当前位置: 仪器信息网 > 行业主题 > >

荧光筛选

仪器信息网荧光筛选专题为您整合荧光筛选相关的最新文章,在荧光筛选专题,您不仅可以免费浏览荧光筛选的资讯, 同时您还可以浏览荧光筛选的相关资料、解决方案,参与社区荧光筛选话题讨论。

荧光筛选相关的资讯

  • 外泌体研究快车道!全自动外泌体荧光检测分析系统顺利落户河北师范大学药物筛选与新药创制中心
    近日,Quantum Design中国顺利将NanoView全自动外泌体荧光检测分析系统安装于河北师范大学药物筛选与新药创制中心,并为用户进行详细的仪器介绍和操作培训,其优越的外泌体表征性能将为河北师范大学生命科学学院的研发平台添砖加瓦。河北师范大学药物筛选与新药创制中心 全自动外泌体荧光检测分析系统是一款无需纯化的、全自动的可对单个外泌体进行表征分析的全新设备。该设备能够提供全方位的外泌体表征信息,包括外泌体粒径大小、计数、分布、携带蛋白表达、生物标志物(CD9,CD81,CD63等)共定位等。操作简单,结果可靠。短短三年,在世界范围内已有100多家实验室采用该设备,包括了著名的哈佛大学、约翰霍普金斯大学、康奈尔大学、洛杉矶儿童医院、麻省总医院、东京工业大学、首尔大学、新加坡国立大学、大阪大学等,发表SCI已超过240篇,其中不乏顶级期刊如Cell、Nature、Journal of Extracellular Vesicles、Cancer Research、Nanoscale、ACS Nano、BMJ journal、Brain Behavior Immunity、Trends in Cancer等。 全自动外泌体荧光检测分析系统安装完成 NanoView全自动外泌体荧光检测分析系统测试数据 2022年NanoView高水平文章精选列表:☛ Heikki Kyykallio ……& Pia R-M Siljander. (2022) A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. Journal of Extracellular Vesicles.☛ Tyler J ……& Atta Behfar. (2022) Exosome biopotentiated hydrogel restores damaged skeletal muscle in a porcine model of stress urinary incontinence. Npj Regenerative Medicine.☛ Min Han ……& Tao Xin. (2022) Three-Dimensional-Cultured MSC-Derived Exosome-Hydrogel Hybrid Microneedle Array Patch for Spinal Cord Repair. Nano Letters.☛ Roberto Frigerio ……& Marina Cretich. (2022) Comparing digital detection platforms in high sensitivity immune-phenotyping of extracellular vesicles. Journal of Extracellular Vesicles.☛ Zijian Yang ……& David A. Issadore. (2022) Ultrasensitive Single Extracellular Vesicle Detection Using High Throughput Droplet Digital Enzyme-Linked Immunosorbent Assay. Nano Letters.☛ Yael Hirschberg ……& Inge Mertens. (2022) Characterizing extracellular vesicles from individual low volume cerebrospinal fluid samples, isolated by SmartSEC. Journal of Extracellular Vesicles.☛ Sukhbir Kaur……& David D. Roberts. (2022) Single vesicle analysis of CD47 association with integrins and tetraspanins on extracellular vesicles released by T lymphoblast and prostate carcinomacells. Journal of Extracellular Vesicles.☛ Simone M. Crivelli……& Erhard Bieberich. (2022) Function of ceramide transfer protein for biogenesis andsphingolipid composition of extracellular vesicles. Journal of Extracellular Vesicles.☛ Kazuki Takahashi……& Manabu Tokeshi. (2022) Non-competitive fluorescence polarization immunosensing for CD9 detection using a peptide as a tracer. Lab on a Chip.☛ Nasibeh Karimi ……& Cecilia Lä sser. (2022) Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma – Contributions of platelet extracellular vesicles in plasma samples. Journal of Extracellular Vesicles.☛ Lin Zeng ……& Hui Yang. (2022) Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. Lab on a Chip.☛ Hongyun Wang ……& Junjie Xiao. (2022) Extracellular vesicles enclosed-miR-421 suppresses air pollution (PM2.5)-induced cardiac dysfunction via ACE2 signalling. Journal of Extracellular Vesicles.☛ Linglei Jiang……& Santosh Dhakal. (2022) A7 bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. Journal of extracellular vesicles.☛ Shaobo Ruan, Nina Erwin, Mei He. (2022) Light-induced high-efficient cellular production of immune functional extracellular vesicles. Journal of extracellular vesicles.全自动外泌体荧光检测分析系统(ExoView R200)简介 Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R200)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。 为了更好的服务中国客户;Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据: 欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!
  • 提速4000倍!微生物筛选技术迎来大变革
    在合成生物学的研究发展过程中,微生物的筛选一直是研究的核心环节。以往,研究人员通常依赖于MTP(微孔板)方法来进行筛选。然而,这种方法有着一定的局限性,如较低的流通量、耗时的手动操作和非实时的数据采集等。为了克服这些困难,达普生物一直在探索全新的解决方案,以微液滴筛选技术为基础,设计了一种革新性的高通量微生物筛选系统。高通量微生物筛选系统(Microbes Sorting Platform,简称:MSP)是达普生物历经数年打磨研发的一款应用于酶定向进化筛选的专业性平台系统,其整合了微液滴制备技术、流式荧光检测及介电泳分选技术,帮助用户在一天的时间内完成108量级微液滴(约107文库)的分析和筛选,大大缩短了酶定向进化或功能性微生物筛选的进程。液滴微流控高通量筛选技术,是基于水油不相容原理构建的pL 级独立反应单元,能够快速实现单个微生物细胞与检测试剂微反应封闭体系的制备、反应与功能性单元的筛选。借助荧光检测技术对单元内的生化反应进行检测,利用介电泳技术实现对包含目标菌株/细胞反应单元的筛选和富集。该技术能快速对上千万个 pL(10-12L)级微液滴的生化反应单元进行高通量筛选,突破传统基于脂板筛选及微量滴定板(MTP)测定筛选通量的瓶颈,推动酶定向进化真正进入高通量筛选新时代。酶定向进化筛选通量大幅提升,研究者可在短期内实现多个突变位点的筛选。微量滴定板等传统方法对于4个位点的随机突变筛选,筛选300万以上的突变体的周期大约为80年,且消耗大量的试剂耗材成本。采用MSP高通量微生物筛选系统,单个操作员一周之内即可完成等量筛选工作,在降低试剂耗材成本的同时助力酶定向进化步入光速发展阶段。单个微生物液滴包裹动画微生物液滴筛选动画液滴融合功能吸光度检测筛选微液滴技术酶定向进化文献详解微液滴高通量筛选技术加速工业酶进 化 (点击查看 ) 液滴微流控技术与酶定向进化:高通量筛选策 略 驱动革新 (点击查看 )达普生物科技有限公司达普生物孵化于香港科技大学,于2018年创立,是中国液滴微流控领军企业,致力于提供世界领先的生命科学解决方案。公司在深圳、嘉兴、香港三地设有研发中心,研发团队近百人,聚焦于将液滴微流控技术应用于生物医药与精准医学领域,致力于成为集微流控芯片、仪器、试剂的研发和生产于一体的完整解决方案提供商。已商业化多款基于液滴微流控技术的科学仪器,包括高通量筛选系统(High Throughput Sorting System)、星海单细胞建库系统(Galaxy Single Cell Analysis System)与星云全自动数字PCR系统(Nebula Auto dPCR System),可应用于抗体筛选、酶进化、合成生物学、高通量药物筛选、癌症研究、癌症早期筛查、靶向治疗、无创产前诊断和病毒定量、生物制品质检等领域。目前已服务超过100家国内头部生物医药、科研服务商与IVD企业,在业内获得广泛的认可。
  • ALPHA前沿案例 | 玩转泛素化筛选
    泛素化过程对于细胞稳态调控的重要性不言而喻。除了参与UPS(泛素-蛋白酶体系统,ubiquitin-proteasome system)介导的蛋白降解外,泛素化还是重要的信号通路和亚细胞定位调控手段。随着PROTAC药物的兴起,泛素化系统也受到了进一步的重视,成为了新兴的药物研发方向。在本期的前沿案例中,研究人员关注重要的细胞周期和DNA修复调控蛋白PCNA(增殖细胞核抗原),及其K164单泛素化修饰。该修饰过程是DNA损伤耐受通路激活的关键步骤,也是潜在的抗肿瘤靶点。利用强大、灵活,并可支持定量的ALPHA蛋白互作技术,研究针对PCNA单泛素化过程中的各个环节均建立了高通量筛选和分析体系。以此为基础,研究进一步开展小分子药物筛选,并成功获得一系列具有靶向活性的氧杂蒽酮化合物。这些药物不仅为研究PCNA单泛素化功能供了新的工具,也为该方向的抗肿瘤药物研发打下基础。作为核心的PPI筛选和分析平台,ALPHA技术主要参与了该研究以下工作:一、建立靶向PCNA单泛素化各个环节的筛选和分析体系与常见的泛素化过程一致,PCNA 单泛素化也需要E1(Uba1,泛素活化酶),E2(Rad6,泛素携带蛋白)和E3(Rad18,泛素蛋白连接酶)发挥作用。利用一系列反应中出现的相互作用,研究基于APLHA技术构建了Uba1-ubiquitin相互作用;Rad6-ubiquitin相互作用;Rad18自泛素化和最终的PCNA泛素化检测和分析平台(见上图)。并在此基础上,研究进一步建立Rad6和Rad18以及Rad6和Ubr1互作分析方法,用于协助评价候选小分子。上述方法全面覆盖了泛素化过程中的各个反应,也展现ALPHA技术用于PPI分析的高度灵活性。二、靶向PCNA单泛素化的小分子抑制剂筛选在之前PCNA单泛素化检测的基础上,研究继续从蛋白浓度、稀释倍数和Beads浓度等多个方面优化ALPHA体系,并开展高通量小分子药物筛选。研究发现一系列的氧杂蒽酮化合物,如NSC 9037能有效抑制PCNA的泛素化,而类似结构的荧光素和阴性化合物则不能。上述发现与经典的Western blot或 Gel-based法的检测结果有较好的一致性,也间接反应了ALPHA技术抗荧光干扰的优势(见上图)。三、候选小分子活性评价针对泛素化的主要环节,研究继续利用ALPHA技术分析一系列候选药物的特异性和可能的工作机制。通过对比Uba1-ubiquitin相互作用(上图左,该检测中NSC 9037为阴性化合物);Rad6-ubiquitin相互作用(上图中)和Rad18自泛素化(上图右)检测的结果,研究证明NSC 9037能特异抑制Rad6和ubiquitin的相互作用,以及下游的Rad18自泛素化。基于ALPHA平台,研究继续构建和优化Rad6和Rad18(上图左)/Ubr1(上图中)相互作用检测平台,证明NSC 9037能特异阻断Rad6和Rad18的相互作用,是首个报道的Rad6-Rad18互作抑制剂。最后,在肿瘤细胞模型上,NSC 9037和其他筛选获得的PCNA泛素化抑制剂,均表现出不同程度的细胞毒性(上图右),为肿瘤药物研发提供了新的潜在方向。在PCNA泛素化抑制剂筛选和解析的过程中,ALPHA技术因其强大的灵活性发挥了重要的推动作用。相较于传统技术路线,ALPHA具有高灵敏度、优越的动态范围和能灵活支持不同亲和力范围和距离下的互作检测,是蛋白互作筛选和分析的利器。靶向蛋白互作的抑制剂筛选,除了ALPHA平台外,我们还提供同样均相的HTRF技术和非均相DELFIA技术平台,和相应的涵盖试剂、微孔板、检测平台和自动化的全线解决方案,满足不同的蛋白蛋白/蛋白小分子互作检测需求。
  • NanoTemper助力药企研究STING抑制剂片段筛选
    STING抑制剂片段筛选案例干扰素基因刺激因子(Stimulator of interferon genes, STING)在天然免疫中发挥重要作用,当细胞被病原体(如病毒)感染时,STING可以诱导I型干扰素和促炎性细胞因子的产生,是靶向治疗自身免疫疾病和癌症的潜在靶标蛋白。近年STING相关研究火爆,管线数量激增。目前全球范围内在研的STING靶向药物超过50种。今天给大家介绍的STING抑制剂片段筛选案例是由NanoTemper和药明康德旗下的Crelux公司合作完成的。研究人员生产纯化了带有His-tag的STING蛋白,随后使用Prometheus蛋白稳定性分析仪进行缓冲液优化并使用环二核苷酸cGAMP作为阳性对照进行Thermal shift assay,快速验证了蛋白的结合活性。案例回顾:差示扫描荧光法表征蛋白配体互作,不加染料的那种接下来研究人员使用Dianthus完成了片段化合物库单点筛选及亲和力排序。在使用Dianthus进行筛选时,其中一个分子需要带有荧光。本实验中, 研究人员使用His-tag荧光标记试剂盒对STING蛋白进行了特异性标记,片段终浓度为500μM,结合缓冲液为50 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM DTT, 0.005% TWEEN® 20, 4% DMSO。 STING片段筛选流程下图为单点筛选结果,2213个片段加上阳性及DMSO对照(均重复一次)总共采集了5376个数据点,即14块384孔板。消耗590μg STING蛋白,上机检测时间约8h(Dianthus 33分钟即可完成一块384孔板检测,↓ 文末查看Dianthus上机演示)。紫色线框中的黄色数据点为阳性对照cGAMP,213个阳性化合物响应值CV仅0.25%,检测重复性非常好。最后将单点筛选结果中的162个hits(上图蓝色数据点)进行12个浓度点的梯度稀释检测亲和力。消耗STING蛋白190μg,上机检测时间约3小时。苗头化合物验证基于片段的药物发现 (FBDD) 是药物研发的主流方法之一。但片段分子量低,且与蛋白靶标亲和力低,通常在μM-mM范围,因此对筛选技术的灵敏度有较高的要求。Dianthus基于光谱位移技术(Spectral shift)检测,不依赖于分子量,可检测pM-mM的亲和力。此外,Dianthus检测一个kd仅需1min,单孔上样体积20μl,是您亲和力筛选项目的强大工具!Dianthus产品介绍:全新Dianthus携光谱位移技术横空出世,1分钟击破亲和力筛选难点!wx搜索NanoTemper视频号,查看Dianthus上机操作演示吧!
  • 新品EDX-7200丨全新磷元素筛选套件
    EDX-7200One EDX over all others 苯酚、异丙基磷酸(3:1)(PIP(3:1))被广泛应用于以聚氯乙烯(PVC)和聚氨酯等树脂为代表的产品中,以使产品具有可塑性和阻燃性。另一方面,美国环境保护署(U.S.EPA)的有毒物质控制法案(TSCA)开始对含有PIP(3:1)的产品及成品的制造、加工与交易进行管控。 在岛津经典的EDX RoHS 5元素及Cl元素、Sn元素的筛选套件基础上,新推出了作为新品EDX-7200的扩展套件P元素筛选。 P的原子序数是15,相对于大原子序数的元素,X射线荧光强度低,更容易受不同树脂材料的干扰。因此在P的筛选套件中采用了最适合的测试条件和修正树脂干扰的计算条件,同时提供了P元素的管理样品。 大气氛围下P的检出下限如下表,测量时间100秒,PE树脂样品。实际样品分析示例● 样品:PVC树脂测量时4根并排放置样品观察摄像头画面 ● 分析结果:软件判定结果图P元素谱峰 ● 重复性测试结果以上方法可应对《美国有害物质管法》(TSCA)对PIP的管控的初步筛选,同时可对应正在修订中的IEC 62321 3-1总磷的筛选方法。 ● 相关链接:EDX-7200新型能量色散X射线荧光光谱仪出新!美国TSCA法规应对,“五项有害物质”摸底排查可以开始啦 本文内容非商业广告,仅供专业人士参考。
  • 设备更新选型指南丨功能微生物筛选解决方案推荐
    在微生物学研究中,研究人员常常需从复杂多变的生态环境如泥土、沉积物、粪便等中取样。不同于动物细胞,微生物细胞具有微小尺寸、形态各异、易受杂质干扰且目标微生物丰度低等特点。因此,传统针对动物细胞设计的分选技术和设备在应对这些微生物样本时,常常束手无策。从这样的复杂样本中分离出目标微生物菌株,不仅耗时耗力,效果也常不尽如人意。为了解决这一问题,长光辰英公司凭借其卓越的科研实力,结合微生物单细胞可视化精准分选技术,并融合单细胞拉曼光谱、高分辨荧光成像、智能形态学识别以及人工智能算法等核心技术,成功推出了一系列功能强大的微生物筛选产品。此外,长光辰英还建立了微生物多维表型检测与可视化精准分选平台,该平台采用“先鉴定,再扩培”的策略,确保研究人员能够“所见即所得”地从复杂样本中高效筛选出目标功能菌株,从而为微生物筛选提供了新的高效解决方案。推荐产品 PRECI SCS单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) PRECI SCS-R300拉曼单细胞分选仪PRECI SCS-R300 拉曼单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)推荐服务功能菌筛选技术方案(一)丨微生物多维表型检测与可视化精准分选平台下的微生物单细胞筛选培养功能菌筛选技术方案(二)丨微生物多维表型检测与可视化精准分选平台下的表型靶向MiNi宏基因测序功能菌筛选技术方案(三)丨微生物多维表型检测与可视化精准分选平台的基因转移可视化研究如果您对我们的产品和服务感兴趣,请随时联系我们
  • 使用Ghost cytometry进行高通量细胞表型的池式CRISPR筛选
    CRISPR基因编辑池式筛选是一种使用CRISPR基因编辑技术进行高通量基因筛选的方法。该方法灵活且高效,能够在单次实验中同时对成千上万的基因进行编辑,为研究者在生物医学研究领域提供了强大的工具。 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats),是细菌或古菌的一种免疫机制,能够帮助它们抵抗病毒等外源遗传物质的入侵。在2012年,科学家发现了其在基因编辑上的潜力,他们利用CRISPR关联蛋白(Cas)能够被引导至任何DNA序列并精确剪切,实现了目标基因的定向编辑。 池式筛选,即在一个大的“池子”里,每个细胞携带一个不同的基因编辑工具-指导RNA(gRNA)。这种编辑工具可以引导Cas蛋白至特定的基因进行编辑。在CRISPR池式筛选中,研究者可以使用含有数以千计不同gRNA的质粒库对大量细胞进行转染,使每个细胞内接收到一个随机的gRNA。 传统的基因筛选方法通常会对单个基因或一小组基因进行逐个测试,这种做法比较耗时且效率较低。某些筛选方法,例如通过微生物菌落挑选或表达差异分析等,虽然可以同时处理多个样品,但是每个基因通常都需要单独处理和分析。而“池式筛选”方法则是一种高通量筛选技术。在一个“池子”中,每个细胞被赋予一个特定的基因编辑工具,比如CRISPR的gRNA,就形成了一个大规模基因编辑池。然后,通过对整个细胞池进行外部压力处理,可以一次性筛选出许多对生存或生长有影响的基因。这样就可以在单个实验中对全基因组进行筛选,大大提高了筛选效率。文章的介绍部分详述了基于CRISPR的池式筛选方法的几个优势,包括提高通量,降低成本,减少了不同筛选中出现的批次效应。在池式的表型筛选中,细胞和细胞内分子被标记为荧光染料、报告基因或荧光免疫抗体。因为需要量化明确定义的特征,所以基于荧光的标记由于其对目标分子的高特异性和高灵敏度具有明显的优势。例如,在荧光激活细胞分类(FACS)中,从时间信号中测量的代表性值,如总荧光,或从光学显微图像中评估的更详细的特性,如分子定位和形态参数。 然而,当适用的生物标志物或染色方法不可用,能否在用识别特征的图像分析评估细胞表型变得具有挑战性。为了解决这个挑战,基于机器学习的无标记高内容细胞表型分析成为一个有希望的替代方案。 在这项研究中,作者展示了一种用于大规模池化CRISPR筛选的多功能方法,包括荧光和无标记高内容细胞表型,利用基于荧光和无标签Ghost Cytometry(GC)技术的细胞分类器。 首先,细胞表达Cas9蛋白被用池化CRISPR逆转录病毒库转导以实现功能丧失基因集,并选出稳定病毒整合。随后,经化合物或试剂处理的池化敲除细胞库显示出多种表型。如有必要,可以进行额外的试验,例如免疫染色。在GC-based的细胞分选中,预训练的机器学习模型可以选择性地丰富显示目标高内容表型的细胞。最后,可以将筛选的细胞进行各种生物学试验,包括基因分析如基因组测序,蛋白质试验以及基于细胞的功能性分析。在标准CRISPR扰动筛选中,从筛选细胞中提取基因组DNA,并由PCR扩增sgRNA区域,然后利用商业上可得的下一代测序平台阅读,以确定导致目标表型的基因。当筛选活细胞时,单细胞RNA测序的转录组学分析和基于细胞的功能试验是广泛适用的。 所以,整体来看,这种方法结合了CRISPR基因编辑技术,无标签高内容筛选和机器学习,进一步提高了我们对基因功能和表型的理解,以及我们在生物医学研究中的筛选能力。
  • 天木生物DREM cell设备成功助力高产谷氨酰胺酶突变株超高通量筛选
    工业微生物常用于重要的生物和化学制品的生产,优良菌株的选育是生物产业的核心工作之一。近年来合成生物技术的快速发展使得高性能工业菌株基因型的理性构建性显著增加,但如何从海量候选菌株库中高通量筛选到规模生产用的工业菌株仍面临挑战。多孔板(MTP)筛选系统和流式细胞术(FACS)是研究者常用的筛选手段,但MTP通量较低,而FACS难以用于检测胞外分泌的代谢物。液滴微流控技术在微生物育种领域的应用,成功实现了大容量突变库的全面评价以及高效筛选,不仅在筛选通量方面实现了大幅度提升,有效提高了菌株选育工作效率,而且在筛选成本方面也展现出巨大优势,可显著降低筛选过程中试剂耗材的用量,将单克隆的筛选成本降低至十分之一或百分之一,实现高通量、低消耗的优良工业菌株选育。天木生物基于液滴微流控技术开发了皮升级单细胞分选平台--DREM cell(Droplet entrapping microfluidic cell-sorter)具有体积小、通量高、体系封闭、无交叉污染等特点,越来越成为科学研究和企业生产的重要技术手段。近日,清华大学张翀、安徽工程大学薛正莲研究团队应用DREM cell将液滴微流控技术与基因编码荧光生物传感器相结合,成功实现了高产谷氨酰胺酶突变株的超高通量筛选,相关研究成果以“Combining genetically encoded biosensors with droplet microfluidic system for enhanced glutaminase production by Bacillus amyloliquefaciens”为题,发表在生物化工领域专业期刊《Biochemical Engineering Journal》上。研究团队开发了一种利用谷氨酸拟荧光蛋白传感器 iGluSnFR 的谷氨酰胺酶荧光检测方法,相较于传统的高效液相色谱法,速度提高了700倍。基于iGlusnFR传感器,结合DREM cell单细胞分选平台实现谷氨酰胺酶生产菌株的高通量筛选,单次实验可筛选10万克隆,效率远远超过传统孔板筛选技术。最终项目团队对常压室温等离子体(ARTP)诱变的解淀粉芽孢杆菌全基因组突变文库进行超高通量筛选,成功获得了一株谷氨酰胺酶产量提高47%以上的突变株。该筛选平台,与微孔板筛选系统相比,筛选率提高500倍,试剂用量减少2万倍,并且可以节省大量的多孔板、培养皿、枪头等耗材。▲图丨液滴微流控高通量筛选平台流程图背景信息研究团队所使用的液滴微流控细胞分选仪(DREM cell)是天木生物基于液滴微流控技术开发的皮升级液滴微流控单细胞分选平台,可将待筛选细胞进行包被形成单细胞微液滴,结合荧光筛选模型,可以在细胞水平完成微生物的高通量分离、培养、检测、分选等。▲图丨液滴微流控细胞分选仪(来源:天木生物)高通量皮升级液滴单细胞分选系统(DREM cell)相比于传统筛选方法,筛选效率可提升1万倍,试剂消耗量可下降至百万分之一,在筛选通量显著提升的同时,单克隆筛选成本大幅度降低。该仪器不仅可广泛应用于细菌、酵母、动物细胞等的高通量筛选,还可以应用于蛋白、核酸、抗体等生物大分子筛选等相关研究领域。项目技术参数液滴体积1-1000pL荧光激发与检测可选波段:(1)激发波长488nm,检测波长525±15nm,灵敏度1μM荧光素/单液滴(2)激发波长532nm,检测波长578±11nm,灵敏度100nM试卤灵/单液滴液滴生产频率0-10000个/s液滴分选频率0-1000个/s微注入速度0-1000个/s样品低温控制系统4℃恒温控制,±0.5℃工作环境常压状态下,室温,30%≤湿度≤80%,洁净暗室整机功率600W应用范围细胞、酵母、细菌、蛋白、核酸等
  • VisionSort用于药物发现:突破性药物筛选技术
    视频链接:https://www.bilibili.com/video/BV1btvke7EwP/?spm_id_from=333.999.0.0概述在本次网络研讨会上,介绍了用于药物发现的VisionSort平台。药物筛选方法主要有两种:靶向筛选和表型筛选。尽管两者互为补充,表型筛选因其广泛评估药物作用机制和对细胞表型影响的能力而重新受到重视,且识别了最多的首创药物。传统表型筛选的挑战存在孔间信号差异,需要复杂的细胞标记,图像存储和处理资源密集依赖自动化显微镜平台生成大量高内容数据需要大量的多孔板,通常受限于固定或贴壁细胞VisionSort 平台的优势采用更灵活、高通量的方法进行表型筛选同时捕获高内容的无标记形态信息和荧光信号不需要传统的计算图像处理和分析,速度快,能处理每小时1000万个细胞,适用于活细胞和固定细胞Ghost Cytometry 技术高级光学、机器学习和微流体技术相结合使用结构化照明捕获单细胞形态信息嵌入式机器学习模型快速分析数据使用温和的流体压力分选细胞,保持细胞活性数据生成与分析生成反映光强度随时间变化的波形数据,每秒超过1200万个数据点荧光波形不仅能检测细胞总荧光强度,还能捕捉荧光信号的详细空间分布使用监督和非监督机器学习进行细胞表型分类应用示例HEK 293细胞表型分类VisionSort能够无标记分离这两种表型,分类准确率为0.97使用荧光模式,将细胞标记为溶酶体或线粒体 2. T细胞表型分类无标记分离浆细胞与其B细胞前体激活的人初级T细胞,标记表面细胞标记CD25和CD69VisionSort能够仅通过形态学(无标记)分离这些T细胞表型,分类准确率为0.99无标记分离疲劳和非疲劳T细胞 药物筛选案例研究CRISPR筛选用于NFkB核转位模型,使用机器学习模型筛选目标基因,验证了TLR4信号通路的成员基因富集 2. 巨噬细胞极化使用无标记模式,识别可能调节M1极化的基因,如BRD2基因总结VisionSort平台通过高内容的形态信息、高速筛选能力、兼容多种CRISPR库和NGS平台,为药物筛选和目标识别提供了新的可能性,增强了药物发现流程。重点VisionSort平台的灵活性和高通量筛选能力Ghost Cytometry技术的先进性机器学习在实时数据分析中的应用实际应用中的高分类准确率和新颖基因调控发现对药物筛选流程的显著提升和加速通过这些优势,VisionSort平台在药物发现中展现了巨大的潜力和广泛的应用前景
  • 下载收藏!生物制剂研究人员必备技术指南-如何使用nanoDSF进行候选目标筛选
    01 / 前沿技术分享什么是nanoDSF技术 ?基于微量差示扫描荧光技术 (nanoDSF) 技术,可在天然条件下检测蛋白热变性和化学变性。蛋白中色氨酸和酪氨酸的荧光与其所处的环境密切相关。免标记的nanoDSF技术可以准确检测蛋白热变性和化学变性过程中内源荧光的变化。因此,通过检测荧光变化,可实现在非标记环境下测定蛋白的热稳定性或化学 稳定性。更重要的是,数据质量不会受样品聚集影响。高质量的数据助您做出更好的决定。PR系列是通过检测蛋白的内源性荧光来跟踪其折叠状态。荧光信号的比值会随着温度的增加或化学变性剂浓度的增加而变化,从而测定蛋白稳定性参数Tm值。02 / 技术应用nanoDSF技术的应用方向 ?在生物制剂研究人员日常工作中,早期可开发性评估最常见的关键质量属性(CQAs)是热稳定性。其中,高分辨率评估热稳定性的一个特殊工具是纳米差示扫描荧光法(nanoDSF),它从基于蛋白质的治疗药物的内在荧光中导出参数Tm和Ton。当您面临许多候选目标或缓冲区条件需要筛选时,nanoDSF技术可使用少量样本,适用宽泛的浓度,得到高品质的数据,作为一种不可或缺的首轮筛选技术使您可以看到前所未有的精度,发现候选者之间的细微的差异。03 / 下载收藏nanoDSF技术的应用方向 ?下载这份nanoDSF技术指南, 您可获取如下信息:nanoDSF是如何利用蛋白质的固有荧光来确定其熔解温度Tm?为什么高分辨率展开数据对于获得单克隆抗体的稳定性信息至关重要?nanoDSF数据的实际示例是什么样的?以及您可在实际数据中查看哪些信息?通过这份指南,您可以更快地选择最有发展潜力的候选目标: 查看来自抗体工程、抗体-药物偶联(ADC)、生物仿制药开发和制剂开发的真实数据, 并学会一目了然地解读它。生物药品药物研发临床前研究检测 | 生物制剂研究人员必备技术指南-如何使用nanoDSF进行候选目标筛选-诺坦普科技(北京)有限公司 (instrument.com.cn),详细了解PR Panta如何为您的生物制品决策提供最高质量的数据。04 / 企业愿景关于NanoTemperNanoTemper公司的使命是为科研人员创造强大的生物物理学工具,以解决表征中最具挑战性的难题。我们非常兴奋能够同致力于改变世界的药物研发或与基础研究科学家合作,为实现公司愿景-创造一个任何疾病都可以被治疗的世界而不断前行。如果您在亲和力筛选、分子相作、蛋白稳定性或蛋白生产等方面遇到挑战,欢迎随时联系我们。
  • “第二届创新高通量药物筛选技术与应用”网络研讨会成功召开
    仪器信息网讯 6月21日,仪器信息网成功举办“第二届创新高通量药物筛选技术与应用”网络研讨会,特邀吉林大学梁重阳教授、同济大学附属第十人民医院汤扬研究员、山东大学展鹏教授、浙江大学赵璐副教授、山东大学李翔副教授、皖南医学院陈云雨副教授、深圳湾实验室胡吉英工程师、北京大学段桂芳助理研究员、安捷伦科技(中国)有限公司孙秀红液质产品工程师9位专家围绕高通量药物筛选模型建立、候选药物发现以及创新技术方法分享等主题方向展开探讨交流。汤扬研究员在《YAP出入核调控因子及靶向小分子的高通量筛选》报告中主要介绍通过靶向磷酸酶文库的siRNA筛选研究进展,研究人员发现PP2A磷酸酶的调节亚基STRN3的缺失可导致MST1/2激酶活性显著升高以及YAP入核活化显著降低,暗示以STRN3为调节亚基的PP2A磷酸酶可能通过抑制MST1/2激酶的活性而增强YAP活性;随后研究人员阐释了胃癌中MST1/2激酶活性丧失的分子与结构机制;最后通过AlphaScreen体系筛选特异性靶向小分子抑制胃癌生长。传统的荧光共振能量转移筛选法具有筛选成本高、稳定性差和假阳性率高等缺点,积极开发稳定、经济、灵敏的新冠病毒主蛋白酶(main protease, Mpro)抑制剂高通量筛选模型具有重要意义。皖南医学院陈云雨副教授分享了以新冠病毒Mpro为靶标,基于二聚化红色荧光蛋白生物传感器建立Mpro抑制剂高通量筛选技术平台,为抗新冠病毒药物的高效筛选与评价奠定了基础。吉林大学梁重阳教授在《高通量靶向药物筛选及“以药寻靶”空间转录组技术的应用》报告中提出了一种基于磁场放大表面增强拉曼光谱(SERS)的新型高通量、均相靶向药物筛选方法,称为“SERScreen”,用于PPI抑制剂的发现。并且建立了一个PD-1/PD-L1药物筛选验证技术模型,通过SERScreen的分子垂钓成功鉴定了两个新的候选抑制剂。敬请期待,2025年“第三届创新高通量药物筛选技术与应用”网络研讨会,会议内容及报告赞助请联系赵编辑 zhaoyw@instrument.com.cn 相关推荐:1.高内涵成像技术专题(点击查看)2.多功能酶标仪专题(点击查看)
  • 肿瘤干细胞克隆的高内涵筛选应用
    肿瘤干细胞(CSC)除了具有高度致瘤性、无限的增殖潜力和产生恶性肿瘤的能力外,还在肿瘤转移和治疗后原发肿瘤的再增殖中发挥作用,更可以抵抗传统的化疗以及更现代的靶向治疗,CSC的这些特性使得开发治疗恶性肿瘤的有效疗法变得复杂。克隆形成试验作为CSC功能研究的一个标准,通过检测CSC形成克隆的能力,既可以评估其干性,也可以对后续的放化疗进行个性化的用药指导,但是目前对CSC的克隆表征进行高通量筛选还存在,考虑到CSC的复杂性及其临床相关性,需要有更高效的方法来对CSC的克隆表征进行高通量筛选分析,并在此基础并开发更有效地针对这些人群的药物或其他疗法。Advanced High-Content-Screening Applications of Clonogenicity in Cancer一文就提出了一种运用高内涵系统来量化2D和3D细胞培养模型中CSC克隆数量、大小和形态,并基于荧光标记区分克隆的高通量方法。图一:2D培养模式下用化合物61预处理的SW620细胞克隆图像,全实验组克隆计数、平均表面积和全孔融合率定量分析在2D培养模式中,使用极限稀释法将SW620结直肠癌细胞从2500个细胞/孔稀释至1个细胞/孔,并配合不同化合物处理,在培养的第8天对细胞进行核染色。结合明场与Hoechst 33342染色图像,对细胞形成的克隆数量、面积和融合度进行了分析,数据显示SW620细胞的克隆形成对TOP2A抑制剂(化合物61)的处理呈现出浓度依赖性反应,并且不同处理方式(预处理VS.连续处理)克隆的生长情况也有所不同。图二:3D培养模式中SW620细胞克隆的计数和形态学分析在3D培养模式中,采用同样的方法对SW620细胞(混于基质胶中)进行稀释,从40000个细胞/400μl稀释至约1248个细胞/200μl,并以50μl/孔接种于96孔培养板中,培养到第7-10天时同样对细胞进行核染色(Hoechst 33342)并使用高内涵系统对样品进行3D成像和分析,结果显示与2500个细胞相比,在5000个铺板细胞上观察到的克隆数量增加了一倍以上,而克隆表面积和体积则保持相对一致。图三:3D培养模式中A549细胞克隆的形态学分析为了评估这一体系在不同种类、不同形态的肿瘤细胞中的适用性,研究中还用A549肺癌细胞进行了验证,形态学进行分析发现A549细胞球长成了两种不同典型形态的克隆—“圆形”、“分支”,随后用高内涵分析软件对这两种细胞球的体积、表面积、椭球轴(长度、短轴与长轴之比、中轴长度、最短轴长度、倾斜度和方向)、球度和最大厚度等形态学参数进行定量,这些结果表明A549细胞可能含有两种不同的CSC亚群。图四:2D培养SW620克隆中CD44和CD24的免疫荧光染而对CSCs的细胞表面标志物(高CD44 ,低CD24)进行图像分析后发现,CD24表达在所有细胞接种浓度下不变,CD44表达随着细胞数量的减少而增加,CD44high/CD24low在细胞中的表达与其干细胞潜能一致。对比只分析膜区域的荧光强度和全细胞区域分析的结果其表达趋势是相似的。本文中介绍的工作概述了克隆形成集落的2D和3D分析的方法、算法和工作流程,可广泛适用于其他HCS仪器和成像分割软件。这些高内涵技术可用于研究促进CSC干性的复杂机制,但也可广泛用于其他药物的发现,以及评估小分子药物、生物制剂和放射治疗的治疗潜力。高内涵系统的智能预扫功能允许灵活地执行初始低倍镜大范围扫描以定位感兴趣的克隆,并自动以更高的放大倍数仅对所需克隆的XYZ位置进行重新扫描。在大量样本中定位研究人员感兴趣的特殊对象大大减少了使用整个成像过程所需的时间。参考文献Esquer H , Zhou Q , Abraham A D , et al. Advanced High-Content-Screening Applications of Clonogenicity in Cancer[J]. SLAS DISCOVERY Advancing the Science of Drug Discovery, 2020
  • 火热报名ing|“创新高通量药物筛选技术与应用”网络研讨会日程公布
    高通量药物筛选技术是一种为寻找新药先导物而对大量样品进行药理活性评价分析的技术手段,巧妙地融合了药理学技术、分子生物学技术、细胞生物学技术、计算机技术以及自动化技术等多种技术,实现了药物筛选的快速、高效、微量化、自动化和规模化。经过几十年的实践和发展,高通量筛选技术已成为新药研究和开发的重要技术方法。为帮助广大实验室用户及时了解高通量药物筛选创新技术以及在药物研发中的应用进展,仪器信息网将于2023年6月20日举办“创新高通量药物筛选技术与应用”网络主题研讨会,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/Pts (点击报名) 精彩报告预告: 兰姝珏 高通量筛选主管/高级工程师中国科学院分子细胞科学卓越创新中心《高通量药物筛选技术体系的建立与运用》【报告摘要】 高通量筛选是药物研发不可或缺的重要环节。学术界高通量筛选技术平台可以帮助科研团队快速启动基础研究前沿成果的转化,为创新型药物研发奠定坚实的基础。本报告将详细介绍中科院分子细胞科学卓越创新中心化学生物学技术平台,分享平台在药物筛选方面的各高通量筛选技术体系建立策略及其前沿运用。报名占位》》》韩帅 高级工程师中科院分子细胞科学卓越创新中心《功能基因组筛选与药物新靶标发现》【报告摘要】 高通量测序技术及功能基因组筛选可以帮助我们更加快速有效地研究疾病发生发展的机制,发现新的药物靶标。本报告将与大家分享我们建立的多种高通量、高内涵筛选体系,以及这些体系如何帮助研究人员成功地鉴定有潜力的靶标。报名占位》》》潘建章 分子智造平台总架构师/副研究员浙江大学化学系/浙江大学杭州国际科创中心《iChemFoundry — 自动化分子智造平台的构建与应用》【报告摘要】 分子智造平台iChemFoundry是国际先进的化学材料智能高通量合成与筛选平台。平台基于机器人技术、微流控技术、自动化合成技术和高通量表征等前沿技术构建,通过深度融合AI人工智能技术,实现了“高通量合成 - 高效表征 - AI实验参数迭代 - 高通量合成”全自动闭环的新物质智能创制。报名占位》》》陈云雨 副教授皖南医学院《新冠病毒主蛋白酶抑制剂三明治样荧光偏振高通量筛选模型的建立与应用》【报告摘要】 进化保守的新冠病毒主蛋白酶(main protease, Mpro)在调控病毒RNA复制与免疫逃逸中具有重要的生物学功能,已成为新型广谱抗冠状病毒药物开发的理想靶标之一。本研究以新冠病毒Mpro为靶标,首次提出并建立以三明治样荧光偏振高通量筛选模型为核心的Mpro抑制剂高效筛选关键技术平台,快速发现天然药物来源的新型Mpro抑制剂,为广谱抗冠状病毒药物的高效筛选与发现奠定了基础。报名占位》》》王静 副主任技师/副高北京大学药学院天然药物及仿生药物国家重点实验室《分子互作与拉曼光谱技术在高通量药物筛选中的应用》【报告摘要】 高通量药物筛选是发现先导化合物最有效的方法之一。本报告将重点介绍分子相互作用技术(如表面等离激元体共振成像、生物膜干涉、光谱位移技术等)和拉曼光谱技术(如表面增强拉曼散射、显微共聚焦拉曼光谱等)在高通量药物筛选中的应用。报名占位》》》方根 应用工程师上海闪谱生物科技有限公司《酶标仪与高通量筛选系统》【报告摘要】 介绍高通量筛选技术、酶标仪与微孔板系统、酶标仪在高通量筛选中的应用与实例。报名占位》》》陈奕奕 应用工程师贝克曼库尔特生命科学《自动化时代下如何加速高通量筛选进程》【报告摘要】 现代小分子药物研发中最重要的基础手段是筛选,这之中需要大量的移液操作,工作量大且耗费时间,易于出错,移液步骤是造成新药开发失败的重要原因之一。随着科技发展,自动化技术在生物医学领域应用广泛,可以帮助我们有效改善工作流程,提高数据质量。贝克曼库尔特生命科学专注于自动化的移液方法,从纳升级到微升级水平,灵活整合多种设备,帮助您加速药物筛选工作流。报名占位》》》王慧 产品应用经理安捷伦科技有限公司《微孔板检测与成像技术在高通量药物筛选中的应用》【报告摘要】 1,药物筛选中高通量筛选技术概览 2,活细胞成像技术在高通量筛选技术中的应用 3,成像技术与酶标检测结合如何实现药物筛选的弯道超车。报名占位》》》 会议日程 (持续更新)创新高通量药物筛选技术与应用( 2023年6月20日)报告时间报告主题专家信息09:30-10:00高通量药物筛选技术体系的建立与运用中国科学院分子细胞科学卓越创新中心兰姝珏 高通量筛选主管/高级工程师10:00-10:30酶标仪与高通量筛选系统上海闪谱生物科技有限公司方根 应用工程师10:30-11:00自动化时代下如何加速高通量筛选进程贝克曼库尔特生命科学陈奕奕 应用工程师11:00-11:30iChemFoundry — 自动化分子智造平台的构建与应用浙江大学化学系/浙江大学杭州国际科创中心潘建章 分子智造平台总架构师/副研究员11:30-13:30午休 13:30-14:00分子互作与拉曼光谱技术在高通量药物筛选中的应用北京大学药学院天然药物及仿生药物国家重点实验室王静 副主任技师/副高14:00-14:30微孔板检测与成像技术在高通量药物筛选中的应用安捷伦科技有限公司王慧 产品应用经理14:30-15:00功能基因组筛选与药物新靶标发现中科院分子细胞科学卓越创新中心韩帅 高级工程师15:30-16:00新冠病毒主蛋白酶抑制剂三明治样荧光偏振高通量筛选模型的建立与应用皖南医学院陈云雨 副教授扫码加入高通量药物筛选技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn
  • 安捷伦《类器官模型构建与高通量筛选方案》亮相慕尼黑生化展
    2023 年 7 月 13 日,第十一届慕尼黑上海分析生化展在国家会展中心(上海)圆满落幕,作为亚洲具有影响力的分析、实验室技术、诊断和生化技术领域的专业博览会,本次大会吸引了 1200 + 参展企业,超过 5 万人参会。在此次盛会上,安捷伦细胞分析事业部携《类器官模型构建与高通量筛选方案》亮相 2.2 H 分析与质量控制展馆。并受邀参加了生物谷举办的“类器官前沿技术开发与应用创新论坛”,安捷伦细胞分析事业部产品应用专家杨菁喆女士向与会者介绍了安捷伦 BioTek Cytation 及 CBM 智能化细胞成像分析系统在类器官建模优化、以类器官为模型进行高通量筛选的解决方案,在现场引起热烈反响,吸引了众多参会者到展台参观。《类器官模型构建与高通量筛选方案》吸引了众多与会展聆听与参观生物谷类器官前沿技术开发与应用创新论坛活动上,安捷伦细胞分析产品应用专家杨菁喆女士做报告随后,仪器学习网的记者就类器官研究进展和未来展望采访了杨菁喆女士。杨菁喆表示自 2009 年小肠类器官首次建立至今,类器官研究已经延伸到多个组织系统,并成为当下生命科学领域最活跃的技术之一。我们非常荣幸安捷伦细胞分析技术和平台能够参与其中,与研究者们一起探索,为人类健康的可持续发展贡献我们的力量。近年来类器官成就与发展大记事2013 年Science:年度十大突破2018 年Nature Methods:2017 年度方法2019 年The New England Journal of Medicine:优良的人类临床前疾病模型2021 年类器官被列入中国“十四五”重点研发计划专项 2022 年我国陆续刊发多篇类器官和器官芯片相关规范、共识和标准,《中国癌症防治杂志》刊发了我国第一个基于类器官指导肿瘤精准药物治疗的专家共识——《类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识( 2022 年版)》 2022 年美国 FDA 批准新药研制不再强制动物实验,类器官和器官芯片有望引领新时代浪潮安捷伦类器官模型构建与高通量筛选解决方案优势:1Cytation 成像与分析解决方案:❖ 全自动倒置荧光显微成像/转盘共聚焦显微成像为类器官成像提供优异的图像分辨率❖ 支持明场、多色荧光、彩色明场成像,一站式为类器官建模和筛选提供多维度研究方式❖ 优异的环境控制支持任意成像模式下的类器官活细胞动力学监测,为类器官形态学变化、分化验证和免疫杀伤提供动态变化过程❖ 明场及荧光场均支持 Z-轴层切成像与叠加,满足类器官成像对光学层切的需求❖ 支持实验室常规 6-1536 孔板,培养皿等常规耗材及耗材自定义,满足类器官培养条件优化以及高通量筛选对通量的不同要求❖ 高内涵软件支持从仪器控制—类器官培养条件设置—图像捕获—图像处理—数据分析—实验数据输出全流程操作2自动化解决方案:❖ Cytation 与 BioSpa 自动化培养箱及 Multiflo FX 分液器对接,组成 CBM 智能化活细胞成像与分析系统,实现从细胞铺种、培养基更换、自动培养、动力学成像全自动流程,更将实验通量提升到 8 块孔板,大大提高实验效率,在类器官研究多个实验环节发挥作用。❖ Cytation 与其他第三方工作站或抓扳手整合,实现更加集成化的类器官自动化整合方案。安捷伦细胞分析为类器官培养及检测提供丰富应用方案Cytation 和CBM 系统结合安捷伦细胞分析事业部的多功能微孔板检测仪、流式细胞仪和细胞能量代谢分析仪为类器官培养及检测提供丰富的应用方案。如果您对我们的技术和方案感兴趣,欢迎扫描下方二维码留下您的联系方式。
  • 嘉宾公布|看高通量筛选技术如何加速药物研发进程
    药物筛选是新药研发的关键步骤,而随着基因组学、蛋白质组学、代谢组学、组合化学等学科的发展,药物分子库在不断扩大,药物作用靶点也越来越多,这使得药物发现的范围逐渐扩大,药物筛选的工作量急剧增加。因此,高通量筛选(High-throughput screening,HTS)技术应运而生。为帮助用户及时了解高通量药物筛选创新技术以及在药物研发中的应用进展,仪器信息网将于2024年6月21日举办“第二届创新高通量药物筛选技术与应用”网络主题研讨会,特邀10位专家围绕高通量药物筛选模型建立、候选药物发现,以及FRET、AlphaScreen、高内涵成像、全自动膜片钳、表面增强拉曼光谱(SERScreen)等创新技术分享和前沿应用展开探讨交流,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/XXo (点击报名)点击图片报名 会议日程 “第二届创新高通量药物筛选技术与应用”网络主题研讨会日程(更新中)2024年6月21日报告时间报告主题专家单位09:30-10:00高通量靶向药物筛选及“以药寻靶”空间转录组技术的应用梁重阳吉林大学药学院 教授10:00-10:30安捷伦自动化高通量质谱平台及其在新药研发中的应用孙秀红安捷伦科技(中国)有限公司 液质产品工程师10:30-11:00新冠病毒主蛋白酶抑制剂高通量筛选技术平台的建立与应用陈云雨皖南医学院 副教授11:00-11:30YAP出入核调控因子及靶向小分子的高通量筛选汤扬同济大学附属第十人民医院 研究员11:30-12:00降尿酸药物筛选方法进展与候选药物的发现展鹏山东大学药学院 教授12:00-13:30午休时间13:30-14:00高通量全自动膜片钳技术在离子通道药物筛选中的应用胡吉英深圳湾实验室 药物发现平台主管/工程师14:00-14:30离子通道研究技术及其在药物研发中的应用段桂芳北京大学药学院 助理研究员14:30-15:00基于AI辅助高内涵筛选的心肌保护天然化合物发现及机制研究赵璐浙江大学药学院 副教授15:00-15:30高内涵3D成像技术对类器官的分析及应用王娅中国科学院生物物理研究所 高级技术主管/高级工程师15:30-16:00待定李翔山东大学 副教授报告嘉宾报告人:梁重阳 吉林大学教授报告题目:《高通量靶向药物筛选及“以药寻靶”空间转录组技术的应用》 个人简介:1.工作经历及兼职:吉林大学 药学院 | 教授 博士生导师长春百克生物科技股份公司科学顾问2.研发领域:&bull 抗感染、抗肿瘤药研发、肿瘤诊断技术及试剂的研究研发生物一类创新药制剂——吉芝元注射液,完成向美国FDA和中国NMPA的Pre-IND和IND申报,并获批中美临床试验;致力于将电化学、SERS等生物芯片细胞生物学研究和POCT伴随诊断的应用,已完成可用于淋巴瘤单碱基突变诊断的CRISPR-PAA芯片,已受到国内外多家企业关注,并发表多篇学术论文。&bull 光谱学在生物学方面的应用研究致力于将表面增强拉曼光谱技术(SERS)应用于生物学领域,尤其是药物高通量筛选领域。近年来利用SERS研究细胞器功能、分析细胞表面糖链和检测肿瘤标志物等,同时应用SERS技术对PARP1抑制剂、KRAS 4B抑制剂等进行药物活性筛选,发表相关学术论文20余篇,获得包括国家自然科学基金项目等多项支持,并完成成果转化。&bull 单细胞测序和空间转录组新技术平台的研究致力于超微量打印和图案印刷技术在空间转录组技术发展中的应用,研究工作目前已获得国内单细胞测序龙头企业和自然基金的支持。报告人:陈云雨 皖南医学院副教授报告题目:《新冠病毒主蛋白酶抑制剂高通量筛选技术平台的建立与应用》个人简介:陈云雨,皖南医学院副教授、硕士生导师、安徽省优秀青年研究生导师获得者、皖南医学院第四批学术和技术带头人后备人选。2015年7月毕业于北京协和医学院(清华大学医学部)微生物与生化药学系,获医学博士学位,主要从事抗病毒药物药理学研究。自新冠疫情暴发以来,研究团队针对新冠病毒主蛋白酶抑制剂高效筛选中的关键技术问题,首次建立了以荧光偏振高通量筛选模型为核心的系统性筛选与评价方法,并发现了若干天然产物来源的新型先导化合物。以通信作者在PNAS、Antimicrobial Agents and Chemotherapy、Journal of Medical Virology、International Journal of Antimicrobial Agents、Cell & Bioscience、Phytotherapy Research、STAR Protocols和Virology等杂志发表40余篇研究论文,已指导4位硕士研究生荣获国家奖学金。现任中国药理学会化疗药理专业委员会第十届青年委员和《中国现代应用药学》第九届编委会青年编委。报告人:汤扬 同济大学附属第十人民医院研究员报告题目:《YAP出入核调控因子及靶向小分子的高通量筛选》个人简介:汤扬,同济大学高等研究院研究员。2019年毕业于中国科学院大学上海生物化学与细胞生物学研究所,获得博士学位;博士后加入同济大学附属第十人民医院;现为同济大学高等研究院研究员。研究方向为胃肠道癌症发生机制及精准靶向治疗策略研发,聚焦胃肠道肿瘤发生及Hippo信号通路的分子机制研究,长期基于Hippo信号通路发现新的胃癌诊疗靶标,主要从细胞信号转导、细胞间通讯角度揭示胃肠道癌症发生的病理机制,发现新靶点,针对性研发胃肠道癌症靶向干预策略,设计、评估并优化靶向药物的抗肿瘤效果。前期在Cancer Cell、EMBO J、Journal of Experimental Medicine、Cell Discovery等国际高水平SCI期刊上发表研究成果18篇,获批药物发明专利3项;主持包括国家基金委青年基金及面上项目、上海市科委自然科学面上项目等各类科研项目共计7项,入选上海市青年科技启明星;受邀参与编写《高通量筛选技术实验手册》。报告人:展鹏 山东大学药学院教授报告题目:《降尿酸药物筛选方法进展与候选药物的发现》个人简介:展鹏,山东大学教授,博导。教育部青年长江学者、山东省杰青、山东大学杰出中青年学者、基金委创新群体项目骨干;主持科技部重点研发计划、NSFC面上项目、国际(地区)合作、山东省重大科技创新工程等10余项课题。长期从事抗痛风及抗病毒药物研发,共同研发的四类候选药物已转化(两项获临床试验批件)。成果在Chem Soc Rev、J Med Chem、J Med Virol、Elife、Signal Transduct Target Ther、Acta Pharm Sin B等重要期刊发表文章100余篇,多篇为ESI高被引或封面论文,H指数为49;授权专利20余项;主编中英文专著2部,参编专著及教材8部。担任药物化学国际顶尖期刊J Med Chem编委,Acta Pharm Sin B等10余个期刊的(青年)编委;客座主持专刊10余次。获中国药学会青年药物化学奖。入选全球前2%科学家榜单及“全球顶尖前10万科学家”榜单;入选全国药学专家学术影响力百强。报告人:胡吉英 深圳湾实验室药物发现平台主管/工程师报告题目:《高通量全自动膜片钳技术在离子通道药物筛选中的应用》个人简介:胡吉英,博士,深圳湾实验室生物医学实验技术中心药物发现平台主管,负责受体靶向药物筛选、高通量筛选、亲和力筛选等技术体系建设和实验方案开发,为相关科研与转化项目提供技术支持服务。报告人:段桂芳 北京大学药学院助理研究员报告题目:《离子通道研究技术及其在药物研发中的应用》个人简介:段桂芳,博士,2019年于南京大学获得生物学博士学位。2019年8月起在天然药物及仿生药物全国重点实验室药理学平台工作。目前主要负责药理学平台的建设管理、技术服务和新方法新应用开发。擅长利用膜片钳技术、钙成像技术、离子流技术、高内涵成像分析等分子细胞生物学技术进行药物的高通量筛选、药效评价及机制研究。利用上述经验,为校内外多家科研单位及企业提供技术支持,辅助课题组发表多篇论文在Nat. Commun. 、J. Med. Chem. 等国际一流期刊上。近五年内以第一/共一作者在Nat. Commun.、J. Biol. Chem.等国际著名期刊发表文章多篇。参与多项国家自然科学基金项目,主持国家自然科学基金青年项目1项,主持国重技术类攻关开放课题1项。报告人:赵璐 浙江大学药学院副教授报告题目:《基于AI辅助高内涵筛选的心肌保护天然化合物发现及机制研究》个人简介:赵璐博士,浙江大学药学院药物信息学研究所副教授、博士生导师、浙江大学“求是青年学者”,博士毕业于美国耶鲁大学医学院,现为浙江大学中药科学与工程学系模式生物平台负责人,研究方向为使用斑马鱼、细胞等疾病模型进行中药药效物质研究。获浙江省杰出青年科学基金支持,主持国家自然科学基金项目2 项,浙江省自然科学基金项目2 项,研究成果获省科技进步奖一等奖1项,教育部自然科学二等奖1 项。以第一或通讯作者发表PNAS, Engineering等学术论文21篇,被Nature、Lancet等期刊引用1300 余次。报告人:王娅 中国科学院生物物理研究所高级技术主管/高级工程师报告题目:《高内涵3D成像技术对类器官的分析及应用》个人简介:本人自2006年毕业于天津大学精密仪器与光电子工程学院,获得生物医学工程专业硕士学位后,一直从事高通量筛选大型仪器设备的技术支持工作,在科研支撑和测试服务方面受到广大用户的好评。作为结构与功能分析技术实验室的高级技术主管,主要负责两个方向的技术支撑服务:(1) 高通量蛋白晶体筛选,包括2台蛋白结晶点样工作站(Mosquito)、1台全自动晶体培养及观察系统(Rock Imager 1000)和1台紫外荧光晶体成像分析系统(UVEX);(2)高通量高内涵成像与分析平台的技术支撑和测试服务,包括1台高内涵激光共聚焦成像分析系统(Opera Phenix)、2台微孔板多功能光谱检测仪(VF和EnVision)、1台液体处理工作站(Fxp)以及化合物库、siRNA文库两个库的日常管理。科研用户们基于本人负责的设备的支撑服务取得了诸多重要的研究成果并给予致谢,这些成果发表在: Nature Cell Biology、Cell Research、PNAS、Cell Calcium、Immunity等国际一流学术期刊上,其中SCI收录文章30余篇,累计影响因子超过200。获2021年度生物物理研究所风采女性岗位“四季花开”;获中国科学院2022年院所两级公共技术服务优秀个人荣誉称号;2019-2022连续四年年获得生物物理研究所优秀党员称号。获中关村国基条件科技资源共享服务创新联盟2023年度突出贡献个人奖。报告人:李翔 山东大学药学院副教授报告题目:《待定》个人简介:待定报告人:孙秀红 安捷伦科技(中国)有限公司液质产品工程师报告题目:《安捷伦自动化高通量质谱平台及其在新药研发中的应用》个人简介:孙秀红,安捷伦质谱产品工程师,毕业于中国药科大学,熟悉液质联用技术在组学、药物研发、中药分析等领域的分析应用。会议赞助会议内容及报告赞助:仪器信息网 赵编辑:13331136682,zhaoyw@instrument.com.cn 扫码加入HTS技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。附上届会议页面:2023年“第一届创新高通量药物筛选技术与应用”网络主题研讨会(点击查看)
  • 助力高通量筛选|珀金埃尔默EnVision®Nexus™多功能酶标仪新品上市
    珀金埃尔默公司(NYSE:PKI)于2月24日在美国推出EnVision® Nexus™系统。专为要求苛刻的高通量筛选(HTS)应用而设计,可加速药物研发进程。EnVision® Nexus™配合珀金埃尔默药物研发试剂平台的微孔板和优化型试剂(包括专有的HTRF®和AlphaLISA®技术以及最新试剂盒),可帮助研究人员提高检测灵活性。EnVision® Nexus™系统配有高通量、超快速双检测器,可使研究人员轻松筛选数百万个样本,且速度更快、准确度和灵敏度更高。为实现无人值守,此系统可配备容量为20或50个孔板的叠板机;另可实现全自动、集成式、全天候工作流程。珀金埃尔默生命科学高级副总裁Alan Fletcher:“我们正彻底改变药物研发,而这一切都始于实验室;研究人员可利用EnVision® Nexus™系统搭载的多功能酶标仪技术,在工作流程的各个阶段提高研发效率。借助精简型工作流程和优化的试剂技术,并在先进微孔板酶标仪中扩大检测功能,我们的团队已打造出着眼现在、放眼未来的全方位高性能系统。”此解决方案的设计借鉴了珀金埃尔默先进EnVision®系统(过去20多年中已广泛应用于世界各地的实验室)的经验和成功。新型EnVision® Nexus™平台易于设置、使用便捷、维护简单,适用于各种主要检测技术,包括荧光强度、荧光偏振、吸光度、发光和时间分辨荧光(TRF)。
  • 珀金埃尔默在 2008 实验室自动化大会上宣布推出新型高通量筛选系统
    新型 EnVision 多标记微孔板检测仪使研究人员能以更大的灵活性和更快的速度进行高通量检测 加利福尼亚棕榈泉市 – 生命科学研究、新药研究和细胞科学领域的全球技术领先者珀金埃尔默生命与分析科学部,今日在加州棕榈泉市 2008 实验室自动化大会(于 1 月 27 日 至 30 日举行)427 号展台发布了多种高通量产品技术以及一种用于优化实验室自动化的新咨询方法,此方法专门用于改善实验室的应用灵活性、效率和稳定性。 “如今临床和新药开发研究的发展速度越来越快,为此我们开发了新的技术和服务,以图通过高通量筛选 (HTS) 以及更大的仪器灵活性和更高的自动化程度来优化实验室性能。”珀金埃尔默生命与分析科学部分子生物研发总裁 Richard Eglen 博士说道。 带有单色器选件的 EnVision® 微孔板检测仪,可实现更卓越的应用灵活性 珀金埃尔默所推出的技术改进体现在,通过将基于滤光片和基于单色器的平台整合,使研究人员可以选择他们自己的高通量检测方法,并能缩短检测周期。新型单色器选件有两种使用模式:“吸光度单色器”使用单个单色器测量吸光度,而“荧光强度单色器”使用四个一组的高性能单色器来测量吸光度和荧光强度。单色器选件是高度灵活的仪器系统的一部分。它可以与其它 EnVision 选件结合使用,包括 TRF(时间分辨荧光)LASER;也可以方便地集成到全自动系统中;还能使用 3456孔微孔板。 LumiLux® CS 细胞发光平台体积小巧但功能强大 作为对现有 LumiLux 细胞筛选平台的补充和完善,珀金埃尔默发布了新的 LumiLux CS 细胞发光平台。该平台设计简洁,并沿承了现有 LumiLux 平台的卓越性能和灵敏度。超小体积为拥挤的实验室节省了宝贵空间,并满足了 HTS 实验室从动力学荧光技术转向快速化学发光技术的日趋强烈的需求。精巧的设计允许在低通量应用环境中进行独立操作,也便于集成到新的或现有的用于 HTS 筛选的全自动平台中。LumiLux 平台是唯一允许同时进行 1536 项“进样和读取”快速发光检测的专用型快速化学发光仪器,使各实验室每天可产生 200,000 多个数据点。 通过集成解决方案服务快速开发自动化平台 珀金埃尔默已采用一种增强式咨询业务方法,以满足客户对于独特定制的自动化解决方案的需求。该集成解决方案服务利用了珀金埃尔默在液体处理、全自动技术检测、软件和试剂化学等领域的丰富专业知识及经验,与我们的客户联手从事应用解决方案开发、检测验证、系统集成、工程服务和新产品开发。 “对于正在寻求可满足其特定应用需求的客户而言,珀金埃尔默在试剂、检测和自动化方面具备的丰富经验和资源足以让其有实力成为这些客户的关键合作伙伴,”珀金埃尔默自动化和检测解决方案部副总裁 Nance Hall 说道,“该集成解决方案方法面向的是生命科学、临床研究和分析科学领域的应用环境,利用了 JANUS® 自动化工作站以及 EnVision 和 Victor™ 微孔板检测仪等核心技术和灵活平台。” 通过新型高通量微孔板提高效率并减少误差 珀金埃尔默推出了 20 种新型高通量微孔板。OptiPlate™ 、CulturPlate™ 和 SpectraPlate™ 1536 孔型号微孔板拥有独具创新的板高度 (14.35 mm),并且总体尺寸与 96 孔及 384 孔微孔板相同。新型微孔板具备一个单一自动化协议。这样,将 96 和 384 孔微孔板转换成 1536 孔微孔板时无需进行调整,从而减少误差。新型微孔板还具有更宽的夹持区,使全自动操作更加顺畅。 针对 AlphaScreen® 和 AlphaLISA™ 生物标记物测定检测,还开发了另一种新型微孔板产品,即浅灰色的 AlphaPlate™ 。初步测试表明,与标准白微孔板相比,AlphaPlate 能够明显降低交叉干扰,并以更高的灵敏度增加化学发光的精确性。 有关所有这些新产品技术和服务的详细信息,请访问http://www.perkinelmer.com
  • 微生物所开发出新型微滴反应筛选技术及单细胞分析应用
    p style=" text-indent: 2em " 微生物所 strong 微生物资源前期开发国家重点实验室 /strong 杜文斌研究组和黄力研究组共同开发了一种新型的 strong 微流控界面纳升注射技术 /strong (Interfacial Nanoinjection, INJ),该技术可以将传统的生化反应体系微缩在一个纳升体积的油包水微液滴体系中完成。 /p p    strong span style=" color: rgb(0, 112, 192) " 界面纳升注射(INJ)具有诸多显著优势 /span /strong /p p   针对这一技术创新,团队申请了多项中国发明专利和美国专利,并研制了基于INJ技术的小型桌面系统。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/fe470173-c411-4a4f-857f-952adad6e8d5.jpg" title=" 界面纳升注射(INJ)系统.jpg" alt=" 界面纳升注射(INJ)系统.jpg" / /p p style=" text-align: center " 界面纳升注射(INJ)系统 /p p   该系统和国外同类产品如美国Labcyte公司的Echo超声纳升移液系统、以及美国TTP Labtech公司的mosquito HTS微量筛选系统相比, strong 在仪器成本、耗材成本、最小液滴体积、流式细胞仪兼容性、操作的灵活性、以及污染控制等方面,均具有显著优势, /strong 适用于各类单细胞微体积反应分析,也可应用于其他微体积反应分析,在微生物培养筛选、合成生物学、药物筛选、蛋白结晶条件筛选等方面均具有应用潜力。 /p p   在性能方面,INJ系统通过高精密度的微体积控制实现不同试剂组分的纳升体积分步添加,兼容96和384孔板,可以在预先填装矿物油的孔板上,按照程序设定加入纳升样品或试剂液滴,用于实现高通量筛选。利用低成本探针可以精确加注的最小体积达到1 nL,当加样体积为5 nL时,体积标准偏差小于11 %。加注的液滴通过离心可以沉降到孔板底部并融合,液滴的融合效率最高,达到99%以上。利用多次加注样品、试剂的方法,可以实现多步反应和浓度梯度配置。系统加注的体积精确性、线性和重现性良好。 /p p   strong span style=" color: rgb(0, 112, 192) "  FACS-INJ单细胞分析流程和应用 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 281px " src=" https://img1.17img.cn/17img/images/201910/uepic/7cc806a5-55aa-475f-a110-69b3c5038b70.jpg" title=" 杜文斌-流式细胞分选+界面纳升注射技术图示.jpg" alt=" 杜文斌-流式细胞分选+界面纳升注射技术图示.jpg" width=" 600" height=" 281" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-align: center " FACS-INJ单细胞分选分析流程 /span /p p    strong 单细胞分析是一项变革性技术 /strong ,在单细胞基因组异质性研究及复杂微生物群落中稀有微生物种群多样性研究等领域应用广泛。然而,如何进一步降低单细胞分析的成本,提高可靠性和效率,仍然面临重大挑战。流式细胞荧光激活细胞分选(FACS)是目前最高效的单细胞分选技术,可实现病毒、细菌、真菌和动物细胞的多参数检测和分选 利用荧光标记,可对不同类型的细胞进行有效的区分,分选成功率高。研究团队将INJ与FACS平台相结合,建立了FACS-INJ单细胞分选分析流程,应用覆盖了单细胞表型分析、基因型分析、基因表达分析以及全基因组扩增测序。 /p p   研究团队首先利用FACS-INJ系统实现了 strong 病原菌微生物单细胞耐药基因的PCR筛查和单细胞药敏表型筛查 /strong 。经优化,多孔板可预先装载纳升体积的PCR引物或不同浓度的抗生素液滴。PCR筛查体积缩小到500 nL,试剂消耗和成本和常规体系相比降低至原先的1/40,耐药检测的体积控制在200 nL,试剂消耗和成本和常规体系相比降低至原先的1/1000,时间从& gt 12小时缩短至5小时,这对于大幅降低临床病原检测的成本,实现脑脊液、房水等难获取微量样品的耐药基因和表型筛查具有重要意义。 /p p   其次,FACS-INJ系统还可用于 strong 动物细胞的单细胞基因表达分析 /strong 。以小鼠巨噬细胞RAW264.7在细菌胞外多糖处理前后的炎症反应为例,通过荧光激活流单细胞式分选处理前后的小鼠巨噬细胞,基于一步法反转录实时荧光PCR扩增,在单细胞水平解析了次黄嘌呤鸟嘌呤转磷酸核糖基酶(HPRT)基因(看家基因)和白介素1β(IL-1β)基因(炎症反应)表达水平的变化。 /p p   最后,团队与北京大学黄岩谊课题组合作,建立了 strong 基于FACS-INJ的微生物全基因组扩增测序流程 /strong ,以获得未培养微生物的全基因组信息。流程包括流式分选微生物单细胞、单细胞裂解、酸碱中和、MDA扩增和建库测序。以热泉来源的古菌硫化叶菌(Sulfolobus sp. A20)菌株为模型,将单细胞扩增的体积优化至360nL,硫化叶菌全基因组覆盖度达到80%以上。在纳升级微液滴中实现西南印度洋未培养单细胞微生物全基因组DNA的MDA扩增与测序,拼接后获得15个单细胞基因组,大小在0.1~3.7Mb大小。该方法获得的微生物基因组污染度较传统的MDA扩增方法显著降低(& lt 5%),显著提高了微生物单细胞基因组数据质量。平台也适用于肿瘤、胚胎等动物细胞的全基因组扩增测序,对肿瘤细胞的单细胞测序的覆盖度达到60-80%。 /p p   上述研究工作近期作为特邀论文在线发表在Small上。微生物研究所助理研究员贠娟莉博士、郑小伟博士、徐鹏博士为论文共同第一作者,杜文斌研究员、黄力研究员和北京大学黄岩谊教授为论文共同通讯作者。该研究该研究得到了中国大洋协会大洋十三五重点项目、中科院战略性先导科技专项(B类),中国科学院重点部署项目、中国科学院前沿科学重点研究项目、国家自然科学基金面上项目和优青项目等支持。 /p p   论文出处: /p p   Yun, J.L. sup # /sup Zheng, X.W. sup # /sup Xu. P. sup # /sup Zheng, X. Xu, J.Y. Cao, C. Fu, Y.S. Xu, B.X. Dai, X. Wang, Y. Liu, H.T. Yi, Q.L. Zhu, Y.X. Wang, J. Wang, L. Dong, Z.Y. Huang, L.* Huang, Y.Y.* Du, W.B.* Interfacial Nanoinjection-based Nanoliter Single-cell Analysis, Small, 2019, doi:10.1002/smll.201903739. /p p    a href=" https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201903739" target=" _self" style=" text-decoration: underline font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " 查看原文戳这里 /span /strong /a /p p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 杜文斌 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " ,男,中科院微生物研究所研究员。2007年于浙江大学化学系,获博士学位。2007-2011年于美国芝加哥大学化学系从事博士后研究工作。2013年11月加入中科院微生物研究所微生物资源前期开发国家重点实验室。主要从事微流控芯片技术及新型分析微生物技术与应用研究。已发表论文60余篇,申请中国和美国专利30余项,授权20多项。主持国家优秀青年科学基金项目,国家重点研发计划 “数字诊疗装备研发”项目,中国科学院前沿科学重点研究项目等。 /span /p
  • 检测新策略助力痴呆症药物筛选
    近日,华东理工大学化学与分子工程学院教授郭志前课题组在淀粉样蛋白β(Aβ)斑块活体检测标准方法研究领域取得突破。相关研究以《近红外激活型聚集诱导发光探针制备及其对小鼠脑部淀粉样蛋白Aβ的检测应用》为题在《自然—实验手册》发表。神经退行性疾病与蛋白质错误折叠和病理积累息息相关。其中,阿尔茨海默症(AD)是一种起病隐匿的神经系统退行性疾病,也是痴呆症最常见的病症类型。值得注意的是,Aβ斑块积累是阿尔茨海默症最显著的病理特征。因此,开发可视化的荧光探针检测Aβ斑块对阿尔茨海默症的早期诊断至关重要。半个世纪以来,硫磺素衍生物(ThT或ThS)作为检测Aβ斑块的“金标准”染料,已被广泛用于AD大脑组织切片染色。然而,这类染料具有浓度猝灭、信噪比低和血脑屏障(BBB)穿透性差等缺陷,难以对Aβ斑块进行活体成像检测。特别是如何克服染料延伸波长的亲脂性需求与实现Aβ点亮型检测之间的矛盾是目前亟待解决的科学问题。针对现有商业染料ThT的固有缺陷,该研究提出分子设计策略并建立了标准化检测及成像应用方法:引入亲脂性噻吩桥连单元延伸发射波长至近红外区域,并满足穿透血脑屏障的亲脂性需求;利用本组聚集诱导发光母体喹啉腈克服染料浓度猝灭问题;优化亲水性磺酸盐基团取代位置,以保证探针分子在结合Aβ斑块前的状态。基于该策略发展的探针具有荧光波长长、检测信噪比高、Aβ亲和力好、BBB穿透性优异的特点,已成功实现对小鼠大脑中Aβ斑块的近红外荧光标记。该探针有望代替市售染料ThT进行高保真度组织学染色,在阿尔茨海默症新药筛选和药理研究中显示出巨大潜力。
  • 合工大研发新型核酸适配体筛选法 重金属超标实时检测新技术
    合肥工业大学成功研发出一种快速无标记的核酸适配体体外筛选方法,通过这一方法筛选的核酸适配体,对金属离子表现出高度的亲和力和特异性,提供了性能优良的金属离子亲和物质,从而实现了对重金属超标的快速实时检测。该成果论文近日发表在国际纳米材料领域顶级学术期刊之一《美国化学学会纳米》上。  传统方法对金属离子的检测,需要借助质谱等大型仪器设备,成本高昂费时费力难以普及。如何摆脱对大型仪器的依赖,实现对金属离子的快速实时检测,关键就是找寻能够特异性识别并结合特定金属离子的“亲和物质”。由于金属离子在生物体内不会引起免疫反应,能够特异性结合金属离子的“标准”亲和物质——单克隆抗体非常难以生产,使用指数富集的配基系统进化技术等传统的筛选方法,仍需要对靶标进行化学标记或者修饰,这一要求对于金属离子和小分子靶标十分困难,且容易改变其结构和性质。  合肥工业大学生物与医学工程学院瞿昊博士,通过使用乳液聚合酶链式反应和荧光激发细胞筛选两项技术,成功研发了以金属离子为特定靶标的核酸适配体高效筛选的革新方法。这一筛选方法无需对靶标进行任何标记或修饰,同时筛选周期短,非常适用于针对金属离子和小分子靶标的核酸适配体筛选。通过这一方法,瞿昊通过3—4轮筛选便获得了适用于二价汞离子的核酸适配体,其结合强度较传统核酸适配体提高了30倍,并首次获取了适用于二价铜离子的核酸适配体。  “这一筛选方法可适用于所有金属离子和小分子靶标,将为针对其他离子和小分子靶标的核酸适配体的筛选工作提供非常高效的平台。”瞿昊说,这一成果突破了生物传感器领域匮乏性能优良的亲和物质这一瓶颈,不仅可以应用在金属污染治理上,同时在生物技术、医疗保健等领域具有广阔的应用前景。
  • 新药研发成功率降低,高内涵筛选能否力挽狂澜?
    p style=" text-indent: 2em text-align: left " 研究人员认为,结合机器学习算法的高内涵筛选将广泛用于药物的研发 /p p style=" text-indent: 2em text-align: justify " 上个世纪80年代,科研人员开发出了高通量筛选(high throughput screening),这是一种能对大量化合物样品进行药理活性评价分析的技术。在过去的几十年里,高通量筛选曾在新药的研发中发挥了重要的作用。 /p p style=" text-indent: 2em text-align: justify " 但在最近10年,开发一个新药的成本增加了整整一倍。在大规模筛选中发现的候选药物往往会在临床试验中遭遇失败,其中Ⅱ期临床试验更是新药研发中的一道难关。 /p p style=" text-indent: 2em text-align: justify " 只有大约1/100的候选药物能顺利走完新药研发之路,如此低的成功率也促使药物开发者重新考虑其筛选方法。 /p p style=" text-indent: 2em text-align: justify " 许多研发人员正在寻找实现高内涵筛选(high content screening),并同时保持可接受的筛选通量的方法。 /p p style=" text-indent: 2em text-align: justify " “如果我们看看过去三十年的新药研发情况,比如小分子和蛋白质药物,就可以发现我们在选择候选药物时过于简单化了。”Jean-Philippe Stephan博士说,他在施维雅公司负责药物筛选、化合物管理和生物银行的运行。Stephan博士研究小组的工作重点是在药物研究的早期阶段,从大量的化合物中选出有潜力的候选药物,“为了更好的完成这一工作,我们将高内涵筛选引进了我们的工作平台。” /p p style=" text-indent: 2em text-align: justify " 平衡筛选的通量和内涵 /p p style=" text-indent: 2em text-align: justify " “在过去很长一段时间里,我们都认为药物的筛选只要不断尝试就可以完成。不管我们用的筛选方法多么简单,即使这犹如大海捞针一般,只要我们尽可能多地筛选化合物,我们最终都会找到想要的那根针。”Stephan博士说。 /p p style=" text-indent: 2em text-align: justify " 这种观点鼓励人们开发出含有数百万种化合物的大型化学库,然后一一进行筛选,以确定其中感兴趣的药物。 /p p style=" text-indent: 2em text-align: justify " “但在筛选数百万种化合物时,筛选方法不能过于复杂。” Stephan博士说,“因为药物开发是一场分秒必争的竞赛,所以用于筛选的时间不能太长。” /p p style=" text-indent: 2em text-align: justify " 在最近一项关于当前药物研发可持续性的研究中,Stephan博士及其同事强调了高内涵筛选对药物研发的益处和挑战。该研究探讨了如何将高内涵功能(如图像捕获、处理以及数据分析)纳入大规模筛选工作,并同时保持足够的筛选通量。 /p p style=" text-indent: 2em text-align: justify " “我们需要一种能够概括整个身体状况的模型。”Stephan博士强调,“但这非常困难,在高通量或高内涵筛选方面更是如此。” /p p style=" text-indent: 2em text-align: justify " 例如,几十年来,研究人员都在使用二维培养系统培养细胞,但它无法模拟人体组织的生理特性。三维培养系统虽然能更准确地模拟人体组织的生理学特性,但对三维培养系统的运用仍处于早期阶段。 /p p style=" text-indent: 2em text-align: justify " “为了在培养皿中创造出接近体内的生理环境,研究人员需要将不同类型的细胞混合培养。” Stephan博士说,“但人体是很复杂的,想在小小的培养皿中重现类似的生理环境实在太困难了。” /p p style=" text-indent: 2em text-align: justify " 即使有理想的实验模型,开发人员也必须处理另一个难题:选择最佳的筛选指标。这一指标可能包括细胞核的大小,特定染色的强度,特定细胞区域中抗体的结合情况或细胞的运动。 /p p style=" text-indent: 2em text-align: justify " 而高内涵筛选的优势之一恰好是可以同时测量多个参数,但有些筛选指标的选择会面临一些技术限制。例如,可以通过显微镜分辨的波长数通常限于四个,这些参数的选择数量有限可能会导致后续的分析出现错误。 /p p style=" text-indent: 2em text-align: justify " 高内涵筛选面临的另一个困难是需要限制数据偏差的可能性,例如使用阳性对照时产生的数据偏差。在高通量筛选中,研究人员需要在多个步骤进行阳性对照。控制数据偏差以前只被视为一个技术问题,但研究人员已经开始意识到在药物研发的多个步骤中控制偏差的重要性。 /p p style=" text-indent: 2em text-align: justify " 最后,高内涵筛选还需要继续结合机器学习算法,这些算法有望在药物研发中广泛运用。零碎的信息可能不准确或生物复杂性太小,但深度神经网络可以充分利用这些信息,在筛选的第一阶段先预选出一些化合物,然后再使用更复杂的模型进行鉴定。 /p p style=" text-indent: 2em text-align: justify " 在高通量筛选中,需要在多个步骤中进行阳性对照 /p p style=" text-indent: 2em text-align: justify " 球体光学处理 /p p style=" text-indent: 2em text-align: justify " “我们开发了一套高通量光学处理的方案,可用于球体成像、荧光高内涵共聚焦成像和核分割。”美国国立卫生研究院国家转化科学中心的生物学家Molly E. Boutin博士说,这项工作有助于完善3D细胞培养模型。 /p p style=" text-indent: 2em text-align: justify " 许多生物学的3D模型都是球状的,然而在高通量筛选时,研究人员很难得到清晰的球状体图像并进行分析。 /p p style=" text-indent: 2em text-align: justify " “光通过一层层细胞成像时会产生大量的散射。”Boutin博士说。使用这套光学处理方案可以在球体更深的区域成像,但是现在只有少量的研究者在高通量筛选中使用它们。“这些都是非常简单的分析技术,”她继续说道,“但是研究人员通常没有想过去观测细胞在球体培养模型的哪个位置。” /p p style=" text-indent: 2em text-align: justify " 例如,在预测药物细胞毒性的实验中,普通显微镜图像中球体的大小会被看作细胞是否死亡的指标。“但这些图像并不能说明死亡的细胞是在球体培养模型的外部还是内部,甚至根本就没有细胞死亡。”Boutin博士说。 /p p style=" text-indent: 2em text-align: justify " 因此,Boutin博士及其同事最近开发了这套高通量球体光学处理和细胞核分割方案,并使用它检查了来自乳腺癌和原发性胶质母细胞瘤细胞系3000个球体培养模型的558,000个图像文件。使用这套自动化处理方案,科学家们可以在1-2.5小时内对384孔板进行成像。在这项研究中,Boutin博士及其同事还证明了分割算法能够根据荧光标记识别单个球体内细胞的几个亚群。 /p p style=" text-indent: 2em text-align: justify " “机器学习算法正在快速发展,它允许用户自己训练程序,让程序了解数据集。”Boutin博士告诉我们。“从学习过程中,人们还可以预测未知数据集的内容。” /p p style=" text-indent: 2em text-align: justify " 例如,使用对照图像和治疗图像数据集,可以训练程序判断未知的治疗是否会引起特定的反应。机器学习的优点是可以减少手动选择阈值时产生的偏差,Boutin博士表示他们今后会设法在算法中引入机器学习来进行分析。 /p p style=" text-indent: 2em text-align: justify " 定向分化 /p p style=" text-indent: 2em text-align: justify " “我们实验室对不同的遗传和环境因素如何促进疾病进展,以及如何找到治疗这些疾病的药物感兴趣。”威尔康奈尔医学院外科和生物化学副教授Shuibing Chen博士说。在最近的一项研究中,Chen博士及其同事开发了一种分化方案,用于检测Glis3(一种与糖尿病相关的基因)在人胰腺β细胞生物学中的作用。 /p p style=" text-indent: 2em text-align: justify " 这项研究表明,人胚胎干细胞中Glis3的缺失削弱了它们向胰腺祖细胞和β样细胞的分化能力,并引成了这些细胞的死亡。为了寻找能拮抗这种损伤的药物,Chen博士实验室的研究人员使用了高内涵筛选,最终发现了一种TGF-β抑制剂,目前正在进行II期临床试验。 /p p style=" text-indent: 2em text-align: justify " 这种叫galunisertib的TGF-β抑制剂能特异性地在体外和体内拮抗由Glis3缺失引起的细胞死亡,而对正常细胞却没有任何影响。识别出了galunisertib的高内涵筛选十分有前景,Chen博士预测它将越来越广泛地被用于药物研发。 /p p style=" text-indent: 2em text-align: justify " Chen博士及其同事开发的用于区分个体胰腺细胞类型和模拟人类疾病的方案具有几个优点。“当我们进行筛查时,我们可以将胰岛素(一种胰岛β细胞标记物)和胰高血糖素(一种胰岛α细胞标记物)结合起来,获得促进分化为这些细胞谱系的小分子的信息。” /p p style=" text-indent: 2em text-align: justify " 另一个优点是能够同时评估细胞死亡和细胞增殖,同时检测这两个指标可以帮助我们识别导致细胞死亡的某些小分子。”Chen博士断言,“我们已经从细胞的初步筛选中获得了一些机制线索。” /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/9520f1e0-13aa-46e1-a789-eb7d436b772d.jpg" title=" 201810150846408915.png" alt=" 201810150846408915.png" / br/ span style=" text-align: left text-indent: 2em " Shuibing Chen博士通过高内涵筛选发现新药的研究成果发表于《nature communications》 /span /p p style=" text-indent: 2em text-align: left " 抗体研发中的流式细胞仪 /p p style=" text-indent: 2em text-align: justify " “我们开发了一种依靠高通量流式细胞仪(HTFC)来鉴定抗体结合物的方法,”武田制药公司肿瘤研究部门的科学家,Yana Wang博士说。他们将iQue Screener(一种高通量悬浮细胞/微珠筛选系统)与模块化机器人系统相结合,形成了这套高通量流式细胞仪。 /p p style=" text-indent: 2em text-align: justify " HTFC将样本小型化、高速采集和培养板管理相结合,为集成应用提供了灵活的模块化解决方案,并且可以同时准确地测量多个参数。 /p p style=" text-indent: 2em text-align: justify " 研究人员可以使用HTFC来同时监测多种细胞因子的表达水平和细胞活性参数,从而得到大量的数据。这种新平台的效率也很高,可以在8小时内处理完16个384孔板。 /p p style=" text-indent: 2em text-align: justify " 在过去几年中,武田制药的科学家们在高内涵筛选上付出了很多努力。“我们正在尝试利用已有的高通量筛选,结合高内涵筛选构建一个新的平台,以应对武田制药不断发展的生物制品需求。”Yana Wang博士说。 /p
  • Cell 主刊:高内涵筛选助力攻克毒性蛋白质病难题
    毒性蛋白质病(Proteinopathy)通常由细胞内或细胞外沉积大量折叠变异的蛋白质(Misfolded protein)所致。在蛋白合成和成熟过程中的任何一个环节出现问题,如蛋白突变、折叠以及翻译后修饰出现异常都有可能会导致蛋白质病的发生。虽然蛋白质病这个术语对很多人来说还比较陌生,但现已证明其和多种严重的神经性疾病,如阿尔兹海默症、帕金森病和肌萎缩性侧索硬化症(ALS)的发生密切相关。靶向蛋白质病的研究也为屡屡受挫的神经退行性疾病治疗提供了新的曙光[1,2]。高内涵整体解决方案的优异体现在七月的Cell主刊中,研究将目光转至由MUC1基因移码突变导致的肾病(MUC1 kidney disease ,MKD)[3]。与神经性退行性疾病类似,MKD目前尚无有效治疗手段。结合细胞系、小鼠模型、病人组织和日益火热的类器官来源样本,研究证实MUC1突变蛋白(MUC1-fs)会大量聚集在细胞内,并最终激活未折叠蛋白应答(Unfolded protein response UPR),诱发细胞损伤和毒性。因此,MKD也属于蛋白质病的一种。针对该发病机制,研究实施基于高内涵平台的高通量筛选,并成功获得能特异清除突变MUC1蛋白的小分子药物BRD4780。该研究不仅深入我们对蛋白转运异常发生机制的了解,也为多种毒性蛋白质病提供了新的治疗策略和切入点。在七月的研究热点版块中,Nature Review Drug Discovery专门针对发现进行了解析[4]。该研究也体现了珀金埃尔默高内涵整体解决方案的高效应用。成像平台Opera Phenix配合CellCarrier Ultra系列微孔板主导高内涵筛选的同时,并通过水镜优势参与了基于上述四种样本的所有荧光拍摄和动态追踪分析细胞凋亡进程。针对类器官样本的拍摄,PreciScan功能被用于提速拍摄进程和排除不需要的图像采集和分析。所有的荧光分析由Harmony软件完成,尤其是‘spot’分析功能的应用。a疾病解析通过MKD病人和体外模型等样本,研究使用抗体染色方式分析野生型MUC1和对应突变产物的组织和细胞分布。在不同来源的样本中,值得一提的是基于病人诱导性多能干细胞(induced pluripotent stem cells , iPS cells)建立的类器官(Organoid)样本。基于干细胞技术的类器官模型建立和分析也是近年来高内涵的优势应用方向之一[5]。与病人的切片结果一致,野生型MUC1主要分布在类器官的顶膜部位,而突变蛋白则分布在细胞内。进一步研究证明聚集在细胞内的突变MUC1会诱发细胞应激,活化ATF6-UPR通路并最终导致细胞损伤,表明MKD是蛋白质病。基于MKD病人的肾类器官模型染色,图片由Opera Phenix拍摄。红色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;蓝色为E-cadherin;黄色为Na/K ATPase标记基底外侧膜。b高内涵筛选为了发现能有效清除突变蛋白的药物,研究针对病人样本建立永生化细胞系,并利用Opera Phenix开展大规模、多指标高内涵筛选。在初筛中,研究关注能清除突变蛋白并无显著细胞毒性的药物,并在此基础上细化筛选药物浓度开展二轮筛选。通过两轮筛选后,研究通过特异性、mRNA水平调控和是否能抑制ER应激药物thapsigargin的细胞毒性三个指标来进一步分析候选药物。高内涵筛选流程图最终,从3713种化合物中,研究成功发现BRD4780满足上述的指标,能有效特异清除突变蛋白的同时不影响MUC1转录水平,并能保护病人模型细胞系不受thapsigargin的应激压力。进一步的实验证明BRD4780能工作于类器官模型和小鼠模型,是非常有潜力的MKD治疗药物。左图:基于细胞系的染色结果,黄色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;灰色指示细胞核。右图:对应的统计分析和细胞数变化分析。c机制研究为了解析MUC1突变体亚细胞聚集原理和BRD4780工作机制,研究利用成像技术进行大量共定位研究,并发现病人来源细胞系中MUC1突变体滞留在内质网和高尔基体之间的早期分泌通路中,并与运货受体TMED9有显著的共定位趋势,且这个现象能进一步在多种模型和病人组织中重现。通过动态成像追踪,研究证明BRD4780能将滞留的突变蛋白从早期分泌途径中释放出来,并促进其进入溶酶体降解途径。基于细胞系的亚细胞共定位研究,分析基于Harmony软件的‘spot’分析功能。基于细胞系、小鼠模型、病人组织和类器官来源样本的荧光染色分析,红色指示TMED9;绿色指示突变体MUC1蛋白;灰色指示细胞核。* 荧光图片均由Opera phenix 拍摄。非常有意思的是,在病人样本中研究同时也发现TMED9蛋白水平的上升,而BRD4780处理同样能降低TMED9蛋白水平。此外,通过CRISPR技术敲除TMED9能表型模拟BRD4780的处理效果,清除突变蛋白。因此,TMED9参与了MUC1突变体在早期分泌途径的滞留和积累,并可能是BRD4780的直接作用靶点。针对此,研究采取细胞热移位测定法(Cellular thermal shift assay,CETSA)证实细胞内BRD4708和TMED9存在直接相互作用。凭借其能在生理条件下进行细胞水平分析的优势,CETSA成为了内源蛋白-药物相互作用分析技术的生力军,是表性筛选下游药物解析的利器。基于CETSA方法在细胞水平确认BRD4708能直接结合TMED9综合上述的发现,研究向我们阐释了MKD的发病以及BRD4780的作用机制。通过直接结合TMED9,BRD4780将突变的MUC1蛋白从内质网和高尔基体之间的早期分泌通路中释放出来,加速溶酶体对其的清除。令人兴奋的是,在具有很好的药理性质的同时,BRD4780不仅能作用于MKD,还能作用于其他多种膜相关蛋白导致的毒性蛋白质病,如UMOD突变相关的慢性肾病和色素性视网膜炎等,是非常有潜力的候选药物。MKD的发病机制和BRD4780的作用机制图同时,该研究也是高内涵两大应用领域的精华案例。首先是亚细胞水平成像应用,研究中涉及到的大量定位、共定位研究和动态追踪蛋白转运过程都是高内涵的优势应用场景。其次,更为关键的是,该研究也是成像筛选主导的药物发现案例。从疾病模型表型的建立到靶向逆转疾病相关表型的筛选,和最后下游的药物机制研究,都离不开珀金埃尔默高内涵解决方案。高内涵解决方案,伴随着机器学习的逐渐成熟,将成为创新药物研发行业的新鲜血液[6]。参考文献1. Ganguly G, et al.Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer' s disease and Parkinson' s disease. Drug Des Devel Ther. 2017 Mar 16 11:797-810.2. Scotter EL, et al.TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics. 2015 Apr 12(2):352-63. doi: 10.1007/s13311-015-0338-x.3. Dvela-Levitt M, et al.Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019 Jul 25 178(3):521-535.e23.4. A novel approach to reverse proteinopathies https://www.nature.com/articles/d41573-019-00133-55. Czerniecki SM, et al.High-Throughput ScreeningEnhancesKidneyOrganoid Differentiation from HumanPluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell. 2018 Jun 1 22(6):929-940.e4.6. Machine learning brings cell imaging promises into focus https://www.nature.com/articles/d41573-019-00144-2关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 加速抗病毒药物高通量筛选,我们提供的不仅仅是实验方案
    当前,COVID-19疫情已在全世界范围蔓延,国内形势逐渐转好但也绝不能松懈,全民复工复产推动经济运转是自救也是对其他国家的支持。特别是医疗和制药行业,在疫情开始阶段就投入研发和生产,加速药物筛选、临床诊断和疫苗研发仍然是药企复工后的重中之重,也是今后长期持久的工作。从各地治疗方案的报道来看,不仅仅考虑对新冠肺炎的治疗效果,更考虑到患者治愈后的生活质量,用药较SARS时期更为谨慎。这也提示,经过此次“战疫”,对于药效、作用机制和副作用的研究要求更为明确,国家可能对新药审批和监管更为严格。疫情之下,珀金埃尔默积极行动,基于在药物研发领域积累的经验和对法规的理解,我们从药物高通量筛选(HTS)的层面出发,为药企提供设备、软件和服务全流程方案。利器加速研发成果转化01利用类病毒颗粒报告基因系统进行药物筛选EBOV trVLP类病毒颗粒报告基因系统可以很好的模拟病毒生命周期,可用于高通量非靶点(target-free)药物筛选,通过EnVision检测报告基因荧光素酶和底物结合释放的化学发光信号来评价化合物的抗病毒活性;同时研究化合物是如何影响病毒进入细胞、复制以及分泌。[1] p1细胞检测药物对病毒进入、复制和转录的抑制作用。p1细胞给药后的细胞上清被转移至p2细胞,用以检测病毒组装和分泌。02病毒空斑检测病毒空斑检测是临床前和临床研究中评价抗病毒药物和疫苗效果的一种通用方法。利用荧光免疫染色和EnSight多功能微孔板检测对96孔板中的RSV(呼吸道合胞病毒)侵染HEp-2细胞产生的空斑成像,通过Kaleido分析软件自动识别病毒空斑并计数,检测RSV滴度,以及抗RSV中和抗体滴度。[2][3]病毒空斑自动计数。A. 细胞明场成像和免疫荧光成像识别到的病毒空斑。B. 软件自动识别的空斑,紫色表示溶斑空洞中心,相应的噬斑显示为红色;非裂解空斑以蓝绿色表示。算法可同时识别裂解(lytic)和非裂解(non-lytic)两种病毒空斑并自动计数。03细胞活力和细胞毒性检测细胞活力或毒性检测是临床前评价药物安全性的重要方法。 ATPlite 1step检测系统将ATP代谢活性作为细胞活力的检测指标,通过Victor Nivo化学发光检测模式对ATP水平定量,当细胞的ATP浓度下降,表示细胞处于凋亡或坏死状态。这种快速灵敏的方法也用于检测化合物诱导的细胞毒效应。[4]04细胞因子风暴监测在新冠肺炎治疗过程中发现,有些急重症病人在免疫系统被激发后,过量细胞因子释放会导致细胞因子风暴,危机病人生命。通过多色AlphaPlex技术可以同时检测细胞因子IL6和IL8的含量,从而开发提升疗效或抑制细胞因子风暴产生的方案,帮助患者度过危险期。检测细胞因子释放也是评价治疗效果及安全性的重要指标。[5]扫平合规之路将一种新药或治疗方法推向市场,是一个繁琐而复杂的过程——必须遵守FDA 21 CFR Part 11或EU Annex 11指南。使用我们针对珀金埃尔默多模式读板仪的增强安全软件,遵守法规就简单多了。该软件提供了所有兼容的工具,包括:高级用户管理审计追踪电子签名导出文件认证全流程验证和确认在多模式微孔板检测系统的使用寿命周期中,会执行多次确认测试。这些测试可以确保仪器达到最佳性能。珀金埃尔默执行这些确认测试,并为您提供证书,作为GxP合规的证明。制药和生物技术公司,包括临床研究机构,需要定义明确的SOPs、可靠的仪器、兼容的软件、经过验证的检测方法等,以确保一切都处于高水平运行。将我们的产品和服务与您的SOPs结合起来,成为一个完整的合规性解决方案。因此您可以专注于真正重要的事情——您的科学研究。扫描下方二维码,即可下载珀金埃尔默“应对复杂的合规需求”电子书《“应对复杂的合规需求”电子书》参考文献 1. Lee N, Shum D, K?nig A, et al. High-throughput drug screening using the Ebola virus transcription-and replication-competent virus-like particle system[J]. Antiviral research, 2018, 158: 226-237.2. Wen Z, CitronM, Bett A J, et al. Development and application of a higher throughput RSV plaque assay by immunofluorescent imaging[J]. Journal of virological methods, 2019, 263: 88-95.3. 快速高效判断病毒活性,何惧“疫”军突起https://mp.weixin.qq.com/s/vEPswHUqS1juaRgmXS4HBQ4. Kuzikov M, Kanke R, ScreeningPort F I M E. Measuring Cell Proliferation and Cytotoxicity using the ATPlite 1step System and the VICTOR Nivo Multimode Plate Reader[J].5. Ruby P, Groves K. Simultaneous Detection of IL-6 and IL-8 Secretion by Cell Lines using AlphaPlex Technology.
  • Molecular Devices 2013高效克隆筛选用户研讨会成功举办
    随着生物制药(抗体,蛋白和疫苗等)在新药研发中占据越来越重要的地位,以及细胞株和菌株在生物工业和生物药物生产领域的应用越来越广泛。对哺乳动物细胞系和微生物细胞株筛选和建立的需求越来越多。传统的方法在细胞和微生物克隆的挑选上往往费时费力,而且容易因为人工操作而带来误差,导致重复性低,准确性差。Molecular Devices提供了大规模地对哺乳动物细胞,细菌、真菌、酵母、链霉菌及藻类进行有效地自动化筛选,并对筛选出来的细胞进行后续的生长监控的解决方案。   秉承着分享的精神,一直致力于将推广和介绍生命科学领域当前最新技术的Molecular Devices,为广大的克隆筛选用户提供一个探讨克隆筛选新技术、分享克隆筛选技术在药物研发和菌株优化的使用经验以及应用技巧的平台,于9月中旬,在上海成功举办了&ldquo 2013 高效克隆筛选用户研讨会&rdquo ,70位克隆筛选领域的专家和学者出席了本次用户会议,会议现场气氛活跃,讨论热烈,互动积极。   嘉宾签到  大会现场    Molecular Devices全球副总裁大中华区总经理江滔先生,致欢迎词,并对Molecular Devices公司在生命科学领域以及克隆筛选领域十多年的的发展经验进行了简短的介绍。 台湾工业技术研究院生医与医材研究所,正研究员,周民元博士为大家介绍&ldquo 高产哺乳动物细胞系筛选系统在生物治疗研发中的应用&rdquo 的相关实验和技术   中国科学院天津工业生物技术研究所副所长,孙际宾博士,为大家做题目为:认知和发展工业菌株的综合性方法&mdash &mdash 系统生物技术的讲座   Molecular Devices公司克隆筛选系统应用科学家,Pallavi Tawde博士,与大家讲解ClonePix 2 & QPix筛选平台的应用及实验技术分享   江苏恒瑞医药股份有限公司副总经理陈亮,为大家介绍高通量荧光筛选技术在生物制药中的应用经验。    诺和诺德(中国)研究发展中心,高级科学家陈海滨博士,讲解高通量自动化克隆挑选技术在酶定向进化中的应用。   Molecular Devices公司克隆筛选系统产品经理黄国庆,为大家介绍ClonePix 2 & QPix筛选技术的核心价值及新产品信息。   与会专家和学者对此次高效克隆筛选用户大会提供的交流和互动平台表示非常欢迎,也感谢Molecular Devices让他们了解到国内外目前最新的克隆筛选的技术和应用 同时,对Molecular Devices公司的高通量克隆挑选产品有了更为全面和深入的认识,并对应用MD的克隆挑选产品和服务能够成功解决科学研究以及生物药物开发以及筛选中的实际问题充满信心。
  • 美谷分子微生物筛选系统 QPix亮相央视晚间新闻 ,助力创新中国
    2024 年 7 月 9 日,中国中央电视台新闻联播 CCTV-13 《新思想引领新时代改革开放丨“创新中国”筑梦新征程》重点报道了我国一系列科技创新及促进科研创新的密集落地举措,助力中国式现代化。高通量微生物克隆筛选系统 QPix XE 作为加速科研创新的工具亮相在新闻联播中。中国式现代化要靠科技现代化做支撑,实现高质量发展要靠科技创新培育新动能。科学技术推动经济发展,科学技术的发展离不开科研团队软硬件的配套支持。国家的全社会研发经费在 2012 年的 1.03 万亿元增涨到 2023 年的 3.3 万亿元。在国家大力投入科研创新的举措之下,传统行业转型发展,新兴产业蓬勃发展,未来产业布局建设。其中,生命科学的蓬勃发展,为科研创新注入新动力。创新是科技发展的核心动力,QPix 系列作为经典的微生物克隆筛选系统,客观的成像筛选、高达 3000 克隆/小时通量的自动化挑选、可定制和整合的扩展性、多种功能集成等特性,使其不论是在生物药开发、工业菌株筛选、基因合成还是合成生物学等领域都能发挥重要的作用,促进创新加速。一睹它的风采⬇ ️ ⬇ ️ ⬇ ️ 美谷分子仪器,赞27QPix 高通量微生物克隆筛选系统在生物制造中的应用:随着基因编辑技术的发展,研究人员可以通过基因操纵,让微生物或者其他底盘细胞高效生产之前靠化学合成的产品,用生物合成代替化学合成,提高效率的同时降低污染和风险,也可以让底盘细胞高效生产自然界难以提取的物质,降低低剂量产品提取成本,还可以通过基因改造令微生物具有将有害物质转化为产品的能力等。以“DBTL”循环(Design-Build-Test-Learn)为指导的合成生物学流程,增加了对底盘细胞高通量筛选的需求。传统的微生物挑选为手工铺板、手工挑菌,在挑选的流程中遵循 5 个动作的循环过程:拿吸头、观察、挑菌落、接种至孔板、扔吸头。这种手工挑选有很多局限性:动作重复且技术含量低,挑选的准确性依赖操作人员的熟练程度;挑选速度受限;挑选的标准为肉眼判断,并且菌挑至哪个孔没有数据追溯等。高通量克隆筛选系统 QPix 可以实现克隆挑取的高效化、标准化,替代手工挑选,助力高效生物制造。QPix 400 系列微生物克隆筛选系统QPix 系统全球装机量已经超过 600 套,广泛用于世界各地的研究机构、测序服务单位、生物科技和制药公司。在人类基因组项目中,QPix 系统的稳定性和准确性获得了测序中心的赞誉。2023 年,QPix 400 系列增添新成员,新品 QPix XE 专为空间紧凑型、中高通量需求的实验室而设计。体积和通量上的更新并不影响 QPix XE 强大的功能和高质量的结果,依旧能够轻松实现高效、精准的克隆识别和挑取!基于菌落形态特征和荧光强度的克隆识别和筛选,尽早发现阳性克隆,减少下游工作量轨道运行实现高位置精度,确保准确挑取克隆多种类型挑针可选,匹配不同形态菌落,实现更高效的挑取复制、重排、抑菌圈/水解圈等多种功能可选,一机实现多种用途自动数据存储和样本跟踪功能确保数据完整性QPix 系列广泛的应用场景仍然适用 QPix XE,例如合成生物学、生物技术、生物燃料、农业、微生物组学、环境科学、食品和饮料等广泛的科研活动。同时,QPix 系列与 Molecular Devices 其他高通量产品结合,可以提供完善的高通量应用解决方案,为您的研究提供更多可能!细胞株开发解决方案合成生物学解决方案抗体药物开发-噬菌体展示解决方案结语QPix 高通量微生物克隆筛选系统以其稳定的性能、多样的功能、广泛的应用领域提高了科研人员的生产力,加速科技创新步伐,助力科技现代化。Molecular Devices 与科研人员一起,不断探索,践行创新使命。
  • 贝克曼库尔特 | 高通量筛选大肠杆菌重组蛋白生产用酵母营养素
    随着重组DNA技术的迅猛发展,外源基因在不同宿主中的表达使得各种重组蛋白的工业生物生产成为可能。选择合适的宿主是生物工艺设计中的关键步骤之一,具体取决于:1.上游培养效率2.易于基因编辑和分子工具的可用性3.翻译后修饰的能力,如糖基化4.蛋白质(用于下游加工和作为生物制药成分等)的分泌能力目前,多种生物已被应用于重组蛋白的生产,尤其是大肠杆菌,易于基因改造,具有在酵母水解物等多种基质上快速生长并产生高蛋白滴度的优势。已成为迄今为止业界追捧的主力军。典型的生物工艺优化通常需要进行一些初步试验,以发现适用于宿主菌株并提高目的重组蛋白表达的培养基成分(特别是氮基营养素)。对于此类应用需求,能够提高实验效率和参数准确度的高通量筛选平台成为热门工具。贝克曼库尔特BioLector通过在线测量关键培养参数提供可放大的高通量分析。本案例为通过BioLector对多种酵母营养素就生物量生长和重组蛋白的形成进行评估和比较,筛选出了适合大肠杆菌重组蛋白生产和诱导时间的理想培养基。方法培养菌株:大肠杆菌BL21(DE3)pET-28a(+)EcFbFP。培养基:以标准TB培养基(Carl Roth)为参照物,对多个TB 样(Terrific 液)培养基进行比较。不同的TB 样培养基使用不同的酵母提取物。BioLector培养条件:在接种至微孔板之前,先在250 mL摇瓶中进行预培养, 37°C培养6小时。然后使用48孔梅花板(MTP-BOH2)在 BioLector中进行培养。温度 37°C ,振摇速度:1400 rpm。分别在每个培养孔中填充800μL培养液用于非诱导实验,填充790μL用于诱导实验。诱导实验中,在诱导时间点上添加 10μL 50μM 的 IPTG。环境氧气浓度保持在35%,避免培养物缺氧。BioLector在线测量:培养过程中对生物量、EcFbFP(黄素荧光蛋白)、pH以及 DO进行在线测量。结果不同TB样培养基的生物量生长情况:培养实验中,不同酵母营养素的培养基中生物量的生长情况如上图所示:培养基不同,最终的光密度和生长速率也会不同。ProCel 6 中的大肠杆菌OD最高,培养基 ProCel 3 中的大肠杆菌的OD低。ProCel 6为本特定工艺的最高生长速率。上图为培养过程的DO值。培养基 ProCel 3 和 ProCel 4 中的培养物未达到0%的氧饱和度,这表明由于耗氧量有限,该培养基中的菌株代谢活性较低。相反,其他培养物包括TB标准培养基,均在短时间内达到0%的氧饱和度,表明菌株代谢活性高。不同酵母营养素TB样培养基的产物生成:通过将IPTG 添加到培养物中来诱导 T7 聚合酶的表达促进黄素荧光蛋白的生成。BioLector使用梅花板为48个培养物提供了独立的培养空间,因此可测试不同的诱导时间点。使用自动化工作站整合BioLector后的 RoboLector 系统还可以自动进行培养诱导。首先选择一个固定的诱导时间点。分别为培养启动后的3小时、3.75小时和4.5小时。下图所示为每种TB样培养基在诱导时间下所测荧光的平均值。荧光动力学清晰地表明不同培养基有不同的EcFbFP(黄素荧光蛋白)表达水平。表现出最强荧光信号的两个样本为:ProCel 2,诱导点为3.75小时;ProCel 5,诱导点为 3 小时。经过 7.7 小时的培养,ProCel 5 的荧光值达到102.94a.u.,而ProCel 2 的荧光值达到 101.82 a.u.。本方法的不足之处在于未比较不同样本的生物量对蛋白质产量的影响。经过3小时的培养,一些培养物的OD已达到6,而其他培养物仅达到3。当诱导具有不同光密度的培养物时,可能会对在每种酵母营养素上生长的实验大肠杆菌的蛋白质生产性能造成误解。鉴于此,我们采用了一种新方法,将诱导点与生物量信号耦合。使用BioLector的信号驱动RoboLector,依赖于特定生物量的诱导对于每个单独的孔都是可行的。为自动化工作站设置3、6或8的OD目标值,以根据孔内培养物的生长动力学自动添加IPTG以诱导蛋白质生产。如下图所示,ProCel 2表现最佳,最终值为 146.23 a.u.,培养时间是 12.3 小时;ProCel 5表现次之,最终值为138.1 a.u.。与之前进行的一系列实验相比,本实验中的排名与在特定时间点进行诱导的实验不同。这一观察证明了最佳工艺条件的重要性,并使这些条件具有可比性。此处数据表明:与之前的实验相比,本实验中的荧光值更高。正如该领域诸多论文中所强调的那样,诱导时间确实是一个关键参数。同样,在优化大肠杆菌重组蛋白生产的过程中,也必须评估诱导剂的浓度。另外,与对照TB培养基相比,这里测试的一些酵母氮源产生了更高的重组蛋白产量。这些结果凸显了选择培养基成分的重要性,这些成分能够在特定的生物工艺中实现高而稳定的产量。结论通过BioLector系统,贝克曼库尔特可为用户提供适用于各种应用领域的高通量筛选平台。其独特的梅花形微孔板尤其适用于好氧培养,如同实验室生物反应器,BioLector系统通过非侵入式传感器使客户能够获取更多的在线测量参数。正如本应用,通过BioLector系统可轻松实现培养基的筛选,整合自动化工作站的RoboLector,还可实现更多功能。补料、pH调控以及文中所述的诱导功能,所有这些均可在小规模实验中实现,帮助客户同时兼顾成本和效率。RoboLector高通量自动化微型生物培养平台欲了解该应用详情,请扫描下方二维码下载应用指南《利用BioLector进行大肠杆菌重组蛋白生产用酵母营养素的筛选》
  • 新品发布会 | 全新Dianthus携光谱位移技术横空出世,1分钟击破亲和力筛选难点!
    问新品Dianthus有哪些优势?答: 我们都知道,重要靶点和候选药物的亲和力筛选非常具有挑战性。当您的亲和力筛选项目涉及到PROTAC二元和三元复合物,片段化合物库及固有无序蛋白时,需要进行样品固定的SPR技术和样品消耗量大的ITC技术的检测难度会大大增加,而这些应用则是Dianthus所擅长的。问新品Dianthus具有怎样突破性的技术?答: Dianthus是首个使用光谱位移技术(Spectral Shift)的亲和力筛选平台。检测流程相当简单,您只需要对其中一个分子进行荧光标记,然后将其与梯度稀释的配体混匀。在用590nm的光激发样品后,仪器会同时监测双波长(650nm和670nm)下配体结合引起的光谱位移,通过双波长的荧光强度比值与配体浓度拟合,仅需1分钟即可精确计算样品间的kd值!问光谱位移技术对于实验筛选项目有什么好处和价值?答: 直击五大实验痛点,为您保驾护航。● 可在33分钟完成384孔板检测。● 可控平衡状态的溶液中检测,避免固定对样品的影响。在表征三元复合物时,二元复合物处于稳定状态,非常适用于PROTAC项目。● 检测不依赖于分子量,无需担心分子量过低而漏掉有价值的hits。● 样品均在溶液中独立检测,筛选共价结合配体时无需昂贵的耗材和繁琐的操作。● 基于微孔板检测,无微流控系统,无需清洗维护。Dianthus新品发布会邀您参与主题:突破性的光谱位移技术助您解决亲和力筛选的终极挑战概要:1.亲和力筛选面临的挑战2.光谱位移技术原理3.PROTAC三元复合体/共价结合配体/膜蛋白检测案例4.实验流程简介讲师:NanoTemper应用专家 张玺直播时间:2022年4月20日 (周三)14:00-15:00参加新品发布会方式:微信搜索并关注NanoTemper即刻预约可获得精美礼品!惊喜奖:高级旅行茶杯幸运奖:幸运小熊玩偶
  • 看点揭秘!明日召开“第二届创新高通量药物筛选”网络主题研讨会
    在新药研发过程中,如何从海量的化合物中找出具有治疗潜力的候选物是一个巨大的挑战。为此,科学家们发展出了一种名为高通量药物筛选(High-throughput screening,HTS)的技术,通过将自动化设备和生物化学检测方法相结合,可以在短时间内筛选数以万计的化合物,极大地提高了新药研发效率。适逢夏至,仪器信息网将于6月21日举办“第二届创新高通量药物筛选技术与应用”网络主题研讨会,特邀9位专家围绕筛选模型建立、创新方法与技术分享,以及候选药物发现等研究方向展开探讨交流,欢迎大家踊跃报名!报名链接:https://insevent.ins t rument.com.cn/t/XXo (点击报名)会议看点1.技术前沿多元:囊括SERScreen技术、FRET技术、AlphaScreen技术、全自动膜片钳技术、基于AI辅助高内涵筛选技术等创新技术2.报告主题火热:涵盖PPI抑制剂筛选、新冠病毒Mpro抑制剂筛选、抗癌靶向小分子筛选、降尿酸药物筛选、离子通道药物筛选、基于斑马鱼行为表型组学药物筛选等研究进展3.嘉宾阵容强大:力邀北大、浙大、吉大、山大、同济大学附属第十人民医院、皖南医学院、深圳湾实验室以及安捷伦9位业内专家会议嘉宾&报告预览报告人:汤扬 同济大学附属第十人民医院研究员报告题目:《YAP出入核调控因子及靶向小分子的高通量筛选》主要介绍通过靶向磷酸酶文库的siRNA筛选,研究人员发现PP2A磷酸酶的调节亚基STRN3的缺失可导致MST1/2激酶活性显著升高以及YAP入核活化显著降低,暗示以STRN3为调节亚基的PP2A磷酸酶可能通过抑制MST1/2激酶的活性而增强YAP活性;随后研究人员阐释了胃癌中MST1/2激酶活性丧失的分子与结构机制;最后通过AlphaScreen体系筛选特异性靶向小分子抑制胃癌生长。「报名观看」报告人:陈云雨皖南医学院副教授报告题目:《新冠病毒主蛋白酶抑制剂高通量筛选技术平台的建立与应用》传统的荧光共振能量转移筛选法具有筛选成本高、稳定性差和假阳性率高等缺点,积极开发稳定、经济、灵敏的新冠病毒主蛋白酶(main protease, Mpro)抑制剂高通量筛选模型具有重要意义。本研究以新冠病毒Mpro为靶标,基于二聚化红色荧光蛋白生物传感器建立Mpro抑制剂高通量筛选技术平台,为抗新冠病毒药物的高效筛选与评价奠定了基础。「报名观看」报告人:梁重阳 吉林大学教授报告题目:《高通量靶向药物筛选及“以药寻靶”空间转录组技术的应用》越来越多的蛋白质-蛋白质相互作用(PPI)靶点被鉴定为药物发现创造了机会。然而,目前的药物筛选策略成本高,试剂消耗大,阻碍了药物发现的进展,并且现有技术无法实现分子垂钓。在此,我们提出了一种基于磁场放大表面增强拉曼光谱(SERS)的新型高通量、均相靶向药物筛选方法,称为“SERScreen”,用于PPI抑制剂的发现。将两种高亲和蛋白分别固定在磁珠(MB)和SERS标签上,PPI诱导两种纳米探针交联,产生强SERS信号。候选调节剂对一种蛋白质的更高亲和力干扰PPI,导致SERS强度在MB以上显著降低。我们建立了一个PD-1/PD-L1药物筛选验证技术模型,并证明了其可行性,不仅与已知的抑制剂(Durvalumab和BMS-202),而且与组合化合物库文库联合,通过SERScreen的分子垂钓成功鉴定了两个新的候选抑制剂。作为一种超灵敏、低试剂消耗(2µ L样品溶液)、高通量的筛选技术,SERScreen为复杂样品的分子垂钓提供了有效的解决方案,并且与自动测量设备具有很高的兼容性。「报名观看」报告人:展鹏 山东大学药学院教授报告题目:《降尿酸药物筛选方法进展与候选药物的发现》本讲座分析了降尿酸药物筛选方法的最新进展,包括体外和体内两种主要评价手段。体外筛选聚焦于黄嘌呤氧化酶、尿酸转运蛋白和嘌呤核苷磷酸化酶等关键靶点,而体内筛选则通过动物模型来模拟高尿酸血症。此外,介绍了本课题组在该领域的研究进展,包括新发现的候选药物及其作用机制,旨在为高尿酸血症和痛风的治疗提供新的策略和药物发现路径。「报名观看」报告人:胡吉英 深圳湾实验室药物发现平台主管/工程师报告题目:《高通量全自动膜片钳技术在离子通道药物筛选中的应用》化合物筛选通量较低是离子通道药物发现的瓶颈。全自动膜片钳整合自动化液体处理和平面芯片电极技术,可以实现找细胞、封接、破膜等整个过程的自动化,快速高通量的测量特定离子通道的电流变化,评估药物对这些通道的影响,从而在短时间内对大量药物候选分子进行筛选,显著提高筛选的效率和准确性,减少人为操作的变异性。「报名观看」报告人:段桂芳 北京大学药学院助理研究员报告题目《离子通道研究技术及其在药物研发中的应用》离子通道是多次跨膜的蛋白质多聚体,是一类重要的药物靶点。然而,已上市药物中针对离子通道靶点的不到10%,离子通道药物没有得到充分开发,主要原因是缺乏高质量和高通量的研究技术。为解决离子通道靶点研究的技术难题,我们建立了3种研究方法,分别是基于全自动膜片钳技术的方法、基于离子流的方法和基于荧光的方法。「报名观看」报告人:赵璐 浙江大学药学院副教授报告题目:《基于AI辅助高内涵筛选的心肌保护天然化合物发现及机制研究》心力衰竭是多种心脏疾病发生发展的终末病变,致死率高且缺乏有效治疗手段。常规心力衰竭动物模型成本高、周期长,不适用于药物高通量筛选。本团队开发了一种可自动定位斑马鱼胚胎心室并进行心功能多参数分析的深度学习算法,首次实现了AI辅助斑马鱼心衰模型中的中药药效物质高内涵筛选,发现桑葚等药材来源活性成分CyCl抗阿霉素诱导心衰活性并探讨其作用机制。「报名观看」报告人:李翔 山东大学药学院副教授报告题目:《斑马鱼行为表型组学辅助药物筛选和毒性效应研究》斑马鱼因其明确的胚胎发育过程、高人类基因同源性及与哺乳动物相似的系统,成为药物发现的理想模型。利用商业化斑马鱼幼鱼行为追踪系统,通过关注幼鱼神经行为特征的变化进行基于表型的药物筛选。通过数据挖掘提取特征码,结合细胞和分子生物学技术,预测药物的发育毒性和神经毒性。基于斑马鱼表型组学的高通量筛选方法有效,可应用于药物筛选及环境污染物的毒性效应研究。此方法结合其他组学技术,未来有望用于加速药物发现和药物毒性研究。「报名观看」报告人:孙秀红 安捷伦科技(中国)有限公司液质产品工程师报告题目:《安捷伦自动化高通量质谱平台及其在新药研发中的应用》高通量筛选是药物研发中重要环节之一,安捷伦自动化前处理平台具有优异的灵活性和整合性,在基因、蛋白及小分子药物前处理中都具有完整的工作流。安捷伦Rapidfire-MS平台具有3~8秒/样品的超高检测通量,且集成在线净化技术,支持96/386等多种孔板,目前在小分子药物、生物大分子及核酸药等多管线研发中都有广泛应用。「报名观看」扫码加入高通量药物筛选技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • PKI荣获2007生命科学行业高通量筛选奖
    来自美麻省Waltham5月30日的消息,全球领先的健康科学与光电子科学技术公司PerkinElmer公司获得了2007年第三届生命科学行业奖(Life Sciences Industry Awards)高通量筛选奖项(High Throughput Screening,HTS)。 此次生命科学行业奖是由《科学人》(The Scientist)杂志与咨询公司BioInformatics LLC合作主办,对The Science Advisory Board(世界上最大的科学家消费者市场研究小组)的注册成员和《The Scientist》杂志的读者进行调查,并将反馈结果与实际因素如对产品特征的满意度、再次购买的可能性、推荐供应商的可能性以及性价比等相结合,给各生命科学厂家打分,最终选出了11名在20个领域中出类拔萃的,市场份额高、用户满意的佼佼者(见第三届生命科学产业奖落幕,11家公司榜上有名)。 PerkinElmer公司生命科学与分析科学部总裁Robert F. Friel表示,“获得这些科学团体和我们的顾客承认是我们无上的光荣,我们的产品能帮助这些从事着重要研究的工作人员,这让我们感到十分欣慰”,“无论是我们的生物化学筛选,细胞成像仪器,还是这些高灵敏性试剂及分析平台,这一奖励表明生命科学团体对于PerkinElmer作为可以为高级细胞研究和药物研发提供领先技术的供应商的肯定。” BioInformatics LLC公司市场部总监Robin Rothrock评价道,“PerkinElmer获得了这一奖项主要是因为他们重新定义了药物研发:从多孔板发展成了整体考虑,强大的筛选平台。” PKI现有许多强有力的HTS技术的产品,包括自动化,流式操作,检测仪器,以及可以用于最大多功能化,高灵敏度,及高速实验筛选的生化及细胞分析平台。并且随着新获得一些专利权,比如从Axxam’s Photina® 获得的发光 GPCR及离子通道平台专利,以及Evotec Technologies的高含量分析系统,PKI将继续发展强大的筛选分析技术。 PerkinElmer股份有限公司 PerkinElmer是一家全球性的业界著名技术领先公司,其业务集中在三个领域——生命科学、光电子学和分析仪器。 珀金.理查德和埃尔默.查理斯于1937年4月19日创立PerkinElmer公司,1944年,PerkinElmer公司进入分析仪器的全新领域,并成功推出世界上第一台商用红外分光光度计-12型。这项新技术就是现代化学分析手段的鼻祖。并使PerkinElmer公司占据了世界化学分析仪器供应商的领先地位。1955年5月,在英国人A.J.马丁研究开发的技术基础上,PerkinElmer公司推出世界上第一台商用气相色谱仪-154型。1957年匹兹堡会议上,公司又推出世界首台双光束红外光谱仪137型,新产品的推出标志着以低成本进行红外分析的开端,对当时分析仪器行业具有极为重大的意义。50年代后期和60年代,公司先后研究开发出先进的气相色谱技术和原子吸收分析技术。在这一时期,PerkinElmer公司以其创制出的第一台原子吸收分析仪-AA303型占据了世界分析仪器行业领先地位。1972年,公司进入液相色谱市场,成功推出最早的带梯度泵的液相色谱仪-1220型。1975年,公司将微机技术引入460型原子吸收光谱仪,使原子吸收分析的进行更轻松更有效。自80年代起,PerkinElmer公司开始涉足电感耦合等离子体光谱仪(ICP)和电感耦合等离子体质谱仪(ICP-MS)领域,发展至今已成功地在这一领域占据世界领先地位。领先的技术,精湛的工艺,全面的客户服务,让PerkinElmer成为分析仪器界新技术和完善产品的代名词,并赢得了分析仪器客户的衷心信赖和支持,成为在原子光谱(原子吸收、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪)、分子光谱(傅里叶变换红外/近红外、紫外/可见近红外光谱仪、荧光、旋光)、气相色谱和气相色谱-质谱联用仪、液相色谱仪以及热分析系统(差热分析、热重、动态/静态热机械分析仪、同步热分析仪)等化学分析仪器领域最著名的供应商之一。 PerkinElmer同时也是生化领域占全球第三位的领先供应商,特别是在药物高通量筛选、全自动液体处理和样品制备以及遗传疾病筛查方面是世界第一位的供应商。最初生命科学部由Wallac跨国集团(1950年在芬兰作为Wallac Oy创立)和NEN Life Science Products(1956年作为New England Nuclear创立)所组成。2001年,公司完全整合了NEN Life Sciences并且完成了对Packard BioScience的收购。生命科学部通过重新定位它的业务到高增长市场进行扩张,从1999年以来,PerkinElmer投资了超过十亿美圆到生命科学业务中,在2001年, 生命科学部研发并投放到市场的新产品和新技术达到了一个创纪录的数字,迅速提升自己成为蛋白组学、基因组学、药品开发和遗传疾病筛查领域的技术领先者。我们的强项在于我们具备在液体处理、样品制备、化学、检测和信息管理等各方面全面的知识和经验。我们的客户还涉及到大量与疾病医疗相关的研究计划,这些计划的范围从发现特殊的基因和弄清它们的功能到为新药认证生物学目标以及筛选候选的新药。临床筛查计划则有助于鉴别高危人群以便在他们今后的生存期内缓解或预防疾病。 随着PerkinElmer在中国业务的迅速增长,PerkinElmer总部加大了对中国的投资力度。2006年2月PerkinElmer在上海张江高科技园区正式成立了中国技术中心。新的技术中心大楼集中了公司的销售、物流、维修、技术支持、客户服务等各个部门。同时还将进一步发展成为全球物流和研发的基地。在技术中心里建立了亚太区最大的示范实验室,并且专门投资装备了将服务于全球半导体行业分析应用的1000级超净实验室。在示范实验室里可以看到PerkinElmer公司生命科学与化学分析仪器几乎所有最新型号的仪器,每个月都会举办多期用户培训班,并为客户提供方法开发、优化等多项增值服务。中国技术中心的建成将成为珀金埃尔默公司提高对整个中国地区,乃至整个亚太区域的客户的服务水平打下坚实的基础。
  • 沃特世推出新型快速筛选差示扫描量热仪(RS-DSC),使抗体药物的超低样品量热稳定性测试速度提升24
    新闻摘要: 采用先进的微流控技术,与其他品牌的毛细管DSC仪器相比,RS-DSC仅需其1/25的样品用量,同时通量可提升24倍[i]。 一次性微流控芯片(MFC)可简化生物制剂的热稳定性测试,确保在实际的高浓度给药剂量和使用条件下展开分析。独具匠心的设计简化了样品制备过程、加快了药物开发速度,从而更快、更准确地测定高浓度生物药制剂[ii]。美国马萨诸塞州米尔福德 - 2024年7月23日 - 沃特世公司(纽约证券交易所代码:WAT)今日面向全球隆重推出专为生物制药研发人员设计的TA仪器TM快速筛选差示扫描量热仪(RS-DSC)。TA仪器RS-DSC是一款高通量差示扫描量热仪,可对高浓度生物制剂进行高精密度的热稳定性测试,尤其适合抗体药物和工程化改造蛋白质。 TA仪器新型快速筛选差示扫描量热仪 沃特世公司TA仪器事业部高级副总裁Jianqing Bennett表示:“全球对高浓度注射药物的需求日益增长,生物制剂研发人员亟需找到快速而高效的稳定性测试方法。这款全新的RS-DSC能够满足这些需求,为现有的毛细管DSC提供了高通量的替代方案,并且比差示扫描荧光仪(DSF)更可靠、更准确。” TA仪器RS-DSC采用一次性、低样品体积微流控芯片(MFC),可同时进行多达24项测定,为生物药稳定性和质量评估提供了更便捷、更准确的解决方案。如此一来,不仅可减少甚至省去稀释样品和重复清洗仪器的工作,同时还能降低污染风险。此外,凭借其独特的设计,DSF方法不够灵敏的问题也迎刃而解,在分析高浓度样品时,能够生成更准确的数据[iii]。 此外,TA仪器RS-DSC还配备先进的自动化软件,可协助用户快速、轻松且精确地获取有关样品热力学性质的深度见解。 沃特世公司TA仪器事业部现已面向全球客户发售TA仪器RS-DSC。 其他参考资料 点击了解TA仪器快速筛选差示扫描量热仪(RS-DSC)的更多信息TA仪器RS-DSC相关应用指南:- 快速筛选高浓度生物药物的热稳定性 - 单克隆抗体药物的快速热稳定性筛选和选择 关于沃特世公司(www.waters.com) 沃特世公司(纽约证券交易所代码:WAT)是居于全球前列的分析仪器和软件供应商,作为色谱、质谱和热分析创新技术先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾65年历史。沃特世公司在35个国家和地区直接运营,下设15个生产基地,拥有约7,700名员工,旗下产品销往100多个国家和地区。 关于TA仪器(www.tainstruments.com.cn) TA仪器创立于1963年,现隶属于沃特世公司,是材料表征领域的行业领跑者,拥有热分析、流变、热物性、微量热及机械分析等仪器产品。TA仪器致力于服务材料科学、医学、电子和其他科学领域的领先发现,提供创新和可靠的仪器产品,以满足科学家在物理性能评估方面的需求,改善人类健康和福祉。 TA 仪器是沃特世公司的商标。 # # # 媒体联系方式 沃特世公司 钱洁 + 86 21 6156 2644 jackie_qian@waters.com [i] 与市场前列的其他品牌毛细管DSC相比(基于公开参数指标进行比较) - 其他品牌的毛细管DSC仪器每运行一次,TA仪器的 RS-DSC可完成24次测试运行,且其他品牌仪器所需的样品量(250μL)几乎是TA 仪器 RS-DSC(11μL)的25倍。 [ii] 相较于传感器在高浓度下会发生饱和的差示扫描荧光仪(DSF)。 [iii] 相较于传感器在高浓度下会发生饱和的差示扫描荧光仪(DSF)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制