdquo 。 1985年4月的《体育画报》。图中左上角的那段文字是对&ldquo 愚人节快乐&rdquo 对应的英文字母做了藏头   可是大都会队的球迷们简直高兴坏了,几乎没有人发现这个线索(即便不高兴也没人会发现的)。他们纷纷给《体育画报》写信,希望得到更多关于这位新秀的信息。《体育画报》光收到的信件就几乎有2000封。一时之间,这篇文章变成了他们最有名的文章之一。   但芬奇毕竟是虚构出来的。4月8号,《体育画报》装模作样地宣称&ldquo 芬奇开了个记者招待会&rdquo ,宣布自己失去了投快球所需的精准度,因此不会在大队会队开始职业生涯。球迷们的失落可想而知。又撑了一个星期,《体育画报》终于承认这只不过是场恶作剧。   数学向:修改圆周率   1998年4月,美国一个倡导科学的组织,&ldquo 新墨西哥科学与理性&rdquo (New Mexicans for Science and Reason,NMSR)在其官方通讯《NMSR报告》上发布了一则简报,称阿拉巴马州议会通过了一项法案,要将圆周率&pi 的值修改为3.0。   这份诡异的简报中称,阿拉巴马州的议员莱昂纳多&bull 罗森(Leonard Lee Lawson)称圆的周长和直径的比应该是3而不是3.1415926353&hellip &hellip 依据是什么?圣经。《列王纪上》第七章记载:&ldquo 他又铸一个铜海,样式是圆的,高五肘,径十肘,围三十肘。&rdquo (注:&ldquo 肘&rdquo 是指由手肘沿前臂到中指顶端的距离,是古老的长度单位。) 将&pi 值改成3.0?其实阿拉巴马州议会从来没有通过这样荒诞的法案   其实,这则愚人节消息意在指桑骂槐。它的作者,美国物理学家马克&bull 博斯洛(Mark Boslough)希望用幽默的手法来捍卫科学,而这则玩笑旨在嘲讽试图规定学校教授神创论的新墨西哥州议会。   这条消息很快被传上了各个新闻媒体,也在人们的邮件来往中被疯传。原本消息中关于&ldquo 愚人节&rdquo 的标识也在传播过程被去掉了。无辜躺枪的阿拉巴马州议会甚至收到了来自人们的反对电话。直到下一期《NMSR报告》发布文章澄清,圆周率被改的传言才渐渐平息。   生物向:飞天企鹅   以纪录片享誉全球英国广播公司(BBC),开起愚人节玩笑来也是极其专业。进入21世纪,他们&ldquo 欺骗&rdquo 观众的方式也愈发高端了。2008年,BBC在一条预告片中观众展示了一项惊人的&ldquo 新发现&rdquo &mdash &mdash 一群会从南极长途飞行到热带雨林的企鹅。这部&ldquo 纪录片&rdquo 讲述,迫于南极的极寒气候,部分阿德利企鹅逐渐产生适应性变化,获得了飞翔的能力(不是被雪怪的球棍打飞的)。    愚人节视频中企鹅飞翔的片段   4月1日的《每日镜报》和《每日电讯报》为这部作品打足了广告&mdash &mdash 前者直接让它上了头版,后者也将之作为当日最重要新闻之一。但还是有眼尖的读者察觉了深埋其中的字母梗&mdash &mdash 纪录片所谓的制片人&ldquo 艾利德&bull 罗亚斯教授(Prof Alid Loyas)在重新排列字幕顺序之后就是&ldquo 愚人节&rdquo (April Fools Day)。   这部预告片请到了著名喜剧团体蒙提&bull 派森(Monty Python)成员特里&bull 琼斯(Terry Jone)做主持,由技术团队精心构建会飞的企鹅模型,再将人物实拍、纪录片片段和飞翔动画整合在一起。为了在愚人节以各种方式幽默一把,BBC也蛮拼的。 为了&ldquo 圆谎&rdquo ,BBC的技术人员专门为企鹅设计了合适的飞行模型和起飞姿态   今年的愚人节,会有什么有意思的幽默产生?下一个名(chou)垂(ming)青(zhao)史(zhu)的愚人节点子,也许就是你想出来的。但玩笑归玩笑,可别玩脱了。
  • 赛默飞世尔科技发布新型液体自动处理平台
    Thermo Scientific Versette 提供无与伦比的全能性及可扩展性 米尔福特,麻萨诸塞州,美国 (2010年9月6日) &ndash 赛默飞世尔科技, 服务科学的全球领导者,近日发布全新的自动液体处理器:Thermo Scientific Versette。适用于19种 可相互更换、有射频标记的移液头,Versette&trade 提供杰出的多功能移液性能,可满足需要从单通道至384通道进行自动移液的各种应用的需求。Versette移液工作平台可配置使用一次性吸头和固定式吸头的移液头,移液体积范围从0.1 µ l至1250 µ l。为进一步优化性能,单通道、8通道及12通道移液头使用可实现安全密封的Thermo Scientific ClipTips吸头。这种吸头独特的卡入式设计,在插入及弹出时只需要最小的机械力,从而降低仪器和分液头的损耗,延长使用寿命。96及384通道的移液头使用Thermo Scientific D.A.R.T.s吸头,采用表面密封技术来保证所有通道的精准移液。 Versette 提供两种操作台配置以提高可扩展性。可方便更换的两板位及六板位操作台为仪器的独立使用和自动化整合提供了极大的灵活性。由于具有紧凑的外观尺寸,加之空间节约型双层式设计的六板位操作台,Versette可以安置于任何工作台面及封闭工作空间。并且, 所有操作台均可装配安全挡板,可为实验材料提供封闭式空间、减少污染,而无需额外的空间分隔设施。 无论是简单还是复杂的移液程序,既可通过直观的随机LCD触摸屏使用内置软件,又可通过计算机使用专门的Thermo Scientific ControlMate软件进行编程。Thermo Scientific Versette自动液体处理平台具备先进的仪器操控性、实验精确性和全功能性,是从手持移液向自动移液过渡,或建立整合的自动移液系统的理想选择。 更多关于Thermo Scientific Versette自动液体处理平台的信息,请访问: www.thermoscientific.com/versette. Thermo Scientific 是服务科学的世界领导者赛默飞世尔科技旗下品牌。 -------------------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站www.thermo.com.cn;www.fishersci.com.cn
  • 无需接触,快速精准!蠕动泵解决液体计量难题
    蠕动泵作为一种常用的液体计量设备,凭借其无需接触、快速精准的特点,受到了越来越多领域的青睐。无论是在化工、食品、制药还是环保领域,蠕动泵都能发挥重要的作用,帮助企业解决液体计量难题。  为了更好地了解蠕动泵的优势和应用,我们首先要了解什么是蠕动泵。蠕动泵是一种利用转子和管道之间的配合工作原理,通过转动的压力来将液体推送至需要的位置的装置。其主要特点是无需接触液体,能够保持液体的纯净和安全。在液体计量方面,蠕动泵具有非常高的精准度,能够实现快速准确的计量功能。  蠕动泵的优势不仅在于其精准计量的特点,还表现在其适用于各种不同的液体。无论是粘稠液体、腐蚀性液体还是高温液体,蠕动泵都能够应对自如。这得益于蠕动泵的结构设计和材料选用,使其具备了优异的耐腐蚀性和高温稳定性。  此外,蠕动泵还具有简单易操作的特点。其结构简洁,易于维护,减少了企业的运营成本。蠕动泵的使用也非常灵活,能够适应各种特殊的工况要求。无论是连续输送还是间歇计量,蠕动泵都能够完美胜任。  在化工领域,蠕动泵被广泛应用于各种液体的混合和配方过程中。由于其精确的计量能力,蠕动泵能够保证产品的质量稳定性,减少了生产过程中的误差。在食品和制药领域,蠕动泵可以用于液体的输送和配料,确保产品的安全和卫生。在环保领域,蠕动泵被用于废水处理等重要环节中,发挥着关键的作用。  综上所述,蠕动泵作为一种无需接触、快速精准的液体计量设备,具有广泛的应用前景。其精准计量、适用于各种液体、简单易操作的特点,使其成为许多领域的首选设备。如果您需要解决液体计量难题,蠕动泵绝对是您的不二选择。
  • 告别烦恼!蠕动泵带您畅享顺畅无阻的液体输送
    无论是在工业生产还是生活中,液体输送都是一个重要的环节。然而,传统的液体输送方式常常面临堵塞、阻力大等问题,使得整个过程面临着诸多困扰。而现如今,有一种名为蠕动泵的液体输送设备,可以让我们告别这些烦恼,畅享无阻的液体输送体验。  蠕动泵凭借着其独特的工作原理,为我们提供了一种高效、可靠、无阻力的液体输送解决方案。它通过蠕动腔体的压缩和释放,将液体推送到目标位置,而不是采用传统的机械旋转或气动推进方式。这种工作原理有效地避免了液体输送过程中的堵塞问题,为我们的工作和生活带来了极大的便利。  蠕动泵的优势还不仅仅停留在无阻塞上。首先,它具有很高的精度和稳定性,可以在液体输送过程中精确控制流量和压力,满足不同工况的需求。其次,蠕动泵适用于各种液体,包括高粘度、高固含量的液体,如污泥、矿浆等。无论是处理工业废水还是输送高浓度的液体,蠕动泵都能够轻松应对。  蠕动泵在液体输送中还具有较低的能耗和噪音,使得工作环境更加安静舒适。此外,它的结构简单、易于维护,大大降低了设备的维修成本和故障率。对于那些需要长时间运行的场合,蠕动泵更是一种理想的选择。  除了以上优点,蠕动泵还具有很多附加功能,如液位监测、流量测量、温度控制等。这些功能使得蠕动泵成为一个智能化的液体输送装置,能够实时监测和调整液体输送过程中的各项参数,确保输送的稳定性和安全性。  总而言之,蠕动泵是一种高效、可靠、无阻力的液体输送设备,它为我们的工作和生活带来了诸多优势。无论是在工业生产中还是在民用领域,蠕动泵都能以其出色的性能和稳定性,为我们提供一种畅享无阻液体输送的解决方案。
  • 微型蠕动泵:小巧但功能强大的液体输送利器
    微型蠕动泵是一种小型而强大的液体输送设备,它被广泛应用于医疗、生物技术、环保、化工等众多领域。微型蠕动泵以其独特的工作原理和出色的性能受到了行业内外的关注和青睐。本文将全面介绍微型蠕动泵的原理、特点、应用及选择要点,帮助读者更好地了解和应用该设备。一、微型蠕动泵的工作原理微型蠕动泵基于蠕动泵的工作原理,即通过弹性管的收缩和蠕动运动实现液体输送。它的核心部件是管道和驱动装置。当驱动装置开始运转时,管道内的弹性管会被挤压和放松,从而将管道内的液体推送出去。微型蠕动泵以其独特的工作方式保证了输送液体的准确性和稳定性。二、微型蠕动泵的特点1. 紧凑小巧:微型蠕动泵体积小巧,重量轻,便于携带和安装。2. 高性能:微型蠕动泵具备高精度和高精确性,可实现精密的流量控制。3. 耐腐蚀性强:微型蠕动泵采用优质耐腐蚀材料制造,具有良好的耐腐蚀性,适应性广泛。4. 无泄漏:微型蠕动泵采用无泄漏设计,避免了对环境的污染和对操作人员的伤害。5. 低噪音:微型蠕动泵采用静音技术,噪音低,操作过程中不会产生噪音污染。三、微型蠕动泵的应用领域1. 医疗领域:微型蠕动泵在医疗器械中广泛应用,如药物输液、血液透析、血液分离等。2. 生物技术领域:微型蠕动泵可用于生物反应器的供料、生物制药等。3. 环保领域:微型蠕动泵可用于废水处理、气体监测等环保设备的液体输送。4. 化工领域:微型蠕动泵可用于化工生产过程中的液体加料、混合、输送等工作。5. 实验室研究:微型蠕动泵在实验室中无论是颗粒分选、加液分析还是试剂配置,都能发挥重要作用。四、选择微型蠕动泵的要点1. 流量需求:根据实际工作需求确定所需的流量范围,选择相应的微型蠕动泵。2. 压力要求:考虑工作过程中的液体输送压力,选择适合的微型蠕动泵。3. 耐腐蚀性:根据所输送液体的性质,选择具有良好耐腐蚀性的微型蠕动泵材料。4. 稳定性要求:考虑工作过程中的稳定性要求,选择具有高精确性的微型蠕动泵。5. 噪音控制:根据工作环境的要求,选择噪音较低的微型蠕动泵。综上所述,微型蠕动泵以其小巧便携、高性能、耐腐蚀、无泄漏和低噪音等特点,广泛应用于医疗、生物技术、环保、化工等领域。在选择微型蠕动泵时,需考虑流量、压力、耐腐蚀性、稳定性和噪音等因素。相信通过本文的介绍,读者对微型蠕动泵有了更全面的了解,能够在实际应用中做出更为精准的选择。
  • 卡默尔应用于实验室液体分装
    生命科学行业是现代化高速发展时期,实验室试剂的液体分装需求也逐日提升。液体分装,是将大规格的原装试剂分成小规格的试剂,由于大规格的单位成本低,分装试剂规格也更加灵活。 在分装过程中,如果用手动移液枪将试剂装入小瓶,不仅繁琐耗时,而且容易出错,普通的手工操作难以有效地满足实验室批量试剂的需求。 试剂批量分装需要满足精准度高、速度快和用途广泛等方面为科研人员提供支持。随着技术的迭代更新,如何保证实验中分装过程的稳健性和可靠性,实现降本增效,以及数据的完整性和风险管控也是实验过程中面临的复杂挑战。 为了提升实验中液体分装、灌装操作的工作效率,卡默尔为实验室提供专业的流体服务解决方案。卡默尔Fast A实验室泵,是称重传感器实现出液灌装闭环的泵,主要应用在实验室分装和灌装精度要求较高的场合。 Fast A 拥有4.3寸电阻触摸屏,人机交互模式,轻松实现全自动化:1. 自动去皮:放入试剂瓶自动去皮;2. 自动启动:去皮之后自动启动运行;3. 自动减速:临近结束自动减速;4. 自动停止:达到灌装量自动停止;5. 自动复位:移走试剂瓶自动复位。 Fast A实验室泵的优点不仅仅是自动化工作,最大的亮点是其精度高,可精准到0.01g。泵管直连无死角,避免在实验过程中造成二次污染。这款产品可用于多种规格异形瓶(试管、离心管、有色试剂玻璃瓶等),小批量,多品种,轻松实现快速分装。 卡默尔作为一家全球领先的微流体产品制造商,拥有多年在分析仪器、检测设备等领域的流体应用经验,严选优质材料,既保证产品的质量,也满足仪器的精度需求,为实验室提供精准可靠的流体服务解决方案。
  • WIGGENS Vdose蠕动泵:高效精准的液体输送解决方案
    蠕动泵是一种广泛应用于各行各业的精密液体输送设备,其通过滚轮挤压柔性管道,实现无接触、无污染的液体输送。这种设计使蠕动泵特别适合处理要求严格卫生条件的液体,以及对剪切力敏感的样品。由于其操作简便、易于维护和高精度输送能力,蠕动泵在实验室研究、医药生产、食品加工和化工等领域得到了广泛应用。应用领域实验室研究:在生物实验和化学分析中,蠕动泵常用于无菌环境下的精密液体转移和分注。它能够处理具有腐蚀性或高粘度的液体,确保样品的纯净性和实验结果的准确性。医药生产:医药行业对生产设备的无菌性和精确性要求极高。蠕动泵通过无接触的输送方式,避免了交叉污染,并且能够精确控制药液的分配,满足药品生产的严格标准。食品加工:在食品工业中,蠕动泵用于输送和分注糖浆、乳制品等高粘度液体。其易于清洁和消毒的特点,确保了食品生产过程的卫生安全。化工领域:化工生产涉及多种具有腐蚀性或危险性的液体,蠕动泵的耐化学腐蚀性和高精度输送能力,使其成为化工领域有效的液体输送设备。茂默科学在此推荐WIGGENS Vdose蠕动泵。WIGGENS Vdose蠕动泵详细说明特点与功能图标显示界面:界面简洁明了,方便选择和操作。泵管规格:可配套2、3、6和8mm直径的泵管,壁厚有1.6mm和2.3mm可选。多语言显示功能:支持多种语言显示,适用于国际化使用环境。大屏幕LCD液晶显示屏:配备4英寸大屏幕LCD液晶显示屏,防化学腐蚀和其他光辐射。高精度步进马达:精确分液,分注体积可达0.1ml。可叠加泵头:可叠加多个泵头,以增加分注体积。低机位设计:适合在通风橱或生物安全柜中使用。人性化设计:安装、操作和维护简单,容易校准,减少校准步骤。内存功能:内存9个程序,可以轻松调用。适用样品:适合多种糖浆、粘度较大、有腐蚀性和剪切力敏感的样品的分注。无菌转移液体:无死体积,确保液体无菌转移。分注和恒流模式:内置分注和恒流模式,适合多种液体的分注和排空,程序进样等。符合工业标准:符合UL / CSA / CE / WEEE / RoHS等多个工业标准。远程控制功能:支持远程控制,提高操作便利性。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多蠕动泵相关的产品,Welcome to consult~咨询有惊喜哦!
  • 高效精准的液体输送解决方案——WIGGENS Vdose蠕动泵
    蠕动泵是一种广泛应用于各行各业的精密液体输送设备,其通过滚轮挤压柔性管道,实现无接触、无污染的液体输送。这种设计使蠕动泵特别适合处理要求严格卫生条件的液体,以及对剪切力敏感的样品。由于其操作简便、易于维护和高精度输送能力,蠕动泵在实验室研究、医药生产、食品加工和化工等领域得到了广泛应用。应用领域实验室研究:在生物实验和化学分析中,蠕动泵常用于无菌环境下的精密液体转移和分注。它能够处理具有腐蚀性或高粘度的液体,确保样品的纯净性和实验结果的准确性。医药生产:医药行业对生产设备的无菌性和精确性要求极高。蠕动泵通过无接触的输送方式,避免了交叉污染,并且能够精确控制药液的分配,满足药品生产的严格标准。食品加工:在食品工业中,蠕动泵用于输送和分注糖浆、乳制品等高粘度液体。其易于清洁和消毒的特点,确保了食品生产过程的卫生安全。化工领域:化工生产涉及多种具有腐蚀性或危险性的液体,蠕动泵的耐化学腐蚀性和高精度输送能力,使其成为化工领域有效的液体输送设备。茂默科学在此推荐WIGGENS Vdose蠕动泵。WIGGENS Vdose蠕动泵详细说明特点与功能图标显示界面:界面简洁明了,方便选择和操作。泵管规格:可配套2、3、6和8mm直径的泵管,壁厚有1.6mm和2.3mm可选。多语言显示功能:支持多种语言显示,适用于国际化使用环境。大屏幕LCD液晶显示屏:配备4英寸大屏幕LCD液晶显示屏,防化学腐蚀和其他光辐射。高精度步进马达:精确分液,分注体积可达0.1ml。可叠加泵头:可叠加多个泵头,以增加分注体积。低机位设计:适合在通风橱或生物安全柜中使用。人性化设计:安装、操作和维护简单,容易校准,减少校准步骤。内存功能:内存9个程序,可以轻松调用。适用样品:适合多种糖浆、粘度较大、有腐蚀性和剪切力敏感的样品的分注。无菌转移液体:无死体积,确保液体无菌转移。分注和恒流模式:内置分注和恒流模式,适合多种液体的分注和排空,程序进样等。符合工业标准:符合UL / CSA / CE / WEEE / RoHS等多个工业标准。远程控制功能:支持远程控制,提高操作便利性。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多蠕动泵相关的产品,Welcome to consult~咨询有惊喜哦!
  • Nature重磅:用透射电子显微镜追踪液体中单个吸附原子!
    表面上的单个原子或离子,影响从成核到电化学反应以及多相催化的多个过程。透射电子显微镜(TEM)是一种主要的方法,可用来可视化的各种衬底上的单个原子。它通常需要高真空条件,但已被开发用于液体和气体环境中的原位成像,其结合的空间和时间分辨率是任何其他方法所无法比拟的,尽管有电子束对样品的影响。当使用商业技术在液体中成像时,包裹样品的窗口和液体中的电子散射,通常将可达到的分辨率限制在几个纳米。另一方面,石墨烯液体电池,实现了液体中金属纳米颗粒的原子分辨率成像。在此,来自英国曼彻斯特大学的Roman Gorbachev&Sarah J. Haigh等研究者展示了一个双石墨烯液体电池,其由中心的二硫化钼单分子层组成,再用六方氮化硼间隔层与两个封闭的石墨烯窗口隔开,这使得在盐溶液中以原子分辨率监测单分子层上铂吸附原子的动力学成为可能。相关论文以题为“Tracking single adatoms in liquid in a Transmission Electron Microscope”于2022年07月27日发表在Nature上。石墨烯,具有极薄、高机械强度、低原子序数、化学惰性、不渗透性和清除侵略性自由基的能力,是原位TEM电池的理想窗口材料。初始的石墨烯液体电池(GLC)设计,依赖于两个石墨烯薄片之间液体囊的随机形成,因此,在长时间的电子暴露下,其产率较低,稳定性较差。更先进的设计,包括了SiNx或六方氮化硼(hBN)的图案间隔层来定义液体袋,从而改善了GLC几何形状和实验条件的控制。在此,研究者开发了一种双石墨烯液体电池(DGLC),用于在透射电镜中研究原子薄膜上单个溶剂化金属原子的运动。这是由于非原位STEM研究表明,液体环境的选择,可以改变金属原子从纳米团簇到单个原子的分布,但原位实验探测这种行为是不可行的,甚至在早期的研究中,单个原子在液体中的成像被证明是难以捉摸的。研究者的重点是MoS2上的Pt,已有的丰富数据使其成为探索原子分辨率液体电池显微镜的局限性和潜力的理想模型系统。DGLC如图1a所示,由两个hBN间隔层组成,每层数十纳米厚,中间夹有二硫化钼(MoS2)单层。两种hBN间隔都包含用电子束光刻和随后的反应离子蚀刻预图纹的空洞。利用堆栈顶部和底部的几层石墨烯(FLG)将液体样品困在空隙中。原子平面的hBN晶体与石墨烯和MoS2形成密封;如果电池局部破裂,这可以防止渗漏,单个细胞之间的液体转移和液体的完全损失。研究表明,通过对70000多个单吸附原子吸附位点的成像,研究者比较了吸附原子在完全水合和真空状态下的位置偏好和动态运动。研究发现,与真空相比,吸附原子在液相中的吸附位分布有所改变,扩散系数也有所提高。这种方法,为单原子精度的化学过程原位液相成像铺平了道路。图1. 双液电池的设计图2. 水溶液环境中单Pt吸附原子在MoS2上的吸附位点图3. 在液槽和真空中的首选吸附位点图4. 使用最近邻链接的单原子跟踪综上所述,尽管强调了理解电子束效应和对复杂水合体系中原子行为进行补充理论研究的重要性,但本文的结果表明了测量固液界面上吸附原子运动的能力。该实验技术广泛适用于不同的材料系统,并提供了一种在不同环境中获得以前无法获得的原子解析、动态、结构信息的途径,适用于物理科学中的许多不同系统。文献信息Clark, N., Kelly, D.J., Zhou, M. et al. Tracking single adatoms in liquid in a Transmission Electron Microscope. Nature (2022). https://doi.org/10.1038/s41586-022-05130-0
  • 肿瘤液体活检市场初成预计中国市场规模200亿
    2月14日,在2016美国科学促进会年会上(AAAS) ,易活生物CEO廖玮、易活生物首席科学家David Wong宣布,借助公司开发的基因测序技术,只需少量体液就能迅速检测出是否患有癌症。  这一方法的原理是,通过一种高灵敏的手段捕获游离于血液或其他体液(如唾液)中的肿瘤碎片,进而检测其是否发生肿瘤突变,以提早发现癌症。  廖玮向21世纪经济报道记者介绍,与传统的肿瘤检测方式相比,这种被称为液态活检方法,只需体外无创抽血即可检测全身肿瘤,从而规避了传统方式需要手术、穿刺取样的局限性。与此同时,液态活检还可缩短检测时间并降低检测成本。  诸多国际医药巨头和风险投资者早已瞄准了这一炙手可热的领域,如强生下属子公司Veridex收购Immunicon的CTC(循环肿瘤细胞)业务、罗氏收购德国肿瘤转化和基因组学公司Signature Diagnostics。  中国液体活检市场亦悄然成型,据21世纪经济报道记者不完全统计,中国目前有47家公司在从事肿瘤液体活检,其中,26家公司选择ctDNA(循环肿瘤DNA)路线,9家公司选择CTC,代表性企业包括华大基因、药明康德、燃石生物、普世华康等。  JP摩根和高盛预测,液体活检在全球及美国的市场潜力将分别达到230亿美元和140亿美元,但这一市场需要5-15年才能完全成熟。国信证券认为,液体活检将早于肿瘤早筛落地,为此,在同时考虑我国肿瘤发病率、液体活检适应症、未来市场渗透率、未来检测单价以及患者年平均检测次数等因素后,预测中国液体活检市场在5-10年内的市场潜力约为200亿元。  但由于液体活检的准确性、价格、消费者接受程度以及国家审批等因素,新兴技术代替传统方法仍需时日。  液体活检迅速崛起  少量体液、迅速检测、价格低廉,易活生物希望借此可以颠覆癌症检测方式。  廖玮告诉21世纪经济报道记者:“目前,检测试剂盒已经开发完成,并通过台湾成功医院60例、四川华西医院50例和北京肿瘤医院150例临床样品的试验,与组织样本的符合率超过95%。”不过,临床实验目前仅针对非小细胞肺癌患者。  价格低廉也是该技术的一项重要突破,廖玮介绍,实现自主生产后,每次检测成本价在100-200元。远低于目前的市场价格。  美国著名的肿瘤中心纪念斯隆-凯特林癌症中心主任医师兼首席医疗官约瑟巴塞戈称:“液体活检可能永久改变活检方式,包括对治疗方案的响应、抗药性的出现,将来甚至还能用于早期诊断。”  随着基因等新技术的成熟,以及检测成本的迅速下降,以癌症检测、治疗为突破口的精准医疗日渐火热。  2015年1月20日,美国总统奥巴马在国情咨文演讲中宣布了精准医疗计划,并从2016年财政预算中为精准医疗项目划拨2.15亿美元经费,其中,肿瘤治疗被选择成为精准医疗计划的短期目标。而在2015年2月8日白宫官网发布的相关细节中,肿瘤治疗计划的四大举措之一就是:美国将使用“液态活检”血浆开发新方法来评估治疗反应以及抵抗可能的耐药性。  不久前,中国科学院也启动“中国人群精准医学研究计划”,研究包括全基因组序列分析、建立基因组健康档案及针对重要慢性病的遗传信号开展预警研究等。业内人士认为,在基因组学及生物大分子技术日渐成熟的助推下,“精准医学”模式将使肿瘤治疗进入一个新时代。  一位多年从事基因研究的业内人士向21世纪经济报道记者指出,液体活检通过检测血液或其他体液中的肿瘤碎片(如CTC和ctDNA),对患者肿瘤进行诊断与监测,其优势在于非介入性、可重复性地抽取肿瘤样本,从而可以建立基因表达谱,靶向突变用药,快速判断治疗效果,并可随肿瘤的发展进而调整治疗方案。  据了解,液体活检CTC技术相对成熟。一代CTC技术在2004年获得FDA批准用于临床,是行业的金标准。为了解决一代CTC技术灵敏度不高且无法对肿瘤细胞进行基因测序分析等缺点,二代CTC及ctDNA技术在海外蓬勃发展,目前二代液体活检技术还有待成熟且没有统一的标准。  廖玮指出,相比于传统的活检方法,液体活检具有副作用小、操作简单、成本更低的优势。  以成本为例,根据美国Medicare对肺癌穿刺活检开支的分析,普通穿刺开支为8869美元,约20%的穿刺活检会导致并发症,穿刺活检与并发症治疗的开支将达到37745美元。对医疗保险来说,平均每次穿刺活检的成本为14634美元。但一代CTC技术Medicare报销额度为369美元。二代CTC与ctDNA技术开支约在800-1000美元。由于是抽血检测,一般不会产生并发症。从成本的角度,医疗保险有较大的动力推动液体活检的CTC与ctDNA技术对穿刺活检技术的替代。  200亿市场潜力  JP摩根将液体活检分为早期筛查、诊断分型、药物伴随检测、患者病情检测4个细分领域,预计全球市场潜力为230亿美元 高盛也将液体活检应用分为4个领域,预计其在美国的市场潜力可达到140亿美元,并预测该市场需要5-15年才能完全成熟。  国信证券测算,中国液体活检的市场潜力约为200亿元。其测算依据考量目标患者、渗透率、终端价格和年检测次数。  “由于我国地域广阔,区域间的医疗水平差异很大,而且医保经费紧张,短期内是不太可能覆盖这种新的检测技术,保守预计该技术在未来5-10年的市场渗透率为50%。”  据了解,目前一代CTC系统CellSearch在医院终端每个CTC检测价格为4000-5000元。随着未来越来越多二代CTC与ctDNA技术的介入,检测的终端价格有望降为2000元。  根据国家癌症中心发布的数据,我国5年内诊断为癌症且仍存活的病例数约为749万。液体活检临床实验的适应症广泛,如乳腺癌、结直肠癌、肺癌、胃癌、食管癌等常见肿瘤均可用液体活检技术进行诊断与监测。在我国存量肿瘤患者中,适合使用液体活检技术的肿瘤病人至少为542万人,占比达到72%。国信证券预计液体活检的目标患者人数为500万人。  “假设每个患者一年平均进行4次检测。因此,预计我国液态活检的市场容量为500万(目标患者)×50%(渗透率)×2000(终端价格)×4(年检测次数)=200亿元。”国信证券研报指出。  中国液体活检市场也在近两三年内悄然成型。  据21世纪经济报道记者不完全统计(部分企业保密无法统计),中国目前约有47家公司从事肿瘤液体活检,其中,26家公司选择ctDNA(循环肿瘤DNA)路线,9家公司选择CTC,代表性企业包括华大基因、药明康德、燃石生物、普世华康等。  以普世华康为例,其称为premid的技术,通过检测基因突变点位和游离于血液中的肿瘤DNA碎片(ctDNA)实现诊断。普世华康总裁王弢告诉21世纪经济报道记者:“检测可以帮助消费者提前3-5年发现癌症的踪迹。”  除了超早期预警癌症外,Premid也可评估治疗效果及复发监控,据悉,普世华康监控癌症复发的产品共有三个,分别为突变复查及定量分析、肿瘤复发监控(首次、复查)。普世华康提供给记者的产品目录显示,目前总计可检测18种常见肿瘤、49个肿瘤基因和298个突变点位,以及肿瘤的复后监控。  仍需市场考验  由于液体活检的准确性、价格、消费者接受程度以及国家审批等因素,新兴技术代替传统方法仍需时日。  从技术角度看与传统的检测方法相比,液体活检的难度更高。如肿瘤碎片在患者的血液中的含量极低,大约每100万个血细胞(约1ml血液)中才混杂着1个肿瘤细胞。因此从血液中捕获CTCs的技术难度极高。  此外,出于中国人群数据的缺乏,检测的准确性一直难尽人意。以某公司检测为例,21世纪经济报道记者了解,其中一例检测的结果显示,某消费者被提示患膀胱癌的概率为3%,这一概率的指导意义并不明显。  价格也是消费者暂时顾虑的因素之一,21世纪经济报道记者统计,目前液体活检的价格普遍在数千元至数万元之间。  而政府对此类新兴技术的审批趋于严格,至今没有癌症早筛产品获得国家食药监局审批通过,所有市场上的检测产品在本质上仅有辅助、参考价值。基于上述原因,癌症基因检测市场尚未进入“正轨”。  不过,尽管处于市场初期阶段,易活生物仍然计划开展大规模生产销售。  廖玮介绍, 肺癌基因突变检测试剂盒由试剂和耗材组成。现在已经可以小批量生产试剂盒,在GMP厂房建设好之后,即可进行大规模量产,年产量最高可到五百万份。  “目前计划股权融资五千万元人民币,2016年该产品将进入临床申报阶段,并可望获批上市,同时产品可售于科研机构用于研究。预计到2016年夏天,工厂就能大批量生产出颠覆性的肿瘤基因检测设备和肺癌检测试剂。2016年6月,我们计划在美国芝加哥ASCO会议上发布第一代官方产品并正式进军市场,并计划于2017年将产品推广到全球其他地区。”廖玮向21世纪经济报道记者表示。
  • 液体活检的监管政策、商业模式和产业链
    p style=" text-align: left " span style=" color: rgb(0, 112, 192) " strong 液体活检的监管政策——“双通道”制 /strong /span /p p style=" text-indent: 2em " 从目前中国和美国液体活检的产品来看,液体活检总体来说还处在萌芽期,产品较少,市场尚未完全打开。主要的新产品都是在近年才公布,可以说未来还有很大的发展空间。那些已有获批产品的公司将有机会抢先占有市场,有利于未来的市场竞争。FDA批准有助于产品的市场推广,但并不是产品进入市场的唯一方式,也不是判断产品优劣的唯一标准。目前中国和美国的检测市场实行“双通道”的准入形式,除了FDA批准的产品,获得CLIA(国内是CFDA和卫计委)的产品一样可以进入市场。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/76ae12ad-07ef-4f6c-a658-4d672939a1f8.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: left " span style=" color: rgb(165, 165, 165) font-size: 14px " 部分用于液体活检的产品 /span /p p style=" text-align: left " span style=" color: rgb(165, 165, 165) font-size: 14px " 资料来源:宽华集团投研部整理 /span /p p style=" text-indent: 2em " 美国液体活检服务主要有两种提供形式:(1)经FDA审批的相关仪器和配套试剂盒;(2)经医疗保险和医疗补助服务中心(CMS)认证的第三方实验室。同时,相关产品服务的宣传由联邦贸易委员会(FTC)监管,在广告中不得存在错误和虚假宣传的情况。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/c7ef1740-c3ad-4653-bbe9-9253d74cbb52.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 美国的液体活检监管体系 /span /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 资料来源:银河证券 /span /p p style=" text-indent: 2em " FDA以《医疗器械修正案》为依据,监管对象为临床级产品,对液体活检相关仪器和配套试剂耗材进行审批。经过批准的仪器和试剂可以作为临床级产品商业化。CMS依据《临床实验室改进法案修正案》(CLIA),针对第三方实验室的自建项目,监管对象为实验室消费级和科研级应用,包括实验室人员知识水平、实验室质量控制、技术检查和能力验证等。第三方医学实验室是美国医疗体系中的重要组成部分,平均每年有近一半的临床样本在其中完成。目前美国有近80%的实验室通过了CLIA认证。获得CLIA认证说明该实验室实验操作的准确性、时效性和可靠性都已得到保证,临床第三方实验室即可根据市场需求开发实验室自建项目(LDT)。 /p p style=" text-indent: 2em " 我国对液体活检的监管认证体系与美国相似,CFDA的职能与FDA类似,依照《医疗器械监督管理条例》对仪器、试剂等进行监管。卫计委与CMS的职能相似,负责发放肿瘤诊断与治疗相关技术的临床试点单位牌照。但2015年7月2日,根据《国务院关于取消非行政许可审批事项的决定》,卫计委决定取消第三类医疗技术临床应用准入审批,之前发布的数十家肿瘤基因检测试点单位将不再独享特权。卫计委简政放权后,对液体活检等第三类医疗技术临床应用的监管由事前准入变为事后监管,责任主体改为由医疗机构对医疗技术临床应用进行管理。与美国监管体系相比,中国的监管体系不仅放宽了对临床试点单位的监管,并且缺少类似美国FTC的职能单位,因此国内产品存在虚假宣传的隐患。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/96eb0863-2717-415b-9406-86bd66316759.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 中国的液体活检监管体系 br/ /span /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 资料来源:银河证券 /span /p p span style=" color: rgb(0, 112, 192) " strong 液体活检的商业模式——目前多通过第三方医学实验室提供服务 /strong /span /p p style=" text-indent: 2em " 液体活检公司目前的商业模式主要是以第三方独立医学实验室向肿瘤患者提供个体化医疗相关检测技术服务,随着自主研发的体外诊断试剂陆续获得CFDA认证,公司商业模式将逐步扩展为个体化医疗检测技术服务和提供检测试剂盒产品相结合的商业模式。 /p p style=" text-indent: 2em " 产品和服务的商业化应用主要包括以下几个方面:独立或与第三方体检机构合作,面向健康体检人群,提供肿瘤早期筛查体检套餐检测服务;将医院作为客户和合作伙伴,为医院提供数据分析服务,或协助医院为病人提供癌症伴随诊疗及治疗疗效监测服务;面向科研机构或公司,提供标记物检测、基因测序、数据分析等服务。盈利手段主要以检测试剂盒的销售、提供检测服务和数据分析服务为主。成本主要在于商业推广、试剂盒的生产运输储存、服务中的各种试剂和耗材,仪器折旧以及人工成本。定价通常根据政策法规、市场情况、经营成本等因素综合考虑。 /p p style=" text-indent: 2em " 不同的商业模式,对企业的融资和营收有着不同的影响。液体活检公司目前主要集中于研发CTC和ctDNA,ctDNA公司在融资和营收方面的表现都要优于CTC公司。ctDNA厂商自2010年以来已经吸引了超过37亿美元投资,而CTC厂商则仅融资2.8亿美元。在营收方面,ctDNA厂商也同样占据了显著的优势。这主要源自商业模式的差异:大多数ctDNA厂商在它们自己的CLIA实验室,利用自己开发的方法进行测试,无需FDA的核准。此外,ctDNA的另一个优势是DNA相比活体细胞更容易存储和运输。相比之下,大部分CTC厂商则开发直接销售给终端用户的仪器设备及耗材。CTC分离应用的大部分仪器仍仅用于研究阶段,因为FDA在核准它们的临床应用前,仍需要更多的证据从患者的存活率来证明CTC分析的优势。 /p p span style=" color: rgb(0, 112, 192) " strong 液体活检产业链——上下游区分不明显 /strong /span /p p style=" text-indent: 2em " 液体活检全产业链包括上游的仪器、检测试剂盒等耗材供应商和中下游的液体活检服务商。目前产业链上下游区分不明显,上游的制造商往往直接将检测技术和服务提供给医院、科研机构和患者个人,用于早期筛查、指导治疗方案、治疗监测或者复发监控。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/e639f566-a9fc-4fa0-9604-5081238327a9.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 液体活检全产业链 br/ /span /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 资料来源:宽华集团投研部整理 /span /p p style=" text-indent: 2em " 产业链上游的仪器主要包括CTC分析仪、数字PCR仪、二代测序仪、外泌体捕获和分析仪等,试剂盒主要为CTC或ctDNA检测试剂盒,关键原材料是抗体和芯片。中下游的液体活检服务商主要提供ctDNA检测,较少公司提供CTC检测,很少公司提供外泌体检测。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/6c097ad3-27f9-4505-af2c-abf3367e8527.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 2017年液体活检市场的生态系统 /span /p p span style=" color: rgb(165, 165, 165) font-size: 14px " 资料来源:Yole development /span /p p style=" text-indent: 2em " 捕获技术和癌症基因组的认知能力将联合推动液体活检行业的发展,影响对癌症基因组认知能力的因素包括癌症基因组样本量、测序技术、以及基因组数据解读能力。ctDNA的检测方法主要有两种:第一种是以聚合酶链式反应(PCR)为核心技术的检测方法,大致原理为针对肿瘤基因突变位点设计引物,该引物不能与正常基因互补配对,从而在PCR过程中无法扩增正常基因;第二种是以高通量测序为核心技术的检测方法,对获取的血液样本进行高通量全基因组测序,从而获取血液中全部游离DNA的序列信息。然而,现有的ctDNA检测方法均严重依赖肿瘤基因组学知识,基于PCR的方法需要更加完备的肿瘤基因组学知识来设计癌症基因特异性引物,基于全基因组测序的方法更是需要充足的肿瘤基因组学知识储备以解读测序得到的信息。在肿瘤早期筛查市场,由于肿瘤早期ctDNA含量少,需要先富集目的序列再进行深度测序。对DNA进行深度测序并不存在技术难度,市面上有成熟的仪器和方法进行检测。通过ctDNA进行的癌症早期筛查瓶颈主要在于高效的靶向扩增和数据分析,其中最关键的是目的基因的靶向富集技术。血液中的CTC含量稀少,1ml血液中含有数十亿个细胞,其中仅包含1个CTC。因此,CTC检测技术中,细胞的捕获是当前面临的最大的技术瓶颈。捕获的活体CTC,可通过全基因组测序进一步丰富对癌症基因组的认知,以及通过药物敏感性分析、蛋白表达、免疫组化试验等分析加强对肿瘤细胞在蛋白组水平和代谢组水平的认知,对癌症分型、个性化用药、治疗监测以及耐药性分析具有重要的指导意义。 /p p span style=" color: rgb(0, 112, 192) " strong 小结 /strong /span /p p style=" text-indent: 2em " 目前中国和美国的液体活检市场实行“双通道”的准入形式,除了FDA批准的产品,获得CLIA(国内是CFDA和卫计委)的产品一样可以进入市场。美国和中国大部分液体活检公司都是走CLIA或卫计委认证,而非FDA或CFDA认证。液体活检“双通道”的准入形式一方面决定公司目前的商业模式主要是以第三方独立医学实验室向肿瘤患者提供个体化医疗相关检测技术服务;另一方面决定产业链上下游区分不明显,上游的制造商往往直接将检测技术和服务提供给医院、科研机构和患者个人;此外,中下游液体活检服务商主要提供ctDNA检测,较少公司提供CTC检测,且ctDNA公司在融资和营收方面的表现都要优于CTC公司。 /p
  • 告别黑白灰 电子显微镜下也有斑斓色彩
    p   电子显微镜拓宽了人类视野,但黑白配的视觉效果,让人难觅超微组织或个体的踪迹。前段时间,一项最新的研究成果给细胞穿上了五彩“外衣”,使显微镜下的微观世界更为生动绚丽。常规的电子显微镜实现了样品的黑白色系成像,真菌、病毒等微小组织和个体在显微镜下无处遁形,但是黑白色系总是笼罩着一种朦胧美,对找准镜头下的 “小精灵”带来了一定难度。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/f954f524-d6c6-4f17-9be2-623febb13281.jpg" / p style=" text-align: center " 被着色的微观结构,图片来源:ADAMS ET AL./CELL CHEMICAL BIOLOGY 2016 /p p   strong  细胞穿上“私人定制”镧系外衣 /strong /p p   为了更准确地对微观世界的物质进行区分,加州大学圣地亚哥分校生物系统研究中心的科研人员利用镧系金属为细胞上色,通过稀有金属的特有属性,使细胞样品在电子显微镜下显示出红、黄、绿三种颜色。 /p p   不同颜色分别代表了不同的微观对象,在不降低图片分辨率的情况下,增加了超微物体的辨识度。 /p p   这个研究成果发表于前段时间出版的《Cell Chemical Biology》上。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/7d599e6a-3231-4cfa-bbab-356c132e02ec.jpg" /    p /p p style=" text-align: center " 着色技术下的“楚河汉界”, 图片来源:ADAMS ET AL./CELL CHEMICAL BIOLOGY 2016 /p p    strong 微观世界的交通信号灯 /strong /p p   这个让电子显微镜呈现新色彩的技术是怎样实现的呢? /p p   与普通的电子显微镜成像一样,研究人员首先利用重金属(如铅)预处理样品,形成样品的基本层(灰度层) 之后选取不同种类的镧系金属处理样品,按顺序为其“着色”。 /p p   之所以选取镧系金属,是因为相较于其他金属而言,镧系金属更“龟毛”、更“挑剔”,并且只钟情于特定的分子类型。 /p p   不同的稀土金属种类会锁定不同的目标物,电子束与附着在超微物体上的金属相互作用后,会呈现出不同的颜色。 /p p   这一技术的难点就在于如何能在不交叉感染的前提下,实现物质的分层着色。 /p p   研究者已成功在细胞上完成了红、黄、绿三种颜色的着色。在今后的研究中,他们希望能实现更多颜色的完美着色。 /p p style=" text-align: center " img width=" 600" height=" 321" title=" 3.jpg" style=" width: 600px height: 321px " src=" http://img1.17img.cn/17img/images/201704/insimg/9da0c72d-ba75-4bca-9a6a-5866adee60cf.jpg" border=" 0" vspace=" 0" hspace=" 0" /   p /p p style=" text-align: center " 研究人员利用着色技术来展示两个星状胶质脑细胞可以连接到同一个神经突触上,图片来源:S.R. ADAMS ET AL/CELL CHEMICAL BIOLOGY 2016 /p p   在科学家门的努力下,技术总在不断地更新进步,让我们对这个世界的认知也越来越丰富。电子显微镜能帮助我们观察微小的病毒、细胞超微结构。 /p p   在以往,电子显微镜下所能看到的就是一个黑白灰的世界,但有了这项技术,科学家们就可以用它拍细胞的“彩色照”啦,它也会帮助科学家们,揭开微观世界更多的生命奥秘哦。 /p /p /p /p
  • 珀金埃尔默发布LPC 500 液体颗粒计数器新品
    简介LPC 500™ 液体颗粒计数器是一个单颗粒光学粒度分析(SPOS)系统,旨在以高分辨率对单个颗粒进行计数和粒度分析。SPOS 技术被设计用于检测通过一个非常薄的“光学传感区”的单个颗粒。用在油样检测时,无论是高粘度还是低粘度样品,通常都只需要消耗3 到4 mL10 倍稀释后的样品,即可得到可重复的结果,同时降低清洗溶剂消耗、减少溶剂浪费。LPC 500 硬件LPC 500 系统由三部分组成:光学传感器、多通道脉冲分析仪(MPA)和软件控制器。在分析过程中,液体通过光学传感器进行检测,产生脉冲电压,并由MPA 转化为粒度分布(PSD)。在LPC 500 软件中实时显示高分辨率的PSD:每个通道(8 到512)的绝对计数与直径,在光学传感器覆盖的总尺寸范围内(0.5 到400 微米)以对数间隔排列。其他衍生分布(微分和累积分布)?基于数量、面积和体积加权?根据测量的颗粒数分布计算。LPC 500 光学传感器LPC 500 光学传感器使用单颗粒光学粒度分析(SPOS)技术。这项技术被用于在单个颗粒通过一个非常薄的“光学传感区”时检测特定尺寸范围内的单个颗粒。传统上使用两种物理方法来实施SPOS 技术?消光和光散射:• 消光(LE)法:这种方法测量携带悬浮在流体中的颗粒的流体通道传输的光强度的降低,这是由单个颗粒在光束中瞬间通过引起的。• 光散射(LS)法:这种方法是对LE 法的补充。这种方法测量由穿过光学传感区的颗粒散射引起的光强度的增加。组合法?消光+ 光散射:这是一个新开发的混合设计(美国专利US5835211A),将LE 法的优势(粒径范围大,对颗粒组成相对不敏感)与LS 法的优势(高敏感度?更低直径下限)结合在一起。这是通过结合LE 和LS 电子信号响应实现的,从而在一个颗粒通过传感器的光学传感区时产生一个单一的“求和”信号脉冲。LPC 500 多通道脉冲分析仪MPA 用来检测光学传感器产生的每个脉冲,测量它的高度(不论是在消光模式下还是在求和模式下),通过传感器校准曲线确定与该值相关的颗粒直径。然后将一个额外的“计数”添加到包含这个特定颗粒尺寸的直径“通道”中。处理电子设备以高速率执行此任务,允许颗粒计数/ 粒度分析速率超过10,000 个/ 秒。可用配置LPC 500 提供了两种配置:将LPC 500 与Avio® 500 电感耦合等离子体发射光谱仪油品系统相结合,用于组合磨损金属和颗粒计数的联用配置以及仅用于颗粒计数的LPC 500 独立配置。联用配置LPC 500 液体颗粒计数器与Avio 500 电感耦合等离子体发射光谱仪油品系统相结合能够对同一次进样的稀释后样品进行磨损金属分析以及颗粒计数和粒度分析。对于无需颗粒计数的金属分析,这项技术提供平均45 秒的样品分析时间,使用OilPrep™ 油稀释装置制备样品只需稀释少于1 毫升的样品。LCP 500 系统的所有特点和数据输出都集成到了Syngistix™ ICP 软件中。方法中可以启用或禁用颗粒计数,可以选择各种报告格式和颗粒计数尺寸,增加了测试的灵活性。LPC 500 计数器独立配置LPC 500 也可以作为一个独立的颗粒计数器,它的样品需求量更少、样品制备更简单,单个样品分析时长仅95 秒。与联用配置不同的是,独立LPC 500 由一个单独的软件包控制,允许对颗粒计数参数进行更多的自定义。最后,独立LPC500 计数器的占地面积是用于在用油品分析的所有自动独立颗粒计数器中最小的。总结LPC 500 液体颗粒计数器单个样品的分析时长仅约45 秒,稀释样品制备使用的样品少于1 毫升。此外,凭借紧凑型设计,它还能与Avio 500 电感耦合等离子体发射光谱仪油品系统轻松结合,节约优化宝贵的实验室空间。创新点:LPC 500™ 与ICP-OES联用将突破性的提供一次运行中同时完成计数和元素分析的解决方案,将原本两次检测才能完成的工作一次性完成,颗粒物计数与元素分析均在ICP软件控制下自动完成,整个过程仅需45秒。每次分析使用少于1 毫升的润滑油样品。同时也是行业中最小的自动粒子计数器。这套LPC 500™ 与ICP-OES联用方案已在申请专利,是珀金埃尔默研发的独家润滑油行业解决方案,有效提升工作效率,节省运营成本。 LPC 500 液体颗粒计数器
  • 赛默飞与克睿基因携手共建基因编辑研发中心并合作开发液体活检市场
    2018年2月1日,赛默飞世尔科技(中国)有限公司实验室产品和服务与苏州克睿基因生物科技有限公司,双方达成战略合作协议,携手共建基因编辑研发中心并合作开发液体活检市场。双方的战略合作旨在有机结合各自的技术优势和市场资源,共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化。CRISPR基因编辑技术能够在细胞中精准识别特定DNA序列并制造双链断裂,从而实现定向基因改造,特异性调控细胞功能。相比上一代的TALEN及锌指核酸酶等技术,CRISPR系统具有高效、快速、简单易用等特点。因此自2013年张锋教授与丛乐博士成功利用CRISPR/Cas9在哺乳动物细胞中实现基因组编辑,便立即获得了学术界、工业界及资本界的高度关注。在2015年由国际顶尖学术杂志《Science》评选出的“年度十大科技突破”中,CRISPR基因编辑技术位居榜首。随着对CRISPR系统的工程改造以及基于应用场景的持续优化,CRISPR基因编辑技术已经广泛应用于医疗、诊断、新药开发、畜牧、育种、科研等多个领域,市场潜力巨大。克睿基因首席运营官李秋实博士表示:"在十亿级的基因组中精准识别二十个碱基序列的能力以及高效的基因定向改造能力,赋予了CRISPR系统无限的应用潜力。通过对CRISPR系统及其应用方法的优化,克睿基因建立了国际顶尖的医疗级CRISPR基因编辑技术平台以及多条独特的医疗及诊断产品管线。与赛默飞世尔一流的实验室整体解决方案以及丰富的液体活检市场资源的结合,将进一步提高CRISPR基因编辑技术原创性应用的开发及商业化速度。"赛默飞实验室产品和服务事业部总经理谢英女士评价说:"克睿基因是国内外最有前途的基因编辑公司并将此技术造福于人类,赛默飞非常愿意全力支持高科技公司的发展。"让我们拭目以待,赛默飞世尔与克睿基因的强强联手,定能在共同推动CRISPR基因编辑技术在医疗、诊断等领域的产业化及商业化等方面取得卓越成绩。
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • analytica China之液体处理工作站:正在打开的市场
    p span style=" font-family: 楷体,楷体_GB2312, SimKai " & nbsp & nbsp & nbsp & nbsp 日前,第八届慕尼黑上海分析生化展暨中国国际分析、生化技术、诊断和实验室技术博览会(analytica China 2016)在上海新国际博览中心正式落下帷幕。展会期间,来自全球25个国家和地区的848家国内外知名企业向24582名专业游客展示了各自的主打产品和解决方案。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   近年来,随着“精准医疗”、“体外诊断”等概念的崛起,生命科学行业蓬勃发展,生命科学相关仪器设备市场也迎来了前所未有的繁荣。与此同时,各大实验室、检测中心对相关仪器设备的效率要求也越来越高,尤其是前处理设备。许多大型、高通量的实验室,如血液筛查实验室、临床诊断实验室、疾病控制实验室、出入境检验检疫实验室和二代测序中心等纷纷用高效率、自动化和智能化的前处理设备替代了原有的手工设备,迎来了实验室自动化的时代。其中,液体处理工作站就是近些年来颇受各大生命科学实验室青睐的高效、自动化前处理设备。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   自动化液体处理工作站因其节省成本、提高通量、提供自动样品追溯功能、避免人为误差等优点被广泛应用于基因组学、蛋白组学、细胞组学、药物筛选、医疗诊断、血型分析、血样处理、法医学鉴定等领域,可实现多种自动化的实验方案,如自动化核酸提取和纯化, PCR反应体系制备,自动化基因克隆系统,基因、蛋白质测序样品处理,生物芯片样品制备及点样,全自动酶免系统,凝胶消化处理,MALDI-TOF样品处理,蛋白质纯化,混和物处理等。据了解,我国自动化液体处理工作站每年的市场容量约为两千多台,单价从5万到100万元以上都有,而且,随着二代测序、液体活检等技术的普及与发展,市场容量还将继续扩大。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   在本届展会上,其中的一大亮点是各大厂商展示的各类自动化液体处理工作站。当前,自动化液体处理设备的进口生产商主要有帝肯、哈美顿、艾本德、普兰德、耶拿、贝克曼库尔特、伯腾、梅特勒-托利多、赛默飞、安捷伦、珀金埃尔默等,国内生产商有奥美泰克、博奥生物、永创、桑翌、同信天博等。据不完全统计,本届展会上展出液体处理工作站的厂商约15家,其中大多数为进口厂商,20余款液体处理工作站在展位上与到场用户见面。 /span /p p   下面请跟随仪器信息网小编的镜头一起来回顾本届展会上令人印象深刻的液体处理工作站吧。 /p p style=" text-align: center " img width=" 500" height=" 331" title=" pulande.jpg" style=" width: 500px height: 331px " src=" http://img1.17img.cn/17img/images/201610/insimg/b6b10c30-c2b8-4a06-8420-22fc556bf19b.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 普兰德(Brand) LHS-移液工作站 /p p   拥有45年手动移液领域经验的普兰德在本届展会上推出了新产品移液工作站(LHS),完善了普兰德液体处理的生产线。 /p p   这款移液系统(LHS)与实验室广泛使用的活塞式移液器一样运用空气活塞原理,适用于中等样品通量。从功能上看,它不但可以完成反应体系的构建,如PCR、Real-TimePCR、ELISA等实验,还可以进行连续稀释、复制微孔板等应用。相对于市面上已有的移液工作站,这款产品体积小巧,可以放在通风橱或安全柜里,但通量很大,含有7个活动的工作位,可以根据实验需要进行设置。此外,快速与灵活的移动轴可以确保在迅速、准确移液的同时减少移动中由于液体滴漏造成的污染风险,使用支架使板子/管子处于同一高度,减少无谓的垂直移动,节省了移液的时间,保证系统快速、安静并且可靠地执行日常移液任务。 /p p style=" text-align: center " img title=" RUINING.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/df363953-1c41-474f-be01-f9113e9f15e5.jpg" / /p p style=" text-align: center " 梅特勒-托利多 BenchSmart 96半自动移液工作站 /p p   梅特勒-托利多在展会上新发布了这款BenchSmart 96半自动移液工作站,完善了旗下品牌瑞宁的移液产品线。 /p p   BenchSmart 96是一款带有三个可互换移液端的半自动96/384孔移液器,集自动移液的精准可靠与手动移液的灵活便捷于一体,量程在0.5μL与1000μL之间。所有移液端均采用LTS专利密封技术,确保96通道间的一致性。配套的LTS吸头,每个批次都附带检测报告,确保移液过程中无RNA酶、DNA酶、ATP和热源等生物性污染。此外,Bench Smart 96超大的平板式触摸操作屏和配合直观的图形互动界面,使实验室的任何人都可以控制操作。人性化的4位操作平台设计,降低或消除了频繁更换样品板和储液槽的必要,同时降低由频繁操作带来的出错风险。 /p p style=" text-align: center " img title=" eppendorf .jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/fe5e13c4-1727-4577-8fc0-18607d74f809.jpg" / /p p style=" text-align: center " 艾本德(Eppendorf)epMotion5075m全自动核酸纯化工作站 /p p   艾本德epMotion5075m工作站灵活性较高,拥有15个工作板位,可通过组合不同的工具与配件实现多种功能,实现实验室各种更高通量应用的需要,如二代测序样品处理、定量PCR/PCR体系构建、磁珠法核酸纯化实验、细胞实验或其他常规移液任务等。Eppendorf 3D-MagSep技术,使其在同一位置上可以完成磁力分离、混匀和温控功能 专用的Eppendorf MagSep 系列磁珠式核酸纯化试剂盒,用于每轮1 – 24 个样本的核酸提取。整个过程全部由软件进行控制,在运行过程中设备在不同规格的分液工具及机械手间自动切换,无需人工干预。 /p p   此外,该系统具备专利红外共聚焦探测器,可以自动检测工作板位上吸头数量、耗材类型及试剂体积,自动确认实验工作是否完毕。系统还可选配CleanCap 洁净装置,通过紫外灯灭菌及HEPA过滤装置用于消除污染和洁净空气,适用于危险样品或易污染样品。 /p p style=" text-align: center " img title=" 微浪生物.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/7f86e1c2-eadc-4b92-893c-c1e1d65eb2b1.jpg" / /p p style=" text-align: center " 微浪生物ReadyGo全自动移液工作站 /p p   广州微浪生物在本次展会上展出了一款与众不同的新产品ReadyGo全自动移液工作站。不同于经典的三轴移液工作站,这台产品通过六维机械臂实现了真正的立体 蜂巢的外形设计既有利于实现与其他仪器的功能整合,也使可用空间大幅增加,实现高通量。该系统软件的用户界面较为友好,实时智能的视觉反馈设计保障了自动化流程的准确顺畅,3D模拟运行为新实验的开发也提供了巨大的便利,允许在不使用任何试剂和耗材的情况下测试新的实验流程。 /p p style=" text-align: center " img title=" gilson.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/9a23986c-36f0-498a-9579-6eac0eb8d892.jpg" / /p p style=" text-align: center " 吉尔森(Gilson)Pipetmax全自动移液工作站 /p p   吉尔森Pipetmax全自动移液工作站操作简单、体积小巧,尺寸和价格都可以为一般实验室所接受,核心部件Pipetman移液器保证了实验结果的精确性和准确性。该工作站拥有9个标准微孔板位(SBS) 8通道移液头可根据运行需求自动装配1-8个吸嘴,无需在运行中更换移液头 图形化软件助手可快速建立qPCR及样品归一的方法,无需编程及可完成方法优化。 /p p style=" text-align: center " img title=" TACAN.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/2dad8351-2b61-4359-8e7c-8f66abfa74c2.jpg" / /p p style=" text-align: center " 帝肯(TECAN)FreedomEvo75全自动液体处理工作站 /p p   帝肯Freedom EVO 75是一款针对高等院校、生物技术研究和分析机构的小型生命科学实验室而设计的紧凑型全自动化液体处理工作站,可根据需要自由配置,并可应用于DNA提取、PCR反应体系的构建、样本稀释、浓度均一化处理,以及应用开发等用途。该工作站可在平台内部整合3个独立可旋转式机械臂的自动化产品,提供台面内试管、微孔板、试剂全自动条码扫描功能,拥有加样针低位脱排技术,避免气溶胶污染,并可通过取针错误自恢复、双重液面探测、实时移液监测PMP等来全方位地保证移液质量。 /p p style=" text-align: center " img title=" HAMILTON.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/9d0339b5-34bc-46c8-b765-a5fa26b63d9b.jpg" / /p p style=" text-align: center " 哈美顿(HAMILTON)Microlab自动化液体处理工作站 /p p   哈美顿Microlab是一款灵活、快速和紧凑型的自动化工作站,可以根据用户的实际需要进行仪器的置,并可以与实验流程中的下游分析和检测设备进行整合,以实现不同的实验方案。该系统多通道的独立动态定位技术,使每个移液通道都可以在Y轴和Z轴方向上独立移动,并利用自身的高精度马达来到达操作台的任意位置 可监控的空气置换技术,在实现吸放液体的同时对错误进行报警和纠正,监控系统还可以通过跟踪验证样品吸放液过程中压强的变化曲线,确保样品液体吸放的准确无误。此外,该系统独创的移液技术,如通道独立非对称定位技术、精确的吸头嵌合技术、电容感应和压力感应的双重液面探测技术多重保证运行过程中的定位精度、移液精确性和灵活性,确保自动化过程安全、移液准确可靠。 br/ /p
  • 原位液体环境透射电镜技术初相遇
    p   撰文:王文 /p p   在透射电子显微镜中,搭建nano-lab,原位观察纳米材料在外场,如力、热、光、电、磁等作用下的行为,对于纳米材料研究者已经并不陌生。目前,原位电镜研究进行地如火如荼,并取得了很多令人瞩目的成果。今天,就为大家简单介绍一下原位透射电镜技术中的一种——液体环境透射电镜(Liquid cell TEM)。 /p p    strong 一、为什么要研究液体环境透射电镜技术? /strong /p p   绝大多数的液体,包括水和其他有机溶剂,有着较大的饱和蒸气压,无法在透射电镜的高真空环境中存在,因此在研究液体环境中纳米材料的行为时,需要构建液体存放单元,将液体与电镜中高真空环境隔离开来,这就需要利用Liquid cell TEM。Liquid cell TEM实际上就是通过微纳加工,制作液体存放单元(Liquid cell),然后将它固定在普通样品杆或者专用液体样品杆头部,放入电镜进行观察。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ad89408b-a05e-4162-a393-3ace84a9b2e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   strong  图 1. Liquid Cell 结构示意图 /strong /p p    strong 二、原位液体透射电镜技术发展史 /strong /p p   In-situ Liquid cell TEM的雏形可以追溯到1934年,比利时布鲁塞尔自由大学的Morton,利用两片铝箔包裹样品的方法首次尝试活体生物样品的透射电子显微学研究,但是由于铝片及液体层较厚,其分辨率仅能达到微米量级。 /p p   近年来得益于微纳加工技术以及微流控技术的进步,Liquid cell的制备得到突破性进展。2003年F. M. Ross设计制作的原位电化学Liquid cell芯片,是近代Liquid cell制备的里程碑。其结构如图2所示,底层硅片沉积一层多晶金电极,与顶层硅片之间通过SiO2环垫片胶合形成电化学反应器,顶层硅片有两个容器,分别引出两个电极用来施加电偏压。使用时将液体注入,通过毛细作用流入观察窗口,然后将Liquid cell密封,放入电镜中观察。由于成像电子束需要透过100nm氮化硅薄膜窗口,以及接近1μm液体层空间分辨率仅为5nm。这种在两层硅片之间形成液体腔室,采用氮化硅薄膜做观测窗口的芯片,是后续很多改进Liquid cell的发展原型。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/472b1387-271a-44da-a837-6d00c56951ea.jpg" title=" 2.jpg" / /p p    strong 图2 (A). Liquid cell示意图,(B)二电极Liquid cell光学照片(Rosset al., Nat. Mater., 2003, 532)。 /strong /p p   目前Liquid cell制作方式主要有两种,一类是closed cell,另一类是包含液体流通管道的flow cell(见图3)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f501f1c1-4897-4d45-a12b-57c2381ca6f6.jpg" title=" 3.jpg" / /p p    strong 图 3. A.closed cell 三维结构示意图,B. 沿A图中横线横断面结构图(Zhenget al., Science, 2009, 1309)C. flow cell结构示意图(de JongeN et al., PNAS, 2009, 106). /strong /p p   2009年郑海梅报道了一种超薄氮化硅窗口Liquid cell如图3A& amp B,其氮化硅薄膜厚度仅为25nm,上下层芯片之间用超薄铟垫片键合形成Liquid cell室,观测窗口内液体层厚度约为200nm。在此基础上,2014年Liao等人对超薄氮化硅窗口Liquid cell技术进行改进,将氮化硅薄薄膜度进一步减小为13nm,液体层厚度约为100nm,有效地将空间分辨率提高到原子级。 /p p   2009年Neils de Jonge等人设计了开放Liquid cell,如图3C,在无需冷冻和干燥的条件下,原位观察完整细胞中的单个分子。其液层厚度约为7μm,空间分辨率可以达到4 nm。 /p p   除了采用氮化硅薄膜作为观测窗口,2012年Jong Min Yuk首次提出利用石墨烯薄膜制备Liquid cell,并原位研究了钯纳米晶体的生长过程,如图4。利用石墨烯作为观察窗口材料,可以有效较少甚至忽略电子散射进而实现原子级分辨率。随后,利用石墨烯作为电子束透射窗口,衍生出了多种复杂的石墨烯Liquid cell结构。特别的,2014年JongMin Yuk利用Liquid cell观察了硅纳米颗粒表面各向异性锂化过程,使得利用石墨烯Liquid cell进行电化学研究成为可能。但由于石墨烯薄膜很薄,很难放置常规的电化学电极,石墨烯Liquid cell用来研究电化学过程仍然受到很大的限制。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/d7943de3-4150-46a7-b462-f5f785b7233b.jpg" title=" 4.jpg" / /p p style=" text-align: center "    strong 图 4 石墨烯 Liquid cell 示意图(Li et al.,Science 2010,330). /strong /p p   Liquid cell TEM不仅可以用来原位观察液体环境中纳米材料的行为,还可以在Liquid cell芯片和液体杆上集成加热、冷冻元件,用于纳米材料功能性测试,极大地拓宽了透射电镜的研究范围。如Haimei Zheng 课题组Kai-Yang Niu等利用可加热Liquid cell,原位研究了柯肯达尔作用下,氧化铋空心纳米颗粒的形成过程。K.Tai利用冷冻平台,研究了结晶期间冰中的相变,以及结晶前表面与金颗粒的动态相互作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a142ae6e-5b9c-46c5-805d-1c81aab4e20f.jpg" title=" 5.jpg" / /p p    strong 图5. A.Hollownanoparticle growth dynamics via Kirkendall effect (Paul Alivisatoset al., Nano Lett,2013,13). B.The dynamic interactions of Aunanoparticles at the ice crystallization front (Dillon et al.,Microsc. Microanal, 2014, 330) /strong /p p   综上,目前Liquid cell芯片多是基于硅基衬底加工,窗口材料一般采用超薄氮化硅薄膜,Haimei Zheng课题组可以将氮化硅薄膜做到13nm左右,其他课题组以及商业化Liquid cell窗口材料一般做到30nm左右,窗口大小50*50μm。分辨率可以达到原子级,接近电镜固有分辨率。并且可以集成加热和冷冻功能,但对liquid cell稳定性要求较高,并不容易实现。 /p p   strong  三、原位液体透射电镜技术的应用 /strong /p p   利用In-situ Liquid cell TEM可以观察纳米颗粒成核和生长的过程,用实验证明一直存在争议的问题,例如纳米颗粒液相生长过程中主导机制是单体附加,还是颗粒融合。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/deb70f24-dd19-4eba-8290-004651bb1c0e.jpg" title=" 6.jpg" / /p p   strong  图 6. Video images showing simple growth by means of monomer addition (left column) or growth by means of coalescence (right column). (Zheng et al., Science, 2009, 1309) /strong /p p   可以研究异质纳米晶体生长过程 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/d3a4a6f9-e362-45d2-9efc-3eb88e58cc1c.jpg" title=" 7.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图7. Comparison of Pdgrowth on 5 and 15 nm Au seeds. (a, d)Starting dark-field STEM images of a 5 nm(a) and a 15 nm (c) Au nanoparticles in 10 μM aqueous PdCl2 solution (samescale). (b,e) The same two particles after Pd deposition (84 s total beamexposure). (c, f) Schematic illustration of the Pd growth morphology for thetwo sizes of Au seed nanoparticles (E. A. Sutter et al., Nano Lett, 2013, 13) . /strong /p p   可以研究纳米颗粒自组装过程 /p p style=" text-align: center" img style=" width: 450px height: 409px " src=" http://img1.17img.cn/17img/images/201803/insimg/a1977cd7-4f4d-412b-a23d-ae50c19761d1.jpg" title=" 8.jpg" height=" 409" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p    strong 图8.TEM images of NPassembly formed under electron beam irradiation (a,b) and drop casting (c,d) onSiNx TEM grid. The scale bar is 100 nm (Jungwon Park et al., ACS NANO, 2012, 6) . /strong /p p   可以研究锂离子电池锂化过程。Huang 等人在开放 Liquid cell 中原位研究锂离子电池锂化过程中,氧化锌纳米线的膨胀、伸长和螺旋行为。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/965878a3-55a6-46c9-b846-05e5d30fc04a.jpg" title=" 9.jpg" / /p p    strong 图 9. Schematic of the experimental setup(Li et al.,Science 2010,330). /strong /p p   还可以用来观察一些生物样品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a94ef351-8826-4e37-be8b-e3ff343c362c.jpg" title=" 10.jpg" / /p p    strong 图 10. Image of the edge of a fixed COS7 cell after 5-min incubation with EGF-Au(de Jonge N et al., PNAS, 2009, 106). /strong /p p   当然Liquid cell TEM的研究内容不仅局限于这些,感兴趣的可以阅读Hong gang Liao 2016年发表在Annu. Rev. Phys.Chem.的一篇综述文章Liquid Cell Transmission Electron Microscopy。 /p p   看到这里,估计有人会问,在研究过程怎么排除电子束对反应过程的影响呢?电子束的确是让人又爱又恨的存在,既需要利用它来成像,又不希望它与研究材料发生相互作用影响实验结果。不过,别担心,Liquid cell TEM领域大牛Ross已经为你提供了量化电子束影响的理论依据!说到这里,小编不禁要感叹,Ross是一位学术造诣很深又乐于分享的大牛。某次会议有幸向Ross当面请教,她非常nice地鼓励了我蹩脚的英语和并不成熟的想法,并且很耐心地给我讲解,我们刚入门的科研人需要这样优秀的偶像。 /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ef62778c-b47c-42b7-af9f-ca7df8f18d17.jpg" title=" 00.jpg" / /p p   strong  四、国内研究现状 /strong /p p   08年以来国内的透射电镜发展十分迅速,目前国内应该有超过60台带有球差校正的透射电镜,而且这一数字还在迅速增加。其中做Liquid cell TEM相关研究的课题组也有不少,并取得了不少重量级研究成果,鼓掌~~~~目前国内从事Liquid cell TEM研究的课题组主要有:浙江大学张泽院士、厦门大学廖洪刚教授、北京工业大学隋曼龄教授、上海交通大学邬剑波研究员、华东理工大学陈新教授,等。当然,还有弱弱的小编~(如有遗漏,恕小编才疏学浅)。 /p p   那么最后一个问题来了,想做in-situ Liquid cell TEM研究去哪里找芯片呢?目前Liquid cell芯片和液体样品杆已经部分商业化,如Hummingbird 和Protochip等,但其售价比较昂贵,适合土豪课题组。很多课题组仍然在使用自制液体芯片,或与其他国内微纳加工公司合作。 /p p   小编只是抛砖引玉,为大家做一下简单介绍一下,如有兴趣,可以先参阅Frances M. Ross, Honggang Liao, Xin Chen三位的综述文章。没错,其中有两位是中国人,而且目前在国内任职,小编是如此骄傲~~~ /p
  • 液体活检急速升温,检测新秀不可忽视!
    作为体外诊断的一个分支,液体活检是指一种非侵入式的血液测试,能监测肿瘤或转移灶释放到血液的循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA)碎片,是检测肿瘤和癌症、辅助治疗的突破性技术,目前已逐步进入临床,国内最新进展是药监局批复格诺生物的肺癌CTC 试剂盒,带动行业进入应用。  液体活检的优势在于能解决精准医疗的痛点,通过非侵入性取样降低活检危害,而且有效延长患者生存期,具有高性价比。液体活检技术主要包括CTC 和ctDNA,以及外泌体检测。  下面让我们看一看关于液体活检的行业动态及研究进展。  1.液体活检—治愈癌症的可靠保障  近日,哈佛医学院丹娜法伯癌症研究院领导合作研究小组成功证实了一种简单液体活检技术作为临床工具识别特定病人的可行性。根据他们的报告,这种简单液体活检技术可快速且精准地探测导致非小细胞肺癌(NSCLC)的两种关键基因致病突变,进而帮助临床医生为病人制定针对上述两种突变的化疗药单,提高非小细胞肺癌的临床治疗水平。“我们认为血浆基因分型在临床测试中具有不可估量的应用潜力,这种癌症常规基因印记的快速与无创筛查可以避免对传统侵入性的活组织检查的挑战。”文章的第一作者,丹娜法伯/布列根女性医院肺癌专家Geoffrey Oxnard博士说。(原文:Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer)  2.Nature子刊:液体活检技术的新进步  循环肿瘤DNA(ctDNA)的高通量测序有望实现个性化的癌症治疗。不过,血液中的游离DNA(cfDNA)有限,限制了分析灵敏度。为此,斯坦福大学的研究人员近日开发出一种错误校正方法,能够检测到频率低至0.004%的突变等位基因。在3月28日发表的《Nature Biotechnology》上,研究人员介绍了这种称为集成数字错误抑制(IDES)的方法。它是基于斯坦福团队之前开发的一种ctDNA检测技术,名为CAPP-seq,目前已被罗氏收购。(原文:Integrated digital error suppression for improved detection of circulating tumor DNA)  3.Natera发布早期癌症筛查液体活检技术数据  Natera公司3月7日发布了初步研究数据,证明它的液体活检技术可以检测到早期非小细胞肺癌(NSCLC)患者的血液样本中普遍存在的、异质性的肿瘤突变。该公司目前正在英国大型非随机临床试验中测试其技术。Natera公司最初开发这项技术是为了非侵入性产前检测实验的应用,该技术融合了大规模多重PCR-新一代测序(mmPCR-NGS)技术,但公司已经为适应肿瘤检测调整该系统,以作为近期跻身早期癌症检测体系的一部分。  4.液体活检中的外泌体,你知道多少?  外泌体是一种存在于细胞外的多囊泡体,可通过细胞内吞泡膜向内凹陷形成多泡内涵体,内涵体与细胞膜融合后释放其中的小囊泡。外泌体的直径为40-110 nm,包含RNA、蛋白质、microRNA、DNA片段等多种成分,在血液、唾液、尿液、脑脊液和母乳等多种体液中均有分布。外泌体:① 外泌体介导肿瘤细胞的增生和干性形成 ② 外泌体介导肿瘤微环境中血管的形成 ③ 外泌体介导肿瘤细胞的免疫耐受 ④ 外泌体介导肿瘤细胞的化疗抵抗 ⑤ 外泌体组分中的miRNA在肿瘤中有重要应用。  5.Cell:新型血检技术或可扩大液体活检的范围  发表在Cell上的一篇报道中,华盛顿大学的科学家就表示他们开发了一种新方法可以克服当前液体活检技术的局限性,从而就以帮助鉴别出哪些类型的细胞可以产生游离DNA 这种方法可以扩大液体活检的检测范围,其依赖于对个体机体中游离DNA的片段谱系进行分析,同时将这种谱系信息同细胞多种死亡生理条件进行对比。研究者Shendure说道,我们的研究表明,通过观察游离DNA的片段谱或许就可以帮助鉴别出产生游离DNA的特殊组织,而这种方法替代了直接寻找DNA特殊突变的方法。  6.国内肿瘤液体活检公司统计大曝光  2015年,很多人都把这一年看作是测序行业的元年,其实是测序从实验室逐步走向临床的转型之年,在国家卫计委的一系列政策利好的条件下,很多NGS公司真的以火箭般的速度冒出来,大家都还看不明白测序到底该怎么玩的时候,为啥大家伙都磨拳霍霍的!目前我们统计的数据来看:有47家公司在做肿瘤液体活检。如下图:  7.卢煜明:癌症液体活检未来市场400亿美元  未来,癌症检验或许不再需要手术活检或穿刺活检了,一种名为液体活检的新血液检测方法正在改变癌症的诊断和治疗,这项技术,被麻省理工科技杂志评为2015年十大突破之一。开发液体活检技术的香港中文大学教授卢煜明接受《第一财经日报》记者采访时表示,即使判断这个市场未来有400亿美元的潜力也毫不夸张,“人的体内有2.5万个基因,很多癌症都会出现突变,对基因的了解便是这个市场未来的发展潜力”。  8.CFDA批准首个肺癌循环肿瘤细胞检测——靶向PCR CTC检测技术正式应用于临床!  据悉,2016年01月11日,国家食品药品监督管理总局批准了格诺思博生物科技有限公司自主研发的首个肺癌循环肿瘤细胞检测--叶酸受体阳性CTC检测试剂盒。该试剂盒采用了国内原创的靶向PCR CTC检测技术,显着提高了CTC检测的敏感性。CFDA批准的临床用途包括对尚未确诊的肺癌疑似患者进行辅助诊断 监测手术或含铂类化学药物治疗的非小细胞肺癌患者的疾病进程或治疗效果。该产品在CT检查出现肺结节且不确定是否为肺部肿瘤时,采用该检测作为CT检查的一种补充手段,辅助诊疗专家进行判定。(注册证编号:国械注准20163400061)  9.循环DNA也能诊断糖尿病和脑损伤  循环DNA分析已经成为胎儿基因诊断的工具,也被作为癌症诊断的重要手段,目前有学者开始用这种血液分子特征进行更多疾病诊断的策略。耶路撒冷希伯来大学发育生物学家Yuval Dor认为,这种方法被认为是非侵入性细胞死亡分析方法,这是一个非常令人着迷的研究领域,因为潜在的应用前景十分诱人。Dor的小组近期报道了利用这种方法探测死亡细胞来源,这些细胞可以是胰腺癌,可以是一型糖尿病的胰岛素分泌细胞,也可以是多发性硬化的死亡少突胶质细胞和脑损伤的神经组织细胞。另外两个小组也报道了在癌症方面的初步结果。  液体活检固然潜力巨大,但未来要实现爆发,这项技术目前还面临着一些问题,首先是价格。不过,未来要将费用真正降下来,还是需要测序技术的进步。
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 黑白韩春雨:标签化想象早已脱离科研本身
    几个月前,韩春雨论文刚发表的时候,“诺奖级”是形容其研究成果的标准配置,好像不提“诺奖级”就没把韩春雨的名字说全似的 而现在,搜索韩春雨,“诺奖级”的标配仍在,后面却多了“疑造假”三个大字。以前的“诺奖级”和现在的“疑造假”标签联系,顿时产生出不可估量的化学反应。学术上的正常讨论,变为了舆论上的大热点。  从取得“诺奖级成果”的“三无学者”(无海归、无头衔、任职院校非名校)学术男神,到身陷于“疑造假”舆论旋涡中的反转新闻主角,围绕着韩春雨的黑白议论,始终没有脱离标签化的想象,而这种标签化想象早已偏离事实本身并且误导大众。  最初,“三无学者”的标签曾将韩春雨包装成为一个苦命英雄,似乎越“三无”越显得难得和光辉。但那么多中国本土培养的院士专家,不都没有海外背景吗?那么多杰出学者,不都是从没有头衔的“愣头青”成长起来的吗?在科研的道路上,像韩春雨一样做出成果的本土学者多得很。至于说他任职院校并非名校,那有些人一定忘了韩春雨毕业于著名的协和医科大,师从中国科学院院士强勤——要知道绝大多数北大清华的学生,都没有让院士指导自己的机会呢。已经拥有国家自然科学基金和重大课题基金的韩春雨,绝对算得上名校名师出高徒的代表。  本来,现阶段的韩春雨,起点是院士的学生,终点是优秀的研究成果,可一旦贴上草根意味的“三无学者”和不切实际的“诺奖级成果”标签,无形中就将他的起点拉低而将他的终点抬高,如此巨大的“带宽”,远远偏离了事实,除了让人感慨这样的成功可遇而不可求,还能有什么正面效应呢?真的打算用这种掺了水且难以实现的例子去激励大众吗?  至于“诺奖级成果”的标签就更加离奇。这是哪位诺贝尔生物学奖获得者的评价吗?亦或者是诺贝尔奖评委会的赞誉?从发表研究成果到拿诺奖有那么容易吗?对韩春雨而言,天天念叨能拿“诺奖”可能成为一种压力,几年后,能拿诺奖但很久没拿可能演变为巨大的压力。如果能拿却没拿,反倒哪天弄出什么幺蛾子,那就不是压力而是流言蜚语的骚扰,这种骚扰纯粹是那些不厌其烦叫嚷着“诺奖级成果”的人没事找的。而现在,当“疑造假”标签出现的时候,骚扰就真的来了——  对一名科研工作者而言,学术造假是非常严重的指控,但目前韩春雨研究成果面临的问题,实际上只是“实验不可重复”,大众舆论在由此推测暗示甚至使用“学术造假”这个词的时候,就令很多不明真相的网友开始互撕:一种人说,明明可以比肩诺贝尔奖的成果,国外专家偏偏指责他造假,一定是想剽窃数据,真是居心叵测。另一种人则说,造假大发了吧,诺奖级别的牛也敢吹,打脸打到国外去了。请问这种毫无营养的互撕,谁是始作俑者呢?  乱贴标签带来了喧宾夺主的后果。关于韩春雨的一切讨论,本来不该围绕“三无”、“诺奖”、“造假”这些根本没说到正点上的花边标签来打口水仗,而应该围绕着科研本身。例如国际上到底是哪些人在质疑韩春雨的研究成果?他们的质疑有多少分量?质疑的核心问题是什么?实验结果不可重复究竟不可重复在哪里?说得更远一点,每一项研究成果最终都有可能运用到商业中去,韩春雨的成果如果商业化,有没有可能对现有技术产生冲击?那些可能受到冲击的企业的技术人员对待韩春雨的成果又是什么态度?讨论这些问题,难道不比纠结于“疑造假”的绯闻深挖和遥遥无期的“诺奖”有意思得多吗?  如果几年后,我们再提到韩春雨,大部分人只能记住他曾经“疑似造假”,或者他最终成功洗白,对于在大众中推广严谨的科学精神是没有任何好处的。“疑造假”的标签被贴得太多,我最初看到韩春雨新闻的时候居然错把他当作韩国的黄禹锡(科学家,因干细胞实验造假而被判入狱)。希望若干年后,大家别再把这两个人弄混。
  • 德国元素10月耗材之星-液体封样器
    德国元素推出10月耗材之星:液体封样器产品介绍品名:液体封样器货号:41.10-0000主要功能用于元素分析中的液体或粘稠的样品制备,封口时使用载气吹扫出锡囊内的空气,去除空气对元素N和O测定的干扰。优点便利性高:无论是液体样品或是粘稠样品,装填入锡囊并封口都非常方便。通用性广:锡囊装样的仪器均可使用。提高测试效率:通过封口器的协助,大大提高制样的效率,节省测试所需的时间。具体介绍使用步骤:将液体用移液管或注射器注入已去皮重的锡囊,在用2个钳口(A)封口之前,先用氦气吹出锡囊内的空气。封口后的锡囊重新称重 ,然后放入进样盘。选择原厂工具的三大理由:更贴合仪器的使用,增强使用便利性。德国制造,性价比高。提高液体样品制备的效率,节省测试所需的时间。
  • 新品推出|液体密度测定仪-适用于各种液体的密度测量
    液体密度测定仪是一种实验仪器,用于测量液体的密度。它对于许多行业,如石油、化工、制药、食品和饮料等,都有重要的作用。 产品链接https://www.instrument.com.cn/netshow/SH104275/C549000.htm 首先,液体密度测定仪可以用于生产过程中的质量控制。在生产过程中,液体的密度可能会影响产品的质量和性能。通过使用液体密度测定仪,可以快速、准确地检测液体的密度,帮助企业进行质量控制,确保产品的稳定性和一致性。 其次,液体密度测定仪也可以用于科学研究。在科学研究中,液体密度测定仪可用于研究液体的物理性质和化学性质,如液体的分子结构、溶解度、扩散系数等。这些研究结果可以帮助人们更好地了解液体的性质和行为,为开发新的材料和产品提供重要的科学依据。 此外,液体密度测定仪还可以用于教学实验中。在化学、物理和材料科学等学科中,学生需要了解液体的性质和行为,而液体密度测定仪可以提供一种有效的教学手段,帮助学生更好地理解和掌握相关知识。 总之,液体密度测定仪在许多方面都有着广泛的应用。它可以用于生产过程中的质量控制、科学研究以及教学实验中,为人们提供了重要的实验工具和数据支持。
  • 一机多得,流光合璧 | 珀金埃尔默推出新型FT-IR平台,专注于液体检测
    一机多得,流光合璧珀金埃尔默推出最新基于FT-IR平台,乳成分分析仪和液体食品分析仪专注于液体检测LactoScope 300™ FT-IR乳成分分析仪和LQA 300™ FT-IR液体食品分析仪结合了高性能、高准确性、易用性和快速的特点,在不到45秒的时间内分析样品和得到结果,是在一个紧凑的解决方案。采用了专利Dynascan™ 干涉仪设计,可承受倾斜和转移的影响,仪器维护后可确保仪器定标保持完好无损,每一次获取准确的数据。LactoScope / LQA 300均配备了12英寸的大触摸屏和直观的Results Plus工作流程操作软件,新的操作人员只需几分钟就可以启动并运行,自信地执行常规分析。并且利用Netplus网络管理软件可从任何地方访问您的分析结果。LactoScope 300™ LactoScope 300™ FT-IR乳成分分析仪是牧场,奶站和乳制品加工厂理想的检测工具。检测原奶和加工的牛奶,奶油和乳清中的脂肪,蛋白质,乳糖,固形物和非脂固形物。它能对原料奶进行异常检测,并能检测出尿素、硫酸铵、麦芽糊精、蔗糖、水等掺假物。LQA 300™ LQA 300™ 液体食品分析仪在整个葡萄酒酿造过程是理想的常规分析仪器。从收获、酿酒到陈酿和装瓶,它可以用来分析葡萄汁、发酵条件下葡萄汁和成品葡萄酒,检测参数包含乙醇、可溶性固体、,葡萄糖、果糖、pH、密度、乳酸、总酸、苹果酸以及挥发性酸等。同时,LQA 300系统还可自主增加新液体样品检测功能,可用于其他类型的液态食品样品,包括但不限于白酒,啤酒、烈酒、食用油、软饮等。扫描上方二维码一键Get关于新品信息及视频讲解
  • 能识别液体的水杯 让你了解鲜为人知的光谱技术
    “智能水杯你知道吗?”  “知道,一个杯子加个APP就说是智能了,其实没卵用。”  这是硬创邦记者和朋友的一段简短的对话。  对于很多普通用户来说,智能水杯给人的印象大概就是这样,一个水杯上装几个感应模块,再连个手机APP,就能帮人们识别水的温度、容量、计算累计喝水量等等,这些功能在实用性和需求上都显得十分的鸡肋。然而,我们今天要说的这款智能水杯显得有些与众不同,它能够实现一些更高端的功能,比如:液体识别。  硬创邦记者约到了这款“液体识别智能水杯”的研发负责人穆允翔,跟他仔细的聊了聊这一个与众不同的智能水杯。  能鉴别液体的杯子想知道你的喝的是可口可乐还是橙汁、或者红茶绿茶蓝茶各种茶么?只需要把饮料倒进这个智能水杯里,在手机APP上点击一下识别键,杯子就可以帮你鉴别你所喝的饮料是什么。看到这,有些读者估计就要骂娘了:“我XX又不是瞎子,喝什么我自己还不知道么?”。别急,这只是这款杯子目前能实现的基础功能,更强大的在后面。  这个水杯最初诞生在穆允翔和他团队参加的一个创客大赛,在大赛上,他们用几个元器件和一个普通的水杯搭建了这个智能水杯的雏形。简而言之,其原理就是利用高精度的光模块来识别液体的光谱,从而鉴定液体的种类。  创客比赛的智能水杯原型  穆允翔说,识别液体的种类只是目前能实现的最基础的功能,因为目前这款杯子还在研发和测试阶段,所以后期还会添加更高级别的检测能力,比如食物的种类、营养成分、甚至奶粉和药物等的产地以及真假。  这种功能对于普通人来说就有些难以理解了,这款智能水杯是如何做到如此精细的识别的呢?  光谱识别和光谱云分析系统此前说过,这款智能水杯的原理是利用光模块来鉴别液体,所以这个“光谱识别模块”就是整个杯子的核心。  杯子在工作时,能看到杯子底部发出光源,这是一种近红外线的光,在模块的另一边,有接收光源的感应器。当光源穿透液体到达接收器上的时候,光已经通过液体的分子进行反射、折射发生变化,这种变化过的光信息就能通过光谱分析模块根据其光学特性确定材料组成成分,然后通过iOS或Android智能手机APP将这些信息传入云端对比数据,几秒后物品的相关信息就会显示在手机APP上。  据穆允翔介绍,目前分子识别模块目前可以识别包括饮料、盐水、糖水、凉茶、味素等大类信息,随着数据的增加未来会增加更多的识别空间。  手机APP端识别功能  说到这,硬创邦记者还是有些不解,这些光谱数据是如何定义的呢?标准是什么?  穆允翔解释说,除了杯子上的光模块之外,液体识别水杯最核心的就在于“光谱云分析系统”了。  他首先给记者解释了关于光谱的相关知识。  当电磁辐射与物质分子作用时,物质内部会发生量子化的能级跃迁,测量由此产生的反射、吸收、散射的波长与强度而进行分析的方法称为分子光谱分析法。它是光谱分析的一个重要分支,主要包括紫外-可见光谱、近红外光谱、红外光谱、拉曼光谱等。  光谱云分析系统是一种基于云计算的、智能型的分子光谱分析系统。它整合了前端光谱采集设备、光谱数据压缩传输、光谱预处理、光谱数学建模等环节。光谱云解决了分子光谱应用中最复杂的建模问题,为用户提供稳健、灵活的光谱分析数学模型。前端分子光谱采集设备通过无线和有线的方式接入光谱云,光谱云对输入的光谱按照预先建立的模型进行分析,用户无需关心如何建立数学模型,经过云端分析后,检测结果回传给用户。  简而言之,所有的分子在发生光反射时、吸收、散射时所产生的波长和强度都是不同的,通过这个就能鉴别分子的种类,从而鉴定液体的结构组成。  而鉴别时的标准还是需要人工设定的。比如说,这有一个苹果,你想要鉴别它的产地是美国还是中国东北,这就需要先采购美国和东北的两种苹果,通过仪器先进行光谱测量,然后将数据信息上传到云端进行标准的记录,然后在去测量其他苹果的光谱,用得出的测量信息与之前上传的标准信息进行对比,这样才能得出结论。  识别模块  穆允翔说,目前他们做的杯子还不能实现更精细的测量,主要在于两个原因。  第一,光谱数据还没有来得及去采样和整理,所以云端能够做对比的数据有限,这些在以后会陆陆续续的进行扩充。  第二,光谱模块的精度低。据他介绍,这种技术一直以来都是小众,只有在一些高精尖的科研领域才能用到。高精度的设备价格非常昂贵,他们做这个杯子的光谱模块对其进行了低成本的简化,所以在精度上也有一定的限制。  醉翁之意不在水杯,在光谱当记者问到,为什么想到会做这个智能水杯的时候,穆允翔坦言,最开始做智能水杯只是应客户需求所研发,他自己本身也觉得智能水杯这种东西没什么用处,既没有广阔的市场也没有具有刚性需求的用户群体。  不过后来他的想法发生了转变,他说,想利用这个“没什么用”的产品让大众能够接触和了解到光谱技术。  原型和成型的测试产品  目前分子光谱分析便捷高效,适合多种物态分析且结构信息丰富,在常规分析中有广泛的应用。不过在民用级领域由于其高昂的价格和让人理解不了的技术门槛,还没有被广泛普及。  如今,在云计算和互联网的推动下,分子光谱分析技术的外延进一步扩展,以后应用在民用级智能硬件的机会也会增加不少,所以他们想趁着这个契机,做最早吃螃蟹的那一批人。  目前,穆允翔的团队已经尝试利用光谱技术做了一些其他的东西,比如一种防止“代打卡”的指纹打卡机,能鉴别打卡的是人的手指还是淘宝买的硅胶套。类似这种光谱技术的应用在未来会更多的扩展成各种智能硬件的产品。  目前他的团队已经开始研究如何低成本的制作更高精度的光谱分析设备和系统,扩充更多的云端图谱模型,未来这个小众技术能否普及到人们的生活中还是个未知数。
  • 2017年度聚焦:肿瘤液体活检
    p    strong 前言:液体活检的产业发展概况 /strong /p p   2017年6月,世界经济论坛与《科学美国人》杂志的专家委员会联合选出了2017年度全球十大新兴技术榜单,其中肿瘤的无创诊断技术成功入选并荣膺榜首。肿瘤无创诊断技术即液体活检(liquid biopsies)的出现,标志着人类在攻克肿瘤的道路上又前进了一大步。与传统的组织活检相比,液体活检具备实时动态检测、克服肿瘤异质性、提供全面检测信息等独特优势。目前,临床研究中,液体活检主要包括游离循环肿瘤细胞(CTCs)检测、循环肿瘤DNA(ctDNA)检测、外泌体及循环RNA(Circulating RNA)检测等,与传统的依靠临床症状或影像学诊断技术比较,利用液体活检技术可以更早地发现疾病进展。 /p p   近十年来,肿瘤液体活检研究热度不断攀升,多个国家及地区积极投入其中。目前,美国的 CTC 临床研究水平遥遥领先于其他国家。而在近几年中国的CTC临床研究水平发展势头迅猛,实力不可小觑。援引21世纪经济报的统计,中国目前有47家公司在从事肿瘤液体活检,其中,26家公司选择ctDNA路线,9家公司选择CTC,代表性企业包括华大基因、药明康德、燃石生物、普世华康等。JP摩根和高盛预测,液体活检在全球的市场规模高达230亿美元,其中,美国占据61%的市场份额。中国液体活检市场在5-10年内的市场潜力约为200亿,近年来,肺癌、结直肠癌、胃癌、乳腺癌等癌症的患病率在中国逐年增加,肿瘤分子诊断的需求不断增加。根据国家癌症中心发布的数据,我国5年内诊断为癌症且仍存活的病例数约为749万,适合使用液体活检技术的肿瘤病人至少为 542 万人,占比达到了72%[1]。 /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/f169c5ec-0a68-4632-a402-6e5f09b33e47.jpg" / /p p   ctDNA检测作为一种“液体活检”技术,其具有简便、快捷,且在一定程上能克服肿瘤时间和空间异质性等优势,近年来被广泛用于治疗前肿瘤分子分型,参与靶向治疗选择性决策,以及在患者治疗过程中评估肿瘤动态和负荷变化,实时监测治疗的有效性,及监测患者机体的微小残留病灶、复发、预后评估、耐药的产生等多个方面。 /p p style=" text-align: center " img title=" 002.png" src=" http://img1.17img.cn/17img/images/201712/insimg/62a15883-e36d-4ace-9040-c9cb57d5a179.jpg" / /p p style=" text-align: center " strong   近10年CTC相关发表文章数 /strong /p p style=" text-align: center " strong img title=" 003.png" src=" http://img1.17img.cn/17img/images/201712/insimg/84f91e00-1c73-4c5f-9df4-e006551a4625.jpg" / /strong /p p style=" text-align: center " strong   近10年ctDNA相关发表文章数[2] /strong /p p strong   技术的成熟催生了资本市场的火爆 /strong /p p   2015年,液体活检技术被《MIT Technology Review》评为年度十大科技突破之一。根据Piper Jaffray预测,2026年广义液体活检全球市场总容量约326亿美元,包括肿瘤领域286亿美元、无创产前诊断(NIPT)20亿美元、器官移植20亿美元。而2026年全球肿瘤液体活检市场容量可达286亿美元,其中早期筛查150亿美元、伴随诊断17亿美元、治疗监测50亿美元、复发监测69亿美元。[3] /p p   目前国外从事液体活检的主要公司包括:Grail、Guardant Health、Personal Genome、Trovagene、Genomic Health、Janssen Diagnostics、Qiagen、RainDance和Biocept等,其中不乏有Illumina、罗氏等巨头涉足其中,他们通过成立子公司或并购等方式,布局ctDNA领域,甚至完成大量融资来进行肿瘤早筛的临床研究。而国内的主要参与者包括华大基因、泛生子、达安基因、安诺优达、药明康德、贝瑞和康、诺禾致源等公司。涉及液体活检的基因检测公司早已被具有敏锐嗅觉的资本追捧,有些公司估值已经到了10亿以上。 /p p style=" text-align: center " img title=" 004.png" src=" http://img1.17img.cn/17img/images/201712/insimg/67d60a4d-daf4-4b9f-bd9f-a9724123dcf2.jpg" / /p p style=" text-align: center " img title=" 005.png" src=" http://img1.17img.cn/17img/images/201712/insimg/79e478b4-6cb8-4ef5-8536-3f19c3d37f9a.jpg" / /p p style=" text-align: center " strong 国外CTC、ctDNA、外泌体公司[4] /strong /p p   基于目前行业火爆的现状,业界对于液体活检市场未来的发展也普遍持乐观态度。2017年2月,MARKET RESEARCH FUTURE发布了《Liquid Biopsy Market Research Report Global Forecast to 2022》,该报告预测:2016年至2022年,全球液体活检市场将以21.6%的复合年增长率增长 成本效益和消费者偏好的改变,将推动市场的发展。[5] /p p   strong  液体活检如何一步步成为时代焦点? /strong /p p   早在1000年以前,阿拉伯医生Abulcasis就发明了活检技术,该技术的好处是医生可以根据病灶组织学结构对病情做出判断。随着近几年测序技术的发展与成熟,医生还可以对患者的肿瘤组织测序,进而给出更加精确的诊断结果。 /p p   但随着科学家们对肿瘤研究的深入,他们发现在肿瘤的诊断和治疗过程中组织活检技术具有一定局限。 /p p   液体活检作为体外诊断的一个分支,通过收集患者的血液或尿液等对肿瘤等疾病做出诊断。其中ctDNA作为一种无创肿瘤标志物,被认为具有良好的发展前景,但当时在ctDNA的检测技术上仍面临一些问题,如敏感性不足、适用范围有限等。 /p p   这里就不得不提到一篇突破性的研究,2014年4月,发表在Nature Medicine杂志上的一篇研究报告中[6],来自斯坦福大学医学院的研究人员就开发了一种高敏感性的ctDNA定量检测方法(cancer personalized profiling by deep sequencing,Capp- Seq) ,有助于解决敏感性、适用范围等困难。 /p p   参与该研究的Maximilian Diehn博士说:“我们的目标是开发出一种能够克服ctDNA领域两大关键障碍的方法:首先,极高的检测灵敏度,能够检测出血液中极少量的ctDNA 第二,能广泛应用于绝大多数癌种,适于临床应用。” /p p   即便是在晚期肿瘤患者体内,绝大多数的循环DNA(cfDNA)都来自于正常的、非癌性细胞。因此需要采用一种综合性的策略从血液中分离出循环肿瘤DNA(ctDNA),检测ctDNA的变异情况。为了提高这一技术的灵敏度,研究人员在提取、处理和数据分析方面进行了优化。 /p p   研究人员将这种通过深度测序来进行肿瘤个体化变异分析的技术命名为CAPP-Seq。该研究报道了CAPP-Seq技术在非小细胞肺癌(NSCLC)中的应用,研究人员在NSCLC引入Capp-Seq技术,设计为能够覆盖在95%以上肿瘤中鉴别出的体细胞突变,利用该技术,研究人员能够在100%的II-IV期NSCLC患者及50%的I期NSCLC患者的血液中检测到ctDNA的存在。在检测突变率低至0.02%的等位基因突变时,该技术的特异性能够达到96%。 /p p   尽管本研究的样本源自罹患非小细胞肺癌的患者(包括大多数的肺癌,如肺腺癌、肺鳞状细胞癌和大细胞癌),但研究者发现这种方法应该可以广泛适用于不同的实体瘤。未来,其应用场景将不仅局限于追踪肿瘤确诊患者的病情进展,还能够用于健康或高危人群早期的肿瘤筛查。 /p p   两年后,同样是斯坦福大学医学院的研究人员进一步开发出一种称为集成数字错误抑制(IDES)的校正方法,能够检测到频率低至0.004%的基因突变,相关研究于2016年5月刊登于国际杂志Nature Biotechnology上[7]。2014年时,Capp-seq技术的检测极限是0.02%,存在一定的错误率,为矫正这些错误,研究团队首先设计了一种分子标签技术,许多ctDNA检测开发者也采用这种方案来降低错误率。由于单链DNA和双链DNA分子标签技术各有优劣,双链DNA分子标签技术在降低错误上效果更佳,但效率不及单链DNA,因此不适合ctDNA量有限的样本。为此,斯坦福大学的研究人员着手设计出一种混合策略。首先,他们设计出测序接头,可用于单链和双链的分子标签 第二步,斯坦福的团队设计了一种计算工具,可以校正测序或PCR的系统错误。 /p p   随后,研究人员在NSCLC患者样本上验证了上述检测。首先,他们检测了41名晚期NSCLC患者的EGFR热点突变。从88个血浆样本中检测到412个EGFR变异,所有变异都已经通过肿瘤活检样本确认。接着,他们在参考细胞系上评估了检测的技术限制,创建了参考细胞系混合物,等位基因的变异频率在0.05-1.6%。他们发现,分子标签技术和计算校正方法是互补的,结合使用效果更佳。这种方法的理论检测极限是0.00025%。最后,他们利用这种方法来监控30名NSCLC患者中的突变(这些患者的肿瘤已经过基因分型)研究人员发现,他们能够检测到频率低至0.004%的突变。 /p p   在有了优秀的技术后,斯坦福大学的科研人员创立了Capp Medical公司,致力于通过基因组学的方法来检测患者肿瘤类型。 /p p   而另一边,跨国公司罗氏早在几年前就已经开始着手开发基因组学检测肿瘤的新方法。2008年罗氏公司以34亿美元的价格收购了Ventana Medical Systems公司,迈出了基因检测肿瘤患者的第一步。 /p p   2015年4月,研发出CAPP-seq技术的团队以及其归属的Capp Medical公司也被罗氏收于麾下,不难看出罗氏希望在液体活检这一领域继续深入的决心。 /p p   罗氏公司拥有世界上最强大的肿瘤研发部门,在获得了优秀的团队和技术的条件下,自然是如虎添翼。2017年5月8日,罗氏宣布在全球推出AVENIO ctDNA分析试剂盒,其能针对靶向用药、耐药机制研究、动态监测三个不同临床应用方向,推出了三款Panel,包括AVENIO ctDNA Targeted Analysis Kit、AVENIO ctDNA Expanded Analysis Kit及AVENIO ctDNA Surveillance Analysis Kit。此三款Panel可以全面的检测包括SNP、InDel、SV及Fusion在内的肿瘤变异类型,并且匹配后续的数据分析服务器、分析软件,提供一站式的ctDNA检测整体解决方案。这款产品结合了肿瘤液体活检的便捷性与NGS的高效性,能够帮助研究人员自行完成检测及分析。同时,多项研究结果验证了AVENIO ctDNA分析试剂盒在不同的实验室均能保持良好的稳定性和可重复性。 /p p style=" text-align: center " img title=" 007.png" src=" http://img1.17img.cn/17img/images/201712/insimg/f0ad901c-cf56-4b6e-a67e-9da1b8af7e25.jpg" / /p p   基于NGS方法检测的三款试剂盒可广泛应用于肿瘤学研究: /p p   AVENIO ctDNATargeted试剂盒是基于靶向捕获测序技术的肿瘤液体活检基因分型检测试剂盒,包含17个NCCN等权威指南推荐的基因,用于肺癌、结直肠癌、胃癌、乳腺癌等多种肿瘤靶向用药基因检测。 /p p   AVENIO ctDNA Expanded 试剂盒是基于靶向捕获测序技术的肿瘤液体活检基因分型检测试剂盒,包含77个NCCN等权威指南推荐的基因及临床研究热点基因,可应用于肺癌、结直肠癌、胃癌、乳腺癌、卵巢癌等多类肿瘤耐药机制研究。 /p p   AVENIO ctDNASurveillance试剂盒是基于靶向捕获测序技术的肿瘤液体活检试剂盒,包含NCCN等权威指南推荐基因在内的197个基因,用于肺癌和结直肠癌等肿瘤突变负荷长期监测研究 /p p   在这儿不得不提到罗氏强大的战略思维和长远眼光。从早年的Genetech到液体活检领域的“祖师爷”Capp-seq技术,罗氏优秀的投资和并购策略让其在生命科学领域成为了强大的中流砥柱。 /p p strong   液体活检技术的缺点及行业壁垒 /strong /p p   凭借一管血液来检测肿瘤是数十年来全球医学界共同的梦想。而液体活检技术能利用各种检测手段从血液中捕捉肿瘤相关基因变异信息,用于肿瘤分子分型、靶向用药、耐药机制研究、复发监测等,可避免传统组织检测方法难以解决的肿瘤异质性问题、无法实时动态监测等局限。 /p p   尽管如此,液体活检技术还存在一定的技术缺陷。对于肿瘤早期筛查而言,CTC和ctDNA检测都面临的一个共同挑战,即二者DNA浓度较低,对检测技术的灵敏度要求极高。其次,液体活检的另一个挑战来自成本。在高成本的基因检测领域中,价格因素可能会影响液体活检的广泛应用。第三个挑战是液体活检并不适用于所有类型的肿瘤,由于血脑屏障会阻碍ctDNA进入血液,比如,胶质母细胞瘤释放到外周血中的ctDNA极低,并不适合液体活检。 /p p style=" text-align: center " img title=" 008.png" src=" http://img1.17img.cn/17img/images/201712/insimg/9ef9005c-1ea0-4b3c-b02b-7df5a7dbad43.jpg" / /p p   除了技术层面的问题以外,将液体活检研究成果转化为临床应用仍面临几个关键的壁垒。 /p p   一、缺乏检测标准,从Panel设计中基因位点的选择、实验过程中的质控标准建立、生物信息学分析流程的标准化,以及变异解读中数据库的选择,不同实验室之间并未形成统一的标准,检测结果可比性不强,因此,目前这种检测方法进入常规临床检测存在着一定障碍。标准化的试剂盒、规范化的数据分析流程、专业的遗传咨询解读,以及全流程整体解决方案是液体活检在临床广泛应用的前提。 /p p   二、患者或消费者的经济承受力。包括我国在内的许多国家并未将液体活检纳入医保报销范围内,而液体活检产品往往价格不菲。此外,肿瘤液体活检并未纳入肿瘤患者管理的标准临床指南中,这进一步影响了保险机构的承保决定,阻碍了液体活检的普及。 /p p   三、基础研究人员和临床医生间的信息互通。基础研究是液体活检技术发展的基石,而临床医生则负责落实患者的具体治疗方案,双方是否能够非常顺畅地交流信息,并且对于患者的检测报告以及治疗方案达成共识,这直接决定了液体活检技术能否真正让患者获得更好的个性化治疗。 /p p   随着检测手段的不断进步,检测灵敏度和稳定性的逐步提高,技术瓶颈终将突破,监管政策也将逐步完善。 /p p strong   科学研究仍未停止脚步 /strong /p p   2017年关于液体活检的研究依然如火如荼地进行,世界各地不断出现重磅级的研究成果。 /p p   今年不得不提到8月份NEJM杂志刊登了香港中文大学的卢煜明(Dennis Lo)教授的重磅级研究成果。 /p p   由于ctDNA在血液中的含量非常低,因此卢煜明教授带领其研究团队将研究对象转为会引起鼻咽癌的EB病毒的DNA。研究人员优化了筛查方法,结果显示,该种方法有效提高了鼻咽癌的早期检测和生存率。[8] /p p   EB病毒与鼻咽癌的发生有密切相关性,因此实验设计寻找从肿瘤进入血液大量的病毒DNA,而不是癌细胞本身的DNA。研究人员在约2万名进行筛选的男性中,发现1112人(5.5%)检测出病毒DNA。其中309人在一个月后进行了验证性实验。通过内窥镜检查和核磁共振检查后,确认34人得了肿瘤。34种肿瘤中有16例是非常早期的,这种肿瘤在早期阶段不会有任何症状。三年后,除了一个病人外,所有的病人都活了下来,在接受标准放疗后没有肿瘤的迹象。相比之下,通常只有70%的鼻咽癌患者能够存活。 /p p   使用肿瘤筛查也能够改善很多肿瘤患者的生存率,但研究人员认为肿瘤筛查的费用较为昂贵,据统计593名个体共需要花费28600美元来筛查一种肿瘤。要知道在诸如美国等地方,鼻咽癌非常罕见,用过高的花费来筛查鼻咽癌显得没有必要。而这种通过检测EB病毒DNA的液体活检筛查技术非常具有潜力,未来能够帮助挽救众多肿瘤患者的生命。 /p p   另外,8月14日,发表在Cancer Cell杂志上的一篇研究报告中,来自荷兰阿姆斯特丹自由大学医学中心的研究人员设计了一种新型的液体活检途径,即通过检测被循环血小板(circulating platelets)吸收的肿瘤RNA。这种名为thromboSeq的新型检测技术能够以接近90%的准确率对非小细胞肺癌进行诊断[9]。 /p p   研究人员表示,thromboSeq技术可以检测到血小板中约5000种不同的RNA分子,通过不断优化它的RNA基因panel(panel of RNA genes),最终找到了少数能够预示肿瘤的RNA。研究人员利用这一检测方法对血液样本进行了测试,以确定其在肿瘤诊断中的准确性。结果证实,thromboSeq诊断早期肿瘤的准确率为81%,诊断晚期肿瘤的准确率为88%。在一个匹配年龄、吸烟状况和血液存储时间的验证对照组中,该方法的准确率高达91% 研究人员表示,这种新型技术未来有望进入临床试验中。 /p p   2017年10月,一项发表在国际杂志Nature Materials上的研究报告中,来自加州大学圣地亚哥医学院、穆尔斯肿瘤中心和中山大学癌症研究中心等机构的研究人员基于对包含循环肿瘤DNA(ctDNA)的血液样本进行研究,开发了一种用于肝细胞癌早期诊断和预后判断的新型液体活检技术[10]。 /p p   该研究中研究者共使用了1098例肝癌患者和885例正常人的临床样本数据。首先根据肝癌样本和正常样本的临床数据,从485,000个甲基化标记(来源于TCGA数据库)中筛选出了1,000个甲基化标记,随后挑选出扩增效率较高及甲基化特征多样化的401个甲基化标记进行深入研究。通过计算机深度学习715个肝癌患者ctDNA和560个正常样本的临床数据后,从401个甲基化标记中筛选出了10个甲基化标记,建立了肝癌的综合诊断模型cd-score。随后研究人员针对1049例肝癌患者的临床数据进行分析,得到综合预后模型cp-score(combined prognosis score),并拟合出了Kaplan–Meier 曲线。研究发现,预后情况不同的肝癌患者其cp-score具有显着不同。多变量分析显示cp-score和风险分级密切相关,并且可以作为一个独立的风险因子用于肝癌的风险分级。 /p p strong   逐渐完善的监管政策 /strong /p p   除了有技术上的突破,近年来国家在政策上对于包括液体活检在内的测序行业也逐渐利好。 /p p   目前我国对于基因检测项目进入临床,实行的是双重监管。根据CFDA 在2014 年1 月公布的《食品药品监管总局办公厅关于基因分析仪等三个产品分类界定的通知》,基因测序诊断产品(包括基于测序仪及相关诊断试剂和软件),符合医疗器械的定义,应作为医疗器械管理,其中测序反应通用试剂盒(测序法)划为I 类医疗器械管理产品,基因测序仪作为III 类医疗器械管理。 /p p   2015年4月国家卫计委发布了《关于开展肿瘤诊断与治疗高通量测序检验(多基因检测)室内质量评价预研的通知》,2015年7月卫计委又发布《药物代谢酶和药物作用靶点基因检测技术指南(试行)》和《肿瘤个体化治疗监测技术指南(试行)》。 /p p   总的来说,所有仪器设备,试剂归CFDA 报批管理,临床实验归属卫计委管理。 /p p style=" text-align: center " img title=" 009.png" src=" http://img1.17img.cn/17img/images/201712/insimg/ef35b33c-6d37-430a-94d6-981e3f1b8e8e.jpg" / /p p   经历了“全面叫停”后,近年来国家政策对于基因测序、精准医疗行业的发展起了很大的推动作用。2015年3月卫计委发布《国家卫生计生委医政医管局关于肿瘤诊断与治疗项目高通量基因测序技术临床应用试点工作的通知》,试点包括了14家医疗机构和6家第三方检验实验室。另外还发布了以肿瘤个体化治疗、药物代谢酶及作用靶点基因检测的技术指南,旨在规范化推广相关技术。 /p p   2016年4月国家发改委下发了《关于第一批基因检测技术应用示范中心建设方案的复函》正式批复27个省市发改委关于基因检测技术应用示范中心的建设方案。 /p p   2017年1月,国家发改委正式印发了《“十三五”生物产业发展规划》,明确了基因检测能力覆盖50%以上出生人口的目标,强调了以个人基因组信息为基础,结合蛋白质组、代谢组等相关内环境信息,整合不同数据层面的生物学信息库。 /p p   2017年11月,CFDA和卫计委联合颁布《医疗器械临床试验机构条件和备案管理办法》,规定了对列入需进行临床试验审批目录的第三类产品,应当在三级甲等医疗机构专业范围内开展临床试验 规定开展创新医疗器械产品或需进行临床试验审批的第三类医疗器械产品临床试验的主要研究者应具有高级技术职称并且参加过3个以上医疗器械或药物临床试验等等。 /p p   综合来看,国内政策对于液体活检和其他基因测序产品,经历了“叫停”、“试点”、“规范发展”三个阶段,未来的市场仍有很大的空间。 /p p   令人振奋的是,2017年11月,FDA在一个月内先后批准了纪念斯隆凯特琳癌症研究中心的多基因检测分析产品MSK-IMPACT?,以及Foundation Medicine 的 FoundationOne CDx,这两款产品的获批在美国甚至全球都具有相当重要的意义。 /p p   从FDA的审批标准中,我们不难看出对于肿瘤基因检测产品,FDA在检测结果的精准性、数据的管理更新过程、和报告解读能力三个方面均高度关注,这也是给国内从业者的一些启示。 /p p   CFDA对于国内的政策制定,很大程度上都会借鉴FDA的做法,包括目前对于基因检测临床的双重监管等,而FDA在批准基于NGS的肿瘤检测产品的实践中,已经踏出了重要的一步。这个消息公布后,对于业内人士来说是机会和挑战并存,但对于整个行业来说,无疑是前景大好。 /p p strong   结语 /strong /p p   液体活检是一项富有挑战性的新技术,在肿瘤精准医学中扮演着越来越重要的角色。随着检测技术的标准化,检灵敏度和特异性的提高,液体活检将成为肿瘤诊断的重要技术手段。液体活检要广泛进入临床应用,不仅需要检测技术灵敏度和特异性的提升、临床研究的广泛积累,还需要建立相应的检测标准、建设规范的监管体系。 /p p   如今,越来越多的科研单位和企业已投身该领域,2017年即将结束,相信2018年液体活检技术将在肿瘤分子分型、靶向用药、耐药机制研究、复发监测,甚至肿瘤早期筛查等多个领域实现不断地突破与发展。 /p p   参考资料: /p p   [1].《肿瘤液体活检市场初成预计中国市场规模200亿》,21世纪经济报 /p p   [2].数据来源Pubmed数据库 /p p   [3].数据来源Piper Jaffray测算 /p p   [4].数据来源火石hsmap /p p   [5].Liquid Biopsy Market Research Report Global Forecast to 2022, MARKET RESEARCH FUTURE /p p   [6].An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014 May 20(5):548-54. /p p   [7].Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016 May 34(5):547-555. /p p   [8].Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. N Engl J Med. 2017 Aug 10 377(6):513-522. /p p   [9].Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets. Cancer Cell. 2017 Aug 14 32(2):238-252.e9. /p p   Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017 Nov 16(11):1155-1161. /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制