当前位置: 仪器信息网 > 行业主题 > >

油脂氧化稳定性

仪器信息网油脂氧化稳定性专题为您整合油脂氧化稳定性相关的最新文章,在油脂氧化稳定性专题,您不仅可以免费浏览油脂氧化稳定性的资讯, 同时您还可以浏览油脂氧化稳定性的相关资料、解决方案,参与社区油脂氧化稳定性话题讨论。

油脂氧化稳定性相关的资讯

  • 线上课堂丨油脂氧化稳定性分析解决方案
    线上课堂丨油脂氧化稳定性分析解决方案 食品中油脂自动氧化是导致货架期缩短的一个重要的因素,通过油脂氧化分析仪可以模拟、加速油脂被氧化的过程,分析油脂品质及抗氧化能力,也可推算食品的货架期,也可用于食品新鲜度测定、配方比较、包装比较以及ip间隔测定等。此次线上直播课还将为您带来油脂氧化分析仪 新案例分享!!!课题:油脂氧化稳定性分析解决方案油脂氧化分析仪 品牌:意大利velp具体安排时 间:2020年3月27日 10:00-11:00主讲人:曹大伟 高级技术工程师看课方式:扫描二维码即可 联系方式组织单位: 北京盈盛恒泰科技有限责任公司请扫描以下二维码立即报名~
  • 国家标准《动植物油脂 氧化稳定性的测定(加速氧化测试)》征求意见
    国家标准计划《动植物油脂 氧化稳定性的测定(加速氧化测试)》由 TC270(全国粮油标准化技术委员会)归口,TC270SC2(全国粮油标准化技术委员会油料及油脂分会)执行 ,主管部门为国家粮食和物资储备局。主要起草单位 国家粮食和物资储备局科学研究院 、南京财经大学等 。附件:征求意见稿、编制说明
  • 国家标准《动植物油脂 氧化稳定性的测定(加速氧化测试)》征求意见
    国家标准计划《动植物油脂 氧化稳定性的测定(加速氧化测试)》由 TC270(全国粮油标准化技术委员会)归口,TC270SC2(全国粮油标准化技术委员会油料及油脂分会)执行 ,主管部门为国家粮食和物资储备局。主要起草单位 国家粮食和物资储备局科学研究院 、南京财经大学等 。附件:征求意见稿、编制说明
  • 如何有效测试各类油品的氧化稳定性和抗氧化效果
    各种类型的食用油可用于烹饪和在厨房使用。油的范围包括植物油,如葵花籽油、大豆、花生、棕榈、椰子、橄榄油、混合油到动物脂肪,如鲑鱼油。抗氧化剂通常用于提高保质期和保存食用油和脂肪的质量。它们通过各种机制参与或干扰脂质自氧化反应级联来抑制氧化反应。不同的油有不同的氧化率,抗氧化剂在提高其保质期和保持其质量方面有不同的效果。利用VELPOXITEST油脂氧化分析仪进行了分析,检测每一种测试油的不同特点。油的氧化稳定性和抗氧化剂的添加食品最重要的质量改变之一是由于游离或酯化的不饱和脂肪酸对氧的吸收。脂肪的自动氧化是一种由光、高温、金属痕迹和有时影响产品保质期的酶促进的化学反应。防腐剂和其他物质被添加,以抵消和减缓这一食用产品的质量改变过程。抗氧化剂通常用于提高保质期和保护食用油和脂肪的质量。它们通过参与或干扰脂质自氧化反应级联来抑制氧化反应。意大利VELP油脂氧化分析仪OXITEST方法和对各种类型的油品进行的分析OXITEST氧化稳定性反应器被用来测定各种样品的氧化稳定性,不需要进行初步的脂肪分离。OXITEST方法是一项公认的分析技术,用于测定食品、脂肪和油的氧化稳定性。对各种类型的油进行了测试,以分析氧化稳定率,并比较所有含有和不含有抗氧化剂的油的配方。
  • 肉类氧化稳定性分析好方法
    肉是人类饮食中最古老的食物之一,如今肉类生产已达到工业规模。肉类蛋白质含量很高,碳水化合物含量很低,但脂肪含量会因动物的种类、品种、身体的解剖部位和烹饪方式而有很大差异。由于细菌发现了营养丰富的基质,肉类是一种极易腐烂的产品。其中,脂质氧化导致异味。为了保存肉类,为了储存和食用,肉质、多汁、风味或颜色都要使用添加剂来保护。 食品最重要的质量变化之一是由不饱和脂肪酸吸收氧气,自由或酯化。脂肪的自动氧化是一种由氧气、光、高温、金属痕迹,有时还有酶推动的化学反应。 OXITEST油脂氧化分析仪可以测定各种类型样品的氧化稳定性,而不需要进行初步的脂肪分离。根据最常见的应用,OXITEST加速氧化过程是因为温度和氧气压力这两个加速因素。该仪器测量两个腔室内的绝对压力变化,监测样品中反应组分的吸氧,并自动生成IP值。IP定义:IP代表诱导期,它是到达氧化起始点所需的时间,对应于可检测的酸败程度或氧化速率的突然变化。诱导期越长,抗氧化稳定性越高。OXITEST为质量控制和研发实验室提供了以下检测:◆原材料和配料的质量控制◆运输和对货物的影响◆储存期研究◆产品开发与行为◆配方优化◆成分和替代成分测试◆流程优化◆包装研究和替代包装比较
  • 食品货架期 | 鸡油的氧化稳定性测试
    鸡油货架期鸡油被广泛用于鸡粉、鸡精、鸡汁等家用调味品的生产中,为美味佳肴起着增香亮色的作用。鸡油含脂肪酸、蛋白质、脂溶性维生素、固醇类 等多种成分,鸡油由于含有不饱和脂肪酸,所以容易被氧化,氧化变质的鸡油会产生异味、酸价升高、颜色变深等问题,从而降低鸡油及含鸡油食品的商品和食用价值。鸡油需要具有良好的氧化稳定性和较长的货架期,才可以最大限度保留了鸡脂风味和营养价值。传统评估食用油货架期方法• 质保期研究放在室温或者烘箱下研究随着存放时间样品发生的变化。耗时长!!!• 样品存放后的变化主要通过感官法来判断,人为主观因素比较大。没有数据支撑作为质控依据! RapidOxy 100模拟快速氧化,评价鸡油的氧化稳定性氧化反应作为含有油脂的食品变质的决定性因素,只有对其进行监控才能得到准确的货架期。通过 RapidOxy 100的加速试验,利用阿伦尼乌斯方程,只需测定三个温度点数据即可预测出常温下的货架期,相比传统恒温恒湿感官评价法,可以减少90%以上的时间,极大的提升测试效率,降低测试成本。测试条件:样品量:5g;压力:700kPa;测试温度:100℃,110℃,120℃;结束条件:20%压降。图:样品氧化后外观表:样品不同温度下测试结果样品1:鸡骨油货架期样品2:鸡脂油货架期样品3:鸡粉油货架期RapidOxy 100快速测试三个温度点下,鸡油的诱导期,采用Oxylogger 100自动计算出不同温度的鸡油货架期,由测试结果得出:取自不同部位的鸡油,氧化稳定性有明显差异,鸡脂油氧化稳定性最好,其次是鸡骨油,最差是鸡粉油。Rapidoxy 100是加速货架期实验的理想帮手,它可提供最高 1800kpa的压力,可在最高180℃的温度下进行样品测定,并且使用的样品量极少,对于固体或半固体样品只需要4g,而对于液体样品只需要5ml,利用阿伦尼乌斯方程建立货架期预测模型极大的减小了测试成本。使我们能够花费最短的时间,用最少的样品得到我们理想的测试结果。
  • 安东帕折光仪测花生油氧化稳定性
    DELICIOUSFOOD问你知道如何规定花生产品(如花生酱、烤坚果、糖果和花生油)的保质期长短吗?答花生种子含有约50%的油,其中约50%是油酸,30%是亚油酸。油酸是一种单不饱和脂肪酸;与此相反,亚油酸是多不饱和脂肪酸。而油酸和亚油酸的比例(O/L)恰恰会影响花生油的氧化稳定性,从而影响了花生油产品的保质期。问油酸和亚油酸的比例越高?保质期越长吗?答是的,O/L比越高,油中的总不饱和度越低。这使得产品更加稳定,延长了花生产品的保质期。"非高O/L"花生的正常O/L比通常都小于9,大多数O/L平均值为1.5到2.0。所以为了种植出O/L比为9甚至更高的花生种子,花生种植户会投入了大量精力。问我听说一般都用气相色谱法来确定油中脂肪酸分布。答气相色谱法并不是花生工业的优先选择的方法,因为这种方法费时、昂贵,对操作员的专业度要求还很高。近几十年来,人们发现可以通过测量油的折射率来表征种子油的化学性质。折射分析法由于它的快速、经济且高效,逐渐变成更为普遍应用的一种方法。安东帕Abbemat系列折光仪可通过测量折射率快速测定花生油中的O/L比。安东帕 Abbemat 3X00 系列折光仪为了根据油酸和亚油酸的含量区分花生油,首先我们需要准备一台测量精度至少满足0.0001nD的Abbemat折光仪。温度对折光率而言是较大的影响因素。为确保测样结果的准确性,Abbemat 3100系列折光仪内置式帕尔帖温度控制功能可在数秒内以无以伦比的精度调整棱镜/样品界面的温度。测量前,测量棱镜必须保持清洁。仪器应使用安东帕提供的折光标准品进行校准:通过测定蒸馏水的折射率检查仪器的温度控制和棱镜的清洁度。测量来自多个种子的特征油用一次性移液管将油滴加到棱镜上,并在589.3 nm.测量折射率。所有测量必须在20°C下进行。由于温度强烈影响样品的折射率,测量温度应控制在至少±0.1°C的范围内。实 验结 论通过测量花生油的折射率,可以快速将花生定性为正常或高油酸。如果临界折射率为1.46895nD,折射率高于该值的花生将被归类为正常花生,而低于该折射率的花生则表示O/L比≥ 9,将花生分类为高油酸,误差低至1%。不仅仅是种子油,安东帕折光仪也被广泛应用于其他花生制品的质检过程。来看看我们的折光仪是如何工作的吧!📺Abbemat 折光仪测量一切可测量物质这不单是一句口号。我们一直致力于与客户密切合作,并努力收集并开发新的方法和应用。Abbemat 折光仪如今正广泛应用于各行各业,从药品、化学品、石油产品、香精香料到食品饮料… … 在留言区告诉我们你们想测什么?测量过程中有什么难点疑点? 我们都会在后续的推送中一一解答一经录用必有好礼相送哦!
  • 超级电容又添新材料,稳定性大幅度提高
    p   多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在其表面涂了一层几纳米厚的氮化钛涂层,使其性质得以改变。 /p p   该团队负责人麦卡· 普伦尼拉解释说,因化学反应导致的不稳定性和高电阻导致的低功率,不带涂层的多孔硅本是一种极差的电容器电极材料。涂上氮化钛的能提供化学惰性和高导电性,带来了高度稳定性和高功率,且多孔硅有很大的表面积矩阵。 /p p   根据荷兰爱思唯尔出版集团《纳米能源》杂志在线发表的论文,新电极装置经13000次充放电循环而没有明显的电容减弱。普伦尼拉说,报告数据受检测时间的限制,而并非电极真实性能。他们继续对其进行充放电循环,至今已达到5万次,甚至在循环中让电极干燥,也没有出现物理损坏或电学性能衰减问题。“超级电容要求稳定地达到10万次循环。目前用多孔硅—氮化钛(Si-TiN)做电极的电容装置能完全稳定地通过5万次测试。” /p p   在功率密度和能量密度方面,新电极装置比得上目前最先进的超级电容器。目前由氧化石墨烯/还原氧化石墨烯制造的芯片微电容器功率密度为200瓦/立方厘米,能量密度为2毫瓦时/立方厘米,而新电极装置功率密度达到214瓦/立方厘米,能量密度为1.3毫瓦时/立方厘米。普伦尼拉说,这些数字标志着硅基材料首次达到了碳基和石墨烯基电极方案的标准。 /p p   从电子产品的功率稳定器到局部能量采集存储器,芯片超级电容器有着广泛的应用。普伦尼拉说,他们在整体设计中还存在一些难题,每单位面积电容仍需提高,要达到技术许可的最高水平,他们还需进一步研究。 /p p   总编辑圈点 /p p   日本厨师发现将牛油果加上芥末竟然有了三文鱼的味道。如今,芬兰科学家也玩起了这样混搭的“戏法”——他们给多孔硅穿上一层氮化钛的外衣,尽管这层薄薄的外衣只有几纳米那么厚,却足以改变多孔硅电极的性能。这样的想象力让超级电容器的电极材料又多了一位优质成员,且它给人们的生活带来的改变也许远比一道日本料理大得多!随着芯片技术的广泛应用,希望科学家尽快解决多孔硅电极材料在超小型超级电容器上的设计问题,让这样巧思的发明早日造福人类。 /p p br/ /p
  • 环保行业标准气体的稳定性研究
    标准气体的重要性环保一直是全社会热议的话题,国家也针对环境保护出台了诸多政策,例如HJ75-2017是关于监测二氧化硫、氮氧化物和颗粒物,HJ-604是关于总烃、甲烷和非甲烷总烃的监测方法,HJ759是关于环境空气挥发性有机物的测定,HJ1078则是关于固定污染源废气——甲硫醇等8种有机硫的监测。任何一种监测方法,都需要用到标准气体。标准气体就是监测的一把“标尺”,用它来校准仪器,才能确保检测出的数据的准确性,保证数据在可接受的误差范围内。但是许多人并不太了解这把影响监测数据准确性的”标尺“,因此,液化空气从标准气体的参数、国家标准物质证书、标准气体稳定性研究这几个方面,在1688直播间与大家进行了标准气体的知识分享,现在就让我们一起来回顾一下吧!1混配精度、分析精度与不确定度不确定度:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。表明结果的可信赖程度。混配精度(BT):配置混合物与要求值的误差范围。分析精度(AA):使用仪器分析给出的值与真实值见的误差范围。也就是说,如果需要配制一瓶10ppm二氧化硫标准气体,氮气作为平衡气,你可能会得到如下结果。若混配精度为5%,则该标准气体的配制值范围为9.5~10.5ppm;若分析精度为1%,标称值为9.8ppm,则该标准气体的真实值范围为9.702~9.898ppm;不确定度为1%2国家标准物质证书购买环保标准气体的客户经常会要求标准气体带有国家标准物质证书,该证书分为一级证书和二级证书。一级证书一般由中国计量院出具,作为中国最权威的标准,而二级证书则是具有一定生产、分析能力的企业向计量院提出申请,由中国计量院进行考核,测试后颁发给企业定级认可证书。针对不同组分、不同浓度的标准物质,计量院都会出具一个对应的GBW(E)证书编号。而且,如果只是标准物质的不确定度变化,也需要重新审核证书。目前,液空中国一共有113个标物证书,覆盖了汽车、环保、石化、食品、检测等各行各业会使用的标准品。液空工厂生产的标准气体都带有以下的标准物质证书,证书上会表明对应的二级标物证书编号,可在国家标准物质资源平台中输入编号查询到相关的证书记录。3影响标准气体稳定性的因素FACTOR-1 原材料标准气体的平衡气主要为氮气、空气等,平衡气的水分、氧杂质含量越低,标准气体的组分浓度稳定性越好。FACTOR-2 管线材质主要指主要指瓶阀、减压阀、管路的材质。环保标准气体常含有强活性和强腐蚀性的组分,若使用铜阀、铜制减压阀,会对标气产生吸附和反应。因此,需要使用不锈钢的瓶阀和减压阀,保证浓度稳定。FACTOR-3 气瓶处理气瓶材质:标准气体气瓶常用铝合金制成,但铝合金有许多材质,合金含量不同,与瓶内物质的反应程度也不同。液空对多种铝合金进行了试验后,发现6061材质能够最有效地保证标准气体的稳定性,所以液空目前采用该种材质的气瓶充装标气。气瓶制造技术:液空采用的是拉拔瓶。该种气瓶是让金属在高温情况下,用模具一体成型,使得气瓶内壁的细纹相对较少。为什么要采用这种方式呢?这是因为,如果气瓶内壁有细小的裂缝,在清洗气瓶时,气瓶内壁便会吸附水分。而标准气体的使用时间往往长达半年至一年,瓶内干燥的气体一定会与裂缝中的水分发生动态平衡,导致裂缝中的水分析出来后与气体发生反应。这也解释了有些标准气体在一开始使用时的浓度是准确的,但后来变得不准确的问题。钢瓶内壁清洁度:也许你听说过涂层瓶,这种气瓶可有效隔绝气体与瓶壁的接触,保证标准气体的稳定性。液空经过多种技术的试验,目前主要选择通过对气瓶内壁进行钝化来保证标气的稳定性。钝化是指用高浓度的标气充满气瓶,例如使用高浓度的SO2,随后静置,让瓶壁吸附饱和SO2,再将气瓶进行清洗、抽真空、烘干后,充装客户需求的浓度。此时,因为瓶壁已经达到了吸附饱和状态,就不会再与气体发生反应。FACTOR-4 标气状态气瓶内的余压对标气浓度稳定性也有影响。每瓶标准气体至少含有两个组分,根据道尔顿分压定律,气瓶内不同组分承担的分压是不同的。在气体使用过程中,随着压力逐渐下降,不同组分的分压就会产生变化。而一些物质的反应是与压力相关的,当承担在各组分的压力不同时,便会发生化学平衡反应的移动,导致组分浓度变化。因此,建议每瓶标气留3-5bar余压。(关于液空标准气体稳定性研究的数据报告,可以联系客服4000529166)4疑问解答Q1 为什么很多标气的保质期能到一年,而有些只有半年或三个月呢?根据标气组分性质的不同,对于有活性或者腐蚀性的组分,其保质期就会受到影响,例如硫化氢、氯气等。Q2 为什么经常发过来的标气浓度和订气时所需求的不一致?因为标气是根据特定需求而特殊定制的产品,其生产方法是根据国际通用的重量法,一瓶一瓶地称出来的,然后再逐瓶通过相应的分析仪器得出数值,其分析报告上给的数值就是根据分析仪器上的读数而来的。由于人工控制和充装设备的不稳定性,一般很难刚好把读数落在需求的数值上,一般情况浓度越低,控制的难度就会越大。所以会产生本文中提到的混配精度、分析精度和不确定的概念。液空会利用先进的充装设备和技术,以及充装工的经验,将误差范围控制在我们提供的技术参数之内。如有特殊需求,液空可根据客户要求的误差范围进行配制。但在此情况下,液空可能需要配制多瓶标气,才能有一瓶的标气浓度落在要求的范围内,导致成本较高。Q3 NO2和NO可以互相转换,这个因素对NO2和NO标气有什么影响?根据反应方程2NO+O2=2NO2,在氧气存在的情况下,NO会反应成为NO2。因此,当配制NO标气时,要尽可能减少氧气,所以需要使用N2做平衡气。而且氮气的纯度越高,才可保证氧杂质的含量越少。当配制NO2标气,则需要大量氧气,所以建议用空气做平衡气。只有氧气充足时,NO2就不会向NO反应。需要注意的是,由于该反应方程为可逆反应,NO中必会存在NO2。但液空配制的标准气体,均使用99.9999%氮气作为平衡气,可保证NO2的含量控制在NO含量的5%以内。如果客户的应用要求更高,液空也可使用纯度更高的平衡气,使NO2的含量降到更低。Q4 对于Cl2和HCl标气,为什么当浓度在10ppm左右时经常测不出读数?因为这类物质易溶于水,比如HCL和水的溶解比例是1:700。当其浓度很低时,尽管气瓶已进行处理,但是减压阀、管路未经过吹扫、钝化,这类组分仍会被吸附。所以这类物质都需要用不锈钢材质的减压阀,并且要吹扫足够长的时间,用标气把管路保压钝化2-3个小时后再去使用和测定,这样才能得到比较准确的数据。
  • 东北地理所等在土壤有机碳热稳定性研究方面取得进展
    土壤有机碳的稳定性影响土壤固碳潜力。如何提取土壤活性与稳定性碳组分用以定量表征土壤有机碳稳定性,是土壤固碳研究领域的关键科学问题。当前,提取土壤有机碳活性及稳定性组分的方法多样,包括物理、化学及生物手段,导致结果难以比较,同时存在耗时长、成本高及操作步骤繁琐等缺点,亟需一种高效、可信度高且应用广泛的测定方法。对比分析不同热分解技术的优缺点, 包括热裂解气相-质谱联用测定技术、热重分析技术、差示扫描量热分析技术及Rock-Eval(RE)热分解方法,人们普遍认为RE方法操作简单、耗时短、成本低、结果易于分析,可信度较高,可以很好地表征土壤有机碳稳定性,有利于土壤有机碳研究的横向对比。   中国科学院东北地理与农业生态研究所研究人员依托保护性耕作长期定位实验(建于2001年)在国内首次开展了相关研究,包含免耕玉米-大豆轮作(NTCS)、秋翻玉米-大豆轮作(MPCS)、免耕玉米连作(NTCC)、秋翻玉米连作(MPCC)、常规耕作玉米连作且秸秆不还田(CTCC)5个处理。该研究采集了不同深度的土壤样品,测定其土壤热稳定性(图1),计算RE相关指标,同时与土壤异养呼吸及微生物残体进行相关分析。RE方法分为热解和氧化两个阶段,包括S1-S5五个阶段,具有多个相关指标,TMAX(℃)代表在S2热解阶段释放的富氢化合物达到峰值时对应的温度,可作为指示土壤有机碳成熟度的指标。HI表示在土壤有机碳中富氢化合物的相对含量,OIRE6表示在土壤有机碳在S3阶段释放的O2相对含量,代表土壤有机碳的相对氧化状态。T50代表在氧化阶段(S4)释放的CO2达到该部分总释放值50%时的温度,用来表征稳定性碳库。研究结果表明,耕作方式对RE指标影响很大(TMAX、HI、T50),但是作物轮作对其无显著影响,其中免耕显著提高了土壤表层的有机碳热稳定性(TMAX)。RE指标(HI)在短期室内培养实验中(100天)可以很好地表征土壤异养呼吸情况,也在国际上首次发现TMAX指标与真菌残体(GluN)有很高的相关性(R2=0.93)(图2)。该研究为未来RE方法在国际上的推广应用提供了有效的数据支撑。   相关研究成果以Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil为题发表在Soil Biology and Biochemistry上。研究工作得到中科院战略性先导科技专项、国家自然科学基金等项目的资助。图1 RE方法测定图谱(以免耕玉米大豆轮作及秋翻玉米大豆轮作0-5 cm土层为例)图2 真菌残体GluN与TMAX线性回归关系
  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 小话稳定性研究之制药行业质量论坛巡展
    疫情当道,直到下半年展会才陆陆续续恢复,期间在防疫常态化基础上Memmert携带药品稳定性研究解决方案参加了三站全国制药行业质量控制技术论坛,今天一改图少文字多的惯例,就论坛展会作一分享。 受到疫情影响,今年的全国制药行业质量控制技术论坛有所调整,以下为活动安排: 1、苏州站第十届全国药品质量安全大会(药安大会)于8月6-7日在苏州成功召开。会议现场人气火爆,大会吸引900多位来自多省市药监部门和药品检验机构的相关人员、中外制药企业的高层及药品生产和药品管理人员、科研院所药物分析和实验室研究人员等参会,多位业内专家学者就当前的热点话题进行了精彩的演讲与分析。2、济南站CPQC2020-济南站于8月30-31日在济南召开。论坛上济济一堂,大咖专业知识分享,在聆听专家精彩演讲报告的同时,展区探讨交流也十分热烈,吸引了数百名的行业精英前来参加。 3、深圳站CPQC2020-深圳站于9月17-18日在深圳科学城召开。论坛精彩呈现,多名行业专家齐聚论坛现场,交流讨论踊跃。 每次展会我们都精心安排,展出了Memmert针对药物稳定性研究所做的方案,做了样机展示与介绍,产品技术人员就参观者关心的问题,尤其是2020版药典修订所带来的变化与挑战,耐心细致地做了稳定性试验箱与水浴的讲解沟通,一图胜千言,直接上图,请慢慢欣赏。 技术人员接待来访者仔细讲解产品特点站台面前人头攒动详细查看技术参数与参观者进行交流稳定的参数控制吸引着参观者注意力开始于人声鼎沸间,结束于意犹未尽中,论坛完美落幕,征途还在继续。10月底武汉站,11月中还有北京站的系列展年度收官,让我们继续畅谈质量控制蓝图,共话制药行业未来!
  • 化学所等在有机光伏电池稳定性研究方面取得进展
    有机光伏电池具有重量轻、柔性、易于制备透明/半透明器件等优点,在可穿戴电子设备、光伏建筑一体化等领域表现出广阔的应用前景。尽管有机光伏电池的能量转换效率在近年来取得了突飞猛进的发展,关于电池稳定性的研究进展却相对缓慢。   研究表明,空气中的水汽侵蚀会造成器件界面结构剥离,导致电池在长期工作条件下产生光伏效率衰减,严重降低电池的使用寿命。现有的封装技术不仅成本高昂,而且抵抗水分子扩散作用较差,阻碍了有机光伏技术的应用。   中国科学院化学研究所侯剑辉团队通过交联和非极性掺杂剂掺杂相结合的策略,设计开发了一种兼具高电导率和较强疏水性的阴极界面层c-NDI:PCy2,以此实现有机光伏电池稳定性的突破。他们合成了一种可交联的萘二亚胺类有机小分子NDI-A,通过热退火处理生成交联c-NDI-A薄膜,该薄膜对常用的极性和非极性溶剂均表现出很强的耐侵蚀性,为有机光伏电池的逐层溶液加工提供可行性。   此外,他们筛选出一种疏水性小分子二环己基(2',6'-二甲氧基-[1,1'-联苯]-2-基)-膦(PCy2)作为n型掺杂剂,用于提高交联薄膜的电导率,制备出兼具4.0 eV低功函数和6.5 × 10-3 S m-1高电导率的阴极界面层c-NDI:PCy2。基于c-NDI:PCy2的电池获得了17.7%的能量转换效率,同时表现出了极佳的抗水稳定性。   将未封装的电池直接浸入水中,在避光存储1000小时后或在持续光照4小时后均能够保持其初始光伏效率的70%;相比之下,基于传统氧化锌界面层的电池在相同条件下会发生能量转换效率的急剧衰减,甚至完全失去光伏性能。相关成果近期发表在Joule上。有机膦掺杂的交联阴极界面层提升有机光伏电池水下存储与工作稳定性
  • 安捷伦提供解决方案 改善海水分析的长期稳定性
    ICP-MS 是目前测定海水中痕量元素常用方法之一。但是由于海水基体复杂,氯化钠等盐分含量非常高,TDS 含量接近 3%。因此传统的 ICP-MS 测试过程中经常会遇到采样锥积盐严重,内标回收率大幅下降,质谱干扰严重等问题。使得用户无法 ICP-MS 长期准确地进行测试。超稳健进样系统(Ultral Robust Kit URK)包括小内径蠕动泵管、Mira Mist 雾化器、UHMI 雾室及氩气加湿器,与镀镍采样锥一同使用可进一步提升 ICP-MS 耐高基质性能。该组件包可用于安捷伦 7850/7900/8900 系列 ICP-MS。等离子体是高基质样品于 ICP-MS 长期稳定运行的重要载体,处于核心位置。传统 ICP-MS 直接分析样品中总溶解固体(TDS)含量最高可达 2000 ppm (0.2%)。若高于该限值,等离子体就无法完全分解基质,未解离的基质便会沉积在接口锥和离子透镜上。这些沉积物会导致信号漂移并使维护更加频繁。不完全的基质分解也会增加质谱干扰。众所周知,更高的射频功率、更长的采样深度和更少的样品引入量,是维系等离子体强健性的三个关键参数。样品引入量与 ICP-MS 进样部件密切相关,选择适合的雾化器类型、在线内标和气体稀释等手段应对高基质样品分析往往能取得事半功倍的效果。选择合适的超稳健进样系统轻松应对高盐样品分析在线内标稀释建议样品引入通道与内标引入通道使用相同尺寸内径蠕动泵管(ID 0.76mm),可实现在线1:1溶液稀释,直接降低高基质样品引入量。Mira Mist 雾化器雾化器作为 ICP-MS 最先接触样品的部件,其耐高基质的能力强弱直接影响到后续样品长期稳定测试的可行性。TDS 含量较高的样品在载气流中高速运行的溶解态固体,在通过雾化器的喷嘴时可能会发生脱溶剂。随着时间的推移,不同类型的样品中的微粒会发生不同程度的堆积,阻碍气体流动,导致雾化效率不稳定,并最终堵塞雾化器。为此 URK 专门选择了 Mira Mist 雾化器,其优势在于其采用独立双通道(样品和气体)设计,极大提升耐堵塞能力。UHMI 雾室氧化物产率是评价等离子体强健与否的关键指标。氧化物产率越低意味着等离子体温度越高,解离样品的能力越强。ICP-MS 的强健性由 CeO+/Ce+ 表征。这一比值显示了等离子体有效分解强结合 Ce-O 分子的能力。UHMI 通过添加精确控制与经过校准的氩气流对气溶胶流进行稀释。雾化气与稀释气的比例可自动调节,以确定气溶胶稀释的程度,对于超高基质可高达百倍稀释。该稀释气可有效降低气溶胶的密度并打碎液滴,从而获得更高的等离子体温度、更出色的基质分解、更低的氧化物和其他干扰,以及更低的维护频率。氩气加湿器氩气加湿器通过加湿雾化气以减少雾化器和喷嘴中的沉积物,进一步提高基质样品的信号稳定性。镀镍采样锥镀镍设计比传统的采样锥更好地耐受高盐基质,如高氯基体,以最大限度地延长锥寿命,减少清洗频率,提高生产力。仪器参数和实验结果仪器参数:表 1. 优化后的仪器参数测试结果:在表 1. 的参数下,对实际海水样品连续测试 5.8h。以 Ge,Rh,In 为内标。从图 1 可以看到,在高灵敏度模式下等离子体成橘红色,即使只测试 1h 采样锥的锥孔积盐就非常严重了。而在表 1. 参数下,等离子体只有中心样品通道呈少许橘红色,连续测试 5.8h,采样锥锥孔积盐并不严重。表明表 1. 的参数能有效降低样品基体效应。从图 2. 可以看到,采用高盐进样系统分析 TDS3% 海水,5.8 小时后内标回收率仍旧在 80% 以上。图 1. 等离子体和锥孔积盐情况a. 高灵敏度模式下的等离子体 b. 高灵敏度模式下测试 1h 后的采样锥锥孔c. 表一参数下的等离子体,d. 表1 参数下,测试 5.8h 后的采样锥锥孔图 2. 海水 5.8 小时内标稳定性ICP-MS 超稳健进样系统产品信息
  • 活动 | 感受Memmert中国制造,领略Memmert稳定性试验解决方案
    _MEMMERT_ Memmert 活动预告 UPCOMING EVENTS 世界制药原料中国展(CPHI China 2024)将于6月19日至6月21日在上海新国际博览中心举行—— Memmert诚邀阁下莅临我们的展位:W5G03 \ | / 6 月 一二 三 四 五 六 日 17 18 19 20 21 22 23 CPHI China世界制药原料中国展 2024年06月19日至06月21日 上海新国际博览中心(上海市浦东新区龙阳路2345号) Memmert展位:W5G03 展会期间,我们将分享Memmert在稳定性试验领域的解决方案:稳定性试验箱HPPeco、低温培养箱IPPeco、二氧化碳培养箱ICO等产品。 Memmert国产稳定性试验箱HPPeco及低温培养箱IPPeco也将首次正式亮相。尽管,Memmert国产箱体早在农历龙年伊始便已陆续正式交付终端用户,但本次CPHI China将会是您近距离了解、感受“德国品质”及“中国速度”共同助力下的Memmert中国制造的机会!期待与你相遇 更多资讯请浏览 www.memmertcn.com
  • 钙钛矿太阳能电池离子迁移行为与器件稳定性关系研究获进展
    钙钛矿太阳能电池(PSCs)作为新兴的薄膜光伏器件,通过最近10年的发展,光电转换效率从3.8%提升到了25.7%,展现出巨大的商业化应用前景。然而高效的n-i-p结构电池批次重复性和稳定性较差,成为钙钛矿电池产业化应用的关键限制。而目前研究人员对导致器件重复性和稳定性较差的原因理解还不够充分。   中国科学院苏州纳米技术与纳米仿生研究所马昌期团队系统地研究了n-i-p结构PSCs在空气氧化过程中的离子迁移行为。结果表明,Spiro-OMeTAD薄膜的氧化是通过非接触电化学方式进行的,其中,空气中的氧气和水分子作为氧化剂将Spiro-OMeTAD氧化,进而提高了Spiro-OMeTAD薄膜的导电性能。更为重要的是,这一氧化过程促使Spiro-OMeTAD层内的Li+向电池内部迁移并在SnO2/Perovskite界面富集。Li+离子的迁移与富集促进了Spiro-OMeTAD氧化并降低SnO2的LUMO能级,提高了器件内部的内建电场,并同时改善了钙钛矿/Spiro-OMeTAD以及钙钛矿/SnO2界面处的空穴和电子提取效率,进而提升了器件的效率(图1)。该工作为n-i-p型钙钛矿太阳能电池中Spiro-OMeTAD的氧化提供了完整的机理解释。相关成果以Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ions Migration in Improving the Performance of n-i-p Type Perovskite Solar Cells为题发表于Journal of Materials Chemistry A。 图1 n-i-p结构钙钛矿太阳能电池中Spiro-OMeTAD的电化学氧化过程中的Li+离子迁移机制   研究团队在后续研究n-i-p型钙钛矿太阳能电池工作稳定性过程中发现,钙钛矿电池在运行过程中会出现器件的突然失效(Catastrophic Failure)。通过光致发光(PL)成像分析确定短路位置发生在金属Ag电极的边缘。进一步通过SEM和TOF-SIMS分析证明了Ag+离子在器件边缘发生迁移扩散,而器件内部的电极以及钙钛矿薄膜却没有发生明显的变化。研究人员利用SEM表征了沉积在Spiro-OMeTAD上的Ag薄膜的形貌,结果表明由于Ag与Spiro-OMeTAD的不浸润性,边缘的Ag颗粒团簇尺寸比中心部分的尺寸更小、更疏松。基于此,研究团队推断器件突然短路失效的机制为:光照下钙钛矿薄膜分解并形成多碘化合物发生扩散并与电极边缘松散的Ag簇并发生反应而导致Ag电极被腐蚀,腐蚀产生的Ag+离子穿过Spiro-OMeTAD而向钙钛矿中迁移,最终在Ag电极和钙钛矿之间形成丝状电导,导致器件短路。基于此,研究团队在Spiro-OMeTAD上沉积一层MoO3薄膜,改善沉积Ag电极过程中Ag的生长,获得了边缘更加致密的Ag电极。此外,由于MoO3薄膜的引入使得Spiro-OMeTAD和Ag电极之间的空穴提取效率更高,避免了空穴在该界面的积累,进而有利于稳定性的提升,实现器件运行600h以上而不发生前述的突变失效(图2),有效提升器件的稳定性能。相关成果以Revealing the Mechanism behind the Catastrophic Failure of n‐i‐p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It为题发表于Advanced Functional Materials。 图2 钙钛矿电池运行过程中Ag+离子迁移引起的“突变失效”及MoO3的引入提高运行稳定性机制   虽然该结构电池的运行稳定性得到提升,但是该类光伏电池运行过程中初始几十个小时内往往存在效率的快速衰减过程(burn-in衰减),严重降低了器件的稳定输出效率。针对该问题,研究团队通过器件结构设计及稳定性测试过程中器件内部离子分布、界面复合变化,证实该结构电池中的“burn-in”衰减与SnO2中Li+迁移至钙钛矿/空穴传输层界面有关。通过在SnO2/Perovskite界面引入一个薄层交联PC61BM(CL-PCBM)后可以抑制“burn-in”衰减。TOF-SIMS的结果证明了CL-PBM薄层可以将Li+离子固定在Perovskite/SnO2界面中,而且CL-PCBM的引入可以增加器件的内建电场并提高电子提取效率;最终在Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3体系钙钛矿电池中获得了22.06%的效率,在光照下持续运行1000h后仍保留初始效率的95%,而参比电池仅保留75%;在FAPbI3体系钙钛矿电池中时,获得了24.14%的光电转换效率,同时也消除了“burn-in”衰减过程。这表明利用CL-PCBM界面修饰来消除“burn-in”衰减具有普适性。综上,通过降低器件工作过程中的Li+迁移可以大幅降低钙钛矿太阳能电池稳定性测试初期存在的“burn-in”衰减,提高器件的稳定输出功率(图3)。相关成果以Boosting Perovskite Solar Cells Efficiency and Stability: Interfacial Passivation of Crosslinked Fullerene Eliminates the "burn-in" Decay为题发表于Advanced Materials。图3 CL-PCBM界面修饰抑制Li+离子迁移提高器件效率并消除器件的“burn-in”衰减
  • 仪器表征,科学家揭示铁基催化剂稳定性与性能的提升新方法!
    【科学背景】铁基费托合成(FTS)催化剂是广泛用于合成气转化的重要催化剂,由于其产品分布灵活、反应条件广泛且成本低廉,因而成为了研究热点。然而,铁基催化剂在反应过程中,其铁碳化物活性相容易被生成的水氧化成Fe3O4,这导致催化性能逐渐下降,成为该领域面临的一大挑战。有鉴于此,武汉大学定明月教授、Yanfei Xu等课题组在“Nature Communications”期刊上发表了题为“Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis”的最新论文。科学家们提出了通过表面疏水化来保护铁碳化物活性相的策略。疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制水对铁物种的氧化。这一策略不仅增强了催化剂的C-C偶联能力,还促进了长链烯烃的形成。此外,研究进一步表明,适当的壳层厚度在稳定铁碳化物活性相、避免Fe3O4的生成以及实现良好催化性能方面发挥了关键作用。这一研究为开发高效、稳定的铁基FTS催化剂提供了新的思路。【科学亮点】(1) 本研究首次采用表面疏水化的方法,对铁基费托合成(FTS)催化剂进行改性,成功保护了铁碳化物活性相。通过实验发现,疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制了水对铁物种的氧化,保持了铁碳化物的稳定性。(2) 通过调控催化剂表面的疏水壳层厚度,实验进一步揭示了壳层厚度在稳定铁碳化物活性相中的关键作用。结果表明,适当厚度的疏水壳层不仅有效防止了Fe3O4的形成,还显著增强了催化剂的C-C偶联能力,促进了长链烯烃的生成,最终实现了优良的催化性能。这一研究为铁基FTS催化剂的性能优化提供了新的思路和方法。【科学图文】图1:结构表征与催化性能。图2:亲水性和疏水性催化剂的相变行为。图3:通过表面疏水化抑制水对碳化铁的氧化图4:壳层厚度对相结构与催化性能的影响。。图5:氯对相变行为及CO吸附行为的影响。【科学结论】本文揭示了通过表面疏水化策略有效保护铁基费托合成催化剂中铁碳化物活性相的重要性。传统铁基催化剂在合成气转化过程中,铁碳化物活性相容易受到生成的水的氧化,从而导致Fe3O4的形成,严重影响催化性能。而通过在催化剂表面引入疏水层,可以显著减少水在催化剂核心区域的浓度,抑制铁物种的氧化过程,进而稳定铁碳化物活性相,增强催化剂的C-C偶联能力,促进长链烯烃的生成。此外,本文强调了壳层厚度在这一过程中的关键作用,适当的壳层厚度不仅能有效防止Fe3O4的形成,还能在保持催化剂良好性能的同时,确保其活性相的稳定性。此研究为开发高效、稳定的铁基FTS催化剂提供了新的思路和方法。原文详情:Xu, Y., Zhang, Z., Wu, K. et al. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis. Nat Commun 15, 7099 (2024). https://doi.org/10.1038/s41467-024-51472-w
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 高性能润滑油的稳定性和颗粒特征
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题二: 高性能润滑油的稳定性和颗粒特征课题二的讨论重点是如何通过SEPView® 软件的三种分析模块来评价高性能的润滑油的稳定性和颗粒特征。主讲人:Stefan Küchler会议持续时间:60分钟会议语言:英语会议时间:2021年9月16日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 国家市监局关于《消毒剂稳定性评价方法》 等7项国家标准的解读
    在卫生防护领域,《消毒剂稳定性评价方法》等7项国家标准,分别规范了消毒剂产品的安全性、稳定性、金属腐蚀性和消毒效果,以及消毒剂生产企业的生产条件。以下是对《消毒剂稳定性评价方法》等7项国家标准的解读一、标准编号、标准名称  (1)GB/T 38499-2020《消毒剂稳定性评价方法》  (2)GB/T 38503-2020《消毒剂良好生产规范》  (3)GB/T 38496-2020《消毒剂安全性毒理学评价程序和方法》  (4)GB/T 38497-2020《内镜消毒效果评价方法》  (5)GB/T 38498-2020《消毒剂金属腐蚀性评价方法》  (6)GB/T 38502-2020《消毒剂实验室杀菌效果检验方法》  (7)GB/T 38504-2020《喷雾消毒效果评价方法》  二、标准制定背景  消毒产品主要用于传染病防控,与人民健康息息相关。目前,我国已制定一系列标准,有效规范了醇类消毒剂、含氯消毒剂、含碘消毒剂、过氧化物类消毒剂、胍类消毒剂、酚类消毒剂、季铵盐类消毒剂产品的质量安全要求。为统一消毒剂产品的检测评价方法,用一把尺子、一套评价检测标准进行评价产品性能,修订了《消毒剂稳定性评价方法》等6项标准。  这些标准分别规范了消毒剂产品的安全性、稳定性、金属腐蚀性和消毒效果,并规范了消毒剂生产企业的生产条件,旨在完整消毒剂使用方法,确保检验结果的科学性合理性以及试验数据的可重复性和准确性,是现行消毒标准体系中重要的组成部分。  三、标准主要内容  上述7项标准都是推荐性国家标准,分别规定了消毒剂的稳定性评价方法、安全性毒理学评价程序和方法、金属腐蚀性评价方法、实验室杀菌效果检验方法、内镜消毒效果评价方法、喷雾消毒效果评价方法和消毒剂的良好生产规范。  (一)GB/T 38499-2020《消毒剂稳定性评价方法》规范了对各类消毒剂保存稳定性的评价,以及待测样品和仪器设备基本要求,试验分类与选择,检测与评价原则和方法。  (二)GB/T 38503-2020《消毒剂良好生产规范》规范了消毒剂生产企业的组织机构与人员、厂房设施与设备、物料、生产管理、卫生要求、验证、质量管理、产品销售及服务、投诉与报告。  (三)GB/T 38496-2020《消毒剂安全性毒理学评价程序和方法》规范了消毒剂安全性毒理学评价的程序、确定毒理试验项目的原则、对毒理试验用受试物(受检消毒剂样品)的要求、毒理试验方法和对毒理试验结果的安全性评价。  (四)GB/T 38497-2020《内镜消毒效果评价方法》规范了用于内镜消毒的消毒剂和清洗消毒机(简称消毒机)的评价原则与检测方法。  (五)GB/T 38498-2020《消毒剂金属腐蚀性评价方法》规范了气溶胶喷雾、超声雾化、汽化、气体、常量喷雾、擦拭、浸泡或冲洗消毒条件下消毒剂、消毒器械对金属腐蚀性评价原则、试验方法和金属腐蚀速率计算。  (六)GB/T 38502-2020《消毒剂实验室杀菌效果检验方法》规范了适用于各种消毒剂实验室杀菌效果的检验和评价,以及消毒剂实验室杀菌效果检验的术语和定义、基本要求以及消毒与灭菌效果试验方法。  (七)GB/T 38504-2020《喷雾消毒效果评价方法》规范了用于使用喷雾消毒方法的消毒剂和消毒器械的效果评价,以及喷雾消毒效果的评价原则和方法。  以上7项标准在制修订过程中,对实验室、试验方法、评价方法、评价要求等均进行了充分调研,研究了相关性能的检测技术,最终形成了可重复性试验方法标准;规范了消毒剂生产企业的人员、设备、质量管理等各方面,为生产安全打下基础。  四、标准实施意义  上述7项标准的修订,一方面,进一步完善了消毒标准体系;另一方面,在保证消毒剂质量,控制疾病暴发流行、医院感染控制、突发公共卫生事件处理及家庭卫生消毒等方面发挥了重要作用。
  • 用科学的数据定义美食的口感—糖果的热稳定性评价
    在食品领域,热分析技术除了对原料的结晶性或熔融进行分析以外,也被广泛用于热稳定性评价。食品成品通常是由多种食品原料组成的混合物,通过热分析技术不仅可反应出单一原材料的物质性质,也可研究随着原料比例的变化,食品热特性的变化。差示扫描量热法(DSC)和动态热机械分析法(DMA),在研究多种食品原料所构成的食品时,可研究温度变化对于口感的影响。 下面就让我们使用日立差示扫描量热仪和动态热机械分析仪对市售糖果进行热稳定性评价。 使用DSC对食品组成成分的玻璃化转变温度和熔融温度进行评价,如下图1所示:奶糖和口香糖的原料中麦芽糖的玻璃化转变温度分别为-7.2℃和-12.2℃;33.8℃和39.6℃可能是糖中油脂成分的熔融温度,通过峰形可看出奶糖中油脂成分较多;加热和冷却后,两种糖的熔融温度发生变化,分别为27.8℃和29.1℃。 图1. 使用DSC对食品组成成分的玻璃化转变温度和熔融温度进行评价使用DMA对食品软硬程度进行评价,如图2所示:随着温度升高,在-10℃以后,随着麦芽糖的玻璃化转变出现软化现象。当温度在40℃以下时奶糖的E’较高,口感较硬;当温度超过室温后,由于油脂的熔融,口感会变得柔软。图2. 使用DMA对食品软硬程度进行评价 综上所述,通过热分析方法,可研究食品的玻璃化转变,熔融温度,以及不同温度下的粘弹性变化等热特性参数,从而作为定义食物的成分和口感指标。 日立TA7000系列热分析仪拥有良好的性能和超高的灵敏度,可高灵敏度测定食品在程序升温过程中的各种热特性变化,为食品的研发和生产提供科学的数据支持和指导方案。 关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 生物制药稳定性论坛邀请函
    生物制药稳定性论坛邀请函2020 生物制药稳定性论坛将于2020 年 09 月 10 日-12 日,中国杭州上城区长生路 18 号梅地亚宾馆举行以重组蛋白、单抗药物、疫苗、基因治疗、细胞治疗等为代表的生物制药是 当前世界医药研发的热点和发展方向,但这些生物制药普遍面临不稳定的问题, 不仅影响药物的有效性,更会产生包括免疫原性在内的毒副作用。生物药物的稳 定性问题直接决定生物药能否成功应用于临床。生物药物稳定性问题的解决需要 多学科的紧密协作,包括基础机理研究、工艺开发、制剂开发和质量分析。大昌华嘉仪器部专业提供分析仪器及设备,代理众多欧美先进仪器,其中就包括与生物制药稳定性有关具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪。即将亮相本次展会的仪器具备光阻法功能的流式颗粒成像分析系统,全自动旋光仪,纳米颗粒跟踪/NTA,稳定性分析仪等会议内容:1、生物药降解机理研究2、生物 药稳定性表征方法的开发与应用3、新型生物药(如疫苗、细胞疗法等)制剂 开发策略4、生物药在生产过程中的稳定性展品介绍Fluid Imaging Technologies(FlowCam)公司成立于1999年美国缅因州斯卡伯勒市,其研发并生产的FlowCam系列仪器是将流式细胞法组合到数字成像显微镜中,基于图像分析法的流式动态成像颗粒分析仪,它使颗粒分析变得更快,更简单美国鲁道夫公司(Rudolph Research Analytical)是一家著名的旋光仪专业制造产家,早在1940年起就致力于旋光仪的研发和制造。多年来鲁道夫公司不断创新改进,相继推出了Autopol II、III、IV、V型自动旋光仪,在化工、制药、制糖及香精香料等行业拥有众多的用户,在中国已成功应用在国家药检所,上海药检所,浙江药检所等众多药检部门及各大制药厂,科研机构。德国Particle Metrix(简称PMX)是一家专业研发和制造表征胶体特征和生命科学研究的仪器公司。PMX公司拥有两条专业的产品线,针对不同的应用提供不同的专业仪器。在生命科学研究领域,PMX公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,能够实现单个纳米颗粒的跟踪,粒度测量,Zeta电位测量,浓度测量等。专为大批量研发部门和质检部门设计。TurbiScan Lab 与全自动机械手的完美结合。全自动机械手包括3个独立的恒温槽和一个样品输送的机械臂。每个恒温槽中有18个样品槽,一共可以存储54个样品依次测量。恒温槽温度控制从室温+5℃到60℃,样品输送的机械臂每小时运行60次,可连续7天不间断工作。展位图展位号:6号
  • SERS基底稳定性超过180天 质标所拉曼速测技术取得重要进展
    p   近日,质标所“饲料质量安全检测与评价”创新团队在表面增强拉曼光谱速测技术方面取得重要进展,实现了饲料、食品和生物样品中违禁添加物等危害因子的高敏、可定量速测,相关研究成果发表在Food Chemistry(食品化学)等刊物上。质标所为第一完成单位,程劼博士为第一作者,王培龙副研究员和苏晓鸥研究员为通讯作者。 br/ /p p style=" TEXT-ALIGN: center" img title=" 微信截图_20181013212013.jpg" alt=" 微信截图_20181013212013.jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/37d230c6-a3db-4e88-a0b2-cd408aea798e.jpg" / /p p   该研究突破了高密度“热点”增强材料“一步法”制备技术,获得了氧化石墨烯负载纳米金属等拉曼光谱(SERS)增强基底,具有增强效果好(106倍以上),稳定性高(超过180天)等特点,攻克了SERS增强基底稳定性不足导致的实用性不强的瓶颈难题,研究建立了不同样品基质中“瘦肉精”、三聚氰胺和丙烯酰胺等危害物的速测方法,方法灵敏度达到ng水平,检测结果与仪器方法吻合度高(95%以上)。 /p p   据悉,该团队自2009年开始进行拉曼光谱的相关研究,研制出适合于不同场景使用的3种拉曼光谱设备,开发出适合于不同样品基质(饲料、动物组织、农产品等)中农兽药残留、非法添加物和环境污染物的增强试剂,研发了配套的快速样品前处理技术,创制了系列速测方法,在国际刊物上发表SCI论文7篇,授权国家发明专利3项并全部实现成果转化,转让经费110万元 作为成果重要组成部分获辽宁省科技进步奖1项,神农中华农业科技奖1项和中国农业科学院青年科技创新奖1项。中国农学会成果评价认为该项技术达到“国际领先水平”。 /p p   以上研究工作得到了中国农业科学院创新工程、科技部重点研发专项等项目的支持。 /p p   近期相关论文链接: /p p   (1) a href=" https://www.sciencedirect.com/science/article/pii/S0308814618317692" https://www.sciencedirect.com/science/article/pii/S0308814618317692 /a /p p   (2) a href=" https://www.sciencedirect.com/science/article/pii/S0925400518317398" https://www.sciencedirect.com/science/article/pii/S0925400518317398 /a /p p   (3) a href=" https://www.sciencedirect.com/science/article/pii/S0925400517317124" https://www.sciencedirect.com/science/article/pii/S0925400517317124 /a /p p & nbsp /p
  • 稳定性为基,自动化智能化为翼——屹尧科技与衡昇质谱成功举办新形象新产品发布会
    仪器信息网讯 2023年7月11日,屹尧科技与衡昇质谱联合举办了一场以“强悍性能、智能化、自动化、智慧实验室”为关键词的新品发布会,宣布推出两款重量级新品——iQuad 2300系列ICP-MS质谱仪和P3超能微波机器人。同时,衡昇质谱也展示了其全新的品牌标识,开启在技术进步和市场拓展上的新篇章。会上,庄松林院士、上海市科学技术委员会基地处领导、屹尧科技&衡昇质谱董事长倪晨杰和技术创新中心主任康怀志教授还为上海市高端科学仪器技术创新中心揭牌,表明了国产科学仪器的自主研发进程正受到越来越多的关注和支持。衡昇质谱VI焕新 诠释技术创新与升级随着ICP-MS质谱仪产品正式推向市场,衡昇质谱对于自己的品牌形象和市场定位等有了更加明确的规划。此次发布会上衡昇质谱发布了全新形象,包括新的简称,由“衡昇仪器”变更为“衡昇质谱”,新的英文名字“HanSelMS”,以及全新品牌标识。新品牌标识将衡昇质谱的企业文化和产品特点相结合,由运动的微观粒子和四极杆的动态变形为设计元素,其中,螺旋状行进的微观粒子、四极杆分析器的形态和红色,展现了衡昇质谱对质谱的热爱,在质谱领域的专注与专业,也代表着其笃定以四极杆质谱为发展方向。“‘衡’久流传、‘昇’生不息,‘衡昇’代表着我们在技术研发上的活力和创新精神。”衡昇质谱总经理祝敏捷表示,“此次全新品牌标识的发布,不仅提升了品牌的辨识度,更在消费者和市场中树立了衡昇质谱专业、创新、高品质的品牌形象。”左起:屹尧科技&衡昇质谱董事长倪晨杰、中国仪器仪表学会分析仪器分会秘书长吴爱华、中国仪器仪表学会分析仪器分会名誉副理事长刘长宽、中国仪器仪表行业协会分析仪器分会秘书长曾伟、中国分析测试学会副理事长刘成雁、清华大学张新荣教授、中国检验检测学会测试装备分会秘书长邢志教授、衡昇质谱总经理祝敏捷共同揭晓衡昇质谱新标识稳定性大幅提升 衡昇质谱新一代ICP-MS正式推向市场衡昇质谱iQuad 2300系列 ICP-MS衡昇质谱此次推出的iQuad 2300系列ICP-MS,凭借稳健可靠的性能成为了分析领域的焦点。这款新产品在二代机的基础上进行了多项升级,在分析效率、分析稳定性和精准性等方面表现出色,为环保、化工、材料、金属地质地矿和食品等行业的高通量分析实验室提供了高效、精确和便捷的解决方案,助其在痕量元素分析时获取更精准和可靠的数据。新品亮点:卓越的系统稳定性,铸就超乎寻常的分析稳定性;独特的带有轴向加速功能的六极杆碰撞反应池,实现超高离子通过效率;七通阀高速进样系统为高通量实验室量身定制,实现大幅降本增效。iTrace智能软件实现远程一键启动,自动调谐,便捷操控,大大提升分析效率。左起:中国仪器仪表学会分析仪器分会秘书长吴爱华、中国仪器仪表行业协会分析仪器分会秘书长曾伟、清华大学化学系张新荣教授、衡昇质谱总经理祝敏捷共同为iQuad 2300系列ICP-MS揭幕主打自动化智能化 屹尧科技P3超能微波机器人揭幕屹尧科技P3超能微波机器人样品溯源从前处理开始。屹尧科技发布的最新一代超能微波机器人P3是一款性能出众的数字智能化微波消解仪,为实验室样品溯源工作带来显著优势,大大提高实验室工作效率和样品的处理能力,实现实验室前处理过程的全面数字化管理,提升实验室工作的自动化程度和智能化水平。新品亮点:P3超能微波机器人拥有三个独立高效微波通道,可实现96个样品的全自动消解;大空间电动试剂仓满足分析需求,可轻松实现各种实验过程自动化;专利单模微波腔体可极致提升操作安全,使困难样品在20分钟内完成准备工作;P3超能微波机器人开放包容,可轻松接入实验室智能化管理系统,通过APP实时了解样品状态,实现远程操控。左起:屹尧科技副总经理张锴、上海市食品药品检验研究院王柯副院长、清华大学分析测试中心邢志教授和实朴检测董事长杨进博士共同揭晓P3超能微波机器人屹尧科技&衡昇质谱董事长倪晨杰表示:“国产仪器自主研发是推动科技创新和国家发展的关键。只有通过自主研发,我们才能掌握核心技术和创新能力,实现仪器制造行业的独立自主和持续发展。屹尧科技和衡昇质谱将继续深耕科学仪器领域,助力中国科研进步。”屹尧科技&衡昇质谱董事长倪晨杰致辞关于屹尧科技上海屹尧仪器科技发展有限公司成立于2000年,始终专注于微波化学和样品前处理领域,产品涵盖微波消解、微波合成、固相萃取等。历经20余年的技术沉淀,推动了“温压双控”“底部双红外控温” “全自动微波消解”等技术在中国的发展。屹尧科技以用户至上为准则,立足中国,着眼世界,为国内外用户提供专业优质的产品与服务,产品远销40多个国家和地区,广泛应用于各国政府实验室, 并赢得第三方检测、乳品、能源等企业客户的认可。 关于衡昇质谱成立于2014年的衡昇质谱,始终立足研发,拥有多项独立知识产权的核心技术,旨在打造行业高端质谱产品。衡昇质谱涉及实验室科学仪器及设备的研发、生产、销售、售前售后技术支持、技术咨询等业务。衡昇仪器为包括环境监测、食品分析、化学化工、地质地矿、特种材料、金属检测、科研院所、医院、第三方检测、农林畜牧业、核工业、疾控、检验检疫等行业的实验室客户提供优质的产品及服务。
  • 稳定性肥料行业标准即将正式颁布
    2010年1月8日,“稳定性肥料行业标准”信息通报会在沈阳召开,记者从会上了解到“稳定性肥料行业标准”近期将由工业和信息化部正式颁布。   “稳定性肥料行业标准”信息通报会由中科院沈阳应用生态研究所和沈阳中科新型肥料有限公司共同举办,山东施可丰化工、阳煤丰喜集团、河南财鑫化工、中农集团、大化集团大连、吉林隆源、石家庄中嘉等数十家来自全国各地的缓控释肥生产企业的40多位专家和代表到会。中国化肥信息网、《中国化肥信息》周刊、农资导报和中华合作时报应邀参加了本次会议。   近年来,随着科学技术的进步和发展,我国在新型肥料研究和应用领域取得了巨大的进步。科研方面,以中科院沈阳应用生态研究所、郑州大学、北京市农林科学院、华南农大等为代表的科研机构取得了丰硕的研究成果,其中由中科院沈阳应用生态研究所研发的缓释肥技术获得了科技部颁发的中国肥料行业第一个“中国科技进步二等奖” 在科技成果产业化方面,涌现了山东施可丰、金正大、上海汉枫、黑龙江倍丰、山东农大肥业、天津芦阳、住商肥料等一大批优秀骨干企业,为我国新型肥料科技成果的转化、新产品的推广和农业的节支增收做出了巨大的贡献。据卢宗云研究员介绍,目前我国缓控释肥产量已经占到磷复合肥产量的1.9%,施用量每年增长超过20%,达到全球的施用总量50%,中国成为了世界最大的缓控释肥生产和消费国。   会上,中科院沈阳应用生态研究所韩兴国所长介绍了我国农业发展现状和中科院沈阳生态研究所在缓控释肥研究领域取得的辉煌成就,石元亮博士详细介绍了“稳定性肥料行业标准”和标准的制定过程。   与会代表认为,标准的制定和颁布将进一步规范我国缓控释肥的生产和流通,对保护农民利益和缓控释肥在我国的推广施用起到积极的推动作用。据悉,“稳定性肥料行业标准”由国家化肥质检中心上海、中科院沈阳、沈阳中科、施可丰和黑龙江倍丰集团共同参与制定,并将两年后将提升为国家标准。
  • 美墨尔特(Memmert)最大稳定性试验箱HPP2200交机侧记
    日前 美墨尔特(Memmert)在世界著名制药企业交付安装了目前单体最大的半导体稳定性试验箱HPP2200,内部有效容积2200升;助力企业在日趋严峻的世界制药市场开拓创新。HPP2200 稳定性试验箱 CFDA加入ICH(人用药品注册技术要求国际协调会,International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use)后,由一个旁观者变成了参与者,意味着国内制药行业和研发机构,将逐步转化和实施国际最高技术标准和指南。在过渡阶段,国内的药典及各类标准体系需要有所提升,也对企业硬件投入提出了要求。 原料药及制剂稳定性研究是贯穿于药物及制剂研发生产全生命周期的基础性研究,以获得原料药或制剂的质量特性在各种环境因素(如温度、湿度、光线照射等)的影响下随时间变化的规律,并据此为药品的处方、工艺、包装、贮藏条件和有效期/复检期的确定提供支持性信息。也是质量控制研究的重要组成部分,需要满足药品数据管理规范中“归属至人、清晰可溯、同步记录、原始一致、准确真实”的ALCOA+基本原则。 美墨尔特(Memmert)数十年来始终致力于温控箱体的研发与生产,半导体系列稳定性试验箱已经占据了市场上相当的份额,产品系列涵盖了从100升到1000升级的广阔体积范围,可适应于几乎所有稳定性研究相关的应用领域。本次HPP2200的成功交机更是将单体体积史无前例地拓宽到2000升级别,最大样品承载面积达15m2,虽然体积增大了,温湿度等各项参数的控制精确度及稳定性,丝毫不打折扣,仍然严格按照之前的特别适用于大批量稳定性试验。 HPP2200具有三开门、集中控制等特点,卓越的技术保证了整个箱体的温湿度范围及精度可以与HPP1400匹敌,涵盖了几乎所有药典及其他监管机构所规定的稳定性试验温湿度点,能够长时间不间断稳定运行。HPP2200超强的温湿度调控能力 双屏TwinDISPLAY的ControlCOCKPIT从人体工程学出发,采用触摸屏操作与双TFT显示屏,使得所有参数的显示与调节变得异常轻松简单,还可以通过控制面板实时显示各参数的数据曲线;独特的门把手设计可以在手里端有样品托盘时依然可以用胳膊肘或者膝盖打开箱体门;为方便在不开门的情况下观察箱体内试样状态,箱体门上装有高强度耐高温玻璃视窗。 AtmoCONTROL-FDA软件具有密码保护、权限管理、审计追踪、电子签名、数据备份等数据可靠性管理所必需的各项关键参数。HPP1400(左)与HPP2200(右)稳定性试验箱关于Memmert全球领先的温控箱体领导品牌德国美墨尔特(Memmert)创始于1933年,近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。 产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、水浴油浴等。2010年9月11日,德国Memmert(美墨尔特)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京及南京设有代表处。
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • 文献解读丨通过M–N键长和配位调节提高质子交换膜燃料电池非贵金属M–N–C催化剂的稳定性
    质子交换膜燃料电池(PEMFC)被认为是一种有前途的可持续电化学能量转换装置,尤其是在交通应用中。目前,只有铂族金属(PGM)才能有效催化阴极上动力学缓慢的氧还原反应(ORR),但其高昂的成本和Pt的稀缺严重阻碍了PEMFC的大规模应用。因此,开发不含PGM的催化剂来部分或完全取代PGM催化剂是非常可取的。具有M-Nx/C活性位点的金属-氮-碳(M-N-C,M=Fe、Co、Mn等)催化剂,特别是Fe-N-C催化剂,在半电池和PEMFC测试中都表现出出色的初始ORR活性,可与商业Pt/C催化剂相媲美。然而,在M-N-C催化剂能够实际应用于PEMFC之前,必须克服许多艰巨的障碍,其中稳定性是最严峻的挑战。总的来说,由于对膜电极组件(MEA)的降解机制和复杂的多场(质/电/热)耦合环境了解不足,提供有效的解决方案来提高PEMFC中M-N-C催化剂的稳定性仍然极具挑战性。因此,开发具有显著增强稳定性的高性能M-N-C催化剂对于PEMFC的商业应用来说十分紧迫。方法与结果PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂的制备流程如图1所示。最简单的不饱和一元羧酸丙烯酸(AA)作为单体聚合成PAA,并与Fe3+螯合形成交联水凝胶。马来酸(MA)是一种二羧酸单体,用于与AA共聚合,以增加共聚物P(AA-MA)的羧酸含量。通过在共聚过程中调节AA/MA的摩尔比(5/1,3/1,1/1),可以轻易地调控共聚物中羧基的浓度和相应的与金属离子的结合常数。通过亲水性羧基和金属离子之间的螯合作用形成的交联水凝胶,可以通过随后在800°C下用氮前体进行高温处理,使所得的M–Nx/C位点原子分布在分级3D结构中。所得催化剂分别表示为PAA-Fe-N和P(AA-MA)-Fe-N。MA-Fe-N催化剂也被合成作为对照样品。图1 PAA-Fe-N和P(AA-MA)(5-1)-Fe-N催化剂制备示意图为了分析催化剂表面上C和N的价态,使用岛津的X射线光电子能谱仪(XPS)对其进行了分析表征。高分辨率C1s光谱中C-N键的形成表明N已经成功地掺杂在C骨架中。与PAA-Fe-N相比,P(AA-MA)(5-1)-Fe-N样品C-N键的位置发生了正向的位移,表明P(AA-MA)(5-1)-Fe-N样品具有更强的Fe-N相互作用。高分辨率N1s光谱表明,P(AA-MA)(5-1)-Fe-N样品具有比PAA-Fe-N更高的表面N含量(8.99 at%)和吡啶N/石墨N比例。P(AA-MA)(5-1)-Fe-N样品的表面Fe含量是PAA-Fe-N的3.5倍(0.44 vs 0.13 at%),ICP-MS分析也证实了这一趋势。可以推断,在引入MA后,P(AA-MA)(5-1)-Fe-N具有更高的Fe–Nx/C活性位点密度。57Fe Mö ssbauer(穆斯堡尔谱仪)被用来进一步探究样品中的Fe–N结构(图2c)。结果表明,具有可观QS值的D3位点(≈15%)说明PAA-Fe-N拥有比P(AA-MA)(5-1)-Fe-N更短的Fe-N键。采用X射线吸收光谱法(XAS)检测了样品的局部Fe-N配位结构。测量了P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的X射线近边结构(XANES)的Fe K边。结果表明,P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂中的Fe都可以实现原子级分散,并且单个Fe原子与N(O)元素配位,而不是以Fe-Fe键的形式存在。P(AA-MA)(5-1)-Fe-N和PAA-Fe-N的Fe-N(O)键的平均键长分别为2.035 and 2.006 &angst ,与57Fe Mö ssbauer(穆斯堡尔谱仪)结果一致。根据文献,PAA-Fe-N样品中可能存在一些Fe-N2或Fe-N3物种(尽管Fe-N的拟合配位数仍然接近4),导致Fe-N(O)键长减少。相反,P(AA-MA)(5-1)-Fe-N中Fe-N位点的配位结构应以Fe-N4为主。图2 高分辨率C1s(a)和N1s(b)XPS光谱;以及(c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N样品的室温57Fe Mö ssbauer图谱;(d)P(AA-MA)(5-1)-Fe-N、PAA-Fe-N和Fe箔样品的k3加权FT-EXAFS光谱电化学测试表明(图3a-3c),与PAA-Fe-N以及其他催化剂相比,P(AA-MA)(5-1)-Fe-N具有更好的性能和稳定性。将Fe置换为Co或者Mn等金属后,该催化剂依然具有良好的性能,证实该策略具有有效性和普适性。通过物理和结构研究了催化剂在60℃下半电池性能退化的详细机制。AST测试后的催化剂的XRD图谱和TEM图像表明测试后具有与初始时相似的衍射峰和片状结构。图3e和3f为测试前后相应的FTEXAFS光谱。对于P(AA-MA)(5-1)-Fe-N,AST测试后没有明显的Fe-Fe键形成,证实了Fe-N键的稳定性以及随后催化剂Fe去金属化的耐受性。相反,循环5000次后,PAA-Fe-N中Fe-Fe键急剧增加。该结果明确确定,在60℃的稳定性测试过程中,PAA-Fe-N催化剂中确实发生了Fe-Nx/C位点的去金属化,并且部分分离的Fe原子可能迁移并形成微量的Fe2O3团簇,这些团簇在XRD中无法识别。利用岛津的X射线光电子能谱仪(XPS),证实在AST测试后,PAA-Fe-N中的表面Fe含量从0.13%增加到8.48%,而P(AA-MA)(5-1)-Fe-N表面Fe含量明显更少(从0.44%到2.89%)。更糟糕的是,Fe-Nx/C位点的破坏会促进Fenton反应的进行,进一步加速临近Fe-N的分解,结果与之前报道的电子能量损失谱(EELS)结果一致。请注意,其他降解机制,如碳腐蚀,可能同时发生在PAA-Fe-N上,因为AST后C含量从83.62%显著降低到58.07%。图3 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在25°C(a)和60°C(b)的O2饱和0.5 m H2SO4溶液中进行5000循环AST前后的ORR极化曲线,催化剂负载量:0.6 mg非PGM cm&minus 2,圆盘转速:900 rpm。c)先前报道的M–N–C催化剂在O2饱和0.5 M H2SO4中从0.6–1.0 V的AST的不同循环次数后的E1/2损失。d)P(AA-MA)-Co-N和PAA-Co-N催化剂在AST前后的ORR极化曲线。e、 f)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N(AST前后)、Fe箔和Fe2O3样品的k3加权FT-EXAFS光谱。燃料电池性能测试(图4)结果表明,P(AA-MA)(5-1)-Fe-N催化剂表现出极高的活性和稳定性,在0.55 V下电流密度37 h几乎保持不变。图4 a、b)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在H2–O2(a)和H2–空气(b)条件下的燃料电池性能,阴极负载:3.0 mg cm&minus 2;c)P(AA-MA)(5-1)-Fe-N和PAA-Fe-N催化剂在PEMFC中0.55 V恒定电压下的稳定性测试期间的电流密度保持率;d)在H2–空气燃料电池中测试的各种M–N–C催化剂前20小时的电流密度保持率密度泛函理论(DFT)计算被用于进一步探究催化剂稳定性差异巨大的根源。研究了铁原子在载体上的吸附能(Ead)和Ead与整体粘性能量(Ecoh)之间的差异。计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差异。图5 a)吸附能(Ead)和b)在没有(红色)和(蓝色)溶剂化校正的情况下计算的Fe–Nx/C系统的吸附能和内聚能(Ecoh)之间的差(负值越大意味着载体中嵌入的Fe原子对金属浸出或聚集更稳定);c)Fe–N2/C、d)Fe–N3/C和e)Fe–N4/C的结构和差分电荷密度等值面(青色和黄色等值面对应于&minus 0.02和+0.02 e&angst 的电荷密度轮廓。棕色、灰色、浅灰色和白色小球分别代表Fe、C、N和H原子)总之,通过调节金属离子和催化剂前体中聚合物之间的相互作用,开发了一种提高M-N-C催化剂稳定性的通用有效策略,从而可以微调M-N键长和最终催化剂中的配位。57Fe Mö ssbauer光谱和XAS证明,与具有15%低配位Fe-N2/N3部分的PAA-Fe-N相比,具有独有的Fe-N4/C位点和更长的Fe-N键的共聚P(AA-MA)(5-1)-Fe-N催化剂性能明显更好。性能最好的P(AA-MA)(5-1)-Fe-N催化剂在半电池和H2—空气燃料电池中都表现出极高的活性和稳定性,在AST 60℃后E1/2损失仅为6 mV,在0.55 V下电流密度37 h几乎保持不变,是迄今为止报道的同类催化剂中整体性能最好的。DFT计算表明,P(AA-MA)(5-1)-Fe-N具有比PAA-Fe-N更负的Fe原子吸附能(Ead)以及Ead和本体内聚能(Ead-Ecoh)之间更负的差,这说明了其优异的结构稳定性和对脱金属的耐受性的原因。文献题目《lmproving the Stability of Non-Noble-Metal M-N-C Catalysts for Proton-Exchange-Membrane Fuel Cellsthrough M-N Bond Length and Coordination Regulation》使用仪器岛津X射线光电子能谱仪(XPS)作者苗正培等 华中科技大学Zhengpei Miao, Xiaoming Wang, Zhonglong Zhao, Wenbin Zuo, Shaoqing Chen,Zhigiang Li, Yanghua He, Jiashun Liang, Feng Ma, HsingLin Wang Gang Lu,Yunhui Huang, Gang Wu, and Oing Li
  • 我司药品稳定性试验箱赢得四川制药公司青睐,顺利签订采购合同
    我司药品稳定性试验箱赢得四川制药公司青睐,顺利签订采购合同在药品研发和生产过程中,稳定性试验是至关重要的一环。近日,我司凭借优质的药品稳定性试验箱产品和服务,成功赢得了四川一家知名制药公司的青睐,并与之签订了采购合同。今天上午,一阵清脆的铃声在我司销售部响起,一位来自四川的客户通过电话向我们咨询药品稳定性试验箱的价格。销售工程师迅速接起电话,用专业的素养和热情的态度与客户进行沟通。在详细了解客户需求的过程中,我们得知对方是一家颇具规模的制药公司,本次咨询药品稳定性试验箱的主要目的是为了模拟环境气候的温湿度,以确保药品在储存、运输和使用过程中的稳定性。针对这一需求,我们为客户详细介绍了我司药品稳定性试验箱的性能特点、技术参数以及在实际应用中的优势。我司药品稳定性试验箱采用先进的温湿度控制系统,能够精准模拟各种环境气候,为药品稳定性试验提供可靠保障。此外,设备还具有操作简便、节能环保、安全可靠等特点,广泛应用于制药、生物制品、食品等行业。在听完介绍后,客户对我司药品稳定性试验箱产生了浓厚兴趣,对我司的业务能力给予了高度评价。经过一番洽谈,客户当场决定与我司签订采购合同。此次合作,不仅为我司带来了经济效益,更是在药品稳定性试验设备领域树立了良好的口碑。为确保合同顺利履行,我司销售、生产、售后等部门紧密协作,全力保障药品稳定性试验箱的按时交付。同时,我司还将为客户提供全方位的技术支持和售后服务,确保设备正常运行,为我国药品研发和生产贡献力量。此次与四川制药公司的成功合作,充分展示了我司在药品稳定性试验箱领域的专业实力和市场竞争力。未来,我司将继续秉持“为客户提供优质产品和服务”的理念,不断开拓创新,为我国药品产业高质量发展助力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制