当前位置: 仪器信息网 > 行业主题 > >

遗传代谢

仪器信息网遗传代谢专题为您整合遗传代谢相关的最新文章,在遗传代谢专题,您不仅可以免费浏览遗传代谢的资讯, 同时您还可以浏览遗传代谢的相关资料、解决方案,参与社区遗传代谢话题讨论。

遗传代谢相关的论坛

  • 【原创大赛】质谱技术应用于中国遗传代谢性疾病现状及防控对策

    [align=center]质谱技术应用于中国遗传代谢性疾病现状及防控对策[/align]出生缺陷已成为我国重大公共卫生问题,防控形势严峻。1、出生缺陷不仅导致胎儿的结构异常,还导致出生后的功能异常,包括先天畸形、先天性代谢病、染色体异常、先天性宫内感染所致的异常,以及先天发育残疾如盲、登、智力障碍等;2、出生缺陷总发生率为5.5%,由于我国出生人口多,导致出生缺陷总数远远高于其他国家;3、随着人口政策的调整,高龄、高危孕产妇带来了更大的挑战。而其防控对策受到仪器方法的限制,无法准确的对体内内源性物质定性定量。出生缺陷的特点有:1、疾痛种类繁多且复杂,达上万种;2、病因复系,可由遗传因素,环境因素或两因相互作用所致;3、有些出生缺陷根据临床将征即可诊断,但有些缺陷需要的诊断手段要复杂些,需要特殊检测手段和方法;4、有的出生缺陷可于出生时表现,有些出生缺陷则在生后一段时间才显示出来;5、疾病负担重,保障体系尚待进一步的提高。出生缺陷防控可分为三个级别,一级预防最佳时机为婚前和孕前,目的是预防出生缺陷的发生,措施有法律法规,孕前增补小剂量叶酸,婚前医学检查,孕前健康检查,孕前筛查,健康教育,营养干预,出生缺陷咨询,遗传咨询等。二级预防最佳时机为孕期,目的是避免致死,严重致残缺陷儿出生。措施为产前超声筛查与诊断,PCD,产前Dowm综合征血清学筛查/NIPT,产前诊断技术(CVS, AC, FISH, BOB, CMA, CGH等)。三级预防最佳时机为新生儿时期,目的为先天性疾病早筛查及早诊断并及时有效治疗,措施有新生儿疾病筛查及诊断(包括听力筛查) ,出生缺陷的疾病治疗。出生缺陷防控标志性事件:1994年《母婴保健法》颁布;1996年出生缺陷检测机构达460家;2002年颁布《新生儿筛查技术规范》;2003年颁布《产前诊断管理办法》;2019年健康中国行动2030年计划。2018年中国出生缺陷精准防控的进展:2018年8月国家卫生能康委颁布《关于印发全国出生缺陷综合防治方案的通知》(国卫办妇幼发2018) 19号,总目的:构建覆盖城乡居民,涵盖婚前、孕前、孕期、新生儿和儿童各阶段的出生缺陷防治体系,为群众提供公平司及、优质高效的出生缺陷综合防治服务,预防和减少出生缺陷,提高出生人口素质和儿童健康水平。具体目标(到2022年)出生缺陷防治知识知晓率达到80%,婚前医学检查率达到65%,孕前优生健康检查率达到0%产前筛查率达到70%。新生儿遗传代谢性疾病缩查率达到90%,新生儿听力筛查率达到0%,确诊病LI治疗率均达到80%先天性心脏病、唐氏综合征、耳聋、神经管缺陷、地中海贫血等严重出生缺陷得到有效控制。2018年中国出生缺陷精准防控的进展金国出生缺陷防治人才培训项目:2018年正式启动, 2020年到2万人, 2019年扩展到3500人。首批启动12个省(山东、山西、辽宁、浙红、河南、湖南、湖北、福建、四川、贵州、甘肃、广西)。2019年扩展到24个省,国家投入2600 万+3780万,培训2400-3500人,集中培训一周,临床进修七周,线上学习四周。而质谱串联液相色谱技术应用于遗传代谢性疾病的筛查率逐年增加,各省均加大投入对我国遗传代谢性疾病的防控。新生儿遗传性疾病遇到空前的挑战与机遇:1、新生儿筛查的病转扩大,市场的规范;2、在关挂确在服务的同时,还需更加关挂诊断、治疗的后续服务;3、新生儿遗传代谢性疾病筛查、诊断与治疗的人才培养;4、新生儿筛查技术规范化的修订与出台;5、咨询与技术发展同步提高;6、基因筛查与诊断受到关注。

  • 【“仪”起享奥运】600万!贵州省妇幼保健院2024年新生儿多种遗传代谢病串联质谱检测试剂采购项目

    [font=微软雅黑, &][size=16px][font=inherit]一、项目基本情况[/font] [/size][/font][font=微软雅黑, &][size=16px]项目编号:BLJT082024045 [/size][/font][font=微软雅黑, &][size=16px]项目名称:贵州省妇幼保健院2024年新生儿多种遗传代谢病串联质谱检测试剂采购项目[/size][/font][font=微软雅黑, &][size=16px]项目序列号: P52000020240007JT [/size][/font][font=微软雅黑, &][size=16px]预算金额(元):6000000 [/size][/font][font=微软雅黑, &][size=16px]最高限价(元):6000000 [/size][/font][font=微软雅黑, &][size=16px]采购需求:[/size][/font][font=微软雅黑, &][size=16px] 标项名称: 贵州省妇幼保健院2024年新生儿多种遗传代谢病串联质谱检测试剂采购项目 数量: 不限 预算金额(元): 6000000 简要规格描述或项目基本概况介绍、用途:新生儿多种遗传代谢病串联质谱检测试剂(含配套使用耗材,详见第五章采购需求) 备注:采购数量: 1批(7.2万人份) [/size][/font][font=微软雅黑, &][size=16px]合同履约期限:标项 1,招标人指定的时间[/size][/font][font=微软雅黑, &][size=16px]本项目(否)接受联合体投标。[/size][/font][font=微软雅黑, &][size=16px][font=inherit]二、申请人的资格要求[/font][/size][/font][font=微软雅黑, &]1.满足《中华人民共和国政府采购法》第二十二条规定;[/font][font=微软雅黑, &]2.落实政府采购政策需满足的资格要求:无[/font][font=微软雅黑, &]3.本项目的特定资格要求:【标项1】(1)投标产品属于医疗器械管理的产品且供应商为代理商的须提供《医疗器械经营企业许可证》(经营范围覆盖所投标产品)或医疗器械经营许可备案证明材料。(复印件或扫描件加盖供应商公章)(2)投标产品属于医疗器械管理的产品须提供投标产品医疗器械注册证(含登记表(若有)等附件)或医疗器械备案证书(凭证)。(复印件或扫描件加盖供应商公章)[/font][font=微软雅黑, &][size=16px][font=inherit]三、获取招标文件[/font][/size][/font][font=微软雅黑, &][size=16px]时间:2024年08月05日至2024年08月12日 ,每天上午00:00至11:59 ,下午12:00至23:59(北京时间,法定节假日除外)[/size][/font][font=微软雅黑, &][size=16px]地点:贵州省公共资源交易系统(https://ggzy.guizhou.gov.cn/zfcg)“文件费交纳与文件下载”[/size][/font][font=微软雅黑, &][size=16px]方式:贵州省公共资源交易系统(https://ggzy.guizhou.gov.cn/zfcg)“文件费交纳与文件下载”获取 [/size][/font][font=微软雅黑, &][size=16px]售价(元):0 [/size][/font][font=微软雅黑, &][size=16px][font=inherit]四、提交投标文件截止时间、开标时间和地点[/font][/size][/font][font=微软雅黑, &][size=16px]提交投标文件截止时间:2024年08月26日 09:30(北京时间)[/size][/font][font=微软雅黑, &][size=16px]投标地点(网址):贵州省公共资源交易中心[/size][/font][font=微软雅黑, &][size=16px]开标时间:2024年08月26日 09:30[/size][/font][font=微软雅黑, &][size=16px]开标地点:贵州省公共资源交易中心[/size][/font][font=微软雅黑, &][size=16px][font=inherit]五、公告期限[/font] [/size][/font][font=微软雅黑, &][size=16px]自本公告发布之日起5个工作日。[/size][/font][font=微软雅黑, &][size=16px][font=inherit]六、其他补充事宜[/font][/size][/font][font=微软雅黑, &][size=16px]由成交供应商支付,在领取成交通知书时一次性支付给代理机构 [/size][/font][font=微软雅黑, &][size=16px][font=inherit]七、对本次采购提出询问,请按以下方式联系[/font][/size][/font][font=微软雅黑, &][size=16px]1.采购人信息[/size][/font][font=微软雅黑, &][size=16px]名 称:贵州省妇幼保健院 [/size][/font][font=微软雅黑, &][size=16px]地 址:贵阳市云岩区樱花巷18号 [/size][/font][font=微软雅黑, &][size=16px]联系方式:0851-86827870 [/size][/font][font=微软雅黑, &][size=16px]2.采购代理机构信息[/size][/font][font=微软雅黑, &][size=16px]名 称:佰利建设管理(集团)有限公司 [/size][/font][font=微软雅黑, &][size=16px]地 址:贵阳市观山湖区长岭北路6号大唐东原财富广场3栋23楼 [/size][/font][font=微软雅黑, &][size=16px]联系方式:18786671937 [/size][/font][font=微软雅黑, &]3.项目联系方式[/font]项目联系人: 朱芃锦、徐以美、蒋国辉、谢普敏电 话:18786671937

  • 有做新生儿遗传代谢病筛查的么

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701221132_01_3080675_3.jpeg现在AB和Waters机器在做新生儿的氨基酸和肉碱筛查时所跑的峰型都是一种面包似的峰,我就一直不明白跑这种峰型的意义是什么,只是听说什么AB的积分计算是什么取50%半峰高,还至少要8个点,Waters是取中间7-15个cycle峰高还是什么峰面积的,一直都不理解为什么不跑那种山峰,有人知道这些计算原理么?

  • 【讨论】“圣元乳粉疑致儿童性早熟”专家组名单为什么没有检测机构的专家?

    [table=710][tr][td][align=center]姓 名[/align][/td][td][align=left]工 作 单 位[/align][/td][td][align=left]职务/职称[/align][/td][/tr][tr][td]王 宇[/td][td]中国疾病预防控制中心[/td][td] 主任/研究员(组长)[/td][/tr][tr][td]罗小平[/td][td]华中科技大学同济医院儿科[/td][td]中华医学会儿科学分会儿科内分泌遗传代谢学组组长/教授[/td][/tr][tr][td]杜敏联[/td][td]中山大学医学院第一医院儿科[/td][td]中华医学会儿科学分会儿科内分泌遗传代谢学组前组长/教授[/td][/tr][tr][td]功纯秀[/td][td]北京儿童医院内分泌科[/td][td]科主任,中华医学会儿科学分会儿科内分泌遗传代谢学组副组长/ 教授[/td][/tr][tr][td]伍学焱[/td][td]北京协和医院内分泌科[/td][td]垂体性腺学组组长/教授[/td][/tr][tr][td]朱 逞[/td][td]北京儿童医院内分泌科[/td][td]教授[/td][/tr][tr][td]杨艳玲[/td][td]北京大学第一医院[/td][td]中华医学会儿科学分会儿科内分泌遗传代谢学组副组长/教授[/td][/tr][tr][td]梁 黎[/td][td]浙江大学附属儿童医院[/td][td]中华医学会儿科学分会儿科内分泌遗传代谢学组副组长/教授[/td][/tr][tr][td]王临虹[/td][td]中国疾病预防控制中心妇幼保健中心[/td][td]妇幼保健中心副主任/研究员[/td][/tr][tr][td]杨月欣[/td][td]中国疾病预防控制中心营养与食品安全所[/td][td]食物营养评价室主任,中国营养学会副理事长/ 研究员[/td][/tr][tr][td]赵云峰[/td][td]中国疾病预防控制中心营养与食品安全所[/td][td]研究员[/td][/tr][tr][td]邵 兵[/td][td]北京市疾病预防控制中心[/td][td]食品安全国家标准审评委员会检验方法委员会专家委员/研究员[/td][/tr][tr][td]陈小波[/td][td]首都儿研所内分泌科[/td][td]科主任/主任医师[/td][/tr][/table]食品检测机构的专家就不需要在名单中吗?

  • 武汉大学分子遗传学笔记(不断更新中)

    第一章 绪论1.1 分子遗传学的含义1.不能把分子遗传学单纯地理解成中心法则的演绎 *分子遗传学≠中心法则传统:分子遗传学=中心法则实际:分子遗传学≠中心法则,他首先是遗传学,其坚实的理论基础仍然是摩尔根的《基因论》中心法则只是对基因,性状及突变在核酸分子水平上的解释。从中心法则到性状的形成仍然是一个复杂的甚至未知的遗传,变异与发育的生物学过程。分子遗传学不仅盯住DNA/RNA,蛋白质,更要研究活细胞内与遗传便宜有关的一切分子事件。 分子遗传学≠核酸+蛋白质分子遗传学研究的对象是分子水平上的生物学过程-遗传与变异的过程。它研究的是动态的生物学过程,而不是脱离生物体,在试管里孤立地研究生物大分子的结构与功能。1992年,Nature 的主编J.Maddox 曾著文 Is molecular biology yet a science?指出:"现在有那么一些叫分子生物学家的人, 他们的文章无视全部的动物,植物,也很少言及他们的生理学。实验的大部分资料来自所谓的\'凝胶\'---""分子生物学在很大程度上变成定性的科学。---如果事情只是简单的说明某个基因版本与某种遗传病相关,那么,分离这种片段(如电泳),然后测序足以。"但是"以往的巨大成就表明,生命过程是由严格控制下进行的一些有序事件组成"他说:"在人们长期为细胞生物学现象寻找定性的解释中,他们将会相信细胞只不过是一个充满了分子开关的袋子,他们作为分子传动器或开或关而出现在预定的事件序列中。要真正在分子水平上了解遗传变异的本质,仅仅研究核酸或蛋白质的生物化学是不够的。分子遗传学所研究的应该是细胞中动态的遗传变异过程,以及与其相关的分子事件。所以不止是中心法则,核酸,蛋白质。 2.分子遗传学不是核酸及其产物(蛋白质)的生物化学分子遗传学是分子生物学的一个分支, 或理解为狭义的分子生物学。他依照物理,化学的原理来解释遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。因此,分子遗传学是在生命信息大分子的结构,功能及相互关系的基础上研究遗传与变异的科学。 3.传统的遗传学"主要研究遗传单元在各世代的分布情况",分子遗传学则着重研究遗传信息大分子在生命系统中的储存,复制,表达及调控过程。研究范畴如下: DNA RNA Protein 现象信息源 信息模板 工作分子 生长、分化、发育、代谢 1.2 分子遗传学的产生1.物理学的渗透1945年奥地利物理学家量子力学的创始人之一薛定谔(ERWIN SCHRMODINGER)的《生命是什么》一书出版。倡导用物理学的思想和方法探讨生命的秘密。引入热力学第二定律,熵概念等。他认为有机体在不断地增加他的熵并趋向最大值的熵的危险状态,那就是死亡。要摆脱死亡而正常生长发育,就要从环境中吸取负熵,负熵是一个积极的东西。有机体就是依赖负熵为生的。他认为生命系统中可能还包含迄今未知的"其他的物理学定律"极大地鼓励着很多物理学家转入生物学来研究基因的本性。整个40年代,新的物理学定律并未发现,但信息论,量子论,氢键等概念把生物学推向分子水平。 2.微生物学向遗传学的靠拢1926年摩尔根的《基因论》已经问世,但20世纪30年代,微生物学家采用拉马克的遗传观念,因为他们对微生物的遗传可塑性有很深刻的印象。如在含有致死药物的培养基上,可以很

  • 【转帖】药物代谢动力学(影响药物代谢的因素)

    [size=4](一)药物代谢的遗传多态性[/size][size=4]由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:弱代谢者(poor metabolizer)或PM-表型1,而强代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P4502C的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表2-4)。P4501A1,P4501A2是芳香碳氢化合物羟化酶,激活某些致癌原,其遗传变异与某些癌的易患性有关。[/size][align=center][size=4]表2-4 遗传多态性与药物代谢[/size][/align][table][tr][td=1,1,126][size=4]代谢途径[/size][/td][td=1,1,158][size=4]药物举例[/size][/td][td=1,1,142][size=4]人群中的频率(%)[/size][/td][td=1,1,142][size=4]酶[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]异喹胍,金雀花碱,右旋甲吗喃,阿片类[/size][/td][td=1,1,142][size=4]白种人5-10[/size][/td][td=1,1,142][size=4]CYP4502D6[/size][/td][/tr][tr][td=1,1,126][size=4]C-氧化[/size][/td][td=1,1,158][size=4]β-肾上腺受体拮抗剂,乙妥英,甲苯巴比士[/size][/td][td=1,1,142][size=4]白种人4[/size][/td][td=1,1,142][size=4]CYP4502C[/size][/td][/tr][tr][td=1,1,126][size=4]乙酰化[/size][/td][td=1,1,158][size=4]环已巴比土,异烟肼,磺胺二甲嘧啶,咖啡因[/size][/td][td=1,1,142][size=4]日本人10[/size][/td][td=1,1,142][size=4]N-乙酰基转移酶白种人30-70[/size][/td][/tr][/table]

  • 生物工程的一个新的分支:代谢工程

    张星元:生物工程的一个新的分支:代谢工程代谢工程(Metabolic engineering)是生物工程的一个新的分支。代谢工程把量化代谢流及其控制的工程分析方法和用以精确制订遗传修饰方案并付之实施的分子生物学综合技术结合起来,以上述“分析——综合”反复交替操作、螺旋式逼近目标的方式,在较广范围内改善细胞性能,以满足人类对生物的特定需求的生物工程。为了满足人类对生物的特定需求而对微生物进行代谢途径操作,已有将近半个世纪的历史了。在氨基酸、抗生素、溶剂和维生素的发酵法生产中,都可以找到一些典型实例。操作的主要方法是,用化学诱变剂处理微生物,并用创造性的筛选技术来检出已获得优良性状的突变菌株。尽管这种方法已被广泛地接受并已取得好的效果,但对突变株的遗传和代谢性状的鉴定是很不够的,更何况诱变是随机的! DNA重组的分子生物学技术的开发把代谢操作引进了一个新的层面。遗传工程是我们有可能对代谢途径的指定酶反应进行精确的修饰,因此,有可能构建精心设计的遗传背景。DNA重组技术刚进入可行阶段不久,就出现了不少可用来说明这种技术在定向的途径修饰方面的潜在应用的术语。如分子育种(1981年),体外进化(1988年),微生物工程或代谢途径工程(1988~1991年),细胞工程(1991年)和代谢工程(1991年)。尽管不同的作者提出不完全相同的定义,这些定义均传达了与代谢工程的总目标和手段相似的含义。我们曾经把代谢工程定义为,代谢工程就是用DNA重组技术修饰特定的生化反应或引进新的生化反应,直接改善产物的形成和细胞的性能的学科。这样定义代谢工程强调了代谢工程工作目标的确切性。也就是说,先要找到要进行修饰或要引进的目标生化反应,一旦找准了目标,就用已建立的分子生物学技术去扩增、去抑制或删除、去传递相应的基因或酶,或者解除对相应的基因或酶调节,而广义的DNA重组只是常规地应用于不同步骤中,以便于达到这些目标。尽管在所有的菌种改良方案中都有某种定向的含义,但与随机诱变育种相比较,在代谢工程中工作计划的定向性更加集中更加有针对性。这定向性在酶的目标的选择,实验的设计,数据的分析上起着支配的作用。不能把细胞改良中的所谓“定向” 解释为合理的途径设计和修饰,因为“定向选择”与随机诱变之间没有直接关系。相反地我们可借助于“逆行的代谢工程”(reverse metabolic engineering), 从随机诱变而获得的突变株及其性状的实验结果,来提取途径及其控制的判断信息(critical information)。与所有传统的工程领域一样,代谢工程也包含“分析” 和“综合”两个基本步骤。因为代谢工程借助于DNA重组技术作为一种启用技术而出现,所以一开始人们的注意力仅仅放在这个领域的综合方面,譬如:新的基因在不同寄主中的表达,内酶的扩增,基因的删除,酶活力修饰,转录的解调或酶的解调等。这样前面定义的代谢工程,在相当程度上似乎是应用分子生物学技术表现形式,几乎没有工程的内容,因此从生物过程的角度来衡量,并不是够格的代谢工程。而更加重要的工程内容存在于代谢工程的分析方面。譬如,怎样确定定义生理状态的参数?怎样用这信息解释代谢网络控制的结构体系,进而提出达到某个目标的合乎道理的修饰位点?怎样进一步评估这些遗传修饰和酶的修饰的真实的生化效果,以便进行下一轮的途径修饰,直到达到目的?能不能提出一个可用来确定代谢修饰的最有希望的靶位的合理的步骤?在综合方面,代谢工程的另一个不同寻常的方面是它关注的是代谢途径集成的整体,而不是单个反应。这样,代谢工程研究的是整个生化反应网络,涉及到其自身的途径合成和热动力学可行性,还有途径流量及其控制。我们研究的出发点正在经历从单个酶反应向相互影响的生化反应体系转变。因此,通过对整个反应体系而不是一个个孤立的反应的考察就有可能获得关于代谢和细胞功能的更全面的认识,在这个的意义上“代谢网络”的观念是最为重要的。代谢工程让人们把注意力转向整个体系而不是其组成部分。因此,代谢工程使用来自还原论者的大量的研究的技术和信息来设法进行综合和设计;而关于整个体系的运转状态的观察,对于进一步的合理的分解和分析其自身来说,又是最好的指导。尽管代谢和细胞生理学可以为某组反应途径的分析提供主要的背景知识,应该指出流量及其控制的测定结果具有更广阔的应用范围。因而,代谢工程的概念除了可用来分析流经某组代谢途径的物质流和能量流,同样可以应用于在信号传感途径的信息流量的分析。对于信息流量尚未很好地定义,一旦信号途径的概念得到具体化,以上观念和方法将会在信号传感途径的相互作用的研究,以及胞外刺激控制基因表达的复杂机制的解释方面发挥作用。也许代谢工程最重要的贡献在于对活体条件下代谢流及其控制的强调。代谢流的概念本身实际上并不是新的。代谢流及其控制引起生化研究人员中的少数先知的注意,已有大约30多年历史了。作为他们工作的结果,代谢控制的观念成熟了,并且被严格的定义了,尽管这些观念曾经没有得到传统的生物学家广泛地接受。代谢工程最初被设想为特定的途径操作,很快又变成工程师们的分析技能的预期的输出端。发酵工程师们建立了量化代谢流及其控制的工程分析方法,从而看到了利用代谢控制分析这个有效的平台向这个过程导入严密性的机会,以及生化工程与发酵工程在生物学领域的交叉和互补。

  • 【分享】代谢组学概论

    中文名称:代谢组学 英文名称:metabonomics 定义:通过组群指标分析,进行高通量检测和数据处理,研究生物体整体或组织细胞系统的动态代谢变化,特别是对内源代谢、遗传变异、环境变化乃至各种物质进入代谢系统的特征和影响的学科。 所属学科:生物化学与分子生物学(一级学科);总论(二级学科)

  • 中科院遗传与发育生物学研究所王国栋课题组招聘启事

    因工作需要,中国科学院遗传与发育生物学研究所基因组生物学中心王国栋研究员课题组现向海内外公开招聘研究人员1名(助研)。王国栋课题组的主要研究方向是综合基因组学,代谢组学(Mass-based)和传统的分子和生化技术去探索植物中未知代谢途径,克隆,功能鉴定重要代谢途径中的酶和酶学及调控机理,并应用于实际生产。课题组具体信息参见http://www.genetics.ac.cn/wangguodong。一、基本招聘条件  1. 具有高度的责任心和上进心,性格乐观开朗,有良好的人际沟通能力,富有团队协作精神;  2. 对本研究组工作感兴趣,可追踪本研究领域的发展前沿;  3. 非应届毕业生需要有北京市户口(博士后不受此限制)。   对于应聘者具体要求如下:  1. 具有分析化学及相关专业或生物学硕士研究生以上学历、学位,较强的英文阅读能力和中英文写作能力,在SCI杂志发表第一作者研究论文至少1篇;  2. 同时具有色谱——质谱联用等大型分析仪器操作经验和熟悉相关数据处理流程经历的申请者优先。二、岗位职责  1.独立完成研究组长交给的科研任务或承担相关课题;  2.培训研究生相关知识、技能,协助课题组长在相关课题中指导研究生及实验室管理;三、申请材料的投递  应聘者请将《科研岗位工作申请表》及本人简历、包括研究经历简介、未来事业规划,代表性论文及两位推荐人的姓名及电话等相关资料发至:gdwang@genetics.ac.cn(邮件主题请注明:工作岗位申请),本招聘长期有效,招到合适人选为止。四、审查  研究所对申请者进行资格审查,并在收到材料的一个月内通知初审合格者前来面试,资格审查未通过者,不再另行告知。五、待遇  试用期考察合格后根据其学历和专业经历拟聘为中国科学院遗传发育所固定工作人员,享有相关待遇,特别优秀者具体职称、待遇可协议。六、政策咨询:人力资源处 崔老师 64806520

  • 【讨论】正常人尿中有机酸种类

    有机酸检测主要是用于遗传代谢病或者新生儿遗传病的检测,如果我要检测正常成人尿中的有机酸,至于检测什么种类的要自己确定,查了很多文献,有的30多种有的60多种,实在是有点乱,有没有做过这方面的,常规检测一般是多少种,都是什么呢?PS:有机酸检测用LC/MS效果好还是GC/MS效果好。

  • 菌种传代

    请教一下各位老师、同行,菌种传代过程中编号有什么规则吗?工作菌种和传代菌种如何用编号区别呢?编号有没有什么普遍的通用方法或者是规定?传代菌种一般需要几管的?

  • 代谢工程研究的历史与现状 1962 - 2010年

    代谢工程(Metabolic engineering)是生物工程的一个新的分支。代谢工程把量化代谢流及其控制的工程分析方法和用以精确制订遗传修饰方案并付之实施的分子生物学综合技术结合起来,以上述“分析——综合”反复交替操作、螺旋式逼近目标的方式,在较广范围内改善细胞性能,以满足人类对生物的特定需求的生物工程。  与所有传统的工程领域一样,代谢工程也包含“分析” 和“综合”两个基本步骤。因为代谢工程借助于DNA重组技术作为一种启用技术而出现,所以一开始人们的注意力仅仅放在这个领域的综合方面,譬如:新的基因在不同寄主中的表达,内酶的扩增,基因的删除,酶活力修饰,转录的解调或酶的解调等。这样前面定义的代谢工程,在相当程度上似乎是应用分子生物学技术表现形式,几乎没有工程的内容,因此从生物过程的角度来衡量,并不是够格的代谢工程。而更加重要的工程内容存在于代谢工程的分析方面。譬如,怎样确定定义生理状态的参数?怎样用这信息解释代谢网络控制的结构体系,进而提出达到某个目标的合乎道理的修饰位点?怎样进一步评估这些遗传修饰和酶的修饰的真实的生化效果,以便进行下一轮的途径修饰,直到达到目的?能不能提出一个可用来确定代谢修饰的最有希望的靶位的合理的步骤?在综合方面,代谢工程的另一个不同寻常的方面是它关注的是代谢途径集成的整体,而不是单个反应。这样,代谢工程研究的是整个生化反应网络,涉及到其自身的途径合成和热动力学可行性,还有途径流量及其控制。我们研究的出发点正在经历从单个酶反应向相互影响的生化反应体系转变。因此,通过对整个反应体系而不是一个个孤立的反应的考察就有可能获得关于代谢和细胞功能的更全面的认识,在这个的意义上“代谢网络”的观念是最为重要的。代谢工程让人们把注意力转向整个体系而不是其组成部分。因此,代谢工程使用来自还原论者的大量的研究的技术和信息来设法进行综合和设计;而关于整个体系的运转状态的观察,对于进一步的合理的分解和分析其自身来说,又是最好的指导。

  • 【转帖】红霉素工业用菌种遗传改造获突破

    中科院上海有机化学研究所刘文领衔的课题组立足于国内生物产业的现实需求,结合该所在化学合成方面的优势,致力于化学的理念促进现代生物技术的合理运用。他们与华东理工大学教授张嗣良等合作,在国家“863”项目“红霉素发酵工业用菌种改造和过程优化控制技术”中取得了重要突破,获得了一批具有自主知识产权、质量和产量得以明显提升的新型红霉素生产重组菌株。目前该成果已在湖北东阳光生化制药有限公司成功地进行了放大和试生产,其潜在经济、社会效益显著。在人类与致病微生物的斗争历史上,以抗生素为代表的微生物药物起到了至关重要的作用。红霉素是一类广泛使用、用于治疗革兰氏阳性菌感染的广谱大环内酯类抗生素。其临床应用领域的扩大和以阿奇霉素、罗红霉素、克拉霉素等为代表的新型半合成红霉素的出现,快速拉动了红霉素原料药的生产需求。过去几年,国际抗生素的市场规模大约在350亿~380亿美元之间,2012年有望达到450亿美元。据西方经济学家预测,2010年红霉素系列产品的全球市场总规模达70亿美元以上,市场前景乐观。抗生素发酵生产本身是高耗能产业,存在环境污染等问题,发达国家近年来正逐步把抗生素原料药的生产转移到中国等发展中国家。目前,我国是世界上红霉素生产和出口的第一大国,年产量超过7000吨。刘文介绍,由于许多抗生素具有十分复杂的化学结构,采用化学方法大量合成往往需要繁杂的工艺途径和苛刻的反应条件,在制药工业上的实际应用价值相当有限。采用微生物发酵是获取药用抗生素原料的主要途径,而我国作为世界上原料抗生素的主要生产大国,发酵单位偏低、产品质量偏低、缺乏自主知识产权的新型抗生素药物等一系列原因却严重制约了这一产业的发展。自红霉素作为一种广谱抗生素药物进入临床以来,以提高其产生菌种发酵单位为目的的遗传育种工作一直未曾停止。由于对微生物次级代谢产物生物合成的机制了解不多,常规诱变选育的方法存在周期长、效率低和随机性大的缺点,近年来在红霉素高产菌株的筛选方面收效不大。随着分子生物学技术的发展,国际上在红霉素产生菌种的基因工程改造方面进行了诸多尝试;然而,这些研究主要集中在与红霉素产生相关的底物供应或限制因素的改进方面,并未就红霉素生物合成的次生代谢途径做特异性的遗传修饰,因此,在解决红霉素生产中经常面临的有效组分偏低等问题时,缺乏有效的针对性。作为中科院“百人计划”、国家杰出青年基金获得者,自2007年以来,刘文带领课题组以包括红霉素、阿维菌素、林可霉素、泰乐菌素和螺旋霉素等大宗抗生素产品为对象,就我国抗生素原料药产业普遍存在的问题进行了分析,提出了以组分优化为切入点、采用遗传操作来控制体内合成的化学反应,从而改善产品质量和产量的研究思路。基于红霉素各组分结构的差异和相互转化的化学本质,他们运用组合生物合成技术的方法和原理对红霉素工业用高产菌株进行了针对性的遗传改良。通过发酵过程中后修饰酶的表达比例调整,他们将无效副产物组分B和C几乎完全转化为有效组分红霉素A,从而在提高了产品质量(基本消除主要的副产物)的同时,有效地提高了产品的产量达25%左右。部分研究成果发表在国际著名学术刊物《应用和环境微生物》上,引起国内外同行的关注。有关重组菌株在华东理工大学的协助下完成了中试,已在湖北宜都东阳光生化制药有限公司进行了放大和试生产,具备了工业化生产的价值。据厂方估计,相关生产技术若能得以推广使用,每年所产生的经济效益将达10亿元以上。这一重要成果还获得了上海市科技进步奖一等奖,并申请国家专利4项。有关专家认为,其在红霉素发酵工业方面的应用,将明显改善产品质量、简化下游纯化工艺;同时,缓解企业在环境污染方面所面临的压力。“抗生素在微生物体内的合成其本质是化学问题,化学过程和机制的解析可以使生物学技术的运用找到合适的目标并发挥更大作用。”刘文表示,“以上是我们构建的第一代红霉素生产重组菌株,主要侧重于品质(组分优化)的提升。目前我们侧重于产量提高的第二代重组菌株已完成中试,结合前两代优势、综合提高质量和产量的第三代重组菌株完成了小试,初步数据表明效果明显。”作为上海有机所开展红霉素菌种遗传改造工作的最初建议者,中国科学院院士戴立信高度关注面向国家重大需求的科学研究。“以汪猷先生为代表的有机所老一辈科学家早在上世纪50年代就开展了抗生素的研究工作,并在实际生产中得到应用,解决了当时有和无的问题。我国现在已经成为红霉素第一生产大国,对于技术创新的需求尤为迫切。”他思路非常清晰,“我听了刘文教授关于生物合成的学术报告后,又了解了一些红霉素生产企业的现状和需求,感觉在生物技术中融入化学的理念,应该有可能解决一些生产中的瓶颈问题并产生不错的效果。”“这是有机所在知识创新过程中,在面向国家需求、立足原始创新方面所做的一件有重要意义的研究工作,充分体现了学科交叉的优势。”中科院上海有机所所长丁奎岭表示,“我们以化学的思想促进生物技术的应用,以提高大宗医药抗生素产品的产量和质量为研究目标,所要解决的关键问题在抗生素生产中具有普遍意义。红霉素工业用生产菌种的遗传改造取得的系列创新技术在生产中成功实施,预示着这样的理念在其他抗生素发酵生产中将有着普遍的推广意义,有利于促进我国传统抗生素生产行业整体技术水平的提升。”

  • 菌种怎么传代

    请教各位前辈菌种传代使用的问题1.菌种必须要第3代开始才能作为工作菌种吗?2.一定要储备标准工作菌株吗?3.菌种传代必须要到期才能传下一代吗?还是培养好后直接可以传下一代?

  • 【求助】串联质谱检测血氨基酸与酰基肉碱,这种方法能用于成人吗?

    串联质谱发检测新生儿学中氨基酸和酰基肉碱来诊断遗传代谢病应用比较广泛,但是儿童与成人体内酰基肉碱的种类是否相同,如果用这种方法检测成人血样的话是否需要重新制定检测指标;酰基肉碱的正常浓度值在儿童和成人应该是不同的,那么成人酰基肉碱正常浓度值,每种酰基肉碱的临床意义哪里能查到呢。求高手帮助,如果有这方面的书也可介绍一下。

  • 菌种的传代

    伤寒沙门氏菌和痢疾志贺氏菌的传代时间各是多长时间?

  • 【第二届网络原创参赛】遗传小作坊里的大科学

    【第二届网络原创参赛】遗传小作坊里的大科学

    [color=#DC143C]我们的实验室隶属于遗传学科,在2001年被批准成立“分子细胞遗传与作物育种”校重点实验室。主要的研究内容是:1. 着丝粒蛋白与细胞增殖调控的研究:应用模式生物线虫,Hella细胞和其他细胞系,通过基因克隆、基因表达及其定位,着丝粒蛋白表达的调控及其与其他已知着丝粒蛋白的相互作用的研究,阐述新着丝粒蛋白在细胞中的定位,及其与细胞增殖状态和细胞分化的调控的作用。2. 植物特殊基因资源及抗逆分子遗传机理的研究:应用特殊基因资源植物好好芭、盐芥等,通过基因组学、蛋白质组学、比较转录组学等方法克隆植物抗逆基因新资源,进行功能鉴定。并通过抗逆资源基因与植物激素、信号转导途径的代谢组学的分子生物学研究,揭示抗逆响应的分子遗传机理。从而发掘新的资源基因,认识抗逆新途径,为作物抗逆遗传育种作出新贡献。[/color][B]带大家参观一下我们的实验室吧![/B]楼道里,还有放衣服及书包的柜子![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175134_1856701_3.jpg[/img]平常做实验的屋子,呵呵,东西有些多啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175135_1856701_3.jpg[/img]实验室的冰箱和摇床[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175136_1856701_3.jpg[/img]细胞间外面[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101509_175137_1856701_3.jpg[/img]细胞培养箱[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175138_1856701_3.jpg[/img]超净台,有人要做实验了[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175139_1856701_3.jpg[/img]显微镜,包括倒置显微镜和荧光显微镜,这可是我们的宝贝啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175140_1856701_3.jpg[/img]-80℃冰箱,实验室不可或缺的设备啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175141_1856701_3.jpg[/img]烘箱,同样举足轻重![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175142_1856701_3.jpg[/img]灭菌锅,别看是老式的,但是很好用的![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175143_1856701_3.jpg[/img]组培室1—主要是组培苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175144_1856701_3.jpg[/img]组培室2 ---这是大家种的苗苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175145_1856701_3.jpg[/img]这是做分子实验的超净台哦[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175146_1856701_3.jpg[/img]做核酸电泳的台子[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175148_1856701_3.jpg[/img][color=#DC143C]说实话啊,我们的实验室不算很好,甚至可以说有些落后,但就是这个小的实验室也做出了不小的成就啊,近年来发表了不少SCI的核心期刊,其中细胞方向的两篇论文影响因子达到了5,而植物方向发表的论文也在3左右;另外,我们实验室近两年来均有国家和北京的自然基金支持,相信未来的发展会更好的。PS:呵呵,我们不贪心,只要做好分内的工作,完成基金任务就行了![/color]

  • 关于菌株传代问题

    请教一下冻干菌株复苏后马上就可以用于传代吗?保存于斜面上的菌株一般传几代后不可以再用呢?

  • 菌种传代频率

    各位大侠,有没有知道美国药典中关于各种菌种传代的频率?肯请赐教

  • Science最新专题:表观遗传学

    “表观遗传”使获得性遗传再次引起科学家的兴奋,短短数年,它已成为生命科学界最热门领域之一。以DNA为载体的中心法则仍是传递遗传信息的主要方式;而表观遗传可作为它重要的有益补充,而非你死我活的针锋相对。孩子维特式的多愁善感,可能缠绕他今后的一生;瘾君子吸毒之后生出的婴儿,长大后也有步父母后尘的可能;甚至不经意的一些习惯,都会影响后代……这听起来有些可怕。不过,经典遗传学家斩钉截铁的“不”字会给你些许安慰。传统知识告诉我们,后天的行为方式不会在短时间内遗传,需要漫长世代的自我选择;而所谓的“获得性遗传”,更是一度被当做反例“批判”。进化论泰斗达尔文曾经希望他的物种演化理论能让即使十岁的孩子也看得懂,然而大自然不会给人类这样的机会。人类发现,自身获得的知识越多,越不得不感叹生命的精妙和复杂。花相似 人不同7岁的奥利维亚和伊莎贝拉来自英国,她们是一对同卵双胞胎,拥有近乎完全一致的遗传信息。不过,两个女孩的命运却迥然相异。2005年6月,1岁的奥利维亚忽然高烧不退。血液化验的结果让大家大吃一惊:奥利维亚患上了急性白血病。因为是同卵双胞胎,医生连忙对伊莎贝拉也进行了检查,结果让人松了一口气:一切正常。在医生们的帮助下,小奥利维亚最终恢复健康,但医学专家们却遇到了一个困惑多年的难题:既然是同卵双胞胎,为何奥利维亚不断生病,而伊莎贝拉却非常健康呢?随着研究越来越深入,困扰医生的答案也将渐渐浮出水面。这些经典遗传学无法解释的现象,表观遗传学有望部分揭示。2009年,西班牙和美国的科学家在全基因组水平分析了一对同卵双胞胎的基因组:他们一方正常,一方患有红斑狼疮。研究人员发现,虽为同卵双胞胎,但双方个体对遗传信息的“表观修饰”存在大量差异――DNA甲基化水平不同。事实上,很多例子证明了“表观修饰”的存在。同样是2009年,来自拉什大学医学中心和塔夫茨大学医学院的科学家对一些小鼠的遗传基因进行人为突变,使其智力出现缺陷。当这些小鼠被置于丰富环境中进行刺激、并频繁与各物体接触两周后,它们原有的记忆力缺陷得到了恢复。数月后,小鼠们受孕。虽然它们的后代也出现了和母亲同样的基因缺陷,但没有接触复杂丰富的环境并受刺激的新生小鼠丝毫没有记忆力缺陷的迹象。在这篇发表在《神经科学》的文章中,拉里・费格博士谈到,发生在小鼠身上、把对环境的感应遗传下去的现象,在理论上被称为“表观遗传学”。“表观遗传学是指在基因组序列不变的情况下,可以决定基因表达与否、并可稳定遗传下去的调控密码。” 清华大学医学院表观遗传学与癌症研究所教授孙方霖曾如此介绍。也就是说,人类不仅有作为遗传物质的基因组信息,还有一套管理、调控、修饰基因组的密码指令系统。不同的个体,指令系统也不同。另外,这套密码指令还能在特定环境下发生改变。更神奇的是,改变后的指令很可能会遗传下去。然而,这套系统是如何发生改变并遗传,在相当长一段时间内并不为人知。

  • 实验室菌种的传代和复壮方法

    1、简述菌种的传代系装菌种在使用一段时间后,菌种数量减少,将菌种进行传代培养,增加数量经多次传代后,菌种有衰退、变异现象,对菌种进行复壮,得到纯化菌种。2、菌种传代2.1 仪器及培养基酒精灯、接种环、营养琼脂培养基。2.2 操作步骤2.2.1 将新鲜的无菌斜面琼脂养基、酒精灯、接种环和将要传代的菌种管均放置于洁净工作台上,备用。2.2.2 点燃酒精灯,以左手持菌种管,右手持接种环,将接种环通过火焰消毒俟冷后,从菌种管中挑取菌落。2.2.3 左手立即换取斜面培养基管,以右手无名指和小指拔取棉塞(先转动棉塞后拔去),夹持于手指间。2.2.4 立即将管口通过火焰灭菌后将接种环伸入斜面管内,先从斜面底部到顶端拖一条接种线,再自下而上蜿蜒涂布。2.2.5 轻轻取出接种环,用棉塞塞住管口,立即将接种环通过火焰消毒。2.2.6 将接种好的管口用牛皮纸包位,置于35±2℃恒温箱中培养18-24小时,取出置4-6℃冰箱中保存。3、菌种复壮3.1 仪器及培养基酒精灯、接种环、曙红亚甲蓝琼脂培养。3.2.1 菌种在经过几次传代之后,对其进行革兰氏染色、镜检。3.2.2 染色、镜检后若发现菌种有退化、变异现象,则将其划线接种在相应的培养基平板上,于35±2℃培养18-24小时后,观察生长菌的形态特征。3.2.3 挑取具有典型特征的菌落再次进行划线接种培养后进行革兰氏染色、镜检。3.2.4 选择特征明显,生长良好的菌种,将其接种于营养琼脂培养基斜面,培养后置冰箱中保存。

  • 【求购】究发现人体新陈代谢速度主要由4个基因决定

    [center]究发现人体新陈代谢速度主要由4个基因决定[/center] 研究人员发现,4个基因似乎能决定人们消化食物的速度,这项发现将来也许能帮助医生给病人提供更个性化的护理。 据路透社报道,新陈代谢情况的不同会导致一些人更易患上糖尿病之类的疾病,这也解释了饮食、锻炼、药物对不同病人产生的结果各不相同的原因。 研究人员共扫描了284个人的基因,发现FADS1、LIPC、SCAD和MCAD这4个基因能决定人体的新陈代谢速度。 德国慕尼黑的黑尔姆霍尔茨中心研究人员卡斯滕• 祖雷说:“这些基因似乎与新陈代谢有关,或者能对新陈代谢起重要作用。” 祖雷说,这方面的可能为更个性化的护理开辟了道路,医生可以根据病人的基因构成来研究他们的新陈代谢情况,再根据这些情况决定如何进行治疗。这对于治疗与新陈代谢有关的疾病,如冠状动脉疾病和肥胖可能尤其有效。 祖雷和同事在《公共科学图书馆遗传卷》月刊上撰文说:“这些发现使我们可以根据基因和新陈代谢两方面的特点来作出判断,从而带领我们向个性化护理和营养供给迈进。”信息来源:中国中医药报 -------------------------------------------------------------------------------- 相关链接 - 研究发现人体新陈代谢速度主要由4个基因决定 - 心律失常致病新基因被发现 - 我研究人员研制成功糖尿病基因诊断芯片 - 美科学家开发出一种可防心脏病的转基因大豆 - 科学家发现两种基因变异可增加患肺癌的可能性 - 新加坡科学家发现影响结核病的"关键基因" - 上海乳腺癌基因易感性研究获新发现 - 加拿大科学家研究找到男性型秃发相关基因 - 我国基因重组人源化单克药物泰欣生获重大突破 - 科学家发现脱发基因有助治疗脱发症 - 基因变异增加患皮肤癌风险 - 科学家鉴定出HIV病毒抑制基因 - 英国科学家发现多种疾病致病基因 - 科学家发现细胞基因重组新方法 - 变异基因影响降胆固醇药物疗效 - 美研究人员发现成神经细胞瘤致病基因 - 基因泰克,又一个消逝的生物巨头? - 美国研究显示存在懒惰遗传基因 - 美研究人员:生物钟与新陈代谢分子关联查明 - 科学家通过动物实验发现调控排卵的基因 - 美国研究发现不良行为与基因变异有关 - 中国首个基因重组人源化治疗肿瘤药物成功上市 - 美国研究称编辑特定基因可使人对艾滋免疫 www.chinapharm.cn 2008-12-09

  • 菌种的退化现象及原因

    一、菌种的退化现象 随着菌种保藏时间的延长或菌种的多次转接传代,菌种本身所具有的优良的遗传性状可能得到延续,也可能发生变异。变异有正变(自发突变)和负变两种,其中负变即菌株生产性状的劣化或有些遗传标记的丢失均称为菌种的退化。但是在生产实践中,必须将由于培养条件的改变导致菌种形态和生理上的变异与菌种退化区别开来。因为优良菌株的生产性能是和发酵工艺条件紧密相关的。如果培养条件发生变化,如培养基中缺乏某些元素,会导致产孢子数量减少,也会引起孢子颜色的改变;温度、pH值的变化也会使发酵产量发生波动等。所有这些,只要条件恢复正常,菌种原有性能就能恢复正常,因此这些原因引起的菌种变化不能称为菌种退化。常见的菌种退化现象中,最易觉察到的是菌落形态、细胞形态和生理等多方面的改变,如菌落颜色的改变,畸形细胞的出现等;菌株生长变得缓慢,产孢子越来越少直至产孢子能力丧失,例如放线菌、霉菌在斜面上多次传代后产生“光秃”现象等,从而造成生产上用孢子接种的困难;还有菌种的代谢活动,代谢产物的生产能力或其对寄主的寄生能力明显下降,例如黑曲霉糖化能力的下降,抗菌素发酵单位的减少,枯草杆菌产淀粉酶能力的衰退等。所有这些都对发酵生产均不利。因此,为了使菌种的优良性状持久延续下去,必须做好菌种的复壮工作。即在各菌种的优良性状没有退化之前,定期进行纯种分离和性能测定。

  • 菌种的退化现象及原因

    菌种的退化现象及原因一、菌种的退化现象 随着菌种保藏时间的延长或菌种的多次转接传代,菌种本身所具有的优良的遗传性状可能得到延续,也可能发生变异。变异有正变(自发突变)和负变两种,其中负变即菌株生产性状的劣化或有些遗传标记的丢失均称为菌种的退化。但是在生产实践中,必须将由于培养条件的改变导致菌种形态和生理上的变异与菌种退化区别开来。因为优良菌株的生产性能是和发酵工艺条件紧密相关的。如果培养条件发生变化,如培养基中缺乏某些元素,会导致产孢子数量减少,也会引起孢子颜色的改变;温度、pH值的变化也会使发酵产量发生波动等。所有这些,只要条件恢复正常,菌种原有性能就能恢复正常,因此这些原因引起的菌种变化不能称为菌种退化。常见的菌种退化现象中,最易觉察到的是菌落形态、细胞形态和生理等多方面的改变,如菌落颜色的改变,畸形细胞的出现等;菌株生长变得缓慢,产孢子越来越少直至产孢子能力丧失,例如放线菌、霉菌在斜面上多次传代后产生“光秃”现象等,从而造成生产上用孢子接种的困难;还有菌种的代谢活动,代谢产物的生产能力或其对寄主的寄生能力明显下降,例如黑曲霉糖化能力的下降,抗菌素发酵单位的减少,枯草杆菌产淀粉酶能力的衰退等。所有这些都对发酵生产均不利。因此,为了使菌种的优良性状持久延续下去,必须做好菌种的复壮工作。即在各菌种的优良性状没有退化之前,定期进行纯种分离和性能测定。 二、菌种退化的原因 菌种退化的主要原因是有关基因的负突变。当控制产量的基因发生负突变,就会引起产量下降;当控制孢子生成的基因发生负突变,则使菌种产孢子性能下降。一般而言,菌种的退化是一个从量变到质变的逐步演变过程。开始时,在群体中只有个别细胞发生负突变,这时如不及时发现并采用有效措施而一味移种传代,就会造成群体中负突变个体的比例逐渐增高,最后占优势,从而使整个群体表现出严重的退化现象。因此,突变在数量上的表现依赖于传代,即菌株处于一定条件下,群体多次繁殖,可使退化细胞在数量上逐渐占优势,于是退化性状的表现就更加明显,逐渐成为一株退化了的菌体。同时,对某一菌株的特定基因来讲,突变频率比较低,因此群体中个体发生生产性能的突变不是很容易的,但就一个经常处于旺盛生长状态的细胞而言,发生突变的机率比处于休眠状态的细胞大得多,因此,细胞的代谢水平与基因突变关系密切,应设法控制细胞保藏的环境,使细胞处于休眠状态,从而减少菌种的退化。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。  质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小; 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。  一、质谱在临床生化检测中的应用  由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。  1. 新生儿遗传代谢病筛查 新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。  2. 维生素D检测 维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。  3. 激素检测 对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。  4. 血药浓度监测 在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。  5. 痕、微量元素检测 人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。  6. 其他项目 除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。  二、总结与展望  质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。  相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。

  • 武汉大学分子遗传学 第二、三章

    第二章 遗传物质的基础——DNA的结构与性质2.1 核酸是遗传物质遗传物质这种特殊的分子必须具备以下基本特点:1.稳定地含有关于有机体细胞结构,功能,发育和繁殖的各种信息2.能精确地复制,这样后代细胞才能具有和亲代细胞相同的信息3.能够变异,通过突变和重组生物才能发生改变,适应和进化`遗传物质的发现1928年英国F Griffith 的肺炎球菌转化实验导致了遗传物质的发现。十年后O Avery 的体外转化实验弄清了这种转化因子的化学本质是DNA,而不是蛋白质或其他的大分子。1952年Hershey-Chase 的实验使遗传物质的结论得到了进一步的证实,而于1969年获得了诺贝尔医学生理学奖。`RNA也是遗传物质:如烟草花叶病毒的遗传物质是RNA。2.2 DNA携带两类不同的遗传信息DNA几乎是所有生物的遗传信息的携带者,除开少数RNA 病毒之外。`DNA携带着两类不同的遗传信息:一类是负责蛋白质的氨基酸组成的信息,以三联体密码子进行编码另一类遗传信息是关于基因选择性表达的信息2.3 DNA和RNA的化学组成及双螺旋模型1.DNA和RNA的化学组成核酸包括DNA和 RNA。经水解成单核苷酸(nucleotides),单核苷酸由磷酸基团(phosphate group)和核苷(nucleotide)组成,核苷含有戊糖(pentose)和碱基(base)。DNA中戊糖是D-脱氧核糖,碱基是ATGC;而RNA中戊糖是D-核糖。碱基是AUGC。`2.DNA双螺旋模型的诞生美国J D Watson在芝加哥大学读本科时对鸟类赶兴趣,到了高年级时,他想了解基因是什么。1949年他带着这种想法进入了剑桥大学卡文迪实验室医学研究组,与物理出生的青年学者F Crick 合作,决定研究DNA的分子结构。Crick 在1946年读了薛定谔(E Schrodinger)的名著(生命是什么)后,舍弃物理学转向生命科学领域。刚到剑桥大学时Watson由于自己的化学与物理学基础较差而担心听不懂R Fr

  • 菌种的退化及原因

    一、菌种的退化现象 随着菌种保藏时间的延长或菌种的多次转接传代,菌种本身所具有的优良的遗传性状可能得到延续,也可能发生变异。变异有正变(自发突变)和负变两种,其中负变即菌株生产性状的劣化或有些遗传标记的丢失均称为菌种的退化。但是在生产实践中,必须将由于培养条件的改变导致菌种形态和生理上的变异与菌种退化区别开来。因为优良菌株的生产性能是和发酵工艺条件紧密相关的。如果培养条件发生变化,如培养基中缺乏某些元素,会导致产孢子数量减少,也会引起孢子颜色的改变;温度、pH值的变化也会使发酵产量发生波动等。所有这些,只要条件恢复正常,菌种原有性能就能恢复正常,因此这些原因引起的菌种变化不能称为菌种退化。常见的菌种退化现象中,最易觉察到的是菌落形态、细胞形态和生理等多方面的改变,如菌落颜色的改变,畸形细胞的出现等;菌株生长变得缓慢,产孢子越来越少直至产孢子能力丧失,例如放线菌、霉菌在斜面上多次传代后产生“光秃”现象等,从而造成生产上用孢子接种的困难;还有菌种的代谢活动,代谢产物的生产能力或其对寄主的寄生能力明显下降,例如黑曲霉糖化能力的下降,抗菌素发酵单位的减少,枯草杆菌产淀粉酶能力的衰退等。所有这些都对发酵生产均不利。因此,为了使菌种的优良性状持久延续下去,必须做好菌种的复壮工作。即在各菌种的优良性状没有退化之前,定期进行纯种分离和性能测定。 二、菌种退化的原因 菌种退化的主要原因是有关基因的负突变。当控制产量的基因发生负突变,就会引起产量下降;当控制孢子生成的基因发生负突变,则使菌种产孢子性能下降。一般而言,菌种的退化是一个从量变到质变的逐步演变过程。开始时,在群体中只有个别细胞发生负突变,这时如不及时发现并采用有效措施而一味移种传代,就会造成群体中负突变个体的比例逐渐增高,最后占优势,从而使整个群体表现出严重的退化现象。因此,突变在数量上的表现依赖于传代,即菌株处于一定条件下,群体多次繁殖,可使退化细胞在数量上逐渐占优势,于是退化性状的表现就更加明显,逐渐成为一株退化了的菌体。同时,对某一菌株的特定基因来讲,突变频率比较低,因此群体中个体发生生产性能的突变不是很容易的,但就一个经常处于旺盛生长状态的细胞而言,发生突变的机率比处于休眠状态的细胞大得多,因此,细胞的代谢水平与基因突变关系密切,应设法控制细胞保藏的环境,使细胞处于休眠状态,从而减少菌种的退化

  • 菌株在半固体培养基中如何传代

    菌株在半固体培养基中,要如何进行传代,是从原针刺道的菌苔处挑取吗?需要进行增菌、分离吗?需要传代的是金黄色葡萄球菌,如果增菌需要什么增菌液?刚接触菌株不了解,老师们帮忙看看

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制