当前位置: 仪器信息网 > 行业主题 > >

异戊二烯排放研究

仪器信息网异戊二烯排放研究专题为您整合异戊二烯排放研究相关的最新文章,在异戊二烯排放研究专题,您不仅可以免费浏览异戊二烯排放研究的资讯, 同时您还可以浏览异戊二烯排放研究的相关资料、解决方案,参与社区异戊二烯排放研究话题讨论。

异戊二烯排放研究相关的资讯

  • 第二届含氟温室气体论坛 | 吴婧:氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究
    “第二届含氟温室气体论坛——履行《基加利修正案》的科学与技术”在北京大学顺利召开。会上北京交通大学吴婧副教授作了题为“氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究”的精彩报告。吴婧副教授在汇报中从基于物质流的网格化排放清单核算方法研究及模型构建、中国网格化排放清单建立及环境效应分析、降解产物三氟乙酸(TFA)大气监测及环境行为研究等三个方面作了详细报告。图1 吴婧副教授作报告吴婧副教授首先介绍了国家级、省级、网格化含氟温室气体排放清单核算方法以及多尺度高分辨率排放源空间分配模式的动态网格化排放清单模型。构建的排放清单方法学及清单结果已应用于国家温室气体清单编制相关工作。图2 动态网格化排放模型的总体架构图应用该模型,吴婧副教授课题组建立了中国8种HFCs 2005-2060 年长时间序列的动态网格化(1 度×1 度)排放清单并分析了其环境效应。同时,通过将NAME正向模型的模拟浓度与观测浓度进行比较,以验证了建立的网格排放量的准确性。根据清单和分析结果,行业、物质和空间的排放变化特征如下:(1)实物、GWP排放的关键物质均为HFC-134a、HFC-32、HFC-125。(2)制冷空调行业始终是HFCs排放的主要行业,消防行业排放也不容忽视。(3)整体空间规律表现为东部高于西部、南方高于北方的特征;热点网格主要集中在上海、广东和北京。在环境影响方面,中国HFCs温室气体排放对全球贡献逐年升高;减排HFCs会显著减少气候影响,但替代可能加速降解产物三氟乙酸(TFA)的累积。此外,吴婧副教授探讨了含氟温室气体降解产物三氟乙酸(TFA)大气污染特征、气粒分配机制及来源归趋。2021-2022研究期间TFA年均大气浓度为1081.5 ± 724.7 pg m-3 。年均颗粒相质量分数为10.8 ± 9.8% ,更易分配在气相。全年TFA沉降通量约为489.70 ± 64.26 μg m-2 yr-1 ,湿沉降占总沉降的74.6%。
  • 卫星遥感监测反演燃煤电厂二氧化碳排放量研究取得进展
    近日,中国科学院空天信息创新研究院遥感卫星应用国家工程研究中心石玉胜研究团队在燃煤电厂二氧化碳(CO2)排放的遥感反演估算研究方面取得进展。2月22日,相关研究成果以《基于轨道碳观测者2号和3号卫星观测和高斯羽流模型反演燃煤电厂二氧化碳排放》(CO2 emissions retrieval from coal-fired power plants based on OCO-2/3 satellite observations and a Gaussian plume model)为题,在线发表在《清洁生产》(Journal of Cleaner Production)上。   为应对气候变化对人类可持续发展的威胁,联合国可持续发展目标13(SDG 13)设立为“采取紧急行动应对气候变化及其影响”,中国积极响应气候行动,实施“双碳”国家战略。二氧化碳作为最重要的温室气体之一,主要来自化石燃料燃烧。中国燃煤电厂二氧化碳排放量约占全国二氧化碳总排放量的50%。然而,现有的燃煤电厂温室气体排放清单由于统计数据更新滞后和排放因子不准确,已无法代表电厂真实排放量。   随着遥感技术的发展,地面上的气体排放信息可以由空间的传感器通过电磁波辐射感知,利用大气模型对卫星识别排放信息进行反演,为估算电厂二氧化碳排放量提供了新方法。该方法基于实测卫星数据,较少受到人为因素影响且时间分辨率较高,为不同地区的估算提供了统一标准。因此,开展卫星遥感监测与反演,准确估算中国燃煤电厂二氧化碳排放量,不仅是电力行业开展碳减排的前提条件,而且可以提供独立客观的碳排放监测数据,助力中国碳盘点以及评估重点行业碳减排效力。   该研究团队结合多源碳卫星遥感数据(轨道碳观测者2号和3号)和优化后的高斯羽流模型开展长时间序列燃煤电厂二氧化碳排放量自上而下的遥感反演工作,在针对不同装机容量电厂【超大型(≥5000 兆瓦)、特大型(4000-5000兆瓦)、大型(≥3000兆瓦)】开展二氧化碳排放卫星识别的基础上,结合高斯羽流模型反演中国区域燃煤电厂的最新二氧化碳排放量数值,并优化模型大气背景值确定子模块,有效提高模型拟合相关系数,从而提高反演结果的精度。   结果显示,风速是影响碳卫星数据观测二氧化碳柱浓度大小的主要影响因素。当风速增加到10米/秒附近时,本研究中所有电厂的大气二氧化碳柱平均干空气混合比(XCO2)增强量均小于1百万分率(ppm),意味着卫星碳排放反演精度将受到限制。研究估算的二氧化碳排放数值范围从超大型电厂(中国托克托)的63千吨/天到大型电厂(中国上都)的37千吨/天,经过验证,与大多数燃煤电厂自下而上的排放清单数值一致性较高,但部分电厂排放清单由于年限过长、机组更新换代、燃煤类型等原因与本研究显示出差异。该研究扩充了重要点源碳排放实时监测的技术手段,有助于国家和地区制定有针对性的碳减排政策。此外,预估的具体排放值可用于优化排放清单,监测识别偷排漏排问题,为大气化学模型提供更准确的输入数据。   研究工作得到国家自然科学基金、国家重点研发计划和中科院等的支持。
  • 国内外VOCs排放标准体系对比研究分析
    “十二五”大气污染防治规划将防治工作扩展至涵盖NOx、O3、PM2.5、VOCs、有毒有害物质等污染因子。国务院办公厅转发的《环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知》中也提出了加强VOCs污染防治工作的要求。挥发性有机化合物(VOCs)一般是指在标准状态下饱和蒸汽压较高(标准状态下大于13.33Pa)、沸点较低、分子量小、常温状态下易挥发的有机化合物。通常可分为包括烷烃、烯烃、芳香烃、炔烃的C2~C12、非甲烷碳氢化合物 包括醛、酮、醇、醚、酯等C1~C10含氧有机物 卤代烃 含氮化合物、含硫化合物等几大类化合物。VOCs具有光化学活性,是形成大气中细粒子和臭氧的重要前体物。除环境毒性外,工业源排放的VOCs对人体危害较大,部分污染物具有致癌性。  近年来我国已有不少学者开展对VOCs污染防治的研究,但关于制定VOCs排放标准的研究较少。制定VOCs排放标准对于控制VOCs的排放量,改善环境空气质量,保护人体健康和生态环境有重要意义。标准的执行对于引导相关行业进行产业结构调整,促进废气处理技术的创新也有积极作用。该新闻则主要研究了国内外VOCs排放标准体系,并提出我国制定VOCs排放标准的相关建议。  国外VOCs排放标准特点  美国  美国大气污染物排放标准将常规污染物与有害大气污染物分开进行控制。  常规污染物  常规污染物包括PM、CO、O3、SO2、NOx、Pb、有机物(VOCs)、酸性气体(氟化物、HCl)等。我国暂未把挥发性有机物(VOCs)列为常规污染物进行控制。而美国为控制光化学烟雾和臭氧层破坏等环境问题,对VOCs的排放作了详细的规定。首先,涉及这类污染物的行业都制订有行业排放标准,包括炼油、石化、精细化工(杀虫剂、涂料、染料颜料等杂项有机化学品)、油品储运、制药、表面涂装、出版印刷、铸造、服装干洗等。在排放标准中又根据排放源类型的不同,分工艺排气、设备泄漏、废水挥发、储罐、装载操作五类源,分别规定了排放限值、工艺设备和运行维护要求,具体见表1。  美国颁布的有关VOCs的排放标准还包括《消费产品挥发性有机物排放标准》、《建筑涂层挥发性有机物排放标准》、《汽车修补涂层挥发性有机物排放标准》及《气溶胶涂层挥发性有机物排放标准》等。  有害大气污染物  有害大气污染物是指能够引起或预测能够引起死亡率增加或能使严重的、无法治愈的、致人伤残的疾病增加的污染物。  美国列出了187种有害大气污染物(HAP),包括无机HAP和有机HAP,其中有33种属于挥发性有机物。美国EPA针对187种有害大气污染物名单制定有害大气污染物排放标准(NationalEmissionStandardsforHazardousAirPollutants,NESHAP),分为两个法规号,CFRPART61(即通常所说的NESHAPs)和CFRPART63(即通常所说的最大可得控制技术标准)。  NESHAPs对特定的危险性有害大气污染物,包括氡气、铍、汞、氯乙烯、核素、石棉、无机砷、苯等,均发布了固定源排放标准。最大可得控制技术(MACT)标准是以技术为基础制定的,并将排放源排放的多种污染物按有机HAP和无机HAP统一控制。  欧盟  欧盟的环境标准是以指令形式发布的。欧盟发布的有关VOCs排放的指令有欧盟综合污染预防与控制(IPPC)指令,关于特定大气有害物质最高排放量的指令(2001/81/EC),有机溶剂使用指令(1999/13/EC),涂料指令(2004/42/EC),油品储运指令(94/63/EC)等。  IPPC指令(96/61/EC、2008/1/EC)要求成员国对金属加工制造、化学工业、废物管理等33个工业行业部门的大气污染物制定排放限值 2001/81/EC指令对4种特定大气污染物(SO2、NOx、VOCs、NH3)规定了成员国到2010年的最高排放总限制 1999/13/EC指令规定了20种有机溶剂使用装置和活动的VOCs排放限值 2004/42/EC指令从产品源头规定了建筑涂料、汽车涂料中的VOCs含量(g/L) 94/63/EC指令要求储油库采取措施减少蒸发损失(90%或95%以上),配送过程进行油气回收等。  德国和日本  德国《空气质量控制技术指南》(TALuft,2002),将气态有机污染物(I类176种,II类10种)、致癌物(20种)划分为几个类别,分别规定了各级排放限值。有机污染物按其毒性大小划分为两级,排放限值分别为20和100mg/m3 致癌物按其致癌性划分为三级,排放限值分别为0.05、0.5和1mg/m3。日本要求自2006年4月起对六类重点源的9种排污设施实施VOCs排放控制。这六类VOCs重点源包括化学品制造、涂装、工业清洗、粘接、印刷、VOCs物质贮存,涵盖了大部分VOCs排放源。  国内VOCs排放标准特点  综合性排放标准  中国1997年实施的《大气污染物综合排放标准》(GB16297),规定了33项大气污染物的排放限值,其中无机气态污染物9项、颗粒物3项、金属及其化合物6项、有机气态污染物14项,并设置了非甲烷总烃综合控制指标。我国1994年实施的《恶臭污染物排放标准》(GB14554)分年限规定了8种恶臭污染物的一次最大排放限值、复合恶臭物质的臭气浓度限值。  北京市《大气污染物综合排放标准》(DB11/501-2007)规定了一般污染源和典型VOCs污染源的排放要求。一般污染源排放要求中将污染物项目分为极度毒性物质、颗粒物、无机气态污染物、有机气态污染物 典型VOCs污染源排放要求中,根据受控工艺设施,列出主要污染物项目,并分别规定各VOCs污染源污染物项目的排放限值。  《厦门市大气污染物排放标准》(DB35/323-2011)针对排气筒排放废气中的VOCs以及厂界环境空气中的VOCs,以“非甲烷总烃”和几种特定的单项有机污染物作为控制指标。  对中国制定VOCs排放标准的建议  国外制定标准的趋势是依据行业采取相应的控制技术分别制定行业排放标准。标准制定过程中,都着重考虑污染物毒性、对人体健康损害和环境经济影响。国内排放标准在制定过程中都考虑了当地特殊的大气污染问题、主要行业产业发展、排放量、污染物毒性等方面的因素。结合国内外标准制定过程的经验总结,提出我国制定VOCs排放标准的几点建议:  (1)标准制定过程中应考虑污染物的毒性特征。  VOCs种类繁多,毒性各异,部分VOCs具有致癌性,严重影响人体健康 部分VOCs光化学活性较强,极易导致光化学烟雾的形成,影响大气环境。国际癌症研究组织(IARC)将有机污染物按其致癌性高低分为G1、G2、G3三个等级。目前,我国VOCs排放标准中涵盖的污染物项目较少,为保护人体健康,改善环境空气质量,建议将部分毒性较大的污染物纳入控制指标体系。  (2)标准制定过程中应考虑污染物排放量的大小。  VOCs排放所涉及的行业众多,不同行业因发展规模、产排污环节、治理技术等的不同,其VOCs排放量有较大差异。关于工业源VOCs排放的行业特征研究发现,在所有工业排放源中,合成材料生产、石油炼制和石油化工、建筑装饰、机械设备制造等17个排放源VOCs的年排放量达20万吨以上,其排放量之和占全国总排放量的94.9%。此外,印刷和包装印刷、油品储运、合成革、家具制造、制鞋等行业VOCs排放也不容忽视。因此,建议重点控制上述工业源的有机废气排放,并分别制定行业排放标准。  (3)标准制定过程中应考虑控制重点行业的特征污染物。  目前我国现行的VOCs行业排放标准较少,使用综合排放标准的局限性较大,例如综合排放标准并未包括部分重点行业的特征污染物、排放限值无法满足治理技术的要求等。因此,建议建立以行业排放标准为主的VOCs排放标准体系,这样不仅能有效控制有机污染物的排放,也能满足经济社会发展的需要。
  • 尾气排放新标实施 二噁英重金属等限值收严
    环保部与国家质检总局近日共同发布的《生活垃圾焚烧污染控制标准》规定,自今年7月1日起,新建生活垃圾焚烧炉需执行新标准的污染物浓度限值,自2016年起,现有生活垃圾焚烧炉也需执行新标准限值。 新标准进一步提高了污染控制要求,其中,公众最关注的二噁英类控制限值与欧盟标准一致,比现行标准收严了10倍;新标准的重金属等其他限值大多比现行标准严了30%。业内分析指出,环保门槛的提升可能会引发垃圾发电行业整合洗牌,一些中小企业会加速退出市场,拥有资金和技术优势的大公司有望在&ldquo 大浪淘沙&rdquo 中做大做强。 门槛提升促行业洗牌 过去几年,垃圾发电成为成长最迅速的环保细分板块之一。统计显示,仅2012年全国各地新上马的垃圾焚烧发电项目数量超过37个,总处理能力达37350吨/日,总投资164.4亿元,吸引了国有、民营、外资各路资本。 在A股市场,据Wind数据统计,有18家公司涉及垃圾发电概念。截至2013年底,垃圾发电行业板块总营收规模突破600亿元,净利润近60亿元,净利润同比增长76.2%,远高于环保其他细分领域。 但行业快速发展过程中也带来尾气排放污染大气环境的问题。中国环保产业协会一位专家介绍,旧的垃圾焚烧排放标准发布于2001年,其中关于尾气中二噁英等污染物排放标准明显偏低,因此带来不可避免的污染问题。在他看来,对垃圾焚烧发电行业来说,污染物排放新标准出台将力促行业规范发展。 目前新建和既有垃圾发电厂的规模各占一半,技术路线分为传统炉排炉和水泥窑协同一体化,这两年新建厂更多采用燃烧效率更加充分的水泥窑协同技术。&ldquo 标准的大幅趋严对于企业直接影响在于增加建设运营成本。&rdquo 广证恒生证券分析师姚玮表示,新标准的发布实施,将促进新建垃圾焚烧电厂后端烟气处理系统的完善和稳定运行,同时倒逼既有发电厂前端燃烧系统的提标改造,以及后端烟气处理系统的加装更新,这都会增加不少成本。&ldquo 仅加装尾气处理系统初始投资,就将增加大概20%的成本,后期尾气处理系统的稳定运行还有附加滚动成本。&rdquo 两百亿市场&ldquo 蛋糕&rdquo 待切 除促进行业整合外,新排放标准的实施还将使行业产业链得以延伸扩容,其中最先崛起的将是尾气处理系统市场,以及烟气在线监测设备市场。 据姚玮介绍,垃圾发电尾气处理系统领域过去一直为外商所垄断。近年来,国内部分公司通过自主研发掌握了烟气净化与灰渣处理核心技术,逐步实现了对进口设备的替代。但由于排放标准相对滞后,这一市场空间未充分释放。&ldquo 十二五&rdquo 期间垃圾焚烧发电厂烟气净化系统市场空间可达130亿元以上。除新建项目加装市场已启动外,既有项目的升级改造市场更为广阔。 事实上,不少上市公司已瞄准这一市场蓝海。工业除尘龙头之一菲达环保高管此前曾对中国证券报记者表示,垃圾发电及其尾气综合处理是一个系统工程,订单单体规模往往可达亿元以上。经测算,该类工程毛利率水平远高于目前的电厂粉尘处理设备市场,公司未来最大新增亮点就定位于这一细分市场。去年9月,公司连续中标位于合肥和北京的两个合同金额达1.95亿元的垃圾焚烧电厂烟气处理系统大单。 姚玮指出,除菲达环保外,盛运股份、杭锅股份、泰达环保等专业公司也将首先受益后续市场规模的释放。 另外,随着新标准实施带动环保监管逐步到位,未来垃圾发电厂尾气排放的数据将被要求实时公布,这将带动垃圾发电厂烟气在线监测市场需求空间。根据市场测算,到2015年,垃圾发电烟气在线监测设备及系统维护市场空间可达100亿元左右。 环保监测设备龙头之一的聚光科技相关人士对中国证券报记者指出,聚光科技在垃圾发电在线监测设备业务上有着丰厚的技术储备,尽管目前垃圾焚烧烟气监测产品收入占公司总收入的比重较低,但随着排放标准提升,其市场潜力被公司长期看好。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 关于发布《大气细颗粒物一次源排放清单编制技术指南(试行)》等4项技术指南的公告
    大气污染物源排放清单编制和污染源优先控制分级是开展大气污染来源解析的主要方法之一,也是制定大气污染物优化减排方案、环境空气质量达标规划和重污染天气应急预案的重要基础和科学依据。为贯彻落实国务院《大气污染防治行动计划》,指导各地开展大气污染物源排放清单编制工作,我部发布《大气细颗粒物一次源排放清单编制技术指南(试行)》等4项技术指南。   《大气细颗粒物一次源排放清单编制技术指南(试行)》、《大气挥发性有机物源排放清单编制技术指南(试行)》和《大气氨源排放清单编制技术指南(试行)》包括大气一次细颗粒物、挥发性有机物、氨的源排放清单编制工作所涉及的污染源分类分级、排放系数与活动水平数据获取、不确定性分析以及清单的应用与评估等内容。《大气污染源优先控制分级技术指南(试行)》从常规污染物二氧化硫(SO2)、氮氧化物(NOx)与颗粒物对环境质量影响的大小和挥发性有机物(VOCs)对臭氧生成潜势的大小两个方面分别提供污染源分级技术方法,包括污染源清单建立、空气质量模型选取、目标区域VOCs成份谱测试与收集、污染物排放对空气质量影响评估、污染源分级指数计算等内容。   各地应根据空气污染现状、工作基础和污染防治目标,结合社会经济发展水平与技术可行性,按照因地制宜与循序渐进的原则,科学选择污染物源排放清单编制工作的技术方法,鼓励优先使用本地实测与调查数据。在试行过程中,请将发现的问题及修正的参数数据等及时反馈我部。同时,各地应加强针对性监测检测、调查统计工作,注重数据积累 增强科学研究、加强能力建设,提升大气污染物源排放清单编制和污染源优先控制分级工作的水平和能力,提高清单编制的精准度,满足大气环境质量管理需求。   大气细颗粒物一次源排放清单编制技术指南(试行).pdf   大气挥发性有机物源排放清单编制技术指南(试行).pdf   大气氨源排放清单编制技术指南(试行).pdf   大气污染源优先控制分级技术指南(试行).pdf
  • 第二届含氟温室气体论坛 | 方雪坤:基于反演研究含卤温室气体排放来源与规律
    “第二届含氟温室气体论坛——履行《基加利修正案》的科学与技术”在北京大学顺利召开。会上浙江大学方雪坤研究员作了题为“基于反演研究含卤温室气体排放来源与规律”的精彩报告。含卤气体主要包括消耗臭氧层物质和含氟温室气体。对含卤气体排放的精准定量是重要的研究主题,也是消耗臭氧层物质和温室气体减排的重要科学依据。方雪坤研究员对反演溯源方法进行介绍,包括大气观测数据、传输模型和反演算法,并基于反演评估了若干重要含卤温室气体排放变化,从而更准确地认识含卤温室气体的时空排放规律。图1 方雪坤研究员作报告最后方雪坤研究员对含氟温室气体排放的未来研究方向与挑战提出展望。开展反演研究是精准认识含氟温室气体排放的重要手段,溯源结果能够克服基于生产与消费数据和排放因子的清单不准确或缺失的问题,未来在臭氧层保护、双碳目标中能提供重要的科学支撑。图2 排放估算越来越受到蒙特利尔议定书大会关注
  • 中国二恶英排放 70%达不到欧洲标准
    科研论文昭示中国垃圾焚烧排放现状:70%达不到欧洲标准   中科院选择国内19家垃圾焚烧厂调研二恶英排放发现,16%的厂家达不到中国标准,几乎70%的厂家达不到欧洲标准   垃圾焚烧带来的二恶英排放,是其面临的主要公共环境挑战。2005年,中国有垃圾焚烧厂67座,现已近百。最近一年,中国各地蜂拥而起的垃圾焚烧厂建设潮,引发各界争议,而对于可能带来的二恶英排放的环境危害,成为争议焦点。但到目前为止,中国对二恶英排放一直缺乏全面的数据信息。那些已经存在日久的部分垃圾焚烧厂究竟排放如何,亦一直缺乏可靠数据的披露。   2009年,国际知名的化学科学杂志《臭氧层》(Chemosphere)发表了论文,题目为《中国市政固体废物焚烧厂的二恶英/呋喃排放》。作者是中科院大连化学物理所和中科院研究生院的科研团队,他们历时一年,对中国19个市政生活垃圾焚烧炉的二恶英排放进行了检测和分析,并发布了结果。   正是基于报告中数据的敏感性,论文的作者拒绝透露所涉及的焚烧炉的详细位置,但称,检测分析的结果已经反馈给所有接受检测的焚烧炉所在企业。   这份难得的科研报告提供了部分了解中国垃圾焚烧炉二恶英排放确切水平的依据。(为行文方便,文中数据所省略的单位均为ng-TEQ/Nm-3,即烟气中二恶英排放浓度)。   垃圾焚烧生成的气体必须在排入大气前进行清洁处理 由此也就产生了关于市政垃圾焚烧厂空气二恶英排放的种种严格的标准。中国环保部目前采用的标准和欧盟有所不同,前者为1.0,后者为0.1。但近年来,舆论普遍认为欧盟的标准更接近安全,即必须低于0.1。   此次检测分析显示:19个样本焚烧炉的二恶英/呋喃物质的排放量在0.042至2.461间,平均值为0.423,远高于欧盟标准。   其中,16个样本的二恶英排放达到中国环保部目前的标准,即不超过1.0,所占比率为84%,但也只有6个样本达到西方普遍采用的欧盟排放标准,即0.1,所占比率为31.6%。19个样本中的排放最高值为2.461。较之已有大量研究证明大部分发达国家的市政垃圾焚烧厂都能达到0.1欧盟标准(韩国是个例外),中国的市政垃圾焚烧排放远不如发达国家,技术应该进一步改善。   根据检测结果估算,假如以2006年中国焚烧处理垃圾总量1138万吨来计算,中国随之带来的的二恶英/呋喃总排放量为19.64克。   据论文作者之一、大连化学物理研究所研究员介绍,此次研究采用国际认可并通行的二恶英检测方法。样本采集得到焚烧炉所在企业的配合,由研究人员分赴实地采集带回实验室。为确保数据的准确,每个样本焚烧炉排放数值的结果,均为多次采样后的平均值。采样次数少则3次,多则5-6次。   研究者还在论文中表述了以下发现:   作为二恶英检测研究的重要学术指标,中国垃圾焚烧厂的二恶英产生因子要高于早前一些研究得出的数据。   各焚烧厂之间的二恶英产生因子差别很大。总的来说,国产焚烧炉的排放控制水平要低于进口焚烧炉。   通过对三座同一公司生产的焚烧炉进行了对比研究,结果说明,经过一系列污染控制技术的应用,二恶英排放可以显著降低。   这一研究团队还对14个国产医疗垃圾焚烧炉的二恶英排放进行了检测分析,据此形成的论文也发表在2009年《臭氧层》(Chemosphere)杂志。医疗垃圾焚烧炉遍布各地,是通行的医疗废物处置手段。   其中9座焚烧炉达到中国的医疗废物焚烧处理相关排放标准(低于0.5),但仅有2座达到或优于欧盟标准(0.1)。其余5座既超出欧盟标准又超出中国标准,有2座的排放量在10.0以上,最高者高达31.60。   14个样本中,二恶英排放水平最低、技术控制最优的焚烧炉位于四川,排放值为0.08。   研究员还表示:垃圾焚烧,并不是二恶英排放的首恶。二次冶炼等成因,在总排放量中的影响比率更大。
  • 研究设计出测量植物排放BVOCs动态箱系统
    近日,中国科学院广州地球化学研究所研究员王新明和张艳利课题组设计了一种用于测量植物排放BVOCs的半开放式动态箱系统。相关研究发表于《大气测量技术》(Atmospheric Measurement Techniques)。该论文所有实验数据均是在中国科学院广州地球化学研究所公共技术服务中心有机地球化学分析平台完成测试。陆地植物排放的生物源挥发性有机物(BVOCs)约占全球VOCs排放总量的90%,对臭氧(O3)和二次有机气溶胶(SOA)生成具有重要贡献,对区域BVOCs排放量的准确估算有利于形成近地面O3污染控制的科学决策。然而,从全球到区域尺度,BVOCs排放量的估算仍存在较大的不确定性,而BVOCs排放因子是其关键因素影响之一。动态箱是常用于测量BVOCs排放速率的手段,测量过程中箱体对植物排放BVOCs的吸附损失、对植物正常生理状态的干扰是该方法在测量时面临的主要挑战,当前还缺乏对动态箱性能的系统评估和表征。为更准确测定植物在正常生长条件下BVOCs排放因子,研究人员设计了一种用于测量植物排放BVOCs的半开放式动态箱系统,并利用在线和离线手段,实验室和外场观测相结合,评估了主要的BVOCs化合物(异戊二烯、单萜烯和倍半萜烯等)通过箱体时的传递效率,发现较高流速(较短滞留时间)不仅能缩短到达稳态的时间,也能减小BVOCs的吸附损失,但分子量较大的化合物即使在高流速条件下的损失也超过30%;从0-100%湿度下的模拟实验表明,湿度对BVOCs的吸附损失影响不显著,但不同化合物呈现不同特征;通过野外实测箱体内-外环境因子的差异,发现高流速有利于减小箱体内-外的温、湿度差异。该研究也表明,即使可以优化条件尽量减少测量时吸附损失和对植物枝叶正常生理的干扰,分子量较大的单萜烯和倍半萜烯的吸附损失依然不可忽视,可能会造成其排放因子的显著低估,由于单萜烯和倍半萜烯同分异构体众多,如何评估并校正其在动态箱测量过程中的损失,是需要进一步解决的问题。该研究工作得到了国家自然科学基金委优秀青年基金、香港RGC项目、中国科学院先导专项、广东省科技厅、中国科学院青年创新促进会等项目的联合资助。
  • 广东汕头碳排放达峰研究项目通过验收
    由中国科学院广州能源研究所能源战略与低碳发展研究室承担的广东省汕头市碳排放达峰研究项目近日在汕头市顺利通过汕头市生态环境局组织召开专家收。据悉,该项目组结合省域副中心城市的定位,在工业、建筑、交通、农业农村领域提出了切实可行的政策举措和调控路径。 据了解,该项目获得“汕头市打好污染防治攻坚战专项资金”支持,通过开展数据收集和调研工作,研究分析了汕头市碳排放历史趋势和产业现状特征,确定了汕头市二氧化碳排放达峰目标,提出了汕头市碳排放达峰路径和控制政策,编制了《汕头市碳达峰研究分析报告》和《汕头市碳达峰实施方案》。 验收专家组认为,该项目完成了合同任务,达到预期效果,支撑了“双碳”目标下汕头市配合落实全省二氧化碳达峰工作部署的前期研究和达峰判断,一致同意该项目通过验收。
  • 全新非二氧化碳温室气体ODS排放在线监测仪全球首发
    全新非二氧化碳温室气体ODS排放在线监测仪全球首发我国生态环境部最近发布了《关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见》,其中第十四条关于推动监测体系统筹融合,明确了温室气体监测的要求。加强温室气体监测,逐步纳入生态环境监测体系统筹实施。在重点排放点源层面,试点开展石油天然气、煤炭开采等重点行业甲烷排放监测。在区域层面,探索大尺度区域甲烷、氢氟碳化物、六氟化硫、全氟化碳等非二氧化碳温室气体排放监测。在全国层面,探索通过卫星遥感等手段,监测土地利用类型、分布与变化情况和土地覆盖(植被)类型与分布,支撑国家温室气体清单编制工作。 为实现二氧化碳排放达峰目标与碳中和愿景提供支撑,助力美丽中国建设工作,我公司推出ARI Medusa - ODS 在线监测仪。ARI Medusa GC-MS 全球臭氧层消耗物质ODS及温室气体全自动在线监测仪全新 AGAGE/ARI Medusa 全球首款商业化Medusa在线监测系统,是大气ODS所有组分监测的最佳选择! ARI Medusa 超低温预浓缩仪 用于大气ODS监测的全自动超低温制冷预浓缩系统Aerodyne Research, Inc. (ARI) 在2020 年中期全新推出了用于气象色谱的超低温制冷预浓缩系统。该系统结合了超低温制冷技术的创新设计以及我们与有15年观测ODS物质经验的 Scripps 海洋研究所及其他 AGAGE 监测网成员的合作. 该超低温制冷预浓缩系统是Aerodyne 新成立的气相色谱部门的一部分。该系统是基于之前该部门带头人已发表工作进行搭建的。 ARI Medusa ODS在线监测仪有以下特点: 电子超低温制冷: ARI低温预浓缩系统通过斯特林制冷技术在无需液氮的情况下,冷阱捕集低温可达到 -165 °C。该技术可满足远处无人值守的全自动采样分析观测,实现每小时一个样品数据。 二阶捕集设计: 通过两次捕集预浓缩设计,每次分析过程可通过样品捕集冷阱最多采集2L空气,同时去除多余气体杂质,如N2, O2, H2O, CO2等. 之后,目标分析物再进一步在第二级冷阱上预浓缩富集成更小的体积,为注入GC做好准备。 更高选择性的分离: 精确的温度控制可实现部分样品从冷阱逐步进行解析,为难以检测的物种(如NF3)提供额外的分离效果。 无与伦比的精准度: 当按照AGAGE观测网规范进行操作时,ARI Medusa预浓缩仪能够为至少28种大气重要化合物提供≤1%的精度。† 应用领域:l 背景站洁净大气 ODS 和含氟温室气体高精度监测l 城市大气 ODS 和含氟温室气体高精度监测l 大气监测中心站点空气样品 ODS 和含氟温室气体的自动化分析工业园区空气 ODS 和含氟温室气体全要素监测
  • Picarro | 华北平原开放式奶牛场氨排放研究
    雾霾问题,严重威胁人们的健康和生活质量,为了寻求解决方案,科学家们开始寻求各种可能的对策,其中之一就是从奶牛场中寻找突破口。这听起来可能有些奇怪,但事实上,氨气是雾霾形成的一个重要因素,而奶牛场和氨气之间存在着奇妙的关联。NH3氨气(Ammonia)氨是大气中的主要碱性物质,是细颗粒物的重要前驱体。它可以与硫酸盐和硝酸盐或其他化合物反应生成细颗粒物,造成各种环境和健康问题。氨沉降对于土壤酸化及水体富营养化也具有重要影响。人们越来越关注氨排放,以建立准确的排放清单并制定合理的减排措施。然而世界范围内许多氨排放清单的排放因子(EFs)和活动数据存在很大的不确定性。中国是氨排放的重要源,约占亚洲总排放的55%,约占全球总排放的20%。而农业是最重要的排放源,畜牧业氨排放占人为总排放的50%以上。因此,准确量化其排放特征显得尤为重要。科研团队为此开展研究北京大学环境科学与工程学院蔡旭晖研究团队于2016.6.29-7.18(2016S,探索阶段)、2016.12.16-2017.1.10(2016W)、2018.6.1-7.2(2018S)三个试验阶段在北京西北郊区的一个开放式奶牛场(403±5头荷斯坦奶牛,自由走动,具有“华北平原农场规模和奶牛类型”的代表性)利用微气象方法估算了华北平原典型奶牛场的氨排放量。使用定制的9 m可伸缩塔作为每个观测点的观测平台,所有仪器均安装在塔上,距地面高度大致相同(8 m)。测量了NH3浓度、气象参数(风速和风向、气温、湿度)、湍流变量,经过严格的质量控制和筛选后,利用Inverse dispersion method(IDM)和分析足迹模型确定氨排放率,并确定奶牛场的排放因子。奶牛场的卫星图像NH3排放测量:利用Picarro G2103氨气分析仪以2s的采样率测量NH3浓度。Teflon管与分析仪相连,另一端连接到防水杯上,固定在塔上,出口向下。未使用过滤器。管总长度约为9m,样品流速约为1.0 slpm。在2016W和2018S试验中,使用恒温加热带加热气路,以消除采样管内的水蒸气凝结,减少氨吸附。结论2018年(2018S-north)夏季氨气浓度从实验结果可以看出,氨排放量日变化比较合理。中午排放率峰值约为40 μg m-2 s-1,夜间约为20 μg m-2 s-1。相对较低的排放率和较短的白天持续时间导致冬季日平均排放率低于夏季。整个奶牛场冬季和夏季的总排放量分别为0.38±0.13 g s-1和0.46±0.10 g s-1 ,相当于冬季20±7 μg m-2 s-1和夏季24±6 μg m-2 s-1的平均排放率。奶牛场排放因子为冬季82±27 g head-1 d-1和夏季99±23 g head-1 d-1。与中国及其他以往的研究结果相当。源分布的复杂性、湍流的扰动、模型简化和数据筛选都会导致结果的不确定性。作者建议未来需要开展更多工作来减少这些不确定性。
  • 【青岛众瑞】ZR-3211型便携式紫外烟气分析仪助力超低排放二氧化硫监测
    政策背景 “十三五”开局以来,国内逐步开始了燃煤电厂超低排放改造的战略布局,随着超低排放改造的实施,烟气水分含量增大,烟气特性发生了较大改变,对烟气成分监测的准确性提出了更高要求。因此,分析对比各种烟气监测技术的性能特点与实用价值,提出适用于超低排放改造的烟气成分监测技术,为燃煤电厂烟气监测选型提供参考,对“十三五”燃煤电厂超低排放改造具有重要的指导意义。  根据《煤电节能减排升级与改造行动计划(2014-2020年)》改造后烟气中SO2、氮氧化物排放的限值执行标准分别为35mg/m3、50 mg/m3。因此,国内烟气成分监测设备必须满足烟气中SO2、氮氧化物的低量程测定需求。政策的有效落实必须借助有力的监测手段,为此多地纷纷出台针对“超低排放”的相应政策标准。其中,紫外测量原理不存在SO2水气交叉干扰,检出限低,测量精度高,是针对超低浓度检测的优质的光学方法。我国环境保护部于 2013 年 3 月下达了《紫外吸收法便携式多气体测量系统技术要求及检测方法》标准编制任务,由中国环境监测总站主持,山东省环境监测中心站协作共同承担该标准的制订工作。 2015年山东省颁布紫外吸收法列为“超低排放”改造中检测SO2、NOx的标准方法,而2017年10月国家环保部已发布《便携式二氧化硫和氮氧化物紫外吸收法测量仪器技术要求及检测方法》征求意见稿。紫外吸收法测量超低排放后的SO2、NOx浓度即将成为主流技术。测量方法对比目前监测SO2的常用技术有碘量法、溶液电导率法、定电位电解法、非分散红外吸收法、紫外吸收法等。以下是这几种测量原理的技术分析:紫外方法验证 2018年7月30日国家环境监测总站邀请青岛众瑞智能仪器有限公司携带ZR-3211便携式紫外烟气分析仪前往山东省环境监测中心、济南市周边污染源现场进行《固定污染源废气二氧化硫的测定紫外吸收法》、《固定污染源废气氮氧化物的测定紫外吸收法》两项方法验证。现场验证
  • 研究称永久冻土的温室气体排放必须被纳入全球气候目标
    假如冻土融化之后只释放二氧化碳,那么排放量尚能与人类产生的排放量大致相当。但实际上因冻土融化而进入大气的气体有10%–20%是甲烷。由于甲烷的温室效应在短期内比二氧化碳高80倍,释放甲烷给气候造成的影响比排放二氧化碳要严重四倍。近日,中国生物多样性保护与绿色发展基金会(中国绿发会、绿会)国际部获悉一篇关于永久冻土的碳排放必须被纳入全球气候目标的文章,现将该文编译如下,供感兴趣的读者参考。到本世纪末,快速变暖的北极永久冻土层向大气中排放的二氧化碳和甲烷很可能与一个大型工业国家的排放一样多,并且随着时间的推移,可能会超过美国自工业革命开始以来排放量的总和。但这只是锁定在有大量碳储存的北极地区以前常年冰冻但现在正在解冻的一种可能的未来情况。近日,发表于《环境与资源年度回顾》(Annual Review of Environment and Resources)上的一项新研究使用了十多年来的综合科学和区域模型,预测了在低、中、高变暖情景下,永久冻土区到2100年的累计排放量。研究的主要作者、北亚利桑那大学(Northern Arizona University)的泰德舒尔(Ted Schuur)说:“我们希望这些对未来北极碳排放的预测不仅能更新科学图景,还能成为致力于稳定气候、避免超过温度目标的政策制定的新指南。”该研究小组估计,如果全球社会通过减少化石燃料排放,将气温升高控制在2摄氏度或以下,那么在这种低变暖的情况下,到本世纪末,永久冻土将以二氧化碳和甲烷的形式释放550亿公吨温室气体。该团队的预测超出了之前的国际预测,因为它考虑了水文和生物地球化学动力学,以及永久冻土带特有的临界点。例如,科学家们正在目睹许多永久冻土区的突然融化,并导致地表塌陷。这会形成湖泊或引起地表水文的其他变化。一旦以前冻结的土地被侵蚀或下沉,储存在那里的碳就可以通过微生物呼吸进入大气。这种快速的非线性变化会迅速而永久地改变永久冻土层储存碳的能力,并可能使北极大片地区从吸收碳转变为释放碳。最近的估计表明,目前有五分之一的永久冻土容易受到突然融化的影响。哥伦比亚气候学院的大气科学家罗辛科曼(Roísín Commane)说:“一旦像一些模型预测的那样,随着气候变暖,永久冻土的碳排放量增加,那时我们就没有办法阻止这一进程。所以,我们可能需要比许多政府目前的计划更早地减少化石燃料排放,以避免触发地球气候可能的临界点或引爆点。”这项新研究根据气候变暖的进程,以及全球领导人为减少化石燃料排放所采取的行动,描述了九种不同的未来。研究的合著者吉多格罗斯(Guido Grosse)说:“无论哪种可能的情景成为现实,永久冻土层的碳排放都将是大气温室气体的一个巨大而实质性的因素。但各种不同的可能性,在影响全球整体碳预算的缓解方案之间,将存在巨大差异。”由于北极不受任何国家的监管,而且地处偏远,很难进行全面监测,研究人员强调,国际减排的努力必须在未来的气候目标和行动中考虑到该地区。该研究还强调了使用像永久冻土碳网络等协作网络和遥感技术等科学工具来监测该地区的重要性。罗辛科曼说:“遥感产品可以真正帮助我们查看和追踪永久冻土层正在发生什么,高分辨率传感器可以看到热岩溶土壤塌陷的证据,水体如何变化,甚至土壤的潮湿或结冰情况。但是,目前能够让我们了解永久冻土中有多少碳会最终进入大气的卫星设备是有限的,因此还需要在此进行投资。”泰德舒尔说,研究团队在今年夏天,在阿拉斯加的一个当地研究地点目睹了冬季创纪录降雪后大面积的永久冻土融化,碳损失是过去几十年平均水平的四倍。原文参看:https://phys.org/news/2022-10-permafrost-emissions-factored-global-climate.html参考链接:https://zh.unesco.org/courier/2022-1/xie-er-gai-qi-mo-fu-yong-jiu-dong-tu-rong-hua-jiang-dui-qi-hou-gou-cheng-zhi-jie-wei
  • 涉及这些仪器方法 铁路内燃机车及其发动机排气污染物排放限值(中国第一、二阶段)公布
    日前,生态环境部办公厅发布通知,对国家生态环境标准《铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)》征求意见,征求意见截止时间为2024年1月21日。据相关内容介绍,十三五期间,我国完善了移动源排放标准体系建设,现已基本形成道路机动车和非道路移动源的污染物排放标准体系,涵盖汽车、摩托车、非道路移动机械、 船舶等多个领域。但目前,我国铁路内燃机车没有国家排放标准,仅有国家铁路局发布的中国铁道行业标准,最新版本为 2017 年修订的《牵引动力装置用柴油机排放试验》 (TB/T 2783-2017),等同采用国际铁路联盟 UIC ⅢA 排放标准,其限值与欧盟 EU ⅢA 一致。该标准对行业发展起到很强的指导作用,但由于其为推荐标准并非强制国标,实际作用有限。基于此,为完善我国移动源排放标准体系,落实国务院“十四五”节能减排方案中推动实施铁路内燃机车国一排放标准的要求,推动铁路内燃机车行业技术进步和发展,有必要制定铁路内燃机车及其发动机排气污染物国家排放标准。本标准为首次制订,由生态环境部大气环境司、法规与标准司组织制订,起草单位包括:北京交通大学、中国环境科学研究院、大连中车柴油机有限公司、天津内燃机研究所(天津摩托车技术中心)等。标准规定了铁路内燃机车及其牵引用柴油发动机所排放的气体和颗粒污染物的排放限值及测试方法,适用于新制造铁路内燃机车(含动力集中动车组的动力车)及其牵引用柴油发动机型式检验、生产一致性检查和在用符合性检查。不适用于标准执行日期之前已制造的铁路内燃机车及其牵引用柴油发动机。本标准在深入调研铁路内燃机行业排污现状的基础上,参考国内外相关标准及其他指导性文件,在选择污染物项目时依据如下原则: (1)选择排放量较大,且广泛存在的污染物; (2)选择可对人体造成直接伤害的污染物; (3)国内外相关标准中列为管控项目的污染物。 基于此,本标准将 NOx、HC、CO 和 PM 作为排气污染物控制项目,与美国、 欧盟、国际铁路联盟以及我国铁道行业标准相一致,也与我国移动源《船舶发动机排气污染物排放限值及测量方法(中国第一、第二阶段)》(GB 15097-2016) 和《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(GB 17691-2018) 排气污染物控制项目一致。铁路内燃机车(或发动机)系族按本标准进行型式检验时,要求进行的试验项目见表 1。参考国标《往复式内燃机 第 2 部分:气体和颗粒排放物的现场测 量》(GB/T 8190.2-2011)。本标准使用下列分析仪测量污染物组分:(1)测试 HC 的 HFID 或 FID 分析仪(2)测试 CO 和 CO2的 NDIR 分析仪(3)测试 NOx 的 HCLD 或 CLD 分析仪其中,测试 HC 的加热型氢火焰离子化探测器(HFID)和火焰离子化检测仪(FID) 是检测分析碳氢化合物的高灵敏度通用型检测器,几乎对所有有机物响应,是国际上检测内燃机车尾气中 HC 含量的常用仪器。非分散红外分析仪(NDIR)是测试 CO 和 CO2 具最常用的仪器,具有稳定性好、响应速度快、测量范围宽等优点。化学发光检测器(CLD)或加热型化学发光检测器(HCLD)是目前测定排气中 NOx的最好方法,也是各国法规规定的优选测试方法。CLD 敏感度高达 0.1 ppm,应答性好,在10000 ppm 范围内输出特性呈现线性关系,适用于连续分析。PM 浓度根据采样比、环境空气中的污染物含量和试验期间的总流量加以修正,经等比例采样稀释后,使用滤膜采样装置进行颗粒物的测量。附件:  1.铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)  2.《铁路内燃机车及其发动机排气污染物排放限值及测量方法(中国第一、二阶段)(征求意见稿)》编制说明
  • 我国在PFOS污染排放研究方面取得重要进展
    中国科学院生态环境研究中心城市与区域生态国家重点实验室吕永龙研究组最近在我国全氟辛烷磺酸(PFOS)区域水体污染与工业化水平关系、工业源与生活源排放估算方法研究等方面取得重要进展。相关研究成果以系列论文的形式先后发表在Environment International(2012,42:37-46 2013,52:1-8 2013,59:336-343)上。该期刊是Elsevier旗下针对环境科学、风险与健康领域研究的国际著名刊物(影响因子 6.25)。   PFOS是新近列入《斯德哥尔摩公约》优先控制的一类新型持久性有机污染物,已引起各国政府、工业界及学术界的广泛关注。虽然发达国家已陆续采取相关政策措施削减或限制PFOS类物质的生产和使用,但由于缺乏有效的替代品,PFOS类物质仍然在我国生产并广泛使用。另一方面,我国目前对PFOS污染排放来源解析、排放估算方法及排放清单等研究尚少,难以满足PFOS污染控制与管理的履约需要。   近年来吕永龙研究组以黄渤海地区为主要研究区,了解PFOS污染的空间分布和工业发展布局,找出主要排放的产业,发现生活排放也是PFOS污染不可忽视的重要源。针对上述问题在科学研究方面取得如下重要研究进展:(1)揭示了区域水体PFOS污染特征及其与工业化发展格局的关系,指出高工业化水平与多介质环境中PFOS污染的高风险存在显著的相关性,据此提出划分PFOS污染环境风险的分区方法。(2)系统调查了我国PFOS类物质生产与使用状况并识别与分类主要排放源 基于我国PFOS来源广泛但相关数据极其匮乏的实际现状,分别针对工业源和生活源建立了适合我国的PFOS源排放估算方法。(3)首次揭示了国家尺度的PFOS工业源排放水平与格局,建立了城市化水平较高的沿海地区PFOS生活排放与区域经济发展水平(GDP)和个人生活水平(人均可支配收入)之间的关系模式。   吕永龙研究组的系列研究成果得到国际审稿专家的高度评价,被认为是首次系统报道中国水体全氟化合物(PFCs)状况和工业发展关系的论文 不仅识别出了重点排放源与排放较为严重的地区,而且对中国开展PFOS风险评价和管理决策提供了开创性技术支撑。   上述研究得到了国家自然科学基金(项目资助号:41071355,41171394)、科技部和中国科学院等的支持。
  • 有害痕量元素排放清单:为控污治污提供科学依据
    10月8日,国际烟草控制政策评估项目(ITC)组织公布的科研报告显示,我国13个卷烟品牌被检测出含有重金属(砷、镉、铅等),其含量与加拿大产香烟相比,最高超出三倍以上。   据《重庆商报》报道:香烟中的重金属可能来自烟草产区土壤中。相关研究表明:生物从环境中摄取重金属,可以经过食物链的生物放大作用逐级富集,并通过食物等形式进入人体,引发人体某些器官和组织产生病变。   有害痕量元素及其化合物排放已成为大气污染控制的一个新兴而前沿的研究领域。在国家自然科学基金的资助下,北京师范大学副教授田贺忠带领的研究小组对我国2005~2020年能源利用及有害痕量元素排放发展趋势进行了研究,为我国掌握典型有害痕量元素污染排放现状及空间、行业分布特征提供了基础数据,并为国家和地方政府制定相关痕量元素污染排放法规、标准及技术与经济政策等提供了科学依据。   痕量元素引关注   上世纪50年代,日本熊本县水俣湾附近发现了一种奇怪的病,这种病最初出现在猫身上,被称为“猫舞蹈症”。病猫步态不稳,抽搐、麻痹,甚至跳海死去,被称为“自杀猫”。随后不久,发现也有人患有这种病。患者由于脑中枢神经和末梢神经被侵害,口齿不清、步履蹒跚、面部痴呆、手足麻痹或变形、视觉丧失,严重者精神失常,或酣睡,或兴奋,身体弯弓高叫直至死亡。这种怪病就是日后轰动世界的“水俣病”。   “日本发生的水俣病(汞污染)和骨痛病(镉污染)等都和有害痕量元素污染有关。”田贺忠说,“尽管痕量元素在空气中含量很小,但它的浓度超过一定范围就会显示出极大的毒性。许多痕量元素毒性极大,而且化学稳定性好,具有迁徙性、沉积性。它们不仅会引发人体呼吸系统的严重疾病,而且会污染水资源、土壤,造成生态环境的破坏。”   1990年,美国在《清洁空气法(修正案)》中列出了189种有害空气污染物,其中包括11种痕量元素(空气中含量很少的元素,如锑、砷、铍、铬、铅、锰、汞、镍、硒等)。在这11种痕量元素中,汞、砷、硒三种挥发性有害痕量元素的排放污染尤其引人关注。   有研究者发现,近10年来北欧、北美内陆偏远地区无明显工业污染源的湖泊中,鱼体内汞浓度的升高是由于大气汞沉降造成的。   美国环境保护署的报告称:燃烧装置排放的大气污染物中主要是有害的有机成分如苯并芘(BaP)、硫化物、氮氧化物、未燃烬可燃物以及重金属元素,它们几乎是造成所有癌症的原因,其中尤其以亚微米级颗粒形式存在的重金属排放物具有最大的威胁性。   汞、砷、硒等属于挥发性有害痕量元素,在高温燃烧或热解过程中不会被分解,而是挥发成蒸气,进而在烟道下游温度降低时通过结核、凝结、冷凝等过程形成许多亚微米颗粒。研究表明,尽管亚微米颗粒仅占燃煤总飞灰质量的5%左右,却富集了总痕量元素质量的13%~61%。汞、砷、硒等痕量元素主要富集在这些亚微米颗粒表面,这些亚微米颗粒很难被各种常规的污染控制装置有效捕获。它们大部分会随同亚微米颗粒排放到大气中,而这些亚微米粒子在大气中主要以气溶胶形式存在,不易沉降,而且上面富集的大部分有毒痕量元素也难于被微生物降解,可长时间停留在大气中,不仅影响大气能见度,而且通过呼吸系统进入动植物和人体内并不断蓄积,并可转化为毒性很强的金属有机化合物,还会通过干湿沉降过程进入水体和土壤,从而对水和土壤生态环境产生污染危害。   因此,大气汞、砷、硒等挥发性有毒痕量元素污染排放、迁移、沉降及控制等,也成为国际学术界关心的大气污染防治新兴研究热点之一。   燃煤:排放痕量元素祸首   美国环保局(USEPA)科学家Linak曾指出:元素周期表中几乎没有什么元素不存在于煤中,它们都是煤的重要组分,根据其含量不同,通常可将煤的元素组分划分为主量元素、次量元素和痕量元素三大类。其中,包括多种有毒痕量元素,如硼、铍、锗、镉、钴、铜、锰、铅、镍、汞、铬等。其中,汞、砷、硒、铅、镉、铬等元素对环境的危害最大。   化石燃料和矿物中的痕量元素在高温燃烧或熔炼过程中因各痕量元素的浓度、赋存状态以及操作工况的差异所表现的热行为不同,其挥发性也表现不一。但在所有条件下,汞、砷、硒都具有挥发性。   “由于汞极易挥发, 在燃烧过程中极难控制,燃煤排放被认为是最大的人为大气汞污染源。大气中颗粒汞主要结合在细颗粒物上, 对人体的危害更大。特别是环境中任何形式的汞均可在一定条件下转化为剧毒的甲基汞。进入环境中的汞会产生长期的危害, 所以汞是煤中最主要的有害微量元素之一。”田贺忠说。   砷是一种蓄积性元素,是当前环境中使人致癌的最普遍、危害性最大的物质之一。砷可通过呼吸道、消化道和皮肤接触等进入人体,随血流分布于肝、肾、肺、脾、骨骼、肌肉等部位,特别易于在毛发、指甲中蓄积,从而引起慢性中毒。尽管砷在煤中的含量很低,但由于煤消耗量巨大,煤中砷长期排放的积累不仅对燃煤电厂附近产生污染,而且可通过远距离的传输对比较遥远的生物产生负面影响。   “我们的研究发现,抚顺、沈阳、兰州、贵阳、成都、重庆等城市的大气中砷含量高于其他地方就和燃煤有关。西南地区由于高砷煤的使用,曾造成3000多例砷中毒事件。”田贺忠说。   燃煤是大气中硒的主要来源。据估算,全球发电用煤所排放的硒量占人为硒排放量的50%以上。燃煤也是造成一些地区土壤、水、植物中硒含量过高的原因。硒对于动植物和人类来说是一种必需的微量元素,但硒含量过高同样会危害人体健康。在我国陕西安康、湖北恩施等地发生的人、畜硒中毒事件,就是由于开采和使用当地的富硒石煤所造成的。   弄清排放总量及时空分布   目前,我国正处于工业化社会的初期阶段,国民经济的快速发展和大规模基础设施建设,需要大量的电力、钢铁、水泥以及有色金属等材料,这就需要消耗大量的化石能源和矿物资源。   2008年我国用于直接燃烧的煤炭约27.4亿吨。另外,钢铁冶炼、有色金属冶炼、水泥生产、化工等行业对金属和非金属矿物的烧结熔炼过程也会使矿物中的有害痕量元素挥发,并富集在微细颗粒物上释放到大气中,从而对人体健康和生态环境产生危害。   “国外曾有学者指责中国燃煤对大气的影响。然而,由于种种原因,目前我国还缺乏对这些典型有害元素污染现状的全面认识,燃烧和工艺生产设施上缺少专门的污染控制措施,使得国家制定相关的法规、标准及污染控制对策缺乏有效依据。另外,有害痕量元素在大气中的传输扩散不仅与物理过程有关,还涉及更复杂的化学反应和二次污染,对有害痕量元素污染排放清单的研究是进一步开展有害痕量元素污染物传输、沉降、污染源排放标准、控制技术研究开发重点,也是制订控制对策的基础。因此,非常有必要开展我国有害痕量元素污染排放清单的研究。”田贺忠说。   据介绍,排放清单研究能定量得到各种源排放总量及其时空分布,是描述污染物排放特征的有效方法。田贺忠等人针对目前我国缺乏对汞、砷、硒等典型有害元素大气污染排放状况认识的现状,采用排放因子法,通过现场测试调查、文献调研、专家咨询等手段,进而根据国民经济活动水平、能源生产消费状况、有色冶金等各部门生产活动水平等,以及各种装置或工艺过程污染控制水平等因素,在国内首次比较全面系统地建立了1980~2007年我国典型有害痕量元素汞、砷、硒大气排放清单及历史趋势。   该小组以2005 年为基准年,利用部门分析法对2005年至2020年能源利用及有害元素排放发展趋势开展了情景分析。重点研究了各省区燃煤大气典型有害痕量元素(汞、砷、硒等)排放量。按经济部门、燃料类型、燃烧方式和污染控制技术对排放源进行分类,确定各类排放源的排放因子和能源消费量。研究各省区生产原煤、洗精煤、焦炭和型煤的痕量元素含量,建立各省区间原煤、洗精煤、焦炭和型煤的传输矩阵,从而确定各省区消费原煤、洗精煤、焦炭和型煤的有害元素含量。研究人员结合各省区内各类排放源的排放因子、燃料消费量和燃料中痕量元素含量,计算出其排放量,进而给出各省区和全国燃煤大气典型有害痕量元素污染排放清单。   此外,该小组还将对各地区的有色金属冶炼、钢铁、水泥生产、废物处置、生物质燃烧等非燃煤源导致的典型有害痕量元素排放情况进行估算,进而与燃煤源排放清单相加,即可获得中国人为源导致的大气典型有害痕量元素污染物排放清单,并进一步通过网格化处理,利用GIS技术得到中国有害痕量元素的空间分布特征。   该研究有助于了解和掌握我国典型有害元素排放现状、趋势、时空分布特征等,可作为进一步开展有害元素的环境空气质量模拟和生态环境及人体健康影响的基础,并可为国家和地方政府制定相关法律、法规及技术经济政策提供科学依据。
  • 电科院“超低排放气态污染物监测仪器”通过鉴定
    日前,由国电科学技术研究院所属南京国电环保科技有限公司研制的“超低排放气态污染物监测仪器”通过中国环境科学学会在北京组织召开的技术成果鉴定。  针对火电厂超低排放气态污染物二氧化碳和氮氧化物的监测需求,南京国电环保科技有限公司对紫外差分吸收光谱技术开展了深入研究,开发了具有自主知识产权的 ASP-01型烟气分析仪,该产品具有如下创新点:利用烟气中SO2气体的特征吸收,可实时对光谱仪的输出波长进行在线校准,提高了仪器运行稳定性和测量精度 对二氧化碳和氮氧化物采用光谱补偿修正算法,解决了目标气体的光谱重叠问题,提高了仪器的抗干扰性 针对不同吸收波段的光强进行光机结构优化设计,提高了测量光谱和光机模块的信噪比与灵敏度。  鉴定委员会认为,该成果研制的“超低排放气态污染物监测仪器”测量精确度和稳定性高,检测下限低,填补了国内空白,主要技术指标达到了国际同类仪器的先进水平,一致同意通过鉴定。  目前,该仪器通过了环境保护部环境监测仪器质量监督检验中心的适用性检测和江苏省环境监测中心的比对监测,并在浙江北仑电厂、常州电厂等多台超低排放机组上应用,效果良好。
  • 关注!首个二氧化碳排放连续监测行业技术标准正式实施
    2021年12月22日,经国家能源局批准,电力行业标准《火电厂烟气二氧化碳排放连续监测技术规范》(DL/T2376—2021)公开发布,并于2022年3月22日正式实施。该标准作为首个二氧化碳排放连续监测行业技术标准,填补我国发电领域碳排放连续监测技术行业标准空白,进一步完善了发电行业碳排放监测核算技术体系,从技术标准层面为我国做好碳达峰、碳中和工作奠定了核心基础。发电行业作为全国碳市场首批纳入管控的重点行业,确保碳排放数据的准确可靠是全国碳市场有效规范运行的基础保障。近日,生态环境部公开碳排放报告数据弄虚作假等典型问题案例,全面通报了发电行业控排企业碳排放核算数据弄虚作假的突出问题,同时也暴露出发电行业碳排放量核算法的不足。烟气排放连续监测技术作为发电行业碳排放监测的重要技术手段,将在一定程度上弥补碳排放核算法的不足,可以作为发电行业碳排放量计量和校核的重要方式,有利于推进二氧化碳排放管理智能化和数字化发展。  碳排放连续监测是国际通行做法。美国和欧盟已建立了较为完整的火电厂烟气CO2排放连续监测政策法规体系和实施细则。其中,美国环境保护署(EPA)政策法规规定,受酸雨计划约束的火电机组(发电装机超过25MW的机组)需要根据40 CRF第75部分要求向EPA报告CO2排放量,燃煤和采用其他固体燃料的发电机组必须采用CEMS监测CO2;欧盟在其碳排放权交易市场第三阶段(2013-2020年)明确规定纳入碳市场的企业采用CEMS监测的碳排放量数据等同于核算法计算碳排放量数据。发电行业在2018年启动了碳排放连续监测技术标准制定的相关研究工作。  一、政府主导,行业协会与电力企业联合研究  2018年4月,国家发改委气候司发函委托中国电力企业联合会开展发电行业碳排放权交易相关工作,其中包括烟气排放连续监测系统(CEMS)在碳排放监测领域的应用研究等课题研究。  中电联高度重视该项工作,牵头中国华能、中国大唐、中国华电、国家能源、国家电投、粤电等大型发电集团成立专项研究工作组,联合开展CEMS在碳排放监测领域应用研究,编制完成《烟气排放连续监测系统(CEMS)在碳排放监测领域应用研究》并报送国家主管部门,研究形成的观点和结论对促进我国发电行业碳市场建设具有参考意义和价值。  中国华电及其直属研究单位华电电科院在2017年自主设计建设了行业首个碳排放连续监测实验平台,主要研究烟气碳排放连续监测技术可行性、关键影响因素及相应监测参数不确定度分析,研究结果充分论证了烟气排放连续监测应用于火电厂二氧化碳排放监测的技术可行性和应用可行性,为现场技术示范应用提供坚实的理论基础。在实验室研究的基础上,华电电科院自2018年底率先系统性开展示范电厂碳排放连续监测的现场研究工作,选定中国华电宁夏灵武、福建可门和江苏句容的4台机组作为示范机组,示范机组有代表性的覆盖不同装机容量、不同监测点位等情况,实现碳排放量实时、准确计量,深入推进碳排放连续监测技术的现场应用示范,为火电厂碳排放连续监测技术应用和标准制定打下了坚实的基础。  二、研究支撑,国际经验,实体验证,规范制定  2019年6月,基于前期研究成果,中电联牵头成立标准编制组,组织开展《火电厂烟气二氧化碳排放连续监测技术规范》(以下简称“技术标准”)的编制工作,整体工作由中电联电力行业低碳发展研究中心承担,华电电科院作为唯一技术承担单位具体执行技术标准的研究和制定工作。  技术标准调研阶段,为充分掌握国外内技术标准基本情况,编制组组建技术调研组赴美国、加拿大等地与设备厂家、火电企业和政府部门就碳排放在线检测技术开展调研和技术交流,对美国、欧盟温室气体监测政策法规开展了细致全面的梳理;并通过现场访谈和问卷调查形式对中国华电90多家火电厂的气态污染物CEMS、流速CMS和湿度CMS现状调研,掌握现有CEMS监测条件、监测技术应用以及运行维护管理现状,在此工作基础上确定标准重点研究内容。  技术标准编制阶段,以中国华电宁夏灵武、福建可门和江苏句容的4台典型机组作为示范,统筹推进CO2排放连续监测技术应用和现场施工工作,完成调试并开展数据监测,为标准现场验证测试提供了有利条件;结合现场示范电厂建设和相关领域专家的沟通交流,持续深化草案的完善工作,在充分讨论的基础上形成标准初稿。  技术标准验证阶段,根据现场验证测试方案,选取3家典型电厂多台火电机组开展烟气二氧化碳浓度和烟气流速等监测设备关键技术性能指标和内容进行现场验证测试工作,研究确定各性能指标,并在此基础上完善初稿,形成中期汇报稿和编制说明。  技术标准评审和征求意见阶段,编制组先后组织两次召开专家评审会,征求意见过程中共收到146条意见建议,编制工作组对专家反馈意见逐条分析、评估和处理,并对标准文本和编制说明征求意见稿修改完善,形成送审稿。  技术标准审查阶段,由电力行业环境保护标准化技术委员会组织召开行业标准送审稿审查会,25名业内权威专家组成的审查委员会对标准进行了详细的质询和审议,提出修改意见和建议,编制工作组根据专家意见和建议对标准文本和编制说明进行修改,形成报批稿。  技术标准报批阶段,经国家能源局批准,电力行业标准《火电厂烟气二氧化碳排放连续监测技术规范》于2021年12月22日公开发布,并于2022年3月22日正式实施。  三、统筹规划,科学推广  2021年生态环境部提出碳监测评估体系的建设任务,并于2021年10月24日正式启动碳监测评估试点工作,中电联以及中国华电、国家能源和上海电力等发电集团积极响应,主动参与,发电行业参与试点共计18家火电厂22台机组,以《火电厂烟气二氧化碳排放连续监测技术规范》(DL/T2376—2021)为技术标准高质量推进碳监测试点工作。  中国华电选取10家火电厂12台机组作为试点机组,涉及的6家区域公司和10家试点企业作为试点具体落实现场实施;在技术路线上,按照全面性、代表性、可行性原则,科学选取10家火电企业的12台火电机组作为试点开展二氧化碳排放连续监测工作,结合碳监测试点二氧化碳浓度和流速研究需求,将试点机组分为四类,针对不同类型试点机组,制定差异化的监测技术路线,开展不同二氧化碳浓度和烟气流速测量原理、进口和国产仪表性能对比研究;在工作方法上,按照“一厂一方案”的原则制定各试点企业技术方案,统一进行二氧化碳监测成套设备选型及采购,明确技术指标验收、运行维护、定期校准校验,核算法关键数据实测,监测数据定期报送要求,确保监测数据质量。  截至目前,在生态环境部统一部署和中电联指导下,发电行业参与试点的18家火电厂22台机组已全面开展数据的监测和分析工作,为发电行业碳排放连续监测技术推广应用形成了良好的示范效应。  数据质量是全国碳排放管理以及碳市场健康发展的重要基础,是维护市场信用信心和国家政策公信力的底线和生命线,也是我国高质量推进碳达峰碳中和的关键核心。发电行业碳排放连续监测技术作为碳排放量计量的重要手段和核算法的重要补充,其技术标准的发布实施将有利于全面推进该技术的推广应用,进一步完善发电行业碳排放监测核算技术体系,高质量高标准完成国家碳监测评估试点工作,为我国实现碳达峰碳中和贡献发电行业的力量。
  • 吴立冬研究员与合作者开发出海洋垂直深度分布算法,揭示未来海洋牧场降低甲烷排放的巨大潜力!
    中国水产科学研究院吴立冬研究员与北京大学物理学院沈路路助理教授及中国农业大学庄明浩副教授等合作开发了一个能解析不同粒径有机颗粒物在海洋垂直深度分布的算法,计算了浮游植物产生的有机碳在不同深度的物理沉降、分解和生物化学转化过程。结果显示,在水深不超过200米的浅海地区,浮游植物每年产生4200 Tg的有机碳,但是只有2.9 Tg会最终以CH4的形式释放到大气中,转化效率只有0.07%,该转化效率比淡水系统低了95%以上。主要原因是因为海洋高盐度环境,特别是硫酸盐的存在,会显著抑制甲烷的生成;同时海洋深度较大,CH4在从海底扩散到大气的过程中会更大比例在水体环境中被氧化。结果发现,与淡水环境相比,海洋的高盐度使得有机质产生甲烷(CH4)的效率下降了至少98%。全生命周期分析显示,淡水养殖中水体环境的CH4排放占据了50%的温室气体排放,而海水养殖环境几乎消除了该部分CH4排放,从而导致海水养殖生产系统的温室气体排放减少了至少40%。此研究从理论层次揭示了未来海洋牧场减少甲烷排放的巨大潜力。相关研究成果以“Marine aquaculture can deliver 40% lower carbon footprints than freshwater aquaculture based on feed, energy and biogeochemical cycles”为题,于2024年6月21日在线发表在《Nature Food》上(https://doi.org/10.1038/s43016-024-01004-y)。图1:浅海(水深小于200米)碳氮循环过程以及CH4和N2O产生的生物化学过程。本研究进一步开展了海水和淡水养殖生产系统全生命周期的碳排放,包括饲料生产、能源使用和水体环境的排放。结果显示,淡水养殖中水体环境的CH4排放占据了整个生产环节50%的温室气体排放。虽然海水养殖在饲料和能源生产的碳排放更高,但其几乎消除了水体环境部分的CH4排放,从而导致海水养殖生产系统的温室气体排放减少了至少40%。图2:淡水和海水养殖生产系统全生命周期的碳排放,主要包括饲料生产、能源消耗和水体环境的温室气体排放。
  • 卡塞尔塑料制品的气味和VOC排放论坛
    已经有20年历史的论坛会议:‘Odour and Emissions of Plastic Materials’(塑料制品的气味和VOC排放论坛),也别称为卡塞尔会议,欧洲及来自世界各地对该议题感兴趣的分析研究人员齐聚于此,探索讨论聚合物及材料中VOC排放的最新研究趋势。以下是会议中一些亮点:识别微塑料中的聚合物卡塞尔2019年的主题演讲是关于微塑料的,也是目前全球最热门的研究领域之一。来自柏林Bundesanstalt für Material forschungund-prüfung(BAM)的Ulrike Braun博士讲述了他的团队是如何开发识别空气中和水中的微弹性聚合物的方法,尽管该方法曾因制备样品耗时长,样本量受限可能引发的重现性等问题受到质疑。Braun博士的方法是对塑料样品进行完全热分解,并对产物进行萃取并富集到吸附相上,再进入TD-GC-MS阶段。在演讲中,Braun博士向我们展示了如何应用该方法识别水体中的塑料,以及塑料在空气和灰尘中展现出的微小碎片状态。识别车内空气中有异味硫化物的难点中国汽车技术研究中心(CATARC)今年第一次有代表来到卡塞尔会议向大家分享经验。CATARC一直以来都是Markes的重要客户,来自天津研究所的王焰孟博士就最新的车内空气质量测试(VIAQ)进行演讲。当前,车辆气味是中国消费者最关注的一个议题,CATARC则是在VIAQ业内最权威的机构。王博士解释,目前项目的重点是对硫化物进行半定量,但同时也面临着三重挑战:即痕量,气味物质不稳定,需要惰性化的分析系统。他还比较了不同的采样方法和分析方法,并提出使用电子鼻来辅助气味检测的可能性。当然,如何选择最优的检测手段从来不是一件易事,特别是涉及到这些有检测难度的待测组分时。当然,Markes也将一如既往同CATARC共同合作,通过优化TD系统,力求获得最佳效果和响应。如何判断塑料是否有异味?本次论坛中许多演讲都在讨论如何将塑料制品的气味分析结果与感官数据关联起来,结合多年的研究,研究人员发现异味通常是由痕量级化合物引起的。也因此聚合物的气味很难预测,而且目前人类鼻子对于个体分子结构的响应情况也没有统一定论。弗赖辛Fraunhofer Institute for Process Engineering and Packaging IVV(弗劳恩霍夫过程工程与包装研究所)的Christoph Wiedmer明确提出:“仅仅基于未知化合物的分子结构无法预测未知化合物的气味特征”,并在他的演讲中给出了详细说明。皮革中的气味化合物——什么才是最好的采样方法?您知道皮革在供消费者使用之前需要至少经过47道工序吗?这是来自德累斯顿工业大学的Thomas Simat博士向我们普及的小知识。同时,Simat博士及其同事比较了不同生产阶段中(例如:软化,起绒,挤水,淋涂等),皮革中VOC的差异排放数据。Simat博士演讲中还包括了从皮革基质中分离活性气味物质的方法比较。其中,溶剂辅助蒸发进行气味提取(SAFE)较繁琐且依赖溶剂萃取效果,而蒸馏萃取(SDE)会根据温度不同带来引入杂质的风险。相较于以上方法,Markes提供的解决方法是将待测组分浓缩在吸附剂上——正如该项目中所使用的(从皮革家具中去除VOC和SVOC的直接脱附法),该方法实施的外界条件与消费者生活环境相似,并且是唯一一种能够同时研究湿度影响的方法。 Simat博士描述了他们是如何识别50多种化合物,并开发出针对关键气味的指示剂,作为标准物质。用于研究聚合物VOC排放的设备本届卡塞尔的“塑料制品的气味和VOC排放论坛”是一次分析研究届的交流盛会,我们在Markes的展位上与我们的新老用户进行交流,建立联系。Markes的Micro-Chamber / Thermal Extractor备受瞩目,新推出的用于制备喷涂聚氨酯泡沫样品和校准表面VOC排放的新配件也激起了用户的兴趣。卡塞尔会议一直以来都是一个十分有趣的会议,我们也期待在下一次的见面中获得更多新发现、新惊喜!
  • Picarro G2210-i——奶牛场甲烷排放的同位素特征研究
    Picarro G2210-i——奶牛场甲烷排放的同位素特征研究江苏海兰达尔 2023-03-03 15:39 发表于江苏原文链接:https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021JG006675研究背景和目的甲烷的同位素特征是判断甲烷浓度升高的来源的重要工具,大气甲烷的全球稳定碳同位素比值(表示为δ13CCH4)随着CH4的大气摩尔分数的增加向更负值转变。最新的同位素证据表明,甲烷的上升可能主要是由于生物甲烷排放的增加,因为相较于化石和热源甲烷,生物甲烷的13C更少。基于这一解释,可能导致大气中甲烷浓度上升的生物来源主要包括反刍动物、稻田和湿地等。然而,鉴于我们对甲烷预算的理解仍然不完整,显然需要在区域一级对甲烷进行足够的同位素原位测量,以确定主导当前全球甲烷排放量上升的来源的位置和类型。在这项研究中,研究人员提供了来自加州圣华金谷(该州91%的奶牛群养殖在此处)一个奶牛场的δ13CCH4季节性大气测量数据。这项研究的主要目的是测量厌氧粪肥泻湖和肠发酵源区排放的δ13CCH4,并利用这一同位素特征值来确定该地区其它奶牛场的下风向羽流采样中检测到的甲烷热点的主要来源。同时,这些同位素特征有助于完善加州和全球甲烷预算的知识体系。测量仪器和方法研究人员使用移动平台收集了温室气体和污染物的连续测量数据,搭载设备包括Picarro CRDS分析仪G2210-i和G2401,GPS(记录地理位置和车速),二维声波风速计(测量风向、风速、空气温度和相对湿度)以及校准气瓶。从高度为2.87m的采样口吸入样品空气测量以下痕量气体:甲烷(CH4)、δ13CCH4、二氧化碳(CO2)、一氧化碳(CO)、乙烷(C2H6)。在每个测量周期的前后分别使用高、低两种浓度的混合标准气体对测量气体进行了校正。其中2018年秋季、2019年春季和2019年夏季使用的标气同位素值为-39.5‰,2019年秋季为-40.7‰,2020年冬季为-38.5‰。每个季节在参考测量地点收集微气象测量数据,使用的是安装在粪肥泻湖附近固定塔上的三维超声风速计(如下图1)。测量高度为2.4和11m,频率为20Hz,为了进行分析,只使用了来自2.4m高度测量的气象数据。另外在2020年1月15日,使用了一个由透明PVC材料制成的长方体腔室,用来从谷仓和静态粪堆中分离和测量。该腔室被放置在谷仓或粪堆表面,并通过Synflex管与移动平台的气体分析系统连接。对于每个样本,收集了10分钟的测量值。同时还通过与移动平台气体分析系统相连的同步管,测量了不同种类奶牛呼吸排放的δ13CCH4。图1 加州圣华金谷观测地点的设备布局和位置研究结果(部分)奶牛场不同来源的甲烷排放具有不同的甲烷同位素特征,在不同季节具有可比性(如下图3)。其中肠道发酵源的δ13CCH4信号比粪肥泻湖的甲烷更低。动物饲养区的δ13CCH4范围为-69.7±0.6‰~-51.6±0.1‰,而粪肥泻湖的δ13CCH4范围为-49.5±0.1‰~-40.5±0.2‰。同时观察到粪肥泻湖的同位素特征有一些细微的季节差异。甲烷观测值在畜栏、谷仓和粪肥泻湖之间的差异很大。在所有季节中,畜栏和谷仓的甲烷平均摩尔分数分别为5.4±3.4和8.5±6.3ppm,粪肥泻湖排放最高,为18.4±18.2ppm。图3 测量农场(畜栏、谷仓和粪肥泻湖)的季节性δ13CCH4同位素特征结论与讨论甲烷的稳定碳同位素测量是区分肠道和粪便甲烷的一种有价值的源解析技术。在试验农场内,肠道发酵源区和粪肥泻湖之间的δ13CCH4特征区分明显。这些源特征在整个季节都具有可比性,特别是来自粪肥泻湖,并且彼此之间的差异至少为~8‰。通过在下风向的观测显示,肠道发酵衍生的甲烷贡献率羽流中甲烷的0~93%,这随着排放足迹中动物畜舍和泻湖的数量而变化。测量奶牛场下风向甲烷的13C可能是监测和量化肠道和粪便排放比的有用工具,并可通过估算甲烷来源的贡献来评估减排策略的有效性。Picarro G2210-i高精度碳同位素分析仪Picarro G2210-i 同位素分析仪专为满足科学界实施实时甲烷排放源归属的需求而设计。高精度测量大气中甲烷和乙烷的功能与二氧化碳和水汽测量相结合,为用户提供一种用来测量并确定垃圾填埋场、压裂站和废弃油气井等甲烷排放源的独特工具。 编辑人:陆文涛审核人:史恒霖
  • 欧盟调整货车二氧化碳排放标准
    2009年10月28日,欧盟委员会提出一个重要的减少货车尾气排放中二氧化碳含量的建议,要求2014到2016年每种新的货车型号制造商必须确保二氧化碳排放量不超过每公里175克。该限量要求将分阶段完成,3/4的货车被要求于2014年达到排放标准,4/5的货车时限为2015年,2016年要确保所有货车符合该排放标准。此外,至2020年将实施更严格的每公里135克的限制。小货车不属于该法律约束范围内,将得到豁免。提议规定对超过排放限量的货车制造商按5欧元每克/公里罚款,超过4克/公里的上限,罚款额度则将达125欧元每克/公里。   现阶段我国出口汽车的附加值较低,仅在价格上具有竞争优势,排放标准逐渐发布以后,我国货车出口将受到严重的影响。随着全球对环境保护的重视,对于汽车排放的标准将越来越严格。对此,我国出口货车生产企业、检验检疫部门和行业主管部门应该未雨绸缪,积极应对。   相关出口企业应认真收集研究国外的汽车技术标准和相关技术性要求,加强技术改进,使出口汽车的附加值增加,出口市场由中低端市场逐步向中高端市场转变。   检验检疫部门应该加强对企业的扶持,一是成立汽车专家委员会。对汽车出口开展风险评估,及时研究汽车出口中出现的重大问题并提出对策,对出口汽车法规动态进行跟踪和研究分析。根据风险评估的结果,决定出口汽车检验监管的模式 二是实行分类管理。将汽车产品纳入电子监管,运用ERP系统实行实时监控及在线检测,加强对关键零部件的检测和关键零部件供应商的认证,确保汽车产品质量安全 三是对试验能力不足的中小汽车出口企业,对问题出现较多的检测项目和零部件加大抽查检测力度。重点关注安全环保项目,确保出口汽车质量安全的同时,引导企业提高技术和工艺水平,优化产品品质性能,提高产品技术和质量档次,创出口名牌,走以质取胜的道路 四是引导企业采用国内外先进技术标准,主动接轨国际标准体系,推动产品的国际安全、质量和标准认证工作,支持企业参与国家和国际标准的制订和修订。   国家相关行业主管部门应制定具体配套政策和相关标准,鼓励节能环保型汽车发展,推动技术进步,加快汽车产品结构升级。对不能达到国家安全、环保和节能强制性标准的产品,取消其相应的产品目录 对不能达到国家强制性标准要求的乘用车额外增加税收,并要尽快出台轻型商用车和大型商用车的燃料消耗量限值标准 对环保新能源汽车应降低税率,鼓励企业生产。各级政府部门应率先采购节能环保和采用新能源的汽车,特别是自主品牌的产品,为普通消费者做出表率。
  • “十二五”主要污染物排放指标初步拟定
    15日,记者从参与“十二五规划”的知情人士处了解到,“十二五规划纲要”初步计划将“十二五”期间单位GDP能耗指标和单位GDP二氧化碳(CO2)排放指标的5年累计下降幅度都定在16%,分解到2011年是3.5%。16%的幅度比之前市场预计的17-18%的降幅略轻。   此外,“十二五”规划还初步拟定将主要污染物排放总量的4项指标 化学需氧量(COD)、二氧化硫(SO2)、氨氧、氮氧化物累计同比下降10%。   “十一五”规划要求,把单位GDP能耗降低20%左右、主要污染物排放总量减少10%。   与此对比,节能减排指标“十二五”时期的降低幅度有所降低,而主要污染物排放降幅未变。   需要指出的是,在“十二五”规划中,单位GDP二氧化碳(CO2)排放指标,氨氧、氮氧化物三个指标为此次新纳入五年规划的约束性指标。   中国政府此前提出,到2020年单位GDP二氧化碳排放量比2005年下降40% 45%。在这一承诺背景下,国家发改委副主任解振华5月在各省(区、市)节能主管部门节能工作座谈会上讲话指出,发改委将研究建立节能减排“倒逼”机制和长效机制,在“十二五”规划中既要纳入GDP能耗下降指标,也要纳入单位GDP二氧化碳排放下降指标。   污染物指标方面,环保部部长周生贤11月曾撰文称,为落实减排目标责任制,强化污染物减排和治理,将增加主要污染物总量控制种类,把主要污染物由两项扩大到四项,即化学需氧量、二氧化硫、氨氮、氮氧化物。近年来,二氧化硫在得到控制的同时,氮氧化物却超过二氧化硫成为主要空气污染物。
  • 挥发性排放物的鉴定:同时EI和CI
    • Steve Down概述在同一色谱运行中交替使用EI(Electron ionization source,电子电离源)和CI(Chemical ionization source化学电离源)源的GC/MS方法已被用于装饰汽车内饰的人造皮革排放的挥发性化合物的鉴定。使用可互换的CI试剂可以快速控制碎片化程度。两全其美室内空气质量受到许多来源(如塑料、织物、粘合剂、油漆、地板和建筑材料)蒸汽排放的影响,这些来源被认为会导致病态建筑综合症。但不仅是建筑物会受到影响——如果室内空气不充分,其他室内空间(如车辆)可能会积聚材料散发的挥发性化合物。可以通过电子电离的GC/MS等技术分析有问题的化合物,并将光谱与标准库相匹配,但70eV的标准电离能会导致严重的碎片化,这可能会阻碍鉴定。具有化学电离的GC/MS是一种较软的技术,通常会导致质子化分子处于正离子模式,因此分子质量很容易确定。2022年,发布了一种新仪器的详细信息,该仪器通过在同一飞行时间质谱仪上并行操作EI和CI进行GC/MS,实现了两全其美。这两种技术的数据都是在一次GC运行期间获得的,并且通过使用不同的CI试剂气体来改变选择性。现在,该仪器的一个稍微修改的版本已经被证明用于识别汽车内饰中使用的人造皮革样品所释放的挥发性化合物。同时EI和CISteffen Bräkling和来自TOWERK、Thun和伯尔尼应用科学、建筑、木材和土木工程大学、德国伍珀塔尔大学和意大利帕多瓦大学的核心研究员描述了这些修改。在新的设计中,CI试剂气体水和氨被掺入氮气流中,这与最初的设计不同,即它们被直接送入CI源中。将水或水/氨混合物添加到用PTFE棒堵塞的PTFE渗透管中,这允许掺杂剂以温度控制的方式渗透到氮气流中。将流出物与由氢等离子体产生的H3+离子的单独流混合,以产生CI试剂离子,例如H3O+、N2H+、NH4+和质子化水簇。切换CI试剂以调整气相碱度,拓宽了可电离分析物的范围。这些离子与分离的GC流的一部分混合,以电离挥发性化合物,而GC流的其余部分直接送至EI源。快速离子光学开关装置将两个源的离子输送到飞行时间分析仪,从而记录每个GC峰的同时EI和CI光谱。补充技术验证挥发物为了测试该系统,在Tenax吸收管中捕获一块人造皮革的挥发物,随后将其置于与气相色谱仪相连的热脱附装置中。检测到许多化合物,并以不同的方式说明了组合光谱的优点。通过搜索NIST(美国国家标准技术研究所)质谱库,一些化合物(如十六烷和5,5-三乙基十三烷)从EI质谱中得到了可靠的鉴定,CI有助于确认分子质量。在其他情况下,当EI数据不确定时,从CI光谱中获得的准确分子质量有助于缩小鉴定范围。邻苯二甲酸二异丁酯就是这样。在第三种情况下,来自CI的精确分子质量与NIST混合相似性搜索功能一起使用,以缩小可能的结构,并在EI光谱没有提供合理匹配时提供初步鉴定。一系列试剂离子的使用提高了GC/MS系统的识别能力,并且在不改变硬件的情况下切换的能力是改进系统的一大优势。这是对各种材料排放的挥发性化合物进行非靶向分析的一个很有前途的发展。原始出版物:Bräkling, S, Hinterleitner, C, Cappellin, L et al. GC-CI&EI-TOFMS using permeation tube facilitated reagent ion control for material emission analysis. Rapid Commun Mass Spectrom 2022 e9461. http://dx.doi.org/10.1002/rcm.9461作者介绍• Steve Down史蒂夫是一位生活在英国诺丁汉的自由撰稿人。他毕业于约克大学,获得化学荣誉学士学位,之后为几家科学出版社工作。他继续经营质谱数据中心,该中心每月出版一份最新认知期刊、一份印刷数据集,并向NIST质谱数据库提供数据。后来,他与人合伙创办了一家出版公司,生产质谱杂志和书籍,后来缩减为自由职业者。史蒂夫喜欢自由职业所带来的题材变化,以及自由职业所赋予的追求其他兴趣的自由,包括园艺、散步/徒步旅行和听各种音乐(尤其是爵士乐、古典音乐、歌剧和摇滚),尤其是在现场表演中。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 汽车尾气排放标准不一 二手车转籍再陷尴尬
    2015年7月,刚刚取得广东省广州市中小客车更新指标及号牌的吴伟春从广东省清远市购买了一辆丰田二手车准备迁入广州市,但广州市交警支队车管所向其出具的《机动车业务一次性告知单》显示,该车未达国四环保标准,不能办理车辆转入手续。突如其来的打击让吴伟春措手不及,一怒之下将广州市车管所告上法庭。  吴伟春主张,车管所的做法限制了公民对物权或财产权的自由行使,属于违法行为。  车管所则提出,案涉车辆在公安交通管理综合应用平台查询得到的结果是达到国三排放标准,不符合当时广州市执行的国四排放标准。随后车管所应吴伟春的要求开具了《机动车业务一次性告知单》,作为案涉车辆办理回迁的证明,此办理程序合法、适用法律正确。  近日,广州市天河区人民法院根据广东省环保厅网站公布的案涉车辆尾气排放信息,认定该车排放标准为国四。由此,撤销了车管所的不予受理转入手续的决定,责令车管所重新做出处理。  案件的审理结果令人满意,可其中隐藏的问题却发人深省:同一辆车,为什么车管所说符合国三排放标准,法院说符合国四排放标准呢?  辽宁省环保厅机动车排放防治办主任张丁楠对此的解释是,公安部有车辆管理信息目录,车管所可以从这个平台查询到车辆排放标准,而环保部下属单位是从机动车环保网上查询车辆排放标准,两个平台信息不统一导致出现对同一辆车排放标准认定不同的情况。此案的关键在于我国没有建立统一的车辆信息管理系统,给认定车辆排放标准造成很大麻烦。  全国工商联汽车经销商商会二手车行业发展委员会秘书长郭平介绍,我国的汽车尾气排放标准是参照欧盟(EU)标准制定的,欧Ⅳ排放标准于2005 年年底开始实施,欧Ⅴ排放标准于2009年开始实施。而我国环保部在2010年发布国四排放标准并于2012年1月1日起正式执行 2013年9月环保部又发布了《轻型汽车污染物排放限制及测量法(中国第五阶段)》,要求2017年1月1日起,全国机动车全面实施国五排放标准。进口汽车进口时要向环保部及工信部报备排放标准,因为时间上的差异,出现欧洲2006年出厂的符合欧Ⅳ排放标准的车,2009年之前出口到我国只能按照国三排放标准备案,欧洲 2009年出厂达到欧Ⅴ排放标准的车,2013年之前出口到我国只能按国四排放标准申请备案。这就是导致同一辆车出现两种排放标准的根源。  “现在由于排放标准不一造成二手车转籍困难的情况非常普遍,说到底还是限迁引起的。”郭平说,落实国务院解除二手车限迁政策精神刻不容缓。
  • 水泥行业排放新标准将增原子吸收等需求
    仪器信息网讯  12月27日,环保部联合国家质量监督检验检疫总局发布了《水泥工业大气污染物排放标准》(GB 4915-2013)和《水泥窑协同处置固体废物污染控制标准》(GB 30485-2013)两项新标准。   我国2012年水泥产量达到22.1亿吨,占世界水泥产量的56%,现有规模以上水泥生产企业约4000家,其中水泥熟料生产企业2400多家、新型干法水泥生产线1600多条。据统计,我国水泥工业颗粒物(PM)排放占全国排放量的15%-20%,二氧化硫(SO2)排放占全国排放量的3%-4%,氮氧化物(NOx)排放占全国排放量的8%-10%,属污染控制的重点行业。   《&ldquo 十二五&rdquo 节能减排综合性工作方案》(国发〔2011〕26号)、《国家环境保护&ldquo 十二五&rdquo 规划》(国发〔2011〕42号)、《节能减排&ldquo 十二五&rdquo 规划》(国发〔2012〕40号)、《重点区域大气污染防治&ldquo 十二五&rdquo 规划》(环发〔2012〕130号)、《关于执行大气污染物特别排放限值的公告》(环境保护部公告 2013年第14号)等文件明确规定2015年水泥行业NOx排放量控制在150万吨,淘汰水泥落后产能3.7亿吨 对新型干法窑降氮脱硝,新、改、扩建水泥生产线综合脱硝效率不低于60% 在大气污染防治重点地区,对水泥行业实施更加严格的特别排放限值。   与水泥工业执行的现行标准《水泥工业大气污染物排放标准》(GB 4915-2004)相比,新标准重点提高了颗粒物、NOx的排放控制要求。新标准将PM排放限值由原标准的50 mg/m3(水泥窑等热力设备)、30 mg/m3(水泥磨等通风设备)收严至30 mg/m3、20 mg/m3 将NOx排放限值由800 mg/m3收严到400 mg/m3,除此之外,二氧化硫和氟化物的排放限量也收严至原标准的50%。考虑到现有企业需要进行脱硝除尘改造,标准规定新建企业自2014年3月1日起执行新的排放限值,现有企业则在标准发布后给予一年半过渡期,过渡期内仍执行原标准,到2015年7月1日后执行新标准。新标准还增设了特别排放限值。特别排放限值针对包括&ldquo 三区十群&rdquo 47个城市的重点控制区的&ldquo 6+1&rdquo 重点行业(领域),其限值和实施时间点规定都更为严厉,火电项目实施时间要求与规划发布时间同步,其他行业实施时间与排放标准发布时间同步。   值得注意的是,新标准在原有污染物控制项目(PM、SO2、NOx、氟化物)的基础上增加了氨(NH3)和汞(Hg)控制项目,排放限值分别为0.05 mg/m3和10 mg/m3。汞及其化合物的检测方法为《固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)》(HJ 543),使用的原子吸收分光光度计为原标准所无,氨的检测方法为《环境空气和废气 氨的测定 纳氏试剂分光光度法》(HJ 533)和《环境空气氨的测定 次氯酸钠-水杨酸分光光度法》(HJ 534)。另外,二氧化硫的检测新增《固定污染源废气二氧化硫的测定 非分散红外吸收法》(HJ 629)为标准方法,与原有的两种标准方法碘量法与定电位电解法相比,检测精度更高而且即可用于瞬时监测也可用于连续监测,因此新标准预计会在未来两年增加可观的原子吸收分光光度计需求,也会带来一定的非分散红外法二氧化硫气体分析仪或带非分散红外法二氧化硫气体分析的多组分气体分析仪的需求。   根据环保部官方解读,此次新标准的NOx排放限值是基于SNCR技术确定的,未来随着SCR技术的成熟,环保要求会进一步提高,将基于新技术制定更严格的NOx排放限值。   声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。   附件:   水泥工业大气污染物排放标准(GB4915&mdash 2013)   水泥窑协同处置固体废物污染控制标准(GB30485&mdash 2013)
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 基于新一代含卤气体高精度监测系统在上甸子站的在线观测研究及华北地区排放量的估算应用
    含卤气体主要包括氟氯碳化物(CFCs)、哈龙(Halons)、四氯化碳(CCl4)、甲基氯仿(CH3CCl3)、甲基溴(CH3Br)、氟氯烃(HCFCs)、氢氟碳化物(HFCs)、全氟化物(PFCs)、三氟化氮(NF3)、六氟化硫(SF6)等臭氧消耗物质和温室气体。2019年,含卤气体的辐射强迫达到0.41 W/m2,相当于CO2辐射强迫的19%。考虑到它们对气候变化的影响以及它们极低的大气环境浓度(ppt量级),对于含卤气体连续的高精度观测非常重要且难度极大。中国北部地区人口密集,是全世界最重要的氟化工、电解铝和氯碱工业生产基地之一,是含卤气体排放的重点地区,因此对于北部地区的四类F-gases(HFCs、PFCs、SF6和NF3)的排放估算也十分必要。本研究利用自主研发的高精度在线监测系统天霁 ODS5-pro系统,于2020年10月至2021年9月在北京上甸子大气本底站对36种含卤气体进行了连续的高精度监测,并对观测数据进一步筛分,得到了36种含卤气体的本底浓度和污染浓度,讨论了含卤气体抬升浓度之间的相关性。最后,根据观测数据结合种间相关法估算了2020-2021年中国北部地区HCFCs和F-gases的排放量,并将结果与全球排放量进行了比较,揭示了中国北部地区HCFCs和F-gases对全球排放的贡献。天霁ODS5-Pro系统由在线采样模块、分析系统、标气、辅助气组(氦气+氮气)和数据处理系统组成。其中分析系统由自组装的冷凝预浓缩模块和气相色谱-质谱检测模块组成。该系统在完成设计、组装和测试后,在北京上甸子大气本底站针对背景大气开展了为期1年(2020.10-2021.9)的实地观测试验;实现了36种含卤气体的有效分离和长期高精度监测,具体为大气浓度大于100ppt物种的精度约0.5%,大气浓度20-100 ppt物种的精度为0.5%~1%,大气浓度1~20 ppt物种的精度为1%~4%;大气浓度为0.1~1 ppt物种的精度为4%~9%。系统的准确度优于±0.5 %,检出限优于0.5 ppt。此外,天霁ODS5-pro系统与国际先进水平的Medusa GC-MS系统进行了同期比对实验。将两套系统间隔70 分钟以内的数据进行配对后,两套系统绝大部分物质的浓度偏差<3%,表现出良好的监测一致性,验证了天霁ODS5-pro系统的监测可靠性。表1 上甸子站2020年10月至2021年9月含卤气体的背景浓度和污染浓度所有35种含卤气体有25%-81%的有效数据被筛分为背景浓度。对于大多数已经被《蒙特利尔议定书》淘汰的物质(CFCs、哈龙和CH3CCl3), 59%-81%的测量结果被筛分为背景浓度。然而CCl4显示出高频率的污染事件,只有40%的测量结果被筛分为背景浓度。本研究中所有HCFCs的背景浓度数据量仅占总数据量的比例为27%-29%,反映出其在中国逐步淘汰过程中持续而强烈的排放。对于HFC-32、HFC-125、HFC-134a和HFC-227ea来说,其背景浓度数据量占比为27%-33%。此外,包括CH2Cl2、CHCl3和PCE在内的短寿命卤代烃(定义为在大气中寿命少于6个月的物质)的污染事件经常发生,其中背景浓度数据占比为25%-31%。在所有测量的含卤气体中,CH2Cl2的背景浓度数据量占比最低。图1 典型含卤气体大气抬升浓度间的相关性,以相关系数r表示,*表示两种物质在0.05水平上显著相关CFCs与其他物质之间的相关性较低,因为主要CFCs的污染浓度数据量占比仅为19%-25%,其相对背景浓度的抬升不到10%(表1)。HCFCs和HFCs的抬升浓度之间存在很强的相关性,反映出其在中国占主导地位的生产和消费,因此存在大量的人为排放。HFC-32与HFC-125具有较高的相关性,相关系数(r)为0.94。这一结果与之前Li et al.(2011) 和Kim et al.(2010)报道的低相关性不同。他们认为HFC-32和HFC-125主要来自工业生产过程中的逸散排放。本研究发现的强相关性证实了主要用作HCFC-22替代品的混合制冷剂R410A(HFC-32与HFC-125 质量比1:1)在中国房间空调得到了广泛使用。R410A的人为生产和消费已经成为HFC-32和HFC-125的主要排放源。此外,HFC-143a广泛存在于R404A和R507A的混合制冷剂中,因此与HFC-32和HFC-125的相关性较强,分别为0.70和0.76。在中国,HFC-23主要作为HCFC-22的工业生产过程副产物而排放。同样的,PFC-318主要在以HCFC-22为原料的四氟乙烯和其他含氟化学品的生产过程中产生和排放。HFC-23和PFC-318的抬升浓度相关性很强,为0.80,这暗示了它们均主要来源于与HCFC-22相关的氟化工行业的排放。氯甲烷类(包括CH3Cl、CH2Cl2、CHCl3和CCl4)与HCFCs和HFCs的抬升浓度相关性相对较强。在中国,氯甲烷类在各种工业过程中排放,其主要用作氟化学品生产的原料以及在人口稠密和工业化地区被广泛用作溶剂。本研究得出的相对较高的相关性可归因于工业区域氯甲烷类、HCFCs和HFCs排放的同源性。图2 2020年10月至2021年9月上甸子站观测对含卤气体排放的敏感性表2 利用种间相关法估算的2020-2021年中国北部地区F-gases和HCFCs的排放量aHCFC-22的排放量为数值反演法获得图3 (a)F-gases和(b)F-gases和HCFCs中各物质的CO2当量(CO2-eq)排放的占比表3 2020-2021年中国北部地区CO2-eq排放量以及对2020年全球含卤气体排放量的贡献排放敏感性分析结果(图2)表明,上甸子站的观测对中国北部地区12个省份的排放具有较高的敏感性。因此,采用种间相关法,以HCFC-22和CO为参考物估算了中国北部地区F-gases和HCFCs的排放量。结果表明,2020-2021年中国北部地区F-gases的CO2-eq排放量达到181±18 Tg /yr。在估算的四类F-gases中,SF6的CO2-eq排放量的占比最高(24%),其次是HFC-23(22%)、HFC-125(17%)、HFC-134a(13%)、NF3(10%)、CF4(5.9%)、HFC-143a(3.9%)、HFC-32(3.4%)和HFC-152a(0.2%)。如果将HCFCs的排放纳入其中,HCFC-22由于其巨大的实物吨排放量而贡献F-gases和HCFCs总CO2-eq排放量的42%,接近一半。因此,进一步减少HCFCs的排放将有助于臭氧层的恢复,并对减缓气候变化起到积极作用。与全球排放量进行比较后发现,仅中国北部地区的NF3、SF6和HCFCs的占全球排放的比例就高达20-40%,表明中国整个地区上述物质的排放量可能占全球排放的一半以上。因此,中国减缓NF3、SF6和HCFCs的排放将对全球的减排进程产生重要影响。中国北部地区有意生产的HFCs的排放量占全球排放的比例较低(<15%),而工业副产物HFC-23的贡献比例相对较高,为19%。文章信息研究成果以“In Situ Observations of Halogenated Gases at the Shangdianzi Background Station and Emission Estimates for Northern China”为题已在 Environmental Science & Technology 期刊上作为封面文章发表。北京大学环境科学与工程学院的博士生伊丽颖为文章的第一作者,复旦大学姚波研究员和北京大学许伟光工程师为本文的通讯作者。该研究工作得到了国家重点研发计划项目(2019YFC0214502)的支持。文章链接:https://pubs.acs.org/doi/10.1021/acs.est.3c00695文中引用的参考文献:1. Li, S. Kim, J. Kim, K. R., et al., Emissions of Halogenated Compounds in East Asia Determined from Measurements at Jeju Island, Korea. Environ. Sci. Technol. 2011, 45, (13), 5668-5675.2. Kim, J. Li, S. Kim, K. R., et al., Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China. Geophys. Res. Lett. 2010, 37, L12801.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制