当前位置: 仪器信息网 > 行业主题 > >

载金炭

仪器信息网载金炭专题为您整合载金炭相关的最新文章,在载金炭专题,您不仅可以免费浏览载金炭的资讯, 同时您还可以浏览载金炭的相关资料、解决方案,参与社区载金炭话题讨论。

载金炭相关的资讯

  • 历经30载----《中国药学杂志》岛津杯30年座谈会成功举办
    《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自1991年由中国药学会药物分析专业委员会、《中国药学杂志》编辑部与岛津公司三方共同策划设立至今,历经30载,为了更好地总结“岛津杯”的成功经验,进一步推动即将在明年举办的《中国药学杂志》岛津杯第十五届全国药物分析优秀论文评选交流会在形式创新与策划组织工作中进一步提升,中国药学会药物分析专业委员会于2020年12月4日在上海成功举办“《中国药学杂志》药物分析前沿专题组稿会暨岛津杯30年座谈会”,征集并交流研讨以往各届优秀论文作者代表最新科研成果与学术观点,并进行专题约稿。 本次座谈会由中国药学会编辑出版部、《中国药学杂志》编辑部戴罡主任主持中国药学会编辑出版部、《中国药学杂志》编辑部戴罡主任 座谈会伊始,岛津企业管理(中国)有限公司(以下简称“岛津”)分析计测事业部吴彤彬事业部长率先进行了致辞,在致辞中提到,2020年是特殊的一年,医药卫生行业在抗疫中处于关键地位,药物分析界的各位同仁更是起到了保驾护航的作用,岛津也为之贡献了一份力量。岛津杯即将迎来30周年,对中国药学会药物分析专业委员会、《中国药学杂志》社30年的坚守和付出表示敬意,今年也正值岛津质谱50周年,岛津推出了串联四极杆液质联用仪旗舰机型LCMS-8060NX,成像质谱显微镜iMScope QT,小型化数字离子阱质谱MALDImini-1等各类质谱新品,希望能对从事医药领域老师的科研工作提供更有力的帮助。岛津分析计测事业部吴彤彬事业部长 随后,中国药学会药物分析专业委员会主任委员马双成与中国药学会副秘书长车明凤分别进行了致辞。其中,马双成主任委员回忆了“岛津杯”过往30年,提到“岛津杯”每两年举办一次,已形成精品系列会议,成为药物分析领域高层次会议,作为药物分析学科的重要学术交流平台,对推动药学学科发展发挥了重要作用,提到“岛津杯”过往30年活动的开展也见证了几代药学工作者成长历程。马双成主任最后总结到,希望更多年轻药物分析工作者能积极参与“岛津杯”活动,希望与会专家学者能在此次座谈会上充分交流研究成果与学术观点,就下一届岛津杯活动开展建言献策。中国药学会车明凤副秘书长提到中国药学会药物分析专业委员会是学会成立最早的分支机构之一,多年来一直致力于我国药物分析学科的科技传播与人才培养,对学术交流活动尤为重视。其与《中国药学杂志》编辑部、岛津于1991年共同策划岛津杯全国药物分析优秀论文评选交流会,至今历经近30载,成功举办了十四届,成为中国药学会历史最悠久,最具代表性的学术活动品牌之一。 中国药学会药物分析专业委员会主任委员马双成 中国药学会副秘书长车明凤 致辞结束后,座谈会进入报告环节,首先由大会特邀专家、浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏发表了题目为《手性药物分析技术及应用》的报告。浙江大学教授、中国药学会药物分析专业委员会原副主任委员曾苏 本次座谈会邀请了历届(第1~14届)岛津杯获奖者代表,依次进行座谈会专题报告,其中,第一届获奖者代表张朝选博士(原:中国食品药品检定研究院)由于不能现场参会,特向此次岛津杯30年座谈会发来了祝贺信并于现场由戴罡主任进行了宣读,在祝贺信中,张朝选先生特别提到生物制药是一种知识密集、技术含量高的新兴产业,还有很多未知领域,分析技术的使用、分析数据的解读以及分析技术在生物药质量控制中的作用值得广泛探索,因为CE非常适合水溶性的生物样品分析,并且CE以及相关分析技术在生物药物分析领域有很大潜力。第一届奖者代表张朝选博士 第二届获奖代表何丽一研究员(原:中国医学科学院药物研究所分析室)则向此次岛津杯30年座谈会发来了祝贺视频。她提到30 年过去了,现在拥有的条件远远优于当初,而且药物分析工作的要求从深度和广度两方面也会拥有更高的要求,迎接新的机遇和挑战。随着分析化学学科的发展,药物分析也会经历飞速发展,相信今后在药物分析领域肯定会人才辈出,硕果累累。第二届获奖代表何丽一研究员 座谈会现场报告的专家学者有:国家药典委员会化药标准处李慧义处长、中国医学科学院药物研究所王琰教授、国家药典委员会陈蕾主任药师、中国药科大学杭太俊教授、北京大学药学院陈世忠教授、中国科学院上海药物研究所陈笑艳研究员、空军军医大学药学系中药与天然药物学教研室谭光国副教授、海军军医大学药学院陈啸飞副教授、岛津(中国)创新中心李晓东博士、中国医学科学院药物研究所药物代谢室符洁助理研究员、中国食品药品检定研究院王莹副研究员、中国药科大学李博副教授、江苏省食品药品监督检验研究院黄敏文副主任药师。 座谈会报告结束后,岛津分析计测事业部分析中心黄涛宏部长带领与会嘉宾参观了岛津上海分析中心并进行了详细介绍,双方持续进行了友好交流直至会议结束。与会嘉宾合影
  • 车载移动设备与碳卫星携手监测京津冀CO2
    p   由中科院大气所开展的“追踪CO2——京津冀地区冬季CO2浓度强化观测”工作6日结束。这次监测,不但实现了在汽车上移动监测CO2,而且还在国内首次用车载移动监测与碳卫星“携手”完成了天空地立体监测。 /p p   此次监测工作是在国家重点研发计划“京津冀城市群高时空分辨率碳排放监测及应用示范”支持下开展的。项目组成员将高精度、微型化的CO2监测仪器安装在汽车上,分别在晴好天气和高碳排放天气条件下,沿京津冀主要线路移动监测。 /p p   去年12月29日上午,CO2移动监测正式开始。记者乘监测车随科研人员前往河北雄安。微型的CO2监测仪器就安装在汽车前挡风玻璃的底端,它可以即时把监测数据通过网络传到北京中科院大气所的数据监测后台中。监测车既走国道、乡村级公路,也走高速公路 既去城市,也去农村,通过GPS定位系统准确记录车辆经过地区的CO2浓度情况。 /p p   项目组此次共在8条线路开展了移动监测工作,包括北京市内、北京门头沟区灵山、天津、承德、张家口、唐山、保定、雄安8个方向。 /p p   据项目负责人、中科院大气所曾宁研究员介绍,此次移动监测还与我国发射的碳卫星监测相结合。比如上个月29日在对北京市内移动监测时,在中午13时30分左右,碳卫星正从北京上空经过。碳卫星采用了目标模式,临时改变倾角,对地面汽车移动监测的地区做重点监测。“这样把两方面的数据结合,会让我们的监测更加准确。” /p p   据了解,利用这次监测,科学家获得了京津冀地区更加全面的CO2浓度数据,这为准确识别碳排放源进而规划科学减排提供了技术支撑,同时也为提供独立可靠的CO2第三方碳监测数据做了有益探索。 /p
  • 《2022“零碳中国”优秀案例及零碳技术解决方案》发布(可下载)
    近日,“2022碳中和零碳中国峰会暨第五届中国能源投资国际论坛”在北京昌平未来科学城“能源谷”顺利召开。会上重磅呈现了一系列零碳发布活动。《2022“零碳中国”优秀案例及零碳技术解决方案》发布(点击下载)要推动“双碳”目标的实现,实施“零碳中国”行动,技术的创新和实践应用是重中之重。为切实践行“双碳”战略,总结推广优秀的低碳、零碳、负碳技术,探索不同应用场景的最佳解决方案,积累实现零碳之路上的成功经验,能投委自2020年发起了“零碳中国”优秀案例及技术解决方案征集活动,通过两年的征集,共收到来自地方政府、央国企、民企、外企及高等院校的案例和技术解决方案134个,其中,零碳能源领域技术解决方案及案例83个,零碳建筑领域的技术解决方案及案例29个,零碳交通领域的技术解决方案和案例8个及其它14个。能投委专家组经过多次讨论和研究,结合减排能力、可推广性、创新水平、经济性 和社会效益等主要指标,共选出54个具有示范意义或推广价值的优秀案例及零碳解决方案,编制了《2022“零碳中国”优秀案例及零碳技术解决方案》。《方案》提出实现“零碳中国”的重要“支点”是能源、工业、建筑与交通。“中国投资协会零碳中国研究中心”成立为积极践行“零碳中国”理念,加快推动中国碳中和产业绿色投资的创新发展,经中国投资协会批准,正式成立了中国投资协会零碳中国研究中心,将积极开展碳中和理论、技术、标准体系的研究以及成果应用推广,通过构建碳中和产业资源服务公共平台,推动碳中和产业各方在具体应用场景下深度融合发展。2022年度第一批“零碳中国”评价标准启动自《零碳中国倡议》提出以来,能投委就积极着手开展“零碳中国”标准体系的研究工作。“零碳中国”标准体系是低碳、零碳、负碳相关技术标准的有机整体,是指导、协调“零碳中国”行动的重要依据和蓝图,对系统推进“零碳中国”示范项目开展并实现“零碳”排放目标具有重要意义。2021年第四届上海进博会期间已经发布了《“零碳中国”评价标准通则》,本次峰会上,2022年度第一批“零碳中国”评价标准正式启动,包括“零碳园区”、“零碳工厂”、“零碳乡村”、“零碳数据中心”以及“能源企业ESG”等评价标准。
  • 圩载历鉴 谱耀质尊——岛津午餐会走进“农产品质量安全学科发展论坛”
    南京,一座你没有理由不爱的城市。六朝古都,有着浓郁的历史文化底蕴,苦难与辉煌并存。而南京的秋天,阳光友善宽容,忙了一个夏天的树木,枝叶依然茂盛,为人们制造着充足的氧气,使人神清气爽,精神振奋。2020年9月24日,岛津午餐会走进“农产品质量安全学科发展论坛”暨“第二届全国农产品质量安全风险评估学术研讨会“。会议安排在南京国际会议大酒店君子兰厅,与会人员积极参与,现场气氛热烈。会议以“圩载历鉴 谱耀质尊” -质谱技术专题讲座为主题,会议由岛津分析计测事业部市场部梁志莹经理主持,发表内容分别由邓力经理、韩美英经理、胡晓慧经理为大家介绍岛津在农产品检测中质谱技术的最新应用,以及探讨质谱未来发展方向。首先由市场部邓力经理介绍LCMS-8060NX,LCMS-8060NX是岛津三重四极杆液质联用仪旗舰机型,在实现优异灵敏度和分析速度的同时,进一步提升了仪器的稳健性和操作性,且该产品具有三大创新亮点。1、非凡的灵敏度和速度。LCMS-8060NX具有极为出色的高灵敏度和分析速度,通过提高ESI传热效率和辅助加热气流速来提高脱溶剂效率。可以为更广泛的化合物设置最佳电离条件,从而实现更高的分析灵敏度。2、出色的稳健性和操作性。 新开发的IonFocus单元可将离子高效地引入质谱仪,同时排出中性粒子等干扰物质,从而减少基质效应和仪器内部的污染,这有助于防止检测精度或灵敏度降低。新型离子导入单元在保持高离子传输速率的同时,提升了仪器的稳健性。因此,LCMS-8060NX可提供更高灵敏度分析和更少的停机时间。 3、自动化工作流程。LCMS-8060NX包括各种“分析智能”功能,可从分析准备到数据处理,最大限度地提高分析通量。例如,该系统配置了新一代离子源,无需进行复杂的调整即可进行高灵敏度分析,并使方法开发更加高效。将LCMS-8060NX与Nexera系列UHPLC结合使用可实现自动开机和关闭等功能,进一步提升整体工作流程的效率。 分析计测事业部 市场部 邓力经理 LCMS-8060NX 其次是市场部韩美英经理介绍成像质谱显微镜iMScope QT在农产品研究中的应用。岛津成像质谱显微镜iMScope QT是光学显微镜与质谱仪完整融合的成像系统,具有5um高空间分辨率和50像素/秒成像分析速度,实现了速度、特异性、空间分辨率、灵敏度为一体的质谱成像分析。并且通过简单分离和组装显微镜-MALDI单元,用一台仪器可实现定性、定量、以及定位分析。iMScope QT广泛应用于各种研究领域,包括医学研究,药学领域,农业和环境领域等。分析计测事业部 市场部 韩美英经理 iMScope QT 最后是市场部胡晓慧经理介绍MALDImini-1数字离子阱质谱及应用介绍。岛津有着悠久的MALDI-TOF生产和研发历史。1985年,田中耕一研究团队在高分子量离子化领域取得了意想不到的突破,并获得专利,为MALDI-TOF的发展铺平道路。2002年,田中耕一先生荣获诺贝尔奖。不断丰富的MALDI-TOF产品线,为广泛的应用研究提供分析平台。MALDImini-1基质辅助激光解吸/电离数字离子阱质谱仪,是MALDI家族新成员。紧凑迷你的体积,仅占用A3纸大小面积,即可实现MS多级的检测。其中数字离子阱(DIT)技术是岛津独有的原创技术,结合独特的离子光学系统,大大节约空间,减少设备所需面积,实现紧凑设计。数字离子阱是由数字信号驱动的四极离子阱,使用矩形波RF捕获离子,更容易调谐频率。无需使用高压即可捕获高质量离子。质量范围上限可达70000m/z。可拓展更广泛的应用。从聚合物分析到未知生物分子结构分析,蛋白质、多肽、翻译后修饰肽、脂质、糖链等。 分析计测事业部 市场部 胡晓慧经理 MALDImini-1 在会议间隙,穿插了用户抽奖环节,用户也表达了对岛津组织本场交流会的感谢,希望以后能更多了解的岛津的产品信息。 分析计测事业部 市场部 梁志莹经理 此外,在本次大会期间,岛津分析计测事业部分析中心的于爽博士与李首道先生携各自应用报告参加了优秀墙报评选活动。 “GC-MS/MS法用于茶叶中农残鉴定” “LC-MS/MS法测定动物源性食品中多兽药残留” 分析计测事业部 分析中心 于爽博士分析计测事业部 分析中心 李首道先生
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 一、二次电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " 目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.1二次电子图像所拥有的特性 /strong /span /p p style=" text-align: justify text-indent: 2em " A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。 /p p style=" text-align: justify text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " D) 二次电子图像的Z衬度一般表现较差。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.2二次电子探头的组成及工作原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。 /p p style=" text-align: justify text-indent: 2em " 这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。 /p p style=" text-align: justify text-indent: 2em " strong 1.2.1 Everhart-Thornley探测器的结构组成 /strong /p p style=" text-align: justify text-indent: 2em " 由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.2.2 Everhart-Thornley探测器的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。 /p p style=" text-align: justify text-indent: 2em " 探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 1.3二次电子探头的位置与成像特性 /span /strong /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。 /p p style=" text-align: justify text-indent: 2em " strong 1.3.1& nbsp S-4800二次电子探头的位置设计 /strong /p p style=" text-align: justify text-indent: 2em " 在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。 /p p style=" text-align: justify text-indent: 2em " 如下图所示: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.3.2 上、下探头的工作过程及获取图像的特性 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.1上探头接收的样品信息 /span /p p style=" text-align: justify text-indent: 2em " 扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。 /p p style=" text-align: justify text-indent: 2em " 下面组图为上探头接收的四种信息特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.2上探头的工作过程 /span /p p style=" text-align: justify text-indent: 2em " 高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。 /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。 /p p style=" text-align: justify text-indent: 2em " 位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。 /p p style=" text-align: justify text-indent: 2em " 电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。 /p p style=" text-align: justify text-indent: 2em " 电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。 /p p style=" text-align: justify text-indent: 2em " -150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。 /p p style=" text-align: justify text-indent: 2em " 位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。 /p p style=" text-align: justify text-indent: 2em " 图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.3下探头的位置及其图像特性 /span /p p style=" text-align: justify text-indent: 2em " & nbsp 下探头位于场发射扫描电镜样品仓位置。示意图如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-align: justify text-indent: 2em " 下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。& nbsp /p p style=" text-align: justify text-indent: 2em " 不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。 /p p style=" text-align: justify text-indent: 2em " 日立冷场扫描电镜下探头的成像实例: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title=" 13.png" alt=" 13.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.4上、下探头的图像特性对比实例 /span /p p style=" text-align: justify text-indent: 2em " 上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title=" 14.png" alt=" 14.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title=" 16.png" alt=" 16.png" / /p p style=" text-align: justify text-indent: 2em " 从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。 /p p style=" text-align: justify text-indent: 2em " 根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 二、背散射电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " strong 2.1背散射电子的图像特性 /strong /p p style=" text-align: justify text-indent: 2em " 高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。 /p p style=" text-align: justify text-indent: 2em " 背散射电子按信号溢出角分为高角度和低角度两种类型。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。 /p p style=" text-align: justify text-indent: 2em " 要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title=" 17.png" alt=" 17.png" / /p p style=" text-align: center text-indent: 0em " strong style=" text-align: center text-indent: 0em " 碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 & nbsp & nbsp & nbsp /strong span style=" text-align: center text-indent: 0em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 2.2背散射电子探头的构造及工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title=" 18.png" alt=" 18.png" / /p p style=" text-align: center text-indent: 0em " strong 图片节选自《微分析物理及其应用》 丁泽军 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。 /p p style=" text-align: justify text-indent: 2em " 为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title=" 19.png" alt=" 19.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 2.3各种探头接收背散射电子信息的结果对比 /span /strong /p p style=" text-align: justify text-indent: 2em " 传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。 /p p style=" text-align: justify text-indent: 2em " 钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。 /p p style=" text-align: justify text-indent: 2em " 场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。 /p p style=" text-align: justify text-indent: 2em " 如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。 /p p style=" text-align: justify text-indent: 2em " 低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title=" 20.png" alt=" 20.png" / /p p style=" text-align: justify text-indent: 2em " 背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。 /p p style=" text-align: justify text-indent: 2em " 背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。 /p p style=" text-align: justify text-indent: 2em " 个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。 /p p style=" text-align: justify text-indent: 2em " 探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。 /p p style=" text-align: justify text-indent: 2em " 实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。 /p p style=" text-align: justify text-indent: 2em " 改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。 /p p style=" text-align: justify text-indent: 2em " 工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。 /p p style=" text-align: justify text-indent: 2em " 传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。 /p p style=" text-align: justify text-indent: 2em " 高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。 /p p style=" text-align: justify text-indent: 2em " 要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月& nbsp span style=" text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 span style=" text-indent: 2em " & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 75px height: 115px " src=" https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title=" 扫描电镜的探头新解-林中清.jpg" alt=" 扫描电镜的探头新解-林中清.jpg" width=" 75" height=" 115" border=" 0" vspace=" 0" / 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) text-decoration: underline " strong /strong /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 防灾减灾:生命探测仪、无人机等科技手段挑大梁
    5月12日,我们将迎来第15个全国防灾减灾日。近年来,随着我国科技研发水平不断提升,越来越多的科技成果被应用于防灾减灾领域,一大批科技含量极高的防灾减灾设备投入实战。地震预测、火灾救援、台风预报……在灾害来临的紧要关头,一批“黑科技”冲在最前线,发挥着无可替代的重要作用,最大限度地避免、减轻了灾害对经济社会造成的损失,有力保障了人民生命财产安全。卫星监测地震降低震灾损失地震是我国造成人员伤亡最多的自然灾害,同时我国也是世界地震灾害最严重的国家之一。全球死亡人数超过20万人的地震有7次,其中4次发生在我国。从过去的“震时救灾”到当前的“综合减灾”,地震监测预报、地震灾害防御、地震应急救援构筑了我国综合减灾三大体系,正在尽可能将震灾损失降到最低。地震预测一直是世界性难题,其中一大困难在于现有技术手段很难探知从震源到地表的全过程。虽然人类目前仍然无法深入地球的“内心”,但当我们从太空望向地球时,观察、研究其磁场的变化情况或许将为地震预测提供新的视角与思路。在近期举办的第35届全国空间探测学术研讨会上,中国科学院国家空间科学中心研究员、国际宇航科学院院士、“张衡一号”卫星计划首席科学家兼工程副总设计师申旭辉,介绍了2018年发射的我国地震立体观测体系天基观测平台首颗卫星“张衡一号”在轨运行5年取得的进展。5年时间里,电磁监测试验卫星“张衡一号”已经观测到全球约60次7级以上地震、近600次6级以上地震、数万次5级地震。“我们发现,高达80%的6级以上地震在发生前半个月有明显前兆信号,较多出现在震前一周左右。通常卫星探测到的前兆信号不会出现在震中的正上方,往往偏离震中几百公里。”申旭辉介绍道。卫星监测突破了传统地震科学研究的限制,电磁波可以从地下到太空跨圈层传播。统计数据表明,空间电磁扰动与地震发生具有明显相关性。科学家通过卫星可以将电磁观测范围拓宽至全球尺度。从震例观测、收集的角度来讲,“天上一年等于地面二三十年”。卫星监测可以让科学家开展大样本统计研究,为检验各种方法和模型提供了基础。“张衡一号”能够发挥空间对地观测的大动态、宽视角、全天候优势,通过获取全球电磁场、电离层等离子体、高能粒子观测数据,对中国及周边区域开展电离层动态实时监测和地震前兆跟踪,弥补地面观测的不足,开辟了探索地震监测预测新途径。不过,申旭辉也坦言,目前大量前兆信号都是在地震发生后通过数据回溯找出来的,只有少量数据是提前发现的,这是因为数据处理非常复杂,在有限的人力和计算能力条件下无法对全球数据做到实时跟踪。申旭辉表示,现有空间卫星技术手段还无法实现时间、地点、强度三要素具备的精确地震预报,要想真正实现地震预报不能单靠一颗卫星,还要依赖地震学、电磁学、大地测量学、地球化学等多学科、多手段相结合。探测仪“能摸会闻”搜救废墟被困人员在2022年4月发生的长沙居民自建房倒塌事故中,一款由应急管理部上海消防研究所和中南大学联合研发的基于多输入多输出(MIMO)雷达的人体目标辨识与定位装备和多模融合生命探测仪大显身手。救援人员利用MIMO雷达人体目标辨识与定位装备,成功探测到3名被困人员的具体位置,为后续精准救援提供技术支撑。同时,救援人员借助多模融合生命探测仪,通过视频系统深入到废墟缝隙中,确定了2名幸存者的被困位置及周围环境,帮助救援人员科学决策、精准施救。应急管理部上海消防研究所高级工程师李震告诉科技日报记者,这两款新型生命探测装备是“十三五”国家重点研发计划项目“复杂灾害条件下生命搜救装备研究与应用示范”的最新成果。基于MIMO雷达的人体目标辨识与定位装备具有探测距离远、定位精度高、识别数量多的功能特点,可以准确搜索定位废墟下被困人员位置,实现多个目标的三维定位,降低误报率,提高探测结果的置信概率,使灾害救援现场搜救效能得到显著提升。多模融合生命探测仪则能够综合利用多种传感器对废墟内被困人员进行探测,并将雷达回波、图像和声音等信息无线传输到手持终端进行综合判断分析,其可有效克服单一传感器探测的技术缺陷,提高生命搜救效率。不只“耳聪目明”,有的新型生命探测设备还“能摸会闻”。中国科学院上海微系统与信息技术研究所研究员陶虎团队受星鼻鼹鼠“触嗅融合”感知启发,将嗅觉、触觉传感器与机器学习算法融合,研发出了“触嗅一体仿生智能机械手”(以下简称智能机械手)。该装置可以在人体被瓦砾石堆覆盖的场景下,协助开展应急救援。在模拟救援中,智能机械手对包括人体在内的11种典型物体进行了识别,准确率达96.9%。智能机械手内部的触觉传感器通过接触抚摸感知压力的变化,采集物体的硬度、轮廓和局部的样貌信息。智能机械手的嗅觉传感器中装有特定的气敏材料,它们在接触特定气体后会产生电阻变化。特定的气体组合又代表特定的物质,例如硫化氢、氨气等就是人体的特有气味。救援人员只需让智能机械手进行触摸,结合传感器采集信息,智能机械手就能够快速判断出被救人员的位置。该研究第一作者、中国科学院上海微系统与信息技术研究所博士生刘孟玮表示,模拟环境的测试已证明智能机械手具备实战能力。一旦出现紧急灾害,智能机械手即可投入救援。目前智能机械手已经具备基础的仿生和传感器功能,相关研究团队还将深化研究,通过进一步提升传感器性能和精进算法,智能机械手未来还能够敏锐地捕捉人体的脉搏,进而判断其生命体征。给台风“做CT”提升气象预报能力台风是发生在西北太平洋和南海海域的强热带气旋,台风活动有显著的季节性特征,大多数台风发生在夏秋季节。台风带来的主要灾害有暴雨、大风和风暴潮等。作为一个多台风影响的国家,几乎年年夏天,我国沿海省份的群众都会紧张地关注着台风动向,相关部门也严阵以待。在广东省茂名市电白区莲头半岛东南方6.5公里外的海上,矗立着一座铁塔,这是我国首个海洋气象综合观测平台——博贺海洋气象野外科学试验基地(以下简称基地)海上综合观测平台。这里是我国观测台风的最佳地点之一。近年来,该试验基地已经发展成为我国海洋灾害性天气研究最重要的野外观测试验基地,为认识和理解台风、海雾和冬春季海上大风等天气过程的边界层过程和致灾机理,积累了一批宝贵的实测数据,在台风预测、海洋灾害防治中发挥着重要作用。中国气象局广州热带海洋气象研究所海洋气象观测研究组首席黄健介绍,台风本质上是在海上生成的超大涡旋,当台风快要登陆时,利用观测平台上先进的海洋气象观测设备,可以给台风“做一个综合CT扫描”,从而得到关于台风的一些数据。这些数据可以用来优化现有台风预报模型的物理过程参数化方案,进一步提升数值模式对台风路径和强度的预报能力,为防治台风带来的次生灾害提供参考。目前,依托该平台,相关研究团队已经进行登陆台风观测试验研究29项,包括威马逊、天鸽、暹芭等。不仅如此,基地还首次对华南沿海海雾开展综合观测试验,迄今共观测到30多个典型华南海雾。无人机“天降神兵”迅速控制森林火情5月5日,四川攀枝花东区弄弄坪街道高峰社区后山发生森林火灾。经过救援人员两天两夜的扑救,明火已于5月7日凌晨被扑灭。每年我国都会发生多起森林火灾,给群众生命财产造成极大威胁。仅今年4月,全国已发生森林火灾56起,而森林火灾的消防救援一直是世界性难题。“森林火灾往往发生在干旱、气温较高的季节,且具有火势大、扩散快、点多面广的特点。而且不少森林火灾发生在山区,地形崎岖,交通不便,极大增加了灭火的危险性。”中国低空安全研究中心主任、中国无人机产业创新联盟副理事长孙永生此前在接受科技日报记者采访时说。无人机可以帮助解决森林消防中“盲区多、危险性强”等问题。此前在北京延庆区的一场森林防火实战演练中,无人机应急救援团队率先用无人机飞达消防员无法到达之地,化作“天降神兵”,展开全面无死角侦察。其搭载的多种摄像头实时对灾害现场进行画面直播,观察灾害现场情况。无人机一旦发现燃点,迅速报出准确坐标,并绘出火场3D态势图,辅助决策者进行指挥调度,快速执行精准救援计划。森林消防对无人机的基本要求是发现早、反应快、决策准、效果实。森林火灾的起因往往是复杂的,不同的火情需要针对性的灭火方案和灭火设备。无人机可以装载多种类型的灭火剂,并根据现场情况进行使用。航天科工仿真技术有限责任公司无人机灭火系统设计师杨兴光表示,对于森林消防来说,单一的无人机由于载重、处理能力等限制,难以直接有效扑灭火灾。为了消除隐患,将火灾尽量遏制在初生阶段,通过采用无人机蜂群战术,将智能算法注入无人机群,形成层次化布局、协同作战,能够大大提升森林火灾的灭火效能。
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 安光所团队在温室气体星载探测方面取得进展
    近期,中科院合肥研究院安光所光学遥感研究中心熊伟研究员团队为满足温室气体探测的需求,针对优化设计的大气主要温室气体监测仪(GMI-II),研发了新型干涉数据相位校正算法,相关成果发表在国际知名期刊 Remote Sensing和Optics Express上。   目前,利用卫星遥感对全球温室气体排放清单校核是实现国家双碳战略的重要手段之一,其中温室气体含量及其浓度的微量变化对碳监测载荷探测精度提出了极高的要求。针对高灵敏、高稳定、高时效等诸多要求,超分辨光谱技术成为实现温室气体遥感探测的优势途径。熊伟团队在国际上率先提出利用空间外差超分辨光谱技术进行大气温室气体吸收光谱的定量监测,利用该技术研制的大气主要温室气体监测仪(GMI-II)成功应用于高分五号(02)星。   监测仪的观测数据存在复杂相位畸变,团队从畸变机理出发,利用单色光干涉数据,首先提取出仪器固有的空间相位畸变进行校正,再对仪器中频率相关的相位畸变进行校正,实现目标光谱的高精度复原。利用监测仪的在轨观测数据进行了算法验证,相比于传统的相位校正算法,新型相位校正算法的校正光谱RMS降低了81.37%。   相关研究得到了国家重点研发计划、国家自然科学基金和中科院重点部署等项目资助。GMI-II 探测原理新型相位校正方法与传统Forman法校正光谱对比:(a)CO2-1通道;(b)CH4通道;(c)CO2-2通道GMI-II反演全球XCO2和XCH4柱浓度数据(2021.11~2021.12)
  • 科学岛团队在温室气体星载探测方面取得进展
    近期,中科院合肥物质院安光所光学遥感研究中心熊伟研究员团队为满足温室气体探测的需求,针对优化设计的大气主要温室气体监测仪(GMI-II),研发了新型干涉数据相位校正算法,相关成果发表在国际知名期刊 Remote Sensing和Optics Express上。目前,利用卫星遥感对全球温室气体排放清单校核是实现国家双碳战略的重要手段之一,其中温室气体含量及其浓度的微量变化对碳监测载荷探测精度提出了极高的要求。针对高灵敏、高稳定、高时效等诸多要求,超分辨光谱技术成为实现温室气体遥感探测的优势途径。熊伟团队在国际上率先提出利用空间外差超分辨光谱技术进行大气温室气体吸收光谱的定量监测,利用该技术研制的大气主要温室气体监测仪(GMI-II)成功应用于高分五号(02)星。针对监测仪的观测数据存在复杂相位畸变的情况,团队从畸变机理出发,利用单色光干涉数据,首先提取出仪器固有的空间相位畸变进行校正,再对仪器中频率相关的相位畸变进行校正,实现目标光谱的高精度复原。利用监测仪的在轨观测数据进行了算法验证,相比于传统的相位校正算法,新型相位校正算法的校正光谱RMS降低了81.37%。相关研究得到了国家重点研发计划、国家自然科学基金和中科院重点部署等项目资助。GMI-II 探测原理 新型相位校正方法与传统Forman法校正光谱对比:(a)CO2-1通道;(b)CH4通道;(c)CO2-2通道GMI-II反演全球XCO2和XCH4柱浓度数据(2021.11~2021.12)
  • 中国首颗碳卫星发射成功 搭载“利器”帮助监测雾霾
    从中国科学院获悉,12月22日3时22分,我国在酒泉卫星发射中心用长征二号丁运载火箭成功将全球二氧化碳监测科学实验卫星(简称“碳卫星”)发射升空。  据中科院空间中心副主任、碳卫星工程副总指挥龚建村介绍,该卫星的成功研制和后续在轨稳定运行,将使我国初步形成针对重点地区乃至全球的大气二氧化碳浓度监测能力,对充分了解全球碳循环过程及其对全球气候变化的影响具有重要意义,可以提升我国在国际气候变化方面的话语权。  根据联合国政府间气候变化专门委员会(IPCC)第四次评估报告,由于人类活动的影响,主要温室气体二氧化碳和甲烷的浓度已经上升到2500万年以来的最高值,并依然呈上升趋势,地表温度也在逐年升高。温室效应正直接威胁着全人类的生存和发展。精确监视全球二氧化碳的排放状况已成为有效开展气候变化研究和应对的迫切需求。  本次发射的碳卫星作为我国首颗用于监测全球大气二氧化碳含量的科学实验卫星,围绕全球气候变化这一当今国际社会普遍关心的全球性重大问题,以大气二氧化碳遥感监测为切入点,利用高光谱与高空间分辨率二氧化碳探测仪、多谱段云与气溶胶探测仪等探测设备,通过地面数据接收、处理与验证系统,定期获取全球二氧化碳分布图,大气二氧化碳反演精度将优于4ppm(百万分比浓度),使我国在大气二氧化碳监测方面跻身国际前列。  碳卫星是科技部为应对全球气候变化、提升我国全球二氧化碳监测能力部署的一项重大任务。通过 863计划地球观测与导航技术领域“全球二氧化碳监测科学实验卫星与应用示范”重大项目立项实施。由中科院国家空间科学中心负责工程总体 中科院微小卫星创新研究院负责卫星系统,中科院长春光学精密机械与物理研究所研制有效载荷 中国气象局国家卫星气象中心负责地面数据接收处理与二氧化碳反演验证系统的研制、建设和运行。  负责本次发射任务的长征二号丁运载火箭由中国航天科技集团公司上海航天技术研究院研制。此外,本次任务还搭载发射中科院微小卫星创新研究院自主安排研制的1颗高分辨率微纳卫星和2颗高光谱微纳卫星,有效载荷由中科院光电研究院研制。这是长征系列运载火箭的第243次飞行。  “千里眼”如何“看”二氧化碳?——详解我国首颗碳卫星  12月22日3时22分,我国在酒泉卫星发射中心成功发射全球二氧化碳监测科学实验卫星。这是我国首颗、全球第三颗专门用于“看”全球大气中二氧化碳含量的卫星。  太空中怎么能“看”到二氧化碳?“看”到了二氧化碳又有什么用?这颗卫星还带了哪些“高精尖”科技?记者采访相关专家,揭开碳卫星的神秘面纱。  “千里眼”看颜色识气体  从厚厚包裹着地球的大气层中,识别出哪些气体是二氧化碳,还要画出一张张“动态图”——碳卫星需要安上特制的“千里眼”。  本次发射的碳卫星,搭载了一台高光谱与高空间分辨率二氧化碳探测仪。这台探测仪的工作原理,是在可见光和近红外谱段,利用分子吸收谱线探测二氧化碳浓度。  用通俗的话说,就是通过看“颜色”来识别二氧化碳气体。中科院长春光学精密机械与物理研究所研究员郑玉权解释,太阳光经过空气时,空气中的二氧化碳分子对许多精细的颜色有了不同程度吸收。通过光学仪器对这些色彩进行非常精准的测量,可以反向推算出二氧化碳分子数量,从而得知大气中的二氧化碳浓度。  碳卫星项目要求大气中二氧化碳的浓度监测精度优于4ppm(百万分比浓度),即是说,当大气中二氧化碳含量变化超过百万分之四时,“千里眼”就必须发现。  长春光机所助理研究员蔺超说,长春光机所为此制造了大面积衍射光栅,相当于在头发丝的宽度上划出200余条形状和直线度要求很高的刻线,“这样的精密元件,如同细密梳子,才能过滤出更为精细的色彩”。  地面观测点也能搜集大气中的二氧化碳数据,为什么还要发射卫星?碳卫星工程地面应用系统总设计师杨忠东说,全球二氧化碳地面观测站点总共仅有数百个,难以满足监测需求,只有用卫星俯瞰,才能绘制二氧化碳分布的全景图。  “碳排放”要有中国数据  掌握全球的二氧化碳分布状况有什么用?科技部国家遥感中心总工程师李加洪说,在碳排放数据上知己知彼,对提升我国在国际气候变化方面的话语权具有重要意义。  全球变暖、极端天气̷̷严峻的气候变化形势面前,减少二氧化碳等温室气体的排放成为必然选择。碳排放的量化监测是各国最终实现温室气体减排的重要技术基础,在所有的碳排放量监测手段中,目前只有星载高光谱温室气体探测技术既能对二氧化碳等温室气体浓度进行高精度探测,又能获取全球各区域的气体浓度分布数据。  正因如此,各发达国家纷纷研发专用卫星。由于技术难度极高,目前仅有两颗卫星从太空监视地球温室气体排放:一颗由日本2009年发射,一颗由美国2014年发射。  李加洪介绍,我国发射的碳卫星通过地面数据接收、处理与验证系统,定期获取全球二氧化碳分布图,使我国在大气二氧化碳监测方面跻身国际前列。  “持家先要有账本,这个‘账本’就是我们自己监测到的碳排放量。” 李加洪说。  “高精尖”未来有望测雾霾  碳卫星上除了搭载二氧化碳探测仪,还有另一件“利器”——多谱段云与气溶胶探测仪。这台探测仪可以测量云、大气颗粒物等辅助信息,为科学家精确反向推演二氧化碳浓度剔除干扰因素。  多谱段云与气溶胶探测仪虽然不是“主角”,但可能会带来许多意想不到的收获。  杨忠东说,多谱段云与气溶胶探测仪能监测大气中的颗粒物,可以帮助气象学家提高天气预报的准确性,并为研究PM2.5等大气污染成因提供重要数据支撑。  研究人员表示,具体如何监测雾霾,要等碳卫星传送回第一份数据后再做分析判断。  此外,碳卫星实现全球观测,是卫星平台频繁调整姿态、“翩翩起舞”的结果。在此过程中,科研人员突破了多项关键技术,实现了技术跨越发展。
  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
  • 载誉奋进 砥砺前行 德国耐驰喜提“年度最受用户青睐仪器奖”
    载誉奋进 砥砺前行德国耐驰喜提“年度最受用户青睐仪器奖”2020年9月16-17日,被誉为科学仪器行业 的“达沃斯论坛”——第十四届中国科学仪器发展年会(ACCSI)在天津隆重召开。作为大会压轴环节的年度仪器及检测风云榜颁奖盛典可谓亮点纷呈,百花齐放。德国耐驰同步热分析(STA449 F3)一举斩获“年度最受用户青睐仪器奖”!作为进口热分析仪器中唯一赢得此项殊荣的品牌,德国耐驰为其“追求卓越”的经营理念再添一笔精彩的注脚。耐驰中国总经理张明华先生(右六)上台领奖 “科学仪器行业年度用户青睐仪器”奖自举办以来,已成功评选过十二届,作为仪器信息网重要产品奖项之一,该奖项旨在推荐上一年度用户关注度最高的仪器,并为用户选购该类别仪器提供重要的参考,其含金量和公信力不言而喻。 过硬产品力、行业品牌力、优质服务力的三力合一,为德国耐驰的发展提供了强劲的驱动力, 更让德国耐驰再度受到科学仪器行业的一致认可和肯定。德国耐驰领先的热分析技术,必将助力更多的客户在材料研发、质量控制、失效分析等方面百尺竿头,更进一步。一如既往,耐驰将提供全面且高效的支持和服务,探索更多的合作机会。好的产品才能万千瞩目,好的技术才能赋予未来奇妙。作为热分析行业唯一一家获得此项大奖的国外仪器生产厂商,德国耐驰将积蓄力量,继续向前迈进,充分发挥自身的产品、技术和服务优势,为客户提供量身定制的热分析解决方案,持续积攒高人气和高口碑,乘风破浪再出发!
  • 上海大载荷系留气球垂直观测平台在京津冀地区首次成功升空
    p   2018年12月15日凌晨2点,上海市环境监测中心和中国电子科技集团第三十八研究所以及中国科学院大气物理研究所相关技术人员冒着零下8℃严寒,连续16小时作业一次性完成囊体充气和挂架合拢。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/78ecd249-9ec4-4fe3-a9f7-8bb18b1bf7f9.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 搭载气溶胶和气象在线监测仪器的 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球平台航拍图 /span /p p   中午12:00,第一根1000米大气污染物化学组分和气象参数垂直探空曲线出现在计算机屏幕上,标志着以大载荷系留气球垂直观测平台为核心的大边界层污染加强观测实验在河北省望都县全面启动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/34942733-1811-4eff-99d9-c48b14d31c74.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  2018年12月15日600米、800米 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   存在污染物高空传输 /span /p p   本次大型联合实验为国家重点研发计划项目《陆地边界层大气污染垂直探测技术》的重点观测任务。该项目由中国科学院大气物理研究所胡非教授主持,参加单位有中国环境监测总站、上海市环境监测中心、深圳市环境监测中心、北京大学、中山大学、中国科学院合肥物质科学研究院、中国气象局北京城市气象研究所、南京大学和南京信息工程大学等九家单位。 /p p   本次投入实验的大型系留气球长32米,体积为1900立方米,有效载荷220公斤,升空高度可达1200米,是目前国内唯一的一个民用大载荷大气污染观测平台,艇上载有常规“六要素”二氧化硫、二氧化氮、臭氧、一氧化碳、PM2.5、总挥发性有机物,以及气溶胶质谱、粒径谱、黑炭和颗粒物计数等气溶胶化学组分实时观测仪器,同时还搭载有风速、风向,温度、湿度、气压、三维湍流脉动风速脉动温度等气象要素观测仪器。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e5ea6ca2-52fb-4292-8f96-3f259f7254e8.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   2018年12月15日气溶胶化学组分垂直分布图,仪器:ACSM,表明近地面燃煤和生物质气溶胶排放的有机颗粒物和硫酸盐、黑炭贡献显著,硝酸盐则高空传输和地面累积同步存在。 /p p   自2012年以来,在上海市环境监测中心的带领下,由华东理工大学、南京大学、中国电子科技集团第38所和上海民防办等五家单位组成的科研团队联合科技攻关,历经坎坷,最终将2010年上海世博会科技创新成果——安防气球系统改造为适用于大气环境科学研究的垂直观测平台,成为了一个悬置在边界层空域中的高空大气“超级站”。该系统于2013年、2015年、2016年5月、2017年和2018年在上海先后完成了3次冬季气溶胶污染和2次夏季臭氧污染垂直观测试验研究。团队连续攻克了高空与地面不间断供电、数据实时传输、高稳定度在线大气观测挂架设计、大气污染物和气象多维度数据同步集成、倒挂式颗粒物采样气路设计等多重技术难关,逐步探索和形成了一套以数值模型预报为指导、地基观测设备实时配套的近低空大气垂直科学观测方案,成功实现了在边界层高度的大气污染物的定点定时观测,弥补了在大气边界层高度长时间连续稳定观测的空白,为我国区域复合型大气污染成因和传输影响研究提供了一个全新的高空观测技术手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/beaa86ea-1fa0-4c38-8aba-6abc20d6f5bc.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日张远航院士一行赴 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   系留气球观测现场指导观测实验 /span /p p   本次在京津冀地区开展的规模较大的多平台、多要素大气边界层综合观测试验,是上海市环境监测中心首次将该系统成功移植到京津冀地区,将获得冬季重污染期间点面结合、三维立体的大气污染垂直分布信息。系留气球垂直观测平台所获得的宝贵的第一手高空边界层内的污染物和气象参数的原位观测资料,将为不同大气污染探测设备的对比校验、数据质量控制、数据融合和归一化、标准化研究,以及大气污染模式的发展提供帮助。该实验和科学装备引发了大气科学研究界的高度关注,12月19日,张远航院士、柴发合教授等一行专家专程赶赴望都实验现场指导,听取课题负责人霍俊涛工程师关于气球垂直观测系统的详细介绍,并充分肯定了该科学观测系统对我国大气科学研究的重大意义。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/47627da1-cdd9-4dbc-934a-3a9c1ef71aa5.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月19日气球观测课题负责人 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心霍俊涛工程师 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   向张远航院士一行介绍气球垂直 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   观测系统 /span /p p   “仓庚于飞,熠耀其羽”,大载荷系留气球大气和气象垂直观测平台的成功研发和稳定运行,为大气预测预报、污染预警和雾霾治理提供了一把新的解密钥匙,是我国大气环境科学研究大装备的又一重要标志性成果。上海市环境监测中心的技术人员们,不畏艰辛,攻坚克难,为保障祖国的绿水蓝天、建设生态家园贡献自己的力量! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df473542-22bc-4ac7-91d1-cd24bd365562.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年12月15日凌晨(零下8摄氏度) /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   上海市环境监测中心技术人员在 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   现场调试仪器 /span /p
  • 欧航局选定木星探测器搭载的11套科学仪器
    欧洲航天局21日宣布,该机构计划于2022年发射的木星冰月探测器将搭载11套科学仪器,探索木星卫星上存在生命的可能性。   木星冰月探测任务于去年5月被欧航局列为“2015-2025宇宙愿景”首个大型任务。按计划,该探测器将于2030年抵达木星轨道,对木星及其卫星进行至少3年的观测。   欧航局科学项目委员会当天确定了木星冰月探测器将携带的11套科学仪器,包括照相机、光谱仪、激光测高仪、探冰雷达、磁力仪和粒子监测仪等。这些仪器将由来自15个欧洲国家、美国和日本的科学团队共同研发。   欧航局太阳系任务协调员路易吉・ 科兰杰利表示,这些仪器能够达成木星冰月探测任务的所有科学目标,从现场测量木星磁场,到远距离观测木星卫星表面与内部结构等。   木星拥有多颗卫星,有“小太阳系”之称。此前探索表明,木卫二、木卫三和木卫四上可能存在地下海洋。木星冰月探测器将对这三颗卫星进行探测,探索其上存在生命的可能性。
  • 电子束对样品的热损伤及应对方式——安徽大学林中清33载经验谈(16)
    【作者按】在进行扫描电镜测试时,最让测试者感到头痛的往往是电子束对样品的热损伤。因为一旦产生热损伤,那么样品的表面形貌信息将彻底的消失。热损伤和荷电现象都会带来形貌像的形变,因此很多人(包括不少专业人士)都将样品的荷电做为形成样品热损伤的原因之一。其实这是个误解,样品荷电现象虽然对形貌像有改变,但是它不会对样品形成破坏,在改变测试条件克服荷电影响后,还是可以得到完整形貌像。但是热损伤就不是这样了,一旦发生热损伤,则该样品细节将不复存在,此后无论采取何种方式都无法获取这些信息。热损伤是如何形成的?那些样品容易形成热损伤?又有哪些因素是造成样品热损伤的关键因素?该采取何种方法来减轻或消除电子束对样品热损伤,获得相对完整的样品信息?一、电子束对样品热损伤的形成当高能电子束轰击样品时,高能电子束会与样品原子之间形成能量交换,形成所谓的“非弹性散射”。交换的能量中只有很少的一部分用于激发样品的特种信息,二次电子、光电子等,大部分能量都将转换成热能而驻留在样品中,使得样品局部温度上升,达到一定程度,就会对该处细节形成破坏,也就是热损伤。高能电子束轰击样品形成局部温度上升,该处升温究竟能达到多少呢?关于这一点目前都是以Castang升温公式为参考。依据Castang升温公式:V0(kV) 加速电压,i(μA) 探针电流,d(μm) 电子束直径,K 材料热导(Wcm-1k-1)其中加速电压、束流及束斑大小是造成样品升温的主要外部因素。而样品本身的热导率是形成温度上升的主要内部因素。一般观点都认为,容易形成荷电的样品,其漏电性(普遍被称为是导电性,但个人认为这个定义不准确)都较差。漏电性较差的部位,其导热性也较差,因此该部位更容易形成高温造成的热损伤。但是温度的升高与形成热损伤并不形成完整的一一对应关系,还与该处的耐热性有关。如果该处的导热性差,但其耐热性好,也一样很难形成热损伤,所以容易形成荷电的样品,即便其导热性较差,也不一定会比不易荷电的样品形成热损伤的概率要大。形成样品局部升温的外部因素,如加速电压、束流以及束斑直径,往往被认为是测试时调整样品热损伤影响的主要着力点。依据以上升温公式可知加速电压及束流越大,则同等条件下某区域的升温也就越高,对样品的热损伤也就越严重,但会受到束斑面积增大等因素的制约,最终结果取决正、负因素竞争后引起质变的主导者。这是对测试条件进行改变的依据所在,将在下一节再详细探讨。不同类型的电子枪,由于结构设计的差异,会使得同样加速电压下对电子束加速的最终电场偏压出现一定的差异,造成电子束的电子能量出现些微不同,而使得其在同等条件下对样品的热损伤也会出现差别。一般来说,冷场电子枪最终形成电子束的电子能量会略低一些,所以其对样品的热损伤在同等条件下也会略好一些。由于热发射电子枪慢慢的被淘汰,而且其常规测试条件和目前占据主流地位的场发射电子枪不在一个水平线上,所以不具备对比的意义。下面将只对热场电子枪和冷场电子枪结构进行探讨。从以上热场和冷场电子枪的结构简图可见,加速电压都做为基准的负偏压以开路的形态加载在阴极(灯丝)上,以保证阳极为零电位。这一点热场和冷场都是一致的。但是热场电子枪在第一阳极和阴极之间加了一个栅极保护极,屏蔽热电子,该电极上加载的负偏压是叠加在阴极之上,故栅偏压比阴极偏压更低。因此在第一阳极拔出电子时给电子的加速就应该以一个更负的偏压基础来计算,也就是整个电场的偏压值会有所增加,从而使电子束中电子的能量会略大一些。由于电场的叠加作用并不是简单的一加一,所以电子束中电子能量的差别也不能采用简单的加减法来进行计算。该差异在高加速电压时,相对较小,据次要地位。但随加速电压值的降低,其在电子整体能量中的占比就会增加。加速电压达到100V后,该差异的影响就不得不考虑。冷、热场也会呈现出信息深度上的差异。低于100V,加速电压值基本无法代表电子的实际能量值。电子能量真低于100eV,能充分激发最高能量为50eV的二次电子?从以上两张原子力显微镜的图片可见,湿法膜结构为骨节状骨架表面有一薄膜层。膜层应该是非常的薄,估计只有几个纳米。扫描电镜采用极低的加速电压100V来观察可见如下结果:左图某冷场发射扫描电镜图,图像骨节状信息不清晰,明显感觉有膜状物裹挟。右图某热场发射扫描电镜图,骨节状的结构清晰可见,表层薄膜信息却较为的淡薄。加速电压相同,热场观察到的信息更深一些,这说明在同样加速电压下,热场电子束的能量是要大于冷场扫描电镜。但是这个能量差在加速电压较高时,相对较小,图像差异也就不明显了。当加速电压到500V的时候,电子束中电子能量的相对差距相比100V来说要低很多,图像呈现的信息几乎一致。正是电子束的能量存在些微差距,这就会使得冷场扫描电镜在相同条件下对样品的热损伤会相对轻微一些。枝晶MOF,容易被电子束热损伤左图 热场只能观察不易受热损伤的粗枝晶而无法观察到如右图的细枝晶右图 冷场即便观察更容易被热损伤的细枝晶也不存在问题电子束在样品上扫描区域的面积越小,电子束能量转换也就越集中,形成的热量密度也越大,相对来说对样品热损伤也会增强。这就是倍率越高,样品越容易受电子束热损伤的主要原因。增大束流,对样品的热损伤会加大,但是受到束斑尺寸的制约。依据Castang公式束流的影响综合表现为束流密度对升温的影响,束流密度冷场要高于热场,但是以上的事例呈现的结果却于此相反。因此个人认为:电子能量的大小对热损伤的影响似乎更为关键。二、如何应对电子束对样品的热损伤Castang的升温公式告诉我们,引起样品表面升温的因素来自两个方面:样品自身的导热性这是内因,而外因在于加速电压、束流和束斑尺寸的大小。这些因素也是我们改善电子束对样品热损伤的切入点。增加样品热导率,降低加速电压和束流,增加束斑尺寸及束斑离散度,都会减轻电子束对样品热损伤的程度。但这些改变都会对扫描电镜的测试结果带来负面影响,因此对“度”的掌控,找寻最合理的测试条件的综合解决方案,是应对电子束对样品热损伤的最佳选择。电子显微镜冷冻操作技术的发展,为应对样品的热损伤开拓了更大的空间。显而易见,降低样品温度会减少电子束对样品的热损伤,特别在液氮降温技术被成熟运用之后,效果极为明显。但冷冻技术的操作较复杂、成本较高且会带来样品仓室污染,影响仪器的分辨能力,目前运用的并不广泛。下面仅探讨常温下的热损伤解决方案。在探讨这一综合解决方案之前,将首先对以上单一解决方案的具体操作方式给予一一的描述。2.1 应对样品热损伤的内部因素调控改善样品性能应对电子束的热损伤,必须以尽量减少对表面形貌的破坏为先决条件。对于该项工作的实际操作方式,依据个人的实践经验可总结为:合理的样品老化,以便增加样品对热损伤的耐受力;适度的蒸金以提升样品表面的导热性。采用导电胶对样品的充分固定是进行以上操作的先期必要步骤,导电胶要涂至样品表面。在样品可耐受的温度范围内,对样品整体进行烘烤老化,一般需几个小时或过夜甚至更长时间,尽可能去除样品表面附着的挥发物。需要的话,可将样品在电镜中采用低剂量的电子束(较低的加速电压和束流)在低倍率下轰击直至稳定,这期间要监控样品在电子束的轰击下是否会出现形貌的变化,如果出现形貌的改变则必须将电子源能量进一步降低。如果样品老化效果不佳,则可以采用蒸金的方式以改善样品表面的导热能力,减少电子束对样品的破坏。样品表面蒸金须考虑以下几个影响样品形貌信息的事宜:①蒸金时对样品的热损伤。②蒸金量对样品形貌信息的覆盖。③镀层的均匀性,保证在较少蒸金量的情况下有更好的导热性。要满足以上三点,控制好电流和单次蒸金时间极为关键,个人认为单次蒸金时间最好不要超过20秒。低剂量的多次、短时间蒸镀是解决问题的最佳方案。具体蒸金量可通过实际观察效果予以调整。2.2 应对样品热损伤的外部因素调控依据Castang升温公式,较低的加速电压和束流强度,较大的束斑尺寸都会使得同等条件下样品观察区域的温度上升较小,对样品细节的热损伤也会较轻或基本不会形成热损伤。但过低的加速电压和束流,以及较大的束斑尺寸会影响图像质量并限缩样品形貌信息的获取,具体探讨可参见经验谈8《加速电压和束流选择》。要获取更充分的样品形貌信息必须扩大这些测试条件的选择范围。工作距离、图像倍率以及电子束扫描速度的选择都会对样品的热损伤产生较大的影响。而在对它们做出合理的选配之后将会极大的扩大加速电压、束流以及束斑尺寸的选择余地。工作距离越小,电子束的会聚角就会增大,电子束的束流密度将会增加,从而在同等条件下对样品的热损伤也会加大。样品的热损伤常常会出现在高倍率的调整过程中(如上图红框部)。表现为高倍率调整部位的细节与周边细节极度的脱节,被热损伤的部位细节明显的收缩并加粗,这些都显现在了左图采用1.7mm工作距离所获取的形貌像中。右图采用8.7mm工作距离所获取的形貌像在相同部位则与周边细节的变化完全的匹配,未受到电子束的热损伤。但是工作距离的过度拉大,会使得电子束斑的弥散加大,不利于获取高质量的高倍率形貌像。故测试时要取、舍得当,没有舍哪来取。依据个人经验,当工作距离达到15mm以后,由于电子束弥散较大,电子束对样品的热损伤会降低的极为明显。因此,对加速电压和束流的限制会下降很多,对它们的选择空间将明显加大。扫描电镜的放大倍率越低,电子束在样品上的扫描密度就越稀松。使得电子束在样品上产生的热量较为分散,局部温度降低的较为明显,对样品的热损伤也会减弱。在常规测试时,往往会发现电子束对样品的热损伤都是出现在高倍率的仪器调整(调焦及消像散)时。当电子束在样品上快速移动时,电子束在某点停留时间的减少,也会将单次能量的转换量降下来,同样也会减缓温度的提升并随电子束的快速移动而发散开来。大量的实践经验告诉我们,对样品某点的热损伤除了升温的高低之外,关键还在于驻留时间的长短。同等条件,驻留时间越短电子束对样品的热损伤越小。因此采用快速扫描获取样品的形貌像也是克服样品热损伤的有效方法。依据本人长期测试经验,应对样品热损伤,在外部因素的调控方面,选用较大的工作距离以及快速的扫描方式获取图像,对减缓热损伤的效果要远高于在加速电压、束流及束斑尺寸方面的选择。2.3 如何应对样品的热损伤以下内容为本人数十年,特别是近十年的经验总结,仅作参考。要充分应对样品的热损伤,样品的处理极为关键。而样品处理在2.1节已有较为详细地描述,这里要强调的是,固定是最先要做的基本工作,因为样品的整体固定不但是解决图像漂移的基础(容易热损伤的样品本身就不稳定)同时也为后期的导热提供通路。样品的老化和金属化(蒸镀金属材料)要采用低剂量的叠加方式尝试着来,随时观察判断并调整极为关键,否则很容易破坏样品的细节。对测试条件的选择,加速电压和束流的选择要以获取样品信息为准,兼顾其对样品热损伤的影响。对热损伤的处理主要交给工作距离和获取形貌像时的扫描速度来解决,这样效果反而更好。大工作距离有利于获取样品的大部分表面形貌信息,同时也有利于减弱电子束对样品的热损伤。快速的扫描模式虽然会影响形貌像的图像质量,但是并不会对形貌信息产生太大的影响,而加速电压和束流选择的不同对获取样品的细节信息,影响就要大很多。电子束对样品的热损伤最容易出现在高倍率情况下的像散和焦点调整,因为此时电子束会长时间的汇聚在某一区域。电子束的长时间驻留对样品热损伤要大于温度的影响,当然这都是在一定“度”的范围内。在进行调整操作时会形成样品热损伤,不一定在拍摄形貌像时也存在热损伤,关键是你要调整好拍摄形貌像时的电子束扫描速度。所以调焦和消像散应当采取“临近点调焦”的原则,利用多个临近点的对中、调焦和消像散来减轻拍摄点的热损伤现象。三、结束语扫描电镜测试时电子束对样品的热损伤是最让测试者头痛的问题。形成样品热损伤的因素有很多,依据Castang升温公式,加速电压、束流、束斑尺寸以及样品的热导率是导致样品温度上升的主要因素,也是形成样品热损伤的主要因素。对于样品来说,热导率是内因,其他都是外部因素。而要解决样品热损伤问题,着眼点就是对这几个因素进行调整。对内因的解决方案主要是样品的固定、老化以及金属化(蒸镀金属)。而对外因的解决方案就是降低加速电压和束流,增加电子束束斑尺寸。在实际测试过程中往往发现对上所述的外部因素进行大范围调整会带来样品信息的缺损。而借助于工作距离和拍摄图像时对电子束扫描速度的选择,将有助于扩大加速电压、束流的调整范围。大工作距离测试不仅能带来样品热损伤的减轻,还能获得许多小工作距离无法获取的样品信息,这在过去的经验谈中有充分的探讨。自然辩证法的三大规律告诉我们,任何条件的改变都会带来一定程度的负面因素。要避免负面因素成为主导,任何因素的改变都不能走向极端。多种因素配合使用,互相弥补各自所存在的缺陷,才能获得较为完美的结果。对样品热损伤的处理也是一样,要把以上对减轻样品热损伤的所有方法结合起来使用,才会获得最佳的效果。 参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社
  • 廿五载岛津杯 十三届药分情 全国药物分析优秀论文征文中
    自1992年起,《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会迄今已连续成功举办了十二届。会议紧扣学科热点和焦点问题,突出学术交流功能,吸引了来自包括澳门在内全国各地的业界学者积极参加。对促进药学学科的发展发挥了重要作用,业已形成精品系列会议和药物分析学科的重要学术交流平台。 前四届会议由《中国药学杂志》编辑部主办。为了进一步扩展学术交流的能力,自第五届起,会议转由中国药学会药物分析专业委员会主办、《中国药学杂志》编辑部(社)承办。作为大会冠名的协办方,岛津公司一路陪伴,共同走过二十五载春秋。在这浓情岁月里,承载的是岛津对药物分析事业的鼎力支持之情。历届岛津杯都吸引了数百位药物分析领域的专家学者参加。大家济济一堂,新老朋友相聚,交流最新检测技术、讨论药分学术进展,成为药学届的一大盛会。第十二届岛津杯大会合影岛津杯的成功举办,离不开业界专家学者的大力支持。我们来听听老中青三代药物分析工作者是怎么说的。(视频链接地址:https://v.qq.com/x/page/x05269mhruy.html)每一张奖状,浓缩一段历史;每一座奖杯,讲述一份情谊。 翻阅历届岛津杯奖状和奖杯的照片,岛津杯药物分析优秀论文颁奖的现场仿佛历历在目,令药分人为之自豪!第十三届《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会,将于金秋九月在美丽的天府之国蓉城举办。立即投稿,加入这一药物分析届的盛会!《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会征文通知(第一轮) 各有关单位及科研人员: 为推动我国药物分析事业的发展,促进药物分析技术的交流, 由中国药学会药物分析专业委员会主办,《中国药学杂志》社承办, 岛津企业管理(中国)有限公司协办的《中国药学杂志》岛津杯第十三届全国药物分析优秀论文评选交流会拟定于 2017 年 9 月14-16 日在四川省成都市举行。本次会议的主题为“创新驱动精准药物分析、保驾护航药品质量安全”。 《中国药学杂志》岛津杯全国药物分析优秀论文评选交流会自 1992 年创办起,至今已成功举办了十二届。会议对促进我国药学学科发展发挥了重要作用,已成为中国药学会精品系列会议和国内药物分析学科最为重要的学术交流活动之一。本次会议将邀请中国药学会、中国药学会药物分析专业委员会部分领导、药物分析专业委员会全体委员及国内知名药物分析专家参会。 会议将设主会场专题报告、优秀论文分会场报告交流和在校学生优秀论文交流论坛。征文通知如下。 1 征文内容 1.1 生物医药研发和质量分析的新理论、新技术、新方法; 1.2 药物一致性评价研究; 1.3 中药质量检验控制的现代化分析新手段和新技术; 1.4 化学药物、抗生素药品等的质量分析研究; 1.5 药用辅料、包装材料与药品质量; 1.6 药物血药浓度监测、生物利用度、溶出度和药代动力学等方面研究; 1.7 基因、蛋白、代谢、细胞组学等分析检测方法研究; 1.8 在校学生在药物分析领域研究中的新思路、新成果。 2 征文要求 2.1 未公开发表及未在全国性会议上交流过,有一定的创新性; 2.2 论文体例、格式请参见《中国药学杂志》2017 年第 1 期稿约; 2.3 论文被录用后,将通知作者;论文录用与否,一律不退稿,请自留底稿; 2.4 征文截止时间:2017 年 8 月 10 日(以邮戳为准)。纸质稿件及信封上请注明“ 岛津杯征文” 字样, 电子稿件请发至daojinbei@126.com (邮件标题请注明岛津杯征文)。如希望在“在校学生优秀论文交流论坛”上交流,也请注明,并附在校就读证明。 3 会议时间及地点 时间:2017 年 9 月 15-16 日,14 日报到。 地点:成都(具体详见第二轮通知)。 4 论文评奖 对到会交流的论文将组织专家进行评奖,评选出优秀论文一等奖 3 名(3000 元/名)、二等奖 6 名(2000 元/名)、三等奖 10 名(1000 元/名)。 在校学生优秀论文交流论坛,一等奖 1 名(2000 元/名)、二等奖 2 名(1000 元/名)、三等奖 5 名(500 元/名)。获得一、二等奖的论文在征得作者同意后将在《中国药学杂志》上发表。 5 联系地址及联系方式 地址:北京市朝阳区建外大街 4 号建外 SOHO 九号楼 1805 室 (邮编:100022)。联系人:田菁; 电话:010-58698009 转 813。 关于中国药学会药物分析专业委员会:中国药学会药物分析专业委员会成立于1981年,长期致力于推动我国药品研发创新、检验检测技术转型升级,为确保广大人民用药安全有效做了大量学术与技术保障支撑工作。在促进我国药物分析学科战略发展、提升学科科研、药物分析新技术、新方法研究、药物分析人才队伍建设以及支撑药物开发、临床评价及临床合理用药监测等方面发挥着重要的作用。关于《中国药学杂志》:《中国药学杂志》是中国科学技术协会主管、中国药学会主办的综合性药学学术期刊,前身为《药学通报》,于1953年1月创刊,是新中国成立后我国第一本药学领域的专业性学术期刊,是一本反映我国药学各学科进展和动态的专业性学术期刊,以药学科研工作者及其他医药卫生行业人员为读者对象,内容涵盖药学研究与实践全领域。现任主编为中国药学会名誉理事长桑国卫院士。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 35800公里外为地球大气做“CT”:静止轨道红外干涉大气三维探测载荷技术|上海市科学技术奖
    项目名称:静止轨道红外干涉大气三维探测载荷技术完成单位:中国科学院上海技术物理研究所完 成 人:丁 雷 等奖励等级:技术发明奖一等奖天气变化影响着人们穿衣、出行,乃至生活的方方面面,对气象开展准确监测是世界科学家们孜孜以求的目标。地球静止轨道气象卫星,相对地球静止不动,可以全天候获取我国所在区域的连续动态观测数据,犹如坚守岗位的“哨兵”。因此,发展静止轨道先进大气探测载荷技术是世界各国科技竞争制高点之一。由中国科学院上海技术物理研究所历经20年研究的静止轨道红外干涉大气三维探测载荷技术在国际上率先取得突破,该所研制的干涉式大气垂直探测仪(GIIRS)装载于我国第二代地球静止轨道气象卫星——风云四号卫星上,在国际上首次实现了静止轨道大气温度、湿度垂直三维探测,有效提高了长期数值预报精度,对我国和“一带一路”沿线国家和地区的天气预报和灾害预警具有重要意义。在35800公里外为地球大气做“CT”,是我国气象预报当之无愧的“独门秘笈”之一。2018年台风玛利亚内部温湿度信息探测01群雄逐鹿 拔得头筹大气在空间分布上是三维的,其温度、湿度和压强会随时间而变化,大气的运动和变化便是天气现象的本质。摸清大气垂直运动的“脉搏”,就能及时预报天气的发生与发展。如果能获取一幅动态大气三维“全息”影像,就能表征天气现象动态演变过程,为数值预报提供强有力的“诊断”依据,及时出具应急响应的“处方”。然而,在35800公里的地球静止轨道监测如同针尖大小地面上空大气层的变化,谈何容易,可谓差之毫厘、谬以千里!在国际上,静止轨道红外干涉大气三维探测载荷技术的研究起源于20世纪90年代,美国、欧洲和中国先后开展了本项技术研究。由于技术难度大、不成熟等问题,原计划在美国GOES系列、欧洲MTG-S项目上实施的载荷至今尚未在轨实现。而本获奖项目科研团队研制出的两台GIIRS仪器已经在2016年和2021年先后进入静止轨道工作,连续为全球提供高时效大气三维探测数据超过5年,我国已成为全球的唯一数据源。“GIIRS实现了好几个‘世界首次’,在预报服务中发挥了很好的作用!”中国气象局数值预报中心模式研发室副主任、风云四号卫星数值预报应用攻关团队首席专家韩威,给出如上评价。02自主创新 攻坚克难静止轨道红外干涉大气三维探测载荷技术究竟包含了哪些“法宝”和“绝招”,解决了哪些关键核心技术难题呢?看得细——大气目标精细光谱探测。实现大气温度和湿度参数的三维垂直结构观测需解析不同高度大气的红外吸收光谱,要求光谱分辨率达到0.625波数,在35800千米距离上进行大气光谱探测,需要建立新的精细光谱测量技术体制。看得准——低能量的高探测灵敏度。由于对地观测距离超过35800公里,到达轨道上的地球辐射能量值仅为低轨道的数千分之一;同时探测大气要求的高光谱分辨率,使得目标的辐射能量减小1.5个数量级以上,研制出更加灵敏的“视网膜”,即高性能新型红外探测器来提高探测转换效率、降低测量噪声。看得远——载荷极高指向观测稳定性。针对远距离观测,提出了二维扫描镜扩大仪器的视场,离轴主望远光学系统收集大气能量、动镜式傅立叶干涉仪进行探测、通过机械制冷机冷却面阵探测器和辐射制冷器冷却后光路、高性能探测器进行光电转换的高光谱载荷总体技术方案,并研制了集成化的载荷系统,系统解决了地球静止轨道进行高光谱、高灵敏度、高稳定大气三维探测的三大技术难题。看得清——复杂空间环境下高稳定探测。由于地球自转与公转带来的载荷温度变化超过210℃与载荷光学系统温度稳定度要求小于0.2℃的矛盾,突破多温区的高稳定度控制技术,达到“身处水深火热,内心平静如水”的状态。03气象灾害 尽收眼底静止轨道红外干涉大气三维探测载荷技术在台风等灾害天气预报和建党100周年活动等重大气象服务中发挥了重要作用。据相关统计显示,预报台风登陆地点的路径误差每减少1公里可避免直接经济损失约1亿元人民币,仅在2019年,GIIRS对台风“利奇马”的24小时路径预报误差从75公里降到50公里,直接减损效益估计超20亿元。此外,GIIRS在GRAPES数值预报中的成功应用,促进了全球静止卫星高光谱观测系统发展。在2019年美国召开的联合卫星大会上,美国天气局(NWS)局长指出:静止轨道高光谱探测将是下一步最大的进步;美国国家环境卫星信息资料中心NESDIS主任评价该载荷技术:促进了全球静止轨道卫星大气高光谱探测系统发展和卫星观测同化应用。在学术贡献上,国际和国内气象应用专家还利用GIIRS高频次、高光谱数据,针对NH3、四维风场等探测要素开展研究。面向国家战略亟需,中国科学院上海技术物理研究所创建了静止轨道大气三维探测全新技术体制,发明了具有完全自主知识产权的高光谱载荷技术,国际上率先实现了高频次的地球静止轨道大气三维结构精细探测,推动了风云四号卫星处于国际领先地位,获得了重大的应用价值和社会效益,得到各方的高度评价。站在时代的潮头回望历史,我们的科研人员心中仍谨记着周恩来总理1969年1月29日的重要指示:应该搞我们自己的气象卫星。五十多年来,风云系列气象卫星走出了从无到有、从小到大、从弱到强的成功之路。回首风雨,展望未来,上海技术物理研究所科研团队将接续奋进,紧密围绕气象领域和我国大气探测的战略要求,瞄准国际竞争制高点,为我国大气探测技术实现升级换代和逐步超越国际水平作出更多新的贡献!
  • 天宫二号紫外临边探测专项载荷研制通过验收
    p   6月23日,天宫二号紫外临边探测专项载荷在轨指标评价评审会在北京召开,评审组一致同意紫外临边探测专项载荷通过评审。 /p p   评审组由北京大学、国家卫星气象中心、北京应用气象研究所、中科院空间总体部、西安光机所、长春光机所和大气物理所等单位专家组成。 /p p   评审组专家认为:紫外临边探测专项在国际上首次提出并实现了环形探测新模式,采用环形+前向联合探测新体制实现了多方位、多波段同时大气成份探测,两台载荷的功能和性能指标满足研制任务书要求,考核评定为成功。 /p p   天宫二号紫外临边探测专项载荷由中科院长春光学精密机械与物理研究所负责研制。该专项载荷搭载于天宫二号,于2016年9月15日发射升空。发射成功后10小时,该专项载荷加电,1小时10分钟后温控达到稳定状态。中科院大气物理所作为用户单位,在测试项目及内容覆盖了全部功能、外部、内部接口,并满足任务书要求的基础上开展了在轨指标评价工作。空间实验室在轨运行期间,该载荷对地球边缘大气层进行紫外-可见-近红外光谱临边探测,获取地球临边光谱数据。通过大气成分临边反演技术,获取大气成分如O3的垂直分布,并对大气气溶胶等信息进行反演试验性探索。 /p p   天宫二号紫外临边探测专项载荷由紫外前向光谱仪和紫外环形成像仪构成,如下图所示,二者具有强互补性。环形成像仪提供大气辐射多方位空间分布与动态的宏观结构,前向光谱仪提供某一方位的精细结构。这是国内首次采用临边观测方式进行大气探测,并且可以实现对大气密度和臭氧等大气痕量气体浓度的同时遥感。 /p center img alt=" 天宫二号紫外临边探测专项载荷研制通过验收" src=" http://images.ofweek.com/Upload/News/2017-07/10/nick/1499658005903068332.jpg" width=" 400" height=" 141" / /center p style=" TEXT-ALIGN: center"   紫外前向光谱仪和紫外环形成像仪 /p p   紫外临边探测专项的研制与空间实验室的在轨试验,为地球环境与气候预测、空间天气学应用和紫外姿态敏感单元研究等开辟了新方向,为空间大气临边成像光谱探测的业务化运行奠定基础。该专项载荷在大气痕量气体监测、大气与环境预报、空间天气等领域具有广泛的应用前景。 /p
  • 高性能InGaAs单行载流子探测器芯片取得重大进展
    中国科学技术大学王亮教授和韩正甫教授课题组研发的InGaAs单行载流子探测器芯片取得重大进展。该研究团队通过设计优化表面等离激元结构,开发成功低暗计数、高响应度、高带宽的单行载流子探测器芯片,为近红外探测器性能提升提供了开创性的方法,相关研究成果以“Plasmonic Resonance Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode”为题,发表在电子工程技术领域的知名期刊ACS Applied Electrical上。   基于等离基元结构的InGaAs材料的单行载流子探测器芯片具有极高带宽,低暗电流和高响应度,为近红外高速垂直光电二极管的设计提供了一种新型的方法。为应用于数据中心的光接收模块提供了核心芯片,突破未来更高速光模块开发的关键硬件技术壁垒   王亮教授研究团队通过调整MOCVD的温度、V/III比、掺杂浓度等生长参数实现低缺陷密度和高掺杂精度的外延结构生长。在单行载流子器件结构的基础上提出并设计了新型的表面等离激元增强单行载流子探测器,利用光在金属表面的局域表面等离激元效应,增强吸收区对于光信号的吸收。研究团队的所制造的器件具有0.12A/W的高响应度,在-3 V偏压下具有2.52 nA的暗电流,当芯片结区面积小于100 μm2时3dB带宽超过40 GHz。相比于同类器件,响应度增强了147%,具备更高的信噪比,为高速光互联网络提供优质国产化芯片。 图1表面等离激元增强单行载流子探测器示意图   中国科学技术大学光学与光学工程系王亮教授为该论文的通讯作者,博士研究生张博健为该论文的第一作者。本项研究得到国家科技部、国家自然科学基金和安徽省科技厅的资助,也得到了中国科大物理学院、中国电子科技集团第13研究所、中国科大微纳研究与制造中心、中国科学院量子信息重点实验室的支持。
  • 中国首颗太阳探测卫星拟2022年发射,搭载三台探测仪器设备
    据新华社1月21日消息,我国第一颗综合性太阳探测卫星——先进天基太阳天文台(ASO-S)计划于2022年上半年发射升空。这颗卫星的发射,将标志我国进入“探日”时代。“先进天基太阳天文台(ASO-S)”,2016年4月底通过了中国科学院组织的背景型号阶段结题验收。中国科学家团队正全力以赴推进太阳探测卫星计划。他们希望赶在下一个太阳活动峰年的前夕(即2021年),将其射入轨道,以完整记录太阳活动第25周的“太阳风暴”。2018年1月4日,ASO-S(先进天基太阳天文台)科学准备项目暨ASO-S科学应用系统启动会在中国科学院紫金山天文台仙林新园区召开。同年7月4日,中国科学院重大任务局在中国科学院国家空间科学中心主持召开了“空间科学(二期)”战略性先导科技专项启动会暨EP、ASO-S卫星工程启动会。根据ASO-S卫星工程立项批复文件和空间科学(二期)先导专项实施方案,ASO-S卫星将在2021年底完成工程研制任务,并于2022年上半年择机发射。据悉,先进天基太阳天文台(ASO-S)是我国首颗空间太阳专用观测卫星,将揭示太阳磁场、太阳耀斑和日冕物质抛射(一磁两暴)的形成及相互关系。 为实现这一目标,ASO-S上将搭载3个主要载荷:全日面太阳矢量磁像仪(FMG)、莱曼阿尔法太阳望远镜(LST)、太阳硬X射线成像仪(HXI),它们将分别用来观测太阳磁场、耀斑和日冕物质抛射。全日面矢量磁像仪是ASO-S卫星的主载荷之一,将以高分辨率和高灵敏度测量太阳磁场,通过连续稳定的观测,研究太阳磁场的发生,发展,相互作用,以及作用的后果,从而深入研究耀斑和日冕物质抛射过程中的能量积累,触发,释放和传输机制,并为空间天气事件预报提供观测基础,为我国空间环境的安全提供保障。空间光学系统在进行天文观测时,彻底摆脱了大气影响,背景噪声的降低极大的提高了观测分辨率。莱曼阿尔法太阳望远镜(LST)是先进天基太阳天文台(ASO-S)卫星的载荷之一,它包括白光太阳望远镜(WST),全日面太阳成像仪(SDI)和日冕仪(SCI)等仪器。1991年Kuhn,Lin和Loranz提出的方法(简称KLL方法)是WST和SDI在轨平场定标的方法之一。硬X射线成像仪(HXI)作为该卫星3个科学载荷之一, 实现了高时间分辨率和空间分辨 率的太阳硬X射线成像观测,其量能器由99套溴化镧闪烁晶体-光电倍增管探测单元和读出电子学板构成,实现了30–200 keV的硬X射线光子能谱测量。
  • 苏州纳米所在大载流、高导电碳纳米管复合薄膜研究方面获进展
    导体材料是信息交互、电能传输和力、热、光、电、磁等能量转换的基础性材料,在航空航天、新能源汽车、电力线路等领域具有重要应用价值。随着大功率器件的发展,对轻量化、大载流、高导电性材料的需求越来越迫切。单根单壁碳纳米管(SWCNT)拥有极高的载流能力和电导率,载流能力比传统金属铜高出2~3个数量级,电导率更是银的1000倍以上。然而,当SWCNT组装成宏观薄膜的时候,由于碳管间电子/声子散射的影响,载流能力和电导率会显著降低,从而制约SWCNT薄膜在大功率器件领域的应用。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星等提出并研制了新型大载流、高导电碳纳米管复合薄膜材料。研究团队采用化学气相输运法将CuI均匀高效地填充到SWCNT管腔中,制备出CuI@SWCNT一维同轴异质结。SWCNT对CuI具有保护作用,保持了CuI的电化学活性,使其能够在恶劣的酸性环境和长期电化学循环下保持稳定性。研究通过电学测量发现,CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m。  SWCNT填充CuI后,SWCNT中电子流向CuI,导致SWCNT的费米能级降低;同时,CuI@SWCNT一维范德华异质结中SWCNT的结构未被破坏,载流子依然保持高效的传递速率,进而使得CuI@SWCNT薄膜具有更高的导电性和载流能力。CuI@SWCNT复合薄膜在未来高功率电子器件、大电流传输等应用中具有潜力。 相关研究成果以CuI Encapsulated within Single-Walled Carbon Nanotube Networks with High Current Carrying Capacity and Excellent Conductivity为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。
  • 支持中国环境行业发展十载 沃特世荣获POPs论坛杰出伙伴奖
    中国上海 - 2015年5月26日 –沃特世公司(Waters)近日在“持久性有机污染物论坛2015暨第十届持久性有机污染物学术研讨会”(以下简称“POPs论坛”)上获颁“POPs论坛杰出伙伴奖”,旨在肯定沃特世公司对中国环境检测的支持,特别是POPs检测领域的探索。本届论坛于2015年5月17日在桂林举行,主题为“更新国家实施计划,推动POPs国际履约进程”,共有来自国内科研院所、政府管理部门和行业企业代表,以及国际相关机构与美国、德国等多国特邀专家共计四百余人参会。 沃特世荣获POPs论坛杰出伙伴奖沃特世公司市场部经理舒放表示:“我们非常荣幸能够获得POPs论坛颁发的杰出伙伴奖。POPs论坛是中国环境行业最重要的盛会之一,沃特世从第一届会议就开始参加,直到今年的第十届。沃特世一直和国内环境领域保持良好的合作,以不断创新的分析方法,共同解决我们所面临的各种环境问题。” 在此次POPs论坛上,舒放应邀参加了专家委员会会议,并作了题为“水体中抗生素PPCP等痕量污染物的快速筛查与预警”的报告。由于在河流、溪流中的化合物往往处于PPT的极低水平,加上化合物的种类和结构广泛的化学多样性,这两大特点构成了检测痕量化合物的两大挑战。采用沃特世基于超高效液质系统开发的解决方案,可检测地表水及饮用中处于万亿分之一(PPT)级别的化合物,包括对抗生素等药物进行快速高效提取、分离和检测,可有效检测水中药物超标问题。 沃特世公司环境市场高级顾问陈宇东在大会报告中介绍了最新型大气压离子源"软"电离技术APGC让气相色谱和质谱组成联机,在环境领域中的应用。与传统电子电离源(Electron Ionization,EI)相比,APGC离子源不仅离子化效率高而且“软”电离方式减少碎片峰,APGC离子源通过电荷转移和质子交换形成高丰度M+和MH+峰,大幅提高质谱灵敏度,降低检测限至低PPT级。APGC和电喷雾(ESI)都是大气压离子化方式,切换使用方便,因此质谱既可以和APGC组成HRGC/MS/MS联机,也可以和超高效液相色谱UPLC组成UPLC/MS/MS联机,从而大大提高质谱使用率,解决实验室气相色谱、液相色谱高通量检测样品的需求。目前沃特世公司的Xevo和SYNAPT系列质谱产品可以和APGC/UPLC组成高灵敏度的质谱双系统,广泛应用于食品和环境领域中农药残留、毒物筛查、二恶英、多溴联苯醚和溴代阻燃剂等难点化合物的分析。其中,沃特世的Xevo TQ-S和APGC系统检测二恶英的结果还具有法规依从性,符合欧盟2014年6月2日发布的新修订的检测食品和饲料中的二恶英的法规。 沃特世公司环境市场高级顾问陈宇东作现场报告环境问题是复杂且极具挑战性的全球性问题,无论是空气、水、还是土壤样品的分析检测,沃特世都有相应的解决方案,用我们领先的技术和雄厚的应用支持来全力保障我们赖以生存的环境的安全。 下载资料:使用大气压气相色谱电离源结合串联四极杆质谱仪分析142种农药残留的认证方法http://www.waters.com/webassets/cms/library/docs/720004952zh.pdf使用精确质量LC-MS和集成的科学信息系统筛查环境样品中的多种化合物http://www.waters.com/webassets/cms/library/docs/720004810zh.pdf采用在线 SPE 技术的 UPLC,用于分析饮用水中的农药和药物 http://www.waters.com/webassets/cms/library/docs/720003376rA_ZH.pdf使用Xevo TQ-S和APGC大幅降低二恶英分析中的样品残留http://www.waters.com/webassets/cms/library/docs/720004964zh.pdf更多沃特世环境应用文集:http://waters.com/webassets/cms/library/docs/720005091zh.pdf 关于沃特世公司(www.waters.com)50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 关于沃特世中国沃特世公司创始于1958年,是全球分析实验室解决方案的行业领导者。沃特世为科学家提供一系列分析系统解决方案、软件和服务,包括液相色谱、质谱和化学品。自上世纪80年代进入中国以来,沃特世目前在内地及香港设有五个运营中心拥有四百多名员工,在上海、北京、广州、成都设立实验中心和培训中心。 在中国,沃特世的业务范围涉及生物制药、健康科学、食品健康、环境保护和化学等多个领域,为小分子化学和中药研究、生物制药理化分析、农兽药筛查、代谢产物鉴定、组学平台、临床检测、乳制品检测等提供多种解决方案,服务工业生产的关键环节。 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已经成为沃特世全球仅次于美国的第二大市场。沃特世中国始终坚持提高本地技术能力、培育本地技术人才,推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善,力求满足人们日益增长的健康需求,创造更美好的生活。 ###Waters、ACQUITY、ACQUITY UPLC、UPLC、SYNAPT、Xevo和ionKey/MS是沃特世公司的商标。
  • 六年砥砺奋进,十八载风雨同舟,突破创新,合作共赢!
    2024 年,北京共赢联盟公司和艾佧科技科技公司的全体员工、伙伴们一同奔赴东戴河边。在海边尽情释放,感受无尽自由,开启了一场难忘的团建之旅。Day1:出发,满怀期待中午时分,阳光正好,共赢联盟的小伙伴们从望京出发,先去迎接艾佧科技的朋友们。会合时,大家脸上都洋溢着兴奋与期待;经过短暂的交流和准备,我们一同登车踏上了前往东戴河的旅途。大巴车在公路上平稳行驶,车厢内热闹非凡。大家你一言我一语地调侃着,欢快的氛围如同温暖的阳光,洒在每个人的心田。今年,恰逢北京共赢联盟国际科技有限公司成立18周年,艾佧科技(北京)有限公司成立6周年,悠悠的历史长河见证着两家公司的成长与辉煌。当晚,两家公司的庆祝晚宴在东戴河帝景海酒店盛大举行。晚宴中,艾佧科技市场销售总监——杨敏女士,北京共赢联盟公司总经理——杨子女士以及艾佧科技技术总监——王东胜先生,分别对两家公司上半年的经营情况做了总结并对给予了下半年公司业务发展的期望。最后,由北京共赢联盟公司&艾佧科技的董事长杨立强先生做最后的总结发言,他表示:在两家公司未来的发展中,将继续坚持“合作共赢”的理念。我们深知,用户是我们企业生存和发展的根基。只有与用户紧密合作,深入了解他们的需求和期望,我们才能提供更优质、更贴心的产品和服务。我们用心倾听用户的声音,将他们的反馈视为宝贵的财富,不断改进和创新,与用户共同成长。当用户在与我们的合作中获得了价值和满足,我们的企业也将赢得他们的信任和忠诚,从而实现真正的共赢。而对于我们每一位员工来说,合作共赢同样至关重要。从北京共赢成立的 18 年,到艾佧科技发展的 6 年间,每一个重要的时刻、每一项辉煌的成就,都离不开团队成员之间的紧密合作。在当今竞争激烈的市场环境中,我们不能单打独斗,而要紧密团结在一起,发挥各自的优势,共同为客户提供优质的产品和服务。讲话结束后,全场响起了热烈的掌声。随后,所有人共同举杯,庆祝这一难忘的时刻。Day2:活力满满,团队凝聚 清晨,阳光洒在沙滩上,温暖而明亮。伙伴们精神抖擞地集合,准备迎接丰富多彩的团建活动。拓展训练中,来自共赢联盟和艾佧科技的成员们随机分组,共同协作。无论是充满挑战的团队竞赛项目,还是考验默契的合作游戏,大家都全力以赴,为了团队的荣誉而拼搏。在这个过程中,原本来自不同公司的伙伴们迅速融合在一起,彼此之间的距离被不断拉近,信任与默契也在悄然生长。上午的团建活动丰富但辛苦,中午的餐食丰盛且美味,佳肴琳琅满目让人垂涎欲滴。我们围坐在一起,边品尝美食边分享上午活动中的喜闻趣事,欢声笑语回荡在空气中。下午经过短暂的午休调整,大家怀着激动的心情登上帆船,驶向广阔的大海。白帆扬起,海风拂面,我们仿佛化身为勇敢的航海者,在波涛中追寻着梦想的方向。站在船头,眺望远方,那无边的蓝色让人心旷神怡。海浪拍打着船身,发出有节奏的声响,仿佛在为我们奏响一曲激昂的乐章。在这辽阔的大海上,我们忘却了一切烦恼,尽情享受着大自然的恩赐和团队在一起的美好时光。伴着夕阳,一场海鲜盛宴悄悄地拉开帷幕,等候着辛苦了一天的团员们。餐厅里,灯光柔和而温暖,映照在琳琅满目的海鲜美食上,散发着诱人的光泽。“螯封嫩玉双双满,壳凸红脂块块香。”螃蟹张牙舞爪,仿佛在炫耀着自己的肥美;“白小群分命,天然二寸鱼。”虾儿晶莹剔透,泛着新鲜的色泽;“潮头欲展一双翼,海底常开两瓣花。”贝类则静静地躺在那里,等待着人们去发现它们的鲜美。这不仅是一场味蕾的盛宴,更是一次心灵的交流与放松。在这美好的夜晚,大家共同沉浸在海鲜的美味与团队的温馨之中,为这难忘的东戴河团建之旅增添了一抹绚丽的色彩。夜幕降临,海边的天空被黑暗笼罩。但在沙滩的篝火晚会将本次团建活动的气氛推到高潮。此时,一束束绚丽的烟花腾空而起,瞬间打破了夜的寂静。那璀璨的光芒如流星般划过天际,绽放出五彩斑斓的花朵。金色的火花如瀑布般倾泻而下,照亮了每个人兴奋的脸庞。红色的火焰似玫瑰般热烈绽放,仿佛在为这次团建之旅增添一抹激情的色彩。蓝色的光芒如梦幻般闪烁,让人仿佛置身于一个童话世界。大家仰望着天空,眼中满是惊叹与喜悦。烟花的轰鸣声与海浪的拍打声交织在一起,奏响了一曲欢乐的乐章。这一刻,所有的疲惫与压力都被抛到九霄云外,只剩下对美好生活的热爱和对未来的憧憬。Day3:历史之旅,完美返程第三天,我们来到了山海关老龙头。古老的城墙、壮观的海景,让我们感受到了历史的厚重与沧桑。在这里,我们领略了古人的智慧与勇气,也更加珍惜现在的美好生活。下午,带着满满的回忆与不舍,我们踏上了返程之路。这次东戴河团建之旅,不仅让我们放松了身心,更增强了共赢联盟与艾佧科技之间的友谊与合作。我们相信,在未来的日子里,我们将携手共进,共同创造更加美好的明天。共赢联盟十八载,风华正茂;灵犀六季,艾佧科技朝气蓬勃。让我们共同期待下一次精彩的团建之旅,继续书写共赢联盟与艾佧科技的新篇章!
  • 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 【作者按】 /span /strong span style=" text-indent: 2em " 扫描电镜测试条件的选择主要包括以下四个方面:加速电压、束流与工作距离、探头。前两个主要影响样品信息的溢出,后两者影响着信息的接收。测试条件选择的是否合适,决定了您能获得怎样的测试结果。 /span br/ /p p style=" text-align: justify text-indent: 2em " 本人在第一篇32载经验谈《扫描电镜加速电压与分辨力的辩证关系》一文中,就加速电压与图像分辨力的辨证关系进行了深入的探讨。充分分析了改变加速电压会给表面形貌像的分辨力带来怎样的变化;解答了为什么获取高分辨像,钨灯丝扫描电镜要选择较高的加速电压(10KV以上),而场发射扫描电镜需要选择较低的加速电压;阐述了场发射电镜为什么会比钨灯丝电镜有着更高的分辨能力。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 除了对图像分辨力的影响,加速电压的改变还会在样品的信息特性、荷电的产生及应对等方面对测试结果产生较大的影响。一直以来,许多专业人员对此,普遍存在一种单调的思维模式及处理方法,这将给最终的测试结果带来偏差。 /p p style=" text-align: justify text-indent: 2em " 这种认识上的偏差也存在于束流的选择上,对最终测试结果同样会形成很大的影响。错误的束流选择,你将无法获得完美的测试结果,还会给仪器的调整带来麻烦。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文将通过大量的实际测试事例,为大家充分展示,选择不同的加速电压及束流究竟能给测试结果带来怎样的影响。分析形成这种结果的原因,以及传统观念在加速电压和束流选择上存在怎样的认识偏离。为今后大家在进行扫描电镜测试时,合理的选择加速电压和束流提供一些参考。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 一、& nbsp 加速电压的选择 /strong /span & nbsp & nbsp /h1 p style=" text-align: justify text-indent: 2em " 加速电压的选择除了对表面形貌像的细节分辨力存在极大影响,还在以下几个方面影响着测试结果:1. 获取的样品信息在样品中所处的位置,表层还是内层;2. 荷电场形成的位置及强度。而无论在那一方面,改变加速电压所带来的变化都充满了辨证法的规律。下面将以充分的事例来加以展示。 /p p style=" text-align: justify text-indent: 2em " strong 1.1& nbsp 加速电压与图像分辨力的关系 /strong /p p style=" text-align: justify text-indent: 2em " 加速电压与图像分辨力的辨证关系,前文有充分的探讨,在此将只做简单的描述。本节主要是以充分及清晰的事例来展示,改变加速电压将带来怎样的图像分辨力变化。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压对图像分辨力会产生两种相互对立的影响: /p p style=" text-align: justify text-indent: 2em " 1. 从信息扩散来说,不利于获取高分辨形貌像。 /p p style=" text-align: justify text-indent: 2em " 2. 对电子束发射亮度的提升,有利于高分辨图像的获取。 /p p style=" text-align: justify text-indent: 2em " 这两方面的共同结果必然是存在一个最佳值或最佳范围。这个值与样品特性和其它测试条件的选择都有关联。 /p p style=" text-align: justify text-indent: 2em " 实际测试中,应先对图像所显示的样品信息特征作出正确研判,然后再做出正确的调整来找到这个最佳值。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/fa2635bd-6b96-4bce-9171-265cc0bb3c82.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 想获取更好的介孔形态必须降低加速电压。改用小工作距离测试,可缩少电子束裙散和透镜球差形成的弥散并增加探头对信号的接收效果,使得对电子束发射亮度的要求降低。此时选择1KV加速电压即可获取更佳的图像效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/9d154d57-9819-4674-bf25-23c1d0da39ff.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 0em " strong 实例二、小工作距离、减速模式的加速电压选择(kit-6介孔) /strong /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/23ccfeb0-85bf-47d4-b1ee-9189f64bb660.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 0em " br/ /p p style=" text-align: justify text-indent: 2em " strong 1.2 加速电压与样品中的信息分布 /strong /p p style=" text-align: justify text-indent: 2em " 样品中的信息分布:指样品信息所处位置,表层?内部? /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,电子束在样品表层激发的信息将减少,内部信息的激发会增多。选取不同加速电压对样品进行分析,有助于获取更全面、更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、二氧化钛与银的复合膜& nbsp /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 该样品是将二氧化钛与银颗粒分层蒸镀在玻璃表面,银颗粒起先分布在极表层。高温烧结后观察薄膜表面形貌的变化及银颗粒存在的位置。先采用XRD与XPS检测银含量的变化,均未检测到银的存在。扫描电镜检测的结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/71cf90d7-a4fc-4797-bc79-d5f88a725f06.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 上例我们可以看到,任何测试条件的选择都有其局限性,很难单独给出全面的样品信息。需要不停的改变测试条件,综合分析才能够获取更全面且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " strong 实例二,含有钴颗粒的核壳结构碳球 /strong /p p style=" text-align: justify text-indent: 2em " 内部为结构紧密的碳球,包裹一个球形的碳壳层,中间有钴纳米量子点存在。以下组图将给我们提供完整信息: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b149b0cd-9014-4a7f-b45d-0f5e58750392.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 这组照片,合在一起才能提供样品的完整信息:一个核壳结构的碳球,内部是高密度球体,中间为絮状夹层,钴颗粒镶嵌于絮状夹层中,极表层较为平实。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/87b50fb1-9fcb-41ae-9720-81e2eb095201.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例三、石墨烯的观察 /strong /p p style=" text-align: justify text-indent: 2em " 单层石墨烯厚度仅不到一个纳米,个人观点:较难形成可被扫描电镜观察到的衬度。一般说,十来层左右的碳层被观察到的可能性更高,加速电压较低可观察到的碳层也较薄。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/652f21c2-13d1-45a3-ac00-f2be0b08c4c5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 对簿膜样品加速电压选择低一些,效果较好,但有个度。 /p p style=" text-align: justify text-indent: 2em " strong 1.3改变加速电压对样品荷电场强度与位置的影响 /strong /p p style=" text-align: justify text-indent: 2em " 样品的荷电现象:高能电子束轰击足够厚的样品,如有电子驻留在样品中漏电性较差的部位,将形成静电场影响该部位及附近电信号的正常溢出。出现异常亮、异常暗或磨平的现象,这就是样品的荷电现象,该静电场也称“荷电场”。(关于样品的荷电现象,后期将有专文加以深入探讨)。 /p p style=" text-align: justify text-indent: 2em " 影响样品荷电场形成的因素有许多,加速电压正是其中最为重要的一个方面。 /p p style=" text-align: justify text-indent: 2em " 加速电压对样品荷电场的影响主要表现在以下几点: /p p style=" text-align: justify text-indent: 2em " 1.加速电压的升高,发射亮度增加,使得注入样品的电子数增加,荷电场强度得以加强,将加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 2.加速电压的升高,电子击入样品的深度增加,形成荷电场的位置下移,达一定值时,对样品电信号溢出的影响将会减弱直至消除。但SE2的增加,会影响表面细节的分辨。 /p p style=" text-align: justify text-indent: 2em " 3.加速电压的升高,使得背散射电子能量增加,背散射电子能量越大,其溢出量受荷电场的影响也就越小。 /p p style=" text-align: justify text-indent: 2em " strong 实例一、介孔材料KIT - 6不同加速电压下的荷电现象 & nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f1a4138c-34fa-47e0-9b73-51fa3f0e6e15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/e691f38e-c9b1-4ea9-9cd5-c67cf0df65d4.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " strong 实例二、二氧化硅小球,减速模式的加速电压与荷电 /strong /p p style=" text-align: justify text-indent: 2em " 二氧化硅小球。形态松软,容易形成样品的荷电现象。主流观点:减速、低电压是解决样品荷电问题的最佳方案,且加速电压越低,荷电现象越弱。真实情况却未必如此。 /p p style=" text-align: justify text-indent: 2em " 用减速模式500V、1KV,观察得出的是如下结果: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/764fd804-f00b-4e93-bed6-03b652d70f53.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " strong 实例三、钼化铬纳米颗粒 /strong /p p style=" text-align: center text-indent: 0em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f222ae41-0b71-45ac-9969-ca0e2806ff94.jpg" title=" 11.png" alt=" 11.png" / /strong /p p style=" text-align: justify text-indent: 2em " 以上三例可见,无论采用何种模式,加速电压与样品的荷电现象之间都存在一个辩证的关系。 /p p style=" text-align: justify text-indent: 2em " 加速电压升高,会增加注入到样品中的电荷总量,提升样品中的荷电场强度,加重样品的荷电现象。 /p p style=" text-align: justify text-indent: 2em " 提升加速电压,电子注入样品的深度增加,自由电子在样品中形成堆积的位置下移至更深处,荷电场位置也将下沉。荷电场的下沉会逐步减弱其对样品表面电子溢出量的干扰,荷电现象也将逐步减弱,但这是一个量变到质变的过程。当加速电压达到一定值,荷电场接地形成电荷通道,此时样品中多余的自由电子完全消失,样品中也就不存在荷电场。 /p p style=" text-align: justify text-indent: 2em " 加速电压的提升,可以增加背散射电子的能量,达到一定值,背散射电子信息将克服荷电场对其正常溢出的影响,减弱并消除形貌像所显现出的样品荷电现象。 /p p style=" text-align: justify text-indent: 2em " 因此不能简单的认为:低加速电压是不蒸金解决样品荷电的唯一有效途径。以辩证的思维方式来综合评估各方面的影响,合理选择加速电压才是应对样品荷电的有效方式。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 二、束流大小的选择 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 目前主流的观点认为:束流越大,电子束斑的直径越大,束斑直径越大,图像的分辨率越差。各电镜厂家的工程师在进行分辨率测试时,都会选用小束流,但观察的都是信号量充足的标准样品(金颗粒)。 /p p style=" text-align: justify text-indent: 2em " 实际测试时,常发现小束流下样品的整体信息量较差& nbsp ,很难形成高质量表面形貌像。那么该怎样选择合适的束流? /p p style=" text-align: justify text-indent: 2em " 依辩证法的观点,降低束流强度将得到以下两个矛盾的结果: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 束斑直径降低,信号溢出区面积减小对图像清晰度有利且能降低荷电场强度,削弱样品荷电的影响。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 减少注入样品的电子量,信号量将减弱,不利图像分辨。 /p p style=" text-align: justify text-indent: 2em " 而现实的操作中,在主流观点的影响下,往往把眼光只放在第一点上,夸大束斑直径的影响,忽视束流强度不足所引起的信号量缺乏,故常常无法获得高质量的高分辨图像。 /p p style=" text-align: justify text-indent: 2em " 特别在面对氧化物、高分子等本身信号较弱的材料时,信号量常常是关键点,小束流的模式很难获得满意的结果。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong style=" font-size: 14px text-align: center text-indent: 2em " 实例一、钴纳米颗粒和碳材料,不同束流下图像质量的比较 /strong strong style=" font-size: 14px text-align: center text-indent: 2em " /strong /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/29ecf822-c796-4da0-a394-fa93a248c2d0.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/858092ec-e7c9-4e0e-a8e3-a1564d3b4800.jpg" title=" 13.png" alt=" 13.png" / & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f8de383e-1046-4e7d-a4d1-540843a72d14.jpg" title=" 14.png" alt=" 14.png" / span style=" text-indent: 0em " & nbsp & nbsp /span /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/34a0c424-2f08-44fe-8f0c-cd31c149f9ab.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 以上四例说明:束流的选择同样也遵循辩证法的规律,束流改变带来的往往是正、反两方面影响。如何平衡这些影响获取最佳的结果,还与样品的特性有关,必须全面考虑。 /p p style=" text-align: justify text-indent: 2em " 样品本身信号量充足且漏电能力较差,束流适当选择较低一些,可以减少荷电的影响,提升图像的清晰度,但图像信噪比就是牺牲的对象。反之,束流应当选择稍高一些,可以获得的样品信号量更为充分,图像的质量更佳。 /p p style=" text-align: justify text-indent: 2em " 依据个人的测试经验,起始条件选择的束流大一些,综合效果会更好。选择小束流,常常会使得图像的信息量不足,分辨力减弱过多,很多细节反而分辨不清。欲对仪器做出适当的调整,看清信息是基础,信息太弱会失去调整的方向。 /p p style=" text-align: justify text-indent: 2em " 任何测试条件的选择都应当坚持适度性原则。具体问题、具体分析,摒弃单调的思维模式,才能找到最佳的测试条件,获得满意的测试结果。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " strong 三、结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 本文通过大量的实例给大家展示,不同加速电压及束流的选择,究竟能带给我们怎样的测试结果。 /p p style=" text-align: justify text-indent: 2em " 辨证的观点要求我们能够做到具体问题、具体分析。 /p p style=" text-align: justify text-indent: 2em " 摒弃单调的思维模式,有助于我们选择正确的测试条件,获得满意的测试结果。 /p p style=" text-align: justify text-indent: 2em " 同样的样品、不同的测试条件获取的样品信息不同。单一的测试条件往往很难带给我们完整且充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " 要获取充分的样品信息,需要测试者能准确预判出测试条件的改变对测试结果会产生怎样的影响。做到这一点,测试者的经验积累十分重要。希望本文的各种实例,能对大家在加速电压和束流选择方面的经验累积提供一些帮助。 /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /p p style=" text-align: justify text-indent: 2em " 华南理工出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /p p style=" text-align: justify text-indent: 2em " 中科大出版社 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /p p style=" text-align: justify text-indent: 2em " 人民出版社 & nbsp /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月 /p p style=" text-align: justify text-indent: 2em " & nbsp 清华大学出版社 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 80px height: 123px float: left " src=" https://img1.17img.cn/17img/images/202005/uepic/6dc1a11e-8c90-4ad2-be79-65574928318f.jpg" title=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" alt=" 741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" width=" 80" height=" 123" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /p p style=" text-indent: 2em " strong 延伸阅读:& nbsp /strong /p p style=" text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" http://二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-indent: 2em " a href=" http://电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 岛津逐梦科学140载历史有奖问答活动中奖名单揭晓
    140年前的1875年,当日本正向近代化迈进之际,诞生于佛龛器具制作工匠家庭的第一代岛津源藏在京都创建岛津制作所岛津,开始了理化学仪器的制造。之后,被人们称为发明奇才的第一代岛津源藏的长子第二代岛津源藏,继续发展壮大了岛津制作所,“以科学技术向社会做贡献”的宗旨在岛津脉脉相传。岛津逐梦科学140载,朝着实现“为了人类和地球健康”的愿望,努力攀登高峰,厚积薄发,与用户共创未来。 为庆祝岛津制作所创业140周年,岛津公司启动“逐梦科学140载 厚积薄发 共创未来”主题网站举办一系列互动活动,讲述岛津历史,宣扬岛津文化,展示岛津科技,期待与客户共创美好未来。第一弹“逐梦科学140载 璀璨历史创新路”岛津历史有奖问答自6月23日网站上线至7月31日活动结束,有近7000人次访问了我们的主题网站,共吸引350余人次参与问答活动,其中有96人答对全部问题获得抽奖资格。经电脑程序随机抽取,如下20名参与者幸运获奖。 我们将以邮件形式联系以上获奖者确认收奖信息,在收到中奖者的回复邮件后尽快寄送奖品,请以上获奖者关注参与活动时验证的邮箱。 “逐梦科学140载 厚积薄发 共创未来”主题网站第二弹活动即将上线,期待您的关注! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)
    p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 工作距离和探头的选择,主要影响着扫描电镜的信息接收。选择的是否合适,对形成怎样的样品表面形貌像起着举足轻重的作用。实际测试工作中,我们往往只关注信息的产生,也就是加速电压与束流的选择,而对工作距离和探头的选择往往存在轻忽甚至误解的现象。 /p p style=" text-align: justify text-indent: 2em " 关于形貌像分辨率的主流观点:工作距离越小,形貌像分辨率越好。其依据是:1.束斑说:工作距离越小,束斑越小,束斑越小分辨率越好。2.球差说:工作距离越小,物镜球差对结果的影响越小,故分辨率也越佳。球差及束斑说都有一定道理,但都不是影响表面形貌像分辨力的最根本因素。 /p p style=" text-align: justify text-indent: 2em " 形成上述观点,与电镜厂家力推小工作距离的理念有关。特别是有些厂家几乎放弃对使用样品仓探头获取样品信息的研究,仅将其作为一个低倍寻找样品测试位置的工具。这将限制我们的视野,获取的表面形貌信息也极其贫乏。 /p p style=" text-align: justify text-indent: 2em " 本人所用品牌的时候冷场电镜由于对早期样品仓探头结构设计的继承,使得本人充分体会到:各种不同的工作距离和探头组合,将带来怎样不同的样品表面形貌信息,而这些不同的信息又恰恰是我们能够正确且充分观察和分析样品的基石。 /p p style=" text-align: justify text-indent: 2em " 下面将从形貌衬度,这一形成表面形貌像的主导因素为切入点,以实例来展示并详细探讨:不同工作距离和探头的组合与形貌衬度的形成有何关联?对表面形貌像的获取及图像的分辨能力有何影响?各种组合都具有怎样的优缺点? /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun " 一 、工作距离和探头的选择与形貌衬度的形成& nbsp /span /strong /h1 p style=" text-align: justify text-indent: 2em " 扫描电镜形貌像的形成如同用眼睛去观察一个物体。物体图像的形态并不取决于眼睛从物体上获取了怎样的光线,而是基于从那个角度去观察这个物体。对图像细节的影响来自四个方面,光线的能量和强度、眼睛的视力及观察角度,其中观察角度是根基。物体细节越粗,观察角度的影响越大。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7446c1ff-2094-4dea-9c24-fd02dc025494.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子是形成样品表面形貌像的信息源,如同形成图像的光。探头如同人的眼睛,它获取样品表面形貌像的形貌衬度信息,如同从不同角度去观察这个样品。信息到达探头的角度是形成表面形貌像的基础。 /p p style=" text-align: justify text-indent: 2em " 正如本人在经验谈(4、5、6)中给大家所描述,形貌衬度是由样品表面形貌高低差异所形成的信息衬度。形成该衬度的主导因素随以下两个不同层级的信息需求而不同: /p p style=" text-align: justify text-indent: 2em " A. 低倍率,观察的样品表面形貌起伏较大(二十纳米以上)。探头、样品及电子束三者之间的夹角所形成的形貌衬度才能满足形貌像的形成需求,此时这个夹角就是主导因素。 /p p style=" text-align: justify text-indent: 2em " B. 高倍下,观察的空间差异小于十几纳米,形貌衬度小,电子信息溢出角度所形成的形貌衬度就完全满足需求。由于信息扩散对这类细节影响极大,靠近镜筒,从样品顶部获取更多二次电子是最佳方案,此时低角度信息就变为主导因素。 /p p style=" text-align: justify text-indent: 2em " 选择不同的工作距离和探头,就是为了调控探头所接收的样品信息类型及信息的接收角度,以形成充分的图像衬度。 /p p style=" text-align: justify text-indent: 2em " 工作距离与探头的选择是如何调控探头获取样品表面形貌像的形貌衬度信息,进而影响表面形貌像的细节形成及分辨?下面将结合实例来给大家做详细的展示及描述。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun " 二、表面形貌像与工作距离和探头的选择 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 选择不同的工作距离和探头,能对图像形貌衬度的获取形成调控。那是如何调控?又是如何影响样品表面形貌像? /p p style=" text-align: justify text-indent: 2em " strong 2.1不同工作距离下各探头对表面信息的接收示意图 /strong /p p style=" text-align: justify text-indent: 2em " 以某公司冷场电镜为例(样品:介孔硅,孔径& lt 10nm): /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b8cc6b0c-010b-4077-97bc-4e1558635e77.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp a.样品台不加减速场:到达顶探头的主要是间接的、能量较高的高角度背散射电子(HA BSE)。图像特性表现为:信息量不足、细节分辨差、但受荷电影响小。(SBA-15颗粒) /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f6e11aa0-c8f0-462d-99c9-6787b93e2ac6.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 工作距离越大顶探头接收的信息越少,基本不存在测试意义。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/db70895c-9571-49ac-af9a-286cbaa168d2.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p style=" text-align: justify text-indent: 2em " b.采用减速模式:二次电子能量得到加强,使顶探头接收的样品信息改以高角度二次电子为主。图像特性:二次电子衬度及边缘效应增加、形貌立体感较差、荷电及电位衬度较大。 /p p style=" text-align: justify text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4333ec84-2237-4e5f-9c47-c7424021ada4.jpg" title=" 5.png" alt=" 5.png" / span style=" text-indent: 2em text-align: justify " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 顶探头图像的Z衬度会更强烈一些,但要求样品有较强的信息量,故应用领域不广,实例较少。具体可参看经验谈(6)。 /p p style=" text-align: justify text-indent: 2em " 总之,该公司扫描电镜设置的探头中:顶探头要求样品本身有较高的信息产额,仅利于在小工作距离条件下获取某些特殊的图像衬度信息,如:Z衬度及电位衬度,故使用频率少。 /p p style=" text-align: justify text-indent: 2em " 对于大部分样品信息的获取,起主力军作用的是上、下探头,因此下面讨论的重点将针对这两个探头展开。实例的展示及探讨将以介孔硅KIT-6为样本,按高、低倍分组来进行。 /p p style=" text-align: justify text-indent: 2em " WD& lt 3mm、低倍:10万倍以下,观察的细节大于20纳米。& nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ee3af742-eeab-4911-acf1-ccd39b700db4.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " 高倍(20万倍):观察10纳米以下细节。这类细节的起伏小,形貌衬度要求低,不同角度的二次电子就足以形成表面形貌像所需的形貌衬度。此时信息扩散对细节影响将变成主导因素,更多的接收二次电子就成为获取高分辨细节的关键。 /p p style=" text-align: justify text-indent: 2em " 如上示意图,EXB系统对进入上探头的信号进行分离,使其接收的基本是二次电子,对细节影响小;通过信息转换板,探头又接收到更多的低角度信息,因此利于形成细节为10纳米以下的形貌像。各探头形成图像的具体结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/cbe76ddb-a22b-4bd5-ad70-c9057c2641ae.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 该工作距离,下探头无信号,信息混合后结果倒向上探头。采用减速模式将帮助上探头获取更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b3ba0c5c-c2a3-49cb-a4fa-8653853454d2.jpg" title=" 8.png" alt=" 8.png" / span style=" text-indent: 2em text-align: justify " & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " B)工作距离适中(WD=8.1mm): /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7a1ebaf2-fb73-4803-a009-cd97a2aa8a65.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " 低倍:10万倍以下,观察的样品细节主要在20纳米以上。在这个工作距离下:上探头形貌衬度较差,下探头信号量不佳,故单独观察都有较大问题。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c8c01847-39c9-4150-a862-5ed7dc40b2bf.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " 高倍:20万倍,观察的样品表面细节在10纳米以下& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/367f675f-d917-4132-b5b5-dc72868ef096.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-align: justify text-indent: 2em " 上、下探头的混合结果:上探头获取的信息较多,是主要信息源。故整体偏向上探头获取的图像特性。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202006/uepic/aa45b67b-1415-461d-9ee6-5594b663afdf.jpg" title=" 12.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202006/uepic/10a2946a-c21a-4b3b-9c3a-46579b607c42.jpg" title=" 13.png" / /p p style=" text-align: justify text-indent: 2em " C)大工作距离(WD=15.1 mm) /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/841a1b4a-39c8-4cea-9114-5c93b196ba13.jpg" title=" 14.png" alt=" 14.png" / /p p style=" text-align: justify text-indent: 2em " 低倍:10万倍以下,观察20纳米以上的细节。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5adb4e8e-4576-4e0e-aa67-2b72bfdf8f99.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 高倍:20万倍,观察细节10纳米以下。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e2dd614b-b1c3-439f-8eca-4a481eae9dcb.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 上、下探头混合后,结果倒向下探头。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aa741213-5299-4f63-9dc8-2f210ade6e28.jpg" title=" 16.png" alt=" 16.png" / /p p style=" text-align: justify text-indent: 2em " 细节较粗样品(磁粉),7万倍、大WD,三种探头组合对比: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/84e4cc1f-b36b-4df0-a035-30045f6a1fc2.jpg" title=" 18.png" alt=" 18.png" / /p p style=" text-align: justify text-indent: 2em " strong 2.2不同探头组合在不同工作距离(WD)上的图像比对 /strong /p p style=" text-align: justify text-indent: 2em " 上节实例展示了在不同工作距离上,各种探头组合所获取的图像特性。本节以介孔硅SBA-15的测试结果为例,采用高、低倍分组,直球对决的形式,对比三种探头组合分别在三个不同工作距离上所获取的测试结果。评判出各种工作距离与探头组合的优缺点,以充分认识它们的适用范围。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/83a00b53-10d8-4142-bd5e-b16c67491618.jpg" title=" 19.png" alt=" 19.png" / /p p style=" text-align: justify text-indent: 2em " 低倍的综合结果:选择15mm工作距离、下探头组合测试效果最佳。空间伸展最好、信号量足、细节丰富、无荷电影响。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/73bb557c-f665-4f26-bfaa-d80bb19cb871.jpg" title=" 20.png" alt=" 20.png" / /p p style=" text-align: justify text-indent: 2em " 高倍(20万倍)的结果:& nbsp 2mm工作距离,混合探头组合二次电子含量足,低角度二次电子信息含量的占比较多,故图像荷电现象较弱,空间信息好,细节充分,结果最佳。 /p p style=" text-align: justify text-indent: 2em " 15mm工作距离、下探头组合,细节几乎看不见,结果最差。 /p p style=" text-align: justify text-indent: 2em " 综合以上所有实例可以得出这样的结论: /p p style=" text-align: justify text-indent: 2em " 10万倍以下观察20纳米以上细节,大工作距离拥有优势,且倍率越低用下探头观察的优势越明显。10万倍以上观察10纳米以下的细节,小工作距离、上探头获得效果更好。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 16px " 三、工作距离和探头的选择与图像的分辨力 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 前面实例充分表明:小工作距离、镜筒探头(上探头)最适用于将图像放大到10万倍以上,去观察小于10纳米的样品细节,而对于观察20纳米以上的细节却未必有利。 /p p style=" text-align: justify text-indent: 2em " 下面将以充分的事例展示:采用大工作距离、样品仓探头(下探头)组合,即便在10万倍以上的高倍率,图像清晰度受大量背散射电子的影响而略显不足,但对20纳米以上样品细节的分辨力却占据优势。 /p p style=" text-align: justify text-indent: 2em " 泡沫镍上生长的氢氧化钴,储电材料。该材料的片状氢氧化钴表面有许多大于10纳米的沟纹状细节,故比表面积较大。存在这种结构也正是其拥有极佳储电能力的基础。 /p p style=" text-align: justify text-indent: 2em " 接下来通过对这些沟纹信息的观察,来对比大工作距离、下探头组合与较小工作距离、上探头组合在的辨析度上优劣。 /p p style=" text-align: justify text-indent: 2em " 为了说明结果的普适性,对比将从一组zeiss SEM的照片开始。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/63ec7b13-bd9e-4d65-9328-1ef32e4aa0b1.jpg" title=" 21.png" alt=" 21.png" / /p p style=" text-align: justify text-indent: 2em " 结果:采用WD=8mm、混合探头(M)组合& nbsp PK& nbsp & nbsp WD=15mm、下探头组合的结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/829f8ebf-1b67-40ff-ae48-b248d4a661d7.jpg" title=" 22.png" alt=" 22.png" / /p p style=" text-align: justify text-indent: 2em " 以上实例充分展示:工作距离与探头的选择对分辨能力的影响也遵循着辨证的关系。样品的特性以及观察信息的不同是我们选择合适工作距离与探头的依据。 /p p style=" text-align: justify text-indent: 2em " 将小工作距离、镜筒探头做为获取高分辨像的唯一正确选择,进而扩展为扫描电镜主要测试条件的观念存在极大偏颇,不利于充分获取样品信息。大部分样品信息适合在大工作距离,采用多种探头组合来获取,这将在下篇有更充分的展示。 /p p style=" text-align: justify text-indent: 2em " 电镜的性能是否优异,考察其在大工作距离下是否也能获取优异的高倍率形貌像应当是重点。以下是几个实例: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " S-4800大工作距离高倍率图片 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/395c6a02-3f78-47bb-9a45-4aa553a3ebb7.jpg" title=" 23.png" alt=" 23.png" / /p p style=" text-align: justify text-indent: 2em " Regulus 8230的大工作距离高倍率图片 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3eb0b9d9-d016-4e1b-aa6a-16c5555ca0a2.jpg" title=" 24.png" alt=" 24.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69da8d82-e400-4dc0-9331-cf795b27a49a.jpg" title=" 25.png" alt=" 25.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 四、不同工作距离和探头组合的优缺点 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 前面分析了,改变工作距离主要影响的是镜筒内探头和样品仓探头对样品表面形貌信息的接收效果。 /p p style=" text-align: justify text-indent: 2em " 工作距离越小,带来的结果是:镜筒内探头(U)接收到的样品信息越多,样品仓探头(L)接收的样品信息越少。当样品紧靠物镜时,样品仓探头基本获取不到样品的信息。 /p p style=" text-align: justify text-indent: 2em " 随着工作距离加大,样品仓探头接收到的样品信息会加强。要形成样品仓探头对样品表面信息接收的最佳固体角,必然存在一个最佳工作距离。这个值各电镜厂家并不一样,我所用的场发射扫描电镜的这个值与附件能谱仪的最佳工作距离相重合(WD=15mm)。 /p p style=" text-align: justify text-indent: 2em " 不同位置的探头形成样品表面形貌像的主导因素不同。 /p p style=" text-align: justify text-indent: 2em " 样品仓探头:探头、样品及电子束三者之间的夹角是主导。获取的形貌衬度信息有利于呈现起伏较大的表面形貌像。 /p p style=" text-align: justify text-indent: 2em " 镜筒内探头:从顶部接收样品信息,电子信息的溢出角是形成表面形貌像的主导因素。获取的形貌衬度小,只适合表现起伏较小(几十纳米)的表面形貌像。工作距离越大,镜筒内探头接收到的高角度二次电子占比越多,图像空间感越差,荷电现象也越明显。具体实例可参看前文经验谈(5)。 /p p style=" text-align: justify text-indent: 2em " 样品表面形貌像的细节会受到样品电子信息扩散的影响,这个影响受到样品特性及信息需求的限制。当样品比较松散,而所要展示的样品信息又极小(10纳米以下细节)时,信号扩散会成为影响测试结果的主体,选用小工作距离、镜筒探头最为有利。除此以外,在大工作距离下选择不同探头组合将更有利于获取充分的样品表面信息。 /p p style=" text-align: justify text-indent: 2em " 大、小工作距离对样品进行测试的优缺点对比列表如下 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ae51a279-a821-44a9-8ff7-f3f675295dcb.jpg" title=" 26.png" alt=" 26.png" / /p p style=" text-align: justify text-indent: 2em " 从以上列表可以看到,选择大工作距离给测试结果带来的优点比选择小工作距离要多得多,小工作距离仅在极少数情况下具有较好的测试结果。因此个人认为将常规的测试条件放在大工作距离上,是一个明智的选择。 /p p style=" text-align: justify text-indent: 2em " 以个人使用扫描电镜十来年的测试经历来看,绝大部分样品信息都可在大工作距离下获取更好的效果,必需采用小工作距离的情况相对来说比较少。 /p p style=" text-align: justify text-indent: 2em " 下一篇将用更多实例来给大家充分的展示并分析,选用合适的工作距离和探头组合将会带来怎样有利的测试结果? span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 参考书籍: /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月& nbsp span style=" text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍& nbsp span style=" text-indent: 2em " 北京天美高新科学仪器有限公司 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 作者简介: /span /strong span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 75px height: 116px float: left " src=" https://img1.17img.cn/17img/images/202006/uepic/c94c8e90-8a70-4116-8cfa-768d11d59f9e.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 75" height=" 116" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em color: rgb(0, 176, 240) " & nbsp 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 泰坦科技携手安思尔,安防服务再升级
    上海泰坦科技股份有限公司(以下简称“泰坦科技”)作为安思尔(上海)商贸有限公司(以下简称“安思尔”)工业产品授权经销商,在江浙沪地区销售生命科学行业产品线(含Bioclean产品线)产品。未来,双方将积极推进安全防护方面深度合作,提供更高质的产品与服务。安思尔作为全球个人防护解决方案的领导者,是屈指可数的全能供应商,集科技研发、生产制造和市场开拓为一体,提供综合解决方案及服务。多年以来,凭借专业知识、创新产品与先进技术,始终致力于为安全防护领域提供价值。泰坦科技作为国内领先的科学服务提供商,立足于【探索平台】实验室用品一站式购物的定位,持续引进更多安防优质品牌与产品。此次合作,将充分整合双方资源,发挥泰坦科技全国供应链本地化服务的优势,共同提高科学服务品质。产品推荐点击图片即可购买— TouchNTuff® —92-600产品特点:▶ 专有材料配方提供更强的化学品飞溅防护;▶ 柔软丁腈橡胶混合材料提供良好舒适性;▶ 结实耐用的设计实现卓越的耐用性;▶ 不含硅,助力产品防护。— MICROFLEX® —10-134产品特点:▶ 质地轻盈,提高触觉敏感度,适用于精细的电机控制;▶ 优质丁腈配方增强产品抗撕裂性能;▶ 专为跨行业的广泛应用而设计;▶ 不含有机硅,提升产品安全性能。— AlphaTec® Solvex® —37-185产品特点:▶ 内部不加棉布植绒,从而降低棉绒污染的风险,使其适用于易受外部杂质影响的生产区域;▶ 沙斑抛光使手套表面更光滑;▶ 可重复使用,具有无与伦比的耐磨性;▶ 为穿戴者提供极佳的舒适性;▶ 符合美国FDA关于食品处理的要求。— BioClean™ —GGL丁腈RABS/隔离器手套产品特点:▶ 根据ASTM D6978-05,针对处理化疗药物进行测试;▶ 100%漏气测试;▶ 超洁净表面可确保提供产品防护;▶ 有三种袖口周长尺码可供选择。— BioClean™ —一次性护目镜产品特点:▶ 轻质PVC框架;▶ 间接通风系统;▶ 增韧聚碳酸酯防雾防划痕镜片;▶ 低发尘非乳胶头带。— BioClean™ —连体防护服产品特点:▶ 低发尘轻质防静电;▶ CleanTough材料;▶ 拇指环可确保牢牢固定;▶ 带可密封帽盖的拉链;▶ 松紧式头罩、背部、袖口和脚踝处。更多安思尔产品可登录【探索平台】及其App查看或咨询您身边的泰坦销售。 关于安思尔 安思尔集团(Ansell Limited),是具有128年历史的全球性跨国公司,在全世界化学品防护和病毒屏障防护等重要领域享有盛誉。其全系列防护产品,包括手部防护、身体防护、头部防护等产品线广泛应用于各类工业制造、化学品防护、应急救援、生命医学等众多领域,是被公认为全球个人防护装备领域的重要标杆企业。 关于泰坦科技 上海泰坦科技股份有限公司(股票代码:688133)成立于2007年,专注于为科研工作者和质量控制人员提供一站式实验室产品与配套服务,致力于成为科学服务领域的变革者,更好服务国家战略,保障国家科研物资安全,助力企业创新升级。泰坦科技目前已成为国内本土科学服务业的龙头企业,2020年10月登陆中国科创板,2020年实现营业收入13.84亿人民币。公司的使命是“分享创新,探索未来”,公司的愿景是成为国内科学服务首席提供商。泰坦科技旗下自主品牌:Adamas(高端试剂)、General-Reagent(通用试剂)、Titan Scientific(仪器耗材)、Titan Scientific Lab(实验室建设)、Titan SRM(科研信息化)、Tichem(特种化学品)。【探索平台】APP上线啦▶通过手机应用商店,搜索【探索平台】并下载。目前支持的应用商城:华为、App Store、小米、oppo、三星、应用宝。华为应用市场App Store
  • 同舟岛津二十载,栉风沐雨共成长
    日前,岛津企业管理(中国)有限公司分析仪器事业部2014下期营业大会在沪举行。在大会晚宴中出现了感人至深的一幕,在岛津公司连续工作时间超过了20年的14位事业部老员工,在全体员工热烈的欢呼声中逐一登台,回顾了他们在岛津二十多年的工作经历。每一位前辈发表了情真意切的感言,令在座的每个员工无不动容。 前辈们发表感言 这些与岛津风雨同舟二十载的老员工当中,既有公司的技术、营业、市场、事务管理等各个团队的带头人,也有资深的业务专家,更有事业部的领军人物。在这些前辈们身上,集中体现了每一个优秀团队都期待的个体素质:首先,每一位前辈,从根本上来说首先都是一位行业专家,因为无论是从身处的行业来说,还是从个人工作岗位的要求来说,专业知识和技能都是事业发展的基础;每一位前辈,无论在一线工作,还是从事后台协调、日常管理等日复一日的平凡工作,始终体现着服务于内、外部客户的优秀服务意识和合作精神;每一位前辈,无不感谢公司、同事、家人、客户、朋友们的理解和支持,甚至是还要感谢竞争对手的鞭策,正因为他们常怀感恩之心,职业道路也就越走越宽广。 岛津公司古泽总经理向每一位老员工颁奖 在前辈们的感言中无不提及身处岛津大家庭所感觉到的那份温暖。即将迎来创业一百四十年的岛津,不断以“科学技术向社会作贡献”。已走过三十五年的历程的岛津中国秉承这一精神,勇于创新,不断开拓进取。岛津先进的分析技术广泛应用在中国各行各业,为推动中国社会的发展做出了应有的贡献。岛津尊重员工创造性和个性特点,通过自身在客户及社会中发挥作用,感受工作带来的满足感、成就感和工作激情的企业文化已随岁月延续而深入人心。岛津团队已成长为成熟、高效的团队,能够确立正确的目标,采用合适的方法,创造良好的工作环境,鼓励各个层面积极解决问题。团队成员自觉地以积极的心态面对困难,以正确的态度解决问题。 岛津优秀的企业文化为员工们提供了大展身手的舞台,是前辈们坚守岗位二十多年走向职业生涯高峰的根本理由。在前辈们二十多年的职业生涯中,见异思迁的诱惑不能说从来没有,艰难挑战面前的退缩情绪也许会一闪而过。但在岛津这个温暖的大家庭中,各位前辈最终以共同的一份坚守,带领着后辈员工辛勤耕耘,换来了岛津公司和事业部业绩、规模的不断发展壮大。 行百里者半九十,与岛津风雨兼程二十年余年的各位前辈,还将继续与岛津相互提携共同成长。 颁奖后古泽总经理与老员工们合影留念 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 使用集成式XRF元素分析仪和采样技术自动测量活性炭中的金含量
    碳浸法(CIL)和碳浆法(CIP)回路都是氰化取金法工艺,这项工艺通过将金转化为水溶性复合物来从矿石中提取金(Au)。然后,利用活性炭从氰化工艺产生的碳浆或溶液中吸附含黄金的水溶性复合物,从而实现黄金的回收。之后,将吸附在活性碳上的黄金剥离下来,对黄金进行电解沉积处理,再对黄金进行熔炼,制成金条。监测活性炭中的金含量对于高效回收黄金至关重要。凭借我们在X射线荧光(XRF)和集成方面的专业知识,Gekko Systems与Evident达成了合作,使其Carbon Scout装置能够对碳进行多元素分析,初步的重点是获得实时的黄金回路库存信息。Carbon Scout是一个独立的地面采样系统,通过测量碳浓度以及来自CIL和CIP回路的碳浆样品中的多元素分析、pH值、溶解氧(DO)和密度,实现碳运动自动化。这有助于金矿运营商优化加工厂的效率,并通过确定每个罐的活性碳在矿浆中的分布情况(准确度为每升矿浆±0.5克碳)来减少水溶性黄金的损失。Carbon Scout提高了CIL/CIP回路中碳密度测量的准确性、规律性和一致性。现在,Carbon Scout可以结合Vanta M系列手持式XRF元素分析仪。Vanta系列是采矿业常用的先进便携式XRF(pXRF)设备系列。Vanta pXRF元素分析仪以其在恶劣条件下的可靠性和可重复性著称,能为固体和液体样品中的30多种元素提供准确的化学分析——从痕量级到百分比级,贯穿整个矿物循环。集成了Vanta pXRF元素分析仪的Carbon Scout与化验室结果的数据对比而下图是Vanta pXRF数据与来自不同矿场和认证参考材料的活性炭中金(Au)的实验室结果对比。结果表明便携式XRF元素分析仪和实验室的检测结果高度吻合。这些结果还表明Vanta分析仪有能力监测碳内的金吸附趋势,从而为做出矿物加工决策和进行实验室操作提供支持。实时监测碳上的金负载量奥林巴斯Vanta M系列分析仪的速度、准确性和精度使Carbon Scout能够实时监测矿场内每个罐中碳上的金负载量。矿场经理可以使用实时数据来确认任何罐均未超过所需的设定最高金负载量,并根据需要移动和脱附碳。此外,这些数据还能清晰地展现生产成果,并提前了解是否能在进行月末金矿盘点之前完成回收目标。通过借助数据来确认日常的黄金生产计算,生产团队对于做出矿石混合、吞吐量和非计划停产等决策便更有信心。借助Carbon Scout和Vanta M系列分析仪的集成硬件和软件,所有这些有价值的数据都可以在金矿加工控制系统中得到无缝整合。
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 零电位:无荷电;负电位:异常亮;正电位:异常暗 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但这个解释存在以下几个步进式的问题: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " C)样品如果真的存在正电位,将会出现怎样结果? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 实际情况是样品的荷电现象,存在三种表现形式 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么? /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px " 一、荷电现象的形成 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 荷电现象的形成过程 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 样品的漏电能力和导电性 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title=" AA.png" alt=" AA.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 二、拆解样品荷电现象的三种形态 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 那是什么原因酿成了荷电现象出现这三种表现形式呢?& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品出现细节磨平这种荷电现象的几率较异常暗高。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗& gt 磨平& gt 异常亮& gt 正常。这个变化趋势会有跳跃式的变动,但不会逆转。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title=" 9.png" alt=" 9.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 三、小 & nbsp 结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 作者简介: /strong /span /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200817/556801.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11) /span /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /strong /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制