当前位置: 仪器信息网 > 行业主题 > >

应用谱图

仪器信息网应用谱图专题为您整合应用谱图相关的最新文章,在应用谱图专题,您不仅可以免费浏览应用谱图的资讯, 同时您还可以浏览应用谱图的相关资料、解决方案,参与社区应用谱图话题讨论。

应用谱图相关的资讯

  • TSQ Quantum GC气相色谱质谱仪新到货及实验应用
    2021年7月23日,谱标实验室新到货TSQ Quantum GC气相色谱质谱仪,品牌:Fhermofisher,安装完好,成色9成新(见下图),TSQ Quantum GC气相色谱质谱仪器兼有色谱对混合物的快速分离,又有质谱对分子结构的鉴定功能,采用不同的扫描方式,可有效的去除干扰。关键价格优惠,欢迎来电咨询。TSQ Quantum GC气相色谱质谱仪,对于台式GC/MS联用仪系统一般由五个部分组成,分别为:1.进样部分 2.离子源(对样品进行离子化,使其能被质量分析器所检测到) 3.质量分析器: 4.质量检测器 5.数据分析系统。实验应用:1)TSQ Quantum GC气质联用仪结合负化学电离源GC-MS/MS技术测定血浆中雌二醇雌二醇是一种内源性的激素,已被发现影响男女的许多生理功能。在疾病诊断以及监控病情发展的过程中,检测血浆和尿液等生物体液中的雌二醇,具有重要的临床应用价值。LC-MS/MS液质联用和GC-MS气质联用这两种方法已经被广泛应用于测定生物体液中的雌二醇,但内源性基质的干扰经常对测量结果有影响,二者各有利弊。LC-MS/MS液质联用的方法,避免了柱上衍生,可测定至 pg 级;GC-MS/MS气质联用的方法,灵敏度更高,可测定至 fg 级。GC-MS/MS气质联用技术的三重四极杆质谱 TSQ QuantumGC,并在负化学电离源(NCI)模式下测定了血浆样品中的雌二醇。雌二醇从血浆中提取出后,用五氟代苯甲酰氯和MSTFA(N甲基-N-三甲基硅烷基三氟乙酰胺)进行衍生。结果在柱上能够检测到55 fg的量(相当于血浆中2.5 pg/mL的浓度)。2)气相色谱/三重四极杆质谱(TSQ Quantum GC)用于18种有机磷杀虫剂的快速检测分析20世纪30年代,德国G.Schradev首先发现有机磷杀虫剂。此类化合物具有药效较高、使用方便等特点,但同时也存在高毒、高残留等缺点。有机磷多为极性较大的农药,易受到基质的影响,检测灵敏度较差。采用三重四极杆质谱的选择性反应监测技术(SRM)对复杂基质(韭菜)中的18种农药同时进行了分析。通过SRM扫描排除基质的干扰,同时凭借三重四极杆质谱高灵敏度的特点,大多数有机磷农药的检测下限可低于1 ppb。3)气相色谱/三重四极杆质谱TSQ Quantum GC用于复杂基质中154种农药残留量的分析目前用于农药残留分析的主要技术为气相色谱/单四杆质谱的选择离子扫描技术( SIM) 离子阱质谱多选择反应监测技术( MRM ) 和全扫描的计算机辅助技术。单四极杆的选择离子技术采集的质谱信息少,选择性较差,结果存在很大的不确定性。离子阱质谱二级质谱技术为时间上的串联,因此对于多组份化合物同时分析存在扫描速度受限的问题。采用Thermo推出的zui新一代气相色谱/三重四极杆串接质谱( TSQ Quantum GC),通过其高通量 离子传输的性能, 碰撞室零串扰技术和高选择性反应监测技术( H-SRM),实现了一针进样对154种化合物的同时分析,整个分析过程可在在22分钟内完成,保证结果准确的同时大幅度提高了分析效率。4)TSQ Quantum GC串联气质在 EI源模式分析亚硝胺类化合物亚硝胺是一类强致癌化合物,例如N-亚硝基二甲胺(NDMA)是其中一种极具代表性的物质,其是水处理领域新近发现的一种氯化消毒副产物。亚硝胺可以通过亚硝酸盐与仲胺类反应生成。近年来这类物质在水环境中的检出率较高,因为其的强致癌性,对水体中的亚硝胺物质进行检测就显得尤为必要。美国环境保护署在2004年出台了亚硝胺的检测方法:USEPAMETHOD 521, 该方法是结合固相微萃取,大体积进样和正化学源进行样品检测。方法中我们开发了在串联气质上用EI源和常规进样体积进行亚硝胺的分析方法,该方法的进样体积是EPA521中的1/10, 低进样量可以避免了在进行大通量样品分析中引入了过多的背景介质,提高仪器的耐脏性。同时EI源是一般实验室中常用的离子源,大部分的分析都是在EI源上完成,这样用EI源分析亚硝胺,可以避免EI和CI的频繁切换,便有利于实验室的整体工作安排。5)TSQ Quantum GC用于甲胺磷,氧乐果和久效磷三种农药分析有机磷农药是农药残留分析中的重点,此类农药药效高,使用方便,被广泛的应用于农业生产中。相比于有机氯类农药的分析,有机磷农药由于极性大,分解较快,分析难度相对较大,尤其是其中的甲胺磷,氧乐果,久效磷等农药,其色谱行为较差,在新的柱效情况下,峰型较好。但是,一旦进过实际基质样品后,其峰型就变的极差,出现严重的拖尾,使得低浓度得样品分析变得非常困难。因此,很多实验室把这类的有机磷农药归类到LC/MS/MS上进行分析,但是,在液质联用上这类农药的出峰往往很早,这对分析也并不有利。实验用TSQ Quantum GC结合带有预柱的TR-Pesticide II气相色谱柱分析甲胺磷,氧乐果,久效磷,得到了非常出色的结果,1pg/ul样品有很好的色谱分离,在1pg/ul-200pg/ul的范围有良好的线性,且在1pg/ul低浓度下连续6针进样的RSD%在1.96%-3.07%。
  • 安捷伦Intuvo 9000带来气相色谱应用新方向
    p   多年来气相色谱实验室始终面临着类似的挑战——对于实验室管理者来说,意外停机、频繁切割色谱柱、繁琐的维护仪器,都会使实验室效率难以尽如人意。技术创新带来的回报不仅意味着业务连续性,也直接体现实验室的总体业务能力和收益。 /p p   安捷伦Intuvo 9000气相色谱系统是聆听用户声音、与客户共同开发设计的革命性气相色谱技术。Intuvo颠覆了传统操作模式,为用户提供全新的操作体验,帮助用户提升实验室整体效率。 /p p style=" text-align: center " img width=" 300" height=" 435" title=" 1.png" style=" width: 300px height: 435px " src=" http://img1.17img.cn/17img/images/201709/insimg/eaab0a21-04c2-4c87-a507-74283f8935f0.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 安捷伦Intuvo 9000气相色谱系统 /strong /p p   strong  高通量等于大收益,为环境检测带来竞争优势 /strong /p p   《土壤污染防治行动计划》为我国土壤污染防治指明了方向,随着“土十条”的逐渐贯彻深入,社会第三方检验机构全力参与到国家土壤污染治理的事业中来,为第三方检验机构带来了更多机遇,同时也带来了更大的挑战。 /p p   上海实朴检测技术服务有限公司是专注于环境检测的领先第三方检测机构,检测内容涵盖土壤、地下水等多项检测。实朴董事长杨进先生表示:“得益于国家土壤政策的发展,实朴的业务量上涨了很多,这使我们对实验室效率的要求也大大提高了,我们非常关注通量、效率、稳定性和成本。”基于对实验室高效率的追求,Intuvo 9000自去年八月一经问世,在充分了解和比较Intuvo的创新特点后,实朴就果断决定购买,成为了全球第一个订单,并率先将其应用到了半挥发性有机物(SVOC)和总石油烃(TPH)这两种土壤检测的重要应用中。 /p p   在土壤中SVOC的分析中,样品基质复杂、污染物的目标化合物浓度前后差异比较大,因此对仪器的耐受性和稳定性要求很高。Intuvo在通过优化方法,高质量完成检测的同时,提高样品分析通量,将整体检测效率提升了10%,有效的降低实验室的空间成本和仪器运行成本。杨进先生表示。“一台设备每月能够稳定分析约1500个样品,这对于第三方检测实验室是非常有利的竞争优势。” /p p   实朴也参与了环保部关于《土壤和沉积物总石油烃的测定气相色谱法》的方法验证工作。作为土十条的检测项目之一, TPH常规检测方法检测难度较高且耗时较长。Intuvo的直接加热模式让升降温更快,结合这一特点实朴开发了之前因升温速率低而受限的方法,在Intuvo 上使用保护柱芯片和反吹技术之后,分析效率取得了50%以上的提升。“Intuvo对实验室的帮助是有利于整个行业的,也起到了对第三方检测行业的推动作用。”在谈及产品对实验室的整体助益时,杨进先生如是说。 /p p    strong 降低检测操作门槛,为毒品毒物检测保驾护航 /strong /p p   公安系统实验室中的专业实验人员数量相对较少,且实验员更希望使用操作简单、维护简便的仪器。出于这样的考虑,河南某铁路公安局尝试了Intuvo 9000。“这款仪器操作界面清晰、免切割色谱柱的设计大大减少了我们日常检测与维护的时间。”一位实验员表示。 /p p   对公安系统实验室来说,检测效率至关重要。如果在相同时间内甄别出更多样品,就能够加快侦破进程。Intuvo在这方面的表现令实验员印象深刻:“可靠高效的毒品毒物检测结果为我们推进案件争取了宝贵的时间。”与传统气相色谱系统不同的是,Intuvo 拥有更高的加热与冷却速率,从而提高出峰效率,在紧急的侦破要求下能够满足刑侦人员对检测结果的需求,是快速破案背后的无名英雄。 /p p   strong  助力24小时监测,为石化研究提供稳定保障 /strong /p p   中国石化上海石油化工研究院是中国石化直属研究机构,也是国内最早从事石油化工科技开发的综合性研究机构之一,经研究院开发的一系列有机化工原料生产工艺及催化技术和成套工艺技术已居国际先进水平。 /p p   从80年代开始和安捷伦合作,研究院在近30年的时间里几乎用遍了安捷伦所有类型的气相色谱仪。研究院表征分析部主任王川先生说:“研究院的设备长年累月都在科研一线服务,很多设备需要连续24小时不停运转来完成全方位的监控使命。”由于设备的维护需要花费大量时间,因此研究院对气相色谱的高稳定性和高效性有着严格要求。“我们希望仪器在服务过程中稳定可靠,减少维修维护,而这在Intuvo的设计理念上都得到了很好的体现。” /p p   此外, Intuvo 色谱柱也给王川先生留下了较深印象,“更换起来非常简洁。之前耗时约20分钟的色谱柱更换现在1分钟内就能完成,这对于需要频繁更换色谱柱的研究机构来说有很大的竞争优势。” /p p    strong 结语 /strong /p p   用户的需求一直是安捷伦创新的原动力。安捷伦Intuvo 9000从用户角度出发,从解决实验室用户痛点切入,为各领域的实验室提供可信赖的解决方案,从而帮助实验室实现运营、科学和经济目标价值。 /p p    strong 关于安捷伦科技公司 /strong /p p   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50 多年的敏锐洞察与创新。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。 在 2016 财年,安捷伦的净收入为 42 亿美元,全球员工数约为 13,000 人。 /p
  • 电镜应用新突破:获取物质振动光谱
    光谱对材料和化学物质的振动行为有着敏感的反应,如红外光谱和拉曼光谱,被广泛用来了解物质的化学和物理性质。   虽然,从原理上来说材料和化学物质的振动行为也可以被&ldquo 电子能量损失谱&rdquo (EELS)检测到,但由于该效应比较弱,提取这种信号所需的能量分辨率一直以来在电子显微镜中还做不到。   不过,Ondrej Krivanek及同事最近的一项研究证明,振动谱能够以高空间分辨率在扫描透射电子显微镜中获得。该研究成果发表在10月9日《Nature》杂志上。论文中介绍了该研究在无机和有机材料方面的应用示例,其中包括氢的直接检测,这种能力在对氢存储材料和生物组织等各种不同系统的分析中可能会有很大用途。 Ondrej Krivanek   Ondrej Krivanek简介   Ondrej Krivanek生于1950年,捷克/英国籍物理学家,现居美国,为专业高性能电子显微镜制造公司Nion总裁及亚利桑那州立大学兼职教授。   原文检索:Vibrational spectroscopy in the electron microscope
  • 上海市化学化工学会与欧普图斯光纳科技成功举办拉曼光谱法快速检测技术应用研讨会
    7月13日,上海市化学化工学会与欧普图斯光纳科技联合举办的&ldquo 现场快速检测技术应用研讨会暨纳米增强拉曼光谱技术应用介绍&rdquo 专题研讨会,在上海市化学化工学会会场举行,有四十余家相关单位的专家和技术人员参加会议,其中包括来自上海市检验检疫局、上海市食品研究所、上海市刑科所、上海司鉴所、上海石化研究院、上海中宝宝玉石中心、上海市分析测试协会、中科院上海有机所、中科院上海药物所、复旦大学、华东理工大学等多位行业领军专家到会,参与交流和研讨。 吴天明教授主持会议 会议由上海市化学化工学会吴天明教授主持,学会秘书长叶德富先生致辞。欧普图斯光纳科技刘春伟总经理和郭洵博士分别作技术应用专题报告,他们着重介绍了纳米增强拉曼光谱技术原理,以及在食品安全、公安刑侦、环保监测、石油化工、制药、宝玉石鉴定和工业监测方面的应用现状和前景,并现场演示了快速检测过程。与会者们兴趣盎然,休息时便聚拢来提出各种与现场快速微痕量检测有关的问题。 刘春伟总经理作技术应用报告和检测演示 之前,主办方在会议通知中告知参会者可以携带需要检测的样品,当场随机进行检测。因此,一些科研人员带来了诸如含三聚氰胺的乳品、食用油、地沟油和化妆品原料等样品,等不到演示,便纷纷请欧普图斯光纳科技作样品检测。经现场一一试验,其结果博得在场专家和技术人员赞叹。很多与会者随即表示希望进一步联系和深入探讨。 现场检测参会者携带的样品 炎炎夏日,室外骄阳似火,而会场内也是气氛热烈。与会者们以自己的行业经验,结合纳米增强拉曼光谱检测技术,纷纷发表见解,认为这是一种值得推广的快速检测方法。 会议主办和参与双方均认为此次活动非常圆满,即使参会成员了解到当今前沿的检测技术,亦可推进企业产品的市场化进程,也为学会成员之间的进一步合作奠定了基础。
  • 聚焦“土”和“水” iCS2017深入探讨光谱在环境中的应用进展
    p    strong 仪器信息网讯 /strong 2017年5月23日-24日,由仪器信息网主办的第六届光谱网络会议(iCS 2017)举办。会议依托成熟的网络会议平台,致力于为国内的广大光谱工作者提供一个突破时间地域限制的学习平台,以促进业内交流,提高光谱研究与应用水平,并让大家足不出户便能聆听到光谱专家的精彩报告,节省时间和资金成本。 /p p   本届网络会议为期两天(5月23日-24日),分设四个专场:光谱在食品领域的应用进展 光谱在环境领域的应用进展 光谱在制药领域的应用进展 光谱新应用。大会邀请了20位业内光谱专家,以及厂商技术人员针对不同的主题做精彩报告,并与大家进行交流。 /p p   随着 “水十条”、“气十条”、“土十条”,以及《“十三五”生态环境保护规划》、《国家环境保护“十三五”科技发展规划纲要》、《“十三五”生态环境保护规划》、《“十三五”环境监测质量管理工作方案》等的相继发布和实施,分析仪器在环境领域的应用迎来了非常好的发展机遇,AAS、AFS、ICP-OES、ICP-MS等一系列光谱仪器也“当仁不让”。鉴于此,5月23日下午,iCS 2017举行了光谱在环境领域的应用进展专场会议。 /p p   本次会议邀请了中科院沈阳应用生态研究所王颜红研究员、中国环境科学研究院环境基准与风险评估国家重点实验室白英臣研究员,以及来自赛默飞、岛津、海光仪器、耶拿四大知名企业的相关专家进行报告。 /p p   从报告内容来看,本次会议讨论的主题聚焦“水”和“土”,6位专家报告有4位介绍了土壤中重金属等的检测,2位专家介绍了水中溶解有机质及有机汞的检测。各位专家在报告中不仅综述了我国在土壤和水质检测方面的相关政策标准,而且以详实的数据给出了具体的解决方案。 /p p    span style=" color: rgb(255, 0, 0) " strong 精彩报告展播: /strong /span /p p span style=" color: rgb(255, 0, 0) " strong br/ /strong /span /p p style=" text-align: center " img title=" 王颜红.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/099a85e2-1bc1-4984-bf83-411f86b6d498.jpg" / /p p style=" text-align: center " strong 报告题目:农田土壤及污染场地环境因子检测技术与监测评估 /strong /p p style=" text-align: center " strong 报告人:中科院沈阳应用生态研究所农产品安全与环境质量检测中心主任 王颜红研究员 /strong /p p   王颜红主要从事环境、食品中重金属及有机污染物的分析研究及风险评估工作,本次报告,其详细介绍了环境重金属污染物检测技术、农田土壤重金属监测与农产品安全、农田土壤环境监测评价与预警、污染场地监测与评价等方面的内容。 /p p   报告中,王颜红综述了当前重金属及元素检测采用的方法标准、涉及的指标、以及质量控制过程中的关键点:标准曲线、空白实验、平行密码样、有证标准物质,以及试剂、水、玻璃容器等注意事项,并详细介绍了课题组从事的多项研究工作,包括重金属监测的微波消解方法、重金属的同位素测定方法、重金属形态分析的HPLC-ICP-MS联用方法等。 /p p style=" text-align: center " img title=" 白英臣.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/eaeeb697-ae83-4161-8fdd-79c50072bb13.jpg" / /p p style=" text-align: center " strong 报告题目:分子荧光光谱在水体溶解有机质研究中的应用 /strong /p p style=" text-align: center " strong 报告人:中国环境科学研究院环境基准与风险评估国家重点实验室 白英臣研究员 /strong /p p   白英臣从天然溶解有机质(DOM)讲起,介绍了其课题组在DOM和环境痕量污染物相互作用、DOM和纳米富勒烯胶质相互作用、DOM中荧光物质识别及半定量分析、DOM质子化/去质子化研究等方面的研究工作。 /p p   具体来说,白英臣课题组采用三维荧光光谱法、同步荧光光谱技术测定了卡马西平与DOM的结合常数 创建了紫外吸收滴定法用于测定DOM 和Cu(Ⅱ)、Hg(Ⅱ)等重金属离子相互作用 利用荧光淬灭技术研究了DOM和纳米富勒烯胶质的相互作用 利用荧光分区积分技术进行我国标准富里酸及其亚组分的荧光物质识别及半定量分析 利用三维荧光技术和平行因子耦合技术,计算了富里酸荧光组分pK sub a1 /sub 和pK sub a2 /sub 值,首次报道了富里酸中类蛋白组分电离常数等。 /p p style=" text-align: center " img title=" 赛默飞.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/20340293-eaa9-45aa-8315-aa6e4707ca29.jpg" / /p p style=" text-align: center " strong 报告题目: 原子光谱分析技术在环境样品检测中的应用 /strong /p p style=" text-align: center " strong 报告人:赛默飞 王飞 /strong /p p   王飞在报告中介绍到,随着2013年9月的“气十条”、2015年4月的“水十条”以及2016年5月的“土十条”的发布和实施,一系列仪器标准方法也在不断的推出,如《农用地土壤环境治理标准》、《全国土壤污染状况详查实验室筛选技术规定》、以及《土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法》等,这些标准对土壤中重金属的限量要求及检测方法进行了明确的规定。 /p p   作为应对策略,王飞详细介绍了赛默飞完整的金属元素分析仪器及解决方案,包括iCE 3000 AA、iCAP 7000 ICP-OES、iCAP RQ ICP-MS、iCAP TQ ICP-MS、Element 2 等。 /p p style=" text-align: center " img title=" 岛津.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/7aa0cd21-c138-4e90-a446-7500c865ad8c.jpg" / /p p style=" text-align: center " strong 报告题目: 岛津原子光谱技术在土壤检测中的应用 /strong /p p style=" text-align: center " strong 报告人:岛津 李书友 /strong /p p   李书友在报告中详细解析了农业用地及建设用地中重金属的检测项目、限量标准、检测标准以及对应的仪器类型 全国土壤详查监测项目(农产品、地下水、土壤) 三部委土壤实验室筛查 以及《HJ781-2016 固体废弃物22种金属元素的测定 ICPMS法》、《HI766-2015 固体废物金属元素的测定 ICPMS法》等,并从检测限、灵敏度、分析价格和测量范围等方面比较了火焰AAS、石墨炉AAS、ICP-OES、ICP-MS等各种分析仪器的特性,指出ICP& amp ICPMS是未来的发展方向。 /p p   针对一系列仪器检测标准,李书友还介绍了岛津原子光谱技术在土壤检测中的应用,包括AA-7000、ICPE-9800、ICPMS -2030等,并进行了相关应用案例的分享。 /p p style=" text-align: center " img title=" 海光.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/1a2bbb6d-6c95-42ff-a0b8-3d114ddf57be.jpg" / /p p style=" text-align: center " strong 报告题目:LC-AFS技术在水质样品有机汞检测中的应用及条件优化研究 /strong /p p style=" text-align: center " strong 报告人:海光仪器 逯玉凤 /strong /p p   逯玉凤详细介绍了国内外烷基汞相关限量标准,及国内水中烷基汞的分析方法标准。据其介绍,国内早期用气相色谱法,但随着原子荧光连用技术的发展,LC-AFS技术的应用越来越多,其中陕西省和吉林省使用LC-AFS的两项地标(DB61/T 562-2013 DB22/T 2205-2014)已经发布。 /p p   在报告中,逯玉凤还解析了有机汞形态分析的一系列影响因素,包括色谱柱、流动相、氧化剂浓度、载流浓度、还原剂浓度、载气流速、屏蔽气流速、蠕动泵泵速、灯电流、负高压等。 /p p style=" text-align: center " img title=" 耶拿.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/0ce3b3cd-1b8c-466b-8a10-c93cf962c344.jpg" / /p p style=" text-align: center " strong 报告题目: 土壤中重金属及有害元素分析解决方案 /strong /p p style=" text-align: center " strong 报告人:德国耶拿 杨静 /strong /p p   杨静在报告中首先介绍了全国土壤污染状况详查土壤样品分析测试方法技术规定,并分析了土壤重金属及有害元素的分析难点,如前处理困难;浓度范围跨度大;谱线及基体干扰 土壤样品盐分含量高,而常规AAS、ICP等耐盐差等。 /p p   针对以上问题,杨静介绍了德国耶拿在土壤重金属检测方面可以提供的解决方案,包括固体样品直接进样技术、contrAA 800原子吸收光谱仪、PQ9000、PQ MS等。此外杨静还分享了土壤中Ni的测定、LC-ICP-MS对土壤中砷形态的分析测定等具体的解决方案。 /p p   5月24日,iCS2017精彩继续,分设光谱在制药领域的应用进展和光谱新应用两个专场,精彩内容请查看相关专题,或后续查看相关视频。 /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2017/#a0" target=" _blank" img title=" QQ截图20170524175857.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/5ce984d4-bef4-460a-afbe-ecbb6d274346.jpg" / /a /p
  • 质子传递反应质谱电离技术重大突破—新型1,4-二氟苯前驱体研发与应用
    质谱法是利用带电粒子在磁场或电场中的运动规律,然后按照质量或荷质比实现分离分析的技术。早在1898年,W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素。阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用以测定同位素的相对丰度,成功鉴定了多种同位素。质谱计的发展也从只用于气体分析和测定化学元素的稳定同位素到后来用于对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。 图1. 图左为英国物理学家J.J.汤姆孙,图右为诺贝尔化学奖获得者F.W.阿斯顿 质子传递反应质谱(Proton Transfer Reaction- Mass Spectrometry)是分析挥发性有机物(VOCs)的一种新的先进分析手段。该技术具有检测速度快、灵敏度高、无需内标定量测量等优点,特别适合挥发性有机物的实时在线监测与预警。基于多年挥发性有机物在线分析质谱研究经验,法国AlyXan公司研发的质子传递反应-傅里叶变换离子回旋共振质谱(BTrap)通过运用先进的傅里叶变换离子回旋共振质谱技术,使仪器的质量分辨率高达10000,成为质量分辨率高的质子传递反应质谱。BTrap具有高质量分辨率,高度与稳定性、低离子碎片、高灵敏度高、低检测限等诸多优势,可用于材料,环境,汽车工业,化工等多领域的气体组分在线监测分析,适应各种复杂实验气候与环境。 质子传递反应质谱一般采用质子(H3O+ )作为电离源,该技术的原理是大多数VOCs的质子亲和能高于水而低于高聚水,可以跟质子反应而被电离。但对醇,醛与长链烷烃类化合物,该方法的应用会受到很大限制。如正丁醇在正常测试条件下,不能测到分子离子峰,只能测到脱去羟基的丁烯的峰,为正丁醇的测试带来的很大困难。针对此类问题,法国AlyXan公司研发了一种全新的前驱体——1,4-二氟苯(C6H4F2)[1]。1,4-二氟苯的质子亲合能为718.7 kJ/mol,介于691到750 kJ/mol。因此C6H5F2+可以与大多数VOCs反应,同时产生更少的碎片,可以作为更加温和的质子转移试剂。同时1,4-二氟苯分子非常稳定,生成离子只会发生质子转移反应,不会参与其他反应。分子量比质子大,具有更小的质量歧视效应。 如图2所示,以正丙醇分子为例。在1.26×10-5 mbar的压力下,(a)采用C6H5F2+作为电离源,分子离子(C3H7OH2+)强度非常高,而脱羟基产物(C3H7+)的峰浓度一直维持再非常低的浓度;(b)采用H3O+作为电离源,脱羟基产物将为主要离子,分子离子峰为次要离子。说明有大量分子离子峰发生脱羟基反应,生成C3H7+离子。(c) 在更高的压力7.34×10-5 mbar下, 采用C6H5F2+作为电离源,分子离子峰(C3H7OH2+)依然为主要离子,脱羟基产物,水合离子及高聚水离子的含量非常少;(d) 采用H3O+作为电离源, 脱羟基产物为主要离子,分子离子峰为次要离子,同时有大量水合离子及高聚水离子生成。 图2. 以正丙醇为样品,离子相对强度图 1.26×10-5 mbar压力下, (a)C6H5F2+作为电离源,(b)H3O+作为电离源 7.34×10-5mbar压力下 (c)C6H5F2+作为电离源,(d)H3O+作为电离源。 从下表数据中可以发现,在其他有机物中可以有效重复试验结果,新型前躯体产生的C6H5F2+可以与大多数VOCs反应,并产生少的碎片信号。 除此之外,很多测试实例也证实了质子传递反应-傅里叶变换离子回旋共振质谱技术的先进性和可靠性,1,4-二氟苯作为一种新型的前驱体,有效解决了醇、醛及长链脂肪烃的测定难题,为质子传递反应质谱分析提供了突破性的解决方案。参考文献:[1] Latappy, H. Lemaire, J. Heninger, M. Louarn, E. Bauchard, E. Mestdagh, H. International Journal of Mass Spectrometry 2016, 405, 13.质子传递反应质谱;1,4-二氟苯;VOCs;高分辨率;少碎片相关产品:法国Alyxan公司高分辨质子传递反应质谱(BTrap):http://www.instrument.com.cn/netshow/C247308.htm
  • 质谱技术在文物保护领域的应用取得新突破
    来自加州大学圣塔芭芭拉分校(UCSB)和美国盖蒂保护研究所的研究人员合作,采用基于AFM的质谱技术来研究文物油画,空间分辨率达到了750纳米。   分析文物材料会面临一系列的挑战,如:样品非常小和有限,样品结构复杂,保持空间完整性十分重要,最重要的是样品往往非常的罕见和稀有。这些限制使得对于许多传统有机染料的鉴定充满挑战,尤其是在绘画当中使用的有机染料可能有多个有机染料层(取决于艺术家的技术),随后的保护和修复染料也是多层的。采用高空间分辨率手段研究这些有机化合物的种类对于弄清楚一幅画的历史非常重要,并且对于油画的保护也会很有帮助,因为这些染料分子在光照或其他环境因子的影响下很容易降解。因此,我们需要一种分析技术,它能够准确鉴定文物材料如染料当中的有机化合,并保持高空间分辨率。   质谱技术是一种广泛使用的化学表征技术,每年全球市场容量可达30亿美元。然而它的空间分辨率通常只能达到20微米左右,这使得它的应用颇受限制。由橡树岭国家实验室的研究人员 Gary Van Berkel博士开发的新型AFM-MS联用技术,采用AFM的纳米热探针对感兴趣的区域进行热脱附后送入质谱分析仪。加州大学圣塔芭芭拉分校Mattanjah de Vries教授和美国盖蒂保护研究所的Catherine Schmidt Patterson博士最近研发了基于这种技术的一种新技术,他们断开了AFM和质谱仪之间的联系,利用基于AFM的热脱附技术收集亚微米大小的样品,然后利用共振双光子电离技术加质谱技术进行分析。   利用这一AFM-MS技术,他们从一幅油画的界面获取了红色有机染料茜草红染料纳米级的化学成分数据,空间分辨率为750nm。他们能够从很薄的绘画层获取数个样品,并保持横截面的大部分以进行进一步的分析工作。Mattanjah de Vries教授说:&ldquo 我们对这一新的AFM-MS联用技术非常兴奋,它使我们首次实现了利用质谱技术在亚微米空间分辨率下研究文物材料当中的化学物质。&rdquo
  • 欧普图斯参加“全国地沟油检测、城市餐厨废弃物资源化利用和无害化处理应用研讨会”
    2012年1月6日-8日由中华环保联合会能源专业委员会主办的&ldquo 全国地沟油检测、安全管理暨城市餐厨废弃物资源化利用和无害化处理应用新技术、新设备交流研讨会&rdquo 在北京召开。   欧普图斯光纳科技应邀参加此次研讨会,刘春伟总经理在会议期间作《纳米增强技术在地沟油检测中的应用》的专题演讲,着重介绍了纳米增强拉曼光谱技术原理,以及在地沟油快速检测和食品安全方面的应用等,得到了各行业领导、专家的重视,与会者们以自己的行业经验纷纷提出了见解,认为这是一种值得推广的快速检测方法,表示希望进一步联系和深入探讨。 图1:刘春伟总经理作《纳米增强技术在地沟油检测中的应用》专题演讲 图2:参会者积极提问并做深入探讨
  • 欧普图斯光纳科技将参加2012中国食品与农产品质量安全检测技术应用国际论坛暨展览
    由中国仪器仪表学会分析仪器分会和中国仪器仪表学会农业仪器应用技术分会主办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会将于2012年6月5日至6日在北京国际会议中心举行。本届大会将围绕&ldquo 为构建我国食品安全保障体系,进一步推动食品、农产品检测新技术的广泛应用,完善食品与农产品质检体系建设&rdquo 的主题来开展论坛和展示活动。 欧普图斯光纳科技将参加本次论坛、展示产品和技术,并发表技术演讲。 欧普图斯光纳科技以其食品安全快速检测系统服务于中国食品安全检测领域,为食品和农产品安全提供高通量快速检测手段。 恭请各位届时莅临本公司展台(地点:北京国际会议中心一楼380展台,北京市朝阳区北辰东路8号)。 官方网址: http://www.cfaschina.com/
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 守护净土,助力三普——“第四届土壤检测技术与应用”网络会议即将召开
    土壤环境是生态环境的重要组成部分,土壤环境质量及其安全性不仅直接关系到农产品安全和人体健康,而且影响到国土资源环境安全和经济社会的可持续发展。2022年,第三次全国土壤普查工作正式启动,是时隔40年我国再一次对土壤进行的全面“体检”。2023年中央一号文件也特别强调:要做好第三次全国土壤普查工作;加强农用地土壤镉等重金属污染源头防治,强化受污染耕地安全利用和风险管控。在两会中,国务院政府工作报告也提到要加大土壤污染风险防控和修复力度;全国人大代表也提出了要高质量推进土壤环境管理和深入打好净土保卫战等的相关提案,土壤环境问题受到了高度重视!为了加强土壤环境监测检测、助力第三次全国土壤普查工作,了解当前土壤监测检测重点工作,及土壤污染物检测最新技术与应用,仪器信息网3i讲堂将于2023年5月9日-10日举办“第四届土壤检测技术与应用”网络会议。本次会议聚焦土壤三普技术、污染物检测、前处理方法等土壤环境领域热点、重点、难点,特别邀请了政府检测机构、科研院校以及企业资深技术专家共同探讨土壤检测技术及应用的最新进展和未来发展等,诚邀您参会!点击直达会议详情页面进行报名一、主办单位仪器信息网二、举办时间2023年5月9日-10日 9:00-18:00三、分会场主题设置【1】守护净土,助力三普【2】土壤无机污染物检测【3】土壤样品前处理【4】土壤有机污染物检测四、邀请专家(更新中)刘善江 质检中心主任北京市农林科学院植物营养与资源环境研究所研究员,目前兼任北京农产品安全学会常务理事,实验室资质认定评审员。主要从事士壤肥料质量的监测与评价、士壞改良与施肥技术、有机废弃物资源化循环利用等领域的研究与技术开发工作。已主持并完成的科研项目/课题30 余个,发表文章 50余篇,编著书籍5部,已请并获得国家发明专利 15项,获省部级奖励3次。刘青海 部门负责人西藏自治区农牧科学院农业质量标准与检测研究所 农业生态环境检测研究室从事农畜产品质量安全和农业产地环境相关检测和研究工作,在农业生态环境安全方面的项目申报和项目实施方面积累丰富经验,作为西藏农科院农畜产品产地环境安全与污染控制创新团队负责人先后主持和参与实施国家、省部级科研项目21项,发表论文17篇,参与编写著作2部。授权软件著作权4项,获区西藏农科院科技创新奖3项,多次参与农业农村部、国家认监委组织的土壤重金属和复合肥料能力验证, 2022年作为西藏自治区三普质控实验室内业检测负责人,圆满完成了2022年试点县三普内业质控工作。赵玉杰 研究员农业农村部环境保护科研监测所博士,研究员,天津市“131”第一层次人才,中科院合肥物质研究院特聘研究员,华中农业大学、沈阳农业大学、温州大学特聘研究生导师。2002年至今在农业农村部环境保护科研监测所工作。主要研究方向为农产品产地环境污染风险评价、重金属形态及价态检测技术与设备开发等。建立了覆盖全国的农产品质量安全环境因子风险评估数据库,开发了重金属有效态提取LDHs-DGT设备。主持研究任务23项。发表论文80篇,其中SCI收录15篇,第一及通讯作者37篇,获得专利19项,其中转化专利6项。作为主编出版专著1部,副主编出版专著2部,参编专著5部。赵小学 正高级工程师河南省土壤重金属污染监测与修复重点实验室生态环境部 环境监测“三五人才”、环境保护专业技术“青年拔尖人才”,河南省重点实验室技术带头人,全国环境监测方法标准化技术委员会委员。实验一线承担了历年国家网土壤例行监测、地表水采测分离,以及2018年全国农田土壤状况详查样品重金属分析工作。对原子荧光光谱仪、电感耦合等离子体-质谱仪、电感耦合等离子体-光谱仪、X射线荧光光谱仪、冷原子吸收光谱仪等仪器设备在水与废水、环境空气与废气颗粒物、固体废物、土壤及沉积物等样品重金属监测领域,有过硬理论知识和丰富实践经验。近10年来,中文核心期刊发表学术论文20篇;参与编著环境监测行业教材3部;主持制定地方标准5项,参与国家环境准监测技术标准3项;获批7件专利,发明专利3件;主持取得4项省级技术成果。钟明 工程师中国科学院南京土壤研究所主要从事环境中有机物分析方面的研究工作,作为课题负责人和技术骨干参与多项中科院创新前沿项目和国家自然科学基金项目。在环境有机物分析方法和未知物鉴定方面具有丰富的经验。高丽荣 研究员中国科学院生态环境研究中心长期从事新型有机污染物的分析方法和环境行为研究工作,建立了多维色谱分离分析复杂POPs的分析方法,方法获得国际同行的高度认可。开展了大气中有机污染物的非靶标筛查,识别出多种新型高风险有机化合物。多次作为负责人参加联合国环境规划署组织的POPs分析国际比对,比对结果优秀。编写了我国履行关于持久性有机污染物斯德哥尔摩公约成效评估监测报告,已提交联合国环境规划署。已发表SCI论文100余篇,授权发明专利2项,研制标准参考物质2项,编制生态环境部监测标准一项,获得国家环境保护科技二等奖获得者(排名3),主持国家重点研发计划课题、863计划项目课题、国家自然基金重大研究计划培育项目、国家自然基金面上项目、中国科学院知识创新工程重要方向项目等。陈虹 高级工程师中国科学院南京土壤研究所中国科学院南京土壤研究所土壤与环境分析测试中心工作,期间曾于澳大利亚格里菲斯大学访问留学。从事土壤与环境有机分析与方法学研究十余年,主要应用有机分析主流仪器GC、GCMS、LC、LCMS等从事环境污染物、土壤圈相关代谢物等分析。截止目前,获小分子有机酸检测方法发明专利授权1项,共发表论文36篇,其中SCI论文18篇。主持南京土壤研究所创新基金支撑的方法开发类项目2项,并参与多项国家自然科学基金项目、标准制定等。五、拟定日程5月9日上午分会场一:守护净土 助力三普三普土壤有效养分检测知识培训刘善江北京市农林科学院植物营养与资源环境研究所 质检中心主任待定睿科赛默飞痕量元素分析在环境土壤的应用张志杨赛默飞世尔科技(中国)有限公司 应用工程师三普内业测试化验质量控制解读刘青海西藏自治区农牧科学院农业质量标准与检测研究所 农业生态环境检测研究室 部门负责人5月9日下午分会场二:土壤无机污染物检测土壤重金属有效态提取及检测技术分析赵玉杰农业农村部环境保护科研监测所 研究员德国耶拿在环境土壤中元素分析的经验分享廖菽欢德国耶拿分析仪器有限公司 应用工程师待定钢研纳克土壤重金属检测关键点赵小学河南省土壤重金属污染监测与修复重点实验室 正高级工程师5月10日上午分会场三:土壤样品前处理土壤有机污染物前处理方法和技术进展钟明中国科学院南京土壤研究所 工程师土壤重金属检测分析中适用的移液产品与耗材张戈妍普兰德(上海)贸易有限公司 产品专员一站式元素分析,岛津方案助力土壤三普郑瑞岛津企业管理(中国)有限公司 应用工程师5月10日下午分会场四:土壤有机污染物检测环境样品中短链氯化石蜡的检测技术研究高丽荣中国科学院生态环境研究中心 研究员待定安捷伦水土中新型有机污染物全氟化合物LC-MSMS法检测陈虹中国科学院南京土壤研究所 高级工程师会议报名点击:https://www.instrument.com.cn/webinar/meetings/soil230509/
  • 新设备!Nature Nanotechnology揭示纳米光谱学仪器新开发及多功能应用!
    【科学背景】随着纳米技术的迅猛发展,科学家对于在纳米尺度下进行光谱分析的需求日益增加。尤其是在材料科学和纳米结构研究领域,对于在纳米尺度下了解材料的结构、性质和相互作用的需求十分迫切。然而,传统的光谱技术往往受到分辨率的限制,难以满足对于纳米尺度下样品的要求。原子力显微镜-二维红外光谱(AFM-2DIR)的出现引起了科学家的广泛关注。这一技术结合了原子力显微镜(AFM)的高空间分辨率和二维红外光谱(2DIR)的丰富光谱信息,能够在纳米尺度下进行光谱分析。2DIR是一种时间域的二维红外光谱技术,通过扫描一系列飞秒红外脉冲来提供丰富的光谱信息,揭示分子结构、非谐性、耦合和能量转移等信息。然而,传统2DIR技术的空间分辨率受到阿贝衍射极限的限制,无法满足对于纳米尺度下样品的要求。因此,科学家们开始探索将AFM与2DIR技术相结合的可能性,以克服空间分辨率的限制。之前的研究已经证明,基于AFM的红外(AFM-IR)技术可以通过机械光热检测实现纳米尺度下的红外成像。然而,将AFM与2DIR技术整合起来的研究还比较少见。为了解决这一挑战,美国里海大学Xiaoji G. Xu教授团队在“Nature Nanotechnology”期刊上发表了题为“Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy”的最新论文。本研究团队开发了一种新的纳米光谱学方法,即AFM-2DIR。该方法利用样品对红外脉冲序列的光热响应来实现空间分辨的红外光谱分析,克服了传统2DIR技术的空间分辨率限制。通过选择适当的信号提取机制,研究团队成功地将AFM与2DIR技术相结合,实现了在纳米尺度下对样品的光谱分析。通过该方法,研究团队成功揭示了样品中羰基振动模式的非谐性,以及在氮化硼等材料中声子极化子的能量转移途径。这一研究填补了纳米尺度下光谱分析技术的空白,为材料科学和纳米技术领域的研究提供了强大工具。【科学亮点】1. 本文首次实现了AFM-2DIR技术的集成:研究人员首次将原子力显微镜(AFM)与二维红外光谱(2DIR)相结合,创造了一种新的纳米光谱学方法。2. 利用光热响应进行光谱分析:该方法利用样品对红外脉冲序列的光热响应,结合峰值力红外(PFIR)显微镜提取光热信号,实现对样品的纳米尺度光谱分析。3. 揭示了样品的分子结构和能量传输:通过实验,研究人员成功揭示了样品中羰基振动模式的非谐性,并阐明了氮化硼(hBN)中声子极化子的能量传输途径。4. 结果丰富而有前景:通过该技术,研究人员得以在纳米尺度下探索样品的分子结构、振动非谐性和能量传输过程,为纳米材料和异质结构的光谱分析提供了新的研究手段。【图文解读】图1:具有峰值力红外peak-force infrared,PFIR检测的原子力显微镜 atomic force microscopy,AFM-二维红外光谱two-dimensional infrared spectroscopy,2DIR方法的操作流程。。图2. 羰基振动模式的2D-PFIR光谱表示。图3. 在h10BN薄片中,双曲声子极化激元phonon polaritons (PhPs) 的实空间映射和解释。图 4. 揭示能量转移h10BN的2D-PFIR光谱。图5: 在h10BN中,声子极化激元PhPs的传播特性和能量传递路径。【科学结论】原子力显微镜-二维红外光谱(AFM-2DIR)将在研究红外能量转移和模式耦合等问题上具有独特的优势,特别适用于异质纳米材料和结构。传统的二维红外光谱学在空间精度上存在不足,而AFM-2DIR则能够克服这一问题。其应用包括但不限于以下几个方面:1. 空间和光谱研究蛋白质二级结构;2. 聚合物的纳米相分离以及分子与声子/等离激元结构之间的模式耦合的调查;3. 在定制结构的双折射材料中极化子的能量转移研究,以及在低温下的研究;4. 识别振动模式的非谐性和能量转移对于研究异质催化反应中的反应性分子和中间体也是有益的。此外,AFM-2DIR还可以通过脉冲整形来生成相位稳定的脉冲序列,从而减少扫描时间。序列中的脉冲数量可以从三个扩展到四个,即在t1和t2之间引入等待时间τ,以进一步解读能量转移的时间尺度。类似的原子力显微镜光热检测也可以应用于可见频率,从而允许在光伏领域进行电子跃迁的原位研究。文献信息:Xie, Q., Zhang, Y., Janzen, E. et al. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy. Nat. Nanotechnol. (2024).https://doi.org/10.1038/s41565-024-01670-w
  • 以创新回馈用户,助益实验室释放潜力—— 安捷伦Intuvo 9000带来气相色谱应用新方向
    多年来气相色谱实验室始终面临着类似的挑战——对于实验室管理者来说,意外停机、频繁切割色谱柱、繁琐的维护仪器,都会使实验室效率难以尽如人意。技术创新带来的回报不仅意味着业务连续性,也直接体现实验室的总体业务能力和收益。安捷伦Intuvo 9000气相色谱系统是聆听用户声音、与客户共同开发设计的革命性气相色谱技术。Intuvo颠覆了传统操作模式,为用户提供全新的操作体验,帮助用户提升实验室整体效率。高通量等于大收益,为环境检测带来竞争优势《土壤污染防治行动计划》为我国土壤污染防治指明了方向,随着“土十条”的逐渐贯彻深入,社会第三方检验机构全力参与到国家土壤污染治理的事业中来,为第三方检验机构带来了更多机遇,同时也带来了更大的挑战。上海实朴检测技术服务有限公司是专注于环境检测的领先第三方检测机构,检测内容涵盖土壤、地下水等。实朴董事长杨进先生表示:“得益于国家土壤政策的发展,实朴的业务量上涨了很多,这使我们对实验室效率的要求也大大提高了,我们非常关注通量、效率、稳定性和成本。”基于对实验室高效率的追求,Intuvo 9000自去年八月一经问世,在充分了解和比较Intuvo的创新特点后,实朴就果断决定购买,成为了全球第一个订单,并率先将其应用到了半挥发性有机物(SVOC)和总石油烃(TPH)这两种土壤检测的重要应用中。在土壤中SVOC的分析中,样品基质复杂、污染物的目标化合物浓度前后差异比较很大,因此对仪器的耐受性和稳定性要求很高。Intuvo在通过优化方法,高质量完成检测的同时,提高样品分析通量,将整体检测效率提升了10%。杨进先生表示。“一台设备每月能够稳定分析约1500个样品,这对于第三方检测实验室是非常有利的竞争优势。” 实朴也参与了环保部关于《土壤和沉积物总石油烃的测定气相色谱法》的方法验证工作。作为土十条的检测项目之一, TPH常规检测方法检测难度较高且耗时较长。Intuvo的直接加热模式让升降温更快,结合这一特点实朴开发了之前因升温速率低而受限的方法,在Intuvo 上使用保护柱芯片和反吹技术之后,分析效率取得了50%以上的提升。“Intuvo对实验室的帮助是有利于整个行业的,也起到了对第三方检测行业的推动作用。”在谈及产品对实验室的整体助益时,杨进先生如是说。降低检测操作门槛,为毒品毒物检测保驾护航公安系统实验室中的专业实验人员数量相对较少,且实验员更希望使用操作简单、维护简便的仪器。出于这样的考虑,河南某铁路公安局尝试了Intuvo 9000。“这款仪器操作界面清晰、免切割色谱柱的设计大大减少了我们日常检测与维护的时间。”一位实验员表示。对公安系统实验室来说,检测效率至关重要。如果在相同时间内甄别出更多样品,就能够加快侦破进程。Intuvo在这方面的表现令实验员印象深刻:“可靠高效的毒品毒物检测结果为我们推进案件争取了宝贵的时间。”与传统气相色谱系统不同的是,Intuvo 拥有更高的加热与冷却速率,从而提高出峰效率,在紧急的侦破要求下能够满足刑侦人员对检测结果的需求,是快速破案背后的无名英雄。助力24小时监测,为石化研究提供稳定保障中国石化上海石油化工研究院是中国石化直属研究机构,也是国内最早从事石油化工科技开发的综合性研究机构之一,经研究院开发的一系列有机化工原料生产工艺及催化技术和成套工艺技术已居国际先进水平。从80年代开始和安捷伦合作,研究院在近30年的时间里几乎用遍了安捷伦所有类型的气相色谱仪。研究院表征分析部主任王川先生说:“研究院的设备长年累月都在科研一线服务,很多设备需要连续24小时不停运转来完成全方位的监控使命。”由于设备的维护需要花费大量时间,因此研究院对气相色谱的高稳定性和高效性有着严格要求。“我们希望仪器在服务过程中稳定可靠,减少维修维护,而这在Intuvo的设计理念上都得到了很好的体现。”此外, Intuvo 色谱柱也给王川先生留下了较深印象,“更换起来非常简洁。之前耗时约20分钟的色谱柱更换现在1分钟内就能完成,这对于需要频繁更换色谱柱的研究机构来说有很大的竞争优势。”结语用户的需求一直是安捷伦创新的原动力。安捷伦Intuvo 9000从用户角度出发,从解决实验室用户痛点切入,为各领域的实验室提供可信赖的解决方案,从而帮助实验室实现运营、科学和经济目标价值。
  • 【行业应用】赛默飞发布气相色谱法测定涂料和胶黏剂中的苯系物及水分含量解决方案
    赛默飞世尔科技(以下简称:赛默飞)近日发布测量涂料和胶黏剂中的苯系物及水分含量的解决方案。整套方法定量准确,操作简单,重现性好,能够满足涂料和胶黏剂中苯系物和水分检测的需要。 苯系物(BTEX)是苯(benzene)、甲苯(toluene)、乙苯(ethylbenzene)和二甲苯(xylene)的统称,属于单环芳烃类物质。苯属于IARC(国际癌症研究机构)第一类致癌物;甲苯、乙苯、二甲苯在溶剂分类中属中等毒性溶剂;甲苯、二甲苯蒸气长期接触可影响肝、肾等的功能。 苯系物主要来源于装修用的油漆、涂料、粘合剂、橡胶、树脂、装饰板材等材料中。与此同时,油漆涂料中的苯系物对人们的身体健康也造成了严重的威胁。因此,世界各国对油漆涂料中的苯系物做了限量要求。我国对油漆涂料中的苯系物作了明确的限量要求,《GB 18582-2008 室内装饰装修材料内墙涂料中有害物质限量》中规定苯、甲苯、乙苯、二甲苯总和不超过300mg/kg。气相色谱技术是一种可定性、定量分离分析技术,因其分离效能高、分析速度快、选择性好等优点被广泛应用。 本方法依据国家标准方法《GB 18582-2008 室内装饰装修材料内墙涂料中有害物质限量》规定的方法,对涂料和胶黏剂中的苯系物和水分进行测定。涂料和胶黏剂样品中的苯系物经甲醇提取后,采用Thermo Scientific? TRACE? 1300 气相色谱检测,外标法定量。结果表明,七种苯系物的平均回收率为92.3-104.9%,3 次平行测定的RSD 值≤ 4.1%,方法测定低限为1.0-3.5 mg/kg。水分经二甲基甲酰胺提取后,采用TCD 检测器进行检测,操作简单,重复性好,准确性高,能够满足涂料和胶黏剂样品中的测定要求。 更多产品信息,请查看:https://www.thermofisher.com/order/catalog/product/14800300?CID=News20160315 应用文章下载链接: http://tools.thermofisher.com/content/sfs/brochures/AN_C_GC-52-%E6%B0%94%E7%9B%B8%E8%89%B2%E8%B0%B1%E6%B3%95%E6%B5%8B%E5%AE%9A%E6%B6%82%E6%96%99%E5%92%8C%E8%83%B6%E9%BB%8F%E5%89%82%E4%B8%AD%E7%9A%84%E8%8B%AF%E7%B3%BB%E7%89%A9%E5%8F%8A%E6%B0%B4%E5%88%86%E5%90%AB%E9%87%8F%20v1-.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮 助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高 实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网 站:www.thermofisher.com 赛默飞世尔科技中国赛默 飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国 市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 千里“粽”香情 谱图惠万人 ——传谱图 得手机大奖
    千里粽香情,谱图惠万人。又是一年端午节来临之际,为了答谢广大坛友对谱图库的建设,资料栏目谱图库特开展“千里粽香情,谱图惠万人 传谱图得大奖”活动,诚邀您的参与与支持。共建共享是我们资料栏目的基本原则;我为人人、人人为是资料栏目的理念。只有资料栏目谱图库内容丰富了,我们才能找到想要的谱图,快来分享您手中的谱图吧!• 活动时间:2021年6月1日—2021年6月30日• 活动规则:1) 所有注册用户(含厂商)均可参加本次传谱图活动;2) 上传谱图审核通过后即可获得抽奖资格;3) 用户需根据要求上传谱图,谱图形式jpg、gif、word和pdf格式;若没有给出具体的上传要求,请根据实际情况在其他信息栏中将实验条件列出。4) 上传的谱图可以是色谱、质谱、光谱、波谱、电镜微观图、X射线图或者实验结果,尽量填写清楚谱图的仪器条件和进样条件对读者以参考,必须是自己或是所在公司做出的实验结果,即为原创不能转载。• 参与方式:目前只支持在电脑端参与分享上传 • 奖励规则:1) 实物礼品:小米手机、Kindle、2T移动硬盘、128G U固态硬盘、32G U盘2) 虚拟礼品:上传谱图达到5篇即可获得200积分,每人奖励一次3) 活动结束按上传有效谱图数来排名次4) 实物礼品数量有限,达到要求的按排名先后发奖5) 实物奖品每人有1次获奖机会,获奖者如果您的个人VIP信息有变动,请移步VIP中心进行变更• 奖励明细:奖品实物展示(仅供参考,以实际收到的实物为准)目前仪器信息网资料库(https://www.instrument.com.cn/download/)有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 桂花十里飘香 谱图惠及万人 ——传谱图 赢精品仪器书籍
    桂花十里飘香 谱图惠及万人——传谱图 赢精品仪器书籍桂花十里飘香,谱图惠及万人。又是一年桂花飘香之际,让我们分享的谱图也能给其他版友以余香。您分享的谱图,对其他用户而言,也许有参考和借鉴价值,可以核查其在实验方法中的不足。本期谱图共建,我们提供了精品的仪器分析检测书籍:《分析化学手册 第三版》、《高效液相色谱方法及应用(第三版)》、《气相色谱实战宝典》等。共建共享是我们资料栏目的基本原则;我为人人、人人为是资料栏目的理念。只有资料栏目谱图库内容丰富了,我们才能找到想要的谱图,快来分享您手中的谱图吧!• 活动时间:2021年11月4日—2021年11月30日• 活动规则:1) 所有注册用户(含厂商)均可参加本次传谱图活动;2) 上传谱图审核通过后即可算有效谱图数;3) 根据您上传的有效谱图数,可以获得不同纸质书籍的奖励;4) 用户需根据要求上传谱图,谱图形式jpg、gif、word和pdf格式;若没有给出具体的上传要求,请根据实际情况在其他信息栏中将实验条件列出;5) 上传的谱图可以是色谱、质谱、光谱、波谱、电镜微观图、X射线图或者实验结果,尽量填写清楚谱图的仪器条件和进样条件对读者以参考,必须是自己或是所在公司做出的实验结果,即为原创不能转载。• 参与方式 目前只支持在电脑端参与分享上传 • 奖励规则:1) 实物礼品:各类精品仪器及检测书籍(参见奖品明细)2) 虚拟礼品:上传谱图达到5篇即可获得200积分,每人奖励一次3) 活动结束按上传有效谱图数来排名次4) 实物礼品数量有限,达到要求的按排名先后发奖5) 实物奖品每人有1次获奖机会,获奖者如果您的个人VIP信息有变动,请移步VIP中心进行变更,如需沟通请加资料小助手客服微信(yiqiziliao)。• 奖励明细:目前仪器信息网资料库有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,精品的仪器及检测资料,等您来搜索查阅!
  • 谱图大牛,教你重新认识有机质谱谱图解析!
    有机质谱分析基于不同质荷比(m/z)的带电离子在电场或磁场中的不同运动行为进行定性或定量分析,具有灵敏度高、样品用量少、分析速度快、同时进行多组份分析等优点。近年来在我国发展很快,广泛应用于食品安全、环境保护、化学化工、制药、生命科学、材料科学等各个领域,成为日常工作中非常重要的定性定量分析方法。质谱的定性分析基于对质谱谱图的解析而实现,但由于有机化合物种类繁多,繁杂的裂解规律不易记忆,又缺乏解析的思路和方法,很多质谱分析人员在拿到谱图后常感觉到无从下手。 为适应广大分析技术工作者的需求,信立方培训中心将于2015年8月18日-21日在北京举办第十二期有机质谱谱图解析专题培训班,欢迎有志提高有机质谱谱图解析水平的分析人员来参加。 培训时间:2015年8月18-21日 培训地点:外国专家大厦(华严北里8号院外国专家大厦(北四环) 适用对象: 各企事业单位、科研院所从事食品卫生、检验检测、石油化工有环境监测及等行业负责分析测试的技术人员,以及各大专院校相关专业在校研究生及分析中心等技术人员。 学习目标: 系统掌握有机质谱谱图解析的基本方法,了解有机化合物的裂解反应类型和基本裂解规律,结合实例讲解谱图解析的基本思路和方法,为有机质谱的定性分析打下坚实基础。 课程特色: p 讲师均为长期从事质谱分析研究的高职人员,具有丰富的理论知识和实践经验; p 有机质谱谱图解析的基础知识、基本规律和精选实例相结合,深入浅出,通俗易懂; p 独有的有机质谱谱图解析水平测试题,可清楚的对比学习前后的技术水平; p 学员可带问题参加学习班,在学习班和专家即时讨论交流,解决实际问题; 授课专家:   1、王光辉 中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。代表著作:《有机质谱解析》;   2、苏焕华 北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。代表著作:《色谱-质谱联用技术及应用》; 3、授课专家不宜公开; 授课大纲:  一、谱图解析基础知识   1、原子中电子的排布   2、奇电子离子与偶电子离子   3、氮规则   4、环加双键值   5、同位素峰   6、单分子反应 二、离子的丰度   1、质荷比与离子丰度包含的结构信息 2、影响碎片离子丰度的基本因素 三、离子碎裂的基本机理  1、断裂  2、环的开裂  3、重排反应  4、置换反应   5、消除反应 四、常见有机化合物的裂解及质谱图特征   1、碳氢化合物   2、醇、酮、醛、酸、酯、醚   3、胺类、酰胺类   4、卤代物、硝基化合物 5、腈 五、由质谱图推测分子结构   1、基本方法及思路 2、实例练习 六、NIST谱图库检索实用技术   1、NIST谱图库简介   2、NIST谱图库主要功能 3、NIST谱图库检索实例 培训费用 每人3800元,2人以上组团报名可每人优惠100元(含报名费、培训费、资料费、培训期间每日午餐费用)。 颁发证书 参加相关培训并通过考试的学员,可以获得: 由信立方培训中心颁发并有授课老师签字的结业证书。该证书可作为有关单位专业技术人员能力评价、考核和任职的重要依据。 报名咨询 联系人:李茹 电话:010-51654077-8119/15910410867 邮箱:liru@instrument.com.cn
  • BiopharmaLynx软件在蛋白质肽图分析中的应用
    BiopharmaLynx软件在蛋白质肽图分析中的应用 周春喜 沃特世科技(上海)有限公司实验中心 在新药研发中,蛋白质药物正在占据越来越大的比重,而蛋白质分子结构的复杂性又要求对蛋白质药物必须进行全面的表征,以满足新药报批、工艺改进和专利保护的要求。目前蛋白质药物的研发和表征还面临很多挑战,尤其是在重组蛋白的序列确证、微量杂质蛋白的检测和定量、不同批次间产品的比较和质量控制等方面。质谱在蛋白质的表征方面发挥着至关重要的作用,它不仅可以测定蛋白质药物的分子量和产品的异质性,还可以通过肽图分析确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等信息。 但如果没有功能强大的软件帮助,质谱数据的分析、比较、注释、有效信息的提取和分析报告的产生将是一个十分费时耗力的复杂过程。如果进行人工分析,即使是经验丰富的分析人员也会感到很头疼,而且在如此复杂的分析过程中很难保证不出差错,而一旦出现差错,不仅会严重影响研发的进程,有些错误的判断还有可能导致整个项目的失败。因此,分析软件是必不可少的。理想的软件不仅可以按照标准的流程,自动地完成分析过程,还可以允许分析人员根据经验和知识对分析结果进行检查并修正错误的结果。沃特世公司的BiopharmaLynxTM软件就是这样的理想工具,它不仅可以自动地完成蛋白质分子量和肽图的分析,比较不同批次间的样品并确认有无差异,还具有以下特点: 肽图分析覆盖率高 肽图分析可以确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等。由于酶解后的样品中同时存在着蛋白质的完全酶切肽段、不完全酶切肽段、非特异酶切肽段、修饰肽段和杂蛋白肽段,因此肽图是非常复杂的。通过全信息串联质谱技术(MSE),可以同时记录样品中所有的母离子及其碎片离子信息。在全面信息的基础上,BiopharmaLynx软件将可以自动进行保留时间的对齐、强度归一化、痕量杂质分析、序列确证等工作。图1为BiopharmaLynx软件对两种干扰素产品肽图分析的鉴定覆盖率分析结果,及其序列对比界面。 二、BiopharmaLynx具有多种酶切功能 在计算理论肽图时,BiopharmaLynx可以进行多种方式的理论酶切,包括半酶切、多酶联合酶切、非特异性酶切,以及自编辑酶切等。全面满足实验中的各种酶切分析需求。 三、BiopharmaLynx具有多种翻译后修饰可选 在计算理论肽图时,BiopharmaLynx还可以考虑各种翻译后修饰。在内置90种常见修饰可供选择外,分析人员还可自行编辑其需要的特殊修饰方式用于分析。 四、修饰的肽段在不同样品间含量对比 BiopharmaLynx软件可以比较不同样品间某种肽段(包括突变肽段和特定修饰肽段)的含量差异,发现样品间的细微差别,并用直观的方式显示出来。 五、BiopharmaLynx的样品间肽图对比 BiopharmaLynx软件这可以自动地将各个批次样品的肽图与参照样品的肽图进行对比,帮助我们快速而敏锐地发现不同批次的样品间有无细微差别。 六、二硫键的定位 二硫键对于蛋白质高级结构的形成和功能的维持具有重要的作用,二硫键的定位也是蛋白质结构分析的重要方面。但是二硫键的定位一直很耗时且非常具有挑战性的事情,尤其是对于含有多对二硫键的蛋白质,如免疫球蛋白等。沃特世公司的肽图分析完整解决方案通过独特的UPLC/MSE数据采集方式和功能强大的BiopharmaLynx软件,可以快速地自动完成二硫键的定位分析(见图6)。 在生物药领域,BiopharmaLynx软件作为液质数据分析最为专业的软件已经被广泛使用。目前,全球前十大生物药企业都已成为沃特世生物制药解决方案的使用者。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 质谱成像:沃特世全谱图分子影像系统介绍
    p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像 /span /strong    /p p   全谱图分子影像系统将多种分析技术整合至同一仪器平台并进行了优化,能够更好地了解细胞功能和生理机能,或监测整个组织或器官中的药物化合物分布情况。它可以结合多种成像技术获得全面分析结果。& nbsp /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/222f22ae-9fa8-40b9-a478-bfe553697df5.jpg" / /p p style=" text-align: center " strong 小脑中三种脂质离子的特定分布叠加图像 /strong /p p   沃特世全谱图分子影像系统通过将MALDI& #8482 、DESI、离子淌度质谱技术和信息学工作流程整合入单个系统,可以带来其它任何单一影像技术都无法企及的详细分子信息。全谱图分子影像系统可用于: /p p   发现、识别并测定目标分子的空间分布; /p p   有效研究各种大分子和小分子; /p p   无需标记探针即可进行成像研究; /p p   可从单个样品获取尽可能多的信息; /p p style=" text-align: left "   获得关键化合物的最终分子分布。& nbsp /p p   全谱图分子影像功能能够帮助用户更加深入地了解癌症潜在机制,并能够通过测定细胞和组织中的分子转运发现心血管疾病以及神经退行性疾病。在其它研究中,全谱图分子影像系统可根据分子组成对不同的组织类型进行鉴定,也可以区分病变和正常组织。& nbsp & nbsp /p p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像技术 /span /strong /p p   全谱图分子影像系统可用于Xevo G2-XS或SYNAPT G2-Si质谱平台。如有需要,上述全谱图分子影像系统完全可作为标准ESI-TOF仪器用于除分子成像之外的其它应用。 /p p   全谱图分子影像系统与质谱技术结合后非常适用于分析特定类型的分子(多肽、脂质、小分子代谢物和糖类等等),这两项技术相互补充,可为质谱成像提供最全面的信息。& nbsp /p p    strong 全谱图分子影像系统可采用的技术包括: /strong /p p    strong 基质辅助激光解吸电离(MALDI)成像 /strong /p p   MALDI成像技术利用激光直接电离法分析化学基质包被样品中的分子。MALDI成像技术是公认的质谱成像应用标准技术。 /p p   利用MALDI质谱成像技术直接生成组织截面的图谱是一种直接从生物学基质研究其大、小分子空间分布的强大工具。质谱数据图像的描述作为二维图像,允许从视觉上确定其分子的空间分布。不像昂贵耗时的传统空间图谱方法,如放射自显影术、闪烁计数器,它不需要放射标签。 /p p   MALDI SYNAPT& #8482 HDMS& #8482 系统成像设备,为小分子、药物及其代谢产物提供了最佳的特异性和灵敏度。MALDI Q-Tof Premier& #8482 质谱仪,利用一个能够进行快速数据采集的200赫兹固态激光器,可以方便地提取质量、强度和位置等信息。提取的数据可以输入适当的软件包,如用于图像生成和操控的BioMap(Novartis)。其技术优势为: /p p   卓越的空间分辨率; /p p   适用于分析多种分子类型; /p p   尤其擅长大分子成像。 /p p    strong 电喷雾解吸电离(DESI)成像 /strong /p p   DESI成像技术利用溶剂电离喷雾直接进行成像,此电离技术无需进行样品预处理。沃特世在传统DESI成像技术的基础上强化了其功能性,赋予该创新型成像方法以更好的可用性和性能。使用DESI成像技术的部分优势: /p p   最简单的样品制备过程; /p p   擅长脂质和小分子成像; /p p   可在同一个样品上进行多个成像实验。 /p p style=" text-align: center " img title=" DESI_MaldiWorkflow_White.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/d38df7b4-3558-4637-9e34-f18a3c1bd077.jpg" / /p p style=" text-align: center " strong DESI-MALDI流程图 /strong /p p   strong  离子淌度技术的质谱成像 /strong /p p   离子淌度可为成像研究增加另一个维度的分子分离,此技术能够根据分子大小和形状对其进行分离分析。离子淌度技术可用于消除干扰或分离目标分子用以通过更加严格的审查,利用更强的分子区分能力来提升成像系统分析性能。离子淌度可用于: /p p   消除图像中的干扰分子; /p p   区分结构极其相似的分子(例如脂质等); /p p   分离特定类型的目标分析物。 /p p style=" text-align: center " & nbsp img title=" 1Triwave_Figure10_lg_700.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/4aeda8b7-4c91-428b-a85a-5c896fac8c01.jpg" / /p p style=" text-align: center " strong 离子淌度分离技术 /strong /p p   与UPLC/MS不同,质谱成像在电离前不涉及任何形式的分离。由于观察的详细程度和可能的背景干扰,产生的数据通常非常复杂。SYNAPT HDMS实现了MALDI和DESI成像与离子淌度质谱的强大结合,离子可以按质谱成像实验中的化合物种类和电荷进行气相分离,提供单独的质谱不具备的选择性水平。该技术可以使得到的成像数据更清楚,可以更精确地看到背景存在下的分子分布。 /p p style=" text-align: center " img title=" 1DESI-Systems.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/955d4a17-0825-444a-acef-9c6f1de56666.jpg" / /p p style=" text-align: center " strong 全谱图分子影像系统所采用技术 /strong /p p    span style=" color: rgb(84, 141, 212) " strong 全谱图分子影像系统组件 /strong /span /p p    strong SYNAPT G2 Si质谱仪 /strong /p p   SYNAPT平台是一款功能强大且非常灵活的仪器,可配备各种选件(MALDI、DESI、离子淌度技术)进行成像研究。这款强大的系统可根据具体需要添加任意数量的配置,能够最好地满足几乎任何实验室对分析性能的要求。SYNAPT G2-Si在所有成像模式中均表现出众,是唯一能够将离子淌度功能与成像技术充分结合的系统。基于SYNAPT的全谱图分子影像系统非常适用于蛋白质组学、代谢组学、细胞生物学、生物化学乃至临床研究病理学和组织学应用,是质谱成像研究的终极解决方案。 /p p    strong Xevo G2-XS QTof质谱仪 /strong /p p   Xevo G2-XS QTof是一款高性能、高灵敏度分析平台,专为某些最具挑战性的成像研究而设计。全谱图影像系统借助Xevo G2-XS QTof出色的分析性能并结合DESI成像技术,能够对整个样品和组织中的小分子分布进行研究,尤其适用于脂质组学、代谢组学和药物分布研究。 /p p style=" text-align: center " img width=" 200" height=" 345" title=" _1rgp8465_ian2.jpg" style=" width: 200px height: 345px " src=" http://img1.17img.cn/17img/images/201708/insimg/055e40bb-04f6-471f-8746-0b498bd9c17c.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp /p p style=" text-align: center " strong Xevo G2-XS QTof质谱仪 /strong /p p    strong HDI成像软件 /strong /p p   这款功能强大且直观的软件包中含有针对复杂成像数据进行高效、快速数据分析时所需的全部数据分析和先进统计工具。HDI软件简单易用且专门为质谱成像而开发,可查询多维度数据,并能够轻松给出丰富详实的图像和统计数据,这些都使得质谱成像技术成为一项极具前景的分析技术。 /p p style=" text-align: center " img title=" 1WG_HDI_Software_schematic_950px.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/78843426-0455-43b6-af8d-930c34f8143a.jpg" / /p p style=" text-align: center " strong HDI成像软件 /strong /p p & nbsp /p
  • LUFFT VENTUS-UMB在风电市场的应用
    LUFFT VENTUS-UMB在风电市场的应用背景 近年来,随着全球对风能资源的普遍关注和风力发电行业的迅速发展,各国政府、企业大量投资兴建风电场。风速风向仪是风电机组正常运转不可或缺的组成部分。 风速风向仪的主要功能:一方面是为风机提供风向,调节机头对准风向;另一方面是为风机提供风速来调节叶片变桨角度和风机的切入切出。 当前风电市场上,应用的风速风向仪多为机械式风速风向仪,其凭借结构简单、价格低廉占据了很大的市场。但是其缺点也值得引起我们足够的重视:§ 由于机械式风速风向仪依靠轴承的转动完成测量,其精度及寿命取决于轴承,在风沙扬尘严重及腐蚀性严重的沿海地区,轴承由于异物及腐蚀引起卡转,其寿命较短。§ 风速风向仪是风机的眼睛和耳朵,在低风速时,如果风速不准,会引起发电效率低,累计发电量少;在高风速时,风速不准引起叶片变桨角度偏差,导致叶片表面承受的风压超出设计范围,影响叶片的寿命甚至损坏,同时高风速时,如果风速存在较大偏差,导致风机不能及时切出,将引起风机超速甚至倒机,严重威胁着风机的生产运营。§ 由于机械式风速风向仪有限的加热功率,冬季经常会出现风速风向仪结冰状况,造成风机停机,严重的影响了风机的发电效率,损失客户的发电量,造成客户的经济损失。 优选方案 相较于机械式风速风向仪,Lufft VENTUS超声波风速风向仪有着明显的特点:多参数输出,测量输出风向、风速、虚拟大气温度、气压和密度;高精度、高量程,风速最高达到90m/s,测量精度达到2%,风向分辨率0.1°; 具有防盐雾腐蚀功能,铝镁硅合金材质,IP68防护等级;加热功率大,最大240W的加热功率;接口丰富,同时配备RS485接口和模拟量接口(风速:电流、电压和频率信号,风向:电流和电压信号);独特的空气密度输出,具备独特的空气密度测量及输出功能o 为风机的功率曲线的优化提供精确的气象参数参考;o 为客户提供风机运行状况及发电量变化受现场气象因素的影响提供参考;o 分析风场各种数据,为客户的发电量预测提供气象因素的参数支持;o 为主机厂针对具体项目的的风机优化设计提供理论及数据上的支持 ;测试报告和认证o 通过中国国家指定的气象仪器产品监督检验中心(CNAS)产品质量的认证及检定,并取得产品合格报告;o 德国WINDGUARD 90m/s的测试;o CNAS的盐雾测试报告;o 振动测试;o 老化测试;o EMC测试;o 防冰冻测试;o TUV/UL认证; 方案实施安装Lufft VENTUS超声波风速风向仪,具体方案实施主要包括以下几个部分:机械安装:在支架上固定VENTUS,其安装支架直径48-50mm。供电电源:VENTUS的加热功率比较大,需要额外的220VAC/24VDC 300W的开关电源,所以需要从控制柜的220VAC取电。信号匹配:VENTUS本身具备风速输出0/4-20mA或0/2-10V或2-2000HZ的模拟信号;风向输出0/4-20mA或0/2-10V的模拟信号;根据主控要求,对VENTUS进行配置即可。安装图
  • 东华理工同位素技术应用取得重要突破
    生命起源与热水有关吗?地震预报中同位素技术会有新招?江西温泉有什么特点?南昌市酸雨有何规律?这些涉及人类起源和江西发展前沿的科学问题,东华理工大学孙占学教授课题组给出了答案。因取得重要突破和应用创新,该校"同位素技术在资源与环境研究中的应用"研究成果,荣获"江西省自然科学二等奖"(排名第一),受到2009年江西省科技奖励大会的表彰和国内外专家的高度评价。   探索生命起源与自然之谜   所谓同位素,是指质子数相同而中子数不同,在元素周期表中占有同一位置的各核素称为该元素的同位素。同位素技术在地球与环境科学研究领域中广泛应用,是探索生命起源与自然之谜的重要手段。   "我们研究发现,寒武纪生命大爆发的起因与大气氧浓度增高及海平面上升有关,并证实生命起源和演化与热水作用密切相关。"孙占学教授说:"该成果对研究生物的起源与演化,具有重要的理论意义。"   通过对江西省及其邻区地热系统的稀有气体研究,课题组不仅发表了该省第一批9个稀有气体同位素数据,填补了该区研究的空白,而且得到了稀有气体同位素可作为构造(地震)活动的指示剂的新认识。孙占学教授解释:"地震爆发前,一般岩层会变形、产生裂缝,断裂构造会趋于活跃,这有利于地球深部气体的逸出,通过同位素示踪技术,我们可以查明气体组份的起源,并有望为预测地震提供辅助判据。"   发现江西地热和酸雨的奥秘   通过同位素技术,课题组对古环境与古气候、现代生态环境、矿床成因、资源勘查与地热等五个方面开展的深入研究,取得了系列创新性成果。   以江西地热资源为例,课题组对江西赣北庐山温泉、赣中马鞍坪温泉、赣南横迳温泉等温泉的起源进行了研究,发表了江西省首批45个天然水的H、O同位素基础数据。他们还发现江西地下热水属大气降水深循环补给,年龄为数十至数百年,深部温度为70-120℃的中低温热水资源,具有良好的医疗价值,适合作为医疗保健、疗养、休闲、娱乐等方面的开发利用。   此外,南昌市为我国重要的酸雨地区之一,硫是酸雨形成主要因素。经过对南昌地区大气降水的硫同位素研究,课题组发现,大气降水中硫同位素的季节变化规律:南昌地区酸雨中硫既有人为成因硫(主要是燃煤产生),又有生物成因硫。在夏秋季节以生物成因硫为主,而冬春季节以人为成因硫为主。该研究为南昌的大气治理提供又一重要的科学依据。   研究成果受国内外广泛关注   创建于1956年的东华理工大学具有鲜明的核特色和地学优势,现设有"核资源与环境"教育部重点实验室、国际原子能机构铀矿地质和同位素水文学高级培训中心。2001年,该校孙占学、潘家永、杨亚新、王光辉等10多位教授组成的课题组,依托教育部重点实验室先进的同位素质谱仪等设备,在"江西省碳酸温泉气体的演化及其水文地质意义"等4项国家自然科学基金项目资助下,在同位素研究领域进行了长达八年的系统研究和协同攻关。   近年来,孙占学教授课题组共发表论文110篇,其中SCI、EI、ISTP论文57篇,这些论文中有66篇次被国内外重要SCI刊物上的论文所引用,并有3篇论文被刊登在国际最著名的刊物《Nature》上的论文应用,160多篇次被国内刊物上的有关论文所引用。   中科院院士汪集旸研究员、中国工程院院士钱七虎教授等对此高度评价:"孙占学教授课题组进行同位素技术应用的开拓研究,取得重要突破,在许多方面的研究填补了国内空白。"
  • 迅数科技“平板图象分析在检测中的应用”报告
    为有效预防、及时控制和消除食源性疾病的危害,不断完善公共卫生检验技术,提高检测水平,宁波预防医学会于2009年10月20-24日举办了《食源性疾病的微生物检测研究与溯源》培训班。迅数科技应邀做了主题为“平板图象分析技术在食品微生物快速检测中的应用”的技术报告。      图:迅数科技代表在微生物溯源与检测培训班做技术交流   迅数全自动菌落计数分析仪-迅数G6-仪器原理是首先由仪器获取平板的数字图象,然后由菌落计数软件对平板图象进行分析:利用目标菌落与培养基背景间颜色和亮度的差异信息分析实现对同一平板上所有菌落轮廓的自动识别,自动标记,自动累计计数和菌落形态数字化分析。   其“菌落计数模块”1小时轻松处理400个平板的菌落计数和分析报告,在获取保存培养基菌落图片后1秒钟即可得到准确菌落总数(包括细菌、霉菌、酵母菌和乳酸菌) 其“菌落形态分析”功能可辅助实现培养基质量控制检验。其“抑菌圈分析模块”可自动检测培养基平板上任意位置,任意大小的多个抑菌圈并根据测量的准确直径进行抗生素效价换算及β-内酰胺酶类药物(金玉兰酶)添加与否的检验,其“药敏分析”功能可将测得的抑菌圈数据同仪器配套的最新更新抗微生物药物敏感性判断数据库进行比对分析,得出目标菌的耐药分析结果。   该报告还详细介绍了迅数G型菌落分析仪对2009年最新颁布的国家食品卫生标准SN/T2098-2008-“食品和化妆品中的菌落计数检测方法-螺旋平板法”)中的“螺旋平板计数”和GB4789-2008食品卫生微生物学检验标准中的“3M Petrifilm细菌总数测试片”等新方法的自动分析支持。
  • 能谱知识学堂:乙醇红外光谱图测试会用到哪些红外附件?
    天津能谱科技红外光谱仪部门培训近日专门对乙醇的测试方法进行了探讨研究,使用了各种窗片材料及膜层厚度在ican9傅立叶红外光谱仪上进行了反复多次红外测试,最终得出了一个极为满意的结果。具体的测试方法及膜层厚度数据都在密封池的使用说明书中有极为详细的叙述,保证您用这种标准密封池测试出你满意的图谱。2010版国家药典规定了乙醇必须用红外光谱仪绘制谱图,以鉴定其真伪及纯度。乙醇属于液体,一般是95%的酒精度,里面含有5%的及其他物质,在红外光谱仪上制图时样品膜层厚度要求尽量的薄,厚了是绘制不出峰来的。对于经常需要对乙醇进行测试的用户,可以使用天津能谱科技为你准备的长久使用的密封池,乙醇专用硒化锌密封池。其优点是:可以反复长久使用。缺点是:波长范围4000-440cm-1基本符合但稍短于药典规定的4000-400cm-1,透过率稍低,在70%左右。损失了红外光谱仪30%的能量,对于那些使用多年能量降低的仪器来说是致命的缺陷,会降低仪器的分辨能力而影响图谱质量。对于真正只想对乙醇进行测试结果,而不是为了上交图谱的用户,可以使用天津能谱科技为你准备的只看结果密封池乙醇专用氟化钙密封池。其优点是:可以反复长久使用,而且完全可以测试出乙醇的特征峰,因为乙醇的特征峰均在4000-1200cm-1而氟化钙可以在4000-1100cm-1,透过率高,在90%左右而不会损失仪器能量。缺点是:波长范,4000-1100cm-1不能符合药典规定4000-400cm-1,所以不能作为国家药典规定的标准图谱。对于正规的乙醇红外光谱图,国家药典要求在4000-400cm-1的波数范围内测试,那么必须使用天津能谱科技为你准备的低成本溴化钾密封液体池乙醇标准密封池。配备有4片溴化钾窗片。尤其是对于一般不是经常需要对乙醇进行测试的用户,一般是一两个月才需要测试一次的用户更是合适,其优点是:波长范围符合药典规定4000-400cm-1,透过率高,大于90%,不会损失仪器能量,图谱完全符合国家标准。缺点是:溴化钾窗片容易潮解,对密封防潮保管的要求较高。使用次数濒繁时透过率降低太快。只是经常使用会消耗较多的溴化钾窗片,增加了使用成本。延伸阅读:红外光谱仪测试样品送检要求?为了保护红外光谱仪仪器和保证样品红外谱图的质量,送本仪器分析的样品,必须做到:(1)样品必须预先纯化,以保证有足够的纯度 (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰 (3)易潮解的样品,请用户自备干燥器放置 (4)对易挥发、升华、对热不稳定的样品,请用带密封盖或塞子的容器盛装并盖紧,同时必须在样品分析任务单上注明 (5)对于有毒性和腐蚀性的样品,用户必须用密封容器装好。送样时必须分别在样品瓶标签的明显位置和分析任务单上注明。 能谱科技作为国内先进的红外光谱仪制造商,生产的ican9傅立叶红外光谱仪具有先进的红外光源系统、稳定的光学系统、高性能的电子系统、人性化的操作系统、极强的防潮处理、丰富的扩展性等特点广泛应用于医药、化工、高校、环保等领域,得到了广大用户的好评。
  • 热电公司FinniganTM液质联用系统的领先技术与应用突破
    复杂样品解决方案的再定义 —热电公司FinniganTM液质联用系统的领先技术与应用突破 为满足客户的日益更新的检测和分析需求,热电集团色谱与质谱部将在全国主要城市举办技术应用巡回讲座。来自热电公司的资深分析专家将与您面对面交流,向您介绍热电公司液质谱系统的领先技术与最新的应用突破。通过本次讲座您将了解:如何建立快速有效的分析方法进行药物代谢研究和复杂体系化合物结构确认,生物分析中最新的定量辅助工具等,安全食品危害残留物检测与方法优化。届时我们将恭候您的光临! 讲座日程安排 08:30-09:00 来宾签到 09:00-09:30 致欢迎辞 业务部门负责人 09:30-10:30 热电公司FinniganTM液相质谱家族系列产品和最新技术 质谱专家 成都 介绍热电FinniganTM液相质谱家族的产品及发展历史,介绍药物研发过程中定量分析的两种最新辅助软件包:LCquan2.5和QuickQuan;介绍前沿技术FAIMS和HESI。 10:30-11:00 休息 11:00-12:00 优化药物代谢研究的分析策略 液质谱 应用工程师 孙晓娟、代景泉 介绍热电公司FinniganTM线性离子阱质谱LXQ的独特性能以及药物代谢产物的快速和可靠鉴定;加快新药发现的速度。举例介绍Data Dependent MSn功能如何解决超快速液相分析方法中共流出物的分析,如何得到复杂体系中低含量离子的MSn谱图和结构信息,以及同时进行定性定量分析。同时介绍TSQ在药物代谢中的独特应用。 12:00 – 13:00 午餐 13:00 – 14:00 热电公司FinniganTM液质谱在食品中危害残留物分析的解决方案 液质谱应用工程师 刘飞 介绍EPA和EC标准法规,食品中的农药、抗生素和其它禁用成份分析的灵敏度提高和操作流程优化。介绍GC/MS、LXQ、TSQ在食品安全分析中的独特应用 14:00 – 15:00 复杂体系中结构确认的策略:高分辨质谱、准确分子量和MSn 应用部经理 王勇为博士 通过功能强大的软件如MetWorks和Mass Frontier对LTQ-FT和LTQ-Orbitrap得到的精确分子量全面分析,对药物代谢和代谢组学的成份进行可靠的结构鉴定 15:00 结束 ※ 如果您有意参加讲座,请联系: 热电(上海)科技仪器有限公司市场部 电话:010-58503588-3254 传真:010-66210851 联系人:吴昭 先生 或请登陆我们的网站:http://www.thermo.com 讲座日程附后: 讲座日程:(请选择并打√): 第一轮: 2006年4月10日 周一 福州 地点:金源国际大饭店 三楼 第二宴会厅 地址:福州市温泉公园路59号 2006年4月11日 周二 厦门 地点:金雁酒店 二楼 望湖会议室 地址:厦门市湖滨南路99号 2006年4月12日 周三 广州 地点:广州国际大酒店 二楼 浣溪沙厅 地址:广州市环市东路339号 2006年4月13日 周四 长沙 地点:通程国际大酒店 五楼 宴会D2厅 地址:长沙市韶山北路149号 2006年4月14日 周五 杭州 地点:杭州望湖宾馆 三楼 奥林匹斯宫 地址:杭州市环城西路2号 2006年4月17日 周一 武汉 地点:白玫瑰大酒店 三楼 多功能厅 地址:武汉市武昌民主路788号 2006年4月19日 周三 重庆 地点:重庆金源大饭店 国会厅 地址:重庆市江北区建新北路二支路1号 2006年4月20日 周四 成都 地点:银河王朝大酒店 六楼 多功能厅 地址:成都市锦江区下西顺城街99号 2006年4月21日 周五 南京 地点: 玄武饭店 玄武厅 地址:南京市中央路193号 第二轮: 2006年5月9日 周二 北京 地点:西苑饭店 四楼 鸿运厅 地址:北京三里河路1号 2006年5月10日 周三 大连 地点:大连瑞士酒店 七楼 大宴会厅1区 地址:大连市中山区五惠路21号 2006年5月11日 周四 长春 地点:长春名门饭店 三楼 万紫千红多功能厅 地址:长春市人民大街4501号 2006年5月12日 周五 沈阳 地点:沈阳洲际酒店 象牙厅 地址:沈阳市和平区南京北街208号 2006年5月15日 周一 郑州 地点:大河锦江饭店 太行厅 地址:郑州市花园路66号 2006年5月17日 周三 济南 地点:济南贵和皇冠假日酒店 皇冠宴会厅 地址:济南市天地坛街3号 2006年5月19日 周五 西安 地点:金石国际大酒店 5楼 宴会厅A 地址:西安南二环东段398号
  • “质谱图”成复旦投毒案辩论焦点
    据新民网现场直播庭审消息,黄洋是否被毒死?还是其他原因致死?成为今天复旦投毒案二审辩论的焦点。辩方两位律师在庭审中多次提及关键证据质谱图,并称只有得到该图,才能知道黄洋中何毒、以及毒品的剂量,但检方却迟迟不肯拿出。   庭审中辩护人指出,按照水桶中1200毫升的量算,黄洋喝下去的不到致死量。辩护人在庭审中多次表示,辩护人多次要求检方出示关键证据质谱图,检方却迟迟未被拿出。   &ldquo 只有定性,没有定量。&rdquo 辩护人提出质疑,并希望检方能回答为何不提质谱图以供参考?又为何不做定量分析?辩护人称,检出二甲基亚硝胺的证据经过多人的手才到了公安手中,即便是医学专业人员,也很难保证证据的纯粹性。   检方反驳称,三份质谱图比对证明毒物是二甲基亚硝胺。检方同时否认故意不提供质谱图的说法。检方称,黄洋的致死量没有精确数据,因为不能拿人做实验,因此定量检测没有意义。   辩方提出,同样是黄洋的尿液样本,&ldquo 为何一开始司法鉴定所没有检测出,而上海市公安局物证鉴定中心检测出了二甲基亚硝胺&rdquo ,对于这个问题,检方以证人证言称,两个机构使用的检测方法不同,所以检测结果有出入属于正常。   显然,控辩双方都为此次二审做足了准备。   小科普:   质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后以质谱图的形式呈现。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,成为刑事鉴定的一种重要技术手段。
  • 瑞绅葆样品前处理设备于“土十条”的应用之二
    桂林市环境监测中心站采用瑞绅葆PrepP-01 80T压片机应对《土壤污染防治行动计划》(土十条) 桂林山水甲天下,玉碧罗青意可参[1],同时作为世界旅游研究中心[2],桂林对环境的要求非常之高几近苛刻,而美丽的自然的组成却是复杂多变的地质环境,这成为了桂林市环境监测中心站的甜蜜负担,随着《土壤污染防治行动计划》(简称,土十条)的颁布,作为入选《首批全国土壤污染状况详查检测实验室》的实验室[3],为了应对挑战,中心根据“土十条”的监测要求扩充了制样设备,其中瑞绅葆PrepP-01 80T压片机有幸入选。作为世界上第一家推出80T以上压片机专用于XRF,IR等固体进样技术的厂家。瑞绅葆PrepP-01系列压片机的独创性的80T最高压力,可以根据需求设定压力,满足绝大多数样品压片需要,特别是复杂的土壤样品的压样,同时避免了购买多种样品处理设备,避免了多个样品处理设备的重复采购,提升了效率。 瑞绅葆PrepP-01系列压片机是瑞绅葆分析技术(上海)有限公司研制的用于X射线荧光光谱分析(压片法制样)的专业配套设备,可广泛应用于钢铁、冶金、化工、地质、水泥、陶瓷耐火材料等行业。PrepP-01系列压片机采用PLC可编程控制器控制,通过按键设置和运行压片制样、LCD液晶屏实时监控和显示压力、时间等参数,简单直观易用,保障制样精确性和可靠性。液压系统采用超高压径向柱塞泵,解决了漏油和压力喘息的现象,低噪音、寿命长、效率高。此外,还采用高精度压力传感器控制系统,压力输出稳定,显示精确可靠,灵敏度高。优点: 40T、60T、80T多种压力规格可选,可配置多种制样模具,适应各种样品制样测试需求。 可常年满功率运行,性能稳定可靠。 具备业界优势的缓加压、缓卸压技术,制样效果和品质更出众。 全密封油箱和排气口设计,保障无漏油。 使用超厚钢结构顶梁和大径手轮,性能更加出色可靠。 模具采用超硬耐磨特种合金钢,寿命长,关键部位光洁度可达Ra0.4,制得的样品表面更平整。 采用大直径液压油缸,升压快,效率高。 进口PLC控制系统,可根据不同材质灵活设置制样条件,按键式操作全自动完成压样和出样过程,完美满 足不同样品的高品质制样需求。桂林市环境监测中心站介绍:桂林市环境监测中心站成立于1976年,是桂林市环境保护局属下社会公益性事业单位。属国家二级环境监测站,是国家水、气、噪声环境监测网络站的成员,是国家重点城市环境综合定量考核监测成员。主要承担着桂林市空气环境、地表水、饮用水、声环境、辐射环境等环境质量的监测和污染源监督性监测的职责;负责桂林市环境质量评价、环境污染纠纷的技术仲裁、突发性环境污染事故应急监测、排污申报监测等工作,为环境管理部门和政府决策提供科学的监测数据。参考资料:[1] A.南宋诗人王正功的名句,原诗题曰《嘉泰改元桂林大比与计偕者十有一人九月十六》,桂林山水甲天下,玉碧罗青意可参。 士气未饶军气振,文场端似战场酣。 九关虎豹看劲敌,万里鹍鹏竚剧谈。 老眼摩挲顿增爽,诸君端是斗之南。B.唐闻生谈“桂林山水甲天下”名句译文,中新社记者唐咸武 发布时间:2006-02-08[2] 桂林论坛”圆满落幕 从观光到体验桂林还有多远,新浪网http://gx.sina.com.cn/news/gx/2015-10-20/detail-ifxivsce6984166.shtml[3] 关于发布全国土壤污染状况详查质量控制实验室和首批检测实验室名录的通知,,中华人民共和国环境保护部http://www.zhb.gov.cn/gkml/hbb/bgth/201707/t20170721_418297.htm
  • 拉曼研究热潮有增无减 应用突破是首要任务
    p    strong 仪器信息网讯 /strong 多方信息显示,拉曼光谱已经成为分子光谱领域发展最快的一类仪器,BCC Research最新的一项研究报告显示,2016年全球拉曼光谱市场达11亿美元,预计2021年该市场将达到18亿美元,2016-2021年之年复合年增长率为9.9%。其中,生命科学应用是拉曼光谱最大的部分,2016年该市场为4.16亿美元,预计2021年将达到6.58亿美元,复合年增长率为9.6% 半导体应用市场2016年1.63亿美元,预计2021年达到2.71亿美元,复合年增长率为10.7%。 /p p   拉曼光谱的蓬勃发展已然成为大家目光的聚焦点,这一点在第十九届分子光谱学学术会议暨2016年光谱年会上表现的也尤为突出。本次会议中,大会报告环节安排了4个有关拉曼技术及仪器的报告,其中厦门大学任斌在第一天的大会报告中就作了题为《 a title=" " href=" http://www.instrument.com.cn/news/20161029/204920.shtml" target=" _self" strong 表界面高空间分辨针尖增强拉曼光谱研究 /strong /a 》的报告 第二天的《拉曼光谱及相关光谱技术的研究进展》专场更是汇聚了近20个拉曼光谱最新研究成果的相关报告。从出席会议的人数来说,拉曼分会场座无虚席,甚至有不少代表站着听会,与上一届分子光谱会相比,拉曼研究的热潮有增无减。 /p p style=" TEXT-ALIGN: center" img title=" IMG_2986-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/879de4d9-6326-40b5-b69a-4cdaa571aed9.jpg" / /p p style=" TEXT-ALIGN: center" strong 拉曼光谱及相关光谱技术的研究进展专场现场 /strong /p p   据各位专家介绍,目前拉曼相关研究的热点集中在SERS、仪器联用、应用开发、机理研究等多个方面。 /p p   strong  首先,SERS一直是拉曼研究领域的热点,此次分会场中有一半以上专家的报告涉及SERS基底的制备和应用开发工作。 /strong /p p style=" TEXT-ALIGN: left"   来自吉林大学的宋薇(代替赵冰)介绍了其课题组在3D超疏水Au NP/泡沫镍、rGO/GuS/金属纳米复合材料、ZnO纳米纤沉积在银箔上、Ag@碳纳米点等超灵敏表面增强拉曼基底的构筑及其在催化与检测中的应用案例 上海师范大学杨海峰在报告中介绍了其课题组在磁优化SERS技术方面的一系列工作,并详细介绍了磁优化SERS技术在农残、唾液毒品标志物、肺癌标志物等检测中的应用 佳木斯大学药学院杨立滨在报告中介绍了其课题组在半导体纳米材料SERS基底方面的研究工作,包括金属掺杂改进TiO2的SERS性能 贵金属/TiO2复合体的SERS研究等。 /p p style=" TEXT-ALIGN: center" img title=" 宋薇-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/60fe689d-17ff-4f35-b5b6-2d46e2d02291.jpg" / /p p style=" TEXT-ALIGN: center" strong 吉林大学 宋薇 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:超灵敏SERS基底的构筑及其在催化与检测中的应用 /strong /p p style=" TEXT-ALIGN: center" img title=" 杨海峰-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/c2bb8ced-2658-4ee5-a2a2-7fff4722aa04.jpg" / /p p style=" TEXT-ALIGN: center" strong 上海师范大学 杨海峰 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:磁优化SERS技术及其快速检测应用 /strong /p p style=" TEXT-ALIGN: center" img title=" 杨立滨-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/25d8b99a-dfa2-4aff-ad01-acc6d44e6521.jpg" / /p p style=" TEXT-ALIGN: center" strong 佳木斯大学药学院 杨立滨 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:基于半导体TiO2的SERS研究 /strong /p p   虽然很多课题组都在SERS基底的制备方面努力着,但是要产业化还存在不少问题,如形式较为单一,增强机理不是十分清楚,增长能力较弱,应用研究较少等。据杨海峰介绍,目前市面上成熟、在售的SERS基底产品比较少,而且价格往往偏贵,这在一定程度上也限制了应用的进一步拓展。 /p p strong   SERS的另外一个研究热点是在高灵敏分析中的应用,涉及食品安全、环境、生命科学、公共卫生等多领域的分析应用研究。 /strong /p p   在本次会议中,大连理工大学纪伟介绍了表面增强拉曼散射光谱在离子检测中的应用 合肥工业大学高荣科介绍了基于SERS微流控的前列腺标志物的快速免疫检测研究 江南大学谢云飞介绍了食品安全SERS快速检测方法研究 吉林大学徐抒平介绍了SERS光谱研究细胞表面聚糖的动态表达 华东理工大学李大伟介绍了基于表面增长拉曼光谱的细胞内信号分子原位检测技术研究。 /p p style=" TEXT-ALIGN: center" img title=" 纪伟-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/4f6a644b-ee93-4410-bf4c-bb8bbefe9782.jpg" / /p p style=" TEXT-ALIGN: center" strong 大连理工大学 纪伟 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:表面增强拉曼散射光谱在离子检测中的应用 /strong /p p style=" TEXT-ALIGN: center" img title=" 高荣科-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/b119fa74-0621-4989-918c-d48d9fe49872.jpg" / /p p style=" TEXT-ALIGN: center" strong 合肥工业大学 高荣科 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:基于SERS微流控的前列腺癌标志物的快速免疫检测研究 /strong /p p style=" TEXT-ALIGN: center" img title=" 谢云飞-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/f897a59a-23fe-4dc7-924a-99c63fe8d721.jpg" / /p p style=" TEXT-ALIGN: center" strong 江南大学 谢云飞 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:食品安全SERS快速检测方法研究 /strong /p p style=" TEXT-ALIGN: center" img title=" 徐抒平-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/afa7ab56-7eff-4b38-81ea-85d579612548.jpg" / /p p style=" TEXT-ALIGN: center" strong 吉林大学 徐抒平 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:SERS光谱研究细胞表面聚糖的动态表达 /strong /p p style=" TEXT-ALIGN: center" img title=" 李大伟-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/f451a590-79f0-4e7a-ac0b-18d98716c58f.jpg" / /p p style=" TEXT-ALIGN: center" strong 华东理工大学 李大伟 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:基于表面增强拉曼光谱的细胞内信号分子原位检测技术研究 /strong /p p   虽然,近年来SERS领域的应用研究“如火如荼“,但是绝大多仅限于实验室研究阶段,是针对某一个样品在某一个特定条件或者环境下的使用。据与会专家反映,目前还没有真正落到实际应用,这也是当前SERS领域面临重要问题。不仅如此,与会的很多老师也反映,手持拉曼仪器的应用与SERS基底密不可分,如果SERS基底的产业化问题得到很好的解决,手持式拉曼光谱仪的应用也将迎来更广阔的空间,SERS基底的产业化及应用拓展迫在眉睫。 /p p    strong 除了SERS之外,拉曼光谱仪在其它方面的应用也在不断的发展中 /strong 。在本次报告中,华东交通大学王海阳介绍了拉曼光谱在油品检测中的应用研究 内蒙古科技大学胡庆成介绍了原位Raman光谱研究高温高压无机水溶液的结构与性质(以CO2-H2O体系为例) 内蒙古科技大学欧阳顺利介绍了三元水溶液中氢键对分子结构影响的拉曼光谱研究。据胡庆成介绍,拉曼光谱对水分子所处的环境敏感,可研究氢键相互作用,并揭示水溶液结构随温度等条件的变化规律。“Raman光谱+高P、T原位设备”成为高P、T下无机水溶液的性质的重要途径之一。 /p p style=" TEXT-ALIGN: center" img title=" 王海阳-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/a9c29a5f-0d9c-4768-bc34-d6c56cbe7c3e.jpg" / /p p style=" TEXT-ALIGN: center" strong 华东交通大学 王海阳 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:拉曼光谱结合化学计量学方法在油品检测中的应用研究 /strong /p p style=" TEXT-ALIGN: center" img title=" 胡庆成-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/60120bd8-589c-44cb-90aa-16246fe847cd.jpg" / /p p style=" TEXT-ALIGN: center" strong 内蒙古科技大学 胡庆成 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目: /strong strong 原位Raman光谱研究高温高压无机水溶液的结构与性质(以CO2-H2O体系为例) /strong /p p style=" TEXT-ALIGN: center" img title=" 欧阳顺利-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/1b9c99d5-0c96-4907-8741-568a8295d6ce.jpg" / /p p style=" TEXT-ALIGN: center" strong 内蒙古科技大学 欧阳顺利 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:三元水溶液中氢键对分子结构影响的拉曼光谱研究 /strong /p p style=" TEXT-ALIGN: left"    strong 随着拉曼研究内容的不断深入,对增强机理的研究也显得格外重要。 /strong 厦门大学吴德印就介绍了对巯基吡啶在纳米银上的SERS化学增强机理。 /p p   很多时候,我们只看到SERS增强的表面现象,其机理如何?吴德印采用密度泛函理论、金属簇模型、拉曼光谱理论等研究方法对SERS增强进行了系统的解析,通过模拟4MPY的SERS谱,研究了溶剂化效应、双端吸附、苯环CH面内弯曲等的影响。 /p p style=" TEXT-ALIGN: center" img title=" 吴德印-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/16c2aa11-a446-4673-8441-54c760e4d949.jpg" / /p p style=" TEXT-ALIGN: center" strong 厦门大学 吴德印 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:对巯基吡啶在纳米银上的SERS化学增强机理 /strong /p p    strong 联用技术是拉曼光谱发展的一个很重要的方向 /strong ,第二军医大学陆峰在报告中介绍到,分析复杂样品有点难,这是目前SERS存在的问题之一。鉴于此,该课题组开发了世界首台薄层色谱-拉曼光谱联用仪。据介绍,目前该联用仪已经在上海市药检所、山东省食药检院等多家单位落户,并进行相关技术的推广。陆峰指出。用一种简便快速的方法,提升SERS分析复杂混合样品的能力(有时还能顺带提高灵敏度),具有广阔的应用前景。 /p p style=" TEXT-ALIGN: center" img title=" 陆峰-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/3dcfc319-b866-430f-9cc8-f54a6d98d040.jpg" / /p p style=" TEXT-ALIGN: center" strong 第二军医大学 陆峰 /strong /p p style=" TEXT-ALIGN: center" strong   报告题目:薄层-拉曼联用方法开发及其应用研究 /strong /p p    strong 当然,拉曼光谱研究领域的发展离不开仪器技术的发展。在本次会议中,堀场、雷尼绍、赛默飞、布鲁克、必达泰克、诺福通、万通、培科创新、爱万提斯、卓立汉光等10家左右的仪器厂商也介绍或展出了相关的产品技术。仪器信息网摘录 /strong strong 部分 /strong strong 供大家参考: /strong /p p style=" TEXT-ALIGN: center" img title=" 王志芳-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/f69f34af-19f0-4bf1-9ddb-13d32e6d8dac.jpg" / /p p style=" TEXT-ALIGN: center" strong 雷尼绍贸易有限公司 王志芳 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:拉曼光谱新技术及应用 /strong /p p   王志芳介绍了当前拉曼光谱仪的技术发展趋势,包括联用技术、成像技术等,特别详细介绍了雷尼绍最新推出的inVia Qontor显微共焦拉曼光谱仪,该产品保有inVia Reflex所有功能,并增加了LiveTrack实时聚焦技术,无论是白光观察模式还是拉曼白扫描成像模式下,样品始终保持在聚焦状态下。 /p p style=" TEXT-ALIGN: center" img title=" 沈婧-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/18b36fd9-676d-46ae-9399-31778680667e.jpg" / /p p style=" TEXT-ALIGN: center" strong 堀场(中国)贸易有限公司的沈婧 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:二维材料的纳米光谱表征 /strong /p p   沈婧介绍了二维材料的纳米光谱表征,特别介绍了TERS的研究进展。据介绍,早期的TERS研究集中在单点或线研究,TERS成像很难成功并重现。找到热点位置是TERS成功与否极为关键的步骤,将拉曼激光与热点精确匹配才能实现完美TERS。在报告中,沈婧还介绍到HORIBA目前可以提供包括XploRa Nano、TRIOS、HR Evo Nano等在内的多种纳米拉曼成像系统,并谈到,目前HORIBA的仪器可以在不同实验室轻松再现低于10nm空间分辨率的TERS成像。 /p p style=" TEXT-ALIGN: center" img title=" 王子龙-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/1a53be71-c088-434a-8293-b3491008636f.jpg" / /p p style=" TEXT-ALIGN: center" strong 诺福通(北京)科技有限公司 王子龙 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:原位扫描二维拉曼成像科研新进展 /strong /p p   据王子龙介绍,Nanophoto目前拥有RAMANtouch、RAMANview、RAMANdrive等产品。据介绍,利用原创的专利技术(US7561265),RAMANtouch的线照明可在更大范围内获得应用,使用线照明的超快速拉曼成像一次400个光谱点。此外,王子龙还介绍了电化学-原位扫描二维拉曼成像科研新进展等。 /p p style=" TEXT-ALIGN: center" img title=" Jack-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/d5bc8cd2-9df4-4384-89bd-98fed1ca5027.jpg" / /p p style=" TEXT-ALIGN: center" strong 必达泰克光电科技(上海)有限公司 Jack Zhou /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:面向需求(PON)的纳米科技及移动拉曼检测诊断技术 /strong /p p   在报告中,Jack Zhou进行了手持和便携拉曼的应用介绍,着重介绍了必达泰克目前正在进行的研究工作。Jack Zhou谈到,PSA、TB、HCC的成功检测验证了生物、纳米及拉曼的结合在诊断检验应用中具有广阔的前景。同时,Jack Zhou也透露,目前正在开发面向现场(PON)的诊断仪。 /p p style=" TEXT-ALIGN: center" img title=" 陈立-1.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/dd3462eb-be19-44e0-9cbc-cc7bd3373d6a.jpg" / /p p style=" TEXT-ALIGN: center" strong 北京培科创新技术有限公司 陈立 /strong /p p style=" TEXT-ALIGN: center" strong 报告题目:抗荧光干扰高效拉曼光谱技术 /strong /p p   作为美国BaySpec公司中国区独家代理,北京培科创新技术有限公司的陈立介绍了BaySpec公司拉曼产品的特点:采用体相光栅(VPG);可以提供高分辨率的1064nm激发波长拉曼系统等。此外,还可以针对客户的需求,进行仪器的改造。 /p p style=" TEXT-ALIGN: right" 撰稿编辑:叶建 /p
  • 安捷伦科技公司推出 AdvanceBio 肽图分析色谱柱
    安捷伦科技公司推出 AdvanceBio 肽图分析色谱柱 新的 HPLC 和 HILIC 解决方案在生物药物开发中实现更快更稳定的分析 2013 年 5 月 13 日,加利福尼亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A) 今日推出 AdvanceBio 色谱柱系列的最新成员。新型 AdvanceBio 肽图分析 BioHPLC 和 ZORBAX RRHD 300-HILIC 色谱柱旨在为各种蛋白质、单克隆抗体、多肽和其他生物制剂的分离、表征和分析提供卓越性能。 两根色谱柱都能让用户体验前所未有的分析速度和高分离度结果。 安捷伦化学品业务部副总裁兼总经理 Anne Jones 说:&ldquo 我们非常高兴能够为我们的制药客户和其他生命科学研究人员推出这些潜力无限的新型色谱柱,成就他们对极致分析灵敏度和速度的追求。我们始终致力于提高生物色谱法的准确度和效率,可以从这些产品身上得到印证。&rdquo 新型 AdvanceBio 肽图分析色谱柱能够快速测定蛋白质的一级结构,还能以无与伦比的速度和灵敏度鉴定变异。事实上,与使用全多孔 HPLC 色谱柱进行常规肽图分析相比,使用该色谱柱得出准确结果的速度要快二至三倍,而常规肽图分析耗时长达 60 分钟。 每批 AdvanceBio 图谱分析柱均采用多肽混合物标样进行严格测试,确保适用性和高重现性,使其能鉴定复杂多肽图谱中的重要多肽。所有可用色谱柱可耐压 600 bar,使 UHPLC 仪器发挥出最佳性能。同时,用于 400 bar 的旧型号仪器时也有卓越表现。 应用 AdvanceBio 肽图分析色谱柱非常适合分析高度复杂的肽谱,能为许多蛋白消化物,包括 rhEPO 提供 100% 序列覆盖率,有 45 糖肽匹配。应用简报使用 Agilent AdvanceBio 肽图分析色谱柱进行 EPO 的高分辨率糖肽谱分析中对这些功能进行了一一探索。 ZORBAX RRHD 300-HILIC 色谱柱是目前市面上仅有的亚 2 &mu m、300Å HILIC 色谱柱。专门为寻求更快、更高分离度分离多肽、极性糖肽、蛋白质、抗体、偶合物、新生物体和生物制药的用户而设计。 亲水相互作用液相色谱 (HILIC) 专门针对亲水性糖肽变异体分析。使用该色谱分析极性糖肽可得到出色的峰形,而如果采用反相色谱柱分析则只能得到有限的保留率和分离度。1.8 &mu m 填料的 ZORBAX RRHD 300-HILIC 色谱柱能够实现耐压 1200 bar、快速分析以及卓越的准确度。它们为反相 HPLC 提供了正交和互补分离。应用简报利用 HILIC 和反相色谱分析促红细胞生成素的糖肽和糖型中深入探讨了这些功能。 关于安捷伦科技 安捷伦科技(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 瑞绅葆样品前处理设备于“土十条”的应用之一
    甘肃省环境监测中心站采用瑞绅葆PrepP-01 80T压片机应对《土壤污染防治行动计划》(土十条) 甘肃省环境监测中心站在今年七月入选了首批《全国土壤污染状况详查质量控制实验室》,作为《土壤污染防治行动计划》(简称,土十条)首批的37家质量控制实验室之一,中心深感责任重大,为了满足全省区域样品种类多,制样压力条件多变要求,同时检测的样品要具有可重复性,对制样设备提出了很高的要求,最终瑞绅葆PrepP-01 80T压片机满足了要求。作为世界上第一家推出80T以上压片机专用于XRF,IR等固体进样技术的厂家。瑞绅葆PrepP-01系列压片机的独创性的80T最高压力,可以根据需求设定压力,满足绝大多数样品压片需要,特别是复杂的土壤样品的压样,全自动设计,提升制样的可重复性。 瑞绅葆PrepP-01系列压片机是瑞绅葆分析技术(上海)有限公司研制的用于X射线荧光光谱分析(压片法制样)的专业配套设备,可广泛应用于钢铁、冶金、化工、地质、水泥、陶瓷耐火材料等行业。PrepP-01系列压片机采用PLC可编程控制器控制,通过按键设置和运行压片制样、LCD液晶屏实时监控和显示压力、时间等参数,简单直观易用,保障制样精确性和可靠性。液压系统采用超高压径向柱塞泵,解决了漏油和压力喘息的现象,低噪音、寿命长、效率高。此外,还采用高精度压力传感器控制系统,压力输出稳定,显示精确可靠,灵敏度高。优点: 40T、60T、80T多种压力规格可选,可配置多种制样模具,适应各种样品制样测试需求。 可常年满功率运行,性能稳定可靠。 具备业界优势的缓加压、缓卸压技术,制样效果和品质更出众。 全密封油箱和排气口设计,保障无漏油。 使用超厚钢结构顶梁和大径手轮,性能更加出色可靠。 模具采用超硬耐磨特种合金钢,寿命长,关键部位光洁度可达Ra0.4,制得的样品表面更平整。 采用大直径液压油缸,升压快,效率高。 进口PLC控制系统,可根据不同材质灵活设置制样条件,按键式操作全自动完成压样和出样过程,完美满 足不同样品的高品质制样需求。甘肃省环境监测中心站介绍: 甘肃省环境监测中心站成立于 1976年,是从事环境监测的公益性科学技术事业单位。隶属于甘肃省环境保护局。是国家自然科学基金依托单位,同时与多个大型国际分析仪器公司共建合作实验室,拥有先进的监测技术手段,为环境决策提供技术支持、为环境管理实施技术监督、为社会经济建设提供技术服务,是全省环境监测的网络中心、技术中心、信息中心、培训中心和质控中心,为国家一级监测站。参考资料:[1] 关于发布全国土壤污染状况详查质量控制实验室和首批检测实验室名录的通知,,中华人民共和国环境保护部http://www.zhb.gov.cn/gkml/hbb/bgth/201707/t20170721_418297.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制