当前位置: 仪器信息网 > 行业主题 > >

自放电研究

仪器信息网自放电研究专题为您整合自放电研究相关的最新文章,在自放电研究专题,您不仅可以免费浏览自放电研究的资讯, 同时您还可以浏览自放电研究的相关资料、解决方案,参与社区自放电研究话题讨论。

自放电研究相关的资讯

  • 众星联恒中标上海硅酸盐研究所《辉光放电质谱仪》招标项目
    2014年6月,经过努力,北京众星联恒科技有限公司在中国科学院上海硅酸盐研究所辉光放电质谱仪采购项目招标中一举中标。过硬的产品品质,合理的价格,完善的服务体系是我们胜出的理由。 感谢大家对我公司的大力支持,这次中标将又是我公司一个新的起点,我们将会在此起点上,付出更多的努力,提供更好的产品,服务更多的客户!
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 科学家发展“表面功夫”揭示铝离子电池失效机制
    理解电化学储能器件的工作原理及失效机制,对指导高性能器件的开发具有重要意义。近日,中国科学院大连化学物理研究所研究员傅强团队调变铝离子电池器件的工作环境和气氛,利用原位X射线光电子能谱(XPS)和拉曼光谱(Raman)等研究储能器件发现,无水气氛下,铝离子电池电极中的阴阳离子重新分布导致电极发生结构和电子态的弛豫效应,即电池自放电。而在含水气氛下,环境中的水分子会插层到石墨电极层间,并与层间离子发生水解反应,导致石墨电极电子态去耦、插层阶结构退化。相关研究成果发表在《美国化学会志》上。当前,研究界广泛使用X射线衍射、X射线吸收谱、透射电镜和核磁共振等表征技术检测电极和电解质,进而获得相关体相信息。傅强表示,这种方式获得的体相信息多聚焦电极或电解质内部,很难了解表界面的电化学行为,因此急需发展原位/工况电化学表界面表征方法。长期以来,基于XPS、扫描探针显微镜等表面科学研究方法成功用于表面化学和多相催化,而将表面化学方法学用于电池器件等电化学过程的研究面临模型电化学储能器件构建等挑战。为此,团队突破了表面表征所需的超高真空工作环境和规整开放表面的局限,构建出基于两维材料电极的模型电化学储能器件,设计并加工系列可以对模型储能器件施加电场、改变气氛、表面表征的样品台和样品池,利用XPS、原子力显微镜、Raman、光学显微镜等对铝离子电池的工作过程进行工况表征并准确阐述该电池的工作机制,同时还发现了储能器件电极的表面效应。此次,为了探究铝离子电池气氛下的失效机制,团队将含水、氧气、氮气等不同气氛分别引入铝离子电池的工作环境,通过XPS、Raman等表界面研究发现,含水气氛下,电极与水反应发生水解,使组分改变,导致电池失效。而无水气氛下,电极则表现出自发的弛豫、自放电现象。该研究准确阐明电池过程的工作机制,并揭示了不同气氛下储能器件的失效机制。与此同时,团队还将表界面电化学研究方法扩展到锂离子电池等其他储能体系。傅强表示,未来,基于气氛、温度、外场可控的原位电化学表界面表征技术和方法有望广泛应用到二次离子电池、超级电容器、金属—气体电池等体系中的表界面反应研究中,阐明这些储能器件的工作原理和失效机制。相关论文信息:https://doi.org/ 10.1021/jacs.1c09429
  • 理化所高电流密度下可充放电式锌空气电池研究取得进展
    p   可逆锌空气电池具有价格低廉、环境友好和能量密度高(1084Wh kg-1)等优势,在便携式交通工具和能量储存器件应用方面潜力巨大。该电池的核心组分是驱动氧还原反应(ORR)和析氧反应(OER)的双功能催化剂,但存在动力学缓慢及循环稳定性差等问题。因此,发展廉价、高效的双功能催化剂,对于推动可逆锌空气电池的实际应用具有重要意义。 /p p   氮化物,如Ni3FeN等,因其独特的电子结构和半金属特性,在电催化氧气还原反应(OER)中,表现出优异的性能。但将Ni3FeN应用于可逆锌空气电池中,面临两个问题:一是氮化物的ORR活性低 二是氮化物的在合成过程(氨气气氛煅烧)中易团聚,难以得到更小尺寸、更多活性位暴露的氮化物,阻碍其OER性能的进一步提升。 /p p   近日,中国科学院理化技术研究所超分子光化学研究团队研究员张铁锐课题组采用“一石二鸟”的策略,通过引入钴氮共掺杂碳载体(Co,N-CNF),有效减轻Ni3FeN在高温合成过程中的团聚问题,从而缩小其尺寸至14nm 同时Co,N-CNF本身具备优良的ORR性能。因此,Ni3FeN/Co,N-CNF复合物的OER性能明显优于贵金属IrO2,ORR性能超过商业化Pt/C,该双功能催化剂可实际应用于可逆锌空气电池,并在高电流密度(50 mA cm-2)下长时间稳定工作。该策略为设计和合成多功能催化剂提供了新思路,可广泛应用于金属空气电池、可充放电式燃料电池、全分解水以及其他能源领域。 /p p   研究结果以3D Carbon Nanoframe Scaffold-immobilized Ni3FeN Nanoparticle Electrocatalysts for Rechargeable Zinc-Air Batteries’Cathodes为题发表在Nano Energy上。 /p p   研究工作得到科技部国家重点基础研究计划、国家自然科学基金委优秀青年科学基金项目、国家“万人计划”-青年拔尖人才支持计划、中科院战略性先导科技专项(B类)等的支持。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/9fe2701e-b381-4d1d-a592-676044849fe8.jpg" / /p p style=" text-align: center " strong Ni3FeN/Co,N-CNF复合物应用于可逆锌空气电池 /strong /p p & nbsp & nbsp & nbsp 论文链接:3D Carbon Nanoframe Scaffold-immobilized Ni3FeN Nanoparticle & nbsp Electrocatalysts for Rechargeable Zinc-Air Batteries’ Cathodes /p
  • 中科院福建物质结构研究所成为富士电波等离子放电烧结炉SPS-925新用户
    中科院福建物质结构研究所成为富士电波等离子放电烧结炉SPS-925新用户 日本富士电波等离子放电烧结炉SPS-925(250KN,10000A)近期以绝对优势在中国科学院福建物质结构研究所国际招标中胜出。说明了日本富士电波的烧结炉设备广受国内材料研究者的认可。富士电波公司SPS烧结炉除了在国际上起步最早之外,另外一个特点是用户已经遍布全世界,在世界上拥有350多家用户。在中国也已经拥有30多家用户。远远多于竞争对手。该公司不仅生产实验室专用的小型设备如,SPS-211Lx,331Lx,630Lx等,还生产SPS-925这样兼顾实验和生产的中型设备以及大型批量生产型SPS30300T等烧结设备。在日本已经有10余家公司使用该公司设备生产各种过去难以制造的产品,这表明该公司在SPS烧结技术方面日趋成熟已为工业界所接受,进入了新的发展阶段。希望国内广大用户根据自己需求选择自己喜欢的SPS装置。注:该公司主要SPS产品如下,供您参考: 1.SPS-211Lx,20KN,1000A 研究型2.SPS-331Lx,30KN,3000A 研究型3.SPS-630Kx,60KN,3000A 研究型4.SPS-515s,50KN,1000-1500A研究型5.SPS-615,100KN,3000A 研究型6. SPS-625,100KN,5000A 研究型7.SPS-725,250KN,5000A 研究型8.SPS-825,250KN,8000A 研究型9.SPS-925,250KN,1000A半研究半生产型 10.SPS-3.20MK-Ⅳ,200KN,8000A半研究半生产型11.SPS-5.40MK-Ⅳ,500KN,8000A半研究半生产型12.SPS-5.40MK-VI,500KN,15000A半研究半生产型13.SPS-7.40MK-V,1MN,10000A半研究半生产型14.SPS-8.40MK-VII,1.5MN,20000A半研究半生产型15.SPS-9.40MK-VII,3MN,20000A半研究半生产型16.SPS-9.40MK-VIII,3MN,30000A 半研究半生产型17.SPS-10.40MK-VIII,5MN,30000A 半研究半生产型 18.Sinter Expert SPS 30300T 批量生产型 3MN,30000A,可烧结出高质量φ300xH250mm产品
  • ASMS研究成果:辉光放电源为元素质谱提供超高分辨率
    p style=" text-align: justify "   strong  仪器信息网讯 /strong & nbsp 近期,美国克莱姆森大学化学系和法国环境与材料分析物理化学研究所以及西北太平洋国家实验室的研究者发表了其最新的研究成果。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/c1798ad6-602b-4621-bf3d-3104f4475dcd.jpg" title=" cover.JPG" alt=" cover.JPG" width=" 600" height=" 349" border=" 0" vspace=" 0" style=" width: 600px height: 349px " / br/ /p p style=" text-align: justify "   研究者利用了结合原子和分子电离源的Orbitrap质谱分析仪对元素和有机金属进行质谱分析,且分辨率超过100万。(J. Am. Soc. Mass Spectrom. 2019, DOI: 10.1007/s13361-019-02183-w) /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/06ff3f13-adc2-4c00-a402-daa13467b67d.jpg" title=" 111111111111111.JPG" alt=" 111111111111111.JPG" / /p p style=" text-align: justify "   其研究中使用了被称为 strong 液体采样-常压辉光放电源的组合装置 /strong ,并用 strong 微等离子体进行电离 /strong 。利用该系统,研究人员能够解决一些一直以来都很难研究的无机化合物。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/7e408ace-3e95-4ea3-925a-a14a1ce37c4e.jpg" title=" 222222222.jpg" alt=" 222222222.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" style=" width: 300px height: 400px " / /p p style=" text-align: center " 组合电离源使用在金属对电极和石英毛细管的液体样品之间形成的微等离子体 /p p span style=" text-align: justify "   研究人员首次使用同位素方法解析了一种 /span strong style=" text-align: justify " 双金属氨基酸复合物( /strong strong style=" text-align: justify " Hg:Se-cysteine /strong strong style=" text-align: justify " ), /strong span style=" text-align: justify " 这种复合物被认为与汞的解毒有关。 /span span style=" text-align: justify " 研究人员还利用该系统解析了87Rb和87Sr,其质量差异反映了放射性87Rb对稳定同位素87Sr的β衰变,且其比值可应用于地质年代测定研究。 /span /p p style=" text-align: justify " & nbsp & nbsp 详情请点击文献原文: /p p style=" line-height: 16px text-align: center " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" https://img1.17img.cn/17img/files/201904/attachment/bcfb3e4f-28aa-493d-8c03-735968527540.pdf" target=" _blank" title=" 10.1007@s13361-019-02183-w.pdf" textvalue=" Ultra-High Resolution Elemental/Isotopic Mass Spectrometry" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong Ultra-High Resolution Elemental/Isotopic Mass Spectrometry /strong /span /a /p p style=" text-align: justify " br/ /p
  • 有“锂”走天下,兰格智能泵助力新能源锂电池行业
    最近,国内成品油价一直在变动,成为街头巷尾的谈资。与此同时,锂电池作为新能源汽车的动力来源行业也面临材料价格上涨,相关话题频上热搜。受益于新能源汽车行业飞速发展,锂电池新材料的研究也愈发火热。其中,全固态锂离子薄膜电池由于安全性更高等优点,日益受到重视。薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。过程中电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。以某个全固态薄膜锂电池生产试验线的实际应用为例:兰格某客户在电解质试验工艺中,需要三个泵为一组,在不同的时间点输送试剂,一个小时为一个循环,一天连续工作8小时。挑战对于这种复杂的进样体系,常规的实验室人工管理显然无法满足要求,需要使用PLC、电脑等实现设备的自动化管理。对于常规的化学、材料实验室,这就大大增加了试验的难度,需要通过自动化工程来完成。尤其,研究人员想要随时改变实验参数,也难以灵活实现。兰格解决方案对于实验的过程进行模块化分解,兰格智能型蠕动泵可提供9种运行控制模块(匀速、匀加速、匀减速、阶梯加、阶梯减、正弦、均匀分配、减量分配、增量分配)和8种逻辑控制模块(方向、暂停、循环、事件触发、延时、跳转、外控输出、结束)。研究人员可以像搭建乐高积木一样,来使用智能蠕动泵。例如上述的电解质试验工艺,兰格智能泵程序可以做如下设定:更多优势:如果研究人员需要改变其中的步骤,只需插入或删除相应模块即可。如果要修改某个模块的运行参数,直接进入模块进行修改即可。同时整个工作过程可以保存为方法,在后续的试验中可以直接调用。新能源车行业是我国战略性新兴产业,而且锂电池和5G、化学储能、碳中和等等也都息息相关,未来仍将有“锂”走天下。兰格智能蠕动泵应对不同需求,可提供多种运行/逻辑控制模块的灵活选择,助力科学家与工程师实现更便捷的操作,提高有效性、可靠性和智能体验,为全球碳中和事业作出贡献!
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图)图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图)实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 5 热分析设备 在电池领域的应用简介在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图)
  • 崂应推出新型智能交直流电源
    由于便携式采样器、监测仪拥有体积小、重量轻等优点,越来越多的受到广大消费者和用户的青睐。但因现场环境的局限性,仪器供电设施变成了困扰用户的主要问题之一。“崂应9011J型 智能交直流电源”便是应对这一问题而推出的全新一代移动电源。 本款电源适用范围广泛,在形式上与其他同类产品形成差异化优势,不仅增加了电力监测模块及交直流逆变模块,并且在原有普通电源特点的基础上,新增了负载功耗等参数的实时监测、逆变输出AC220V电源等新功能;同时预留了级联输入接口,可实现多台电源的智能级联,延长供电时间。 新型电源秉承了锂电体积小、重量轻、容量大、自放电小、使用寿命长、安全可靠、环保、充放电次数多(1000次以上)等优点。其智能化设计,在电源电压低于安全值时,会自动断开输出,有效的保护电池。本款电源不仅造型美观,体积轻便,更在一定程度上具有防雨雪功能等优点。可以与环境监测仪器配套使用。 一经上市,便受到广大消费者及用户的青睐。
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 小菲课堂|声学成像技术在局部放电监测中的应用(一)
    高压局部放电局部放电是电力设备绝缘在足够强的电场作用下局部范围内发生的放电,每一次局部放电对绝缘介质都会产生一些影响,使绝缘强度下降,造成高压电力设备绝缘损坏,甚至会造成人安全隐患。目前,预防性维护人员已经开始使用声学成像技术定位局部放电,甚至能在设备过热之前就发现设备特有的声音特征。与FLIR红外热像仪配合使用,像FLIR Si124之类的声学成像仪是必不可少的设备,可以有效地发现局部放电,避免出现设备故障、代价高昂的损坏和意外停机等问题。局部放电的过程与危害根据IEC 60270的正式描述,局部放电指“只是局部地桥接导线间绝缘体的局部放电现象,可能发生在导线附近,也可能发生在其他地方。通常,局部放电是局部电应力在绝缘体或绝缘体表面集中的结果,一般表现为持续时间远远小于1毫秒的脉冲。电流总是趁人不注意时试图逃逸、跳离导线、徒劳地尝试桥接附近的电极。在寻找逃逸路线时,它首先会从老化的绝缘体上的裂缝开始。如果是架空电线,则是从因多年积污的电线表面开始。也许是在高压电缆的纸绕组上戳一个小孔,也可能隐藏在老化的液体电介质中形成的气泡附近。在电压正弦波的每个波峰和波谷,它都会持续不断地尝试(局部放电)。电流就这样日复一日地试图穿越到相邻的导线上,肉眼却无法看到这类局部放电。受持续性高压应力影响,附近的绝缘材料会在某个时刻失效,丧失对电流的约束。最终,电流会分流进入另一导线。这种情况发生时,导线会完全失效。这会对线路上连接的电气设备、开关设备、机械或设施造成了极大的破坏,代价高昂。局部放电有可能损坏工厂设备或灼伤敏感的电子设备。严重时,局部放电可能导致社区停电数小时,闲置设备,浪费宝贵的生产力。声学成像仪是预防性维护的必要工具局部放电检测是状态监测(CBM)或预防性维护(PdM)计划切实发挥作用的必要条件。越早发现,局部放电对绝缘体的损坏就越少,设备故障和后续停机风险也就越低。追踪局部放电问题有着简单的经济动机:发现问题,安排停机,然后在局部放电现场修复和更换绝缘体及电气接头,其成本和破坏性要低得多。为了准确定位局部放电,电气承包商、检查人员和专业维护人员可以使用多种诊断技术。绝缘测试仪提供了绝缘体的有效性或电阻的数值读数。FLIR红外热像仪可以定位并识别电气设备产生的阻热,通过逐像素的温度读数在可视图像中精确定位问题所在。还可以将热成像技术与声学成像技术结合起来,确定局部放电的严重程度。温度升高和声学特征可以表明绝缘设备的完整性遭到破坏。FLIR Si124满足声像仪的所有需求作为整个诊断生态系统的一部分,FLIR在红外热像诊断方案以外,还推出了声学成像解决方案。FLIR Si124工业声学成像仪是一款基于声学原理的解决方案,它可以定位和分析工业故障、老化以及缺陷如局部放电等。研究发现,在元件发热到能被红外热像仪检测到之前,局部放电会导致声音异常。这就为我们额外提供了一层提示,帮助我们提前检测到潜在的故障。虽然我们经常能在电线附近听到嗡嗡声,但人耳通常是听不到局部放电的,因此局部放电人耳很难定位,尤其是在过于嘈杂的工作场所。借助手持式声学成像仪(FLIR Si124),用户可以扫描一整个区域,在被检组件的声像图上看到局部放电产生超声波的位置,即使人耳听不到、背景噪声很大也没关系。虽然在声学成像方面,电工有许多工具可选,但从便携性到精度,需要考虑多种因素。首先,虽然大多数声学成像工具都很轻便,但要选择便于换场作业的款式。选择一台简单易用、单手可握、携带方便,符合人体工学设计且便于瞄准的手持式成像仪。很显然,FLIR Si124工业声波成像仪很好地满足了以上所有要求!麦克风更多,检测速度快10倍科技领域有一条通用法则:越多越好。从这个意义上讲,声学成像仪中增加麦克风的数量对形成细节丰富的声学图像至关重要。同样在科技领域,对于麦克风本身而言,(体积)大不一定好,因此使用MEMS(微机电系统)类型的麦克风。这类麦克风的性能达到了良好的平衡,能在不同环境下稳定地工作,功耗低,支持小体积电池,续航时间长。另外,体积小意味着更容易把它们紧凑地布置在手持工具上。更多的麦克风,都有哪些优势呢?灵敏度:FLIR Si124声学成像仪搭载了由124个MEMS麦克风精心布成的阵列,这些麦克风相互配合,使灵敏度达到高水平。麦克风越多越可以降低“空间混叠”的可能,也就是降低图像上声源错位的可能。检测范围与访问:增加麦克风的另一个优势是可以扩大检测范围。声音在空气中的传播距离每增加一倍就会衰减6分贝(距离声源15米处听到的声音比30米处听到的声音强6分贝),中型局部放电的分贝值约为40分贝。为了检测范围更广,声学成像仪制造商通过增加麦克风的数量来扩大检测范围。FLIR Si124声学成像仪将麦克风增加三倍,从而使检测范围扩大一倍。出于安全考虑,许多电气设备周围都有栅栏,或者离地较高,很难接近访问。这种访问限制也可能与时间有关,比如需要客户联系人在场时才能进入。鉴于这些访问限制,远距离也能精确定位局部放电的工具就显得至关重要。处理能力:FLIR Si124会产生124个音频数据流,这些数据流经过处理后可转换为视觉图像。这款声像仪搭载了自动音频频率筛选功能,既不牺牲性能,也简化了操作过程。数据和图形处理能力的进步使得将如此大量的声学数据,瞬间整合成屏幕上易于理解的图像成为可能。如果用户选用搭载较少麦克风或老款处理器的成像仪,结果只能得到较低品质图像、较低的分辨率、以及较慢的刷新率。就生产效率而言,像FLIR Si124这样先进的声学成像仪在发现问题的速度方面比其它可用工具快10倍。配备124个麦克风的FLIR声学成像仪不仅检测速度快人一步麦克风频率还会影响检查效果想知道关于声学成像仪的更多理论知识持续关注我们
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
  • 赛默飞世尔尼通手持式XRF在废旧锂电池回收行业中的应用
    锂离子电池自1991年产业化生产以来,凭借能量密度高、循环寿命长、自放电小、输出电压高等优点得到了迅速发展,己广泛地应用于移动电话、笔记本电脑、电动汽车、军事装备、航空航天等众多领域。随着锂离子电池在我们日常生活中应用的日益普及,我国不仅成为锂离子电池消费大国,同时也迅速成为废旧锂离子电池产生大国。如何使废旧锂离子电池资源化,特别是稀缺金属钴、镍、锂等材料高效回收再利用已成为当前研究的热点工作。目前,国内外对废旧锂离子电池的回收,主要集中在对有价金属钴、镍和锂等金属的回收,因为这些金属属于稀缺金属,相对于其他金属具有较高的回收价值。企业要在锂离子电池回收行业中获得收益,钴镍锂等稀缺金属成分及含量的精确鉴定起到至关重要的作用。 赛默飞世尔尼通手持式XRF能够快速、精确地鉴定金属元素的成分及含量。只要开机-瞄准-察看简单三步,数秒内即可快速检测出金属元素的成分及百分比含量。在锂离子电池回收行业,赛默飞世尔尼通手持式XRF已经得到广泛的应用,为锂离子电池回收商带来巨大的利益和价值。使用赛默飞世尔尼通手持式XRF可以在数秒内检测出锂离子电池中钴镍等稀缺金属成分及含量,为购销双方在交易时作出迅速可靠的判断提供了必要的信息。赛默飞世尔尼通手持式XRF优势优势一,速度快,操作简单“开机启动—瞄准测试—察看结果”,整个分析过程仅需数秒便可完成,合金牌号鉴别只需1~2秒钟,操作简单,即使是非技术人员也可轻松掌握。优势二,性能卓越,数据精准,连续工作时间长测试数据精度高,接近实验室级的分析水平,可直观显示合金牌号和元素百分比,含量精确到ppm级。连续工作时间大于5个小时,可以连续检测上千件样品。优势三,坚固耐用、重量轻,适用于各种环境采用坚韧的LEXANR塑料密封外壳,重量轻,坚固耐用;密封式一体化设计,防尘、防水、防腐蚀,可在恶劣的环境中安全使用。
  • 卡式加热炉水分仪对比卤素加热水分仪,您选对了吗?
    在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。水分对锂离子电池影响巨大,主要会造成以下不良后果: 1、电解液变质,使电池铆钉生锈。2、电池内部压力过大,爆裂使得电解液喷溅,电池碎片也容易伤人。 3、高内阻(High ACR),不能进行大电流放电,电池的功率比较低。4、高自放电(HSD),电池在不使用的情况下,电量也会损耗。5、低容量,电池内部水分过高,损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。6、低循环寿命 7、电池漏液,当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸,氢氟酸是一中腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。 目前市场上水分含量测定的技术方法最常用的是卡尔费休方法和加热失重方法,由于锂电池行业所测样品含水量极低,加热失重法水分测定仪的精度根本达不到,这种方法被直接排除。卡尔费休方法检测,精度没有问题,但是由于样品本身固体粉末无法溶解,直接进样的方法会污染反应杯和电极,样品也无法检测,因此,采用卡尔费休间接进样的方法,也就是用卡式加热炉(也有叫卡式干燥炉)进样,结合卡尔费休水分测定仪检测就成为目前唯一的可以选择的测量方式。卡式加热炉作为卡尔费休水分测定仪的辅助组成部分,它要求加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量,这对仪器的加热组件,管路组件,密封组件等提出了非常高的要求,长期以来,国产仪器厂家在这一块儿是个空白,被国外公司所垄断,进口仪器价格十分昂贵,在十几万和二十几万之间,日常维护成本也非常高。另外,国内一些卡尔费休水分仪的生产厂家声称自己的产品可以应用在锂电行业,但也仅仅局限于电解液等液体样品,正负极材料,极片等固体样品根本无法检测。早在2011年,在浙江大学,中科院宁波材料所等一批老师的帮助下,我们开始进行卡式加热炉结构设计和材料筛选的工作,经过几年摸索,样机成型,并结合我禾工公司的AKF-3库伦法卡式水分测定仪,组成一套国产的第一台带卡式加热炉的卡尔费休水分测定仪,AKF-BT2015C锂电池水分测定仪客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%。 AKF-BT2010C锂电池专用水分测定仪:采用卡尔费休间接进样的方法,用卡式加热炉(也有叫卡式干燥炉)进样,加热后的样品水分挥发后能够无任何残留地进入到卡尔费休水分仪电解池中测量。适用于锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 典型用户:钱江锂电科技有限公司(4套)、个旧圣比和实业有限公司(1套)、海门容汇锂业有限公司(2台)、惠州基安比新能源有限公司(1台)、山东临沂杰能新能源(2套)、南阳嘉鹏新能源(1套)、山西中科忻能科技有限公司(2套)、四川南光新能源有限公司(1套)、新乡中科科技公司(1套)、浙江谷神能源(2套)、无锡市明杨电池有限公司(2套)、北京般若涅利(1套)、包头石墨烯材料研究院(1套)、重庆中欣维动力(1套)、贵州赛德丽新能源(1套)......
  • 聚焦锂电安全性|美国TA仪器推出TAM IV Micro XL微量热仪
    p   近期,美国TA仪器推出了新款微量热仪——TAM IV Micro XL。这是一款功能强大的等温微量热仪(IMC),专门用于测量电池内部最小的电化学反应。该仪器配备了一个大型测试室,使科学家和工程师可以制造定制尺寸的电池座,以适应其应用的具体电池几何结构。 /p p style=" text-align: center " img width=" 300" height=" 408" title=" TAM IV Micro XL.png" style=" width: 300px height: 408px max-height: 100% max-width: 100% " alt=" TAM IV Micro XL.png" src=" https://img1.17img.cn/17img/images/202003/uepic/bb644ffe-403d-45f6-b950-d2fddd3abd7e.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " TAM IV Micro XL /p p   软包电池、扣式电池、起搏器和手机电池的实验可在自然储存条件下进行,也可与电池循环设备一同进行,以评估电池的充放电动力学。 /p p   TAM-IV-Micro-XL可以检测锂离子电池在自放电过程中的亚微瓦变化。使用该仪器得出的参数可以对样品稳定性进行定量评估。IMC温度图的形状是对电池中发生的实时反应速率(反应速度)的直接测量。理解反应的速率可以用于指示产品的寿命和安全性。除了反应速率之外,还有其他重要的参数可以用来表征热稳定性。通过更多详细的分析,可以用来确定电池放电和充电过程的热力学性质,从而理解潜在的寄生反应,这对于评估电池的循环寿命和能量密度非常重要。 /p p   “尽管锂离子电池市场已经成熟,但安全性、更高的能量密度和更长的电池循环寿命永远是该领域关注的焦点。” 美国TA仪器的微量热仪产品经理Neil Demarse评论说,“TAM IV Micro XL提供了一个平台,可以理解不想要的寄生反应的精确机制:这是开发下一代电池技术的关键一步。” /p p   TAM IV Micro XL IMC的高级功能包括: /p p   最佳热平衡和业界最高的信噪比电池等温微量热仪 /p p   内置引线接入,与外部电池无缝集成,可用于充放电实验, /p p   模块化恒温器,可扩展多样本比较功能。 /p p   该系统流线型工作流程和用户友好的数据分析软件加快了典型电池配方中先进电池电解质化学和电极材料的研究,以最少的实际操作时间快速提供可靠的结果,并推动了各技术单元的生产效率。 /p p br/ /p
  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?   如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。   为什么辉光放电光谱技术受青睐?   辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。   辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。   其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。   另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。   辉光放电光谱的工作原理   辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。 辉光放电源的结构示意图,样品作为辉光放电源的阴极   整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。   辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。   氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。   光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。   如何进行定量分析?   和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。   下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。   想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。   辉光放电光谱的主要应用   除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。   1. 半导体-LED芯片   如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。   辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。   2、太阳能光伏电池   太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。   3、锂电池   锂离子电池的正极材料是氧化钴锂,负极是碳。   锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。   同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。   辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。   辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。   总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。   关于HORIBA 脉冲射频辉光放电光谱仪   HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。   脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。   (本文由HORIBA 科学仪器事业部提供)
  • 辉光放电光谱、火花源原子发射光谱的新应用
    仪器信息网讯 2014年10月20-21日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 辉光光谱/表面分析/火花源原子发射光谱&rdquo 分会在北京国际会议中心举行。 会议现场   辉光放电光谱(GD-OES)由于具有固体样品直接分析、可分析非导体样品、分析速度快、气体消耗量低、分析成本低等优点,近年来,在元素分析中的应用逐渐增多。目前应用的商业化辉光放电光谱仪厂商主要有美国的Leco公司、德国的Spectro公司、法国的Horiba Jobin Yvon公司。 报告人:首钢技术研究院徐永林 报告题目:辉光放电光谱法在镀锡板检测上的应用   徐永林利用辉光放电光谱仪对镀锡板样品进行逐层剥离,根据样品由表至里的辉光放电积分图谱,分别设定公式积分计算镀锡板镀层厚度及重量、钝化层厚度及重量、基板成分、镀层中有害元素等。通过与传统方法的分析结果比对,说明采用辉光放电光谱法分析这些检测项目具有较佳的准确度及精密度,提高了检测效率,同时达到了镀锡板多个检测项目的同时测定。 报告人:首钢技术研究院梁潇 报告题目:直流辉光放电光谱法同时测定铸铁中12种元素   梁潇研究了利用辉光放电光谱法同时测定铸铁中的多种元素含量。通过分析激发电压、激发电流、光电倍增管、预燃时间和积分时间等因素对各元素光谱强度和稳定性的影响,以铁为内标建立了同时测定铸铁中碳、硅、锰、磷、硫、镍、铬、钼、铜、钒、硼等元素含量的分析方法。对不同铸铁样品进行准确度和精密度试验,均得到了很好的结果。   火花源原子发射光谱分析法是一项成熟的分析技术,具有操作简便、分析速度快和准确度高的优点。在生产实践中分析金属试样表现出的快速、准确和高精度是其他分析方法无法取代的,因而广泛的应用于钢铁和有色冶金行业炉前快速分析,也是分析各种常见固体金属材料的一种普及的标准分析方法。   在会议中,多位报告人介绍了火花源原子发射光谱的最新应用研究。江苏沙钢集团的陈熙介绍了火花源原子发射光谱快速测定钢中低含量硅 钢研纳克检测技术有限公司宋宏峰介绍了火花源原子发射光谱法分析高锰铬钢 上海宝钢工业技术服务有限公司张叶介绍了火花源发射光谱分析焊丝钢线材试样 宝山钢铁股份有限公司研究院赵涛介绍了火花源原子发射光谱法测定铁基非晶合金中的硅和硼。
  • 利用原位CT观察锂电池在充放电中的变化
    近几年中国锂电池的出货量持续增长,对电池的各种研究也在不断深入。锂离子电池充电后,其中的活性物质会发生体积膨胀,原位表征技术成为分析工作中的重要手段。这种变化有时并不显著,利用原位CT可以捕获微小变化的差异,让分析工作更加简单,品质管理更科学可靠。 小型锂电池外观电池整体的断面图像图中可见,间隙部分的增大。 放、充电后电池各层电极将放、充电后电池各层电极的图像进行对比,可见电极厚度上有微小膨胀,最终导致整体厚度的增加。 岛津微焦点X射线CT系统 inspeXio SMX-225CT FPD HR Plus——一款支持锂电池充放电试验的微焦点CTinspeXioSMX-225CTFPDHRPlus(可搭载充放电系统) • 人性化操作的理念贯穿整个设计。即使CT试验的步骤简化到三步,依然能拍摄出高质量的数据。• 维护保养简便易行,让设备的使用无后顾之忧。 本文内容非商业广告,仅供专业人士参考。
  • 辉光放电光谱技术受青睐 市场前景可瞻——访HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授
    p span style=" font-family: 楷体,楷体_GB2312, SimKai "   1968年,W.R.Grimm(格里姆)推出了辉光放电光源,很快发展为辉光放电光谱(GD-OES)和表面分析技术,用于材料及镀层金属的逐层分析 1978年,出现了第一台商品化仪器 20世纪90年代,GD-OES在表面分析领域上得到迅速发展...... /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   与其它表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。鉴于此,辉光放电光谱仪受到了越来越多专业人士的关注,其应用领域也不仅仅限于最初的钢铁行业,可分析的材料越来越广泛。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   那么,辉光放电光谱仪目前的技术水平和市场情况怎么样?用户的实际反馈情况如何?为了深入了解辉光放电光谱仪的技术及市场概况,日前仪器信息网编辑特别采访了HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授。 /span /p p    span style=" color: rgb(255, 0, 0) " strong 辉光放电光谱仪中国市场需求量逐年提升 /strong /span /p p span style=" color: rgb(255, 0, 0) " strong br/ /strong /span /p p style=" text-align: center " img title=" 1.jpg" style=" width: 177px height: 246px " src=" http://img1.17img.cn/17img/images/201708/insimg/750dd2b6-0440-4ffc-8f38-83060d85a331.jpg" width=" 177" vspace=" 0" hspace=" 0" height=" 246" border=" 0" / /p p style=" text-align: center " strong HORIBA辉光放电光谱仪应用支持工程师武艳红 /strong /p p strong   仪器信息网:从行业发展角度分析,辉光放电光谱仪目前的技术水平如何?有哪些新的技术亟待推出或者有哪些技术瓶颈亟待突破? /strong /p p    strong 武艳红: /strong 目前,辉光放电光谱仪已经是一类成熟的表面分析设备,被广泛应用到各个领域的定性和定量分析中。辉光放电光谱技术是有损分析技术,在分析后会在表面留有一个溅射坑,但溅射坑使得分析更加深入,检出限更好,当然样品不可回收也是它的主要缺点。不过,如果对内部结构感兴趣的话也可以利用这个溅射坑为其他表面分析设备服务,比如样品剥蚀完后还可以用扫描电镜观测袒露出来的内部表面结构,或是与XPS联合使用获得镀层结构、元素、分子等方面的信息。此外,辉光放电光谱仪目前在定量方面仍受限于国际标准样品的种类及数量,无法为新型镀层材料做定量曲线,尤其是新型材料还处于定性分析阶段,或实验室自行制备参比样品进行定量。 /p p    strong 仪器信息网:您认为辉光放电光谱仪未来的市场需求情况怎么样? /strong /p p    strong 王江勇: /strong 目前辉光放电光谱仪主要应用于工业界,比如,钢铁及半导体等行业,相信今后随着相关理论工作进一步地跟进与完善,辉光放电光谱仪不仅会拓宽其在工业领域的应用范围,而且也将逐渐被学术界所接受,更多地应用于表面、薄膜、涂层科学研究,所以,可以肯定辉光放电光谱仪未来市场的需求会越来越大。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/9b4addd0-8eee-4b0b-afed-fbb63472c775.jpg" / /p p style=" text-align: center " strong 汕头大学 王江勇教授 /strong /p p    strong 仪器信息网:为什么会选择购置辉光放电光谱仪?主要是基于哪方面的科研需求? /strong /p p    strong 王江勇: /strong 实验室选择购置辉光放电光谱仪主要有以下原因:深度分辨率较高,溅射速度快 较其它深度剖析设备价格低 完善现有的深度剖析定量分析理论模型 薄膜相变及功能多层膜成分的表征需求等。 /p p    strong 仪器信息网:贵实验室采购的辉光放电光谱仪的配置情况如何?目前的使用情况如何?取得了哪些研究成果? /strong /p p    strong 王江勇: /strong 我们实验室于2016年购置的HORIBA GD-Profiler 2辉光放电光谱仪, 配有47个谱线通道,并配有一个可进行扫描的单色通道,可以说是目前配置最为完备的辉光放电光谱仪,原则上可以测量所有元素的辉光激发光谱。另外,该谱仪还配备了去年开发出来的新附件-微分干涉测厚仪(DIP),可进行溅射坑深度的实时测量。 /p p   该仪器目前使用良好,几乎每天都有使用。在成果方面,从理论上定量分析了溅射坑形貌对深度分辨率的影响 实验上,对各种基底材料(包括有机材料)最佳的深度剖析条件进行了探索,以确保高分辨率深度剖析的测量。总体来说,目前已对纳米级的金属-金属、氧化物、功能多层膜等进行了高分辨率的深度剖析测量。 /p p    strong 仪器信息网:为什么会选择HORIBA的辉光放电光谱仪? /strong /p p    strong 王江勇: /strong 选择HORIBA的辉光放电光谱仪是基于多方面的考虑:产品技术比较成熟,性价比高,售后团队强大等。 /p p   从仪器技术的角度,HORIBA的辉光放电光谱仪的射频光源可以适用于导体、半导体及非导体材料,应用面广,符合实验室多类型材料分析的需求 全自动脉冲分析模式对于玻璃衬底样品、热敏感样品或脆性样品的分析至关重要,可以有效抑制元素在分析过程中的元素层间扩散或样品受热下非期望性变化 深度分辨率高,样品剥蚀坑底部更加平整,有效支撑理论计算和模型建立 此外,HORIBA的辉光放电光谱仪还有多项专利技术为仪器性能改善、实际分析带来益处。 /p p    span style=" color: rgb(255, 0, 0) " strong 多项专利技术 HORIBA辉光放电光谱仪优势明显 /strong /span /p p style=" text-align: center " img title=" 3.jpg" style=" width: 300px height: 357px " src=" http://img1.17img.cn/17img/images/201708/insimg/142d7c83-5317-4315-aeb8-ffdf91597c79.jpg" width=" 300" vspace=" 0" hspace=" 0" height=" 357" border=" 0" / /p p    strong 仪器信息网:HORIBA在辉光放电光谱仪方面的研发历史?目前主推的仪器类型? /strong /p p strong   武艳红: /strong 1984年HORIBA拥有了辉光放电光谱仪产线,从此踏上了辉光放电光谱仪不断改进、创新研发之路。。在过去的三十年间,HORIBA应用了17项专利技术以提高其性能,如高动态检测器、全自动脉冲式射频源、polyscan技术、超快速溅射、微分干涉测厚系统(DIP)等。现在辉光放电光谱仪可以分析含量ppm级以上元素随镀层深度的变化,深度分辨率小于1nm,可测深度200um。目前主推的仪器型号为GD-Profiler 2,最新技术有DIP深度测试附件等。 /p p    strong 仪器信息网:HORIBA的辉光放电光谱仪器相比同类产品有哪些优势? /strong /p p strong   武艳红: /strong 相对于其它表面分析技术如SIMS、XPS、俄歇、能谱仪等,辉光放电光谱仪分析速度快、操作简单且无需超高真空(UHV),良好的深度分辨率还可为扫描电镜剥蚀制备样品。 /p p   在同类竞争产品中,HORIBA的辉光放电光谱仪在光谱分辨率相同的情况下,能减小设备的焦长,可提高仪器的稳定性和光通量 采用两个真空泵维持辉光灯的气氛的稳定性,使其深度分辨率低于1nm HDD高动态检测器的线性动态范围可达10^9,当样品浓度从无到100%变化时不会饱和溢出,且无需手动设置电压 HORIBA作为全球光栅领导者,可根据设备特性改良光栅使其光谱分辨率和光谱响应达到当前最佳水平。 /p p    strong 仪器信息网:HORIBA辉光放电光谱仪在中国的用户情况? /strong /p p strong   武艳红: /strong HORIBA辉光放电光谱仪目前主要应用于渗氮渗碳、镀锌钢板、LED芯片、太阳能光伏、金属镀层、半导体器件、彩涂板、微弧氧化陶瓷、表面处理等领域。中国对辉光放电光谱仪的接触历史比较短,客户主要集中于钢铁行业、高校研究所和半导体公司。代表客户如鞍钢、武钢、汕头大学、复旦大学、清华大学、原子能研究所、LED公司等。 /p p    strong 仪器信息网:针对辉光放电光谱仪,HORIBA在市场方面的推广重点在哪里? /strong /p p strong   武艳红: /strong 从近年来用户的关注可以看出,目前主要的问题还是如何快速的让更多科研院所、半导体公司了解该技术。HORIBA每年都会投入大量的市场费用,用于技术交流会、会议赞助、网络讲堂、线下光谱学堂等,以便越来越多的人能够熟知辉光放电技术,并通过这个技术将自己的研究推向更高。 /p p    strong span style=" font-family: 楷体,楷体_GB2312, SimKai " 后记: /span /strong span style=" font-family: 楷体,楷体_GB2312, SimKai " 今年8月份,由汕头大学等单位协办的“ a title=" " href=" http://www.instrument.com.cn/news/20170821/227131.shtml" target=" _blank" 2017年全国表面分析科学与技术应用学术会议 /a ”于8月10日-13日在在汕头大学召开。本届学术会议旨在推动我国表面分析科学及其应用技术的发展,促进国内外表面分析研究领域的专家学者交流,探讨表面分析技术与其它学科的共同发展,进一步拓展表面分析技术的应用领域。参加本届会议的代表约130多人,创历届之最,云集了国内外学术界的专业人士,除了来自国内的代表外,还有来自美国、德国、法国、日本、匈牙利、西班牙、新加坡及南非等的国外代表。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   大会开幕式由汕头大学王江涌教授主持,会议组织安排的六个大会报告既是各位专家对自己研究成果的精彩总结、也是对国内外近年来表面分析科学及其应用技术的高度概括,对广大年轻人的表面分析科学及其应用技术学习、成长和进一步凝练方向具有重要的指导意义,大会报告更是令大家开拓了新的视野。 /span /p
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • OPTON的微观世界|第22期 SEM技术在Li电池中的应用(上)
    前 言随着全球能源与环境问题不断凸显,发展新能源汽车已成为世界各国的共识,欧洲多个国家已经制定了燃油汽车限售的时间表,同时据人民网消息,我国工信部表示我国已启动研究传统燃油车的退出时间表,这一消息使得新能源汽车与锂电池产业站在了资本的风口,那么作为新能源汽车的重要一个方面的锂电池产业又将呈现更广泛的应用潜力。那么今天小编就将简单介绍一下Li电池的基本原理与其组成的正负极材料。一、锂电池概述首先,我们来介绍一下锂电池的概念。“锂电池”,是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂电池大致可以分为两类:锂金属电池和锂离子电池。其中锂金属电池最早于1912年由Gilbert N.Lewis提出并研究。20世纪70年代时,M.S.Whittingham首先采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂金属电池。由但由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,其安全隐患备受关注,所以,锂金属电池长期没有得到应用。1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性,此过程是快速的,并且可逆,因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。1991年索尼公司发布了首个商用锂离子电池,锂离子电池革新了消费电子产品的面貌。习惯上,人们把锂离子电池也称为锂电池,但这两种电池是不一样的。随着锂离子电池正极材料的发展,多种类型的锂离子电池被研发出来,锂离子电池由于其电压高、电容量高、低消耗、无记忆效应、无公害、体积小、内阻小、自放电小循环次数多,广泛应用在移动电子设备等民用军用设备中。二、锂电池工作原理锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。放电反应:Li+MnO2=LiMnO2锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。如图1显示了锂离子电池的示意图。图1.锂离子电池示意图以LiCoO2为例子充电正极上发生的反应为LiCoO2=Li(1-x)CoO2+XLi+Xe-充电负极上发生的反应为6C+XLi+ Xe-=LixC6充电电池总反应LiCoO2+6C=Li(1-x)CoO2+LixC6三、Li电池正极材料一般可选的正极材料有很多,例如:钴酸锂、锰酸锂、磷酸铁锂、镍酸锂、三元、富锂相、硅酸铁锂、磷酸锰锂、硫酸氟铁锂。不同的正极材料对应不同的平均输出电压于能量密度:
  • 德国元素elementar-锂离子电池中碳、氢、氮、硫与氧元素分析的解决方案
    锂离子电池具有能量密度高、循环寿命长、自放电小、无记忆效应与环境友好等众多优点,已经在智能手机、智能手环、笔记本电脑等消费电子领域获得广泛应用。在纯电动汽车、混合动汽车与增程式电动汽车领域正在逐步推广。锂离子电池由正极、负极、电解液与隔膜等部分组成。正极与负极材料的性能直接影响电池的使用性能与寿命。正负极材料中的碳、氢、氮、硫与氧的含量测试显得非常重要,尤其是碳作为负极材料真正起电化学活性的组分,其含量至关重要。德国元素elementar 元素分析仪的卓越性能,可实现CHNS+O的全方面精准分析,为锂离子电池的发展保驾护航。德国元素elementar有机元素分析仪-石墨烯材料中碳、氮、氢、硫、氧元素的测定UNICUBE 有机元素分析仪根据 Q/JSGL 005-2014《石墨烯材料 碳、氢、氮、硫、氧元素含量测定方法》标准方法,采用元素分析仪高温催化燃烧法测定石墨烯材料中的碳、氢、氮、硫元素含量;高温裂解测定石墨烯材料中的氧。石墨烯是一种新型材料,不易燃烧。高达10mg的石墨烯取样量更是对仪器性能的严苛考验。德国元素elementar有机元素分析仪,可配备高性能燃烧炉与红外检测器,实现对石墨烯样品中的高碳、低硫元素进行高精准的测量。德国元素elementar-inductar CS cube 红外碳硫仪-磷酸铁锂中碳硫元素的测定依据YS/T 1028.4-2015 《磷酸铁理化学分析方法 第4部分:碳量的测定 高频燃烧红外吸收法》,采用高频红外碳硫仪对正极材料—磷酸铁锂中的碳进行测定。磷酸铁锂是锂电池的一种正极材料,其碳与硫的准确分析是至关重要。Inductar CS cube 高频红外碳硫分析仪不仅可以实现操作流程的简单化,亦可实现结果的高精准。满足锂电客户的测试需求。德国元素elementar开发的碳硫分析仪在获得高度准确数据的同时,还具备简单易用、清洁和自动化流程等特点,给用户带来全新的金属和无机材料中的碳硫分析体验。inductar CS cube碳硫分析仪充满先进和创新的理念,让碳硫分析更加简便,而且结果更为可靠。德国元素elementar-enviro TOC 总有机碳分析仪-硫酸盐溶液中TOC总有机碳的测定对于电池级硫酸盐,按照北京资源强制回收环保产业技术创新战略联盟团体标准“电池级硫酸锰溶液”、“电池级硫酸镍溶液”、“电池级硫酸钴溶液”,硫酸盐中的油分可通过TOC分析仪进行测定。德国元素elementar-enviro TOC 总有机碳分析仪,采用高温燃烧法对样品中的有机化合物进行完全燃烧分解,确保化合物中的所有碳得到全部释放,采用宽范围红外检测器进行高精度测定。整个过程实现高通量、快速、简单、精准的测定。德国元素elementar-inductar CS cube 红外碳硫仪-碳化硅中碳硫元素的测定碳化硅是一种无机碳化物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐电阻炉高温冶炼而成。在锂电行业中,用纳米硅粉做成纳米硅线用在充电锂电池负极材料里,或者在纳米硅粉表面包覆石墨用做充电锂电池负极材料,提高了充电锂电池 3倍以上的电容量和充放电循环次数。inductar CS cube在碳化硅中碳硫的分析上展现出了出色的精度和准确度。inductar CS cube 操作简单,使用方便,对于该类质量控制是非常理想的一款仪器。德国元素elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 小菲课堂|声学成像技术在局部放电监测中的应用(二)
    声学成像仪在高压局部放电中的应用原理小菲在上周的文章中提到一部分没看到的小伙伴戳这里:小菲课堂|声学成像技术在局部放电监测中的应用(一)下面继续为大家详细解说声学成像仪:智能除噪,结果准确电气承包商选择检测局部放电的工具本身,也可能会导致人们对局部放电的识别效果产生误解。比如,局部放电以40 kHz的频率恒定地发出超声波,许多声学成像设备就只有这个频率的范围,尽管这些设备在某些情况下可能有用,但在大多数情况下,选择这些设备可能大大削弱检测的灵敏度。例如,在远距离工作时(如户外变电站),使用更宽的频率范围(10 kHz-30 kHz)可以产生更好的结果。目前,声学成像已迅速发展成对维护供电基础设施正常运行不可或缺的技术。越来越多的状态监测管理人员开始把FLIR Si124之类的声像仪加入工具箱。此类设备可以快速、轻松地发现问题,降低维修成本,减少意外停机,很快就能带来投资回报。 当高压设备内有悬浮导体时(比如用垫片隔开),就有可能产生悬浮放电,悬浮放电被认为是最常见的局部放电类型。导线(如输电线)周围作为绝缘材料的空气在高湿度或污染环境下会丧失部分绝缘能力,进而发生空气放电。这会导致电流进入空气中,进一步降低近处的空气质量和导线的性能。分析声学图像可能需要一定的培训和学习,尤其是在理解不同类型的局部放电时。了解问题及其严重性有助于制定更好的报告、维修建议和更明智的后续行动。FLIR Si124声学成像仪采用人工智能算法分析局部放电,可助电气承包商一臂之力。用户可以将声学图像上传到FLIR Acoustic Camera Viewer云服务,后者会自动将这些图像与数千张局部放电图像进行比较。先进的人工智能服务有助于减少误差,加快报告制作,成为客户检查业务的关键优势。简单易用的特性也有助于使更多工人加入声学成像检测队伍,共同开展状态监测或预防性维护工作。声学成像仪重点检测区域对于局部放电易发生的区域,主要包括:★ 导线和母线★ 发电机★ 输配电设备★ 变电站★ 定子、电机和线圈★ 开关设备★ 变压器声学成像可以检测到超声波的能力,已成为公用事业组织用于确定是否存在局部放电的有效方法。它使专业人士能够执行更多例行预防性维护,有助于提供对即将发生的会导致关键系统停机的电气故障的关键初步预警。所以,电气供应商们要与时俱进,选择更有效、更快捷的工具检测电气设备的局部放电哦~想要了解更多详情。
  • 华质泰科发布SICRIT 流过式介质通路放电源新品
    仪器简介: 流过式介质通路放电源(SICRIT® )为最新型原位电离源技术,是继实时直接分析源(DART)、解析电喷雾源(DESI)、液滴萃取表面分析源(LESA)等发源于“诺奖”级质谱技术如电喷雾(ESI)及大气压化学电离(APCI)之后,新一代变革性的常压离子发生技术。SICRIT(Soft Ionization by Chemical Reaction in Transfer)仅利用电极放电瞬间激发和离子化质谱入口端流路上的气态化学物质,来实时识别流入物质的化学成分和形态,无需(像传统液质依赖的ESI那样依赖溶剂)使用溶剂及任何辅助性气体,直接实现快速、广谱、灵敏、高通量的准确定量、定性、溯源、筛查、或聚类分析。该技术由苏黎世联邦理工学院(ETH) Renato Zenobi 教授课题组最先发明,继由德国 Plasmion 公司的 Jan Wolf 博士和 Thomas Wolf 博士二次创新并商业化。SICRIT 具备无歧视和快速广谱软电离有机成分(极性、弱极性、非极性)尤其是中性(如烷烃)或几无极性的难电离化合物(如多环芳烃 PAHs)的特长,结合使用 ① 串联四极杆(QQQ)质谱,依靠 QQQ 的 MRM/SRM 多反应监测功能,实现高灵敏度(达 ppt 即 pg/mL 到 ppb 即 ng/mL 级别)的靶标定量如化学毒物分析、农兽药检测,或示踪分析如新生儿筛查、化学品迁移;或 ② 高分辨质谱(HRMS),如轨道阱质谱 Orbitrap、Q-Exactive、飞行时间质谱 QTOF 等,以高分辨率(达几万至几十万分辨)和高质量准确度(1-2ppm)的特性,结合当今质谱已经具备的快速扫描(每秒达10-20张全谱)和极速正、负切换功能;或 ③ 移动便携或小型车载多级质谱,如曾用于航天的 MT50 小型便携质谱仪(不到35公斤),实现高灵敏度的化学品、食品药品、农副水产品、材料固废、或复杂基质体系如生物体液或组织内上百种痕量、超痕量的有毒有害、营养和功能成分的快速筛选、快速鉴定和高通量定量定性分析,大大提高实验室效率、分析检测能力及设备与人员的投资回报率。技术原理: 质谱为当今分析检测界的顶级化学分析鉴定技术,大小分子的定性定量常可“一锤定音”。质谱仪大体分四大类:① 气质(GCMS)的离子发生方式多依赖电子轰击源(EI),用于挥发性的中性或极弱极性小分子(800Da 以下)的 GC 分离后分析,技术成熟但需时很长;EI 离子化很硬(70eV),完整的分子离子很难保留,多靠子离子碎片库检索但因缺少完整分子离子信号,常出现假阳性和假阴性;② 液质(LCMS)的质谱仪真空腔内的离子分离检测部分发展很快,但传统 LCMS 的离子发生多依赖 ESI 或偶尔利用 APCI,涵盖极性和中弱极性分子,但对极弱至非极性分子代谢物难以覆盖造成漏检,曾经出现过的 APPI 光喷雾技术应用面狭窄操作繁琐,很难普及。ESI 需要 LC 分离因而需时也长,近来 DART、DESI、LESA 等技术对 LCMS 的性能提升巨大,实现了原位快速分析和成像应用,无论是 ESI,APCI,还是 DART、DESI、LESA 等,都是利用外力(气、液、电)和正压力方式促成化合物解离并离子化;即使 DART 已经剔除了溶剂的使用,和实现了无损检测,但离子发生依然需要高纯氦气或氮气等载气辅助,气体的供应及车载运输是许多应用场景的瓶颈因素。液质 LCMS 是有机生物领域使用最为广泛的质谱技术,占每年质谱新装机总量的一半左右。③ 等离子体质谱(ICP-MS)用于部分无机物检测;④ 基质辅助激光解析电离质谱(MALDI-MS)多用于微生物鉴定和搜库识别,库的局限性和基质的非匹配性信号丢失是其中的限制性因素之一。MALDI 后端的质谱传统上为 TOF 类飞行时间质谱,分辨率和定量有些瓶颈,是为限制性因素之二。当今的 APMALDI 常压基质辅助激光解析电离可灵活串接 Orbi 类高分辨质谱、QTOF 类飞行时间质谱、或 QQQ 类高灵敏度三级四极杆类定量质谱,实现了常压高通量分子量测定和结构鉴定,及常压原位质谱成像。质谱仪包括四大部分:离子发生器、离子分离器(真空腔内)、离子检测器(真空腔内)、数据处理器。离子发生器如电喷雾(ESI)等当红技术解决了有机和生物分子自常压状态解离生成离子信号的世纪难题,每年仅中国即进口三千多套带有 ESI 离子源的质谱设备。ESI 的瓶颈是必须在溶液状态下操作,样品需首先必须溶解成液态。但 ESI 本身有离子竞争和抑制或选择性歧视的内在缺陷,即使结合 LC 液相分离(又需要长时间完成)也难以消除离子抑制和极性歧视。原位质谱(Ambient Ionization MS)更进一步!连接 AI 原位源的质谱整机的灵敏度和特异性保持了 LCMS 质谱仪部分的优势,但速度和效率比 LCMS 液质或 GCMS 气质提高近 30-1000 倍(平均每样品3~10秒),硬件成本降低近一半,耗材及使用成本降至 1/4 以下,还不算因用时大大缩减而节约的人力物力投资和机会成本。传统的离子化方法中,分析物在被传输到质谱之前发生电离。因此,不可避免在离子传输到质谱的期间发生离子排斥和中性粒子损失现象。而 SICRIT 是在常温常压下,流过式物质经放电发生介质通路放电和光电离,产生分子离子,继而以质谱或串联质谱的自真空负压吸入,实现瞬时检测。该技术不需要引入其他气体、溶剂、试剂来影响离子的形成过程,真正实现直观、直接、快速、在线分析。在毒化、食药、组学、临床、风味等有机分子的分析检测领域,SICIRT 是原位源家族的最新优选技术,即可直接在线分析气态或风味物质分子,不再特别需要对样品进行冗繁的前处理或耗时昂贵的色谱分离,也可以和顶空分析(包括静态顶空、顶空固相微萃取)实现高灵敏度检测,更可以和气相(GC)及微纳流液相(microLC、nanoLC)等实现在线软电离广谱无歧视(有别于 ESI 的歧视性离子化)检测分析。通过结合前端自动化高通量样品注入方式,SICRIT 结合后端串联质谱(MS/MS)、高分辨质谱(HRMS)或移动便携(Portable MS)或小型车载多级质谱,能充分实现几秒内的快速、高通量、在线样品分析,大大提高大批量样品的瞬时定量和定性检测能力。SICRIT® 典型客户包括瑞士苏黎世联邦理工学院(ETH),瑞士联邦民防局(FOCP),德国曼海姆大学仪器分析研究所,瑞典巴斯夫股份公司(BASF SE)等,旨在毒物/滥用药、物证和化学武器分析、气味鉴定、环境污染监测、食品药品质量控制、临床诊断等方面的研究,同时也运用在未知样品的非靶标筛选以及代谢组学样品的分析。设备主要用途: SICRIT 结合后端串联质谱(MS/MS)、高分辨质谱(HRMS)、移动便携(Portable MS)质谱、小型(miniMS)质谱、或车载(Field-Deployable MS)质谱,能充分实现几秒内的实时快速、灵敏高通量、无损在线样品分析,大大提高大批量样品的瞬时定量和定性检测能力。SICRIT 与串联质谱如 QQQ 和 QTRAP 质谱仪(MS/MS)、QTOF 和 QE 等高分辨质谱仪(HRMS)、MT50 和离子阱等小型质谱仪联机,利用广谱无损无歧视的原位采样和原位软电离、极简或不必的样品预处理需求和省却冗长的色谱分离等待、高灵敏度的 MRM/SRM/SIM 多反应离子检测、中性丢失扫描、前端离子扫描、子离子扫描、高分辨率识别、高质量准度鉴定等功能,实现凝固态、气态、液态或气味样品如毒物、食药、农品、材料、保化、环境、临床等复杂基质样品中成百上千种痕量、超痕量的化学毒剂、药物、生物标志物、等有毒有害物质、代谢物、营养或功能性成分的快速筛选、快速鉴定和高通量快筛和高敏定量分析,大大提升测样服务报告速度、数据质量、和学术水平。SICRIT-MS 的优势还包括非歧视性地同时电离中弱极性、非极性的痕量及超痕量的靶向或非靶向标志物分子,大大提升分子检测覆盖率、特异性、和识别灵敏度。利用快速产生的海量大数据辅以统计学分析,识别化学毒物、风味物种、协诊关键疾病变化(包括健康与病症识别)、监控食药掺伪、和药物分布与毒物迁徙,获取材料、食药、及动植物组织中的化学及生物分子空间分布(成像)信息。创新点介绍:和液质 LC-ESI-MS 及 GC-EI-MS 联用相比,SICRIT-MS 具备诸多优势,使质谱分析 “更软、更直接、更快速、更经济”。例如:(1)直接分析:SICRIT 基本不需要样品制备,样品分析时间很短(1秒内),满足了现代社会对高通量样品快速分析的需求;(2)操作简便、节省人力:SICRIT 不需要调节源的参数,不需要专门时间和知识去优化操作,直接获得分析结果;(3)绿色、低碳:分析过程几乎不需要化学溶剂,甚至不需要任何载气,耗能少,减小钢瓶等配件使用,更方便车载便携,且减少了外来污染源;(4)可在常温常压下分析液态、及气态样品,或来自任何形状样品(比如药片、叶子、咖啡豆、食品、农产品、水产品、玩具、包材)的气味或风味。(5)能同时离子化中性、中极性、和弱极性的活性化合物、药物、毒物、和残留有机物。对中性化合物如烷烃、芳香烃等难电离组分同样灵敏有效,且不需像 ESI 或 MALDI 那样必须先行溶解样品;(6)不产生加合盐离子,离子信号仅包括所有能离子化的待测组分的单电荷离子,简化定量分析和谱图解析;(7)保持分子离子完整性,无碎片,简化谱库制定、定量和谱图解析;(8)样品分析非常简便,只需将样品手动或自动置放于装配在质谱仪离子采样口前端延伸线上 SICRIT 的入口即可瞬时在线产生信号。不需要调节任何参数,操作异常方便,实现全自动和现场分析;(9)和众多主流质谱厂商(如 SCIEX、Agilent、ThermoFisher、Bruker、Shimadzu 等)各种类型的质谱仪如飞行时间、离子阱、三级四极杆及各类混联质谱联用。仪器或技术设备名称:“流过式介质通路放电源 – 串联或高分辨质谱系统(SICIRT-MS/MS或SICRIT-HRMS)”或 “流过式介质通路放电源”,作为已装机的质谱仪的升级配件品牌与型号:SICRIT® 生产商为 Plasmion(德国);中国独家总代理为华质泰科生物技术(北京)有限公司。型号: a) SICRIT® SC-20X 基础配置,含源、控制器及耗材配件;b) SICRIT® GC/SPME Module 加在线 SPME 模块配置c) SICRIT® GC, GC/SPME Module 加在线 SPME 及 GC 恒温桥模块配置安装尺寸或功率:SICRIT 安装尺寸约 250 x 180 x 80mm,自重 2.4 kg公斤。功率没有特殊要求。不需要额外气瓶、不需要流动相、不需要液相色谱仪和色谱柱等耗材。创新点:和液质 LC-ESI-MS 及 GC-EI-MS 联用相比,SICRIT-MS 使质谱分析 “更软、更直接、更快速、更经济”。 (1)绿色、低碳:分析过程几乎不需要化学溶剂,甚至不需要任何载气,耗能少,减小钢瓶等配件使用,更方便车载便携,且减少了外来污染源; (2)可在常温常压下分析液态、及气态样品,或来自任何形状样品的气味或风味。 (3)能同时离子化中性、中极性、和弱极性的活性化合物,对中性化合物如烷烃、芳香烃等难电离组分同样灵敏有效,且不需像 ESI 或 MALDI 那样必须先行溶解样品; (4)不产生加合盐离子,简化定量分析和谱图解析; (5)样品分析非常简便,只需将样品置放于装配在质谱仪离子采样口前端延伸线上 SICRIT 的入口即可瞬时在线产生信号。不需调节任何参数,操作异常方便,实现全自动和现场分析; (6)和众多主流质谱厂商各种类型的质谱仪及各类混联质谱联用。 SICRIT 流过式介质通路放电源
  • 新型辉光放电质谱仪(Element GD)演示及讨论会通知
    在春光明媚的三月底,国内第一台新型辉光放电质谱仪(Thermo Scientific Element GD)在短短十天内顺利地完成了安装,调试和初步的培训,交付用户使用。 在金川镍钴研究设计院的领导的大力支持下,我们拟定在六月五号到六号两天借用研究设计院的设施和仪器,向广大关心辉光放电质谱仪的现状和发展的老师演示Thermo Scientific的新型辉光放电质谱仪(Element GD)。届时Element GD的设计者Dr. Rottman 和应用专家Dr. Hinrichs都会到场为大家介绍Element GD的研发,现状和应用,并演示仪器的操作。 金川镍钴研究设计院位于兰州市榆中和平开发区,离兰州市中心车程30分钟左右。欢迎各位老师踊跃参加。(会议交通费,食宿自理) 有意参加的老师请联系: 赛默飞世尔科技(上海)有限公司 尹松 电话:021-68654588(分机2183) 传真:021-64281793 手机:13816109156 Email: song.yin@thermofisher.com 期待着在兰州与各位老师再会。 祝好! 赛默飞世尔科技(上海)有限公司
  • 清华大学两台放电等离子烧结设备验收完毕
    清华大学两台放电等离子烧结设备验收完毕 由日本富士电波工机株式会社为清华大学制造的2台放电等离子烧结设备SPS-211Lx近日在清华大学材料学院顺利安装完毕。 创元公司代理的日本富士电波工机株式会社的放电等离子烧结设备以其优异的品质获得了用户的青睐。富士电波工机株式会社是最早开发出SPS制造技术的住友石炭公司的继承人,拥有世界上最先进的SPS技术。世界范围内拥有多达350多名的用户,其生产的放电等离子烧结设备已经广泛应用于各种新材料的研发和生产。 清华大学继2000年首次购置SPS-1050T以来取得了一系列令人瞩目的成果。时隔15年后清华大学材料学院李敬锋副院长和林元华副院长再次同时购置2台SPS设备说明了以其为代表的国内知名高校以及科研机构对于富士电波工机株式会社SPS产品的充分认可。
  • 南方科技大学再次购置SPS-211L放电等离子烧结设备
    南方科技大学再次购置SPS-211L放电等离子烧结设备创元公司代理的日本富士电波公司的SPS-211Lx放电等离子烧结设备于2014年底在南方科技大学顺利验收完毕,经过这段时间的使用,基于对sps-211LX的良好认同,南方科技大学在购置一台SPS-211Lx之后,决定再购买一台以增加科研能力。这款设备可以广泛用于各种新材料研究。尤其是纳米烧结和梯度烧结。该设备以其精良的制造工艺,优异的烧结性能和经济适用的特点,非常适合各大学、大专院校材料实验及研究开发,一经推出就深受广大用户喜爱。请参见本网站有关SPS的详细技术资料。
  • 成果:大气常压磁约束微型直流辉光放电质谱离子源
    p style=" text-align: justify "   近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室与四川大学开展联合研究,发现在大气常压环境中磁场有效约束离子传播特性,并基于此研发出一种大气常压高效痕量检测磁约束微型质谱离子源。相关研究工作以通讯的形式发表在国际期刊Chemical Communications上。 /p p style=" text-align: justify "   直流辉光放电微型等离子体源,凭借其放电的稳定性和等离子体的非平衡特性,在化学分析和环境监测等领域有着独特的技术优势和广阔的应用前景。具有高灵敏度、高选择性和快速响应等特点的质谱法,已成为分析化学领域的核心技术之一,在痕量物种定性和定量检测中发挥着巨大作用。长期以来人们一直致力于提高质谱仪的分析性能。常压离子源,作为质谱仪的核心部件,主要作用是将样品解吸和电离,产生气态样品离子。能否有效将样品离子化和把离子化的待测物传输到检测入口,在很大程度上决定了整个质谱仪分析的灵敏度。 /p p style=" text-align: justify "   在大气环境中,一般通过气流将离子化的待测物输运到质谱仪检测入口。该种传输方式使得很大一部分离子逃逸到环境大气中损失掉,导致传输效率低下。为提高离子传输效率,该研究团队基于常压磁约束离子传播特性,提出一种大气环境中纵向磁场约束离子传输的新方法,研发出一种用于痕量物种检测与分析的大气常压磁约束微型直流辉光放电质谱离子源。该方法关键在于:1)在弱电场中,气流和洛伦兹力共同作用离子,使之做螺旋运动,降低逃逸概率 2)利用离子与环境氮气和氧气等分子的集体碰撞效应,进一步减少约束半径,使得更多的离子传输到检测入口,增加离子传输效率。通过质谱分析,该方法成功地将样品质谱信号强度提高到原来的10倍,检测限可降低到原有的1/10,使得部分有机物待测样品的检测限达到几十PPt的水平。该项工作为化学分析和环境监测等领域提供了更为可靠的检测手段,为低温等离子体的应用拓展了新的研究方向。该工作受到科技部、国家自然科学基金委和中科院“西部青年学者”项目的资助。 /p p style=" text-align: justify "   近几年来,瞬态光学与光子技术国家重点实验室在等离子体基础研究领域实现了一次又一次原理上的创新和技术上的突破,取得了一系列原创科研成果。研究团队曾首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,该项工作以封面和亮点文章发表于国际应用物理类学术期刊JAP (2017)。此外,在低温等离子体领域已连续8篇论文发表于国际学术期刊APL。上述成果为西安光机所等离子体学科的发展奠定了坚实的基础。 /p p style=" text-align: center " img title=" 大气常压质谱离子源.webp.jpg" alt=" 大气常压质谱离子源.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7631dd7f-9436-45d8-b144-ba3c9e5173cc.jpg" / /p p style=" text-align: center "   大气常压磁场约束离子运动轨迹及样品阿司匹林溶液质谱检测 /p p style=" text-align: justify "  文章链接: a href=" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract" target=" _blank" https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract /a /p p style=" text-align: justify " & nbsp /p
  • FLIR Si声学成像仪——局部放电带电检测的“新手段”!
    局部放电高发马上进入盛夏,随着高温天气的到来,随之而来的就是用电规模的增长和用电负荷的增加,电力设备的安全运行又将受到新一轮的挑战。据电网统计,局部放电是造成高压电气设备最终发生绝缘击穿的重要原因,也是绝缘劣化的重要标征,其会造成输电设备损坏、电力质量下降、电能损失、大面积停电甚至火灾爆炸等重大安全事故,直接影响着人民群众的生产与生活质量。对局部放电的传统检测方法可能会面临人力成本高、人工效率低下检测结果不准确、人身安全风险等问题今天小菲就来给大家介绍一个高效、科学、安全的新型检测方法声学成像技术~看见隐藏故障的声音,确保人身安全电气绝缘设备的局部放电会发出一些声音,其发出的超声波信号一般不在人耳的可听范围内,因此就需要检测设备对其进行定位。声学成像技术已经过多年实践,被证实是“看见”局部放电故障的可靠技术。全新FLIR Si2系列声学成像仪,接收频率范围在2kHz至130kHz,几乎涵盖了局部放电的全部声波范围,搭配内置的124枚麦克风,用户在较远的安全距离范围(最远200米)或嘈杂环境中也能直观地显示超声波信息,生成精确的声像。声像实时叠加在可见光数码图像上,使用户可以准确地查明异常声音来源。区分放电类型,加快补救进程局部放电分为多种不同类型,其特征因类型而异。在实际应用中,可分为四类:负电晕放电、正负电晕放电、浮动放电以及表面或内部放电。不同放电类型的局部放电相位分布(PRPD)图谱略有差异,更多信息请点击下方图片,获取“FLIR Si2系列声学成像仪局部放电检测深度分析白皮书”,它能让您对局部放电有更深层次的理解!全新FLIR Si2系列声学成像仪内置了局部放电严重程度评估和纠正措施建议功能,通过对局部放电进行分类,能让用户迅速做出补救决策,减少故障的影响。这样的检测,比传统方法要将近快10倍哦~一键生成专业报告,简化工作流程对于电力设备的巡检,一般包含变电站、配电房等各类表计抄录、电气接头、开关等大大小小多种巡检项目,繁琐复杂,而且需要使用不同的检测工具对不同的设备进行检测,并且其检测结果的整理,对于巡检人员说都是令人头痛的琐碎工作。全新FLIR Si2系列声学成像仪具备简化设备集群运行的功能,用户可以通过设备集群管理、云数据集成和OTA软件更新,确保设备在大规模工业环境中也可以最佳使用和维护。其配备的插件还能让用户将声像直接导入FLIR Thermal Studio软件中,进行离线编辑、分析和创建高级报告。专业的报告和分析软件,让检测后的结果处理变得更加简单明了!目前可局部放电检测的声学成像仪主要是FLIR Si2-PD和Si2 Pro其还有GPS标签、二维码扫描和文本注释等功能在电网系统日益发达的今天电力设备的智能巡检和故障诊断成为趋势FLIR Si2声学成像仪能够帮助巡检人员直观了解设备内部声场的分布情况协助巡检人员及时准确发现故障位置有效提高了故障检测和巡检效率您在电力检测工作的过程中有哪些难题?FLIR专业人员将为您提供解决方案您可直接拨打官方客服电话一对一咨询哦~
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制