当前位置: 仪器信息网 > 行业主题 > >

医学组织细胞

仪器信息网医学组织细胞专题为您整合医学组织细胞相关的最新文章,在医学组织细胞专题,您不仅可以免费浏览医学组织细胞的资讯, 同时您还可以浏览医学组织细胞的相关资料、解决方案,参与社区医学组织细胞话题讨论。

医学组织细胞相关的资讯

  • 线上直播报名|4月11日“骨组织细胞的3D生物打印”准时开播
    主题:骨组织细胞的3D生物打印 时间: 2020年4月11日 下午13:00-14:00 直播教授: 汤亭亭教授教授简介:上海交大医学院附属九院教授、博士生导师百千万人才工程国家级人选上海市骨科内植物重点实验室主任国际华人骨研学会前任主席中国生物材料学会理事 直播看点:生物3D打印、骨组织细胞打印直播简介:生物打印,是3D打印行业上的明珠,它可以使用增材制造的技术,将生物材料、生物细胞、因子等生物要素有序装配,构建组织或类器官。特别是细胞打印,是生物打印领域最为困难的技术细节之一。汤主任结合自身的最新科研进展,分享骨组织细胞的打印应用。3D打印,可实现个性化医疗应用,将是未来医疗的发展方向。未来,可通过生物打印,使用患者自体细胞,打印骨、软骨、皮肤、器官等需要修复或移植的患处,在骨科、口腔、整形、器官等领域均有临床价值,从而解决伦理、周期、排异等多种问题。产品特点:德国envisionTEC是全球首家生物打印机商业化的企业,自2001年起已经积累了四代设备的设计生产经验,并继承了德国精密机械制造的传统,硬件选择和整体设计理念非常领先。韩国Invivo是全球首款医疗级生物打印机,在相关法律法规允许的国家内进行了大量的临床应用,用于糖尿病皮肤溃烂修复等应用。在国内可协助进行一系列的临床前研究。公司简介:蔚来已来,创新由品,一切为你改变! 蔚品于2015年成立,是一家聚焦于3D打印技术的企业,它依托母公司上海曼恒数字技术股份有限公司在VR领域的三维数字内容研发实力等优势,借由3D打印技术特点为客户提供全方位的技术创新服务。 蔚品涵盖具有自主知识产权的“锐打”系列面阵曝光技术3D打印机,是目前速度最快的一种技术 。涵盖了全球最好的相关技术品牌合作涉及有SLS、MJF、BMD 、挤出式生物3D打印成型技术等。为用户提供全方位的3d打印技术解决方案,把全球最前沿的技术应用落地于中国。 报名链接:
  • 让诊断不再需要活检 —高速3D显微镜可实时观察活组织细胞
    美国哥伦比亚大学工程团队开发了一种技术,可实现活体内的实时成像并取代传统的活检。在28日的《自然生物医学工程》上发表的一篇论文中,研究人员描述了一种高速3D显微镜MediSCAPE,其能捕获组织结构的图像,以指导外科医生定位肿瘤及其边界,而无需活体取样分析病理结果。哥伦比亚大学生物医学工程和放射学教授、该研究的资深作者伊丽莎白希尔曼称,活检需要从体内切取小块组织,然后用简单的显微镜观察,因此可能需要几天时间才能得到诊断结果。希尔曼团队希望能直接捕获组织图像而不用切出样本。“这种技术可以让医生实时反馈他们正在查看的组织类型,无需长时间等待。”她解释道,这将让医生就如何最好地切除肿瘤并确保没有留下任何东西做出明智的决定。此外,对于珍贵的组织,如大脑、脊髓、神经、眼睛和面部等,切取组织还可能错过重要的疾病区域。希尔曼一直在开发用于神经科学研究的新型显微镜,这些显微镜可非常快速地捕捉活体样本的3D图像。此次,该团队通过观察小鼠肾脏对他们的显微镜进行了测试。他们观察到的结构很像标准组织学所得到的结构。最重要的是,过程中并没有添加任何染料。研究人员看到的一切都是组织中的自然荧光,而这些荧光通常太弱而无法看到。即使研究人员以足够快的速度进行整体3D成像,实时漫游,扫描组织的不同区域,MediSCAPE也能非常高效地显示出这些微弱的信号。研究人员甚至可将获得的体积拼接在一起,并将数据转化为组织的大型3D展示,这样病理学家就可像一整盒组织学幻灯片一样使用它。该团队展示了MediSCAPE在广泛应用中的强大功能,从分析小鼠胰腺癌到对人体移植器官(如肾脏)的非破坏性快速评估。研究人员认为,通过对体内的活组织进行成像,可获得比无生命的活检样本更多的信息。他们发现,实际上可看到通过组织的血流,并看到缺血和再灌注的细胞水平效应(切断肾脏的血液供应,然后让它回流)。该团队的最后一个关键步骤是将希尔曼实验室中标准SCAPE显微镜的大尺寸缩小为适合手术室并可供外科医生在人体中使用的系统。
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 武大医学病毒研究所严银芳团队研制出干细胞抗癌新药
    摘要干细胞治疗癌症可能是最有效的办法,国内外已开始有干细胞治疗肿瘤进入临床应用。但由于肿瘤发生的基因突变机制相当复杂,就目前的技术水平还很难以在基因结构水平上彻底治疗肿瘤。肿瘤属表观遗传学疾病☆。针对癌基因治疗工程应该是以表观遗传学为基础理论手段来彻底根治。要通过表观遗传学手段将癌基因复制持久能转变为其他动能或转移至另一分子,这才是根治癌症最有效途径之一。基因工程量子技术手段为我们制备出安全适用的干细胞抗癌药物增添了新的途径。广谱抗癌新药一抑癌间充质干细胞就是这样一种崭新的全能技术。 间充质干细胞低免疫原性,全能性,是发展成广谱抗肿瘤药物的重要支撑间充质干细胞具有独特 低免疫原性和全能性,在大量的同种异体动物 临床移植实验中都表现出和角膜移植类似的免疫豁免特性。无论采用静脉注射、皮下注射、复合骨诱导或其它方式移植, 间充质干细胞的耐受原效应都不受影响。间充质干细胞属于多能干细胞。具有多向分化潜能、可分化为脂肪、骨、软骨、肌肉、肌腱、韧带、神经、肝、心肌、内皮等多种组织细胞,连续传代培养和冷冻保存后仍具有多向分化潜能,间充质干细胞的这种全能性,是发展成广谱抗肿瘤药物的重要支撑。同时干细胞中未分化细胞miRNAs是一类含量丰富的非蛋白编码小分子 RNA, miRNAs主要是与靶 mRNA的 3′UTR区域结合 ,抑制 mRNA的翻译或直接使 mRNA降解 ,能调节多种生物功能。一些 miRNAs,如 miR2 172 92,可能作为致癌基因 而另一些 miRNAs,如 miR2 15,可作为抑癌基因 ,它们在肿瘤的发生、发展过程中起着重要作用。(在干细胞中有致癌基因,又有抑癌基因怎样发挥抑癌基因作用,又怎样消除致癌基因致癌性,全面统一调控它们抗癌生物活性,这才是抑癌间充质干细胞的独特功能。临床应用干细胞之所以不成功矛盾的地方有赖于此)。抑癌间充质干细胞根治癌症原理抑癌间充质干细胞就是利用基因工程技术敲除间充质干细胞中未分化细胞miRNAs,如 miR2 172 92等致癌基因磷酸化物质。保留利用miRNAs,如 miR2 15等抑癌基因,具有独特低免疫原性和全能性的间充质干细胞。抑癌间充质干细胞是一种广谱抗肿瘤新药。抑癌间充质干细胞抗肿瘤药物原理是利用细胞基因平衡原理一利用抑癌间充质干细胞小分子RNA, miRNAs去平衡沉默癌基因的一种基因工程技术。我们是利用高分子生物滤过装置,在滤过装置中配置高效的活性生物分子药物,对流过癌细胞透析仪的间充质干细胞中的癌基因生长因子直接起到逆转作用,逆转后的间充质干细胞,直接生成抑癌间充质干细胞(抑癌基因}重新输入癌基因原发灶(平衡沉默修复癌基因),彻底性的杀灭原发灶中的癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。有句成语叫解铃还须系铃人。比喻谁惹得麻烦就还得需要谁去解决。癌是细胞核DNA裂变。DNA复制持久性增长还得依靠DNA疗法,RNA疗法,蛋白质疗法来解除转移癌的复制持久能。研究癌基因弛豫现象是解除癌症的根本保证。如何解除癌DNA激发态,返回细胞稳定基态不能再通过复制衰变过程,而是要通过分子间转移或将DNA复制能转变为动能或转移至另一分子,这才是根治癌症最有效途径之一。此方法有很多。我们可以从手术切下肿瘤组织、肿瘤术后引流液中、癌性胸腹水获取DNA,RNA来能制取抗癌药物。但都是来自于患者,获取受患者组织局限性不能广泛应用。我们也可以从过继性免疫疗法中获取来解除转移肿瘤复制能。例如肿瘤浸润淋巴细胞TIL、TCR-T以及CAR-T三种过继性免疫疗法中获取免疫球蛋白肽键能,来快速解除DNA核能。但免疫球蛋白分子能比DNA核能小要千万倍。虽然这些方法有很多,但都属制备性技术。不是一种独特的抗癌药物。抑癌间充质干细胞的出现,它意味着抑癌间充质干细胞正在快速成长为一种广谱抗肿瘤药物。抑癌间充质干细胞制备技术抑癌间充质干细胞制备技术及工作原理不同于分子遗传学基因工程技术敲除方法,这种量子生物学技术为我们制备临床安全应用抑间充质干细胞抗癌药物增添了一个新的途径。干细胞开发与化学小分子、生物大分子在内的结构和成分明确药物有着很大的不同,干细胞是活细胞,具有异质性,其大小、形态具有一定的差异,在功能、行为、状态方面也不同。同种间充质干细胞在不同微环境中可以发挥不同作用并有潜在致恶性肿瘤风险.挑战了传统药物开发的一些基本理念和规律。然而抑癌间充质干细胞则不同,它是通过滤过装置中配置高效的活性生物分子药物处理后,消除了干细胞基因中所有的生长因子,只保留了间充质干细胞DNA,RNA分子结构基因和成分.因此是明确并相对稳定的细胞DNA,RNA分子体系。抑癌间充质干细胞全部属抑癌基因结构,质量可控这才是抗癌药物的基础和前提。抑癌间充质干细胞制备方法及工作程序不同于普通透析与过滤。透析(HD)仅仅清除小分子有毒物质排出体外;滤过透析(HDF)是过滤增强对中分子毒素的清除作用。癌细胞透析技术优于单纯透析与过滤。癌细胞透析是在组织液透析的基础上,利用胞质效技术,交换DNA蛋白质分子高低激发态物质来平衡时空的量子技术及药物。抑癌间充质干细胞制备技术由三项专利技术组成:生物时间机器专利技术,癌细胞透析仪专利技术,生物减速剂抗癌技术,可用于生产抑癌间充质干细胞抗肿瘤药物,或者直接应用临床对癌症患者进行癌细胞透析治疗,治疗实体癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。治疗设备及活性生物分子药物都是国家在册药典药物,可以直接应用于临床,并且能立杆见影。根治肿瘤疗效100%.不需投资,可以直接临床应用及推广产品。抑癌干细胞抗癌成果初见成效我们从手术切下的肿瘤组织、肿瘤术后引流液、癌性胸腹水中获取DNA,RNA制取抑癌干细胞miRNAs等药物。输入癌细胞原发灶,能修复沉默癌基因,彻底杀灭原发灶中的癌细胞及重新编辑扶正缺陷免疫细胞的抗癌功能。抑癌干细胞miRNAs抗癌实验成果展示 (2013年武大医学院病毒所中心实验室)抑癌间充质干细胞给癌症治疗带来了新希望。如果在肿瘤治疗,干细胞应用上有意向合作的老师和企业家请联系我们。让我们一起为治服肿瘤,安全成功应用干细胞而共同努力。武大医学部病毒学研究所严银芳武汉市武昌东湖路115号联系电话15927431505最近几年尤其是癌症基因组测序项目的实施,使得人们开始重新审视这一理论。人们发现基因被激活或失活,并不一定要通过DNA序列改变,表观遗传调控失常也可和基因突变一样造成致癌后果。
  • 神奇的“万-能细胞”——干细胞
    人体内有各种各样各司其职的细胞,白细胞、淋巴细胞保护我们免受细菌及病毒的侵害,红细胞携带氧气,血小板可以凝血… … 除了这些,人体内还有一种细胞功能更复杂,那就是有“万-能细胞”之称的干细胞。要知道,人体内的细胞都是有寿命的,例如红细胞一般有120天左右的寿命,120天后全新的红细胞就会代替那些老去的红细胞。那么,新的红细胞从何而来?其实,新的红细胞就是由干细胞中的造血干细胞分化而来。这就不得不提干细胞的五个特征:一是自我更新,指细胞分裂增殖的过程,产生的子代细胞仍维持亲代细胞的原始特性,比如,肝移植供者切除3/4的肝脏,可以在两周内完全恢复成原样。二是克隆源性,即单个细胞具有创造更多相同细胞的能力,一个细胞能复制成两个完全一样的细胞。三是高度分化潜能,即能向不同的组织分化。例如我们临床上已经成熟应用的白血病治疗方法——造血干细胞移植,其实就是利用了造血干细胞的分化功能,相当于更换了正常的干细胞。四是可塑性,指干细胞具有分化为其他类型组织细胞的能力。例如骨髓造血干细胞可以在适合的环境下分化为和脑组织的神经同类型的神经细胞。五是生物学特征,干细胞要想维持自我更新和分化的特性,需要特定的干细胞微环境,在不同的微环境中,干细胞可以发挥不同的能力。干细胞还是个大家族,根据不同的标准,可有多种分类。例如,根据来源不同,干细胞可分为胚胎干细胞和成体干细胞两大类。胚胎干细胞主要来自囊胚的内细胞团,是一种高度未分化细胞;成体干细胞是对胎儿、儿童和成人组织中存在的多潜能干细胞的统称。相比于胚胎干细胞,成体干细胞来源较广,相对容易获取,并且源于患者自身的成体干细胞在应用时不存在组织相容性的问题,可避免移植排异反应和使用免疫抑制剂。按照发育潜能,干细胞又可分为全能干细胞、多能干细胞、单能干细胞三大类。全能干细胞是指能够发育成具有各种组织器官的完整个体潜能的细胞,如受精卵;多能干细胞虽然能分化出多种细胞组织,但并不能发育成完整的个体,如胚胎干细胞;单能干细胞是指只能向单一方向分化、产生一种或几种密切相关类型的细胞,如造血干细胞、神经干细胞、心脏干细胞等。当前,干细胞研究已经成为医学领域和生物医学领域的热点之一。经过多年的研究积累,我国在干细胞研究领域也已取得了诸多成就,如利用干细胞开展脊髓损伤修复已初见成效。相信不久的将来,随着干细胞理论的日臻完善和干细胞技术的不断发展,“万能细胞”将为人类健康做出更多贡献。
  • 以色列科学家发现胚胎干细胞分化机制
    以色列希伯来大学哈达沙医学院的分子生物学家霍华德• 塞达尔教授和癌症研究专家伯格曼教授,发现了使胚胎干细胞分化为不同组织和器官细胞的机制。   他们研究发现,胚胎干细胞分化过程受一个称为G9a基因的影响,该基因可使让胚胎干细胞分化为不同组织和器官的基因关闭,从而使其无法发挥作用。据认为,该研究成果对今后的干细胞治疗具有重要意义。   胚胎干细胞是早期胚胎中尚未分化的全能细胞,它们与成体细胞不同,具备发育为各种组织和器官的潜力。负责这项研究的塞达尔教授解释说,当胚胎在子宫中着床后,细胞的分化过程即开始了。此时,细胞内有两种控制机制发生作用,一种使细胞保持其全能状态的基因被关闭,另一种使细胞发育为肌肉等特定组织的基因被启动。胚胎干细胞一旦开始分化为不同的组织细胞,便失去其全能性。   目前,一些科学家用成体细胞培育干细胞取得了一定进展,但这项研究也面临较大难度,主要是成体细胞已经失去了胚胎干细胞的特有潜力,很难通过重组使其达到胚胎干细胞的程度。塞达尔教授的这项研究成果为今后干细胞治疗带来了新的希望。科学家将来或许可以利用胚胎干细胞分化机制培育出新的组织和器官,用于取代人体中的病变部分。
  • CYTO2024笔记:光谱流式技术应用爆发式增长,新"玩家"入局——纽约阿尔伯特爱因斯坦医学院干细胞流式平台技术总监孙大千
    “光谱流式作为CYTO会议的重头戏已经有好几年了,也一直是我个人关注的重点。尤其是因为过去的一年中我的工作重点就是光谱分选仪的安装调试和运行推广。在这一次的会议上, 虽然高维流式的维度仅从上次CYTO的48色提高到了50色,但光谱流式技术在应用广度和理论深度等方面都在迅猛发展。”——笔者:孙大千 纽约阿尔伯特爱因斯坦医学院 干细胞流式平台 技术总监——01——光谱流式技术迅猛发展,自动化、AI、影像流式加持CYTO会议的全体和平行会议报告中,涉及光谱流式技术的非常之多。更让人感兴趣的是光谱流式开始与其它的前沿技术热点相结合,比如自动数据分析,AI技术与影像流式技术等。光谱流式的应用对象则从免疫细胞延伸到了肿瘤细胞,干细胞等等领域。研究的组织类型也从免疫系统扩展到了全身各种器官和组织。比如剑桥大学 Andrian Liston教授的前沿报告 ”FlowCodes, a flow cytometry based platform for massive in vivo screening”。作者使用48色高维流式染色方案,来分析46种不同组织的免疫特征,以此来研究Treg在组织间的迁移过程。研究产生了天量数据,用人力来分析近乎不可能。于是作者编写了开源软件FlowCode,对数据进行自动设门分析,取得了良好的效果。为了方便大家分享这个工具,作者还发布了软件的二维码,扫码就可以试用。这也是本次会议 的一股热潮,各种工具软件层出不穷,而且都是开源资料,非常有利于技术的推广。约克大学的David Kent教授则是利用前沿仪器把流式与影像技术结合起来,不仅检测标记物的表达,同时还可以观测到标记物在细胞内的分布。并且将二者结合起来对造血干细胞进行了分群,分选和一系列功能性研究。报告的题目是“Seeing is believing :Unlocking new research questions using image enabled cell sorting”,“Seeing is believing/眼见为实”十分形象的描绘了影像与流式技术结合的巨大优势。同时,在各个平行会议,尤其是两个单元的光谱流式平行会议中,我看到了众多30-50色的高维光谱流式染色方案,应用于识别免疫细胞以及免疫环境中的各种组织细胞。细胞的来源也不限于人和小鼠,还扩展到了非人灵长类动物,用于疫苗研发。课题的领域则涵盖了基础,转化与临床研究。由于光谱流式技术大大拓展了数据的维度,最近连续几次CYTO中的数据分析报告也主要围绕光谱与影像两个领域展开。算法分析高维数据, 细胞分群本就是难点,研究人员其实还需要再进一步探索, 漂亮的高维数据到底能告诉我们什么?今年除了新的降维算法继续涌现之外,数据分析工具又向前跨越了一步,开始在AI的辅助下直接解释流式数据的生物学意义了。也就是说,我们输入高维数据之后,不仅能看到令人眼花缭乱的彩色细胞群图谱,还能够直接推测每群细胞的表型,甚至探索表型变化与生物学和病理学特征的相关性。这样的分析是AI通过搜索浩如烟海的科研文献来实现的,极大节省了我们用于文献检索的时间。典型的例子是多色流式先驱Pratip 博士开发的TerraFlow系统。——02——爆发式应用增长激发仪器厂商热情,光谱流式赛道涌入新“玩家”如果说光谱流式技术在几年前,还是令人好奇的新鲜事物,现在它已经走进了大部分学校和研究机构。本次CYTO之前ISAC曾做过全球流式使用情况的问卷调查,用过光谱流式仪的用户已经达到了三分之二。应用的爆发式增长显然激发了仪器厂商的极大热情。感谢Cytek,总结了光谱流式仪的发展史。在本次CYTO会议上,许多头部企业都宣布推出或即将推出新款光谱流式仪。包括赛默飞,索尼,贝克曼,安捷伦等等。同时,国产流式仪器也在努力赶的过程中,在CYTO上我看到了层浪科技的展位,得知他们也有计划在明年推出自己的光谱流式仪,非常高兴。竞争的市场是用户的福音,我们可以一起期待百花齐放的春天了。——03——问题与挑战当然,随着光谱流式技术的维度迅速冲上50+这个台阶,同时使用范围加速扩展,高维+光谱也产生了许多特有的问题和挑战。从染色方案设计与验证,到实际操作时对照的制备与光谱解析的细节,再到数据的分析解读,光谱流式都与传统流式既有相似之处,也有着自己的特殊性。我非常重视的是BD公司Peter Mage博士在设计50色高维流式方案的时候发现的新概念:光谱解析造成的信号扩展误差,这是高维光谱流式独有的现象,对于我们设计高维染色方案有极大的影响。对于这个问题,我会单写一篇小文章来讨论。还有,由于高维流式使用的抗体太多,就容易使得两个荧光抗体分子在空间上过于接近,从而发生FRET现象。图中这个诡异的火箭峰,很容易被误认为双阳性群,其实是FRET造成的。在验证和优化高维染色方案的时候需要特别警惕这种现象。在这次会议上争论很多的,还有一个非常实际的操作问题,相信有光谱流式经验的伙伴们多半都遇到过。这个问题就是:怎样处理图中这样不理想的光谱解析结果?可以像传统流式一样,手动加上一层补偿吗?如果加补偿的话,应该遵循什么样的标准?倘若加的不对,会不会造成实验结果的误读呢?我和许多同行专家交流过,大家莫衷一是。——彩蛋环节——“We can’t. The authors are still fighting with each other now.”最有趣的是上次CYTO中联合众多资深流式专家,设计并主持流式纠错workshop的Anna Belkina博士,她对于鉴别错误的流式数据有着丰富的经验。我问她什么时候各位大咖能总结出一个SOP,教大家怎样正确的在光谱解析数据上手动附加补偿。她半开玩笑的眨眨眼说 “We can’t. The authors are still fighting with each other now.” 不过,大家还是有一些共识的:首先需要尽一切努力制备正确的单染对照,还要充分的分析自发荧光的影响,这样可以减少光谱解析错误的程度。另外,最好要准备细胞表型已知的阳性对照样品,用来验证染色方案和解析过程的准确性,比如健康人的外周血细胞。还要充分的阅读文献,对于样品中细胞分群应该有的样子有一定的了解,再去手动加补偿,这样才能最大限度的避免误读。如果对于分群的模式毫无概念,贸然去手动加补偿,那就是典型的盲人瞎马,有很大的可能会掉进坑里,得出错误的结论。【后记】总而言之,光谱流式作为一个强大的研工具,其技术已经发展到了相当的高度。现在的大趋势是向应用的广度和深度方向发展。可以说,光谱流式就像一柄刚刚锻炼成功的神兵利器,光芒耀眼夺目。但是这毕竟是一件新武器,它的创造者和使用者仍在摸索它正确的使用方法,同时在不断探索它能力的边界。如果使用得当,这件神兵能为你破除迷障,打开一片新天地。如果使用不当,造成的恶果也会超过它的前辈。就让我们一起努力,成为能够熟练驾驭这件神兵的剑侠吧,期待它帮助我们打开新世界的大门。【特别声明:原创文章内容已受保护,任何公众号或媒体网站如需转载请先联系授权。】中国流式小组官方微信公众号
  • 间充质干细胞治疗的前世今生
    近几十年来,医疗技术快速发展,对人们健康做出了巨大贡献,但是越来越多难以治愈的疾病,如癌症、糖尿病、心血管疾病和老年痴呆症等发病率也在不断攀升,而以化学药物和手术治疗为支柱的传统西医学发展逐渐遭遇瓶颈。 20世纪末以来,以干细胞技术为核心、被科学界誉为第三次医学革命的再生医学成为了人们治愈此类疾病的新希望。全球干细胞领域领军人物哈佛大学资深医学专家威廉.雷德博士说:“再生医学是继药物、手术治疗后的又一场医学革命,他拥有治愈疾病、器官再生、延长生命的潜能。并且可以完全颠覆我们的行医方法”。 一、间充质干细胞间充质干细胞(MSC)是一类早期未分化细胞,具有自我更新、自我复制、无限增殖及多向分化潜能等特点,可通过分泌细胞因子,减少炎症、减少组织细胞凋亡、促进内源性组织器官的干祖细胞增殖及进行免疫调节,从而作为种子细胞达到修复组织器官的效果。 目前间充质干细胞治疗各种疾病的临床试验在世界范围内都在如火如荼的进行中,截止目前,clinicaltrial.gov网站注册应用的间充质干细胞相关的临床试验超过950项,中国临床试验注册中心注册的间充质干细胞临床试验超过150项。 二、间充质干细胞治疗优势多向分化:具有强大的增殖能力和多向分化潜能;免疫调节:免疫原性低,有免疫调节功能,使用不引起免疫排斥反应,且可抑制排斥反应;数量丰富:各组织中含量丰富,易于采集。繁殖力强:经体外培养可达10亿个,供多次使用。安全可靠:基因稳定,不易突变,多次传代扩增后仍具有干细胞特性。适用面广:适用范围广泛,几乎可用于治疗所有的组织损伤、衰老及退行性病变。三、临床产品示例1.移植物抗宿主病:TEMCELL2016年2月,Mesoblast公司的药物在日本获批上市,商品名称TEMCELL。TEMCELL是一款骨髓来源的间充质干细胞产品,主要批准用于儿童和成人的移植物抗宿主病。这是日本国内首个获批的异体细胞治疗药物。2.骨关节炎治疗药物:CartistemMedi-post公司的Cartistem是通过分离间充质干细胞,培养并制成商品化的药物。主要用于治疗由于年龄、创伤、退行性及疾病引起的骨关节炎。爱必信为您提供优质的无血清培养基,助力细胞治疗!爱必信无血清培养基优点:1.无外源动物蛋白成分,大大降低各类病毒、霉菌和支原体等的污染风险。2.全程无血清生产,极大降低批次间差异。3.可用于原代分离,且培养过程无需包被培养板。4.扩增效率高,24h左右增殖翻倍,节省培养时间。5.内毒素 abs9416 成软骨检测染液 100ml 462 abs9415 成骨检测染液 100ml 462 abs9413 无血清细胞冻存液(治疗级) 100ml 1712 abs9417 无血清细胞冻存液(科研级) 100ml 662 abs9402 Xeno-Free人间充质干细胞培养基 100ml/500ml 998/3108 abs9401 Xeno-Free人间充质干细胞培养基(无酚红) 100ml/500ml 998/3108 abs9405 人多能干细胞分化培养基 500ml 2289 abs9404 人多能干细胞完全培养基 500ml 3444 abs9403 人多能干细胞条件培养基 500ml 2772 abs9409 人多能干细胞消化液 100ml 305 abs9420 人脂肪干细胞无血清培养基(无酚红) 500ml 2548 abs9419 人脐带间充质干细胞无血清培养基(无酚红) 500ml 2548 abs9407 人间充质干细胞成脂分化试剂盒 100ml 1953 abs9418 人间充质干细胞成软骨分化试剂盒 100ml 2069 abs9406 人间充质干细胞成软骨分化试剂盒 100ml 2069 abs9408 人间充质干细胞成骨分化试剂盒 100ml 2541 abs9412 ES/iPS细胞冻存液 100ml 1943Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • 颜宁等在《细胞》发文报道ABCA1的冷冻电镜三维结构
    p   2017年6月8日,清华大学生命学院、结构生物学高精尖创新中心颜宁研究组在《细胞》(Cell)杂志在线发表了题为《人源脂类外向转运蛋白ABCA1的结构》(Structure of the Human Lipid Exporter ABCA1)的研究论文,首次报道了胆固醇逆向运输过程中的关键蛋白ABCA1近原子分辨率的冷冻电镜结构,为理解其作用机制及相关疾病致病机理奠定了重要基础。 /p p   胆固醇广泛地存在于高等动物的各类组织细胞当中,它不仅是细胞膜、血浆脂蛋白的重要组成部分,也是包括胆酸、维生素D、类固醇激素在内的许多特殊生物活性分子的前体化合物。但是,人体内过量的胆固醇积累会促进血管动脉粥样硬化的发生和发展,并有可能导致严重的心脑血管疾病(如冠心病及中风等)。正因为胆固醇对于人体健康具有两面性,所以细胞内的胆固醇平衡(cholesterol homeostasis)对于维持人体的健康是必须的。细胞内的胆固醇平衡涉及一系列受严格调控的过程(图1),例如低密度脂蛋白受体介导的胆固醇摄取、以乙酰辅酶A为原料的胆固醇合成、SREBP/SCAP/Insig信号通路介导的胆固醇代谢转录调控、NPC1/NPC2介导的胆固醇胞内转运、ABCA1/ABCG1介导的胆固醇逆向运输(reverse cholesterol transport)等。 /p p   颜宁教授研究组一直以来都在针对胆固醇代谢调控通路进行系统的结构生物学与生物化学研究,在近年开始取得进展。她们相继解析了胆固醇感应蛋白Insig在分枝杆菌中同源蛋白的晶体结构(Ren et al., Science, 2015) 裂殖酵母SREBP、SCAP各自C端可溶结构域的晶体结构以及可溶结构域复合体的冷冻电镜结构(Gong et al., Cell Research, 2015 Gong et al., Cell Research, 2016) 人源胆固醇胞内转运蛋白NPC1的冷冻电镜结构(Gong et al., Cell, 2016)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a6900dcb-ad18-4a7e-a91e-12ed9266aba4.jpg" title=" 1.jpg" width=" 600" height=" 590" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 590px " / /p p style=" text-align: center " 图1. 细胞内胆固醇平衡的整体示意图(图片来源:《Methods in Molecular Biology》) /p p   胆固醇逆向运输是指将肝外组织细胞内的胆固醇通过血液循环转运回到肝脏,在肝脏中进行代谢转化再排出体外的过程。胆固醇逆向运输可以通过将过量的胆固醇从动脉血管壁细胞排出体外来阻止泡沫细胞的形成,从而抑制动脉粥样硬化的发生和发展。胆固醇逆向运输过程的第一步是ABCA1将包括磷脂和胆固醇在内的脂类向细胞外运输,然后与细胞外的脂类受体载脂蛋白A-I(apolipoprotein A-I, apoA-I)结合从而形成初生高密度脂蛋白(nascent HDL)。高密度脂蛋白HDL被认为是对人体有益的,脂类的外排和与apoA-I的结合是HDL形成的限速步。之前的研究还发现,人体中的ABCA1突变会导致HDL缺乏症,包括丹吉尔病(Tangier disease)和家族性HDL缺乏症(familial HDL deficiency)。虽然ABCA1作为胆固醇逆向运输过程中的关键蛋白,同时在动脉粥样硬化等疾病的发生和发展过程中具有关键性的作用,但是目前对于ABCA1的结构及其介导的脂类外向转运和初生HDL形成的机制大部分都是未知的。 /p p   在最新的《细胞》论文中,来自清华大学的科研人员首次解析了人源ABCA1全长蛋白的近原子分辨率冷冻电镜结构,其中整体结构为4.1埃,关键的胞外区结构域为3.9埃。ABCA1属于ABC (ATP-binding cassette)超家族,这是第一个ABCA亚家族的高分辨率结构,结构显示它具有非常特别的胞外区结构域。虽然ABCA1的核酸结合结构域(nucleotide-binding domain, NBD)处于未结合核酸的状态,但是它的跨膜区却意外的处于“向外开放”(“outward-facing”)的状态,而以前报道的所有ABC外向转运蛋白在未结合核酸时都处于向内开放(inward-facing)的状态。ABCA1的胞外区形成了一个非常独特的结构,其中包含了一个长的疏水孔道(elongated hydrophobic tunnel),为进一步的功能研究提供了非常关键的线索。ABCA1的高分辨率结构,也为理解之前大量疾病突变的致病机制提供了重要基础。最后基于结构分析,她们针对ABCA1介导的磷脂外向转运提出了一个侧向进入(lateral access)的转运模型,这个模型不同于以往绝大部分主动转运蛋白和次级转运蛋白所采取的交替转运(alternating access)模型。在交替转运模型中,转运蛋白的跨膜区在转运过程中需要交替的呈现向内开放和向外开放的形式,从而实现将底物从膜的一侧向另一侧转运 然而在ABCA1的侧向进入模型中,跨膜区即使在“向外开放”的情况下,底物依然可以从细胞膜的内叶(inner leaflet)侧向进入跨膜区的底物结合口袋,因此ABCA1在转运过程中可能不存在一个“向内开放”的状态(图2)。总的来说,ABCA1结构的解析不仅为理解其作用机制及相关疾病致病机理奠定了重要基础,同时也丰富了我们对跨膜转运蛋白工作机理的理解。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/2548f4ef-8828-4815-b1f8-52ad21318001.jpg" title=" 2.jpg" width=" 600" height=" 598" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 598px " / /p p style=" text-align: center " 图2. 人源ABCA1蛋白的结构模型及其介导磷脂外向转运和初生HDL形成的示意图 /p p   CLS项目13级博士生钱洪武和结构生物学高精尖创新中心卓越学者龚欣博士(医学院博士后)为本文的共同第一作者,颜宁教授和龚欣博士为本文的共同通讯作者。CLS项目16级博士生赵馨和医学院15级博士生曹平平也参与了该项课题研究。本研究获得了清华大学冷冻电镜平台雷建林博士、李小梅和李晓敏的大力支持。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。科技部、基金委、生命科学联合中心-清华大学、生物膜与膜生物工程国家重点实验室、北京市结构生物学高精尖创新中心为本研究提供了经费支持。 /p
  • Cancer Cell | 单细胞图谱揭开非小细胞肺癌肿瘤分类新标准
    免疫治疗是非小细胞肺癌(Non-small cell lung cancer,NSCLC)的主要治疗方法之一。虽然肿瘤突变负荷(Tumor mutational burden,TMB)与免疫治疗的响应应答相关,但是免疫应答与肿瘤基因型之间的关系还知之甚少。2021年11月11日,美国西奈山伊坎医学院Miriam Merad研究组与Ephraim Kenigsberg研究组合作发文题为Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification,通过建立病人非小细胞肺癌中肿瘤细胞的scRNA-seq以及CITE-seq分析,确定了肿瘤突变负荷以及TP53突变的情况,从而构建了NSCLC肿瘤的细化分类以及患者分层,为免疫疗法的响应提供了新的数据库参考。为了对肿瘤微环境中的免疫细胞的转录状态进行检测,作者们对未进行治疗的、早期的NSCLC患者体内的肿瘤进行切除并对细胞进行分析(图1)。作者们通过CITE-seq(Cellular Indexing of Transcriptomes and Epitopes by Sequencing)、scRNA-seq以及TCR-seq(T cell receptor sequencing)整合免疫细胞表面标记的抗体分析生成了三个数据库。作者们对8名患者的肿瘤和非肺部组织进行了CITE-seq,对另外27名患者进行了scRNA-seq。CITE-seq中采用了15个用于注释细胞类型的抗体,并最终扩展到81个抗体进行更具体的研究。除此之外,作者们的还对三名患者进行了scRNA-seq/TCR-seq的联合分析。图1 对病人NSCLC肿瘤组织的CITE-seq、scRNA-seq以及TCR-seq分析总的来说,来自35个肿瘤和29个相匹配的非肺部样本中的361,929个单细胞被分为30个注释的转录状态细胞群。基于RNA的聚类分析,作者们共鉴定除了49个免疫细胞群体,包括T细胞、B细胞、浆细胞、肥大细胞、浆细胞样树突状细胞以及单核吞噬细胞等。CITE-seq数据使用成熟的蛋白质细胞标记物进一步确认了细胞身份。为了确定组织取样是否会导致分析结果的差异,作者们对8名患者的每个肿瘤的三个不同区域进行了取样对比分析。作者们发现免疫细胞表型的差异主要是由肿瘤之间的差异而非区域取样差异造成的。因此,肿瘤微环境中的特征稳健且可重复,促使作者们进一步分析其中转录状态的差异与肿瘤分型之间的关系。通过对肿瘤的scRNA-seq以及CITE-seq分析,作者们发现肿瘤中树突细胞(Dendritic cells,DC)组分主要包括cDC1、cDC2、富含调控因子的成熟mregDC以及DC3类型(图2)。其中DC3是肿瘤中最普遍存在的DC亚型,并且在肿瘤中数量会增加,而mregDC是最为罕见的类型。先前的研究表明mregDC的激活对于诱导肿瘤定向T细胞应答至关重要,因此作者们想对单个载玻片上的肿瘤样品进行连续免疫组化染色,研究检测mregDC在肿瘤中的分布【1】。作者们发现在靠近T细胞的三级淋巴结构区域(Tertiary lymphoid structures,TLS)存在MYH11+滤泡树突状细胞的聚集。TLS结构的形成有助于患者接受免疫疗法以及预后【2,3】。通过对DC3细胞类型的分析,作者们发现DC3的特征介于单核细胞样细胞和cDC2样细胞之间。另外,通过基因表达的差异分析作者们鉴定发现一个DC模块基因mod28富集表达在肿瘤病灶区域,其中包括CD1A以及CD207基因表达,这些基因标记出LCH(Langerhans cell histiocytosis)朗格汉斯细胞组织细胞增生症细胞,因此作者们又将该细胞群的分类名称为LCH-like细胞。随后作者们对NSCLC中的T细胞进行了细致分类。CITE-seq对T细胞的分析鉴定发现CD8+细胞具有自然杀伤细胞样(Natural killer-like)特征,另外也有多种因子表达的激活型T细胞等。除此之外,通过对病人体内的NSCLC肿瘤进行配对的scRNA-seq/TCR-seq分析,作者们发现激活型T细胞是肿瘤中存在最多的类群,而且与非肺部组织相比肿瘤内包含多种类型的T细胞,比如激活型T细胞、周期型T细胞以及调节型T细胞等。作者们对的肿瘤中免疫细胞的数量进行分析后发现,B细胞和浆细胞的数量在肿瘤中都出现了显著的升高,但是B细胞与浆细胞之间的比例相对来说是比较稳定的。为了建立起细胞表型驱动病人多样性的关联,作者们希望对细胞类型出现频率进行归一化分析。通过该分析,作者们发现激活型T细胞、IgG+浆细胞以及MoMΦ-II细胞对于肺癌的出现具有很高的相关性。因此,作者们将该细胞组成称为肺癌激活模块(Lung cancer activation module,LCAM)。作者们可以根据肿瘤免疫微环境中存在的免疫细胞的类型对病人进行分型,与已有的聚类方法Seurat【4】相比LCAM分型方法具有很高的准确性和稳健性,对其他独立于本工作的数据库【5】进行测试也可以确认该LCAM分类方法具有很高的可重复性。作者们发现LCAM评分与病人吸烟的情况具有相关性,该细胞模块的表达是对突变和异位表达的肿瘤抗原的适应性反映的标志。而且,LCAM与TP53突变负担也存在相关性,TP53突变的肿瘤与TP53野生型的肿瘤相比,LCAM评分更高。而且TP53的突变与肿瘤突变负担也存在相关性。为了鉴定这些发现在其他肿瘤中是否具有普适性,作者们在肺鳞状细胞癌中也进行了相似的分析,发现肺鳞状细胞癌中也表现出较高的LCAM评分水平。因此,LCAM与肿瘤突变负担相关,可能可以作为特异性免疫检查点阻断反应的非冗余生物标志物。 工作模型总的来说,该工作通过对35个NSCLC病人中相匹配的肺部肿瘤与非肺部组织的scRNA-seq、CITE-seq以及TCR-seq,构建了迄今为止最大的早期肺癌免疫反应细胞图谱,并通过对其中免疫细胞类型的分析建立了对NSCLC肿瘤进行详细分型的LCAM模块,LCAM评分较高说明患者正在经历一个更有力的抗原特异性抗肿瘤适应性免疫应答过程,同时说明LCAM可以作为更直接的衡量抗原特异性抗肿瘤免疫激活的指标。原文链接:https://doi.org/10.1016/j.ccell.2021.10.009
  • 英国基尔大学细胞及组织工程研究案例
    ——寻找合适的合作伙伴并购买他们的解决方案所带来的益处将超过投资这种新型本设备所存在的风险。在英国基尔大学的多学科生物工程和治疗性小组中,研究人员开展了多个着重于细胞及组织工程学和使能技术的研究项目。这些内容包含在他们给诊所的介绍中。其中一个研究领域是再生机制,由医学科学&技术研究所的主管Alicia El Haj教授领头。挑战随着对结缔组织的组织生物工程学的关注,其中包括对骨头,软骨,肌腱和韧带的关注,El Haj教授和他的团队-博士后Dr. Yvonne Reinwald和Dr. James Henstock以及博士生Joshua Price,需要一个更为复杂的系统来对细胞和组织进行静水刺激。他们现有的机械压缩系统无法对多孔他们现有的机械压缩系统无法对多孔组织培养板上的组织再造生理压力,从而测试不同的模型组织,并允许实验中存在大量的样本。他们知道,在组织内部制造生物反应器不仅消耗时间,而且还需要一支跨专业团队,这在其他实验室很难进行。作为一个早期的解决方案而不是本土系统,他们需要行业合作伙伴提供一个可靠的生物反应器,确保可重复性结果,增加处理量,并由不同部门提供使用的灵活性。最重要的是,这一系统要求在这些新型实验过程中保证细胞处于存活状态,并保持健康。购买静压生物反应器后,El Haj教授就能够进行不同种类的刺激,这是他们现有试验所无法完成的。但是变化会带来不确定性。El Haj说:“因为这是一种不同的类型,需要把所产生的结果与之前已经发表的数据进行仔细比较。此外,增加样本数量会带来风险-如果无法很好地控制系统,则可能会带来更大的变数。”因为了解到所存在的这些风险因素,因此El Haj希望从一家有声望的高端设备制造商处购买生物反应器。寻找到合适的合作伙伴并购买解决方案所带来的益处超过了投资这种新型设备可能存在的风险。解决方案El Haj教授和Instron共同设计了一个可以工业化生产的生物反应器。CartiGen HP生物反应器能提供静态或动态的静水压力,通过模拟生理条件,促进实验室中192份独立、同步样本中自然细胞的生长。在收集基准数据后,她就能够确定,HP生物反应器系统中所使用的多孔细胞培养板上产生了蒸发作用。“启用一个新系统的基本要求是能够保证细胞存活,”El Haj说,“细胞需要生存在含水和养分的环境中,过度的蒸发作用会对细胞产生很大的破坏。”在了解其重要性后,Instron团队做了一个小改变,以保证细胞连续和持续性的水化。他们在仪器的顶部粘贴了一张现成的薄膜,以减少蒸发作用,但同时能保证气体流通,确保细胞处于存活状态。结果生物反应器为基尔大学的再生医学团队提供了更多的可能性。因为净水压力在众多的生物系统中起着至关重要的作用,因此,研究员能借助于新的生物反应器在实验室再造一个必需的环境,在这个环境中观察了解发育生物学,将来还能把发育生物学用于改善TERM疗法。El Haj说:“如果没有这套系统,现在进行的很多操作都无法实现。这套系统彻底提高了我们在3D模型上进行的生理力量研究的能力。”
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 科学家发明癌细胞“照妖镜”:黄金纳米粒子
    以色列物理学家研发使用黄金纳米粒子检测早期癌症的方法首次通过人体测试。以色列巴伊兰大学纳米科技及先进材料研究所的德奥尔· 菲克斯勒教授率领的团队,经过5年的研究证实了纳米技术在癌症早期诊断中的光明前景。他们研发的非侵入无辐射光学系统,被用于检测脑部、颈部及口腔癌症,也可用来检测位于舌头、咽喉部位的癌症发病情况。该方法已在动物身上测试成功,最近也通过了人类测试,被确认有效。   几分钟即可检测出癌症且成功率超过90%   这种发明是如何工作的?如果一位口腔感到疼痛并伴有其他病症的患者去看医生,有一种令人不安的可能就是,该患者正受到口腔癌、舌癌或喉癌的折磨。医生要求患者使用一种特殊的混合物漱口,几分钟后便能确认患者是否患有癌症。   这样的测试很简单,患者只要花上几分钟,用含有黄金纳米粒子的混合物漱口,这些粒子能够有效给癌细胞着色,着色部位被一个专门研发的工具扫描成图,医生便可在电脑屏幕上查看结果。当前的临床试验表明,该方法可成功检测出人类舌头及咽喉部位的癌症。舌癌的检测在特拉维夫大学牙医学院进行,咽喉癌的检测由舍巴医学中心耳鼻喉部完成。菲克斯勒说:&ldquo 我们将试验结果和病人活检结果进行对比,该试验的成功率超过90%。&rdquo   两种技术手段成就这一快速检测技术   菲克斯勒研发的检测方法包括了两种在医学领域还未充分展示其全部潜能的技术手段,&ldquo 物理扩散&rdquo 技术和&ldquo 纳米技术&rdquo 。   &ldquo 物理扩散&rdquo 技术发展于上世纪70年代末,主要的理论基础是光束在身体器官上的反射能够帮助检测肿瘤。对被器官阻碍的光线扩散的研究可以显示出器官哪一部分吸收或反射了光线,从而有助于检测癌细胞生长。菲克斯勒说:&ldquo 研究者们花费了很长时间构建模型,尝试找出光线反射原理下器官发生了什么,然而该领域的研究停滞了一段时间,因为该模型无法确切显示肿瘤是否被检测到,也无法确认扩散源是否来自身体的不同部分。作为基础研究的极好模型,事实证明它没有多少临床价值。&rdquo 他解释道:&ldquo 被称为漫反射的理论模型自20世纪80年代就很流行,但对癌症的检测不能仅依赖于光线对器官的反射这一依据,要确认癌细胞是否生长,我们需要能够更好地描绘器官图像的物质或微粒。&rdquo   &ldquo 大约12年前,一种被称为分子药剂的新思路进入人们的视线。&rdquo 菲克斯勒说。和先前寻求大体图像的思路不同,新思路希望寻求分子层面的结论。以此思路为基础,一种被称为&ldquo 对比成像&rdquo 的方法在近十年中研发出来。运用该方法,医生将一种秘密药剂注射到患者身体中,植于医生希望探测癌细胞生长的地方,从而获得所需图像,这种秘密药剂就是纳米粒子。其中,黄金纳米粒子因其无毒且与人体具有较好的集成度而被广泛使用。   &ldquo 事实上,纳米粒子是在我们血液中运行的小型机器人。&rdquo 菲克斯勒解释说,&ldquo 当纳米粒子在癌症抗体分子中时,我们可以观察到,这些粒子能够黏着于癌细胞。因此无需核磁共振或CT检查,癌细胞便可被识别出来。因为某种量子特性,黄金纳米粒子在一定的波长下能够对光线产生很强的反射作用。&rdquo   近年来,一种使用黄金纳米粒子成像的技术被研发出来,基于这种技术的疾病探测和治疗仪器随之出现,但这种仪器有个实质问题,即如何平衡创建高清质量的图像与所需黄金数量的关系。   新算法模型还可将该技术扩展于检测其他疾病   菲克斯勒和他的同事对自己的探测方法不断改进。&ldquo 这就像在寻找隧道。&rdquo 他解释道,&ldquo 仅探测外部环境找到隧道并不容易,有时候你需要等待有人从里面出来。我们不仅依据粒子反射的光线,同时还根据人体组织上光线扩散产生的效果检测癌细胞。&rdquo   研究人员改变了黄金纳米粒子传统的球形形状,把它做成了杆形,改变了粒子反射波的长度,使粒子更深入地穿透到人体组织中。更重要是,他们研发了一种数学算法,能将粒子反映的信息转化成实际的图像。&ldquo 粒子穿透组织,我们看不到反射。&rdquo 菲克斯勒说,&ldquo 但我们可看到它们如何在人体组织内影响光扩散。基于从组织细胞反射出来的光子数量,可建立计算数学函数。&rdquo   菲克斯勒的方法不限于癌症检测,他还在开发多发性硬化症的诊断方法。他的研究引起了国际科学界的关注, 去年6月,伦敦医学院为他颁发奖学金,资助其之后一年在伦敦国王学院与其他科学家一同继续此研究。44岁的菲克斯勒出生于特拉维夫,现任巴伊兰大学先进光学显微镜实验室主任。 他在瓦伦西亚大学完成博士后工作,曾在中国华南师范大学激光研究所担任客座教授。
  • 细胞组织实验室落户泰州
    江苏省发改委最近同意在泰州建设江苏省首家细胞组织工程实验室,去年落户泰州医药城的江苏华亿细胞组织工程有限公司获准筹建。该项目总投资4000万元,主要建设内容包括人造皮肤构建与应用等。   人造皮肤的准确名称是“生物医学活性人工皮肤”,其产业化在全球刚刚起步。江苏华亿项目1年前落户泰州医药城,现有100万平方厘米的人造皮肤库存。
  • 细胞坏死与细胞凋亡的区别
    细胞程序性死亡 概念:细胞程序死亡(programmed cell death,PCD)也常常被称为细胞凋亡,是生物体发育过程中普遍存在的,是一个由基因决定的细胞主主动的有序的死亡方式。具体指细胞遇到内、外环境因子刺激时,受基因调控启动的自-杀保护措施,包括一些分子机制的诱导激活和基因编程,通过这种方式去除体内非必需细胞或即将发生特化的细胞。而细胞发生程序性死亡时,就像树叶或花的自然凋落一样,凋亡的细胞散在于正常组织细胞中,无炎症反应,不遗留瘢痕。死亡的细胞碎片很快被巨噬细胞或邻近细胞清除,不影响其他细胞的正常功能。 凋亡细胞的主要特征是(参见表15-2):①染色质聚集、分块、位于核膜上,胞质凝缩,最后核断裂,细胞通过出芽的方式形成许多凋亡小体 ②凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因始终有膜封闭,没有内溶物释放,故不会引起炎症 ③凋亡细胞中仍需要合成一些蛋白质,但是在坏死细胞中ATP和蛋白质合成受阻或终止 ④核酸内切酶活化,导致染色质DNA在核小体连接部位断裂,形成约200bp整数倍的核酸片段,凝胶电泳图谱呈梯状 ⑤凋亡通常是生理性变化,而细胞坏死是病理性变化。理论意义:程序性细胞死亡在生物发育和维持正常生理活动过程中非常重要.在发育过程中,细胞不但要恰当地诞生,而且也要恰当地死亡。例如,人在胚胎阶段是有尾巴的,正因为组成尾巴的细胞恰当地死亡,才使我们在出生后没有尾巴.如果这些细胞没有恰当地死亡,就会出现长尾巴的新生儿.从胚胎、新生儿、婴儿、儿童到青少年,在这一系列人体发育成熟之前的阶段,总体来说细胞诞生得多,死亡得少,所以身体才能发育.发育成熟后,人体内细胞的诞生和死亡处于一个动态平衡阶段,一个成年人体内每天都有上万亿细胞诞生,同时又有上万亿细胞“程序性死亡”.两者处于一种动态平衡中,使人体器官维持合适的细胞数量得以正常运作的,正是“程序性细胞死亡”机制。(又如蝌蚪尾的消失,骨髓和肠的细生物发育过程中及成体组织中正常的细胞凋亡有助于保证细胞只在需要它们的时候和需要它们活的地方存活。这对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。)实践意义:如果调节细胞“自-杀”的基因出了问题,该死亡的细胞没有死亡,反而继续分裂繁殖,便会导致有问题或恶性细胞不受控制地增长,比如癌症 如果基因错向不该死的细胞发出“自-杀令”,不让之分裂繁殖,使不该死亡的淋巴细胞大批死亡,便破坏了人体的组织或免疫系统,比如艾滋病。控制“程序性细胞死亡”的基因有两类:一类是抑制细胞死亡的 另一类是启动或促进细胞死亡的。两类基因相互作用控制细胞正常死亡。如果能发现所有的调控基因,分析其功能,研究出能发挥或抑制这些基因功能的药物,那么人类就能够敲响癌症和艾滋病的丧钟。当然,这个过程需经过一番艰苦努力,因为线虫只有959个细胞,而人体则有大约1000万亿个细胞。
  • 日本研究者开发出测量细胞间黏合力的技术
    日本研究人员开发出了能测量细胞间黏合力的技术,利用这一技术将有助于了解癌细胞的转移机制,检测人工培育的组织细胞是否正常黏合在一起。   奈良尖端科学技术研究生院和近畿大学的研究小组,日前在新一期美国《国家科学院学报》网络版上报告说,由于细胞极其微小、脆弱且紧密黏合在一起,所以将细胞分离开并测量它们之间的黏合力一直非常困难。   研究人员利用脉冲极短、瞬时功率超高的飞秒激光照射有细胞的培养液,产生冲击波,然后利用能够发现细微结构的原子力显微镜,观测冲击波并换算成力。通过变换激光的强度,测试多大强度的冲击波能够将细胞分离开,就可以测量出细胞间的黏合力有多大。   报告指出,有研究者认为,癌细胞是通过紧密附着在血管内侧的细胞上而转移的,因此这一技术将有助于了解癌细胞的转移机制,此外还可用该技术检测以干细胞培育出的组织细胞是否正常黏合在一起。
  • “十一五”863计划“干细胞与组织工程”研讨会在南通举行
    为加强863计划的过程管理工作,中国生物技术发展中心于近期在江苏南通组织召开了“十一五”863计划“干细胞与组织工程”重大项目组织工程部分研讨会。   会上各课题组长分别介绍了课题研究进展,并就存在问题与专家和代表进行了交流。会议期间,专家组还召开了工作会议,对各课题进展情况和存在的问题进行了讨论。   专家组认为该重大项目立项以来,在组织工程技术、组织器官代用品和再生医学相关评价体系等方面均取得了显著进展。部分产品已获得生产批文或进入临床,并建立了具有一定规模的高水平研究和生产基地,建立和完善了相应的技术标准、准入规范和相关伦理学指导原则。本年度部分课题取得突出进展。南通大学顾晓松教授承担的课题,完成了医用人工神经移植物产品质量标准的制定,以及标准化产品的生产,获得注册检验合格报告,目前已经制定了临床试验方案拟向SFDA申请临床试验备案。上海国睿生命科技有限公司周广东教授承担的课题,基本完成了组织工程软骨产品生产用细胞、支架材料及成品的标准制定。该重大项目的实施对加快我国再生医学研究,并将再生医学研究成果尽快推向应用具有重要意义。
  • 这家初创单细胞公司推出新技术:无需专用仪器 可适应多个测序平台
    英国初创公司CS Genetics正致力于将一种无需专单细胞专用析仪器的单细胞分析技术商业化,该公司称这种技术简单、灵活、易于扩展。 预计该公司将在2024年发布首个单细胞RNA测序试剂盒。首席执行官杰里米-普雷斯顿(Jeremy Preston)于2022年加入CS Genetics公司,此前曾在Illumina公司工作十多年,他表示:"我们的第一款产品将是SimpleCell™ 3′基因表达产品,名为SimpleCell,这个名字展示了我们拥有最简单的单细胞技术,没有之一。CS Genetics 技术的核心是一种单细胞索引方法,它借助所谓的动力学约束(kinetic confinement)来控制三维溶液空间内的反应动力学。"公司的基础技术是由公司创始人兼首席技术官卢卡斯埃德尔曼(Lucas Edelman)博士开发的。总体而言,CS Genetics 的动力学约束技术利用了两种专有解决方案:一种名为 CPair 的索引试剂,可将索引序列直接传递给单个细胞;另一种是动能封闭缓冲液 (KCB),这是一种双功能试剂,可实现热激活细胞裂解和动力学约束索引。更具体地说,CPair解决方案包含细胞结合分子,这些分子锚定在所谓的编码链的末端(这正是CS Genetics的名字来源),这些编码链是附着在珠子上的工程化DNA链。编码链还包含用于对核酸进行条形码处理的索引寡核苷酸。当细胞被引入CPair 试剂时,经过优化的化学计量促使 CPair 与细胞以一比一的比例结合。随后加入一种专有的粘性缓冲液,这种缓冲液的设计目的是防止索引寡核苷酸在细胞-CPair 复合物之间的空间扩散。细胞与CPair 试剂结合后,可在进一步处理前冰冻或冷藏保存。细胞配对后,加入动力学约束缓冲液,通过热激活裂解细胞,释放细胞中的核酸成分。温度升高也会释放编码链上的索引寡核苷酸,然后通过冷却反应将条形码与目标核酸杂交。之后,用户可以使用标准分子生物学技术制备测序就绪的单细胞文库。据普雷斯顿介绍,该方法的一个优点是,不需要物理分离细胞来进行单细胞定位,因此不需要专用的单细胞处理设备。此外,他还表示,该方案以溶液为基础,不涉及组合索引或乳状液,执行起来相对简单。"只要你有一台可以旋转条形试管或平板的离心机,有吸管,精准的多通道移液器,和一台热循环PCR机,你就可以进行测定,基本上就是这样。"他还表示,在细胞配对和热激活裂解之间停止这一过程的能力 "非常有价值"。"通常情况下,单细胞检测一旦开始,工作量就很大。CPair解决方案给了你巨大的灵活性——可以批量处理更多样品,也可以进行一些时间点和多参数实验。"到目前为止,该公司已在人和小鼠细胞上 "广泛"测试了这项技术,包括外周血单核细胞(PBMC)、神经元、小鼠脑组织离体细胞和脾脏组织细胞。该公司还没有在福尔马林固定石蜡包埋(FFPE)组织样本上测试过这种方法,但普雷斯顿表示 "没有理由说它行不通"。至于灵敏度,内部数据显示,该方法可以常规地捕获每个细胞中的2000多个基因,不过普雷斯顿认为这一指标还可以更高。虽然该公司尚未最终确定其产品规格,但他表示公司的目标是每个样本最多能捕获约 5000 个细胞,此外,细胞捕获率达到 40% 以上。就周转时间而言,从进行实验到测序的工作流程大约需要七个小时,CS Genetics将努力进一步缩短周转时间。普雷斯顿表示,自动化也还有 "很大的空间",有可能为 "更大规模的单细胞研究 "采用这种方法打开大门。虽然公司的初始产品是基于Illumina测序平台开发的,但单细胞文库可以通过商业化工具包去适配到其他测序平台。他补充说,内部研究表明,使用 Element Biosciences 和 Illumina 平台对相同样本进行测序时,数据质量 "完全相同"。此外,普雷斯顿声称该公司的方法可以 "自然地获得最长的 RNA 片段",因为它 "对细胞非常温和",没有任何微流体或剪切成分。该公司还用 PacBio 测序技术测试了该产品,在没有任何优化的情况下,测序结果 "很好",读取长度达到 2 kb。定价方面,普雷斯顿表示该技术将比市场领先者 "便宜很多",同时与其他无仪器单细胞技术 "相当"。CS Genetics公司在 6 月份启动了一项技术开放计划。由于 "资源有限",该公司只接受了十几家早期客户,包括英国癌症研究中心、斯托沃斯医学研究所、苏黎世大学和纽卡斯尔大学。普雷斯顿说:"我们正在努力解决一些小问题,并提高产品的稳定性和可重复性。"该实验的 "占地面积极小",只有两个盒装组件。第一款产品设计可容纳 8 个样本,但该公司计划随后推出 16 个样本的版本。最初的目标客户将是核心实验室,但该公司也瞄准了可能在药物研发流程中部署单细胞分析的制药公司。据悉,CS Genetics 已经获得了一笔 "小额 A 轮投资",计划在 2024 年进行 B 轮融资。普雷斯顿表示,随着公司筹集到更多资金,他们将在欧洲和美国建立并扩大一支跨洲团队。目前,公司在英国剑桥设有小型研发总部,约有 20 名员工,另外,包括普雷斯顿在内的五名员工在加利福尼亚州负责商业运营。除转录分析外,该公司还计划进一步开发动力学约束技术的其他应用,如利用抗体选择性捕获单细胞。该公司还在单细胞水平上开展了蛋白质组学分析的概念验证工作。征稿通知:基因测序仪是解码生命科学的利器,因其技术壁垒高、开发难度大,市场长期被少数几家跨国企业垄断。近些年,基因测序仪市场格局正在快速发生变化,涌现出许多新企业并纷纷推出自主研发的商品化测序仪。基于此,仪器信息网特别策划“基因测序仪新势力”专题,并向测序技术研究专家、测序仪应用专家和基因测序仪企业广泛约稿,充分了解基因测序新企业、新仪器、新技术及新应用进展。投稿邮箱:lizk@instrument.com.cn点击图片了解详情
  • 粤港干细胞与再生医学联合实验室获批
    近日,广东省科技厅组织召开第三批粤港澳联合实验室建设工作座谈会。会上,广东省科技厅通报了第三批11家粤港澳联合实验室组建情况,并为实验室授牌。记者获悉,由中国科学院广州生物医药与健康研究院(以下简称广州健康院)牵头,联合香港中文大学共同申报的“粤港干细胞与再生医学联合实验室”成功获批。干细胞与再生医学代表新一代医学革命,是未来健康产业的支柱。“粤港干细胞与再生医学联合实验室”依托广州健康院“广东省干细胞与再生医学重点实验室”建设,联合香港中文大学创新生物医学领域的研究优势和广泛的国际合作网络,汇集双方科研力量及资源优势,打造联合共享研究平台,探索并形成粤港协同人才培养模式,培育高层次人才。广州健康院副院长潘光锦担任“粤港干细胞与再生医学联合实验室”粤方主任,香港中文大学副校长陈伟仪担任港方主任。该实验室汇聚了包括2名国家杰出青年科学基金获得者、5名国家优秀青年科学基金获得者在内的近50名科研骨干。据了解,该实验室将围绕干细胞与再生医学进行建设,瞄准肿瘤、代谢性疾病、遗传性疾病的精准诊疗,通过发挥共建双方的学科优势和互补性,从疾病及治疗策略两方面入手,拓展干细胞与再生医学应用中下游的关键技术平台,研制出具有自主知识产权的再生医学产品,推进成果转移转化和人才培养,带动粤港澳大湾区干细胞与再生医学的产-学-研-医全链条升级。
  • 华粤行-2012第五届再生医学和干细胞大会
    2012年12月2日,由国家外国专家局国外人才信息研究中心、中国医药生物技术协会主办,百奥泰国际会议(大连)有限公司承办的第五届再生医学和干细胞大会在广州白云国际会议中心隆重举行。本次大会共设置五大分会,涉及领域有全球干细胞的前景展望、基础研究与新技术、干细胞和组织发育、再生医学的临床转化等众多方面。近400多名各国专家学者、医务工作者、科研工作者参会交流。本次大会可谓是一场国际生物医学同行进行学术交流的盛宴。 各国专家学者、医务工作者、科研工作者共同参加晚宴,庆祝大会顺利召开 华粤行作为参展商向广大与会科研工作者展示了三件有利的科研利器:NEPA21高效基因转染系统、JuLI荧光细胞监测仪和ADAM全自动细胞计数与分析仪。 2012年诺贝尔生理学或医学奖颁发给英国发育生物学家约翰· 格登和日本京都大学iPS(诱导多功能干细胞)细胞研究中心长山中伸弥之后,干细胞\iPS等相关研究和应用开始引起世人的广泛关注。华粤行细胞生物学团队一直致力于细胞-动物全套解决方案,期待能够为广大科研工作者提供便利,助力科研进展和临床转化。
  • 农科院建立植物细胞无机磷可视化高效检测技术
    近日,中国农业科学院农业资源与农业区划研究所土壤植物互作创新团队建立了植物细胞无机磷可视化高效检测技术,并揭示了植物细胞无机磷分布调控新机制,相关研究成果发表在《自然—植物》(Nature Plants)上。研究提出了一种快速比色无机正磷酸盐(PI)成像方法--无机正磷酸盐染色法(IOSA),该方法可以对细胞内PI进行高分辨率的半定量成像。水稻根系伸长区细胞无机磷分布模式。中国农科院供图磷是植物生长发育必需的营养元素。植物根系主要吸收无机正磷酸盐,其也是植物体内磷循环利用的最主要形态。当磷素充足时,植物体内无机磷含量能占到总磷的80%左右。因此,明确植物无机磷的细胞分布模式是研究植物磷素高效利用调控机制的关键。然而,目前对植物组织细胞间无机磷的分布和储存模式仍不清楚,主要原因是缺乏高效的植物细胞无机磷可视化检测技术。研究团队建立了植物细胞无机磷可视化高效检测技术。与现有检测技术相比,该技术具有费用低、耗时短、操作简单、不受植物种类及组织部位限制等诸多优势。利用该技术,研究人员明确了水稻和拟南芥组织细胞无机磷主要的分布模式;发现了已知磷素核心调控因子的新功能,并筛选克隆到了新的水稻叶片细胞磷再利用调控因子。该研究为磷养分分子调控机制研究提供了技术支撑,也为作物磷高效遗传改良提供了新基因资源。该研究得到国家自然科学基金重点项目、优青项目、面上项目,以及中国农科院科技创新工程等项目资助。
  • 中国学者揭示肿瘤组织中T细胞高表达PD-1的新机制
    p   在国家自然科学基金项目(项目编号:81530080,81661128007, 81773062, 81788101)等资助下,中国医学科学院基础医学研究所黄波教授课题组揭示了具有干性的肿瘤再生细胞利用色氨酸代谢途径启动肿瘤组织中T细胞PD-1表达上调的机制。相关结果以“Tumor-Repopulating Cells Induce PD-1 Expression in CD8+ T Cells by Transferring Kynurenineand AhR Activation”(肿瘤再生细胞通过犬尿氨酸转移以及芳香烃受体激活诱导CD8+ T细胞表达PD-1)为题,于2018年3月12日在Cancer Cell(《癌症· 细胞》)上在线发表。黄波为文章的通讯作者,中国医学科学院基础医学研究所、临床免疫中心刘玉英副研究员及中国医学科学院基础医学研究所博士研究生梁晓雨和董文茜为共同第一作者。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/9fd5759f-c0c0-4d5f-a0d6-af4081a93b96.jpg" title=" 001.jpg" / /p p style=" text-align: center " 图. TRC诱导激活CD8+ T细胞高表达PD-1的机理 /p p   肿瘤免疫治疗是是当前肿瘤研究的热点领域之一,通过利用免疫细胞、免疫分子直接或间接杀伤肿瘤细胞,以控制或清除肿瘤,被认为是人类战胜癌症的希望所在。肿瘤免疫治疗主要依赖活化的T细胞杀伤肿瘤细胞,然而,免疫检查点(checkpoint)分子PD-1(programmed cell death protein 1,程序性死亡受体1)具有重要的免疫抑制功能,在肿瘤组织中的T细胞表面表达上调,通过传递抑制信号阻止T细胞活化。因此,如果能阻断PD-1信号,就能够使T细胞重新活化。目前针对免疫检查点PD-1的治疗性抗体已在临床肿瘤患者的免疫治疗中取得了巨大成功,然而,PD-1抗体药物价格昂贵,且副作用大。因此,寻找PD-1的小分子阻断剂成为当前肿瘤免疫治疗药物研发的重要方向,但困难在于肿瘤组织中的T细胞PD-1分子表达上调的机理尚未完全清楚。 /p p   色氨酸作为一种必需氨基酸,其在体内不仅通过代谢生成5-羟色胺和褪黑素等重要活性分子,而且能够通过吲哚胺-2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)催化产生犬尿氨酸(kynurenine, Kyn)直接激活胞浆转录因子芳香烃受体(aryl hydrocarbon receptor, AhR)。黄波教授课题组前期研究发现,高成瘤性的肿瘤再生细胞(Tumor repopulating cells,TRC)中,IDO-Kyn-AhR通路非常活跃,而T细胞释放的免疫因子IFN-γ则进一步激活此通路,诱导TRC进入休眠(Nat Commun. 2017 8:15207) 另外该课题组还发现抗病毒的免疫因子IFN-β同样激活此通路,并更强地诱导TRC休眠(J Clin Invest. 2018 128:1057-1073)。T细胞可以通过IDO-Kyn-AhR通路调控TRC,TRC是否反过来也可以调节T细胞呢?对此,课题组通过将活化的T细胞和肿瘤细胞共培养,发现活化的T细胞不但无法杀死TRC,反而上调PD-1表达,提示TRC能够调节T细胞PD-1的表达。进一步研究发现,T细胞释放的IFN-γ促进TRC显著上调色氨酸转运蛋白以及IDO,使得色氨酸大量进入TRC并代谢为Kyn Kyn被TRC释放到细胞外后,通过T细胞膜表面的Kyn转运子,又进入到T细胞内,从而激活T细胞的AhR,AhR入核后直接结合PD-1启动子,启动PD-1的表达(如图)。该研究发现,在理论上加深了当前对肿瘤免疫的认识,而且有望发展新的肿瘤免疫治疗策略。 /p
  • Science子刊| 多色免疫荧光标记联合转录组测序助力解析宫颈癌的单细胞分子特征
    宫颈癌是全世界女性第四大常见恶性肿瘤,每年可造成30多万人死亡。宫颈鳞癌(CESC)作为宫颈癌主要病理类型约占75%,通常经历由正常宫颈到宫颈上皮内瘤变再到CESC的发生和进展过程。然而,CESC进展过程中上皮和微环境细胞相互作用关系及其关键分子途径的发展尚不清楚。2023年1月27日,山东省肿瘤医院于金明院士、岳金波教授团队与解放军总医院第五医学中心刘兵研究员团队合作在Science Advances杂志上发表了题为Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression的研究论文。为宫颈癌的诊疗提供了疾病诊断与预后的生物标志物和潜在的治疗靶点。为了阐明了宫颈上皮细胞的转录致瘤轨迹并揭示了 CESC 启动和进展中涉及的关键因素,文章作者对来自对四组13例不同病变阶段的宫颈组织(包括NC、CIN、早期CESC和晚期CESC)的起始和进展过程中,上皮细胞、巨噬细胞、NK和T细胞、内皮细胞、成纤维细胞的转录组变化及亚群特征进行了深入探索。该研究通过单细胞转录组测序,进行了单细胞RNA测序(scRNA-seq)构建了宫颈鳞癌发生和进展过程中的细胞和分子特征图谱,发现了大量肿瘤发生和进展相关的新的细胞亚群和分子。在此基础上,提出了针对“CESC生态系统“进行分析的必要性,尤其是考虑到免疫系统是作为一个动态的整体,简单对于单个细胞亚型的描述不足以展现更大的”全景“。围绕这个目标,在文章中通过大量的转录组数据,研究者发现几个细胞簇的相对丰度显示与较短的存活期显着相关:CCL20 +Mac、APOE+Mac、epi7、CD56+NK、TH17、耗尽的CD8 +T、PODXL+EC、TNFRSF9高Treg和 mCAF。相反,其他细胞簇的丰度与更长的存活率显着相关:pDC、CD16+NK、GZMK+CD8+T、ZNF683+CD8+T、CLEC9A+DC、epi8和肥大细胞。 实验部分除了转录组测序相关之外,作者使用TissueGnostics公司TissueFAXS Plus全景组织细胞定量分析系统获取图像。在长存活率相关的因素中,作者重点提出了CESC中的epi8的高相对丰度可以促进我们观察到的高水平T细胞浸润从而增强与肿瘤细胞的串扰。文中作者表示,尽管对 CESC 进行了大量的转录组分析,但这些方法无法提供对主要细胞参与者、它们的相互作用伙伴以及驱动疾病发生和发展的关键分子途径的高分辨率洞察,尤其是CAF,作为肿瘤微环境中的关键组成部分,其通过多种机制促进恶性生长和侵袭 ,而且空间 CESC 信息对于理解细胞簇的位置及其相互作用很重要,但在 scRNA-seq 分析的解离过程中存在丢失。多重免疫荧光标记与转录组测序为了揭示了 mCAF 和 vCAF 的两个主要亚群,作者选择使用TissueFAXS Cytometry技术了,通过多重免疫荧光标记验证了它们在人类 CESC 中的存在,发现 mCAF 表达高水平的与促肿瘤途径相关的基因(主要位于富含胶原蛋白的基质条纹内),以及细胞间相互作用分析表明,mCAF 可主要通过 NRG1/ERBB3途径促进 CESC 进展,该途径参与抗雄激素对前列腺癌的抗性,在之前的研究中尚未报道。这部分内容也是TissueGnostics公司的TissueFAXS Cytometry技术在关键领域取得的最新科研进展之一。Fig 1 CESC样本组织切片中的T细胞(PAN-CK(红色)、HLA-DR(蓝色)、IDO1(绿色)和CD3(灰色))的多重免疫荧光标记图像。在较短存活期显著相关的因素中,作者研究了CESC进展过程中基质癌相关的呈现为细胞(mCAF)的亚群特征,发现mCAF可能促进CESC的进展,并进一步发现其作用机制是通过NRG1/ERBB3 通路来实现的。Fig 2 多重免疫荧光CESC组织样本中mCAF和vCAF上的特异性标记物。Fig 3 mCAF肿瘤特异性配体-受体对的多重免疫荧光标记,包括NRG1-ERBB3和Wnt5A-FZD6。&bull 单细胞测序技术完成了细胞水平的组学研究,但是获取的信息内缺失了细胞的空间分布信息。如果想要补充细胞的空间位置表型,就需要引入多重免疫荧光技术。多色免疫荧光技术通过单细胞分辨率的组织成像,能够多靶点、可视化地描绘细胞的复杂空间位置信息,从而揭示细胞间的相互作用关系,细化微环境的空间结构。&bull 单细胞测序技术与多重免疫荧光技术的结合能够多层次、多角度、多组学地研究肿瘤微环境及免疫微环境,同时获悉胞间联系、基因空间变化等信息,并赋予关键基因的细胞分布信息和组织分布信息,从而更加精准地研究疾病相关分子机制并探索潜在的治疗靶点。同时作者也在讨论部分,使用TissueFAXS Cytometry技术生成的数据,可以针对人体组织进行更详细的研究,以回答 scRNA-seq 无法解决特定问题。
  • 2011中国(威海)干细胞与组织工程治疗前沿论坛(第一轮通知)
    干细胞和组织工程是国际生命科学研究的热点和前沿领域,其成果与技术的应用将孕育治疗及再生医学的重大突破。我国十分重视干细胞与组织工程的前沿技术研究,国家973计划、863计划、自然科学基金等均对其进行了重点部署,并已取得了一系列重要突破。  为促进我国干细胞与组织工程研究及临床应用的深入健康发展,加强同行之间的交流与合作,中国生物工程杂志社定于2011年7月在山东威海举办“2011中国干细胞与组织工程治疗前沿论坛”。论坛邀请国内外相关领域知名专家与学者,围绕干细胞、组织工程基础研究及临床应用的最新进展、发展趋势和新技术、新方法等进行专题报告,并安排优秀论文交流,进行学术研讨。会议现向全国本领域开展征文活动,会议将出版专题文集。  会议征文范围(会议研讨主题):  1、干细胞技术  各种干细胞(包括胚胎干细胞、间充质干细胞、造血干细胞、肿瘤干细胞、iPS细胞等)的分离、培养、鉴定  各种干细胞的三维培养及分化条件  无血清培养基  干细胞库的建立及维护  2、支架材料技术  新型组织工程支架的设计原理及制作方法  仿生材料、纳米材料、生物可降解材料等新型材料在组织工程支架制作中的应用  细胞-支架材料-新生组织的相互作用  3、生物反应器技术  干细胞培养扩增生物反应器的设计应用  组织工程生物反应器的设计应用  4、干细胞与组织工程临床治疗技术  干细胞移植与治疗方法  组织或器官再生方法  各种干细胞在重大疾病(包括糖尿病、肿瘤、心脑血管疾病、神经系统疾病等)治疗中的应用  组织工程(包括原位组织工程)治疗方法及临床应用  干细胞或组织工程临床治疗效果评价  5、干细胞与组织工程面临的技术伦理挑战  干细胞研究与临床应用的挑战及对策  组织工程研究与临床应用的挑战及对策  6、其他相关技术  核移植胚胎干细胞技术  诱导多能干细胞(iPS)技术  再生医学  会议征文要求:  1 论文所反映的信息和学术成果应是近期完成的,大会文集收录未曾发表的论文摘要,论文请勿涉及保密内容,请作者确保论文内容的真实性和客观性,文责自负。  2 论文摘要投稿截止日期为2011年6月15日。  3 格式要求  3.1 论文摘要稿请用word录入排版,字数不超过1500字。  3.2 论文应简洁扼要,原则上不附图表,内容应能反映研究成果信息。  3.3 论文摘要结构:  3.3.1大标题(第一行):三黑字体,居中排。  3.3.2作者姓名(第二行):4仿字体,居中排。  3.3.3作者单位(第三行):按单位名称、城市及邮编顺排,用五宋字体。  3.3.4摘要。五号宋体。文中所用计量单位,一律按国际通用标准或国家标准,并用英文书写,如km2,kg等。文中年代、年月日、数字一律用阿拉伯数字表示。  3.3.5关键词。需列出4个关键词,五楷字体。第1个关键词应为二级学科名称,学科分类标准执行国家标准(GB/T13745-92)。  会议征文经专家评审,将安排优秀论文进行大会交流,并可在中国生物工程学会会刊、全国生物学核心期刊《中国生物工程杂志》上全文发表。  论文摘要请以电子邮件方式于2011年6月15日前寄至:biotech@mail.las.ac.cn(邮件主题:干细胞与组织工程论坛+论文题目+作者姓名)。文后请附100字以内的作者简介,并注明详细联系方式(通讯地址、电话、手机、传真、E-mail等)。  会议时间、地点:  2011年7月16-18日(15日全天报到)  山东威海博力康博尔康复疗养基地国际会议中心(0631-3669308)  参会办法:参会代表请于7月10日前填写会议回执后E-mail或传真至会议主办单位,会议费每人1500元,在读研究生每人1200元(凭有效证件)。食宿统一安排,费用自理。  联系方式:  中国生物工程杂志社  通信地址:北京市中关村北四环西路33号(100190)  联 系 人:任红梅  电 话:(010)82624544(传真),82626611-6511,13641036700  传 真:(010)82624544  电子信箱:renhm@mail.las.ac.cn  中国人民解放军第二炮兵总医院  通信地址:北京西城区新街口外大街16号  联 系 人:张艳梅  电 话:18701376506  电子信箱:zyanm109@163.com  中国生物工程杂志社  2011年5月9日  2011中国(威海)干细胞与组织工程治疗前沿论坛报名回执表 单位名称: 学院/部门:通信地址:邮 编:姓名性别职称电子邮箱电话 是否住宿住宿日期
  • 质谱流式细胞术及其在精准医学中研究进展
    质谱流式细胞术及其在精准医学中研究进展张浩1,2,3, 韩国军1,2,31北京大学跨学部生物医学工程系;2北京大学口腔医院;3 北京大学医学部医学技术研究院。质谱流式细胞术(Mass Cytometry)是近年来应用最为广泛的单细胞技术之一种。其将流式细胞技术与质谱分析技术结合在一起,用金属同位素代替荧光标记特异性抗体或探针,并利用质谱来定量同位素标签,可以在单细胞水平完成多种生物标志物的检测分析,包括核酸、蛋白质及其它小分子。其具有高通量、高灵敏度和高稳定性等优点,尤其适合于肿瘤、免疫、血液、药物和遗传学等学科的研究。当前新冠病毒COVID-19对人体免疫系统造成严重侵害,质谱流式技术能够更深入、全面的分析人体免疫系统的各种细胞亚型及其比例的变化,并预测临床病程的变化趋势,对于早期诊断、治疗与病理研究具有重要意义。 (一) 质谱流式细胞术发展历史图 1美国斯坦福大学医学院Garry Nolan 实验室中三台质谱流式仪器: CyTOF 1, CyTOF 2,CyTOF 3 (Helios)和BD公司荧光流式细胞仪LSR II。[1]质谱流式细胞术从最初的分析方法学概念到单细胞仪器装置、最终在基础生物学与临床医学中取得重要的应用,经过近二十年的发展历程。图1为2015年美国斯坦福大学医学院免疫学与微生物学系Garry Nolan教授实验室中三台不同型号CyTOF质谱流式仪与BD公司荧光流式细胞仪同时使用的照片。回顾质谱流式细胞术的发展历史,有三位重要的科学家作出了杰出的贡献。如图2中所示,首先2002年清华大学张新荣教授在学术期刊Analytical Chemistry中第一次提出元素标记策略用于电感耦合等离子体质谱的生物大分子检测的方法学研究[2];2009年加拿大多伦多大学的Scott Tanner教授在学术期刊Analytical Chemistry中首次发布质谱流式细胞仪(Cytometry for Time of Flight,CyTOF)的研究工作[3],并成立DVS Sciences公司将传统流式细胞术与电感耦合等离子体质谱相结合,推出了首台商用质谱流式分析仪器。2011年斯坦福大学Garry Nolan教授首次将质谱流式技术成功应用于临床血癌免疫性疾病的单细胞的表型与磷酸化蛋白信号通路研究[4],开创了质谱流式医学应用的新篇章。2014年,DVS Sciences公司和质谱流式技术被美国Fluidigm公司收购,随后分别于与2015年和2017年陆续推出了Helios质谱流式系统和Hyperion组织成像系统以及700多种相关抗体和预设计标记试剂盒。目前为止,全球已经安装超过200台质谱流式细胞仪,中国拥有30台以上。并且,已经有50多个临床试验使用了质谱流式细胞术,这表明高通量、高灵敏、高稳定的质谱流式时代已经来临。图2 质谱流式细胞术三位主要奠基人:图A左一为清华大学张新荣教授;图A右一为加拿大多伦多大学Scott Tanner教授; 图B第一排右一为美国斯坦福大学Garry Nolan。(二) 质谱流式细胞术原理质谱流式细胞术主要工作原理是通过重金属同位素标记抗体或探针,然后识别细胞表面或内部信号,被标记的细胞以细胞悬液形式进入雾化器,随后样品在等离子体内发生汽化,产生离子云、离子在四级杆内根据质荷比进行筛选,然后在时间飞行器中通过已知强度的电场加速后到达检测器,而其到达检测器的飞行时间与离子质量有关。最后将原子质量谱的数据转换为细胞表面或内部的信号分子数据,并通过专业计算机分析软件对获得的数据进行降维处理分析,从而得到细胞外部表型和内部信号网络的数据结果。图3 质谱流式细胞术金属稳定同位素标记探针。包括标记单克隆抗体分子的稀土同位素;标记细胞编码的贵金属同位素;标记细胞周期的卤素[1]。北京大学韩国军教授首次建立了48种稳定同位素单克隆抗体统一标记策如图3所示,并定量分析了镧系、钇、铟、钯同位素间的CyTOF质谱干扰。系统性的建立了标准方法用于同位素标记抗体定量分析、抗体活性与选择性验证、以及抗体细胞染色浓度优化等,被多个国际质谱流式实验室作为同位素抗体标记标准手册使用。与传统流式技术相比,质谱流式细胞术主要有以下优势:① 前者使用荧光基团偶联抗体或分子,后者主要通过金属同位素进行标记,因为细胞中不含或很少含有这些金属同位素,因此背景信号较低,检测数据可靠性较高;② 传统荧光流式采用激光器和光电倍增管作为检测手段,最多可同时检测通道数不足20个,而质谱流式细胞术使用ICP-MS作为检测手段,不仅提高了检测通道数,可同时检测100个左右参数,而且避免了通道信号之间的串色干扰,无补偿或补偿非常小,使方案设计更加容易。③ 除可以在单细胞水平进行自身多参数分析以外,还可以检测分析一些金属治疗药物的分布及代谢情况,比如顺铂类化疗药物等。但质谱流式细胞术当前也存在一些问题,比如样本采集速度慢,每秒最多约1000个事件;测量不同样本之间需要程序清洁,导致每个样本平均测样时间延长;由于样本被气化,所以无法进行前向散射和侧向散射测量,也不能分选回收细胞进行后续实验等。(三)质谱流式细胞术的应用3.1 细胞表型鉴定与信号通路检测质谱流式细胞术非常适合对复杂的细胞表型进行深层次分析,可以区分在疾病发展过程中发挥不同作用的相似细胞,这对疾病的个体化治疗具有重要意义。Su等人通过对结直肠癌患者血液中的T细胞群进行质谱流式分析,展示了患者个体及不同患者之间 T 细胞亚群的表型多样性[5]。此外,Lelieveldt等用HSNE进行数据分析,在免疫细胞中发现了稀有细胞群[6]。分析细胞因子可以为研究免疫激活状态提供新的视角。Vendrame 等人利用 CyTOF评估细胞因子对自然杀伤 (NK) 细胞的影响,发现白介素 (IL)-12/IL-15/ IL-18刺激可显著增加NK细胞中γ干扰素 (IFN‐γ)的表达[7]。Doyle等对丙型肝炎病毒(HCV)感染患者的肝脏和外周血中的浆细胞样树突状细胞(pDCs)进行了研究,证明肝脏pDC具有多功能性,能够在慢性HCV感染期间产生大量的IFN-γ 和其他免疫调节因子[8]。随着检测细胞因子的报道不断增多,CyTOF将可能成为免疫细胞功能研究中不可或缺的工具。细胞受外界刺激后,细胞内信号网络会做出相应反应。使用靶向磷酸化蛋白的金属螯合抗体,CyTOF能够检测单个细胞内的信号通路。Shinko等人为临床血样提供了磷酸化信号蛋白染色的优化方案[9]。厦门大学周大旺教授团队应用 CyTOF质谱流式细胞仪发现了Hippo信号通路中转录共激活因子TAZ在调节 CD4+初始T细胞分化为Th17细胞和Treg细胞的过程中发挥着关键调控作用及其重要机理[10]。 3.2细胞周期鉴定、RNA和蛋白质的共同检测细胞周期改变是肿瘤进展、生物发育和免疫调节的重要方面。Behbehani 等人开发了一种新的CyTOF方法来描绘细胞周期阶段,分别使用IdU、磷酸化视网膜母细胞瘤抗体、细胞周期蛋白 B1抗体、细胞周期蛋白 A 抗体和磷酸化组蛋白H3抗体来标记S、G0、G1、G2、和 M 期细胞[11]。并利用这种细胞周期鉴定方法,研究展示了介导急性髓性白血病化疗敏感性的细胞周期差异[12]。为了能够在单细胞分辨率下同时检测 RNA 和蛋白质,Frei 等人开发了 RNA 邻近连接技术 (PLAYR)[13]。PLAYR包括杂交、连接、滚环扩增和检测四个阶段。针对目标RNA设计两个相邻区段的探针,与目标RNA结合后再与Backbone和Insert两个探针进行杂交,随后Backbone和Insert探针连接成一个环,做为后续滚环扩增的模板,与带有金属标签的探针杂交后就可以扩增并检测了。PLAYR的优势在于可以同时兼容蛋白检测,在实验过程中,可以先用抗体对胞内外蛋白进行标记,然后在用PLAYR流程对RNA进行原位标记和扩增。我们可以根据表面Marker对细胞进行亚群分析,深入研究每个亚群中信号通路、转录因子的激活及其相关基因的表达。并且利用PLAYR监测脂多糖刺激后PBMCs中8个细胞因子mRNA和18个蛋白表位的变化,揭示了每个细胞的功能能力与其蛋白标记物表达之间的相关性。3.3 质谱流式细胞术成像Geisen 等人使用 CyTOF 对组织样本进行成像以获得蛋白质空间组学[14]。他们提出的IMC (Imaging Mass Cytometry)技术使用分辨率为 1 μm 的激光光斑进行烧蚀、雾化、电离,并通过惰性气流传送到质谱检测器。IMC 被认为是具有里程碑意义的发展,因为它在亚细胞分辨率下将细胞间相互作用和的空间信息联系在一起,并能同时分析多达50种参数。自推出以来,IMC 正迅速被应用于各个研究领域。Damond 等人使用 IMC 对4例非糖尿病患者、4例首发1型糖尿病患者和4例长期1型糖尿病患者的胰岛进行研究,描述了人类1型糖尿病的进展,并发现在发病之前β胰岛素细胞表型已经发生改变[15]。另一类元素标记的单细胞成像技术是利用二次离子质谱SIMS(Secondary Imaging Mass Spectrometry),图4为北京大学韩国军教授利用NanoSIMS 50L质谱对Hela单细胞核中新生成的DNA与RNA的时空分析[16]。图4 基于二次离子质谱的高分辨Hela细胞核成像技术与人工智能机器学习数据分析。3.4 新冠肺炎检测及治疗 Silvin等人对COVID-19 患者外周血进行单细胞CyTOF及RNA测序,发现血浆内钙结合蛋白水平和非典型单核细胞减少可以鉴别严重的COVID-19患者[17]。Schrepping等人对全血和外周血单个核细胞进行RNA测序和单细胞蛋白质组学分析,揭示了SARS-CoV-2感染后免疫系统的反应[18]。而Rendeiro等人利用质谱流式细胞术进行空间成像,研究包括SARS-CoV-2 感染在内的人类急性肺损伤的细胞组成和空间结构。从而使我们能够从结构、免疫学和临床角度提出生物学上可解释的肺病理图谱,为理解COVID-19和一般的肺损伤病理学提供了重要的基础[19]。(四)总结质谱流式细胞术相较传统荧光流式细胞技术具有可以同时检测更多参数不需补偿、方案设计简单、灵敏度高等优点。其多参数检测的特征尤其适合对细胞表型、细胞因子、信号通路等进行深层次分析,适用于肿瘤、免疫系统疾病、传染病、血液病、药物临床试验、预后评估等方面研究。但质谱流式细胞术也存在采样较慢、清洁费时、成本较高等问题,因此还需研究人员根据自己的实验目的及需求进行选择。参考文献:1. Han GJ, Spitzer MH, Bendall SC, et al. Metal‐isotope‐tagged monoclonal antibodies for high‐dimensional mass cytometry[J]. Nat Protoc, 2018 13(10):2121-2148. DOI: 10.1038/s41596-018-0016-7.2. C. Zhang, Z. Y. Zhang, B. B. Yu, J. J. Shi, X. R. Zhang. Application fo the biological conjugate between antibody and colloid Au nanoparticle as analyte to inductively coupled plasma spectrometry. Anal.Chem. 20023. Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time - of - flight masss pectrometry[J]. Anal Chem, 2009 81(16):6813-22. DOI: 10.1021/ac901049w.4. Bendall SC, Simonds EF, Qiu P, et al. Single‐cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J]. Science, 2011 332(6030):687-96. DOI: 10.1126/science.1198704.5. Di J, Liu M, Fan Y, et al. Phenotype molding of T cells in colorectal cancer by single‐cell analysis[J]. Int J Cancer. 2020 146(8):2281‐2295. DOI:10.1002/ijc.32856.6. van Unen V, Hollt T, Pezzotti N, et al. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types[J]. Nat Commun. 2017 8(1):1740. DOI:10.1038/s41467-017-01689-9.7. Vendrame E, Fukuyama J, Strauss‐Albee DM, et al. Mass cytometry analytical approaches reveal cytokine‐induced changes in natural killer cells[J]. Cytometry B Clin Cytom. 2017 92(1):57‐67. DOI:10.1002/cyto.b.21500.8. Doyle EH, Rahman A, Aloman C, et al. Individual liver plasmacytoid dendritic cells are capable of producing IFNalpha and multiple additional cytokines during chronic HCV infection[J]. PLoS Pathog. 2019 15(7):e1007935. DOI:10.1371/journal.ppat.1007935.9. Shinko D, Ashhurst TM, McGuire HM, et al. Staining of phosphorylated signalling markers protocol for mass cytometry[J]. Methods Mol Biol. 2019 1989:139‐146. DOI:10.1007/978-1-4939-9454-0_10.10. Geng J, Yu S, Zhao H, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells[J]. Nat Immunol, 2017 18(7):800-812. DOI: 10.1038/ni.3748. 11. Behbehani GK, Bendall SC, Clutter MR, et al. Single‐cell mass cytometry adapted to measurements of the cell cycle[J]. Cytometry A. 2012 81(7):552‐566. DOI:10.1002/cyto.a.22075.12. Behbehani GK, Samusik N, Bjornson ZB, et al. Mass cytometric functional profiling of acute myeloid leukemia defines cell‐cycle and immunophenotypic properties that correlate with known responses to therapy[J]. Cancer Discov. 2015 5(9):988‐1003. DOI:10.1158/2159-8290.CD-15-0298.13. Frei AP, Bava FA, Zunder ER, et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells[J]. Nat Methods. 2016 13(3):269‐275. DOI:10.1038/nmeth.3742. 14. Giesen C, Wang HA, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry[J]. Nat Methods. 2014 11(4):417‐422. DOI:10.1038/nmeth.2869.15. Damond N, Engler S, Zanotelli VRT, et al. A map of human type 1 diabetes progression by imaging mass cytometry[J]. Cell Metab. 2019 29(3):755‐768.e5. DOI:10.1016/j.cmet.2018.11.014.16. Coskun. A. F., Guojun Han, Ganesh S. et al. Nanoscopic subcellular imaging enabled by ion beam tomography, Nature Communications, 2021, 12(789)17. Silvin A, Chapuis N, Dunsmore G, et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19[J]. Cell, 2020 182(6):1401-1418.e18. DOI: 10.1016/j.cell.2020.08.002.18. Schulte-Schrepping J, Reusch N, Paclik D, et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment[J]. Cell, 2020 182(6):1419-1440.e23. DOI:10.1016/j.cell.2020.08.001. 19. Rendeiro AF, Ravichandran H, Bram Y, et al. The spatial landscape of lung pathology during COVID-19 progression[J]. Nature, 2021 593(7860):564-569. DOI:10.1038/s41586-021-03475-6. 【作者简介】张浩 博士 2020级北京大学口腔医学技术专业科研型博士,导师韩国军教授。硕士就读于山东大学口腔医院(导师刘少华教授),从事血管瘤临床治疗及泡沫硬化剂的改良研究,发表SCI论文4篇。目前师从韩国军教授,主要从事口腔鳞癌单细胞质谱研究及质谱病理诊断新方法研究。韩国军 研究员北京大学跨学部生物医学工程系研究员、博士生导师,北京大学口腔医院双聘博士生导师。2013年毕业于清华大学化学系(导师张新荣教授),2013至2020年在美国斯坦福大学医学院Mass Cytometry创始人Garry Nolan课题组从事新一代质谱流式相关技术与临床医学应用研究。曾获教育部自然科学一等奖,并在Nature Communications、Nature Protocols、Cell Reports、Angew Chem、Anal Chem、Cytometry等发表论文20余篇。目前主要从事质谱新技术在临床医学中应用研究,与北京大学口腔医院、北京大学第三医院、北京大学第一医院开展单细胞质谱流式临床精准医学研究。点击查看流式细胞仪专场Webinar预告(点击报名)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!
  • iCEM 2017特邀报告:细胞组织的高分辨率电镜样品制备技术与展望
    p style=" text-align: center " strong 第三届电镜网络会议(iCEM 2017)特邀报告 /strong /p p style=" text-align: center " strong 细胞组织的高分辨率电镜样品制备技术与展望 /strong /p p style=" text-align: center " strong img width=" 250" height=" 316" title=" hewanzhong.jpg" style=" width: 250px height: 316px " src=" http://img1.17img.cn/17img/images/201705/insimg/ea81f7ae-3201-4741-9132-f2436adedaad.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center " strong 何万中 研究员 /strong /p p style=" text-align: center " strong 北京生命科学研究所 /strong /p p strong   报告摘要: /strong /p p   近年来冷冻电镜技术的突破性进展,体外蛋白的冷冻单颗粒分析技术已经益日普及成为原子级分辨率结构解析的常规工具之一。然而,细胞组织原位高分辨率电镜分析,则是生物电镜领域下一个等待开发的宝库及新生长点。实现原位高分辨率结构分析、蛋白质分子的功能定位及时空相互关系, 必将极大地拓展我们在超微-分子水平对生物医学问题的认识。本报告将主要介绍我们自己在近20年在细胞组织高分辨率电镜样品制作的经验与技术开拓,涉及分子水平的细胞组织高压冷冻制样技术及冷冻替代固定技术、高导热率样品盘设计与应用实例、大块组织样品的高分辨率样品制作、冰冻切片技术、超快脱水固定技术、细胞电子断层成像技术及实例、新型可克隆电镜标记技术等,同时展望今后相关技术发展的趋势及潜力。 /p p strong   报告人简介: /strong /p p   何万中,北京生命科学研究所研究员,博士生导师,北京市“海外高层次人才计划”(“海聚工程”)入选者, “北京市特聘专家”。2007-2010年 新加坡国立大学生物科学系助理教授。2004-2007年,加州理工学院生物分部博士后; 1999-2004年,纽约大学分子生物医学研究所博士后;1998-1999年 西班牙国家生物技术中心博士后。1998年,中科院物理研究所凝聚态物理学(电子显微学方向)博士; 1994年,中国地质大学(北京)矿物学硕士;1991年,成都理工大学地质学学士。长期从事电子显微学及图像处理、细胞电子断层成像技术、高压冷冻及冷冻替代固定技术、低温切片技术,及近年来在新型可克隆电镜标记技术开拓。主持过两项新加坡BMRC科研项目,及两项科技部“973国家重点基础研究发展计划”项目中担任课题组长。现任中国电子显微镜学会理事,中国物理学会冷冻电镜分会理事,北京生物工程学会理事。 /p p    strong 报告时间:2017年6月23日上午 /strong /p p   strong  立即免费报名: a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _blank" http://www.instrument.com.cn/webinar/meetings/iCEM2017/ /a /strong br/ /p p style=" text-align: center " & nbsp a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCEM2017/" target=" _self" img title=" 点击免费报名参会.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/c9793b9d-a3ec-4cb2-a453-330b3d0cbf03.jpg" / /a /p
  • 2011第四届再生医学和干细胞大会日程安排
    RMSC 日程时间表 日 期 时 间 会 议 内 容 11月10日 08:30-17:00 会议注册 11月11日 08:30 集体照 08:30-12:00 开幕式和主题论坛 12:00-13:00 午餐 13:30-17:00 分会报告101:亚洲和欧洲策略和项目F101: Strategies and Projects of Asia and EU 分会报告210:分子胚胎学和胚胎干细胞S210: Molecular Embryology and Embryonic Stem Cells 分会报告211:干细胞基因组学,基因组重编程,表观遗传学和系统生物学S211: Stem Cell Genomics, Genomic Reprogramming, Epigenetics & Systems Biology and Adult Stem Cell Cycle Regulation 分会报告212:干细胞谱系,定向分化和调控网络S212: Stem Cell Lineage, Derivation, Differentiation and Regulatory Networks 分会报告213:循环肿瘤细胞和癌症干细胞S213: Circulating Tumor Cell (CTC) and Cancer Stem Cell 分会报告310:人类胚胎干细胞和多能成体祖细胞及骨骼肌干细胞S310: Human Embryonic Stem Cells (hESC), Multipotent Aldult Progenitor Cells and Skeletal Muscle Stem Cells 分会报告311:脐带干细胞和神经干细胞S311: Umbilical Cord Stem Cells and Neural Stem Cell 分会报告430:小血管生物工程和心脏组织修复S430: BioEngineering Small Vessels and Cardiac Tissue Repair 18:30-20:30 欢迎晚宴 11月12日 08:30-12:00 分会报告102:北美及其他国家策略和项目F102: Strategies and Projects of North America and Other Countries 分会报告220:肝细胞生物学,肝细胞免疫学,和微环境S220: Stem Cell Biology, Stem Cell Immunology and Microenvironment 分会报告221:诱导多能干细胞和人多能细胞技术S221: Induced Pluripotent Stem Cells (iPS) and hPS Cells Technologies 分会报告222:干细胞生物标记物,表面抗原标记, 谱系标记和脱细胞技术S222: Biomarkers, Surface Antigen Markers, Lineage Marking and Decellularization of Stem Cell 分会报告312:骨髓间充质干细胞、造血和造血干细胞S312: Hematopoietic, Blood-forming and Mesenchymal Stem Cell (MSC) 分会报告313:原始生殖细胞和脂肪来源干细胞S313: Primordial Germ Cells and Adipose-Derived Stem Cells 分会报告4-1:干细胞再生和生物治疗原位修复S4-1: Stem Cells for Regeneration and Biotherapeutics for In Situ Repair 分会报告421:心血管组织再生和血管再生S421: Cardiovascular Regeneration and Neovascularization 12:00-13:00 午餐 13:30-17:00 分会报告223:干细胞研究的新的分子工具S223: Novel Molecular Tools for Stem Cell Research 分会报告230:细胞机制,细胞应答和控制S230: Cellular Machinery, Cell Responses and Controlling 分会报告231:器官形成中的血管生成及自组装模式生物前沿进展和组织工程模块S231: New Frontiers in Angiogenesis‎ and New Self-Assembly Model Organisms for Organogenesis and Robust Tissue Engineering Building Blocks 分会报告420:癌症、血液系统疾病、糖尿病和神经退行性疾病、中风和中枢神经系统修复的干细胞治疗和再生治S420: Stem Cells and Regenerative Therapy for Cancer, Blood Diseases, Diabetes and Neural Degenerative Diseases, Stroke and CNS Repairing 分会报告422:泌尿系统疾病,骨骼和骨骼肌修复以及骨科疾病干细胞治疗和再生治疗S422: Stem Cells and Regenerative Therapy for Urological System Diseases,Bone & and Musculoskeletal Repair and Orthopedic Diseases 分会报告423:干细胞免疫疗法治疗自身免疫疾病S423: Immunotherapy of Autoimmune Diseases by Stem Cells 分会报告5:组织工程和干细胞的生物加工Forum 5: Bioprocessing of Tissues Engineered and Stem Cells 分会报告6:青年科学家论坛Forum 6: Young Scientist Research 11月13日 08:30-12:00 分会报告240:组织工程中的先进的细胞培养技术 S240: Advanced Cell Culture Technology for Tissue Engineering 分会报告241:定向的三维组织生长和功能技术,组织工程中的微阵列和生物芯片S241: Directed 3D Tissue Growth & Function Technology,Microarray and Biochips in Tissue Engineering 分会报告320:生物材料或生物相容性材料与细胞反应材料S320: Biomaterials or Biocompatible Materials and Cell Responsive Biomaterials 分会报告321:在组织工程中的生物活性材料,纳米材料和纳米医学S321: Bioactive Materials, Nano-materials and Nanomedicine in Tissue Engineering 分会报告322:材料化学和生物力学-杂化,复合生物材料支架S322: Material Chemistry and Biomechanics-Hybrid,Composite, and Complex Biomaterials for Scaffolds 分会报告431:眼科和听觉组织,呼吸系统和消化系统组织,肝,肾,脾脏和膀胱组织修复S431: Repair of Ophthalmological & Hearing Tissues, Respiratory & Alimentary Tracks, Liver, Kidney, Spleen, and Bladder Tissue Repai 分会报告432:软骨组织,指骨和小关节,牙齿组织和骨移植中的组织治疗S432: Tissue Therapy for Cartilage Tissue, Phalanges and Small Joints, Dental Tissue and Bone Grafting 分会报告433:创伤皮肤,皮肤溃烂和烧伤的修复S433: Wounded Skin, Skin Ulcers and Burn Injuries Repair 12:00-13:00 午餐
  • 中国中医科学院医学实验中心495.00万元采购流式细胞仪,细胞计数器,切片机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 中国中医科学院医学实验中心多色流式细胞分析仪等招标 北京市-东城区 状态:公告 更新时间: 2022-05-19 招标文件: 附件1 招标单位:中国中医科学院医学实验中心 正在招标 招标产品:切片机,流式细胞仪/细胞分析仪,细胞染色机 招标编号:22CNIC01-5700 中国中医科学院医学实验中心多色流式细胞分析仪等招标 2022-05-19 15:26:54 【中国中医科学院医学实验中心多色流式细胞分析仪等招标】,招标编码为【22CNIC01-5700】,招标项目内容包括【多色流式细胞分析仪、冰冻切片机、全自动脱水机、全自动染色机】,投标截止到【2022-06-09 09:30】,欢迎合格的供应商前来投标 项目编号:22CNIC01-5700 项目名称:中国中医科学院医学实验中心中医药实验平台关键设备更新换代项目 一、采购需求: 品目号 货物名称 数量 简要技术需求 1 多色流式细胞分析仪 1 检测参数:可实现≥11个荧光信号检测参数 2 多功能组织力学测试系统 1 控制器内部电子元件采样速率≥40kHz 3 包埋机 1 蜡缸容量:≥4升,温度范围50-70℃ 4 石蜡切片机 1 单按键样本进样功能,方便操作 5 冰冻切片机 1 可存储3个常用的切片程序,针对不同组织设定刀架、样品头温度 6 全自动脱水机 1 液位传感器≥3,可分层抽入及排放 7 封片机 1 盖玻片上载容量≥300 片 8 全自动染色机 1 玻片摇动有3种频率可选,使染片效果更佳 9 多功能读板机 1 检测器:-5℃制冷PMT 预算金额:495万元,允许进口。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 节约能源、保护环境、促进中小企业及监狱企业发展、促进残疾人就业、使用信用记录结果、政府采购政策具体落实情况详见招标文件。 3.本项目的特定资格要求:(1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企业法人、事业单位、其他组织或者自然人 (2)投标人须符合《中华人民共和国政府采购法》第二十二条的规定 a. 具有独立承担民事责任的能力 b. 具有良好的商业信誉和健全的财务会计制度 c. 具有履行合同所必需的设备和专业技术能力 d. 有依法缴纳税收和社会保障资金的良好记录 e. 参加政府采购活动前三年内,在经营活动中没有重大违法记录 f. 法律、行政法规规定的其他条件。(3)所投产品的原产地均应来自中华人民共和国国内或是与中华人民共和国有正常贸易往来的国家或地区 (4)厂家和其授权代理商均可投标。如所投产品为进口产品,且代理商投标,需提供所投进口产品所属厂家针对本项目的直接授权函,同时相关厂家失去其所授权的进口产品的投标资格(厂家包括其在国内的独资公司。接受厂家代理商针对本项目的转授权,但需提供上述代理关系的证明。) (5)按本招标公告的规定获取招标文件 (6)本项目不接受联合体投标 (7)被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法 案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 三、获取招标文件 时间:2022年05月20日 至 2022年05月26日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:电汇方式购买 方式:只接受银行电汇方式购买。请将购买招标文件的银行电汇底单凭证扫描件连同投标人的营业执照扫描件,填写并扫描的《标书购买登记表》发至招标代理机构邮箱:sunwei2@cnic.gt.cn 招标文件售后不退。 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月09日 09点30分(北京时间) 开标时间:2022年06月09日 09点30分(北京时间) 地点:北京市西城区西直门外大街6号中仪大厦302会议室。 五、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国中医科学院医学实验中心 地址:北京市东城区东直门内南小街16号 联系方式:刘老师 010-64089571 2.采购代理机构信息 名 称:中国仪器进出口集团有限公司 地 址:北京市西城区西直门外大街6号中仪大厦915室 联系方式:孙伟010-88316785 sunwei2@cnic.gt.cn(电子邮件) 3.项目联系方式 项目联系人:孙伟 电 话:010-88316785 欲了解更多资讯,查看官方招标公告 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:流式细胞仪,细胞计数器,切片机 开标时间:2022-06-09 09:30 预算金额:495.00万元 采购单位:中国中医科学院医学实验中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中国仪器进出口集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国中医科学院医学实验中心多色流式细胞分析仪等招标 北京市-东城区 状态:公告 更新时间: 2022-05-19 招标文件: 附件1 招标单位:中国中医科学院医学实验中心 正在招标 招标产品:切片机,流式细胞仪/细胞分析仪,细胞染色机 招标编号:22CNIC01-5700 中国中医科学院医学实验中心多色流式细胞分析仪等招标 2022-05-19 15:26:54 【中国中医科学院医学实验中心多色流式细胞分析仪等招标】,招标编码为【22CNIC01-5700】,招标项目内容包括【多色流式细胞分析仪、冰冻切片机、全自动脱水机、全自动染色机】,投标截止到【2022-06-09 09:30】,欢迎合格的供应商前来投标 项目编号:22CNIC01-5700 项目名称:中国中医科学院医学实验中心中医药实验平台关键设备更新换代项目 一、采购需求: 品目号 货物名称 数量 简要技术需求 1 多色流式细胞分析仪 1 检测参数:可实现≥11个荧光信号检测参数 2 多功能组织力学测试系统 1 控制器内部电子元件采样速率≥40kHz3 包埋机 1 蜡缸容量:≥4升,温度范围50-70℃ 4 石蜡切片机 1 单按键样本进样功能,方便操作 5 冰冻切片机 1 可存储3个常用的切片程序,针对不同组织设定刀架、样品头温度 6 全自动脱水机 1 液位传感器≥3,可分层抽入及排放 7 封片机 1 盖玻片上载容量≥300 片 8 全自动染色机 1 玻片摇动有3种频率可选,使染片效果更佳 9 多功能读板机 1 检测器:-5℃制冷PMT 预算金额:495万元,允许进口。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 节约能源、保护环境、促进中小企业及监狱企业发展、促进残疾人就业、使用信用记录结果、政府采购政策具体落实情况详见招标文件。 3.本项目的特定资格要求:(1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企业法人、事业单位、其他组织或者自然人 (2)投标人须符合《中华人民共和国政府采购法》第二十二条的规定 a. 具有独立承担民事责任的能力 b. 具有良好的商业信誉和健全的财务会计制度 c. 具有履行合同所必需的设备和专业技术能力 d. 有依法缴纳税收和社会保障资金的良好记录 e. 参加政府采购活动前三年内,在经营活动中没有重大违法记录 f. 法律、行政法规规定的其他条件。(3)所投产品的原产地均应来自中华人民共和国国内或是与中华人民共和国有正常贸易往来的国家或地区 (4)厂家和其授权代理商均可投标。如所投产品为进口产品,且代理商投标,需提供所投进口产品所属厂家针对本项目的直接授权函,同时相关厂家失去其所授权的进口产品的投标资格(厂家包括其在国内的独资公司。接受厂家代理商针对本项目的转授权,但需提供上述代理关系的证明。) (5)按本招标公告的规定获取招标文件 (6)本项目不接受联合体投标 (7)被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法 案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 三、获取招标文件 时间:2022年05月20日 至 2022年05月26日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:电汇方式购买 方式:只接受银行电汇方式购买。请将购买招标文件的银行电汇底单凭证扫描件连同投标人的营业执照扫描件,填写并扫描的《标书购买登记表》发至招标代理机构邮箱:sunwei2@cnic.gt.cn 招标文件售后不退。 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年06月09日 09点30分(北京时间) 开标时间:2022年06月09日 09点30分(北京时间) 地点:北京市西城区西直门外大街6号中仪大厦302会议室。 五、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国中医科学院医学实验中心 地址:北京市东城区东直门内南小街16号 联系方式:刘老师 010-64089571 2.采购代理机构信息 名 称:中国仪器进出口集团有限公司 地 址:北京市西城区西直门外大街6号中仪大厦915室 联系方式:孙伟010-88316785 sunwei2@cnic.gt.cn(电子邮件) 3.项目联系方式 项目联系人:孙伟 电 话:010-88316785 欲了解更多资讯,查看官方招标公告
  • 一文读懂基于长读长技术的单细胞全长转录本测序
    单细胞全长转录本测序的价值单细胞测序技术为基础科研、临床诊断、药物研发等领域带来了诸多全新发现视角。现阶段主流的单细胞测序,大多是通过单细胞捕获设备获得cDNA文库后进行打断、扩增、建库,并用二代建库测序分析基因的整体定量。然而,基因在不同组织、不同细胞亚群中会使用mRNA的不同转录本,SNV、融合基因等结构变异也具有组织和细胞特异性,此外,科研界研究比较热门的lncRNA,在不同组织细胞亚群中也具有特异性的表达。这些基于全长序列方面的信息,是目前单细胞二代测序无法获取的。主要原因是目前基于二代测序的单细胞数据局限于3' 或5' 端的150-250bp,较难满足这类需求。而传统的Smart-seq虽然可以实现全长转录本覆盖,但需要经过拼接组装分析转录本结构,且通量较低,成本较高,研究单细胞可变剪切仍然较为困难。由于二代测序读长较短,三代测序如PacBio、Nanopore等技术以其长读长的优势解决了这一痛点,因此,如果能将二代测序与三代测序相结合,既能获得mRNA的全长序列,并通过Cell Barcode信息定位到细胞亚群,即可解决了这一单细胞研究领域的痛点。但是,在前期测试中发现,二代单细胞测序一般获得约3万个基因的表达矩阵,三代全长测序能获得超过10万个转录本的表达矩阵,两套数据的聚类图谱差异巨大,现有的分析流程并未很好地解决两套数据的一致性匹配问题。因此,如何能从庞大的二代+三代,也即基因+转录本的单细胞数据中,挖掘到有价值的特异性转录本,可以为单细胞临床转化、药物靶点发现带来更加细致的挖掘角度。及智医学团队出身单细胞科研服务行业,重点围绕单细胞富集与检测平台、单细胞测序技术平台和基于AI算法的单细胞数据分析算法平台,建立了单细胞转录组、空间转录组、单细胞联合Bulk多组学等多种独特的分析流程和方法,尤其擅长各类免疫细胞与基质细胞的分类、功能解析、细胞互作、药物靶点筛选等分析项目。最终通过积累的上百种单细胞分析方法与百万级别单细胞数据库,为单细胞临床转化类项目提供专业研发服务。及智医学团队生信专家通过高效的自动化分析脚本,并历时数月的二代+三代单细胞算法测试,目前已经解决了二代+三代单细胞聚类的诸多分析难点。伯豪生物基于十多年的单细胞组学服务经验,可提供从样品保存、运输、单细胞悬液制备,到单细胞分选、建库和数据分析的解决方案。及智医学与伯豪生物强强联合,正式推出单细胞全长转录本测序服务,即单细胞cDNA水平的转录、遗传变异研究,通过一次捕获,两种建库,同时获得单细胞聚类与转录本信息:目前,该技术方向为如下科研问题,提供了潜在的解决办法:发现携带特定突变的细胞,并与非携带突变细胞相比,挖掘基因表达规律挖掘功能基因,如膜蛋白、分泌蛋白、转录因子等的转录本使用情况,并发现全新功能转录本发现融合基因所在细胞亚群,研究它们与其他肿瘤细胞的拟时序分化关系发现亚群特异性全新IncRNA获得亚群特异性表达的转录本,能够辅助小核酸类药物开发企业,针对该特异性转录本设计siRNA干扰片段,提升小核酸干扰靶点的有效性。案例解析2021年11月11日,来自澳大利亚 沃尔特-伊丽莎霍尔医学研究所的Tian等人开发了一种基于Nanopore测序和10x Genomics的全长转录组单细胞测序方法,分析单细胞中的全长异构体、可变剪接和突变检测。研究成果发表在国际知名期刊Genome Biology(IF=13.6),论文题目为“Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing”。文章中,使用10x Genomics技术分选得到单细胞的全长cDNA后,将cDNA一分为二,一份进行打断建库用于二代测序,另一份进行全长扩增建库用于Nanopore三代测序。此时Nanopore的文库上也包含了细胞Barcode,后续可以通过分析流程将三代测序和二代测序结果通过细胞Barcode一一对应。通过这样的方式,即实现了获得全长转录本,分析亚群的特征性转录本使用,并同时拿到了突变所在细胞。文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)通过聚类分析发现,CLL(慢性淋巴细胞白血病)细胞相比正常免疫细胞具有更高比例的新型转录本,特别是新型剪接的转录本。同样,相比激活的干细胞,静态肌肉干细胞也有更高比例的新型转录本(图 D)。分析发现,约80%的基因可以表达多种转录本(图E),但是大多数基因主要表达1到2种转录本类型(图F),约30%的基因含有多于一种的可变剪接事件,意味着2个最高表达的异构体可能涉及多个外显子的复杂剪接变化而产生不同。文章通过分析CLL数据,检测到CD45的多种亚型(图G),CD45的表达通过CITE-seq进行验证。CITE-seq可以同时检测RNA和细胞表面蛋白,这种方法结合三代测序,可以对细胞表面蛋白进行更深入的分析和探索。对CLL数据集进行分析,寻找只存在于癌细胞中的,且在不同的CLL转录簇中具有不同等位基因频率的SNVs,通过经典的曼哈顿图最终发现四个变异在不同的CLL聚类呈现显著差异(图C,D)。其中发现的Gly101Val突变,此突变已被证实通过降低BCL2对venetoclax的亲和力而使患者对venetoclax治疗产生耐药性,通过分析发现患者CLL2携带约25%的Gly101Val突变,并发现该突变不仅属于亚克隆,而且与特定的转录簇相关(图E)。样品选择与实验细节由于单细胞全长测序需要对mRNA反转录后的cDNA全长进行测序,核心是需要将完整的全长cDNA扩增至2ug的 Nanopore建库起始量,而常规单细胞是将一链cDNA做基础扩增后全部打断用来做建库测序,因此,这一验细节就意味着单细胞全长测序需要额外质控。本文也从如下四个方面给出一些基础建议:样品选择悬液质控文库质控单细胞测序剩余样品用于新的科研发现一:样品选择常规单细胞测序样品来源分为新鲜采集与液氮速冻两种类型,两种类型的样品需要两种处理方式,新鲜采集样品需要在48h内制备悬液并上机,液氮速冻样品需要将细胞膜破碎,丢弃细胞质,分离提取细胞核,用单个核来做单细胞测序。不过,由于细胞核里面的RNA大多为初始RNA,包含有较多内含子,而从初始RNA加工为成熟mRNA的过程大多发生在细胞质中,因此,抽核类的项目并不太适用于单细胞全长测序。虽然在2022年7月份一篇Nature Biotechnology的文章是对人脑抽核后的单细胞样品进行三代全长测序,不过由于拿不到成熟mRNA,文章是站在了特定基因在不同亚群的外显子保留这样的科研角度统计规律(如下图)。文章角度非常新颖,也是科研界首次用单细胞全长测序发现人脑中,某些基因在不同亚群中,使用不同的外显子组合,生成多种编码蛋白。不过,由于最终拿到的仍旧是细胞核内的RNA,后续还需要大量验证工作,因此抽核后做单细胞全长测序的临床转化价值较小。所以,单细胞全长测序的项目最适宜采集新鲜样品制备细胞悬液,捕获成熟mRNA开展后续验证工作。经三代单细胞全长测序发现CADM1基因在人脑神经元(兴奋性、抑制性)、星胶、小胶、少突细胞亚群中,会使用不同的外显子组合。原文也有用蛋白质谱技术对这些外显子的多肽产物进行验证的工作二:悬液质控在收集到新鲜样品之后,可以使用商品化的新鲜组织保护液将样品在24h-48h内从临床运输至实验室进行悬液解离,并通过显微镜、细胞计数仪检测悬液质量。由于全长单细胞对RNA质量要求较高,比较建议悬液活率在85%以上,同时用台盼蓝、AO/PI双染鉴定,并用显微镜仔细观察细胞真实活率、红细胞比例(红细胞在光镜下,可以观察到圆饼状的亮圈,中间有黑色小点,有经验的单细胞实验员可以通过肉眼观察判断出来,而不少品牌的细胞计数仪有可能会把红细胞计算为碎片,甚至检测不到)。另外,现阶段二代单细胞测序,单个样品的数据量大多为100G,可以容纳5000-8000左右的细胞捕获量;而三代测序成本较高,站在节省经费的角度,建议一方面准确的对细胞悬液的浓度进行测定(不可单纯依靠细胞计数仪),来控制上机细胞总数(建议上机不超过1万个细胞);同时也要结合不同品牌单细胞捕获设备的真实捕获率(这点最好找成熟单细胞科研服务公司来完成)来进行综合判定(建议捕获不超5000个细胞,如果超过5000需要增加三代测序数据量)。三:文库质控单细胞全长转录本测序,只需要一次捕获,拿到一链cDNA之后要立刻进行全长扩增,如下图:因此,就需要将已扩增好的cDNA全长进行质控:如上图,cDNA条带主峰在1-1.5kb左右,下一步可以联系三代测序工厂寄送样品,由他们进行建库测序。但是,也要测序工厂及时反馈三代文库的质检图片,要求文库主峰与cDNA条带主峰一致,方可进行正式的Nanopore上机测序实验。四:单细胞测序剩余样品用于新的科研发现由于现阶段三代全长测序的准确性不够高,考虑到后续验证工作,比较建议在单细胞上机之后,将剩余的细胞样品进行冻存,从DNA、RNA、蛋白三个层面开展后续验证实验:01DNA水平:在我们前期测试中发现,三代原始数据中基因单核苷酸结构变异SNV(RNA层面的SNP、Indel)较多,为了拿到准确的,与DNA层面一致的突变信息,就需要结合DNA层面的检测来共同筛选核心突变。有两种做法:第一:同时将肿瘤患者的外周血和单细胞实验剩下的肿瘤细胞做全外显子测序(两个样品的市场价合计不超5000元),通过 肿瘤组织测出来 的突变 扣掉 自身PBMC 的胚系突变,可以得到体细胞突变,将这些突变 基因位点作为核心突变,利用自动化脚本,提取 三代数据中的原始 reads,这些reads都带有的 Cell barcode信息可以定位到突变所在的细胞与亚群!即可通过拟时序算法分析突变细胞vs非突变细胞的发育分化轨迹。第二:做全基因组重测序(可以根据具体课题决定是否还需收集PBMC),发现拷贝数变异CNV,以及融合基因信息,将这些信息与三代全长进行联合分析。后续分析内容也极为丰富,可以展开多个科研角度的解释。02RNA水平:在三代全长拿到特征性转录本之后,还需要做后续验证,如果序列较少,可以通过5' RACE、3' RACE实验拉全长获得准确序列;如果候选转录本序列较多,也可以通过Pacbio直接做 Bulk 测序(可以混样测一份即可,目的是拿到序列),再结合单细胞全长转录本的特异性表达规律,可以快速、低成本获得这些序列的完整信息,下一步即可通过构建动物模型,开展功能验证工作。03蛋白层面:现阶段的单细胞测序大多是以基因作为靶点,但是从已经发表的上万篇单细胞数据中,也经常发现基因的表达特异性并不强,这个是现阶段单细胞测序需要升级改进的核心关键点。而在真实组织中,基因在不同亚群中使用不同的转录本编码多种蛋白产物。有了单细胞全长转录本技术,也就意味着可以将靶点发现从基因细化为转录本,挖掘转录本的蛋白编码产物。因此,临床转化最核心的一步:膜蛋白层面,可以依靠全长转录本获得一些全新的发现。现有的蛋白质质谱技术无法做到 针对单个细胞进行广泛的蛋白质检测,但是蛋白质的编码序列都是从RNA层面的转录本翻译过来,转录本序列的检测比蛋白质的检测要容易很多。所以,这个里面就依托一套简单的逻辑:从DNA到RNA到蛋白的中心法则,即可做到通过单细胞全长转录本测序,发现亚群特异性转录本,再将转录本序列预测的多肽产物与蛋白质谱打出来的多肽产物进行匹配,发现一条潜在的转录本+编码产物,即为一条新型潜在靶点。其实,在肿瘤新抗原发现领域,这套序列预测+质谱检测的策略已经非常成熟并且较为实用,因此,可以基于中心法则将这套成熟策略转用到单细胞全长转录本发现新型蛋白编码产物领域。总结综上所述,单细胞全长转录本更适合做新鲜样品,整体实验过程并不复杂,基本上现阶段单细胞科技服务类公司都能实现,只需要在几个细节上稍加注意即可。总结下来,单细胞全长测序的本质只是对转录本加了 细胞亚群 的标签,方便从数万条转录本快速筛选到特异性表达的少数转录本。这个并不是一套全新开发的技术,只能算是从DNA到RNA到蛋白的一整套符合中心法则的单细胞多组学的技术方案。在我们前期拜访前沿课题组的过程中,有不少研究员曾想过这样的方法,只是行业内缺乏前人尝试。我们深入思考过这些细节后,发现这套方案从样品的选择、测序实验、数据呈现,均比现阶段的单细胞二代测序更加实用,更加贴近临床转化。从另外一个角度,转录本是基因功能实现的最小细分单位,针对转录本研究的单细胞全长测序,算得上是转录组研究领域的终点站。
  • 世界首台可观察活体细胞的超高分辨率生物显微镜问世
    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。   STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。   IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制