当前位置: 仪器信息网 > 行业主题 > >

园林植物

仪器信息网园林植物专题为您整合园林植物相关的最新文章,在园林植物专题,您不仅可以免费浏览园林植物的资讯, 同时您还可以浏览园林植物的相关资料、解决方案,参与社区园林植物话题讨论。

园林植物相关的资讯

  • TL2350 快速测定植物油中磷脂含量
    TL2350 快速测定植物油中磷脂含量哈希公司 4 days ago背景介绍植物油中的磷脂含量,是植物油生产中的重要质控指标。在加工工艺中,磷脂的存在会增加脱酸环节中中性油的损失以及脱色白土的用量,同时还会导致加氢催化剂的中毒。在油品储藏环节,磷脂会使油脂反色,同时也会导致大豆油等油品的回味。因此,磷脂作为油品加工工艺中的重要质控指标,一直受到关注。油品的磷脂测定一般采用钼蓝比色法(GB/T 5537-2008),该方法将油品灰化加酸预处理后用分光光度计测定,经典的钼蓝比色法虽然可以准确的测定油品磷含量,但却存在耗时过长,分析效率低的缺点。近年来,中储粮某下属油脂加工企业,开始采用 TL2350 浊度仪用于油品磷脂含量的快速检测,该方法能基本满足油品行业磷脂检测的内部质控要求。应用情况主要仪器及试剂:TL2350,浊度样品瓶(2084900),无磷一级精炼油,已知磷含量油脂,分析纯丙酮。用户采用 TL2350 浊度仪,以不含磷脂的一级精炼植物油为溶剂,将已知磷含量的油样配置为浓度为 50、100、150、200、250mg/kg 的标准油样,用 TL2350 测定标准系列的浊度值并记录和绘制标准曲线,计算回归方程。在大豆油磷脂含量<300mg/kg 时,浊度法测定磷脂含量可获得较良好的重复性,能满足压榨车间磷脂控制的日常监测需求,单个样品的测试时间可缩短至 10min。总结浊度法是一种行之有效的油品磷脂快速测试方法,传统的 GB/T5537 -2008 中单个样品的分析时间至少为 4 小时,而浊度法仅为 10min。该方法适用于磷脂含量小于 300mg/kg 的大豆毛油检测,能满足绝大部分大豆油的生产质控需要。但当油脂类型改变时需单独摸索浊度与磷脂的相关条件。方法的标准曲线需要定期校准,建议校准周期为一周。浊度法与国标法的检测数据差异在工艺许可的范围内,只要定时调准曲线,既可满足日常质控要求。浊度法比较适用于工厂内部的检化验室使用,可及时提供数据,服务压榨车间生产。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 这波操作用麻类吸收土壤重金属,再做成无甲醛板材
    近日,记者从中国农业科学院麻类研究所获悉,由该所牵头的国家重点研发计划项目“韧皮纤维作物在土壤可持续修复和工业用生物原料生产中的研究与应用”取得重要研究进展,不仅筛选出高吸收重金属的韧皮纤维作物品种,还将其作为生物基原料,应用到工业建筑材料领域,初步构建起韧皮纤维作物对重金属污染土壤从修复到加工的全产业链利用路径,为解决重金属污染土壤植物修复利用中的瓶颈问题提供思路。据介绍,在重金属污染土壤种植韧皮纤维作物不仅可以对污染农田进行修复,还可以对非耕地进行有效利用。然而在重金属污染土壤植物修复领域的研究实践中,富集重金属的作物秸秆一直是个处理难点,焚烧掩埋的做法不仅不能将重金属从土壤中完全带走,且有违绿色环保持续修复的理念。亚麻、红麻和工业大麻等韧皮纤维作物具有栽培适应性广泛的特点,重金属吸附能力突出且不进入人体食物链,同时作为多用途、多功能作物,可以为传统和创新型的工业产业提供纤维类生物质原材料。生长在镉砷复合污染农田中的红麻科研人员从品种筛选试验中得到的抗逆品种里选取了高富集重金属抗性较强的亚麻、红麻和工业大麻品种,在湖南、浙江和云南等地进行了修复效果试验和示范。研究发现,韧皮纤维作物对镉、镍、铅、锑这4种重金属元素均具有较强的耐受能力,对铜和锌的耐受能力较差。亚麻更适合对锑的移除,红麻更适合镉和镍的移除,工业大麻则对铅具有较好的移除效果。科研人员研究解析了韧皮纤维作物富集和转运重金属元素的机理,并筛选出高吸收重金属品种。添加不同程度红麻纤维的水泥砂浆抗裂效果展示针对土壤可持续修复过程中获得的工业大麻、亚麻、红麻等韧皮纤维作物茎秆(干物质),科研人员充分利用其纤维强度高、秸秆芯轻质特性,提出一种规模化、工业化、无害化、高值化的利用方式——研究开发基于韧皮纤维作物茎秆的轻质抗裂砂浆,并建立适于大规模生产的全套产业路径和配套施工技术方法。科研人员研究了韧皮纤维作物轻质抗裂砂浆的物理力学与微观性能,优选出能够满足不同工程需求的韧皮纤维作物轻质抗裂砂浆,研发了基于韧皮纤维作物秸秆芯的3D打印建筑材料,实现了麻类秸秆在传统建材与新型建材、传统施工与智能建造等领域的应用。基于韧皮纤维的3D打印新型建筑材料通过从原料至成品的完整产业化试验,探索亚麻、红麻和工业大麻三种不同的韧皮纤维作物的麻骨和麻皮,分别用作制备无甲醛环保人造板材和轻型纤维板材的工艺以及装备要求。通过企业参与,依托上海众伟生化有限公司和湖南艾布鲁环保科技股份有限公司分别研发了麻骨生物基无甲醛板材和韧皮纤维生物基大豆胶环保板材,经检测板材均不含有毒重金属元素,达到市场要求,为环保无甲醛麻骨制板材和韧皮纤维轻型板材产业的发展以及对外技术输出和产业落地提供完整的基础方案。基于红麻麻骨的无甲醛板材该研究为推进重金属污染土壤植物修复技术的规模化和生物质复合材料生产的规范化,大幅度提高韧皮纤维作物的附加值奠定了基础,构建起“修复植物规模化种植-土壤修复-生物基新型环保板材”一条完整的修复-生产-加工产业链,有利于促进韧皮纤维作物种植产业、加工产业、建筑材料产业、生物纤维板材料产业等环保产业的发展。项目主持人为中麻所郭媛研究员,浙江省园林植物与花卉研究所、山东农业大学、上海众伟生化有限公司和湖南艾布鲁环保科技股份有限公司等单位共同参与本项目研究。(图片提供:中国农业科学院麻类研究所)
  • 华唯计量深入解读解读重金属汞的危害及治理
    1、引言汞是一种有毒性的金属,广泛分布在岩石、土壤、大气、水和生物之中,因此各种物质均有一定的汞含量,称为自然含汞量。随着社会的发展,人类活动释放出大量的汞,这些汞进入生态系统,造成生态系统的汞污染。城市区域人口密集,人类活动集中,物质和能量流动强度大,因此面临着汞污染带来的种种环境与生态问题。目前国内外有关环境汞污染的研究主要是针对氯碱生产、金矿开采、燃煤电厂等汞污染源开展的,实际上,汞污染源类型很多,特别是一些潜在的汞污染源在我国还鲜为人知。而且汞污染尚未进入被充分认识和掌控的范畴,甚至完全处于大众视野之外。汞对环境与生态系统的持续性、严重性危害已引起全球性的关注。我国汞污染研究基本处于刚刚起步阶段,严重滞后于国际环境形势发展需要,今后除应加强基础研究工作,还要对重要汞污染地区的污染状况、机制、环境效应开展研究,以全面掌握我国汞污染的来源、汞污染源分布以及环境汞污染现状。2、重金属汞的概述2.1重金属汞的元素特性汞是在正常大气压力的常温下唯一以液态存在的 金属。熔点-38.87℃,沸点356.6℃,密度13.59g /cm 3 。银白色液体金属。内聚力很强,在空气中稳定。蒸气有剧毒。溶于硝酸和热浓硫酸,但与稀硫酸、盐酸、碱都不起作用。能溶解许多金属。化合价为+1和+ 2。汞的7种同位素的混合物,具有强烈的亲硫性和亲铜性,即在常态下,很容易与硫和铜的单质化合并生成稳定化合物,因此在实验室通常会用硫单质去处理撒漏的水银。在自然界中汞常以辰砂的形式存在,有时候也以游离态存在。汞是一种毒性极强的污染元素,在诸多环境污染物指标中,被列为第一类污染物。2.2重金属汞的元素来源自然界中主要有辰砂矿(Hg S),也有少量的自然汞。常用辰沙矿加少许碳在空气中加热而制得。2.3重金属汞的元素用途常用于制造科学测量仪器(如气压计、温度计等) 、药物、催化剂、汞蒸气灯、电极、雷汞等。汞的用途较广,在总的用量中,金属汞占30%, 化合物状态的汞约占70%。冶金工业常用汞齐法( 汞能溶解其它金属形成汞齐)提取金、银和铊等金属。化学工业用汞作阴极以电解食盐溶液制取烧碱和氯气。汞是制造汞弧整流器、水银真空泵等的材料,它是由酒精、浓硝酸溶液混合加热制成的。汞的一些化合物在医药上有消毒、利尿和镇痛作用,汞银合金是良好的牙科材料。在中医学上,汞用作治疗恶疮、疥癣药物的原料。汞可用作精密铸造的铸模和原子反应堆的冷却剂以及镉基轴承合金的组元等。汞在自然界中分布量最小,被认为是稀有金属,但是人们很早就发现了水银。天然的硫化汞又称为朱砂,由于具有鲜红的色泽,因而很早就被人们用作红色颜料。根据殷虚出土的甲骨文上涂有丹砂,可以证明我国在有史以前就使用了天然的硫化汞。汞的无机化合物如硝酸汞(Hg(NO3)2) 、升汞(HgCl2)、甘汞(HgCl)、溴化汞(HgBr2)、砷酸汞(HgAsO4)、硫化汞(HgS)、硫酸汞(HgSO4)、氧化汞(HgO)、氰化汞(Hg(CN)2) 等,用于汞化合物的合成,或作为催化剂、颜料、涂料等 有的还作为药物,口服、过量吸入其粉尘及皮肤涂布时均可引起中毒。此外,雷汞用于制造雷管等。3、汞污染来源环境本底含有一定浓度值,这对判断环境污染程度 很有意义。但它极少构成污染, 除了生态程度很有意义,除了生态环境改变引起迁移外,汞的污染主要是人 的污染所致。汞污染主要来自使用和产汞或汞的化合物的工厂排出的含汞废水、废气和废渣。氯碱工业、塑料工业、电子工业、混汞炼金和雷汞生产排放的废水是水体中汞的主要污染来源 施用含汞农药和含汞污泥肥料是土壤中汞污染的主要来源 含汞金属的冶炼废气是大气汞污染的主要来源。此外,煤和石油在燃烧过程中也会排出含汞废气和颗粒态汞尘,这是很大的污染来源,这些来源随风飘移,不断落入大地,再经降雨径流,最终转移到水体。有关金属汞的生产很多,例如汞矿的开采与汞的冶炼,尤其是土法火式炼汞,空气、土壤、水质都有污染 制造、校验和维修汞温度计、血压计。流量仪、液面计、控制仪、气压表、汞整流器等,尤其用热汞法生产危害更大 制造荧光灯、紫外光灯、电影放映灯、X线球管等 化学工业中作为生产汞化合物的原料,或作为催化剂如食盐电解用汞阴极制造氯气、烧碱等 以汞齐方式提取金银等贵金属以及镀金、馏金等 口腔科以银汞齐填补龋 齿 钚反应堆的冷却剂等。4、汞的形态及生物有效性土壤中汞的存在形态各种各样。归结起来,主要分 为三大类:金属汞、无机化合态汞和有机化合态汞。4.1金属汞土壤中常常存在一部分元素汞,往往只占土壤总汞 的1%以下, 但是它对生物体是高度有效的。它不仅能被叶片吸收,植物根系也能直接吸收并且利用这种形态 的汞。可见,在正常的土壤和范围内,汞能以零价状态存在并且对植物高度有效性是土壤中汞的重要特点。4.2无机化合态汞土壤中存在的无机化合态汞有HgS、HgCl2、 HgCl42- 、HgCO3、HgHCO3-、HgNO3+、HgSO4、HgO、HgHPO4等, 它们因土壤类型不同而各有差异。在各种无机化合态汞中,并不是所有赋存形态对生物体都是 有效的。HgCl2和HgCl42-是植物容易吸收利用的两种汞化合物,而HgS则是一种难以被植物吸收利用的无机化合物。4.3有机化合态汞包括CH3HgS- 、CH3HgCN、CH3HgSO3-、 CH3Hg2S、CH3HgNH3+和腐殖质结合汞等,其中以腐殖质结合汞最为主要。一般来说,土壤中有机质结合态 汞通常约占总汞的2%。研究结果表明,在各种有机化合态汞中,以甲基汞形式存在于土壤中的汞生物有效性较高,毒性也大,容易被植物吸收并且通过食物链在生物体内逐级富集,对生物和人体健康造成危害 而腐殖质结合汞的生物有效性较低,不容易被作物吸收,而且毒性也低。5、汞在环境中的迁移转化5.1汞在自然环境中的迁移转化汞的化合物(除Hg(NO3)2外)溶解度很小,这种性质直接影响它在环境中的赋存形态和迁移性及其迁移 转化规律。汞的天然来源为含汞原矿。在风化作用下,汞以固体微粒等形态进入环境中。进入土壤中的汞可以被植物吸收,也可以挥发进入大气,还可以被降水冲进入地面水和地下水中。大气中气态和颗粒态的汞随风飘散又可沉降到地面或水体中。水体中的汞主要存在于沉积物中,且水中汞主要被悬浮物吸附,影响吸附的主要环境因素是pH值及颗粒物含量。在河流底质中,汞主要是与有机质的迁移转化相联系,悬浮态汞是汞迁移的主要形式。底泥中的汞可 在微生物的作用下转化为甲基汞(MeHg+ ) 。甲基汞可溶于水,因此又从底泥回到水中。环境中汞在大气、土壤、水之间就是这样不断迁移和转化的。5.2汞在陆生食物链中的迁移积累土壤汞的污染主要出现在耕作层,而耕作层又是植物根系密集分布的地方,在同级别的污染区域中,园林土壤的含汞量显著高于农业土壤。园林土壤的平均含汞量约为农业土壤的6倍。这是因为农业生态系统为全开放系统,植物对土壤的归还率很低,而园林生态系统中植物的归还率高,使土壤中有机质得以积累,相应对汞的富集作用也加强,在汞污染严重地区,可以通过园林植物将污染控制在有限的范围内。植物对汞的富集能力不同。汞富集能力,依次为常绿阔叶树常绿针叶树灌木落叶阔叶树草本植物蔬菜。富集顺序表现了各类植物在空中暴露面积的大小和生长时期长短的积累效应。显然,园林植物的吸汞量比蔬菜高,因此,不适宜在点源附近种植蔬菜或农作物。尽管蔬菜生长季节短暂,但其可食部分的含汞量仍然超过食品卫生标准7倍多,对人畜健康将会产生 严重的危害。6、汞污染的危害20世纪50年代初, 日本九州水俣镇不断发现一些怪病人,口齿不清、步态不稳、面部痴呆、耳聋眼瞎、全身麻木,最后神经失常、大喊大叫而死,同时,有些猫、狗发疯。这种中枢神经性疾患的公害病称“水俣病”。经多年研究发现,水俣镇上的一些化工厂将大量含汞工业废水直接排放到水俣弯的水域中,致使水体被汞污染。无机氯化汞经过微生物作用逐渐转化为有机汞,并在鱼等水生物体中浓集。当地居民吃了受汞污染的鲜鱼和贝类等产品,汞随食物入人体,最终导致“水俣病”的产生。6.1汞对人体的危害微量的汞在人体内不致引起危害,可经尿、粪和汗液等途径排除体外,如数量过多,即可损害人体健康。汞对人体的危害主要累及中枢神经系统、消化系统及肾脏,此外对呼吸系统、皮肤、血液及眼睛也有一定影响。汞在人和生物体中多积蓄于肾、肝、脑中。烷基汞比可 溶性无机汞化合物毒性大10100倍,主要毒害神经系统,破坏蛋白质和核酸。经研究,人的病状与甲基汞积蓄量关系为:使人知觉异常(25mg)、步行障碍(55mg)、发音障碍(90mg)、死亡(200mg以上) 。根据动物实验,汞还具有致癌性。6.2汞的神经毒性汞有很强的神经毒性,即使是低水平暴露也会损害神经系统,表现为精神和行为障碍,能引起感觉异常、共济失调、智能发育迟缓、语言和听觉障碍等临床症状。6.3汞对植物的危害汞作为植物的有害元素,影响到种子的发芽和植物 的形态建成。汞含量较低时, 对植物的生长发育影响甚微,但超过一定浓度,植物的生长就会完全被抑制。汞对作物生长发育的影响主要有抑制光合作用、根系生长 和养分吸收、酶的活性、根瘤菌的固氮作用等。6.4汞对动物的危害汞在鸟类体内的分布具有较强的选择性,主要蓄积 于肝脏和肾脏。卵中的Hg含量超过1. 5~18mg/kg就足以导致卵重下降、 畸形、孵化率降低、生长率以及雏鸟成活率的降低。环颈雉肝脏中的汞达到3~13mg/kg时孵化率显著降低。甲基汞还会导致绿头鸭的雏鸟警戒反应减少。7、防治措施7.1工业汞污染的防治方法汞在工业上应用广泛, 造成污染较严重。因此,必须采取以防为主、防治结合的综合措施。首先从工艺改革入手,采取替代物质,减少汞的使用量,从源头控制汞污染的产生。其次,淘汰落后工艺,此外,由于汞比重 大,有流动性,在作用金属汞时,应尽量减少流散,万一 不慎将汞撒落,必须尽可能收集起来,并在凡有可能遗留汞的地方都复盖上硫磺粉,使汞生成难溶的HgS。储藏汞必须密封,防止汞的挥发引起汞蒸气中毒。对于产生含汞废水的有色冶炼厂和化工厂,应采取有效的处理措施,使车间排放口达标排放。从废水中去除无机汞的方法有:硫化物沉淀法、化学聚法、活性炭吸附法、金属还原法和离子交换法等。应视其工艺不同、排放浓度大小和废水酸碱性选用相应的经济技术可行的方法。7.2土壤汞污染的防治方法土壤汞污染治理主要有两条途径, 一是改变汞在土壤中的存在形态,使其由活化态转化为稳定态,其二是从土壤中去除汞以使土壤中的汞的浓度接近或达到土壤汞背景值浓度水平。目前,通常采用的方法主要有物 理、物理化学和生物修复法。7.2.1物理及物理化学的方法一般的做法有:热处理技术,动电修复技术,淋滤法和洗土法,施用调控剂等,但以往采用的这些方法存在着明显的不足就是这些方法一般投资昂贵,使用设备复杂,不太适宜大范围推广应用。7.2.2生物修复(1 )植物修复。植物修复是一种很有效且廉价处理污染的新方法,这种方法在美国等发达国家已开展了大规模的试验,并证明有效。(2)微生物修复。利用微生物对某些重金属的吸收、沉积、氧化和还原等作用,减少植物摄取。从而降低重金属的毒性。7.3政府汞污染的治理对策(1 )能源结构。我国城市的一次能源结构中,煤炭一直占据主导地位。燃煤汞污染是我国城市汞污染的一个重要来源,因此调整能源结构,引进和发展清洁能源,将目前以原煤为主的污染型能源结构逐步转变为以天然气、电力等优质能源为主的清洁型能源结构,减少煤炭在一次能源中所占的比例,是减少汞排放量的主要措施。(2)提高能源效率。目前能源消费环节浪费仍然比较严重,主要表现在燃煤锅炉热效率较低、建筑采暖热能浪费严重等。因此,加强高新技术在能源供应和消费领域的推广应用,提高能源利用效率,可以进一步减少汞的排放量。(3 )增加用煤洗选比例,降低燃煤中的汞含量。结合煤炭清洁燃烧工艺,开发燃煤脱汞技术。(4 )实行垃圾分类和加强固体废弃物管理。如果生活垃圾能分类收集、分别处理,对其中的含汞电池、荧光灯、体温计等采取比一般生活垃圾更严格的防护措施。(5)制定完善的汞管理法律、法规,建立全面的汞环境标准,包括排放标准和各种环境质量标准。(6 )加强汞污染危害的宣传教育和减少汞污染的知识的普及,提高人们的环保意识。8、结语随着现代工农业的发展,重金属污染问题日趋严重。重金属污染,不同于其它类型污染,具有隐蔽性、长期性和不可逆转等特点。重金属可直接对环境中的大气、水和土壤造成污染,在土壤→植物→动物→人体之间的食物链中,不仅鸟类作为高级消费者会受到威胁,人类也会深受其害。防治重金属污染,应当提高全民素质、增强环保意识,从根本上消除污染源 要坚决杜绝工业“三废”的直接排放,规划城市垃圾的堆放,严格控制含有重金属的化肥、农药的使用。我国汞污染研究还滞后于国际环境形势发展需要。今后除了要加强基础研究工作,还要对重要汞污染地区污染状况、机制、环境效应开展研究,以全面掌握我国汞污染的来源、汞污染源分布以及环境汞污染现状,安排汞污染治理专项资金,对重点地区优先实施汞污染治理。期待在不久的将来,会有越来越多的汞污染地区得到有效治理。华唯计量专注XRF行业30年,致力于为用户解决重金属检测全面应用问题,除提供优质产品及服务外,更可针对用户行业特点及技术疑难开发专项产品。主营产品有RoHS检测仪、镀层测厚仪、合金分析仪、粮食重金属检测仪、大气重金属在线分析仪等。
  • 2011北京重点实验室和工程技术中心名单公布
    各有关单位:   据《北京市重点实验室认定与管理暂行办法》、《北京市工程技术研究中心认定与管理暂行办法》和《关于组织申报2011年度北京市重点实验室的通知》、《关于组织申报2011年度北京市工程技术研究中心的通知》,经初审、专家评审,骨科再生医学北京市重点实验室等69个重点实验室认定为2011年度北京市重点实验室,北京市4G测试及应用工程技术研究中心等58个工程技术研究中心认定为2011年度北京市工程技术研究中心。   特此通知。 2011年度认定北京市重点实验室名单 重点实验室名称 依托单位 骨科再生医学北京市重点实验室 中国人民解放军总医院 中枢神经系统损伤研究北京市重点实验室 北京市神经外科研究所 儿童发育营养组学北京市重点实验室 首都儿科研究所 鼻病研究北京市重点实验室 首都医科大学附属北京同仁医院 泌尿生殖系疾病(男)分子诊治 北京市重点实验室 北京大学第一医院 磁共振成像脑信息学北京市重点实验室 首都医科大学宣武医院 衰老及相关疾病研究北京市重点实验室 中国人民解放军总医院 风湿病机制及免疫诊断北京市重点实验室 北京大学人民医院 帕金森病研究北京市重点实验室 北京市老年病医疗研究中心 癫痫病临床医学研究北京市重点实验室 北京三博脑科医院 精神疾病诊断与治疗北京市重点实验室 首都医科大学附属北京安定医院 心血管受体研究北京市重点实验室 北京大学第三医院 新发突发传染病研究北京市重点实验室 首都医科大学附属北京地坛医院 耐药结核病研究北京市重点实验室 北京市结核病胸部肿瘤研究所 肺损伤与感染北京市重点实验室 中国人民解放军总医院 儿童血液病与肿瘤分子分型北京市重点实验室 首都医科大学附属北京儿童医院 糖尿病防治研究北京市重点实验室 首都医科大学附属北京同仁医院 中药(天然药物)创新药物研发 北京市重点实验室 中国医学科学院药用植物研究所 抗肿瘤分子靶向药物临床研究 北京市重点实验室 中国医学科学院肿瘤医院 晶型药物研究北京市重点实验室 中国医学科学院药物研究所 低温生物医学工程学北京市重点实验室 中国科学院理化技术研究所 心脏药械技术与循证医学研究 北京市重点实验室 北京美中双和医疗器械有限公司 新药作用机制研究与药效评价 北京市重点实验室 中国医学科学院药物研究所 肿瘤系统生物学北京市重点实验室 北京大学 人机交互北京市重点实验室 中国科学院软件研究所 网络多媒体北京市重点实验室 清华大学 石油数据挖掘北京市重点实验室 中国石油大学(北京) 新一代通信射频芯片技术北京市重点实验室 中国科学院微电子研究所 材料领域知识工程北京市重点实验室 北京科技大学 毫米波与太赫兹技术北京市重点实验室 北京理工大学 新一代宽带无线移动通信技术标准与测试验证北京市重点实验室 工业和信息化部电信研究院 高速交通工具智能诊断与健康管理 北京市重点实验室 北京航天测控技术有限公司 光电测试技术北京市重点实验室 北京信息科技大学 化学电源与绿色催化北京市重点实验室 北京理工大学 先进化学蓄电技术与材料北京市重点实验室 中国人民解放军防化研究院 纳米能源材料北京市重点实验室 安泰科技股份有限公司 能量转换与存储材料北京市重点实验室 北京师范大学 非常规天然气能源地质评价与开发工程 北京市重点实验室 中国地质大学(北京) 工业废水处理与资源化北京市重点实验室 中国科学院生态环境研究中心 污染场地风险模拟与修复北京市重点实验室 北京市环境保护科学研究院 油气污染防治北京市重点实验室 中国石油大学(北京) 云降水物理研究和云水资源开发 北京市重点实验室 北京市气象局 园林绿地生态功能评价与调控技术 北京市重点实验室 北京市园林科学研究所 林木生物质化学北京市重点实验室 北京林业大学 温室气体封存与石油开采利用 北京市重点实验室 中国石油大学(北京) 城市道路交通智能控制技术北京市重点实验室 北方工业大学 城市交通节能减排检测与评估 北京市重点实验室 北京交通发展研究中心 低维半导体材料与器件北京市重点实验室 中国科学院半导体研究所 纳米光子学与超精密光电系统 北京市重点实验室 北京理工大学 高温合金新材料北京市重点实验室 钢铁研究总院 辐射新材料北京市重点实验室 北京市射线应用研究中心 材料电化学过程与技术北京市重点实验室 北京化工大学 固体微结构与性能北京市重点实验室 北京工业大学 功能分子与晶态材料科学与应用 北京市重点实验室 北京科技大学 精密超精密制造装备及控制北京市重点实验室 清华大学 复杂构件数控加工工艺及装备 北京市重点实验室 中国航空工业集团公司 北京航空制造工程研究所 城市运行应急保障模拟技术北京市重点实验室 北京航空航天大学 城市有毒有害易燃易爆危险源控制技术 北京市重点实验室 北京市劳动保护科学研究所环境有害化学物质分析北京市重点实验室 北京化工大学 蔬菜种质改良北京市重点实验室 北京市农林科学院 农业基因资源与生物技术北京市重点实验室 北京农业生物技术研究中心 设施蔬菜生长发育调控北京市重点实验室 中国农业大学 森林资源生态系统过程北京市重点实验室 北京林业大学 畜禽疫病防控技术北京市重点实验室 北京市农林科学院 蔬菜有害生物控制与优质栽培 北京市重点实验室 中国农业科学院蔬菜花卉研究所 植物源功能食品北京市重点实验室 中国农业大学 林业食品加工与安全北京市重点实验室 北京林业大学 博物馆展陈设计与空间实现北京市重点实验室 北京工业大学 文化创意产业标准化研究北京市重点实验室 北京市科学技术情报研究所 2011年度认定北京市工程技术研究中心名单 工程技术研究中心名称 依托单位 北京市4G测试及应用工程技术研究中心 中国移动通信有限公司研究院 北京市电子系统可靠性评测工程技术研究中心 工业和信息化部计算机与微电子发展研究中心 北京市弱磁检测及应用工程技术研究中心 北京科技大学 北京市光电通信线路工程技术研究中心 北京亨通斯博通讯科技有限公司 北京市数字交通枢纽工程技术研究中心 北京竞业达数码科技有限公司 北京市光纤传感系统工程技术研究中心 北京航天时代光电科技有限公司 北京市复杂产品先进制造系统 工程技术研究中心 北京仿真中心 北京市下一代网络安全软件与系统 工程技术研究中心 北京神州绿盟信息安全科技股份 有限公司 北京市气环境监测工程技术研究中心 北京航天益来电子科技有限公司 北京市物联网技术与系统工程技术研究中心 首都信息发展股份有限公司 北京市北斗卫星导航技术与装备 工程技术研究中心 北京北斗星通导航技术股份有限公司 北京市卫星通信导航工程技术研究中心 北京华力创通科技股份有限公司 北京市移动卫星应用工程技术研究中心 北京中交通信科技有限公司 北京市太阳能热发电工程技术研究中心 中国科学院电工研究所 北京市有色金属新能源基础制品 工程技术研究中心 北京有色金属研究总院 北京市蛋白和抗体研发及制备 工程技术研究中心 北京义翘神州生物技术有限公司 北京市裸质粒基因治疗药物工程技术研究中心 北京诺思兰德生物技术股份有限公司 北京市肿瘤与糖尿病小分子靶向新药 工程技术研究中心 北京赛林泰医药技术有限公司 北京市重组蛋白及其长效制剂 工程技术研究中心 北京双鹭药业股份有限公司 北京市长效干扰素工程技术研究中心 北京三元基因工程有限公司 北京市纳微化结构药物工程技术研究中心 北京万生药业有限责任公司 北京市免疫试剂临床工程技术研究中心 首都医科大学附属北京天坛医院 北京市核医学装备工程技术研究中心 北京大基康明医疗设备有限公司 北京市儿童外科矫形器具工程技术研究中心 首都医科大学附属北京儿童医院 北京市临床检验工程技术研究中心 卫生部北京医院 北京市多模态医学影像工程技术研究中心 清华大学 北京市大血管外科植入式人工材料 工程技术研究中心 首都医科大学附属北京安贞医院 北京市污水资源化工程技术研究中心 北京城市排水集团有限责任公司 北京市新型污水深度处理工程技术研究中心 北京大学 北京市污水资源化膜技术工程技术研究中心 北京碧水源科技股份有限公司 北京市高能耗电机变频节能工程技术研究中心 北京动力源科技股份有限公司 北京市粉体物料气力输送工程技术研究中心 北京国电富通科技发展有限责任公司 北京市半导体照明产品开发及应用 工程技术研究中心 北京朗波尔光电股份有限公司 北京市低变质煤与有机废弃物热解提质 工程技术研究中心 北京神雾环境能源科技集团股份 有限公司 北京市城轨运行控制系统工程技术研究中心 北京交控科技有限公司 北京市城市交通运行保障工程技术研究中心 北京工业大学 北京市城市交通信息智能感知与服务 工程技术研究中心 北京交通大学 北京市高速公路智能交通工程技术研究中心 北京云星宇交通工程有限公司 北京市城市交通基础设施建设 工程技术研究中心 北京建筑工程学院 北京市特种粉末冶金材料工程技术研究中心 安泰科技股份有限公司 北京市金属粉末工程技术研究中心 有研粉末新材料(北京)有限公司 北京市水性聚合物合成与应用 工程技术研究中心 北京化工大学 北京市纤维素及其衍生材料工程技术研究中心 北京理工大学 北京市市政路桥绿色建材工程技术研究中心 北京市政路桥建材集团有限公司 北京市纳米材料工程技术研究中心 国家纳米科学中心 北京市精密测控技术与仪器工程技术研究中心 北京工业大学 北京市工业控制系统工程技术研究中心 北京和利时系统工程有限公司 北京市变截面辊弯成形工程技术研究中心 北方工业大学 北京市铁路车辆安全检测工程技术研究中心 北京康拓红外技术股份有限公司 北京市物质成分分析仪器工程技术研究中心 北京北分瑞利分析仪器(集团) 有限责任公司 北京市数字电视系统工程技术研究中心 北京数码视讯科技股份有限公司 北京市高效节能矿冶技术装备 工程技术研究中心 北京矿冶研究总院 北京市轻纺机械机器视觉工程技术研究中心 北京经纬纺机新技术有限公司 北京市蛋白功能肽工程技术研究中心 中国食品发酵工业研究院 北京市农业物联网工程技术研究中心 北京农业信息技术研究中心 中国农业大学 北京市农村远程信息服务工程技术研究中心 北京市农林科学院 北京市植物工厂工程技术研究中心 北京京鹏环球科技股份有限公司 北京市园林植物工程技术研究中心 北京林大林业科技股份有限公司   北京市科学技术委员会   二〇一二年五月二十三日   (联系人:李功越 孙 颖 联系电话:66153403 62571175)
  • 天津检测实验室发展“十二五”规划发布
    检测实验室是指具有第三方公正地位,能向社会提供检验检测和校准服务的技术机构的总称。它具有保证产品质量、推动技术进步、规范市场秩序、破除技术壁垒、保障民计民生、维护公共安全、促进社会和谐的技术支撑作用。   “十二五”时期是天津在高起点上实现更高水平发展、实现城市定位的关键时期。检测实验室的发展是天津构筑“三个高地”、实施“以质取胜”战略、调整提升产业结构必不可少的支撑。为促进天津检测实验室持续、健康、快速发展,根据《天津市促进实验室发展办法》(2008年市政府第14号令)的要求,依据《天津市国民经济和社会发展第十二个五年规划纲要》、《天津市检测实验室发展规划(2010-2020)》,参考《天津市工业布局规划(2008-2020年)》,制定本规划。   一、“十一五”时期的主要成绩及现状分析   (一)主要成绩。   过去五年是天津检测实验室发展进程中极不平凡的五年。五年来,特别是市第九次党代会提出大力发展服务业以来,在市委、市政府和国家质检总局、国家认监委的领导和指导下,天津检测行业得到了迅速发展。   1.机构总量持续增加。2010年,天津市获得出具公证检测数据资质的实验室377家, 仪器设备总值为78.55亿元 实验室总面积110.5万平方米,从业人员13497人。检测实验室实现收入22.8亿元,五年年均增长31.3%。   2.技术实力明显增强。2010年,天津市377家检测机构中有国家级质检中心23家,在全国列第4位。具有科研能力的实验室144家,承担强制性认证产品检测的机构有7家。   3.检测领域不断扩大。2010年,天津市检测业务涉及石油化工、电子信息、能源环保、轻工纺织等多个领域,可覆盖全市90%的产品,为天津市经济社会发展提供了较为全面的技术支撑。   4.监管体系初见成效。建立了集监管、查询、统计为一体的天津市实验室资源管理系统,并将检测实验室作为服务业的新业态纳入了统计管理。2008年,市政府颁布实施了《天津市促进实验室发展办法》(天津市人民政府令第14号),在全国第一个以法律法规的形式确定了促进实验室发展的相关政策,为行业的全面发展奠定了坚实基础。   (二)现状分析。   在377家检测实验室中,属于天津市8大优势支柱产业的检测实验室占全市检测实验室总量的33% 其它如工程建设、食品、建材、冶金、农业等传统产业合计252家,占全市检测实验室总量的67%。检测实验室在领域(产业)分布上过分集中于工程建设、食品、建材、冶金、农业等传统产业,对天津8大优势支柱产业及战略性新兴产业的服务相对不足。   表1 天津市检测实验室领域分布表 领域 航空航天 石油化工 能源环保 装备制造 生物医药 电子信息 轻工纺织 工程建设 食品检测 农业 冶金 建材 其它 合计 实验室数(个) 2 8 29 19 40 6 21 88 38 14 9 36 67 377   表2 天津市检测实验室区域分布表 区划 和平 河西 南开 河北 河东 红桥 西青 津南 东丽 北辰 塘沽 汉沽 大港 宁河 静海 宝坻 武清 蓟县 合计 实验室数 17 64 80 19 26 8 19 14 1217 44 5 17 5 6 9 9 6 377 区划 中心城区 环城四区 滨海新区 其它区县 合计 实验室数 214 62 66 35 377   在377家检测实验室中,市中心区有214家,占全市检测实验室总量的57% 滨海新区有66家,占全市检测实验室总量18% 环城四区62家,占全市检测实验室总量的16% 宁河、静海、宝坻、武清、蓟县五区县合计35家,占全市检测实验室总量的9%。检测实验室过分集中于中心城区,而对于经济社会发展较快的滨海新区,工业空间布局规划确定的西青、津南、静海“科学三角”和北辰、武清、宝坻“IT三角”区域相对欠缺。   因此,引导检测实验室向天津8大优势支柱产业和战略性新兴产业集聚,壮大滨海新区、“科学三角”和“IT三角”区域检测实验室,进一步满足这三个区域的检测需求,是今后五年乃至更长时间内天津市检测实验室发展的方向。   二、检测实验室发展的重要性和必要性   (一)发展检测实验室是实现天津市工业布局的需要。   《天津市工业布局规划(2008-2020年)》提出,到2020年前,天津市工业重点发展航空航天、石油化工、装备制造、电子信息、生物医药、新能源新材料、轻工纺织、国防科技等八大优势支柱产业,构建以战略性新兴产业为引领、装备制造业为核心、优势支柱产业为支撑的新型工业体系,把天津建成高水平研发转化基地、战略性新兴产业基地、工业循环经济示范基地和新型工业化示范基地。形成“两带聚集、多级带动、周边辐射”的总体空间布局。天津未来的产业布局对检测实验室发展提出了新的更高的要求。推动检测实验室发展服务天津市工业发展布局势在必行。   (二)发展检测实验室是保障民计民生应对突发事件的需要。   在社会日常生活和应对突发事件中,实验室检测服务日益发挥着越来越重要的作用。据市统计局一项专门针对检测实验室认知度的民调结果显示:检测实验室在保证产品质量、提高消费者认可度、提高技术水平上的作用上分占比重分别达到了78.5%、76.6%和50.9%。另外还有被调查者认为经过实验室的检验比较权威、能够提高信誉度,特别是在近些年发生的松花江污染、四川地震以及三鹿奶粉事件中,利用实验室公正检测,提供检测数据,为保障人民生命安全和身体健康提供了有力的技术支撑。必须大力支持和促进食品、药品、饮用水等与国计民生息息相关的检测实验室发展。   (三)检测实验室是发展现代服务业的需要。   实验室的检测服务是现代服务业的重要组成部分,促进实验室的发展,特别是现有实验室检测功能的发展和检测实验室的建立,能够有效提高服务业的增加值。随着工业化的高度发展以及向后工业化的过渡,现代制造业对检测服务的需求大大增加,天津市已经承接了大量国际制造业的转移,聚集了大量的制造业企业,但商业检测服务并没有呈现相应的高速成长态势,目前,第三方检测、评价服务已经成为大部分外资企业、内资企业的必需。   (四)发展检测实验室是扩大进出口贸易的需要。   近年来,WTO成员国针对我国设立各种技术贸易壁垒,提高了我国商品的市场准入要求,增加了我国企业的出口难度。面对日益苛刻的国际贸易条件,企业必须取得国际认证组织或者进口国认证机构的认证,提高进口商信任度,才能有效拓展境外业务。发展具备国际认证资格的实验室,不仅降低了天津市企业寻求认证服务的成本,便于其跨越技术壁垒走向世界,还能吸引大量外地企业来天津市检验检测、校准,增加天津市服务业产值和收入。   三、总体思路   以科学发展观为指导,本着检测为工业布局服务、为民计民生服务、为现代服务业发展服务、为进出口贸易服务的宗旨,紧紧围绕天津以“战略性新兴产业为引领,装备制造业为核心,优势支柱产业为支撑的新型工业体系”建设,不断提高检测实力和检测水平,牢牢掌握检测领域,特别是战略性新兴产业检测领域的话语权,建成国内一流、国际先进的检测服务平台。   四、发展目标   到2015年,建成一个能够满足天津市检测需要,特别是满足航空航天、石油化工、电子信息等优势支柱产业检测需要的,基本适应社会主义市场经济体制,拥有自主知识产权,具有一定创新能力、检验方法先进的检测服务体系。   ——全市检测服务收入年均增长率保持在25%以上   ——全市检测实验室数量达到600家   ——全市国家级质检中心数量达到40家   ——全市检测实验室收入超亿元的达到10家。   五、重点支持领域   按照构建以战略性新兴产业为引领、装备制造业为核心、优势支柱产业为支撑的新型工业体系的要求,天津市检测实验室发展将重点支持以下领域:   (一)装备制造。   未来天津装备制造业发展重点是立足自主创新,大力调整产品结构,突出大型、成套和精密方向,进一步拓宽产品领域,重点发展以轨道交通设备、石化装备、造修船、工程机械、风力发电设备、水电设备、核电设备、超高压输变电设备、港口机械装备、农业机械装备为核心的十大成套装备,大力发展海洋工程装备制造。围绕大型、重型、精密装备需求,重点发展带动力大、技术含量高的关键基础零部件和相关配套及特种原材料研发制造,显著提升重大装备成套和关键部件研发制造水平,重点成套装备、大型重型装备研发制造水平进入全国前列,成为全国三大修造船基地之一。   该领域检测实验室的重点支持方向是:纯电动汽车和混合动力汽车专项性能检测 高档数控机床静动态性能及综合性检测 通用机械和工程机械的可靠性检测 流体元器件磨损与密封性检测 石油开采设备扭矩与磨损检测 环保机械抗腐蚀性能检测 智能电工产品的安全性可靠性检测 电机的节能检测 电焊机安全性能检测 10kV~35kV电压等级电工产品检测 电工产品和电动工具电磁兼容性检测 材料及特种合金粉末微量化学成分快速检测 大型精密铸件、锻件、焊接件及压力成型件的几何精度、强度、刚度、表面粗糙度及缺陷的智能化、数字化检测 高性能高可靠性基础零部件疲劳磨损检测 金属材料的金相组织、硬度等智能化、数字化检测 大型几何尺寸在线精密检测与量值溯源检测。   (二)航空航天。   未来天津航空航天业将重点发展以大飞机、直升机、无人机、大推力火箭、卫星航天器制造和空间站为核心的“三机一箭一星一站”,积极发展航空发动机、航空机载设备、机场与空管设备、卫星有效载荷、特种飞行器等关键零部件配套。构建起以总装制造为核心,涉及研发设计、航空物流、维修服务等多个领域,产业链较为完备的航空产业体系 以火箭制造装配、总装测试、卫星设计制造和空间站为核心,具有国际先进水平的航天产业体系,形成新一代大型运载火箭产业化基地和航天器制造及应用产业基地。   该领域检测实验室重点支持方向是:应用于运载火箭主体测试的LXI(lan extension for instrument)仪器总线测试系统 飞行器异型曲面三维立体视觉检测 超声波检测、射线检测、涡流检测、泄漏检测等航天材料分析与探伤检测 分布式结构健康监测与检测 武器装备电磁兼容(EMC)检测及结构热分析检测 机场地面特种车辆的适航检测技术及检测 面向飞机维护维修部件的适航性检测 通讯导航监视设备及空管自动化设备的检测。   (三)石油化工。   未来天津将重点发展石油化工、海洋化工和精细化工,形成以石油化工为主、从石油勘探开发到炼油、乙烯、化工完整的产业链条。大力发展石油化工,提升装备水平,突破关键技术,增强产业优势,壮大以氯碱为代表的海洋化工,促进与石油化工结合,发展一碳化工,形成百万吨级纯碱、百万吨级烧碱规模 促进产业链向纵深发展,以高技术含量、高附加值、绿色环保为方向,大力发展精细化工,形成以苯酐、顺酐、ABS等为代表的一批具有一定规模的优势产品。   该领域检测实验室的重点支持方向是:飞机和重型汽车用橡胶及轮胎、工程塑料和专用树脂等橡塑及制品检测 清洁能源检测 润滑油产品等级评价检测 高效硝基苯加氢催化剂、原位聚合聚烯烃纳米复合材料催化剂等新型催化剂、建筑与海洋防护用工程环保涂料检测 功能性添加剂检测 生物基绿色化学品及生物基功能高分子新材料等高附加值精细石化产品检测。   (四)能源环保。   未来天津在新能源产业的发展上要巩固以锂离子电池、镍氢电池为代表的绿色电池优势地位 积极发展太阳能、风能等可再生能源,建成国内技术水平最高的太阳能电池研发基地和产品品种最全、生产规模最大的系列太阳能电池产业化基地 建成全国最大的风电成套设备制造基地,成为世界风电产业中心。重点发展污水处理及再生利用、海水淡化利用装置、大气污染治理技术和成套设备、环保新材料 积极支持固体废弃物处理装置和资源化技术设备研发制造 大力扶持环保技术及运营服务、系统设计及系统集成等环境服务业发展。形成涵盖环保设备制造、资源综合利用、环保服务等领域的较为完善的环保产业体系,实现规模化发展。   该领域检测实验室的重点支持方向是:发电机主机、控制系统和叶片等多项内容为一体的综合性检测 太阳能光伏系统检测 环境因子中持久性有机污染物、有毒有害污染物及形态、价态的检测 环境噪声、空气质量和水质在线自动连续检测 大口径供热计量系统热能量值溯源检测 锂电池、铅酸电池和镍氢电池等高性能动力电源产品的动力性能和安全性能检测 转基因生物生态环境安全监测 环境电磁辐射检测 园林绿化土壤和土壤水检测 园林植物病虫检疫检测 城市绿地固碳释氧和降低污染等检测 园林植物光合及叶绿素荧光等检测 水回用处理技术中膜污染检测 生物处理工艺中厌氧污泥、好氧污泥等控制指标检测   (五)生物医药。   未来天津将重点发展现代生物制药及医疗器械产业,巩固和发展化学制药的优势,大力推进中药现代化和国际化。现代生物制药要重点发展生物工程药、检测基因生物芯片、生物酶制剂、各类疫苗和体外诊断试剂等产品,加快产业化步伐。医疗器械产业要在现有工业的基础上重点形成两大类医疗器械产品的生产基地,一是要在原骨科及血管支架产品生产基地的基础上重点发展成为具有骨科产品、血管介入产品及多种植入性的外科植入物产品的生产基地。二是要在原有的眼科超声诊断仪及电子血压计等医用电气产品的生产基础上发展成为具有多种类、高水平的医用电气产品的生产基地。推动天津市医疗器械产业的快速发展。化学制药要加快原料药和制剂一体化发展,巩固“三素一酸”(激素、抗生素、维生素、氨基酸)的优势,建设治疗心脑血管、糖尿病及肿瘤等大病种药物生产基地,提高制剂水平,加快新药研制。中药现代化要着力开发中药新型药和中成药二次开发技术,加快透皮吸收、靶向或定位释药等新型制剂的开发,开展现代中药检验检测技术和标准的研究与应用,保持中药现代化全国领先地位,率先实现中药国际化。   该类检测实验室重点支持方向是:开展外科植入物产品和医用电气产品质量水平的检测:外科植入物及医用材料生物力学性能的研究和检测,外科植入物的失效分析,医疗器械生物相容性的检测,医用电气产品的电磁兼容(EMC)试验检测,医用超声声输出性能的检测,医用激光及内窥镜类产品性能的检测 中药重金属及农药残留多组分快速检测 生物医药产品的杂质检测 中药真菌毒素检测 生物医药产品的快速鉴别检测 固体口服制剂溶出度的体内外相关性评价检测 动物源中药材分子生物学鉴别检测 中成药的生物活性检测 生物医药产品的生物安全性检测 直接接触药品的包装材料检测 药用辅料的安全性检测 生物恐怖、突发公共卫生事件和重大传染病病原学检测 新甲型流感等呼吸道病毒检测 疫苗等生物制品质量和免疫效果检测 饮用水、环境水和涉水产品的生物安全性检测 消毒杀毒灭菌产品、化妆品及保健用品的健康危害因素检测公共场所环境健康危害因素的检测 生物防护设施和个体防护产品的性能和质量检测 药物基因组学及生物等效性检测 体外诊断试剂的功能和效果检测。   (六)电子信息。   未来天津的电子信息产业要扩大集成电路、移动通信、高性能计算机服务器、片式元器件、显示器、数字视听等领域优势,突破新一代移动通信、新型显示器件、高端通用芯片等关键技术,促进产业向高端发展,电子元器件保持全国领先,集成电路步入全国先进行列,高性能服务器位居世界先进水平 大力发展汽车电子、软件等领域,壮大产业规模,在信息安全软件、工业软件等重要应用软件和嵌入式软件技术和产品开发上实现突破 加快发展物联网、光电子和光通讯、人工智能等高端信息产业,引进龙头项目,构建和完善产业链,形成产业化规模,成为新优势领域。加快信息技术改造传统产业步伐,促进信息化和工业化融合。   该领域检测实验室的重点支持方向是:信息设备及相关产品的电磁兼容(EMC)检测 通信终端产品的研发与产品检测 移动通信终端产品的一致性及新一代物联网无线终端(或模块)的检测 通信终端产品的电气安全和产品可靠性测试 通信设备的有害物质检测 集成电路检测 数字技术与产品检测 电光源技术(包括LED)及产品检测。   (七)轻工纺织。   轻工业重点要做精做细手表,进一步提升海鸥手表的国际知名度和品牌影响力 做大做强自行车,建成高端整车及零部件研发制造基地,保持全国领先地位 大力发展食品、白色家电、日用精细化工产品、高档家俱、轻工机械、乐器等具有比较优势的行业 加快发展印刷、装饰、餐具、体育器械、工艺品、首饰加工等适合都市发展的行业和产品 形成优势突出、特色明显、精品荟萃的新型轻工产业体系。纺织业要提高服装、家用纺织品和产业用纺织品等终端产品比重 大力采用先进技术和设备,显著提升产业装备水平 大力吸引国际品牌,着力打造自主品牌,提升设计水平和产品附加值,全面提升产业水平和综合竞争力。   该领域检测实验室重点支持方向为:轻工产品、纺织品及食品中有毒有害物质残留及环境持久性污染物检测 人体及食品接触材料(产品)中有害物质迁移性检测 轻工产品安全性能关键指标(参数)检测 新型及新材料轻工产品(包括高端自行车、电动车整车及零部件)检测 食品及饲料添加物检测 食品安全预警及风险评估检测 新资源及新技术食品检测 食品中农药和兽药多残留同时检测 食品中重金属及元素多组分同时检测 材料燃烧时热穿透、烟密度、有毒有害气体含量、耗氧量等保障人身安全、防灾减灾高新阻燃技术指标检测 防侵(腐)蚀抗老化及可降解性能指标检测 功能性纺织品的功能性和安全性检测 新型纺织原料大分子结构检测 特种用途纺织品防渗透、防污染、防辐射、物理化学等性能指标检测 纺织机械装备抗疲劳、抗磨损、稳定性等性能指标检测 纺织机械整机性能指标检测 新型纺织自动化精密设备性能指标检测转基因生物产品的转基因成分及食用安全性检测 首饰质量及安全指标的检验 农产品(食品)保鲜剂及材料检测 食品中致病微生物的分子检测。   (八)工程建设。   未来天津要加大城市基础设施建设力度。以强化对外辐射、促进双城对接、畅通城市交通为重点,加快建设现代综合交通体系。推进津保铁路、京沪高铁、津秦客运专线和塘承、京秦、津石高速公路等工程建设,形成通达“三北”腹地和兄弟省区市的快速交通网络。强化中心城区与滨海新区核心区的交通联系,加快推进京津城际延伸线建设,启动双城间的轨道交通建设,形成津滨快速交通走廊。加强中心城区道路网建设,新建和拓宽一批城市道路,打通一批卡口路段。搞好停车设施建设。加快西站、于家堡等综合交通枢纽建设。大力发展轨道交通,实施公交优先发展战略,建立和完善城乡一体的公交网络体系,发展清洁能源公交车,提高公交出行分担率和利用率。加强城市公用设施建设,加快智能电网建设,搞好地下管网建设和改造,提高供水、排水、电力、供热、燃气、通信等保障能力。完善城市防洪圈,抓好蓄滞洪区安全建设,加强城区空白区排水设施建设,实施海挡治理工程。加强防灾减灾体系建设。   该领域检测实验室的重点支持方向为:钢结构桥梁智能化、快速化、系统化无损检测 彩色路面颜色附着度检测 路面透水透气度检测 施工噪音、废气等道路施工及运营环境检测 公路多功能路况检测 先进激光平整度检测 快速自动弯沉检测 桥梁静荷载挠度快速自动化检测 桥梁动荷载先进技术与无线电采集检测 大型桥梁桥面线型及关键部位检测 地源热泵系统检测 再生能源远程监测系统检测 太阳能光电建筑一体化的集成检测 建筑楼宇安全技术防范及智能化检测 建设工程结构无损快速检测 混凝土快速检测 工程新材料、新产品的质量检测。   六、推进措施   (一)落实检测实验室激励政策。   按照《天津市促进实验室发展办法》、《天津市检测实验室发展规划(2010-2020)》及《检测实验室发指导目录》的要求,落实财税、融资、担保、专利、市场准入、人才引进等优惠政策。积极鼓励支持支柱产业急需、填补行业空白、掌握高新技术、达到国际国内领先水平的检测实验室建设。加大资金支持力度,用足用好国家投资、融资政策,结合中小企业信贷政策,制定适合天津市检测实验室发展的具有较强针对性的检测实验室发展信贷政策。引导企业等市场主体加大资金投入,形成以企业为主体的多元化、多渠道融资体系,引导和扶持重要领域检测实验室的建设和发展。   (二)提升检测实验室整体实力。   鼓励和支持引进更多新型检测技术设备,提高高端检测技术设备在全市检测设备中的比例。积极探索吸引人才的激励机制,通过高端产业关键技术岗位高级专业技术人才直接公开招聘、设立研究工作站或博士后科研工作站等多种形式加速优化专业技术人才队伍建设,吸引全国乃至国际上的检测技术专业人才到天津工作,使天津检测实验室从业人员中高级技术人才所占比例能逐年提高。   (三)扩大对内对外开放。   坚持开放带动战略,进一步拓宽对外开放的深度和广度,把“引进来”和“走出去”有机结合,在更大范围、更广领域和更高层次上参与国内外检测技术合作和竞争。积极参与区域检测实验室转移与合作,利用滨海新区开发开放的有利时机,以引进国家级技术机构为契机,积极开展检测实验室转移为重点的合作,进一步加强京津冀、环渤海区域内部,甚至中西部地区的检测实验室合作和对接,不断增强检测实验室的辐射力和带动力。在航空航天、石油化工、装备制造等优势支柱产业领域,支持检测实验室通过兼并重组,整合检测资源,逐步做大做强。支持检测实验室“走出去”开展跨区域、跨国界检测业务,并不断提高管理水平,增强国际竞争力。   (四)进一步推动实验室国际互认。   坚持以ISO/IEC17025等国际标准来规范检测实验室的日常管理,持续提升实验室的检测能力,有计划、有重点地推动检测实验室的国际交流与合作,积极参与国际检测实验室的能力验证和检测结果比对活动,大力推进检测数据国际互认,积极应对国外技术壁垒,充分发挥检测实验室在解决进出口贸易纠纷、保护企业合法权益、维护国家形象方面的重要作用。
  • 北京市将建智慧园林系统 未来可监测空气质量
    打开手机或者其他智能设备,就能查询附近公园绿地有哪些可能的过敏源̷̷不久的将来,这些人性化的园林绿化信息服务就将实现。记者在昨天举行的北京智慧园林高峰论坛上了解到,北京市将建设三大系统、四大体系,打造智慧园林系统。  什么是智慧园林系统?市园林绿化局副局长高大伟在会上表示,园林绿化已成为城市环境的重要组成部分,是一种新的“公共品”。智慧园林即运用“互联网 ”思维和物联网、大数据云计算、移动互联网、信息智能终端等新一代信息技术,与现代生态园林相融合,建立智慧园林大数据库。  当前,本市已建立公园风景区、林木病虫害防治等核心业务数据。高大伟说,在信息资源利用上,已经把数据资源作为信息化资产来管理,陆续建成了公园风景区、城市绿地管理、野生动植物保护、林木病虫害防治、生态工程等12类核心业务数据,为各级领导、业务部门及社会公众提供实时、高效的数据支持与服务,并建设了“北京市园林绿化局虚拟云平台” 利用移动应用技术开发建设了“移动监管小助手系统”,实现了北京市园林绿化资源空间分布、面积等信息在移动终端上的实时查询与调阅。  据介绍,未来智慧园林的建设将以三个系统、四个体系为总体框架。  三个系统由智慧园林监测、管理和服务系统构成。智慧园林监测系统通过布设传感器、视频监控和物联网等监测设备,结合人工智能,对可能发生的安全事件进行预警 智慧园林管理系统主要是通过园林要素和事件的智能化识别、跟踪、分析和管理,利用大数据和云计算技术,分析、处理后,进行智慧园林管理体系的自诊断和自调节。  与市民关系密切的为智慧园林服务系统。主要利用移动互联网技术,构建园林绿化人员、智慧园林系统和公众信息交流的平台,可以监测空气质量、预报室内外微环境,向公众提供园林科普、认建认养、个性化健康绿道动态信息和休闲娱乐智能化分析等综合信息服务。  未来,还将按照不同的个性化需求,形成智慧园林四大服务体系,包括办公区域智慧园林、居住小区智慧园林、公园绿地智慧园林和健康绿道智慧园林四大体系。  其中,健康绿道智慧园林体系集合了生态、文化、休闲、景观、通行于一体的综合服务设施,通过互联网等智能化技术的应用,利用智慧园林三大系统,包括:智能基础设施、位置感知、环境监测指标分析、园内导览、安保在线、健康信息(包括个性化健康训练计划、过敏源预警信息提示、步行路径的吸入负氧离子量评估、优化步行路径方案等)推送等。
  • 中国风景园林学会第十一届会员日活动在合肥成功举办
    12月26-28日,中国风景园林学会第十一届会员日活动在合肥成功举办,点将科技应邀参加。本次活动由安徽省风景园林行业协会和安徽省风景园林学会承办。 本次活动的主题是“以古鉴今 传承发展”。活动邀请了北京山水心源景观设计院首席设计师、副院长夏成刚,北京林业大学园林学院林箐,中国城市建设研究院总工程师李金路、安徽省风景园林学会党委书记(原合肥市园林局局长)尤传楷等等国内专家及多位获得中国风景园林学会科学技术奖科技进步奖获奖项目分享嘉宾作大会报告交流。 会议期间,点将科技作为专业致力于生态科研与树木保护的仪器和综合解决方案的供应与服务商,携手澳大利亚ICT、德国Ecomatik、Argus、美国DAVIS、美国Spectrum等公司并向与会学者展示了多款国际先进的植物、树木检测仪器,如ICT公司的SFM1型的植物茎流仪、PSY1 原位茎干水势测量仪、Ecomatik的DD-S树木茎秆直径传感器、TREERADAR的TRU树木雷达检测系统、Argus的PICUS树木断层检测仪等,点将团队为专家学者现场进行了答疑解惑,并就对方所研究方向和使用不同测量仪器进行了详细方案的探讨与交流。 点将科技作为中国风景园林学会会员之一,一直以来致力为中国风景园林建设尽一份自己的努力。多年来我们代理了全球100多个生产厂商2000多种引领着生态科学前沿的仪器设备,涉及到土壤、植物、动物、气象、水文等多个领域,为中国风景园林事业和生态行业研究提供了大力的支持,特别是古树名木保护方面,我们有着专业的团队和全套的古树空洞、根系、生长状况等检测设备,让那些树种稀有、名贵或具有历史价值、纪念意义的树木得到了更好的保护。 最后点将科技祝贺中国风景园林学会合肥活动日取得圆满成功,我们也将在科研仪器专业代理商道路上秉承“心系点滴,致力将来”的理念砥砺前行。 部分来源:中国风景园林学会
  • 会议邀请 I 瀚辰光翼邀您参加2023分子植物育种与生物技术交流研讨会
    为进一步推进植物分子育种技术的融合发展与应用,不断提升种业自主创新能力水平,充分发挥全国植物育种行业协同创新优势,加强科研团队间的交流,促进我国植物分子育种技术创新,分享当前最新育种技术成功经验,为大学和科研单位、种业企业、分子育种服务企业建立一个交流和合作的平台,届时将邀请国内相关领域知名专家学者做大会学术报告,以高端主题报告、口头报告、技术交流,产品展示等方式进行深入、广泛的研讨和交流,共同探讨交流最新成果。瀚辰光翼参加此次大会并设立展位,诚邀各位专家学者莅临交流指导!大会时间:2023年12月15日-12月17日 (15日周五全天报到)主办单位:2023NMPB大会组委会、中国健康农业产学研协同创新平台、中农博后(北京) 农业科学研究院、中农博后作物栽培与耕作学术委员会、中食高科农业科技发展中心承办单位:西南大学柑桔研究所、西南大学园艺园林学院、重庆大学生命科学学院.高科农业分子植物育种科创平台协办单位:果蔬产业技术创新战略联盟、农业农村部热带果蔬遗传资源评价利用实验室、德诺杰亿 (北京) 生物科技有限公司、上海泽泉科技股份有限公司、北京雅欣理仪科技有限公司、南京集思慧远生物科技有限公司、慧诺瑞德(北京)科技有限公司支持媒体:《中国生物器材网》《溪远讲植物科学》《中国果菜》《活动家会议网》《植物生物技术pbj》《分析仪器网》《中国作物种质资源信息网》《果蔬产业前沿动态》《种业商务网》《植物科学SCI》等大会地点:重庆雅诗特酒店
  • 精选案例汇总 | MST在植物抗逆机制研究上的应用
    MST案例汇总 植物生长会受到各种复杂多变的逆境条件胁迫,包括干旱、盐碱和低温等。在长期的系统发育过程中,植物也逐渐形成适应、抵抗和忍耐的抗逆性,植物抗逆性机制为当前研究的热点,今天小编带大家来了解一下,微量热泳动(MicroScale Thermophoresis, MST)互作技术在植物适应逆境的机制研究的应用。01高温胁迫_蛋白&蛋白互作Chen, Si‐Ting, et al. "Identification of core subunits of photosystem II as action sites of HSP 21, which is activated by the GUN 5‐mediated retrograde pathway in Arabidopsis." The Plant Journal 89.6 (2017): 1106-1118.前人研究发现位于叶绿体的热休克蛋白21(HSP21)能够保护光系统II复合体 (PSII),使其免受细胞内热和氧化应激,但其作用的分子机制尚不清楚。中科院植物生理生态研究所郭房庆研究团队发现,热应激下拟南芥HSP21被GUN5依赖的逆向信号通路激活,并直接结合其核心亚基D1和D2蛋白来稳定PSII。 组成性表达HSP21可以恢复热胁迫下PSII 的热敏稳定性和gun5突变体的功能缺失,表明HSP21是热胁迫条件下维持类囊体膜系统完整性的关键伴侣蛋白。研究人员借助MST技术直接在接近天然状态下的裂解液中检测了HSP21蛋白与PS II核心亚基D1和D2蛋白之间的亲和力。图注:MST技术检测HSP21和植物裂解液中D1/D2结合植物内某些蛋白较难纯化或者纯化后活性受影响,利用MST技术,可直接在植物裂解液内进行亲和力检测,无需纯化。在本次实验中,作者裂解表达35S::D1-eYFP或35S::D2-eYFP的转基因植物,直接向裂解液中加入梯度稀释的纯化HSP21蛋白,检测得到HSP21与D1/D2的亲和力Kd分别为0.67μM和1.32μM.02低温胁迫_蛋白&离子Ding, Yanglin, et al. "CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis." Science Advances 8.26 (2022): eabn7901.寒冷的环境中会触发植物细胞质Ca2+的激增,导致植物的转录重编程。然而,Ca2+信号是如何被感知和传递到下游的低温信号通路仍然是未知的。中国农业大学杨淑华课题组研究发现,钙依赖性蛋白激酶28 (CPK28)启动了一个磷酸化级联,从而作用于低温诱导Ca2+信号下游的转录重编程。这项研究阐明了一种先前未知的机制,揭示了植物从质膜到细胞核的快速感知和转导低温信号的关键策略。研究中,作者通过MST实验检测到CPK28可直接与Ca2+结合。CPK28 EF-hand位点突变蛋白CPK28EFm与Ca2+亲和力降低了6倍,证明了EF-hand对结合Ca2+非常重要。图示:MST技术检测CPK28/CPK28EFm与Ca2+的亲和力03淹水胁迫_蛋白&离子Lehmann, Julian, et al. "Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis." Current Biology 31.16 (2021): 3575-3585.淹水胁迫导致厌氧菌引发的胞质酸中毒,使植物细胞感知酸性并通过膜去极化传递这种信号的分子机制尚不清晰。德国维尔茨堡大学研究表明,拟南芥根中酸中毒诱导的阴离子流出依赖于阴离子通道AtSLAH3,细胞质子浓度的增加使SLAH3从无功能二聚体转变为活性单体形式,激活了阴离子通道。研究发现硝酸盐对于pH依赖的通道激活至关重要,并通过MST技术研究SLAH3与NO3-的结合。图示:(左) 淹水相关胁迫响应中酸中毒诱导的阴离子通道SLAH3的激活(右) MST技术检测不同PH下SLAH3与NO3-亲和力作者表达SLAH3-GFP融合蛋白作为荧光信号源,无需其他标记。在pH6.5下检测到SLAH3与NO3-相互作用的Kd为120±50 mM。在pH为7.3时,SLAH3仍与NO3-结合,但亲和力降低了60%,表明SLAH3与阴离子的结合依赖于pH。04干旱胁迫_蛋白和磷脂分子Yang, Yongqing, et al. "Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis."The Plant Cell 34.1 (2022): 477-494.为了应对干旱胁迫,植物关闭气孔以减少叶片蒸腾水分的损失。气孔运动受信号分子磷脂酰肌醇三磷酸(PI3P)的调控。然而,这一过程的分子机制尚不清楚。中国农业大学郭岩研究组研究表明,拟南芥气孔关闭过程中,PI3P通过与植物特异性肌动蛋白结合蛋白 (SCAB1) 结合,抑制其寡聚,从而调节气孔关闭期间保卫细胞中F-肌动蛋白稳定性和重排。为了检测SCAB1蛋白是否可与PI3P结合,作者进行MST实验,结果显示二者具有非常强的亲和力,解离常数Kd为4.5±0.09 pmol。为了确定具体结合位点,作者将PI3P motifs RXLR-dEER进行突变,MST结果显示,三重突变蛋白不能与PI3P结合。综合其他实验,最终证明,SCAB1的4个RXLR motifs均具有PI3P结合能力,且至少需要2个RXLR才能与PI3P结合。图示:MST检测SCAB1与PI3P的亲和力
  • 血浆甘油磷脂与生活方式和心血管代谢性疾病风险研究获进展
    中国科学院上海营养与健康研究所研究员林旭研究组与中国科学院分子细胞科学卓越创新中心研究员曾嵘研究组合作,分别在Diabetologia、The American Journal of Clinical Nutrition上,发表了题为Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese、Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women的研究论文。  近几十年来,我国居民的肥胖、代谢综合征及糖尿病等心血管代谢性疾病的患病率快速攀升,威胁居民健康。健康的生活方式是国际公认的预防和控制这类疾病经济有效的方法,但目前人们对其在疾病过程中的复杂影响和调控路径认识有限。近年来,包括脂质组在内的代谢组学技术的快速发展,为发现疾病早期的生物标记物、阐释疾病发生发展相关的代谢通路和调控因素提供了契机。在诸多脂质分子中,甘油磷脂(glycerophospholipid, GPLs)作为哺乳动物细胞膜含量丰富的磷脂,参与了多种生理功能,如细胞信号传导、脂蛋白分泌和代谢,以及内质网、线粒体的功能等。大量动物研究提示,GPL代谢紊乱能引发内质网应激、以及肥胖、胰岛素抵抗、血脂异常等代谢异常。迄今为止,国际上有关GPL与糖尿病、代谢综合征的前瞻性队列研究有限,尤其是在亚洲人群中的研究十分匮乏。  林旭团队与曾嵘团队合作,通过采用高通量靶向液相色谱-电喷雾串联质谱法定量检测了2248名参加“中国老龄人口营养健康状况研究”志愿者的基线血浆脂质组(728种脂质),其中包括160种GPLs。林旭组博士生陈双双和副研究员孙亮等在GPL与糖尿病的相关研究(Diabetologia)中发现:(1)8种GPLs [1种溶血磷脂酰胆碱、6种磷脂酰胆碱(PC)以及1种磷脂酰乙醇胺(PE)],尤其是与脂质从头合成途径(de novo lipogenesis pathway,DNL)脂肪酸相关的PC水平升高可显著增加6年糖尿病发病风险(相对风险比值比:1.13-1.25;图1);(2)其中4种仅包含饱和、单不饱和的脂肪酸酰基链的GPLs[PC(16:0/16:1, 16:0/18:1, 18:0/16:1)和PE(16:0/16:1)]与高精制谷物(大米和面条),低鱼类、奶制品和大豆制品摄入相关的膳食模式呈显著正相关(P 0.001;图2);(3)上述8种GPLs与糖尿病风险之间的正相关性在体力活动水平较低的个体中更为显著(P-inter 0.05;图3)。而在与代谢综合征相关的研究(AJCN) 中则发现:(1)11种GPLs(1种PC、9种PE以及1种磷脂酰丝氨酸)水平的升高可显著增加6年后代谢综合征的发病风险(相对风险比值比:1.16-1.30;图4),而这些GPLs的sn-2位置大部分含有长链或超长链多不饱和脂肪酸(PUFAs);(2)其中7种GPLs与代谢综合征发病风险之间的正相关性在红细胞膜n-3 PUFAs水平较低的人群中更显著(P-inter 0.05;图5)。上述研究提示特定GPL能显著增加6年后糖尿病或代谢综合征的发病风险,但增加体力活动或摄入n-3 PUFAs可能有助于降低其对心血管健康的负面影响。  研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金及上海市科技重大专项等的资助。  论文链接:1、2
  • PCR在动植物病害检测和鉴定中的应用|iCPCR2023在线开讲
    PCR在动植物疫病应用广泛5月29日,《自然通讯》(Nature Communications)杂志网站刊登了“在猪中检测到高致死性基因型I和II重组非洲猪瘟病毒”的研究。研究称,哈兽研研究团队在江苏、河南和内蒙采集的猪样本中分离出3株非洲猪瘟病毒基因I型和基因II型的重组体,结果表明,重组病毒JS/LG/21在猪中是高度致死和可传播的。重大动物疫病、人畜共患病危及公共卫生安全。非洲猪瘟从2018年延绵到现在,一直被生猪养殖界称为世界性难题。值得关注的是,荧光PCR检测方法是非洲猪瘟确诊的重要标准,世界粮农组织及中国农村农业局均推荐优先采用荧光PCR检测方法进行核酸检测诊断非洲猪瘟。而植物病害严重危害农业生产,不仅危害农作物产量的减少,而且在一定程度上还严重威胁农产品质量安全及国际贸易。应用PCR扩增技术可将很少的病原微生物核酸扩增放大,可以用于植物病害的早期诊断。病害的防治通常是预防大于治疗,浓度偏低的病毒病标样的准确诊断和检测对病害的有效控制非常重要。目前,PCR技术在我国植物病害检测中已得到了广泛应用,覆盖真菌类、细菌类、病毒类的检测研究。聚焦动植物疫病,iCPCR2023全阵容嘉宾开讲PCR和建立在PCR基础上的分子生物学技术以其灵敏、快速、简便等优点,能将病害快速、准确的鉴定出来,在动植物病害检测和鉴定中得到了广泛应用。2023年6月28-30日,由仪器信息网举办的第七届PCR技术网络会议(iCPCR 2023)将在线开播,众位PCR技术和仪器研发专家,PCR技术应用专家,前沿科学研究PI等嘉宾将在3i讲堂分享精彩报告。本次会议特别设置了【动植物疫病应用】分会场,特邀多位嘉宾分享PCR在动植物疫病检查中的应用与经验。立即报名》》》精彩报告提前揭晓:原霖 实验室技术总监 北京中科基因技术股份有限公司《数字PCR在污水等复杂基质中的动物病原检测》(6月30日上午开讲 点击报名 )原霖 博士 高级兽医师,北京中科基因技术股份有限公司 实验室技术总监,“原博士带你做检测”公众号创始人。毕业于中国农业大学。全国标准物质技术评审专家库专家、全国标准样品技术委员会动物防疫标准样品专业工作组(SAC/TC118/WG15)组员、全国生化检测标准化技术委员会(SAC/TC 387)成员。目前主要从事检测实验室质量控制与标准化研究。已经研制了ASFV和PRRSV等10余项国家标准物质/标准样品。PRRSV核酸标准物质为我国兽医领域第一个核酸定量有证标准物质。建立了非洲猪瘟、禽流感和蓝耳病等数十个数字PCR方法。主持及参与国家重点研发计划2项,参与起草《医学实验室 核酸检测质量和安全指南》(CNAS-TRL-018)等标准10项,参编书籍6本;发表学术论文30余篇。王少林 教授 中国农业大学动物医学院《高通量扩增子检测技术在动物病原与耐药性检测中的应用》(6月30日上午开讲 点击报名 )王少林,教授,现就职于中国农业大学动物医学院,2003年获得中国农业大学生物学学士学位,2009年获得美国奥本大学分子遗传学博士学位,入选中组部万人计划“青年拔尖人才”。主要从事药理基因组, 毒理基因组,微生物基因组、宏基因组和生物信息学方面的研究;在重要国际期刊上发表SCI论文100余篇,主要研究成果论文引用5000次以上,参与出版英文著作4个章节,主持国家重点研发计划课题、自然科学基金、农业部细菌耐药性监测项目等10项。史喜菊 博士/研究员 中国海关科学技术研究中心《多重荧光PCR在动物疫病检测中的应用》(6月30日上午开讲 点击报名 )史喜菊博士,研究员,中国海关科学技术研究中心,主要从事境外动物疫病风险评估、进出境动物疫病分子诊断技术研究和实验室质量管理体系研究。“十三五”、“十四五”国家重点研发计划课题主持人,先后主持/负责完成国家级、省部级科研课题22项,科研成果曾获得北京市科技奖励二等奖1项、三等奖1项、原国家质检总局科技兴检二等奖1项,三等奖3项,获海关总署科技成果评定三等奖1项。获得授权的国家发明专利9项,副主编出版专著2部,参编、参译著作7部;以第一作者发表文章50多篇,其中SCI文章6篇,主持/参与制定行业标准15项。夏应菊 高级兽医师 中国兽医药品监察所《猪瘟和非洲猪瘟假病毒的研制与应用》(6月30日下午开讲 点击报名 )夏应菊博士,高级兽医师,中国兽医药品监察所,国家/WOH猪瘟参考实验室骨干。从事猪瘟、非洲猪瘟等重大猪病诊断方法、疫苗评价及免疫机制等研究工作。国家猪瘟参考实验室学术委员会委员、中国畜牧兽医学会动物传染病学分会青年学者专业组委员。主持和参加 “十四五”、“十三五”国家重点专项课题、国家自然科学基金面上项目等国家和省部级课题8项。发表论文30余篇,主编、参编著作3部,获专利3项。邓丛良 研究员 中国海关科学技术研究中心《数字荧光PCR技术在检验检疫中的应用》(6月30日下午开讲 点击报名 )邓丛良,博士,研究员,北京植物病理学会常务理事,现在中国海关技术研究中心动物研究所从事物种查验工作。在植物病毒检测技术研究方面具有深入研究,第一作者和通讯作者发表论文30余篇,研究成果分获省部级1等奖,2等奖和3等奖计5项。冯小宇 正高级兽医师北京市动物疫病预防控制中心《动物疫病检测用标准物质的研究与应用》(6月30日下午开讲 点击报名)冯小宇,北京市动物疫病预防控制中心正高级兽医师。中国微生物学会兽医微生物学专业委员会委员,北京市奶牛创新团队岗位专家。从事动物疫病监测诊断、防控技术研究及推广应用工作。主持或参与省部级科研项目 15 项;获省部级奖励 6 项、国家标准物质 2 项、新兽药证书 1 项、发明专利 9 项、实用新型专利 4 项,发表论文30 余篇。获北京市青年文明号、北京市动植物疫情防控先进个人、北京市郊区青年致富带头人等荣誉称号。蒲静 研究员 中国海关科学技术研究中心《PCR技术在动物源性成分鉴定中的应用》(6月30日下午开讲 点击报名 )蒲静,研究员,2005年毕业于中国农业大学,获预防兽医学博士学位。现任职于中国海关科学技术研究中心动物检疫研究所,同时担任进出境濒危物种鉴定实验室联盟技术专家。主要从事进出境动物及动物源性产品的检验检疫、濒危物种鉴定及动物源性成分鉴定等国门生物安全动物领域相关工作,在精准分子检测及鉴定技术方面开展科研创新,主要研究成果包括“濒危动物及其制品鉴定技术体系”、“主要动物疫病快检技术平台”等。主持和参加国家科技支撑计划、海关总署科研项目等12项,获得省部级科技进步奖3项;主持发布国家标准3项;取得授权发明专利12项;发表核心期刊论文和会议论文30余篇。 参会指南 快速报名入口:https://www.instrument.com.cn/webinar/meetings/icpcr2023/一、主办单位仪器信息网二、会议时间2023年6月28日-30日三、会议日程第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容及报告赞助仪器信息网 刘编辑:13683372576,liuld@instrument.com.cn
  • 陕西省植物资源保护与利用工程技术研究中心通过验收
    近日,陕西省西安植物园、陕西省植物研究所承担的陕西省工程技术研究中心项目(“13115”科技创新工程)“陕西省植物资源保护与利用工程技术研究中心” 项目,通过了陕西省科学技术厅验收。   “陕西省植物资源保护与利用工程技术研究中心”项目由西安植物园主任李思锋研究员主持,由依托单位陕西省西安植物园、陕西省植物研究所承担组建工作,是陕西省首家植物资源利用领域的工程技术研究中心,属于是陕西省二00九年“13115”科技创新工程重大科技专项项目。该“工程中心”面向陕西省(尤其是秦巴山区)丰富的植物资源,重点围绕特色园林观赏植物、中药材优良新品种等植物资源利用、规范化生产技术及陕西省植物资源调查与保护等研发方向,创建国内先进的植物资源保护与综合利用研发基地。   “陕西省植物资源保护与利用工程技术研究中心”项目自2009年1月开始,完成了“工程中心”的组建,重组了研发技术团队,制定了内部管理制度,完善了运行机制,购置了相关的实验检测仪器设备,优化了研究平台配置。该项目以研究开发秦巴山区特色植物资源及其综合利用技术为主要方向,重点开展了以园林观赏植物和药用植物为主要内容的陕西省特色经济植物资源调查、评价及其保护技术,特色观赏植物的引种、栽培、繁育、规模化生产等技术及在生态环境、园林绿化建设中的示范推广,中药材优良新品种选育、栽培技术及规范化栽培基地建设等工程技术研发工作,以期为我省植物资源保护与可持续利用及其产业化开发能提供技术支撑。
  • 辰山植物园公共实验平台棒状薄层色谱仪正式投入使用
    p   近日,辰山植物园“棒状薄层色谱仪(IATROCORDERMK-6)”在公共平台实验室安装、调试完成,由工程师进行了现场操作使用培训。目前该仪器已对全园和社会开放使用。 /p p   棒状薄层色谱仪(IATROCORDERMK-6)是通过棒状薄层色谱/氢火焰离子化检测器(TLC/FID)定性分析脂肪酸、脂肪酸聚合物、油脂酯交换产物和甘三酯,用于油脂中氧化、聚合甘三酯含量的分析、磷脂的组分组成等复杂脂质的研究。TLC/FID检测器可将薄层色谱分离技术与氢火焰离子化检测器技术结合应用,实现定量检测,特别适用于油的分析、示踪有机合成反应过程,完成在简单色谱棒上的样品定量。与传统色谱分析仪相比,它既克服了气相色谱不能分离难挥发组分的缺点,又解决了某些组分用高效液相色谱定量困难的问题。 /p p   棒状薄层色谱仪(IATROCORDERMK-6)投入使用,将为辐射范围内的科研人员研究蜡、脂肪酸、合成脂和合成油等成分、各类工业脂类分析及各类烃类物质聚合物、食用油分析等方面提供支撑。 /p
  • 日研究人员制成植物人工染色体有助开发新品种
    日研究人员制成植物人工染色体有助开发新品种 日本冈山大学资源植物ELISA试剂盒研究所教授村田稔率领的研究小组25日宣布,他们成功在植物细胞内人工制造出了带有遗传信息的染色体。这一成果将有助于开发新的作物品种。 ELISA试剂盒研究小组使用拟南芥,利用“自顶向下分析法”,通过操控细胞内原有的染色体,并进行改编,制作出了比通常染色体要小的环状人工染色体。即使是自花授粉的种子,也有40%以上继承了这种人工染色体。 ELISA试剂盒研究小组说,利用植物制作出能被下一代继承的人工染色体,这在世界上尚属首次。通过向这种染色体植入特定的基因,就可培育出能抗病虫和抗倒伏的新植物和作物品种。 村田稔说:“利用这种技术,还可以只在水稻生长期间,植入抗病虫和抗倒伏的基因。”Mouse Linker for activation of T cell,LAT ELISA Kit 小鼠T细胞活化连接蛋白(LAT)ELISA试剂盒 规格: 96T/48TMouse lipoprotein lipase,LPL ELISA Kit 小鼠脂蛋白脂酶(LPL)ELISA试剂盒 规格: 96T/48TMouse lipoprotein α,Lp-α ELISA Kit 小鼠脂蛋白α(Lp-α)ELISA试剂盒 规格: 96T/48TMouse lipoprotein-associated phospholipase A2,Lp-PL-A2 ELISA Kit 小鼠脂蛋白相关磷脂酶A2(Lp-PL-A2)ELISA试剂盒 规格: 96T/48TMouse L-Phenylalanine ammonla-lyase,PAL ELISA Kit 小鼠L苯丙氨酸解氨酶(PAL)ELISA试剂盒 规格: 96T/48TMouse L-phenylalanine,LPA ELISA Kit 小鼠苯丙氨酸(LPA)ELISA试剂盒 规格: 96T/48TMouse L-Selectin ELISA Kit 小鼠L选择素(L-Selectin/CD62L)ELISA试剂盒 规格: 96T/48TMouse Luteinizing Hormone-Releasing Hormone,LHRH ELISA Kit 小鼠黄体生成素释放激素(LHRH)ELISA试剂盒 规格: 96T/48TMouse luteotropic hormone,LH ELISA Kit 小鼠促黄体激素(LH)ELISA试剂盒 规格: 96T/48TMouse lymphocyte factor ELISA Kit 小鼠淋巴细胞因子ELISA试剂盒 规格: 96T/48TMouse lymphocyte function associated antigen 3,LFA-3 ELISA Kit 小鼠淋巴细胞功能相关抗原3(LFA-3/CD58)ELISA试剂盒 规格: 96T/48TMouse lymphotactin,Lptn/LTNELISA Kit 小鼠淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒 规格: 96T/48TMouse Lysozyme,LZM ELISA Kit 小鼠溶菌酶(LZM)ELISA试剂盒 规格: 96T/48TMouse Macrophage Colony-Stimulating Factor,M-CSF ELISA Kit 小鼠巨噬细胞集落刺激因子(M-CSF)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1β,MIP-1β ELISA Kit 小鼠巨噬细胞炎性蛋白1β(MIP-1β/CCL4)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1δ,MIP-1δ ELISA Kit 小鼠巨噬细胞炎性蛋白1δ(MIP-1δ/CCL15)ELISA试剂盒 规格: 96T/48T
  • NanoTemper用户之声 | 探访中国农业大学-植物应答盐碱胁迫的分子机制
    引 言2023年,NanoTemper正式开通了用户之声系列活动,目的是为了分享更多用户的实际应用案例和心得体会,希望能帮助到更多的研究者解决问题。在生命科学领域,微量热泳动(MST)技术已被广泛及高度应用到各项行业,而Monolith分子互作检测仪凭借其优异表现,不断助力科研人员在CNS上发表优质的重磅文献近百篇。本期,我们采访到了来自中国农业大学的杨永青副教授,针对他们的植物应答盐碱胁迫的分子机制这个研究方向进行了深入采访。如果您在分子互作方面同样遇到一些问题,不妨试试MST技术,希望带给大家给多的启发和帮助。来自用户的反馈 NanoTemper 用户介绍 中国农业大学姓名:杨永青 副教授在用仪器:Monolith分子互作检测仪Q1用户背景介绍杨永青副教授从2001-2006年在北京林业大学读博士。2006-2010年在北京生命科学研究所做博士后,2010年进入中国农业大学工作。主持和参与国家自然科学基金重点项目,面上项目,国际合作项目,国家科技部973项目和农业部转基因专项等。获得授权专利4项。在Mol Plant,Nat Commun,Plant Cell,New Phytol和JIPB等高水平学术期刊上发表SCI论文30余篇。Q2请介绍一下您的研究内容我们长期从事植物应答盐碱胁迫的分子机制。盐碱胁迫会引起离子胁迫和渗透胁迫。离子胁迫是影响植物产量的主要因素。植物通过SOS途径将细胞内盐离子外排出去,SOS蛋白的转运依赖于质子ATPase建立的质子梯度,但具体如何调控机制不清楚。因此,我们主要研究的方向是植物应答盐碱胁迫下离子平衡调控的具体机制,并取得了突破性进展。我从2013年左右了解到Monolith,大概统计了一下,近几年发表的文章中,至少有7篇用到了MST技术进行互作研究。在进行抗盐碱机制研究中,会涉及到质子泵,离子运输和信号传递等,进行的互作检测的分子类型也很丰富,包括蛋白质与蛋白质,蛋白质和有机小分子,蛋白与无机离子等,这些互作都可以在Monolith上完成快速检测。Q3请问Monolith分子互作检测仪如何满足您的研究需求?在盐碱胁迫的机制研究中,会涉及到很多类型的分子,如蛋白和蛋白,蛋白和小分子,甚至是蛋白和无机离子的互作,都可以使用MST技术完成检测,而且MST的样品用量少,可以大大减少实验时蛋白提取的工作量。比如说在进行Ca2+蛋白传感器SCaBP3蛋白参与碱胁迫响应的分子机制文章投稿时,The plant cell的reviewer提出需要证明SCaBP3与质膜H+-ATPase AHA2的互作,并且推荐ITC的方法。我们在进行ITC检测尝试时发现,该方法需要大量的蛋白,但每次蛋白的提取量为1-2mg,只可以做1-2次ITC实验,且无法进行重复。而MST方法检测的蛋白用量少,进行一次MST实验,仅需要18ng AHA2和200μg SCaBP3,节约大量样本和时间成本,因此我们采用了MST完成了该组互作实验,并顺利发表文章。使用MST检测SCaBP3和AHA2 C的互作https://doi.org/10.1105/tpc.18.00568Q4您认为Monolith分子互作检测仪有哪些优点?分子互作检测方法对蛋白用量非常少,比如在进行蛋白SCAB和磷脂分子PI3P的Kd检测2时,MST实验仅需要10nM, 160μL的SCAB-蛋白,也就是130ng。这组研究同时进行了PLO(Protein-lipid overlay assay)实验,但该实验流程较为复杂:需要1小时进行干膜,1小时进行SCAB蛋白孵育, 然后通过进行2小时的免疫印迹的方法检测,操作熟练的情况也需要4小时。但每次MST检测也只要15min,这项研究中涉及到两组,也就是检测只需要30min即可完成。因此,MST这种方法极大的提高了实验效率。MST检测SCAB1与磷脂分子PI3P的亲和力https://doi.org/10.1093/plcell/koab264Q5您对NanoTemper售后服务的印象?NanoTemper技术团队一直能与我们进行快速地交流,及时解答问题。每年都会有线上和线下不同专题的培训活动,能够让实验室一届届学生快速掌握MST的实验流程,迅速开展相关实验,我们十分满意。
  • 中科院植物种质创新重点实验室揭牌
    5月15日,中国科学院植物种质创新与特色农业重点实验室揭牌启动仪式在武汉植物园举行。华中农业大学校长邓秀新院士和院生物局刘杰处长、段子渊处长等专家出席仪式并为实验室揭牌。武汉植物园李绍华研究员担任该重点实验室主任,彭俊华研究员、傅金民研究员担任实验室副主任。   新成立的重点实验室由11个学科组有机整合而成,研究团队包括15位各具特长的研究员(含8位从海外引进的“百人计划”入选者)。实验室将立足于园艺园林经济植物、能源植物、药用植物、草坪草、水生经济植物等特色农业资源植物种质创新与开发利用,以加强种质创新为核心,开展植物迁地保育机理,植物种质资源保存、创新与功能基因发掘,新品种分子设计与分子改良、新产品研究与开发。   据介绍,中国是全球植物资源最为丰富的国家之一,约占全球的10%。尤其是栽培农作物或有经济开发前景的特色农业资源植物种类多、储量大、分布广,是特色农业植物资源大国。   由于起步晚和研究基础薄弱,我国特色资源植物研究和开发与欧美等发达国家相比存在明显差距。因此,收集和抢救我国濒危的特色农业资源植物种质资源,在此基础上开展系统的科学研究,挖掘优良基因资源,培育出拥有自主知识产权的农作物新类型或新品种,是促进我国特色农业产业健康发展,服务社会经济和谐可持续发展的重要保证。   武汉植物园自1956年建园伊始,就率先在国内开展猕猴桃、水生植物等特色农业资源植物的研究,并逐步形成了“资源保存(Resources)— 科学研究(Research)— 持续利用(Resolution)”的“3R模式”。此重点实验室的建设将进一步发挥武汉植物园的资源与学科优势,提升我国特色农业种质资源创新与可持续开发利用的水平,推动我国特色农业产业的发展。
  • 中科院特色农业资源植物种质创新实验室挂牌
    近日,中科院特色农业资源植物种质创新与可持续利用重点实验室挂牌仪式在武汉植物园举行。华中农业大学傅廷栋院士、邓秀新院士,中科院生物局有关领导等出席仪式并为实验室挂牌。该重点实验室主任由武汉植物园研究员李绍华担任。   新成立的重点实验室将立足于园艺园林经济植物、能源植物、药用植物、水生经济植物等特色农业资源植物种质创新与开发利用,以加强种质创新为核心,开展植物迁地保育机理,植物种质资源保存、种质创新与功能基因发掘,新品种分子设计与分子改良,新产品研究与开发。   据介绍,由于起步晚和研究基础薄弱,我国特色植物资源研究和开发与欧美等发达国家相比存在明显差距。因此,收集和抢救我国濒危特色农业植物种质资源,在此基础上开展系统的科学研究,是促进我国特色农业产业健康发展、服务社会经济和谐可持续发展的重要保证。   此次重点实验室的建设将进一步发挥武汉植物园的资源与学科优势,提升我国特色农业种质资源创新与可持续开发利用的水平,推动我国特色农业产业的发展。
  • 转基因植物标准物质研究进展
    转基因植物标准物质研究进展日期:2012-05-17 作者:董莲华 赵正宜 李亮 隋志伟 王晶 来源:《农业生物学报》.-2012,(2).-203-210 点击:107  近年来,随着转基因技术的飞速发展,转基因作物及其产品大量涌现。但是由于转基因作物及其产品对人体健康和生物多样性的影响未经过长期检验,所以一直以来其安全性都受到社会各界的关注。为了保护消费者对转基因产品的知情权、选择权和健康权,各国都建立了多种方法对转基因植物及其产品中的转基因特征分子进行检测,以期对转基因植物从源头到餐桌进行全程监控。目前,由于各国对于转基因产品的标识有不同的要求,有些国家规定必须标明转基因成分的含量,并且各个国家对所标识转基因含量的要求不尽相同,为了解决贸易争端等问题,转基因产品的定性、定量检测成为关键。但是,由于缺乏国际普遍认同的标准,所以检测结果不可比的问题尤为突出。转基因检测标准的制定是解决转基因产品检测结果不可比的根本。转基因检测标准包括标准检测方法和标准物质。而转基因标准物质在保汪转基因检测结果可比和可溯源方面起着重要作用。标准物质是具有高度均匀性、良好稳定性和量值准确性的一种测量标准。因此转基因生物标准物质的使用可以保证转基因产品检测缔果的有效和可比。 国外尤其是欧美国家自上个世纪起就已经开始转基因检测标准和标准物质相关研究。目前我国制定了一些急需的转基因安全检测标准和规范(GB/T19495.3~5-2004,NY/T719.l~719.3-2003,NY/T720.1~720.3-2003,NY/T 72l.1~721.3-2003),但是,转基因生物标准物质的缺乏,已成为制约我国转基因生物检测技术应用与发展的一个土要技术瓶颈。本文将对国内外转基因植物标准物质的研究现状及相关技术进行综述,以期为我国转基因植物标准物质研制和相关研究提供参考。1 转基因植物标准物质种类 目前国内外研制的转基因植物标准物质上要自基体标准物质(Gancberg et al.,2007;Trapmann et al.,2004a;Trapmann et al.,2004b)和核酸分子标准物质(Corbisier et al.,2007;AOCS 0306-A(http.//WWW.aocs org/LabServices))。基体标准物质是与被测样品具有相同或相近基体的实物标准,是给被测物质赋值的最有效的标准物质。目前所研制的基体标准物质根据存在形式不同主要有种子标准物质(AOCS 0304-B(http//WWW.aocs.org/yech/crm))和种子粉末标准物质(Trapmann et al.,2004b)。核酸分子标准物质是含有已知量值(目标基因拷贝数或含量)的植物基因组DNA或质粒DNA分子,目前已有的核酸分子标准物质主要有基因组DNA分子标准物质(Fluka69407(http//www. sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/69407dat. Par. 0001 File.tmp/69407dat.pdf);AOCS 0306-A)和质粒DNA分子标准物质(Corbisiei et al.,2007),而基因组DNA分子标准物质主要有叶片DNA(AOCS 0306-A;AOCS 0208-A2(http://WWW aocs. org/tech/crm);AOCS 0306-H(Http://WWW. aocs org/tech/crm))和种子DNA(F1uka 69407)分子标准物质两种。每种类型的标准物质在制备、保存和使用中都有其优缺点。具体见表1略。 由表1略可知,基体标准物质由于具有与待测物相同司或相近的基体效应,而且可以用于核酸和蛋白两个水平的检测,应用相对较。但是其纯度和均匀性不容易保证,使用不方便、价格昂贵,而且原材料获得以及复制难度较大。核酸分子标准物质可以解决均匀性问题,其中质粒分子标准物质还有容易获得和使用方便等特点(Allnutt et al.,2006),但是因为其PCR扩增效率与基因组DNA的扩增效率可能存在差异,使用质粒分子标准物质对转基因产品定量时须谨慎。基因组DNA分予标准物质虽然不存扩增效率差异,但因为纯度难以控制,所以复制比较难,价格最高。2 转基因标准物质制备过程中关键点2.1 转基因基体标准物质 转基因植物基体标准物质的研制技术关键包括候选物品种纯度鉴定、标准物质均匀性研究,标准物质定值和不确定度评价等技术研究。基体标准物质候选物纯度鉴定非常关键,因为这直接关系到转基因成分含量的准确性,在目前所有基体标准物质研制报告中,都提供了该标准物质候选物纯度及鉴定方法(Clapper and Cantrill,2009;Trapmann et al.,2010a)。纯度鉴定分遗传背景纯度和基因型纯度鉴定。遗传背景纯度鉴定一般是标准物质候选物供应商(目前国际上主要的供应商为拜尔公司、先正达公司和孟山都公司)通过田间性状筛选、分子水平和蛋白水平的纯度检测完成。分子水平检测技术一般采用定性PCR(聚合酶链式反应)、荧光定量PCR、Southem杂交等技术。蛋白水平检测技术包括Western杂交和免疫试纸条法等(Trapmann et al.,2004b)。基因型纯度检测方法一般采用PCR、Invader(亲染探针法)和SNP Wave技术检测等位基因的纯合或杂合(Eijk et al.,2004;Twyman et al. 2005)。此外,标准物质生产者还要对标准物质候选物进行转化体特异性检测,如对转基因玉米NK603标准物质候选物进行转化体特异性鉴定时要排除转基因玉米其它的转化体(GA21、MON863和MON810)(Trapmann et a.,2005a)。不同的转化体特异性纯度鉴定水平依赖于该转化体特异性定量PCR方法的检测限(Limit of Detection,LOD),由于每个转化体特异性方法的检测限不同,因此对每种转化体的转基因标准物质候选物可检测的纯度水平不一致,如对转基因玉米GA21可鉴定纯度99.935%(LOD=0.065%,Trapmann et al.,2004c),对转基因玉米NK603可鉴定纯度99.970%(LOD=0.030%,Trapmann et al.,2005a)对转基因玉米TCl507可鉴定纯度99.960%(LOD=0.040%,Trapmann et al.,2005b),对转基因土豆EH92-527-1可鉴定纯度99.980%(LOD=0.020%,Trapmann et al.,2011)。 基体标准物质均匀性研究目前主要采用实时荧光定量PCR(Trapmann,et al.,2011)和金标记中子活化法(Trapmana et al.,2010a,b,c)。采用荧光定量PCR方法进行均匀性检验是通过测定目标基因与内标准基因的比值这一特性量值来考察瓶间与瓶内的一致性。利用这种方法进行均匀性检测的优点是测定的量值与标准物质特性量值一致,但缺点是PCR方法精密度低,从而导致均匀性检验对标准物质量值不确定度贡献较大。采用金标记中子活化法进行均匀性检测优点是灵敏度高,重复性好,但缺点是该方法的成本比较高。2.2 转基因植物质粒分子标准物质 转基因植物质粒分子标准物质的研制技术关键包括目标序列和内标准基因序列的选择和扩增、质粒分子标准物质定值和适用性验证等,其中对于质粒分子的定值和适用性验证是质粒分子标准物质研制的技术难点。内标准基因序列的选择一般取决于转基因检测时常用的基因,研制的玉米中常用的内标准基因有adh(Alcoholdehydrogenase,乙醇脱氢酶)、zSSIIB(淀粉合成酶基因)和hmg(High mobilitygroup,高迁移率族蛋白基因),转基因玉米Mon810质粒分子标准物质ERM-AD413的内标准基因为adh基因片段(Corbisier et al.,2007);报道的转基因玉米质粒分子pNK603和pUC57-Btll则选择zSSIIB基因作为内标准基因(董莲华等,201la;董莲华等,2011b)。水稻中常用的内标准基因有REB4(Starch branching enzymes,淀粉分枝酶基因)、SPS(Sucrose phosphate synthase,蔗糖磷酸合成酶)、GOS9和PLD(Phospholipdase D磷脂酶基因)(Ding et al.,2004;Wang et al.,2010)。Cao等(2011)在构建转基因水稻TT51-1质粒标准分子时选择了PLD基因作为标准基因。大豆中常用的内标准基因是Lectin(凝集素基因),棉花中常用的内标准基因是Sad(Steroyl-ACP desatuTase,硬脂酰-ACP脱饱和酶)(Yang et al.,2005)。 目标基因的选择可以是启动子或终止子基因序列,可以是转入的功能基因序列,也可以是转化体特异性边界序列基因(即一部分来源于植物基因组,一部分来源于转入的外源基因)。目前研究最多的是选择边界序列作为外源基因进行构建质粒分子,如Cao等(2011)构建的转基因水稻TT51-l质粒分子目标基因为3′端边界序列,Taveniers等(2005)等构建的Btl76和GA21质粒分子也选择了3′端边界序列作为目标基国。2.3 转基因植物基因组分子标准物质 转基因植物基因组分子标准物质的研制技术关键包括候选物纯度鉴定、基因绸DNA纯化和定值。对候选物纯度鉴定与和转基因基体标准物质研制中的候选物纯度鉴定一样关键,因为纯度直接决定了量值的准确性。基因组DNA的纯化同样至关重要,PCR抑制因子的存在会严重影响后续PCR的扩增,从而影响对待测样品的赋值。目前,基因组DNA纯度一般以A260/A280和A260/A230这两个比值的大小来进行评价:A260/A280比值要求在1.8~2.0之间,而A260/A230比值则要求2.0。PCR抑制因子的存在与否,可通过倍比稀释PCR扩增后比较测定的Ct值与推测Ct值之差进行确定(ENGL,2008)。3 转基因标准物质量值确定方法 基体标准物质定值方式目前主要有两种:第一是重量法,即以制备时的重量配比给标准物质进行赋值,单位一般为g/k或者以%表示,采用重量法进行量值时其不确定度来源主要包括称量引入的不确定度和标准物质的纯度引入的不确定度。目前欧洲标准物质和标准方法研究院(Institute for Reference Materials and Measuremnents,IRMM)所制备的转基因标准物质大部分都是使用这一方法进行量值(Trapmann et al.,2004a;TraPmann,et al.,2010b;Trapmann et al.,2004c;Trapmann et al.,2005a)。第二是采用定量PCR方法对目标基因与内标准基因的拷贝数进行测定,以拷贝数的百分数(%)表示。由于PCR方法为相对定量,而且精密度低,所以使用该方法进行量值时标准物质的不确定度较大。在IRMM最新发布的标准物质研制报告(Andade et al.,2011)采用了荧光定量PCR方法对转基因玉米NK603标准物质进行量值。 此外,数码PCR(digital PCR)技术是新发展起米的可应用于转基因检测及标准物质定值的方法,因为数码PCR技术不需要外标而可以进行绝对定量,因此在标准物质定值方面有很大的发展前景(Bhat etal,2009),如在BIPM组织的关键比对CCOM-K86中,有证据表明数字PCR对转基因盲样测定的结果与定量PCR测定结果一致(Corbisier et al.,2011),但该方法测定结果的不确定度和溯源途径还有待于进一步研究。最新出现的Droplet digital PCR(ddPCR)技术(Markey et al.,2010)也是一种不依赖于外标的绝对定量方法,用于转基因含量的测定和目标基因的绝对定量方面具有良好的发展满力。 对于转基因基因组和质粒分子标准物质的量值与基体标准物质不同,除了需要明确转基因成分含量外,还要明确DNA浓度。目前,对转基因基因组或质粒DNA标准物质浓度量值IRMM采用紫外分光光度法,还可用PicoGreen荧光染料法,但是这些方法在标准物质量值溯源性方面都不能满足要求(Haynes et al.,2009)。最近发展的超声波-高效液相色谱(董莲华等,2011c)和超声波一同位素稀释质谱法可以解决核酸浓度定量测定的溯源性问题。此外电感耦合等离子体发射光谱技术(ICP-OES)也是溯源清晰的核酸浓度定定量方法(English et al.,2006)。用于转基因成分含量或拷贝数量值确定的方法主要是荧光定量PCR方法。荧光定量PCR方法是发展起来比较成熟的转基因定量方法(Ronning et al.,2003;Holst-Jensen et al.,2003;Cankar et al.,2006),但由于该方法是依赖于外标的相对定量,且重复性较差,难以成为标准物质定值的绝对方法。目前对于质粒分子标准物质的量值方式还没有合理的模式,因为质粒分予标准物质不同于基体含量标准物质,首先质粒分子本身的量值为目标基因和内标准基因的比值,而这一比值可以通过基因测序法来确定,也可通过定量PCR方法来确定。通过测序方法对标准值进行确定,其不确定度基本可以忽略(董莲华等,201lb),而通过PCR方法进行定值,不确定度需要考虑PCR过程中的影响因素,一般不确定度都较大(董莲华等,2011b1)。 此外,质粒分子作为标准物质是要用于转基因成分含量检测的,检测对象是基因组DNA,因为分子大小差异可能会导致PCR扩增效率有差异,因此对质粒分子标准物质定值还要充分考虑质粒和基因组可替代性问题。可替代性是指标准相对于未知样品的行为。一般观点认为,质粒DNA与基因组DNA是否可以替代主要取决于PCR过程中两者产生的标准曲线,具体反应在两者标准曲线的斜率(与PCR扩增效率相关)、截据和线性相关系数。但笔者认为这些参数中最关键的是两者标准曲线的斜率,其次是截据,线性相关系数只是反应标准曲线自身的线性,该参数更多的是取决于标准曲线制备过程中的梯度稀释。如果斜率和截据这两个参数之间没有显著差异,那么两者基本就可以替代(Taverniers et al.,2009)。但是如果斜率没有差异,截据存在差异,不能简单的认为两者不可以替代,这种情况F可经过实际样品验证,如果两者对于已经标准值的物质或者有证标准物质进行定量测定的结果一致,也可以证明两者是可以替代的(董莲华等,2011a;董莲华等,2011b)。或者通过大量实验找出质粒分子与基因组分子扩增之间的系数,也是解决这一问题的方法。4 国内外转基因标准物质研究现状与展望 目前国际上主要由IRMM、美国油料化学会(American Oil Chemists’Society,AOCS)和Sigma公司等专业机构进行转基因标准物质的研制和销售。国外对转基因标准物质的研制多集中在基体标准物质,目前仅有一个质粒分子标准物质(MON810)申请了有证标准物质(Corbisier et al.,2007),具体见表2略。国内目前仅有一种转基因大豆粉二级标准物质(GB/W100042/43),还没有有证质粒分子标准物质。但是我国目前批准的转基因标准品已有20种,这些转基因标准也具有明确的量值,它们与标准物质的区别在于转基因标准品的研制以应用为首要目标和出发点,对溯源性并不关注,因此其溯源途径尚不明确。而转基因标准物质除了以应用为目的具有明确的量值和不确定度外,对量值的溯源性也要声明。我国自2009年启动转基因生物新品种培育重大专项以来,研制的转基因标准物质涉及的国内外16个转化体30多个基体和质粒分子标准物质,分别由中国计量科学研究院、上海交通大学、中国农科院油料所研制。目前的这些标准物质正在进行有证申报。预计这些转基因标准物质将很快能够服务于我国的进出口贸易和出入境检验检疫等,从而有效的避免贸易争端。5 展望 转基因标准物质的使用将有效地解决转基因检测不可比的问题,从而避免国际贸易争端。然而,只有转基因标准物质的量值得到国际互认,才可真正有效地避免贸易争端,消除贸易壁垒。而要达到国际互认最简便有效地方式是通过国际比对或各国协同定值。具有国际互认量值的标准物质才能够更好的服务于进出口贸易检测。此外,未来的转基因标准物质研制应以简单实用为主,由于基体标准物质会受其原材料的限制,而质粒分子标准物质自身的特点决定了其应用的广泛性和使用的方便性。况且,如果将多个转化体特异性检测片段同时构建在同一个质粒分子上,可达到一个标准物质进行多个转化体检测应用的目的,这样既可提高标准物质的利用率,又可节约成本,应是未来的转基因标准物质研制的发展方向。 作者单位:(中国计量科学研究院,北京 100013) 文章采集:caisy 注明:国家科技支撑项目(No.2008BAK41B01)和转基因生物新品种培育重大专项(No.2008ZX08012-003)。
  • 523万!华南植物资源研发中心技术推广平台采购系列仪器设备
    2022年10月18日,广州市林业和园林科学研究院发布华南植物资源研发中心技术推广平台仪器设备购置招标公告,预算523万采购一系列仪器设备,包括荧光定量PCR仪、梯度PCR仪、高效细胞电融合仪、火焰石墨炉原子吸收光谱仪、紫外可见分光光度计等仪器设备。其中,不允许采购进口的仪器设备包括电功能水发生器等共33台,允许采购进口的仪器设备包括荧光定量PCR仪等共27台。项目编号:JYZC-202209-02项目名称:华南植物资源研发中心技术推广平台仪器设备购置采购方式:公开招标预算金额:5,230,000.00元投标时间:2022年10月18日—11月8日9时30分(北京时间)采购需求:合同包1 (华南植物资源研发中心技术推广平台仪器设备购置):合同包预算金额:5,230,000.00元品目号品目名称采购标的数量 (单位)技术规格、参数及要求品目预算 (元)最高限价(元)1-1其他仪器仪表华南植物资源研发中心技术推广平台仪器设备购置1(批)详见采购文件5,230,000.00-具体的仪器清单:序号仪器设备名称数量(台/套)是否允许采购进口产品1测距仪2是2恒温培养箱1否3电热鼓风干燥箱1否4无人机1否5便携可折叠无人机1否6冰箱12否7冰箱22否8凝胶成像仪1是9荧光定量PCR仪1是10梯度PCR仪1是11高效细胞电融合仪1是12高通量核酸提取仪1否13全自动移液工作站1是14纯水仪1否15高速冷冻离心机1是16高速离心机1是17台式高速冷冻离心机1是18超低温冰箱(-80℃)1是19恒温培养振荡器1否20物联网普通型虫情信息采集设备5否21树木年轮分析仪1否22生长锥4是23树干检测仪器配套卡尺1是24树木针测仪1是25人工气候箱7否26自动催芽机1否27电功能水发生器1否28冷冻干燥机1是29体视显微镜1是30火焰石墨炉原子吸收光谱仪1是31紫外可见分光光度计1是32电热板1否33数显恒温水浴锅2是34土壤紧实度仪1是35便携式土壤水分速测仪1是36土壤水分速测仪1是37土壤三参数速测仪1是38便携式植物水势压力室1否39探针式茎流计1否40大气负离子自动观测系统2否41真空干燥测试箱1否42台式电热恒温鼓风干燥箱1否
  • 广西壮族自治区市场监督管理局公开征求废止《蔬菜、水果中亚硝酸盐与硝酸盐测定方法》等486项地方标准意见
    各有关单位:根据《中华人民共和国标准化法》《地方标准管理办法》《市场监管总局办公厅关于规范地方标准制定和应用促进全国统一大市场建设的通知》(市监标创发〔2023〕108号)有关规定和要求,经专家评估并征求各行业主管部门意见,我局拟对《红麻亩产250公斤栽培技术规程》等486项地方标准(详见附件)作废止处理,现公开征求意见。若对废止项目有意见建议,请于2024年8月1日前书面(签署真实姓名或加盖单位公章、提供联系方式)反馈至广西壮族自治区市场监督管理局,联系人:朱俊荣,联系电话:0771-5303210,邮箱:gxjbzhc@163.com。附件:拟废止486项地方标准清单广西壮族自治区市场监督管理局 2024年7月24日(此件公开发布)附件拟废止486项地方标准清单序号标准号标准名称处理意见1DB45/T 03—1995红麻亩产250公斤栽培技术规程废止2DB45/T 04—1996旱地糖料甘蔗高产栽培技术规程废止3DB45/T 11—2017隆林山羊废止4DB45/T 23—2007牛人工授精技术操作规程废止5DB45/T 28—2000蔬菜、水果中亚硝酸盐与硝酸盐测定方法废止6DB45/T 29—2000蔬菜中有机氮农药残留量测定方法废止7DB45/T 30—2000蔬菜中有机氯农药残留量测定方法废止8DB45/T 31—2000蔬菜中有机磷农药残留量测定方法废止9DB45/T 40—2002西林水牛废止10DB45/T 42—2002合浦鹅废止11DB45/T 43—2002南丹瑶鸡废止12DB45/T 44—2002富钟水牛废止13DB45/T 45—2002马氏珠母贝亲贝和种苗废止14DB45/T 46—2002靖西大麻鸭废止15DB45/T 47—2002环江香猪废止16DB45/T 48—2002南丹黄牛废止17DB45/T 50—2002海水养殖贝类检疫规范废止18DB45/T 53—2002巴马香猪废止19DB45/T 58—2002多重聚合酶链反应(Multi-PCR)检测新城疫病毒、传染性支气管炎病毒、传染性喉气管炎病毒和鸡毒支原体的技术操作规程废止20DB45/T 59—2002反转录聚合酶链反应(RT-PCR)检测猪瘟病毒的技术操作规程废止21DB45/T 64—2003柑桔品种废止22DB45/T 69—2003沙田柚苗木分级废止23DB45/T 70—2003窨茶用茉莉花废止24DB45/T 73—2003窨茶用茉莉花生产技术规程废止25DB45/T 74—2003玉林大蒜废止26DB45/T 90—2014桑蚕种质量废止27DB45/T 91.1—2003南宁市农产品质量安全要求蔬菜废止28DB45/T 91.2—2005南宁市农产品质量安全要求水果废止29DB45/T 96—2003反转录聚合酶链反应(RT-PCR)检测猪繁殖与呼吸障碍综合症病毒(PRRSV)的技术操作规程废止30DB45/T 97—2003反转录聚合酶链反应(RT-PCR)检测禽呼肠孤病毒(ARV)的技术操作规程废止31DB45/T 98—2003反转录聚合酶链反应(RT-PCR)检测禽流感病毒(AIV)的技术操作规程废止32DB45/T 101—2003东兰乌鸡废止33DB45/T 102—2003都安山羊废止34DB45/T 105—2003文蛤养殖技术规范废止35DB45/T 106—2003禾花鲤废止36DB45/T 109—2003黄沙鳖废止37DB45/T 111—2003德保矮马废止38DB45/T 116—2003漂白化学湿竹浆废止39DB45/T 117—2003漂白化学竹浆板废止40DB45/T 122—2004十字花科蔬菜软腐病预测预报调查规范废止41DB45/T 125—2004甜菜夜蛾预测预报调查规范废止42DB45/T 133—2004杂交水稻一代种子生产技术规程废止43DB45/T 134—2004籼型“三系”杂交水稻不育系繁殖技术规程废止44DB45/T 162—2004夏橙品种废止45DB45/T 179—2004陆川猪废止46DB45/T 180—2010霞烟鸡废止47DB45/T 183—2004聚合酶链反应检测猪细小病毒的技术操作规程废止48DB45/T 184—2004聚合酶链反应检测鸡毒支原体的技术操作规程废止49DB45/T 188—2004桂中花猪废止50DB45/T 192—2004合成立方氧化锆废止51DB45/T 193—2004合成红宝石废止52DB45/T 194—2004合成蓝宝石废止53DB45/T 195—2004合成尖晶石废止54DB45/T 208—2017原产地域产品云香精废止55DB45/T 213—2017原产地域产品横县茉莉花废止56DB45/T 217—2005阳离子木薯淀粉废止57DB45/T 222—2005撑绿杂交竹种苗分级废止58DB45/T 231—2005斑点叉尾鮰养殖技术规范废止59DB45/T 236—2005聚合酶链反应检测对虾白斑综合征病毒的技术操作规程废止60DB45/T 239—2005东山猪品种标准废止61DB45/T 240—2005造纸竹片废止62DB45/T 241—2005广西三黄鸡废止63DB45/T 242—2005里当鸡废止64DB45/T 243—2005柳州麻花鸡废止65DB45/T 248—2005聚合酶链反应检测猪接触传染性胸膜肺炎放线杆菌的技术操作规程废止66DB45/T 249—2005聚合酶链反应检测鸡传染性贫血病毒的技术操作规程废止67DB45/T 264—2005百合废止68DB45/T 266—2005香葱废止69DB45/T 267—2005西洋菜废止70DB45/T 268—2005包心肉芥菜废止71DB45/T 269—2005毛节瓜废止72DB45/T 280—2005芫荽废止73DB45/T 286—2005青梅废止74DB45/T 300—2005慈菇废止75DB45/T 301—2005三华李废止76DB45/T 310—2005夏阳白菜废止77DB45/T 311—2005莴苣笋废止78DB45/T 314—2005黑皮冬瓜废止79DB45/T 326—2006灵山香荔废止80DB45/T 327—2006田阳香芒废止81DB45/T 331—2006南美白对虾苗种废止82DB45/T 341—2006右江鹅废止83DB45/T 342—2006东兰鸭废止84DB45/T 343—2006隆林黄牛废止85DB45/T 344—2006涠洲黄牛废止86DB45/T 348—2017反转录聚合酶链反应(RT-PCR)检测家畜口蹄疫病毒(FMDV)的技术操作规程废止87DB45/T 349—2017反转录聚合酶链反应(RT-PCR)检测禽脑脊髓炎病毒(AEV)的技术操作规程废止88DB45/T 350—2006鸡病毒性肿瘤病PCR快速鉴别诊断技术的操作规程废止89DB45/T 357—2006苦脉菜废止90DB45/T 362—2006无籽西瓜种子质量标准废止91DB45/T 451—2007近江牡蛎苗种废止92DB45/T 452—2007岩鯪(唇鯪)废止93DB45/T 453—2007锯缘青蟹废止94DB45/T 461—2007灵山香鸡废止95DB45/T 462—2007广西主要栽培牧草种子质量分级废止96DB45/T 465—2007聚合酶链反应检测牛分枝杆菌的技术操作规程废止97DB45/T 466—2007聚合酶链反应检测猪圆环病毒Ⅱ型的技术操作规程废止98DB45/T 467—2007鸡传染性法氏囊病病毒RT-PCR快速鉴别诊断技术规范废止99DB45/T 468—2007对虾白斑病毒和桃拉病毒二重PCR检测技术操作规程废止100DB45/T 480—2008香蕉组培苗质量标准废止101DB45/T 481—2008罗汉果组培苗质量标准废止102DB45/T 504—2008柑橘黄龙病PCR检测方法废止103DB45/T 505—2008甘蔗螟虫综合防治技术规程废止104DB45/T 512—2008芒果苷废止105DB45/T 513—2008工业提取用芒果叶废止106DB45/T 514—2008锯缘青蟹苗种废止107DB45/T 515—2008罗氏沼虾苗种废止108DB45/T 529—2008猪人工授精技术操作规程废止109DB45/T 530—2008鸡传染性鼻炎副鸡嗜血杆菌PCR检测技术规程废止110DB45/T 531—2008鸡传染性喉气管炎PCR快速检测技术规程废止111DB45/T 537—2008广金钱草种子检验规程废止112DB45/T 540—2008蔓性千斤拔种子质量要求废止113DB45/T 541—2008黄花蒿种子质量要求废止114DB45/T 542—2008广州相思子种子质量要求废止115DB45/T 543—2008毛相思子种子质量要求废止116DB45/T 546—2008实验动物小型猪废止117DB45/T 547—2008龙血素B废止118DB45/T 548—2008龙血素B标准品废止119DB45/T 549—2008食品添加剂 磷酸中钠的测定废止120DB45/T 579—2009隔热混凝土小型空心砌块废止121DB45/T 595—2009黄沙鳖苗种废止122DB45/T 596—2009倒刺鲃鱼苗鱼种废止123DB45/T 598—2009水牛冷冻精液废止124DB45/T 602—2009凌云乌鸡废止125DB45/T 603—2009良凤花鸡废止126DB45/T 605—2009巴马小型猪内源性反转录病毒检测技术规程废止127DB45/T 606—2009鸭肝炎病毒PCR快速检测技术规程废止128DB45/T 607—2009饲料中脱氧雪腐镰刀菌烯醇(呕吐毒素)的测定 &ensp 竞争酶联免疫分析法废止129DB45/T 608—2009饲料添加剂富马酸亚铁的测定还原法废止130DB45/T 610—2009工业锅炉能效限值废止131DB45/T 615—2009竹、木、草编织工艺品质量安全要求废止132DB45/T 616—2009北流荔枝废止133DB45/T 628.1—2009主要造林树种苗木质量分级第1部分:裸根苗废止134DB45/T 628.2—2009主要造林树种苗木质量分级第2部分:容器苗废止135DB45/T 630—2009罗汉果组培苗废止136DB45/T 633—2009园林植物铁冬青苗木的出圃质量要求废止137DB45/T 637—2009青蒿中青蒿素含量的测定高效液相色谱法废止138DB45/T 638—2009八角茴香中莽草酸含量的测定高效液相色谱法废止139DB45/T 656—2010蛋黄果嫁接苗废止140DB45/T 658—2010池塘及网箱养殖用青鱼鱼种废止141DB45/T 663—2010墨底鳖苗种废止142DB45/T 667—2010光倒刺鲃苗种废止143DB45/T 668—2010猪伪狂犬病病毒PCR检测技术规程废止144DB45/T 669—2010鸭传染性浆膜炎与大肠杆菌病的快速鉴别诊断技术规程废止145DB45/T 670—2010聚合酶链反应检测禽I型腺病毒的技术操作规程废止146DB45/T 672—2010隆林猪废止147DB45/T 673—2010天峨六画山鸡废止148DB45/T 674—2010聚合酶链反应检测副猪嗜血杆菌技术规程废止149DB45/T 697—2010浸提桐油废止150DB45/T 698—2010肉桂产品质量等级废止151DB45/T 700—2010实木地板铺装规范废止152DB45/T 707—2010天门冬种苗质量要求废止153DB45/T 709—2010黄藤种苗质量要求废止154DB45/T 712—2010肉桂苗木质量要求废止155DB45/T 714—2010山豆根中苦参碱的测定高效液相色谱法废止156DB45/T 718—2010钩藤中钩藤碱含量的测定高效液相色谱法废止157DB45/T 719—2010植物类中药材铬、锑、锡含量的测定电感耦合等离子体发射光谱(ICP-AES)法废止158DB45/T 748—2011山羊痘病毒、羊传染性脓疮病毒的检测二重聚合酶链反应法废止159DB45/T 749—2011猪脑心肌炎病毒(EMCV)的检测 &ensp 反转录聚合酶链反应(RT-PCR)法废止160DB45/T 750—2011融水香鸭废止161DB45/T 752—2011尿液中盐酸克仑特罗、菜克多巴胺、沙丁胺醇的测定胶体金免疫层析法废止162DB45/T 753—2011牛病毒性腹泻病毒的检测反转录聚合酶链反应法(RT-PCR)废止163DB45/T 754—2011广西拟水龟废止164DB45/T 771—2011莽草酸废止165DB45/T 774—2011鸡血藤种苗质量要求废止166DB45/T 775—2011何首乌扦插苗质量要求废止167DB45/T 780—2011鸡血藤中芒柄花素含量的测定高效液相色谱法废止168DB45/T 781—2011鸡骨草中相思子碱含量的测定高效液相色谱法废止169DB45/T 782—2011铁包金药材中槲皮素含量的测定高效液相色谱法废止170DB45/T 783—2011毛果鱼藤中3-phenylcoumarin robustic acid含量的测定 &ensp 高效液相色谱法废止171DB45/T 794—2011燃煤洁净节煤剂通用技术要求废止172DB45/T 795—2011洁净型燃煤通用技术要求废止173DB45/T 796—2011漓江排筏技术条件废止174DB45/T 797—2011遇龙河竹筏技术条件废止175DB45/T 809—2012工夫红茶发酵适度的确定方法废止176DB45/T 812—2012非食用海水珍珠质层粉废止177DB45/T 825—2012“红姑娘”红薯废止178DB45/T 826—2012“红姑娘”红薯生产技术规程废止179DB45/T 835—2012长叶烯废止180DB45/T 836—2012高分子乳化改性松香施胶剂废止181DB45/T 837—2012水白氢化松香废止182DB45/T 855—201298号车用汽油(Ⅳ)废止183DB45/T 865—2012海水药用无核珍珠废止184DB45/T 866—2012植物类中药材中铝的测定电感耦合等离子体质谱(ICP-MS)法废止185DB45/T 867—2012植物类中药材中总砷的测定原子荧光光谱法废止186DB45/T 868—2012穿山甲甲片的鉴别高效液相色谱指纹图谱法废止187DB45/T 869—2012蛤蚧的鉴别高效液相色谱指纹图谱法废止188DB45/T 870—2012红毛鸡的鉴别高效液相色谱指纹图谱法废止189DB45/T 873—2012千层塔种苗质量要求废止190DB45/T 874—2012汉桃树种子质量要求废止191DB45/T 882—2012茄果类蔬菜穴盘育苗技术规程废止192DB45/T 885—2012芳樟叶(精)油中芳樟醇、樟脑含量的测定毛细管柱气相色谱法废止193DB45/T 887—2012饲料中粪链球菌的检验废止194DB45/T 888—2012无性系芳樟叶(精)油,芳樟醇型废止195DB45/T 889—2012互叶白千层(精)油,1,8-桉叶素型废止196DB45/T 897—2013樟叶(精)油,芳樟醇型废止197DB45/T 915—2013龙胜凤鸡废止198DB45/T 918—2013牛隐孢子虫的检测多重聚合酶链反应法废止199DB45/T 919—2013猪流感病毒检测套式反转录聚合酶链反应法废止200DB45/T 920—2013猪乙型脑炎病毒检测套式反转录聚合酶链反应法废止201DB45/T 921—2013猪繁殖与呼吸综合征病毒和猪瘟病毒的检测多重反转录聚合酶链反应法废止202DB45/T 931—2013葡萄中白藜芦醇的测定液相色谱法废止203DB45/T 932—2013水产品中天然牛磺酸与人工合成牛磺酸的鉴别稳定同位素质谱法废止204DB45/T 939—2013土壤、肥料、饲料、毛发中汞含量的测定直接测汞仪法废止205DB45/T 942—2013罗氏沼虾诺达病毒检测RT-PCR法废止206DB45/T 943—2013水质有机锡的测定气相色谱—质谱法废止207DB45/T 944—2013苏氏圆腹鱼芒苗种废止208DB45/T 946—2013广西拟水龟苗种废止209DB45/T 953—2013牛耳枫苗木质量要求废止210DB45/T 985—2014柑橘衰退病毒RT-PCR检测技术规程废止211DB45/T 986—2014柑橘溃疡病菌PCR检测技术规程废止212DB45/T 998—2014胡子鲶废止213DB45/T 999—2014黄颡鱼苗种废止214DB45/T 1003—2014德保猪废止215DB45/T 1005—2014畜禽血中铅、镉测定石墨炉原子吸收分光光谱法废止216DB45/T 1006—2014牛轮状病毒的检测半巢式反转录聚合酶链反应(semi-nested RT-PCR)法废止217DB45/T 1007—2014猪传染性胃肠炎病毒的检测RT-PCR法废止218DB45/T 1008—2014犬狂犬病抗体的检测酶联免疫吸附法废止219DB45/T 1009—2014家畜戊型肝炎病毒检测巢式反转录聚合酶链反应法废止220DB45/T 1010—2014美洲型及欧洲型猪繁殖与呼吸综合征病毒的检测多重荧光定量反转录聚合酶链反应法废止221DB45/T 1011—2014鸡新城疫病毒及鸡传染性支气管炎病毒的检测二重荧光定量反转录聚合酶链反应法废止222DB45/T 1012—2014猪流行性腹泻病毒(PEDV)的检测 &ensp RT-PCR法废止223DB45/T 1013—2014尿液中苯乙醇胺A的测定 &ensp 液相色谱-质谱/质谱法废止224DB45/T 1014—2014致病性嗜水气单胞菌检测PCR法废止225DB45/T 1015—2014水质硫丹的测定气相色谱法废止226DB45/T 1028—2014佛手苗木质量要求废止227DB45/T 1035—2014山豆根组培苗质量要求废止228DB45/T 1037—2014穿心莲种子质量要求废止229DB45/T 1041—2014苦玄参种子检验规程废止230DB45/T 1058—2014大米中总砷、总汞含量的测定微波消解—原子荧光光谱分析法废止231DB45/T 1059—2014大米中铅、镉、铬含量的测定微波消解—石墨炉原子吸收分光光度法废止232DB45/T 1063—2014巨尾桉(精)油废止233DB45/T 1064—2014岗松(精)油废止234DB45/T 1066—2014贺州玉废止235DB45/T 1068—2014桂林毛尖茶加工技术规程废止236DB45/T 1071—2014蒎烷废止237DB45/T 1072—2014松香三乙二醇酯废止238DB45/T 1073—2014松脂中杂质的检测废止239DB45/T 1074—2014水稻稻飞虱综合防治技术规范废止240DB45/T 1076—2014鸡血玉废止原产地域产品巴马腊香猪废止486DB45/32.6-2000无公害农产品生产食用植物油废止
  • 莆田市湄洲岛市政园林工程有限公司140.00万元采购切割机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购最高限价的询价公告 福建省-莆田市-秀屿区 状态:公告 更新时间: 2022-12-29 招标文件: 附件1 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购最高限价的询价公告 2022年12月29日 15:21 公告概要: 公告信息: 采购项目名称 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购 品目 货物/其他货物/其他不另分类的物品 采购单位 莆田市湄洲岛市政园林工程有限公司 行政区域 莆田市 公告时间 2022年12月29日 15:21 开标时间 2023年01月06日 17:00 预算金额 ¥140.000000万元(人民币) 联系人及联系方式: 项目联系人 小林 项目联系电话 0594-2737555 采购单位 莆田市湄洲岛市政园林工程有限公司 采购单位地址 莆田市秀屿区湄洲镇环岛东路南街1568号 采购单位联系方式 林小姐 13799018701 代理机构名称 福建中瑞吉项目管理有限公司 代理机构地址 莆田市荔城区艾力艾国际中心3号楼 代理机构联系方式 小林0594-2737555 附件: 附件1 莆田市湄洲岛海洋生态保护修复项目-造林绿化养护物资及辅材采购最高限价询价公告.doc 福建中瑞吉项目管理有限公司受莆田市湄洲岛市政园林工程有限公司 委托,根据《中华人民共和国政府采购法》等有关规定,现对莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购进行其他招标,欢迎合格的供应商前来投标。 项目名称:莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购 项目编号:ZRJ[2022]-采招039号 项目联系方式: 项目联系人:小林 项目联系电话:0594-2737555 采购单位联系方式: 采购单位:莆田市湄洲岛市政园林工程有限公司 采购单位地址:莆田市秀屿区湄洲镇环岛东路南街1568号 采购单位联系方式:林小姐 13799018701 代理机构联系方式: 代理机构:福建中瑞吉项目管理有限公司 代理机构联系人:小林0594-2737555 代理机构地址: 莆田市荔城区艾力艾国际中心3号楼 一、采购项目内容 关于莆田市湄洲岛海洋生态保护修复项目造林绿化养护物资及辅材采购最高限价的询价公告 福建中瑞吉项目管理有限公司受莆田市湄洲岛市政园林工程有限公司委托并经上级主管部门批准,对莆田市湄洲岛海洋生态保护修复项目-造林绿化养护物资及辅材采购的下述货物(服务)进行国内公开询价,现欢迎国内合格的投标人提交报价。 一、时间安排及报价方式: 1、发布时间:2022年12月29日至2023年01月06日(节假日及公休日除外)上午08:00-12:00,下午15:00-17:00(北京时间,以下同); 2、报价递交时间:2022年12月29日至2023年01月06日17:00之前,报价人需将加盖公章的报价文件扫描件及合格有效的法人营业执照(副本)复印件扫描件一并通过电子邮件的形式发送至5093148@163.com邮箱,逾期送达概不接受。 二、对供应商要求: 1、报价人须提供报价人合格有效的法人营业执照(副本)的复印件并加盖公章。 2、近两年内未因不良行为被相关行政部门通报或有不良行为记录的。 3、报价函需加盖各报价单位的公章。 4、不接受联合体报价。 5、本次报价仅作为最高限价设定的参考报价,不作为评标的依据。 三、潜在供应商递交报价须知: 1、电子文档(WORD格式+PDF格式):投递人根据报价函,按报价函清单填写报价,报价文件纸质版须加盖投标人公章。 2、投标人的报价应包含单价和总价。响应总价应为货物送达采购人指定地点(交货地点为莆田市湄洲镇)、经采购人验收合格并交付使用及售后服务等所有可能发生的费用,包括货物制造、运输、采购保管、安装调试、国家法定送检的检验检测报告费用、税收、厂家同期相关的无偿(有价)的促销、售后服务等费用。本项目为养护物资及辅材报价,不包括卸车费用。提交报价保留小数点后两位。 湄洲岛进岛车辆(货物)渡运价格标准如下表 车辆类别 吨(座)位 运价(元) 说明 货车 T<18吨 20元/吨 货车按载重量往返一次性收取 18吨≦T<26吨 23元/吨 26吨≦T<36吨 26元/吨 36吨≦T<42吨 28元/吨 42吨≦T<50吨 30元/吨 3、报价人在报价单上必须填写完整且有效的报价单位联系人、电话和公司注册地详细地址,报价人对所递交的报价文件以及与报价有关的证明和资料的真实性负责,若以弄虚作假给询价人造成损失的,依法承担赔偿责任。 4、询价单位不会公布任何报价内容和询价结果,报价人应无条件认可本次询价结果,询价单位不承担可能发生的一切法律责任、费用和后果。报价人自行考虑是否参加本次报价。 5、如发现恶意报价者,询价人可上报政府相关部门列入黑名单,限制其在本地区经销。 6、本次报价过程的所有费用自理。 7、凡两家或两家以上供应商参加同一项目的材料报价,有如下情况的,一经发现,将视同串标处理: a)为同一法定代表人的; b)为同一股东控股的; c)其中一家公司为其他公司最大股东的。 四、莆田市湄洲岛海洋生态保护修复项目-造林绿化养护物资及辅材采购的规格型号及数量: 1、质量要求:符合国家标准及行业标准。 2、规格及数量要求详见报价函。 五、专利说明 报价人提供的货物必须具有自主知识产权,获得合同的报价人应保证用户不受到第三方关于侵犯专利权的指控,任何第三方如果提出指控,获得合同的的报价人应与第三方交涉,承担可能发生的一切法律责任、费用和后果,并赔偿用户的损失。 六、材料文件的澄清及修改 公告及文件如有澄清和修改,代理单位将在莆田市行政服务中心网、中国政府采购网发布本次报价项目的相关信息,请各报价单位及时关注,报价单位若自己没有在以上网站上查询相关信息而影响报价的,报价单位自行承担相关责任。 七、对本次招标提出询问,请按以下方式联系: 询价单位:莆田市湄洲岛市政园林工程有限公司 地址: 莆田市秀屿区湄洲镇环岛东路南街1568号 联系人姓名:林小姐 联系电话: 13799018701 招标代理:福建中瑞吉项目管理有限公司 地址:莆田市荔城区艾力艾国际中心3号楼 联系人:小林 联系方法:0594-2737555 莆田市湄洲岛市政园林工程有限公司 福建中瑞吉项目管理有限公司 2022年12月29日 2022年12月29日 附: 报价函格式 单位: 元(人民币) 序号 名称 产品规格 单位 数量 综合单价 小计 备注 1 啶虫脒*毒死蜱 有效成分 40%,200g/瓶 瓶 25 2 螺虫乙酯 有效成分 22%,10ml/包 包 50 3 烯啶.吡蚜酮 有效成分 75%,6g/包 包 250 4 噻虫嗪*高效氯氟氰菊酯 有效成分 20%,50g/瓶 瓶 700 5 阿维菌素*螺螨酯 有效成分 20%,100g/瓶 瓶 70 6 吡虫啉*杀虫单 有效成分 50%,40g*4小袋/包 包 500 7 毒死蜱*辛硫磷 有效成分 40%,200ml/瓶 瓶 10008 甲氨基阿维菌素 有效成分 5%,100g/瓶瓶 500 9 聚硅氧类化合物+噻虫嗪*高效氯氟氰菊酯 有效成分 95%,聚硅氧类化合物+12%噻虫嗪*高效氯氟氰菊酯,500ml+500g/套 套装 10 10 吡虫啉 有效成分 10%,12g/袋 袋 250 11 啶虫脒 有效成分 45%,10g/袋 袋 100 12 丙溴﹒辛硫磷 有效成分 45%,200ml/瓶 瓶 50 13 四聚乙醛 有效成分 6%,500g/袋 袋 300 14 吡丙醚.噻嗪酮 有效成分 25%,200g/瓶 瓶 60 15 苯丁﹒哒螨灵 有效成分 10%,200ml/瓶 瓶 25 16 甲基硫菌灵 有效成分 50%,200g/袋 袋 50 17 三唑酮 有效成分 20%,200ml/瓶 瓶 40 18 百菌清 有效成分 40%,1kg/瓶 瓶 25 19 代森锰锌 有效成分 80%,200g/袋 袋 50 20 噁霉灵.霜霉威盐 有效成分 30%,200ml/瓶 瓶 50 21 多菌灵 有效成分 50%,200g/袋 袋 50 22 精甲霜灵*噁霉灵 有效成分 30%,200ml/瓶 瓶 80 23 戊唑醇*咪鲜胺 有效成分 45%,100g/瓶 瓶 200 24 苯醚甲环唑*丙环唑 有效成分 30%,100g/瓶 瓶 100 25 辛菌胺醋酸盐 有效成分 1.2%,1L/瓶 瓶 25 26 二氯异氰尿酸钠 有效成分 20%,500g/包 包 25 27 啶嘧磺隆 有效成分 25%,3g/包 包 1000 28 三氯吡氧乙酸丁氧基乙酯 有效成分 65%,100ml/瓶 瓶 400 29 草甘.氯氟吡+唑草.苯磺隆 有效成分 70%,草甘.氯氟吡 + 24%唑草.苯磺隆, 10g/套 套装 25 30 草铵膦 有效成分 20%,1L/瓶 瓶 100 31 吲哚丁酸*萘乙酸 有效成分 5%,200ml/瓶 瓶 25 32 乙氧氟草醚 有效成分 22%,100ml/瓶 瓶 200 33 氨基酸水溶性肥料 有效成分 10%,200g/瓶 瓶 250 34 过磷酸钙 P2O5 12%,水溶性P2O5 7%,硫 8%,50kg*20包/吨 吨 2 35 钙镁磷 有效成分 12%,25kg*40包/吨 吨 236 复合微生物肥料 有效活菌数 0.2亿/g,有机质 20%,20kg*50包/吨 吨 3 37 有机肥(核心产品) 有机质 45%,40kg/包*25包/吨 吨 130 38 复合肥 氮磷钾15:15:15,50kg*20包/吨 吨 6 39 尿素 含氮 45%,50kg*20包/吨 吨 8 40 腐殖酸水溶性肥料 腐殖酸 30g/L,5L/桶 桶 100 41 石硫合剂 有效成分 29%,1L/瓶 瓶 60 42 树干涂白剂 25kg*40桶/吨 吨58 43 环烷烃*链烷烃 有效成分 90%,1L/瓶 瓶 60 44 树干杀虫剂 96%聚硅氧烷类化合物+45%丙溴、辛硫磷 套 5 45 乙嘧酚磺酸 有效成分 25%,100ml/瓶 瓶 25 46 精甲霜灵*噁霉灵 有效成分 1.2%,10kg/桶 桶 25 47 苄氨基嘌呤 有效成分 2%,25ml/瓶 瓶 50 48 高效氯氟氰菊酯 有效成分 5%,200ml/瓶 瓶 25 49 氨氟乐灵 有效成分 65%,25g/袋袋 50 50 甲嘧磺隆 有效成分 75%,5g/袋 袋 750 51 噻虫嗪*高氯氟 有效成分 12%,200g/瓶 瓶 25 52 大量元素水溶肥 有效成分N+P+K 500g/L,200ml/瓶 瓶 10 53 大量元素水溶肥 有效成分N+P2O5+K2O 60.0%,200g/包*2包 盒 50 54 含氨基酸微量元素肥料 氨基酸 100g/L,Fe+Zn+B 20g/L,500ml/瓶 瓶 10 55 白僵菌 300亿孢子/g球孢白僵菌可湿性粉剂,400g/袋 kg 50 56 噻虫啉 有效成分 2%,微囊悬浮剂,1kg/瓶 瓶 100 57 阿维菌素 有效成分 5%,20ml/瓶 瓶 1000 58 绿篱机 功率0.6kw 双刃 台 3 59 高枝绿篱机 排量:25cc,刀片长度60cm,机器总长: 192.5cm 台 3 60 割草机 功率1.47kw 排量40.1cc 台 10 61 绿篱剪(大剪刀) 刃长10寸,SK5钢,直刀 支 150 62 修枝剪(小剪刀) 8寸 SK5钢 支 150 63 手锯(核心产品) 刃长270mm 把 300 64 背负式风机 570BTS 排量65.6cc,功率2.9kw 台 3 65 油锯 型号445,排量45.7cm3,16寸导板链条 台 4 66 伸缩锂电池高空锯 36V BLi300锂电池,一电一充 台 3 67 锂电池单手锯 顶持式 36V BLi300锂电池 一电一充 台 3 68 喷药车 YN -160,本田GX160动力同等或优于该型号 辆 3 69 锂电池 BLi300 36V 9.4 AH 个 5 70 割草机一字刀片 片 400 71 链条 16寸油锯链条 325 058 /1.5mm 条 60 72 链条 14寸油锯链条 3/8 LP 043 /1.1mm 条 60 73 链条 10寸油锯链条 1/4 050 /1.3mm 条 20 74 白灰粉 25kg/包*40包/吨 吨 3 75 诱捕器 防治红棕象甲虫害,六层漏斗诱捕器,含诱心 个 25 76 粘虫诱虫板双面特粘农用粘虫板 20cm 15cm,黄板 片 10000 77 粘虫诱虫板双面特粘农用粘虫板 20cm 15cm,蓝板 片 1000 78 1.2寸水管 PVC材质,1捆40m 捆 20 79 6分软管 PVC材质,1捆50m 捆 60 80 安全交通锥 高62cm,底座34cm*34cm 个 100 81 遮阳网 聚乙烯材质,绿色,8针,2m宽,一捆100m 捆 25 82 尼龙网 聚乙烯材质,2200目,2m宽,一捆100m 捆 25 83 铁钉 4寸 斤 150 84 铁钉 2.5寸 斤 150 85 铁线 16号 斤 300 86 警示带 PE材料,宽6㎝,一卷60m 卷 200 87 消防管 铝接头,口径65mm,长度25m 条 30 88 消防管接头 口径65mm 个 20 89 安全帽 高强度ABS材质,透气款 个 50 90 果实套袋 纸质,防水,20㎝*22㎝ 个 5000 91 模板 胶合板,180㎝*90㎝,厚度1.8cm 个 50 92 施工警示牌 塑料,A字牌,上宽21㎝,下宽30㎝,高度60㎝ 个 50 93 斗车 中号 辆 6 94 太阳能杀虫灯 50W太阳能板,24AH锂电池,3M总高 个 5 95 喷雾器 20L锂电池电动,3WBD-20 部 10 96 2T机油 1L HP级 全合成 瓶 200 97 4T机油 650ML,SJ级 10W-30 瓶 30098 打药警示牌 pvc材质,20*30㎝,厚度约2mm 块 200 99 工人服装(夏款) 反光服(含印字) 件 800 100 切割机 台式,GT20800w 台 2 101 阀门锁具 塑料,带锁头,直径9cm 个 300 102 阀门锁具 塑料,带锁头,直径14cm 个 300 103 竹竿 头部4-5㎝,尾部2-3㎝,高度 400㎝ 根 2000 104 无纺布(绿色) 3.2m*850m/卷,重量15g/m2 卷 5105 无纺布(绿色) 1.6m*800m/卷,重量15g/m2 卷 15 106 控根器 高度40cm*50m/卷,厚0.7mm 卷 100 107 控根器 高度30cm*50m/卷,厚0.7mm 卷 50 108 美植袋 D60cm 个 250 109 美植袋 D50cm 个 250 110 美植袋 D40cm 个 500 111 花盆 砖红色AB230 个 2500112 花盆 砖红色AB260 个 7000 113 底托盘 塑料托盘,砖红色,直径30cm 个 400 114 底托盘 塑料托盘,砖红色,直径35cm 个 300 115 金布 120cm*20m/捆 捆 40 116 营养杯 26cm*21cm 个 5000 117 营养杯 6.5cm*6.5cm*10000个/件 件 3 118 土工布(白色) 宽度200cm*100m(200g/㎡) 卷10 119 树干保温、保湿布 20m长*12cm宽/捆 捆 50 120 栅栏 天然棕,碳化木,40cm,板厚度1.3cm 米 600 121 杉木 4m,尾径8cm 条 2000 122 杉木 4m,尾径6cm 条 1500 123 语音驱鸟器 功率200W,配套12个喇叭 套 4 124 空压机 1000w24L 台 4 125 润滑脂 250c 800g 瓶30 126 黄油枪 400cc 把 12 127 塑夹套筒组套 28件6.3mm 套 20 128 除锈剂 450ml 瓶 80 129 毛刷 4寸 把 300 130 水管喷头 6分水管接头 个 100 131 手提式干粉灭火器 主含量:磷酸二氢铵75%,硫酸铵15%,驱动气体:氮气1.2MPa(20℃),使用温度范围:-20℃+55℃,水压试验压力2.1MPa,灭火等级:2A 55B C E 灭火剂充装量:4kg 瓶 40 132陶瓷花盆 宽口径,D28cm,H20cm,砖红色、白色,花盆样式花纹根据业主活动要求提供 个 50 133 陶瓷花盆 宽口径,D45cm,H45cm,砖红色,花盆样式花纹根据业主活动要求提供 个 50 134 陶瓷花盆 宽口径,D16cm,H16cm,白色,花盆样式花纹根据业主活动要求提供 个 50 135 农药防护服 防水防尘,透气连体,带帽檐 套 20 136 防护面罩 高清透明,全脸防护,防起雾 个 20 137 合计 报价单位(盖章): 详细地址(必填): 联系人(必填): 电话号码(必填): 日 期(必填): 二、开标时间:2023年01月06日 17:00 三、其它补充事宜 四、预算金额: 预算金额:140.0000000 万元(人民币) × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:切割机 开标时间:2023-01-06 17:00 预算金额:140.00万元采购单位:莆田市湄洲岛市政园林工程有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:福建中瑞吉项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购最高限价的询价公告 福建省-莆田市-秀屿区 状态:公告 更新时间: 2022-12-29 招标文件: 附件1 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购最高限价的询价公告 2022年12月29日 15:21 公告概要: 公告信息: 采购项目名称 莆田市湄洲岛海洋生态保护修复项目—造林绿化养护物资及辅材采购 品目 货物/其他货物/其他不另分类的物品 采购单位 莆田市湄洲岛市政园林工程有限公司 行政区域 莆田市 公告时间 2022年12月29日 15:21 开标时间 2023年01月06日 17:00 预算金额 ¥140.000000万元(人民币) 联系人及联系方式: 项目联系人 小林 项目联系电话 0594-2737555 采购单位background: #FBFDFE ' 4 噻虫嗪*高效氯氟氰菊酯 有效成分 20%,50g/瓶 瓶 700 5 阿维菌素*螺螨酯 有效成分 20%,100g/瓶 瓶 70 6 吡虫啉*杀虫单 有效成分 50%,40g*4小袋/包 包 500 7 毒死蜱*辛硫磷 有效成分 40%,200ml/瓶 瓶 1000 8 甲氨基阿维菌素 有效成分 5%,100g/瓶 瓶 500 9 聚硅氧类化合物+噻虫嗪*高效氯氟氰菊酯 有效成分 95%,聚硅氧类化合物+12%噻虫嗪*高效氯氟氰菊酯,500ml+500g/套 套装 10 10 吡虫啉 有效成分 10%,12g/袋 袋 2506分软管 PVC材质,1捆50m 捆 60 80 安全交通锥 高62cm,底座34cm*34cm 个 100 81 遮阳网 聚乙烯材质,绿色,8针,2m宽,一捆100m 捆 25 82 尼龙网 聚乙烯材质,2200目,2m宽,一捆100m 捆 25 83 铁钉 4寸 斤 150 84 铁钉 2.5寸 斤 150 85 铁线 16号 斤 300 86
  • 北京市房山区园林绿化局180.00万元采购VOC检测仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 北京市房山区2023年口袋公园建设测绘项目公开招标公告 北京市-房山区 状态:公告 更新时间: 2023-05-22 公告概要: 公告信息: 采购项目名称 北京市房山区2023年口袋公园建设测绘项目 品目 服务/专业技术服务/测绘服务 采购单位 北京市房山区园林绿化局 行政区域 房山区 公告时间 2023年05月22日 16:32 获取招标文件时间 2023年05月22日至2023年05月29日每日上午:9:00 至 11:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 北京市房山区长阳镇长于路甲3号2号楼2021室 开标时间 2023年06月13日 14:00 开标地点 北京市房山区长阳镇长于路甲3号2号楼2021室 预算金额 ¥180.000000万元(人民币) 联系人及联系方式: 项目联系人 刘晓平、马慧、黄嘉一 项目联系电话 010-53352080 采购单位 北京市房山区园林绿化局 采购单位地址 北京市房山区良乡苏庄东街7号 采购单位联系方式 李工 010- 69353150 代理机构名称 北京宏毅正通工程管理有限公司 代理机构地址 北京市房山区长阳镇长于路甲3号2号楼2021室 代理机构联系方式 刘晓平、马慧、黄嘉一 010-53352080 项目概况 北京市房山区2023年口袋公园建设测绘项目 招标项目的潜在投标人应在北京市房山区长阳镇长于路甲3号2号楼2021室获取招标文件,并于2023年06月13日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HYZT-2023-019 项目名称:北京市房山区2023年口袋公园建设测绘项目 预算金额:180.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 完成约60万平方米地形测绘工作 合同履行期限:合同签订后5日内完成测绘工作 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱、戒毒企业发展、促进残疾人就业等政府采购政策。3.本项目的特定资格要求:(1)投标人具有有效的《营业执照》,具有独立法人资格;(2)投标人经营状态:近三年在经营活动中没有重大违法记录,没有处于被责令停业或投标资格被取消财产被接管、冻结的状态,无重大质量、安全事故;(3)在中国政府采购网(www.ccgp.gov.cn)被列为政府采购严重违法失信行为记录名单,在“信用中国”网站列入失信被执行人、重大税收违法案件当事人名单的投标人,不得参与本项目;(4)投标人具有缴纳税收和社会保障资金的良好记录及履行合同所必需的设备和专业技术能力;(5)本次招标要求投标人须具备测绘资质证书甲级(含)以上资质,并在人员、设备、资金等方面具有相应的施工能力。拟派项目负责人须具有测绘相关专业高级(含)以上职称。 三、获取招标文件 时间:2023年05月22日 至 2023年05月29日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市房山区长阳镇长于路甲3号2号楼2021室 方式:邮件购买登记(凡获取本项目招标文件的投标人,须将招标文件领取资料在本公告规定时间内以PDF格式发送至HYZT219@163.com,邮件内容需写明项目名称及标段、单位名称、通讯地址、法定授权委托人、联系方式、邮箱、开票信息。在收到招标代理机构的确认回复信息后,将招标文件费电汇或转账至采招标理机构指定账户,若没有收到招标代理机构的确认回复,需在公告规定时间内与招标代理机构电话确认。需提供以下材料:(1) 营业执照副本(复印件加盖单位公章);(2) 法定代表证明(加盖单位公章)或法定代表人授权委托书(加盖单位公章;法人需要签字或盖章)、法定代表人身份证(复印件加盖单位公章)及经办人身份证(复印件加盖单位公章);(3)资质证书(加盖单位公章);注:因提交虚假资料而产生的一切后果由企业自行承担;只有通过报名审查的投标人才能购买本项目的招标文件;) 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年06月13日 14点00分(北京时间) 开标时间:2023年06月13日 14点00分(北京时间) 地点:北京市房山区长阳镇长于路甲3号2号楼2021室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、选择该采购方式的原因:房财采购核[2023]182号 2、发布媒体:本次公告通过《中国招标投标公共服务平台》、《中国政府采购网》、北京市政府采购电子交易平台对外公开发布,未经招标人、招标代理机构授权的任何转载,招标人及招标代理机构不对其承担任何法律责任。 3、意向公开时间:2023年02月08日 4、根据工信部联企业(2011)300号文件,本项目所属行业划分为:其他未列明行业。 5、需要落实的政府采购政策:严格执行《中华人民共和国政府采购法》、《中华人民共和国招标投标法》及有关法规、制度规定,在政府采购活动中扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护。严格贯彻落实挥发性有机物(VOCs)治理工作,按照北京市房山区财政局 北京市房山区生态环境局 关于转发《北京市财政局 北京市生态环境局 关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(房财采购【2020】149号)执行。 6、投标保证金: 电汇、支票、汇票、转账支票或政府采购投标担保函,同时可接收电子保函。 7、质疑方式联系人和联系电话:供应商认为采购文件、采购过程和中标、成交结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,以书面形式向采购人提出质疑。 联系方式:马慧 010-53352080 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市房山区园林绿化局 地址:北京市房山区良乡苏庄东街7号 联系方式:李工 010- 69353150 2.采购代理机构信息 名 称:北京宏毅正通工程管理有限公司 地 址:北京市房山区长阳镇长于路甲3号2号楼2021室 联系方式:刘晓平、马慧、黄嘉一 010-53352080 3.项目联系方式 项目联系人:刘晓平、马慧、黄嘉一 电 话: 010-53352080 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:VOC检测仪 开标时间:2023-06-13 14:00 预算金额:180.00万元 采购单位:北京市房山区园林绿化局 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京宏毅正通工程管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京市房山区2023年口袋公园建设测绘项目公开招标公告 北京市-房山区 状态:公告 更新时间: 2023-05-22 公告概要: 公告信息: 采购项目名称北京市房山区2023年口袋公园建设测绘项目 品目 服务/专业技术服务/测绘服务 采购单位 北京市房山区园林绿化局 行政区域 房山区 公告时间 2023年05月22日 16:32 获取招标文件时间 2023年05月22日至2023年05月29日每日上午:9:00 至 11:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 北京市房山区长阳镇长于路甲3号2号楼2021室 开标时间 2023年06月13日 14:00 开标地点 北京市房山区长阳镇长于路甲3号2号楼2021室 预算金额 ¥180.000000万元(人民币) 联系人及联系方式: 项目联系人 刘晓平、马慧、黄嘉一 项目联系电话 010-53352080 采购单位 北京市房山区园林绿化局 采购单位地址 北京市房山区良乡苏庄东街7号 采购单位联系方式 李工 010- 69353150 代理机构名称 北京宏毅正通工程管理有限公司 代理机构地址 北京市房山区长阳镇长于路甲3号2号楼2021室 代理机构联系方式 刘晓平、马慧、黄嘉一 010-53352080项目概况 北京市房山区2023年口袋公园建设测绘项目 招标项目的潜在投标人应在北京市房山区长阳镇长于路甲3号2号楼2021室获取招标文件,并于2023年06月13日 14点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HYZT-2023-019 项目名称:北京市房山区2023年口袋公园建设测绘项目 预算金额:180.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 完成约60万平方米地形测绘工作 合同履行期限:合同签订后5日内完成测绘工作 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱、戒毒企业发展、促进残疾人就业等政府采购政策。 3.本项目的特定资格要求:(1)投标人具有有效的《营业执照》,具有独立法人资格;(2)投标人经营状态:近三年在经营活动中没有重大违法记录,没有处于被责令停业或投标资格被取消财产被接管、冻结的状态,无重大质量、安全事故;(3)在中国政府采购网(www.ccgp.gov.cn)被列为政府采购严重违法失信行为记录名单,在“信用中国”网站列入失信被执行人、重大税收违法案件当事人名单的投标人,不得参与本项目;(4)投标人具有缴纳税收和社会保障资金的良好记录及履行合同所必需的设备和专业技术能力;(5)本次招标要求投标人须具备测绘资质证书甲级(含)以上资质,并在人员、设备、资金等方面具有相应的施工能力。拟派项目负责人须具有测绘相关专业高级(含)以上职称。 三、获取招标文件 时间:2023年05月22日 至 2023年05月29日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:北京市房山区长阳镇长于路甲3号2号楼2021室 方式:邮件购买登记(凡获取本项目招标文件的投标人,须将招标文件领取资料在本公告规定时间内以PDF格式发送至HYZT219@163.com,邮件内容需写明项目名称及标段、单位名称、通讯地址、法定授权委托人、联系方式、邮箱、开票信息。在收到招标代理机构的确认回复信息后,将招标文件费电汇或转账至采招标理机构指定账户,若没有收到招标代理机构的确认回复,需在公告规定时间内与招标代理机构电话确认。需提供以下材料:(1) 营业执照副本(复印件加盖单位公章);(2) 法定代表证明(加盖单位公章)或法定代表人授权委托书(加盖单位公章;法人需要签字或盖章)、法定代表人身份证(复印件加盖单位公章)及经办人身份证(复印件加盖单位公章);(3)资质证书(加盖单位公章);注:因提交虚假资料而产生的一切后果由企业自行承担;只有通过报名审查的投标人才能购买本项目的招标文件;) 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年06月13日 14点00分(北京时间) 开标时间:2023年06月13日 14点00分(北京时间) 地点:北京市房山区长阳镇长于路甲3号2号楼2021室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、选择该采购方式的原因:房财采购核[2023]182号 2、发布媒体:本次公告通过《中国招标投标公共服务平台》、《中国政府采购网》、北京市政府采购电子交易平台对外公开发布,未经招标人、招标代理机构授权的任何转载,招标人及招标代理机构不对其承担任何法律责任。 3、意向公开时间:2023年02月08日 4、根据工信部联企业(2011)300号文件,本项目所属行业划分为:其他未列明行业。 5、需要落实的政府采购政策:严格执行《中华人民共和国政府采购法》、《中华人民共和国招标投标法》及有关法规、制度规定,在政府采购活动中扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护。严格贯彻落实挥发性有机物(VOCs)治理工作,按照北京市房山区财政局 北京市房山区生态环境局 关于转发《北京市财政局 北京市生态环境局 关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(房财采购【2020】149号)执行。 6、投标保证金: 电汇、支票、汇票、转账支票或政府采购投标担保函,同时可接收电子保函。 7、质疑方式联系人和联系电话:供应商认为采购文件、采购过程和中标、成交结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,以书面形式向采购人提出质疑。 联系方式:马慧 010-53352080 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市房山区园林绿化局 地址:北京市房山区良乡苏庄东街7号 联系方式:李工 010- 69353150 2.采购代理机构信息 名 称:北京宏毅正通工程管理有限公司 地 址:北京市房山区长阳镇长于路甲3号2号楼2021室 联系方式:刘晓平、马慧、黄嘉一 010-53352080 3.项目联系方式 项目联系人:刘晓平、马慧、黄嘉一 电 话: 010-53352080
  • 北京市园林学校116.37万元采购培养箱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [磋商]李海波花艺工作室货物类采购项目竞争性磋商公告 北京市-房山区 状态:公告 更新时间: 2023-06-14 [磋商]李海波花艺工作室货物类采购项目竞争性磋商公告 2023-06-14 项目概况 李海波花艺工作室货物类采购项目采购项目的潜在供应商应在北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼二层)获取采购文件,并于2023-06-29 09:30(北京时间)前提交响应文件。 一、项目基本情况 项目编号:11000023210200050356-XM003 项目名称:李海波花艺工作室货物类采购项目 采购方式:竞争性磋商 预算金额:116.374131 万元(人民币) 最高限价:116.374131 万元(人民币) 采购需求: 花卉种植所需的盆栽上盆机、解压缩搅拌机、光照培养箱、台式EC测量仪、花卉和花盆(详见磋商文件第四章采购需求) 合同履行期限:自合同签订之日起到2024年12月30日前完成最终验收 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目专门面向小微企业采购,本项目采购标的对应的中小企业划分标准所属行业:农、林、牧、渔业。 3.本项目的特定资格要求: / 三、获取采购文件 时间:2023-06-15至2023-06-21, ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼二层) 方式: 现场购买,购买竞争性磋商文件需携带:法定代表人授权委托书(原件)及被授权人身份证(原件及加盖公章的复印件)(适用于代理人获取竞争性磋商文件的);或法定代表人身份证明(原件)及身份证(原件及加盖公章的复印件)(适用于法定代表人获取竞争性磋商文件的)。 售价:¥212元 四、响应文件提交 截止时间:2023-06-29 09:30(北京时间) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼一层第一会议室) 五、开启 时间:2023-06-29 09:30(北京时间) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼一层第一会议室) 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策: 1) 节能产品强制采购; 2) 节能产品、环境标志产品优先采购; 3) 政府采购促进中小企业发展; 4) 政府采购支持监狱企业发展; 5) 政府采购促进残疾人就业; 6) 政府采购扶持贫困地区; 7) 政府采购信用担保; 8) 进口产品管理:进口产品规定:依据财政部关于印发《政府采购进口产品管理办法》的通知(财库〔2007〕119号)的规定,本项目不允许进口产品参加投标。 2. 本项目的采购年限为3年,预算金额为116.374131万元本招标文件中涉及2022年项目建设内容,统一和2023年项目内容共同在2023年完成建设。 3. 供应商必须购买竞争性磋商文件并登记备案,否则无资格参加本次磋商。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市园林学校 地址:北京市房山区良乡镇广阳西路9号 联系方式:乔程,61359882 2.采购代理机构信息 名 称:北京科技园拍卖招标有限公司 地 址:北京市海淀区万泉庄万柳光大西园6号楼0188室 联系方式:张娜,010-82575731-282 3.项目联系方式 项目联系人:张娜 电 话: 010-82575731-282 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:培养箱 开标时间:null 预算金额:116.37万元 采购单位:北京市园林学校 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京科技园拍卖招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [磋商]李海波花艺工作室货物类采购项目竞争性磋商公告 北京市-房山区 状态:公告 更新时间: 2023-06-14 [磋商]李海波花艺工作室货物类采购项目竞争性磋商公告 2023-06-14 项目概况 李海波花艺工作室货物类采购项目采购项目的潜在供应商应在北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼二层)获取采购文件,并于2023-06-29 09:30(北京时间)前提交响应文件。 一、项目基本情况 项目编号:11000023210200050356-XM003 项目名称:李海波花艺工作室货物类采购项目 采购方式:竞争性磋商 预算金额:116.374131 万元(人民币) 最高限价:116.374131 万元(人民币) 采购需求: 花卉种植所需的盆栽上盆机、解压缩搅拌机、光照培养箱、台式EC测量仪、花卉和花盆(详见磋商文件第四章采购需求) 合同履行期限:自合同签订之日起到2024年12月30日前完成最终验收 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目专门面向小微企业采购,本项目采购标的对应的中小企业划分标准所属行业:农、林、牧、渔业。 3.本项目的特定资格要求: / 三、获取采购文件 时间:2023-06-15至2023-06-21, ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼二层) 方式: 现场购买,购买竞争性磋商文件需携带:法定代表人授权委托书(原件)及被授权人身份证(原件及加盖公章的复印件)(适用于代理人获取竞争性磋商文件的);或法定代表人身份证明(原件)及身份证(原件及加盖公章的复印件)(适用于法定代表人获取竞争性磋商文件的)。 售价:¥212元 四、响应文件提交 截止时间:2023-06-29 09:30(北京时间) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼一层第一会议室) 五、开启 时间:2023-06-29 09:30(北京时间) 地点:北京科技园拍卖招标有限公司(北京市海淀区万泉庄万柳光大西园6号楼一层第一会议室) 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策: 1) 节能产品强制采购; 2) 节能产品、环境标志产品优先采购; 3) 政府采购促进中小企业发展; 4) 政府采购支持监狱企业发展; 5) 政府采购促进残疾人就业; 6) 政府采购扶持贫困地区; 7) 政府采购信用担保; 8) 进口产品管理:进口产品规定:依据财政部关于印发《政府采购进口产品管理办法》的通知(财库〔2007〕119号)的规定,本项目不允许进口产品参加投标。 2. 本项目的采购年限为3年,预算金额为116.374131万元本招标文件中涉及2022年项目建设内容,统一和2023年项目内容共同在2023年完成建设。 3. 供应商必须购买竞争性磋商文件并登记备案,否则无资格参加本次磋商。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市园林学校 地址:北京市房山区良乡镇广阳西路9号 联系方式:乔程,61359882 2.采购代理机构信息 名 称:北京科技园拍卖招标有限公司 地 址:北京市海淀区万泉庄万柳光大西园6号楼0188室 联系方式:张娜,010-82575731-2823.项目联系方式 项目联系人:张娜 电 话: 010-82575731-282
  • 植物研究所成立资源植物研发重点实验室
    12月29日上午,植物研究所举行资源植物研发重点实验室启动仪式。中科院副院长李家洋院士,中科院生命科学与生物技术局综合规划处处长刘杰、副处长许航,整合生物学处处长娄治平出席仪式,李家洋、植物所所长方精云院士、植物所匡廷云院士、洪德元院士为资源植物研发重点实验室揭牌。植物所领导班子成员及有关研究中心研究人员参加了启动仪式。   仪式由方精云主持,植物所副所长葛颂从资源植物研发的重要性及国内外现状,资源植物研发重点实验室成立的必要性,定位和研究内容,研究基础和条件,发展目标,组织结构和管理模式等五个方面介绍了资源植物研发重点实验室的基本情况。   资源植物研发重点实验室是植物所举全所之力,整合植物所在资源植物基础研究和应用开发方面的核心力量而成立的所级重点实验室,是植物所为适应国家中长期发展战略对生物资源的新需求,在深入分析中科院和植物所的定位和长远科技目标基础上,对植物所学科布局、科研组织方式做出的重要调整和尝试。   在学科定位上,资源植物研发重点实验室将面向国家重大战略需求,以我国特色与优势资源植物为研究对象,发挥植物所基础研究和多学科交叉的优势,系统开展资源植物的收集、评价、研究和开发利用 在资源植物生物学研究领域开展创新性的整合研究,解决我国在资源植物发掘与利用方面的重大科技难题和实际需求。主要研究内容包括:(1)资源植物的收集、评价和共享 (2)资源植物关键生物学特性的研究 (3)资源植物优良种质的发掘和利用。   资源植物研发重点实验室的目标是力争1-2年内在资源植物基础研究领域取得明显进展,形成具有国际竞争力的研发队伍,建成中国科学院重点实验室 争取在5-8年内,在资源植物基础研究和种质资源开发方面取得重大突破,引领我国资源植物的创新发展,显著提升我国资源植物相关产业的国际竞争力,推动生物产业升级,带动生物产业发展,为国家经济社会发展做出重要贡献,争取最终纳入国家重点实验室序列。   在组织与管理形式上,作为植物所科研组织形式改革的试点机构,资源植物研发重点实验室将采取新的管理模式,以研究群(Research Team)和研究组(Research Group)为基本运行单位,每个群下设若干研究组。实验室目前设有6个研究群: 1)资源植物收集与评价研究群 2)植物抗逆机理与应用研究群 3)环境和能源植物研发研究群 4)园艺植物研发研究群 5)种子特性及应用研究群 6)药用植物研发研究群。   在评估评价机制上,实验室将根据基础类、应用基础类、技术开发类研究任务的特点,建立合理的评价体系。在人才队伍方面,植物所引进了“千人计划”研究员桑涛任实验室主任,聘任华中农业大学校长邓秀新院士作为学术委员会主任,并即将就研究群负责人(Team Leader)面向国内外公开招聘。   刘杰受院生物局局长张知彬、副局长苏荣辉的委托致辞,对成立资源植物研发重点实验室表示祝贺,并希望植物所继续发挥基础性研究优势,加强交叉和综合性研究,特别是加强系统性研究。他说,资源植物研发重点实验室的成立,是研究所在经过深入研讨后做出的重要战略部署,资源植物研发重点实验室在强调基础性研究的同时,也强调科技成果产业化,整合分散的研究力量开展面向国家重大战略需求的集成性研究,符合中科院以科学发展观为指导所要着力实现的“9个转变”,符合院“十二五”发展规划,相信植物所在今后几年内一定会做出好成绩来,同时祝实验室早日进入院重点实验室序列。   李家洋对植物所在学科布局调整中的举措给予了充分肯定,指出植物所在资源植物研究方面有很好的研究基础,而成立资源植物研究重点实验室,可以将分散的研究力量整合起来,集中开展面向科学前沿和国家重大战略需求相结合的系统性研究,体现了植物所的特色和优势。李家洋特别强调,作为历史悠久的基础类研究所,植物所需要找准定位,进一步凝练学科目标,凝聚研究力量,在保留传统优势的同时,积极开拓新兴前沿领域。李家洋希望植物所紧密结合“十二五”规划和院“创新2020”规划,做好研究所的战略部署,统筹强弱学科、传统与新兴学科的发展,争取更多的支持,通过“特色”学科建设,推动“特色”研究所建设。   方精云对院领导的到来表示感谢,同时感谢院领导和生物局对植物所工作的肯定与支持,感谢以葛颂为组长的资源植物研发重点实验室筹备组前期的努力工作。他简要阐述了重点实验室成立的简要背景,为适应国家“十二五”规划的新需求,植物所将系统与进化、生态环境、发育与信号转导、光合作用和植物资源科学利用等5个研究领域作为重点领域进行部署。资源植物研发重点实验室的成立,是植物所面向国家对生物资源的重大战略需求而进行的重要举措,是植物所发展史上的重要事件。研究所将用更加精良的装备,更加宽松良好的环境,更加灵活有效的管理机制,更加合理的评估体系来建设和管理实验室,使其在资源植物的基础研究和应用开发方面取得双丰收,并争取把若干个项目推向产业化。   植物所将以资源植物研发重点实验室的成立为契机,进一步凝练和优化研究方向,整合研究和开发队伍,引进高端人才特别是领军人才,加快形成植物研究所的资源植物研发的特色和优势,推动植物研究所“十二五”规划和“创新2020”规划的目标的实现。
  • 华南植物园发现新的重金属超富集植物
    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。   中科院华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物,并成功找到一种Cd的超富集植物——少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中,少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。   这一研究结果近期发表在环境工程领域主流杂志Journal of Hazardous Materials (2011,189: 414–419)上。   土壤种子库—重金属富集植物初步筛选实验中的植物种类(重金属添加到土壤中65天后)。最高的植物为少花龙葵。盆中数字分别表示如下:1-CK, 2-Cd4, 3-Cd8, 4-Zn100, 5-Pb300, 6-Pb600, 7-Cu100, 8-Cu300。
  • 2017年国家自然科学基金面上项目(生命科学部)指南
    2017年度预计面上项目直接费用资助强度与2016年度持平,请申请人根据研究工作的实际需要,客观、实事求是地申请项目资金,对于研究基础尚薄弱、探索性较强的申请项目,建议申请较低强度的资金资助。对于工作基础较好,在以往的研究中有突出进展,确实需要高强度资助来进行深入研究的,可根据需要申请较高强度的资金资助。  生命科学部鼓励科学家长期围绕关键科学问题开展系统性、原创性的研究工作,对高质量完成科学基金项目的负责人所申请的项目,在同等条件下给予优先资助。此外,针对近年来科学基金申请及评审中发现的问题,生命科学部特别提醒申请人在撰写申请书时注意以下几点:  1在生命科学部面上项目指南的科学处及学科部分,具体说明了学科资助范围和不予受理的内容,请申请人认真阅读申请项目拟申报学科的项目指南。需要强调的是:在面上项目指南中学科提出的不予受理内容也适用于在该学科申请的其他各类项目。  2对于涉及伦理学的研究项目,要求申请人在申请书中提供所在单位或上级主管单位伦理委员会的纸质证明,并作为附件上传电子版。  3对于涉及高致病性病原生物操作的研究项目,必须严格遵守国家有关规定,在具备相应的生物安全条件下方可申请。  4申请书中申请人和主要参与者签字要求用工整字体书写,每位主要参与者的印刷体姓名要与手写签名使用同一种语言并要求一致,科学部不认可与印刷体不一致或无法辨认的 “个性签名”及分别使用不同语言的签名。  5项目资金填写以万元为单位,由于错误填写 (如小数点错位等)造成申请资金数额巨大的项目将不予受理。  6请严格按照指南申请须知的要求填写资助期限 申请书中所列研究计划要与资助期限一致,否则将不予受理。  7项目的申请代码1请填写至最末一级,凡是只填写到学科一级代码的申请一律不予受理。学科对申请代码填写有特殊要求的,请参照学科指南部分执行。  请申请人按照本 《指南》和申请书填写要求撰写申请书,凡未按要求撰写的申请书将不予受理。  生命科学部(生命科学一处)  生命科学一处的资助范围包括微生物学和植物学两个学科。  2017年度本学科将继续对 “微生物分类学”研究领域进行倾斜资助,尤其是我国研究薄弱或空白的类群,如子囊菌中的间座壳科、盘菌科、蕉孢壳科等以及担子菌中的口蘑科、杯伞族和疣孢革菌科等,以加强分类学青年人才的培养,鼓励使用基因组及大数据等现代技术结合传统方法完善分类系统。  鼓励微生物学家与数学、物理学、化学、信息学等领域的科学家开展合作研究 鼓励开展微生物单细胞、微生物共感染及混合感染、微生物表观遗传学、合成生物学及化学生物学的研究 鼓励针对病原微生物和海洋微生物的基础科学研究 鼓励针对我国重大环境问题,开展微生物学前沿性基础研究 鼓励利用微生物为模式材料对生命科学的基础及前沿问题开展系统深入的研究工作。  为了促进微生物研究新技术与新方法的发展,会聚多领域学术思想、研究方法和技术手段,突破传统学科壁垒,解决复杂科学问题,强化微生物学与数学、物理学、化学、信息和工程技术等相关学科的融合,2017年起生命科学部试点在微生物学科拟用500万元专门支持非生物学教育背景 (本科或研究生阶段专业为数学、物理学、化学、电子、信息、工程等)的申请人致力于微生物学新技术和新方法开展的交叉性研究,统一申请项目申报代码为C0104。  植物学学科  植物学学科关注植物自然变异与驯化机制、植物的环境适应机制、植物生命过程与功能模拟,鼓励申请人在植物系统生物学、入侵植物生物学、引种和植物种质保护、植物细胞的全能性、植物重要性状的分子基础、植物与共生/寄生生物的相互作用、植物对环境变化的响应等领域和方向开展多学科的综合研究。  2017年度本学科将继续加强对植物经典分类项目的倾斜支持,尤其加强对青年分类学人才的支持力度,鼓励申请人开展世界性的科属修订、关键地区和特殊生境植物资源的研究。  本学科积极鼓励植物学与数学、物理学、力学、化学、地学以及生态学、遗传学、基因组学、蛋白质组学、代谢组学、生物信息学、仿生学、计算机科学和社会科学等学科的交叉。鼓励申请人根据自己的优势和研究基础提出独特的科学问题。鼓励发展一些进化位置重要的新模式植物,探索特殊的生物学现象。为了充分发挥地域和资源优势、加强人才培养,鼓励边远地区和科技不发达地区的申请人与相关优势单位和群体开展合作研究。  生命科学二处  生命科学二处的资助范围包括生态学和林学两个学科。  生态学学科  从2016年度受理的项目申请来看,申请人在生态系统生态学、生理生态学、污染生态学、全球变化生态学、群落生态学、保护生物学与恢复生态学、微生物生态学、分子生态学等领域选题较多,在进化生态学、行为生态学、景观及区域生态学以及城市生态领域的选题较少 全球变化生态学领域研究问题和内容存在同质化现象。今后应加强进化生物学研究,鼓励微进化、物种形成与分化、谱系生态学、生态基因组学等领域的研究,鼓励行为生态学、城市生态学、景观及区域生态学、土壤生态学等领域的研究,继续鼓励地区科学基金中具有区域特色的生态学研究。  2017年度申请人应注意:申请项目要科学问题明确、内容重点突出,注重技术路线、研究方法和数据处理的科学性与可行性,注重学科交叉、新技术新方法在生态学研究中的应用,注重理论探索与国家需求相结合。  林学学科  林学基础研究有两个明显特点:一是要适应国家林业发展需求,研究选题和立项应注重在林业实践中寻求关键科学问题 二是研究对象为多年生木本植物,研究周期长,开展连续研究尤为重要。今后,本学科继续大力支持森林培育、森林健康和森林资源高效利用等核心领域的基础研究。鼓励在林下资源培育、林木种质资源分析与评价、林木优良性状遗传解析、常规育种理论基础、林木遗传转化及基因功能验证体系、林木生物信息学、重要造林树种生理生态、林木营养、森林土壤生物、气候变化条件下的森林培育基础、经济林产量形成的生理基础、重大森林灾害成灾规律与可持续控制、森林退化与恢复机制、森林大尺度多目标经营、森林信息化平台构建、非木质高值资源挖掘、园林植物引种安全、园林树木的环境功能与景观评价等研究倾斜支持。  2017年度申请人应注意:本学科不受理以动物为研究对象的有效活性成分药物学功能验证的申请项目。针对科学问题凝练研究题目,题目应当简练明确。  生命科学三处  生命科学三处的资助范围包括生物物理、生物化学与分子生物学、免疫学以及生物力学与组织工程学。  从近3年本学科接收和资助情况看,项目申请数较多并获得资助较多的领域包括:结构生物学、生物大分子相互作用等 结构生物学是本学科重要研究领域,其中蛋白质晶体学仍然是结构生物学最常用的研究方法,在蛋白质结构研究方面,蛋白质复合物、膜蛋白的结构与功能项目申请逐年增多 冷冻电镜的研究队伍和申请项目数量都有了比较快的发展 利用核磁共振波谱研究生物大分子结构的申请数量没有大的变化 在生物大分子相互作用方面,有不少研究集中在信号通路各个重要环节蛋白质之间的相互作用、鉴定和发现信号转导网络的新组分、揭示其在信号转导中的功能等 在核酸生物化学方面,涉及非编码RNA和RNA转录后修饰、RNA与蛋白质相互作用在生命活动中的多样功能和调控机制,以及这些分子生物学功能异常导致疾病的分子机制的项目申请数量逐年增多 在生物膜的结构与功能、跨膜信号转导、物质跨膜转运等方面,申请书数量不多但申请项目水平和质量相对较好 生物大分子结构计算与理论预测、生物信息学等方面申请项目比较好地体现了学科交叉和整合生物学研究的特点和趋势 电离、电磁辐射等对机体的生物效应和作用机制申请研究深度不够 蛋白质组学方面。  免疫学学科  2017年度免疫学学科鼓励具有原创学术思想的项目申请 鼓励申请人从前期研究和实践中凝练科学问题,围绕具体科学目标进行深入的机制探讨 鼓励建立有特色的研究体系和技术平台,重视免疫学研究中各种新方法和新技术的建立和应用 鼓励开展系统免疫学、免疫组学和计算免疫学的研究 鼓励与其他学科的实质性交叉研究 鼓励开展与免疫系统的结构和功能异常相关的研究,支持基础与临床的合作研究。  2017年度,该学科将继续鼓励科学家在生物力学、生物材料、组织工程学、生物图像与生物电子学、仿生学和纳米生物学领域间开展系统、多学科交叉的基础研究。尤其鼓励并扶持在组织与器官 (特别是骨与心血管组织之外的组织与器官)生物力学领域,开展基础与实际应用相结合的基础研究 鼓励对具有临床应用价值的生物材料与机体相互作用机制开展深入探讨 鼓励针对重要组织/器官工程化构建与转化过程中的关键科学问题开展长期、系统、深入的研究,继续扶持组织工程新技术新方法、以及利用组织工程学原理和技术探索疾病发病机制及治疗的研究 继续鼓励生物医学图像与生物电子学、与生物医学系统研究相关的仿生学、以及纳米生物检测、纳米生物效应以及安全性评价方面的项目申请。  特别提醒申请人注意:本学科不受理非生物学/医学用途的生物材料以及非生物学/医学用途的仿生学研究。  生命科学四处  生命科学四处的资助范围包括神经科学、生理学与整合生物学以及心理学三个学科。  2017年度本学科继续鼓励探索认知行为的神经生物学、解析脑高级功能的分子、细胞及其神经环路机制 鼓励利用学科交叉优势提高神经科学基础研究的水平,从分子、细胞、环路和整体等不同层面阐明神经系统疾病的发生、发展规律和机制 鼓励利用非人灵长类动物进行神经生物学研究。请申请人在本学科资助范围内有针对性地凝练神经生物学的科学问题和设置研究内容,并正确选择申请代码进行申报。  特别提醒申请人注意:以人为研究对象的认知心理学项目请到心理学学科申请。  心理学学科  2017年度心理学学科将在继续支持优势领域的同时,加强对遗传心理学、个性心理学、医学心理学等领域的资助 鼓励多学科交叉融合,采用现代神经影像、基因分析、脑刺激、大数据分析、纵向追踪等技术和方法,推动对心理活动及其物质基础的深入研究,鼓励提出和发展新的理论、方法和技术 加强基础研究与应用研究相结合,提高国民心理素质 加强对人类个体与社会行为的心理机制研究,促进社会和谐发展。  从2016年度本学科接收情况来看,循环生理学申请主要包括血压调控、血管稳态维持、血管功能异常及机制、心脏节律维持及心律失常、心肌损伤修复及功能改善 呼吸生理学包括呼吸动力学、呼吸系统结构、功能的调节及异常、呼吸中枢与呼吸调控、肺血管平滑肌及肺动脉高压 消化生理学包括肝、胆、胰功能及其调节机制,消化道屏障及菌群、肠道内分泌功能调节、胃肠动力调节 泌尿生理学包括肾小球滤过、肾小管分泌与重吸收、肾脏血流动力学、肾脏内分泌功能及调控机制 生殖生理学包括生殖过程的调节机制、生殖细胞发生与成熟、卵巢功能、胚胎着床及胎盘形成及功能 神经系统研究主要包括脑缺血、缺氧的病理生理学机制、神经内分泌免疫调节、神经系统和外周组织器官的交互调节 运动生理学主要包括运动对机体各组织、器官结构、功能以及代谢等的调节和产生、干预及防治相关疾病的机理等 人体解剖学主要包括应用解剖学、数字解剖学和体质人类学 人体组织与胚胎学包括正常及异常胚胎发育的调控机制、组织损伤及修复与再生的机制 内分泌生理学包括经典及非经典内分泌组织器官的内分泌功能及调控、营养物质及能量代谢调节及失调机制、微量元素的作用与稳态调节 血液生理学包括造血调控、凝血纤溶、血细胞功能及异常等。今后,本学科还将继续支持衰老及生物节律等相关研究,鼓励开展机体功能稳态维持及失调中组织 (或器官)间交互作用,以及特殊环境下机体应激反应机制等研究申请。2017年度将继续鼓励以疾病为模型针对本学科的共性和基础性科学问题的研究申请。  特别提醒申请人注意:本学科不受理有关植物、中医、野生动物 (比较生理学除外)及畜禽相关的项目申请。  生命科学五处  生命科学五处的资助范围包括遗传学与生物信息学、细胞生物学以及发育生物学与生殖生物学三个学科。  2016年度动物遗传学、微生物遗传学、细胞遗传学、数量遗传学、行为遗传学、进化遗传学等领域申请项目较少,这些领域是遗传学研究的重要内容,而且国内已有一定基础,希望申请人从前期研究中凝练出科学问题,提出项目申请,本学科将考虑予以倾斜支持。人类遗传学中遗传与变异主要支持人类遗传与变异的机制研究。2017年度遗传学将继续鼓励和支持对遗传学基本机制和规律探讨的项目。  生物信息学领域重点关注:发展新的算法和分析技术,用于研究单细胞组学、基因组结构、功能与进化 整合组学数据与系统生物学分析 生物大数据的整合、标准化和可视化的方法研究 生物数据编审 (curation) 生物数据的虚拟现实展示 分子模块和网络的设计与合成 生物网络的研究等。鼓励生物信息学分析与生物实验验证相结合。今后,本学科将继续支持和鼓励遗传学的新理论、新方法及交叉研究。  细胞生物学学科  2016年度受理的项目申请中,细胞生长与分裂、细胞外基质、细胞极性建立、细胞衰老、细胞代谢、植物细胞生物学和细胞生物学新方法等领域的项目较少。这些领域是细胞生物学研究的重要内容,而且国内从事相关研究已有一定基础,希望申请人从前期研究中凝练出科学问题,提出项目申请,本学科将予以倾斜支持。  2017年度本学科继续强调功能和机理性研究,重视新研究方法和手段在细胞生物学领域的使用,积极推动细胞原位、实时、动态分析技术和方法的发展,注重从分子、细胞、组织和个体水平上开展动态性和整合性研究,鼓励在体、多学科交叉研究以揭示与细胞功能和生物学效应相关的分子机制和调控网络。  发育生物学与生殖生物学学科  在2016年度接收的项目申请中,组织器官发生与发育以及干细胞领域申请项目数较多,一些项目瞄准国际前沿,选题准确、起点较高 生殖生物学领域的研究密切结合人类生殖医学领域的重要科学问题,部分项目来源于医学临床实践的基础研究,选题兼顾了基础性与应用性,体现了基础研究向临床医学转化的研究趋势。今后本学科将继续鼓励发育生物学与干细胞领域的申请人开展具有国际竞争力的科研工作,鼓励生殖生物学领域的申请人开展与人类生殖医学需求密切相关的基础研究,并在这一领域给予倾斜资助。  现代发育生物学与生殖生物学研究强调在体、连续、动态,注重多细胞、多基因的协同作用,关注发育和疾病的关系,鼓励利用模式生物探讨发育和生殖的分子调控机理 鼓励建立发育和生殖相关疾病模型。在植物发育与生殖研究领域鼓励为现代分子育种提供理论指导的基础性项目申请。鼓励发展发育生物学与生殖生物学的新技术、新方法的研究。  生命科学六处  生命科学六处的资助范围包括农学基础与作物学、食品科学两个学科。  从项目申请来看,近年来从我国农业生产需求中凝练基础科学问题的申请有所增加,围绕农学基础科学问题开展多学科交叉研究的趋势更加明显,但依然存在下列主要问题:①农作物基因组研究的项目较多,但在此基础上对生理学和遗传学机理的揭示不够 ②部分项目注重跟踪国际研究热点,但与我国农业生产实际结合不够紧密,基础研究支撑应用研究的能力不强 ③部分研究工作的系统性和延续性不够 ④在作物信息学领域,借用物理方法 (光谱、红外、遥感等)获取作物信息的研究项目较多,但理论深度不够且实际应用比较困难 ⑤少数申请书写作不规范、科研态度不严谨,如在研究基础和个人简介部分存在内容失实或不准确,尤其是代表性研究成果列表中申请人未能如实反映本人或其他作者对文章的贡献。  本学科项目申请应以农作物及其产品为研究对象,与其他学科的交叉不能偏离这一研究主体,否则不属于本学科的资助范围。学科鼓励新理论、新技术与传统方法、实验室工作和田间试验的密切结合,优先支持有连续性和系统性的研究工作。  特别提醒申请人注意:本学科不受理以农业动物、动物产品、微生物、果树、蔬菜、藻类、林木和拟南芥等为研究对象的申请。分支学科农业数学、农业物理学、农业气象学、农业信息学和农业系统工程只受理研究内容与农作物生产密切相关的项目申请 以药用作物为研究对象的申请中只受理研究内容为药用作物育种与栽培的项目申请。填写申请代码时,请准确填写申请代码1到最末一级代码 (4位或6位数字申请代码,其中C1302、C1305、C1306、C1307为4位数字,其余分支学科为6位数字),否则将不予受理。  食品科学学科  2016年度项目申请存在以下主要问题:①少数项目偏重工艺和产品开发 ②申请代码填写不准确、不完整 ③申请书写作不严谨、不规范,特别是个人简介部分内容失实或不准确 ④部分申请人研究工作的连续性不够 ⑤研究内容分散、范围过宽,关键科学问题凝练不够等 ⑥食品检验学有不少项目偏重同种检测方法在不同领域的简单应用。此外,近两年本学科不予受理的申请项目较多,其中最突出的问题是研究内容不属于食品科学学科资助范围,主要涉及四种类型:①保健品相关研究 ②食品和食品成分预防与治疗疾病研究 ③动植物生长发育与代谢生理为主要研究内容的项目 ④药物开发研究项目等。  本学科不受理以下项目申请:①食品和食品成分预防与治疗疾病研究 ②保健品相关研究项目 ③药物开发研究 ④直接利用人体开展的临床前期的试验研究 ⑤涉及动植物生长发育与代谢生理为主要研究内容的项目 ⑥以食品机械、包装材料、食品加工工艺、产品开发和食品化学改性为主要研究内容的项目。  特别提醒申请人注意:填写申请代码时,请准确填写申请代码1到最末一级代码(即6位数字代码,如:C200101),否则将不予受理。  生命科学七处  生命科学七处的资助范围包括植物保护学、园艺学与植物营养学两个学科。  植物保护学学科  2017年度本学科将继续鼓励申请人以国家农业生产安全、农产品质量安全和生态环境安全等国家需求为导向,把握相关领域国内外的研究前沿,从农业生产实际中凝练科学问题,更加注重植物保护学科的新理论、新技术和新方法的原始创新,更加注重研究工作的连续性和系统性。在研究内容上,鼓励微观与宏观相结合,研究揭示农作物有害生物 环境 (生物和非生物)的互作机理、有害生物种群演化与灾变规律、有害生物监测与预报、有害生物可持续综合防控、农药毒理及科学使用等基础和应用基础性问题 鼓励植物保护学与遗传育种学相结合,研究阐明具有抗性的农作物种质资源对有害生物的抗性机制 注重结合我国农作物不同产区生态特点,研究产业结构调整、栽培措施改进及全球气候变化等因素带来的新的科学问题。在研究手段上,鼓励新理论、新技术与经典或传统研究方法的结合,注重实验室研究和田间试验验证的密切结合,优先支持有连续性和系统性工作积累的研究项目。鼓励以解决植物保护学科学问题为目标的交叉学科申请项目,支持学科新生长点的研究项目。继续扶持 “农田草害”、“农田鼠害”以及 “农作物病虫测报学”等研究领域的优秀项目,促进植物保护学科各方向的均衡协调发展。  本学科项目申请应注重以农作物有害生物为研究对象,以防治或控制有害生物危害为科学目标,否则不属于本学科资助范围。本学科不受理以林木与模式生物 (拟南芥、果蝇等)为主要研究对象的项目申请。  园艺学与植物营养学学科  2017年度,本学科将继续鼓励从我国农业产业发展需求和生产实际提出和凝练科学问题,鼓励研究技术、方法和手段创新,优先支持原创性、连续性、系统性和特色性研究。园艺学支持以园艺作物为研究对象,以产量、品质和抗性等农艺性状为主要研究内容的项目 积极扶持起源于我国或重要野生园艺作物种质资源发掘与评价、优异性状挖掘与利用研究 鼓励开展园艺作物休眠、童期、倍性、砧穗互作、器官形成与发育等特异生物学问题的研究 设施园艺学应突出设施环境及其调控与园艺作物生物学问题的有机结合,支持设施园艺作物生长发育逆境障碍调控机理,以及综合环境与园艺作物生长发育的关系研究。植物营养学鼓励开展作物高效利用养分的遗传育种、生理与分子机制,作物 土壤 微生物相互作用与调控,以及土壤水肥耦合机制及其对作物有效性的深入研究 积极鼓励实验室研究在田间的试验验证 积极扶持 “肥料与施肥科学”、 “养分资源与养分循环”领域的优秀项目,促进植物营养学各方向的均衡协调发展。  本学科不受理以林木及模式植物拟南芥等为主要研究对象的项目申请。  生命科学八处  生命科学八处的资助范围包括动物学、畜牧学与草地科学、兽医学和水产学四个学科。  动物学学科  今后一段时期,对未知动物物种的发现和描述,对已知动物物种的厘定和分类地位的修订,仍是分类学资助的重要内容,特别鼓励海洋无脊椎动物的分类研究 以进化为核心的动物形态发生、系统发育、动物地理学和生活史对策的研究是当前的重要领域 鼓励野生动物形态学、生理学和行为学等方向的研究。加强与濒危动物保护、重要资源动物可持续利用、有害动物控制、外来入侵动物相关的生物学以及生物安全的研究 对我国特有动物类群以及基础薄弱地区的研究将继续给予扶持 重视野生动物实验动物化、实验动物模式化等方向的研究。今后,本学科将更加侧重动物学基础研究,鼓励根据我国动物资源的特色和区域特点,结合新理论和新技术的应用,进行原创性的探索 鼓励跨学科的交叉性研究。  提请申请人注意的是:本学科不受理以模式动物为研究材料的临床医学诊断和治疗相关的研究申请,不受理以家畜家禽为材料的研究申请。  畜牧学与草地科学学科  2017年度,本学科将继续重视畜、禽、草、蚕和蜂资源在优异基因的发掘及良种培育相关重要科学问题的研究 加强畜禽种质资源、遗传育种、营养、繁殖及饲料与牧草高效生产与利用的基础研究。对畜禽环境与污染、畜禽和蜂蚕养殖设施设备、行为与福利,牧草与饲料作物生理生化、牧草生产与加工,养蚕学和养蜂学等研究予以适当倾斜支持。鼓励申请人在原有工作基础上,开展原创性、系统性和连续性研究工作,对前期科学基金项目完成质量高的给予倾斜。  本年度项目申请注意事项:①在本学科申请项目应以畜、禽、草、蚕和蜂为研究对象,与其他学科的交叉不应该偏离上述研究主体,否则不予受理 ②项目选题既要注重国内外最新研究进展,也要重视具有应用前景的基础性问题研究,避免纯粹的跟风研究。  兽医学学科  2017年度本学科要求项目申请以防控动物疾病、保障动物健康和公共卫生为目的,学科交叉的申请项目应该符合上述研究主体。鼓励围绕国家畜牧业需求和兽医学科发展的需要,针对新发、再发和潜在的动物疫病开展研究。特别提示申请人注意,凡涉及高致病性病原微生物操作的项目,必须严格遵守国家有关规定,具备相应的生物安全条件,方可申请。  本学科不受理有关水产疫病防控方面的研究。  水产学学科  2017年度希望申请人立足本学科研究领域,把握国内外最新研究动态,结合已有的工作基础,开展原创性的研究。避免盲目强调新技术手段而忽视关键科学问题的凝练 以模式生物为对象的研究,应立足于解析水产学科的科学问题。本学科鼓励以水产学研究为主体的交叉与合作研究,充分发挥地域和资源优势、加强人才培养。  今后,该学科将继续鼓励研究养殖对象重要经济性状的遗传规律与基因功能、重要水产病原的流行病学和致病机理、宿主免疫与疾病防治、主要水产养殖生物繁殖与发育的分子基础和调控机理以及水产动物营养物质利用和代谢调控机制。适度倾斜资助经济藻类生物学、水产养殖与环境的相互作用、水产资源养护、养殖新模式和新技术等方面的基础研究。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。   为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。   此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 第十届全国药用植物及植物药学术研讨会
    我公司于2011年8月10日至12日在素有“春城”美誉的云南省昆明市参加了“第十届全国药用植物及植物药学术研讨会”。本次会议由中国植物学会药用植物及植物药专业委员会和中国科学院昆明植物研究所联合主办,由中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室承办。邀请了国内相关领域院士和知名专家学者,同时首次邀请多名国外该领域的知名学者作大会报告,扩大该系列会议的影响,提高办会水平,促进与国内外同行的交流与合作。本次会议中,我公司冠名了茶歇,并展示了旋转蒸发仪、低温磁力搅拌等仪器,产品受到了广泛关注,并得到了诸多专家学者们的好评,大大增加了我公司品牌的市场影响力和知名度!
  • 植物也要“摘口罩”:Nature主刊揭示植物气孔如何重新打开
    人们面对病毒入侵,会通过佩戴口罩进行有效抵御。同样,植物也会通过调节气孔的开放和关闭来抵抗病原入侵。气孔关闭可减少水分流失并限制病原体进入,然而长时间关闭气孔,会导致植物光合作用以及蒸腾作用的减弱,水分的过度积累甚至会促进植物体内病原体的定殖。所以,植物其实也是需要在合适的时间“摘掉口罩”。那么,植物是如何动态调节气孔关闭和开放的?其背后的分子机理仍不清楚。今年5月,美国德州农工大学何平教授、单立波教授与山东建筑大学侯书国教授在Nature主刊合作发表了相关研究,发现了一类新的调控免疫和水分流失的分泌小肽SCREWs,阐明了SCREWs参与植物重新打开气孔的分子机制。这也是山东建筑大学首篇Nature主刊文章。植物基因里编码数以千计的小肽,而其中多数小肽的功能仍是未知的。一些小肽是植物免疫的细胞因子,被驻扎在细胞表面的受体激酶所感知。作者首先分析了拟南芥小肽合成基因的转录组学,发现受细菌鞭毛蛋白刺激时,一些小肽的合成会明显提高,并且这些小肽具有保守的C端(图1)。用这些小肽处理种苗后,发现小肽诱导激活了MAPKs(mitogen-activated protein kinases),及包括WRKY30,WRKY333,WRKY353和FRK1在内的多种PTI(pattern-triggered immunity)标志物的表达,并且证明了C端保守的两个半胱氨酸(CC)对诱导免疫反应十分重要。体内实验发现这些小肽直接决定了拟南芥是否易感染Pst DC3000(Pseudomonas syringae pv. tomato DC3000)。由此作者鉴定这些小肽为一类新的植物细胞因子,被命名为SCREWs(SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS)。图1 细胞因子SCREWs的序列比对作者的下一步是找到SCREWs的受体。受体激酶,特别是LRR-RKs(leucine-rich repeat receptor kinases)是很多内源肽的受体。作者筛选了拟南芥的受体激酶,发现NUT(AT5G25930)介导了SCREWs诱导的免疫反应。为了确定NUT是不是SCREWs的直接受体,作者使用Biacore T200,通过把NUT胞外域固定在CM5芯片上,SCREWs作为分析物流过芯片,检测得到SCREW1与NUT的亲和力达到12.95μM,SCREW2与NUT的亲和力达到6.23μM(图2)。图2 Biacore鉴定SCREWs的受体NUT(pH 7.5)为了更加接近体内的环境,作者同样使用Biacore方法检测了pH5.7条件下SCREWs与NUT的亲和力,发现在非原质体的pH条件下,SCREWs与NUT的亲和力基本一致(图3)。图3 Biacore检测非原质体酸碱条件(pH 5.7)下SCREWs与NUT亲和力前面提到,SCERWs羧基端的保守半胱氨酸对诱导免疫十分重要,这里作者同样用Biacore做了体外实验的验证,结果发现保守区域半胱氨酸的突变会使SCREWs与NUT的亲和力显著降低(图4)。由此,藉由Biacore完整、可靠的实验结果,作者确定了NUT就是SCREWs的受体。图4 关键氨基酸的突变使SCREWs与NUT的亲和力显著降低很多LRR-PKs的受体都是BAK1和相关的SERKs,利用免疫沉淀实验发现SCREW会刺激NUT-BAK1复合物的产生后,作者同样使用Biacore检测SCREW2-NUT-BAK1三元的结合(图5)。同样把NUT胞外域固定在CM5芯片上,分析物则设置固定浓度的BAK1预混多浓度的SCREW2,并且检测NUT与单独BAK1的结合试验作为对照。结果发现,BAK1的存在显著提高了NUT和SCREW2的亲和力,达到了0.38μM。图5 Biacore检测SCREW2-NUT-BAK1三组分的结合除了调控免疫,作者还发现SCREW-NUT可以调控植物的水分流失。植物缺水时,ABA会促进气孔的关闭,调控植物的水分利用和耐旱性。作者发现,SCREW-NUT通过调控ABI(ABA INSENSITIVE)的磷酸化,导致ABI磷酸酶对OST1(OPEN STOMATA 1,一种介导ABA和MAMP诱导的气孔关闭的关键激酶)的活性增加,降低S型阴离子通道的活性,最终抑制气孔关闭。总结图6 文章整体研究思路综上所述,团队首次发现了植物应对病原体侵染或水分缺失时,会通过SCREWs-NUT来控制气孔的重新开放。SCREW-NUT系统广泛分布于双子叶和单子叶植物中,说明本研究在优化植物对非生物和生物胁迫的适应性方面有重要作用。Biacore作为分子互作的金标准,轻松应对信号通路的二元,三元体系研究,在研究植物生长发育和抗逆的信号通路,转录调控等方面,深受广大农业和植物科学家的信赖。Biacore可靠的实验数据,加上科学家创新又严谨的研究思路,定会加速我国科学家们在农业和植物领域的科研进展,巩固我们在此领域的领军地位。Biacore,for a better life参考文章:Liu, Z., Hou, S., Rodrigues, O. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制