当前位置: 仪器信息网 > 行业主题 > >

国际氢能暨燃料电池技术展览会

仪器信息网国际氢能暨燃料电池技术展览会专题为您整合国际氢能暨燃料电池技术展览会相关的最新文章,在国际氢能暨燃料电池技术展览会专题,您不仅可以免费浏览国际氢能暨燃料电池技术展览会的资讯, 同时您还可以浏览国际氢能暨燃料电池技术展览会的相关资料、解决方案,参与社区国际氢能暨燃料电池技术展览会话题讨论。

国际氢能暨燃料电池技术展览会相关的资讯

  • 美国博纯将参加2018中国国际氢能与燃料电池产业发展大会暨展览会 CHFCE
    全球燃料电池、医疗、科研和环境监测应用气体预处理解决方案的供应商美国博纯,将参加于2018年7月26–28日在北京中国国际展览中心(静安庄馆)举办的“第三届中国国际氢能与燃料电池产业发展大会暨展览会(CHFCE 2018)”。展会将着重在氢能燃料电池的产业链如何构建和发展、氢能燃料电池与汽车融合与发展及氢能燃料电池在电力和能源系统中的应用,特别在微网发电,储能,通信基站等特定领域中的应用方案和技术产品展开。氢能与燃料电池被公认为是清洁的能源,近年来正在得到日益广泛和深入的关注。而如何超越传统能源行业也是目前最重要的研究课题。在历经多年研究,专家们发现在整套燃料电池系统中,影响电堆性能的关键因素之一则是“湿度”! 美国博纯Nafion™ 膜渗透技术可为这一过程提供完美的方案!基于Nafion™ 技术的FC系列产品能为客户指定流量范围内的空气和氢提供可持续且重复的加湿,低压降,运行不需电力,并能大大减少系统的实际负载。与传统焓轮和喷水加湿系统相比,博纯加湿器具备了更耐用,更高效,抗振动和免维护的特性。目前,博纯FC加湿器产品已成功应用在燃料电池汽车、基站、燃料电池实验室测试平台和固定式发电上。本次展会,美国博纯将展出FC系列大流量加湿器、MH系列小流量加湿器及ME水分交换器,并将分享各行业中的成熟案例。博纯展位号B34,我们期待您莅临现场指导! 关于博纯:美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供创新的高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、品质和可靠性产品,是医疗、科研和环境监测用户的信赖之选。博纯通过ISO 9001:2015,13485:2016认证,并获得FDA注册。关键词:美国博纯 样气预处理 燃料电池 氢能 燃料电池加湿 加湿器
  • 美国Gamry电化学亮相中国国际氢能与燃料电池技术应用展览
    2017年8月28日-30日,由中国机械工业联合会、全国氢能标准化技术委员会、全国燃料电池与液流电池标准化技术委员会共同主办的“2017年中国国际氢能与燃料电池技术应用展览暨产业发展大会”,在北京国家会议中心隆重召开。 本次展会吸引了来自全球十几个国家共六十多家参展商,涵盖了制氢、储运氢相关基础设施企业、燃料电池系统及关键部件、材料、测试装置等领域,是氢能与燃料电池全行业的第一次集中展示。 美国Gamry电化学是世界电化学工作站的领先制造者,有着30年历史。从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计,元器件的选择,信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。 本次展览会上,Gamry展出了Reference3000、Interface5000等一系列电化学工作站。 Reference3000电化学工作站:Gamry Reference 3000 电化学工作站结合Booster电流放大器,将仪器最大电流扩展至30A,结合多台Booster,还可以扩展至60、90、120或180A。该系统擅长快速大电流脉冲,以及超低阻抗的准确测量。用户可以方便地进行电池动态应力测试、放电过程中的交流阻抗测试等实验,广泛应用于各种电池、燃料电池、超级电容器、电池组等领域的测试和研究。交流阻抗谱应用于越来越多的电化学研究领域,该仪器具有优越超前的准确性、精度及速度,极低的噪声和干扰,可准确测量1μ?以下的超低阻抗样品。 Interface5000电化学工作站:l 专为电池研究打造l 高达5A的大电流设计l 超低阻抗测量,低至微欧l 同步跟踪阴阳极电压及阻抗 Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,适合功率略大的能量转换体系测试使用。
  • 霍普斯氢燃料电池用氢质量分析仪亮相第二十一届中国国际环保展览会
    第二十一届中国国际环保展览会是由生态环境部、北京市人民政府等部门支持,中国环境保护产业协会主办的的展览会。展览会将于2023年4月13日至15日在北京中国国际展览中心(朝阳馆)举办本次展会是我司对外宣传的窗口,再一次向广大客户彰显了良好的公司形象和风貌,很多客户都现场进行了咨询,对霍普斯所展出的产品表示了极大的兴趣,希望通过这次机会进行深入合作。未来,我司将一如既往,不忘初心,砥砺前行,致力于成为行业内领先的环境监测与工业过程分析专家!氢燃料电池用氢质量分析仪产品介绍产品概述 采用色谱原理搭配多种高性能检测器,监测高纯气及超纯气中的微(痕)量杂质。分析仪本体防爆,采用多柱箱多流路并行设计,功能模块化,可实现各种复杂的应用。分析仪管路全惰性化及独特的防反渗技术,提高检测精度及重复性,检出限可达到ppb级。 传承霍普斯工业设计理念,预处理搭配阀柱系统及中心切割技术,实现一台表就可以对高纯氢、高纯氧、高纯氩、高纯氦、高纯二氧化碳等高纯气体分析。监测参数1. GB/T 37244-2018 (H2、He、N2、O2、Ar、CH4、CO、CO2、总硫、甲酸、甲醛、氨气等)2. GB/T 3634.2-2011( H2、N2、O2、Ar、CH4、CO、CO2 等)应用领域1. 电解水制氢;2. 甲醇制氢;3. 焦炉煤气制氢;4.变压吸附制氢;5.氢燃料电池用氢等;产品特点1. 分析仪采用气浴加热,柱箱始终保持正压,避免氢气聚集,安全系数更高;2. 阀柱系统位于气浴加热的柱箱内,受热更加均匀,分析仪稳定性和重复性更好;3. 分析仪配置节气模块:标气、样气及载气耗气量低,经济性高;4. 氧氩低温分离模块可使氧气和氩气达到良好的分离效果;5. 多阀多柱的中心切割与反吹系统。 优秀的产品,专业的服务,吸引来许多观众的驻足,走进展位,了解产品详情,我们的工作人员仔细的聆听、耐心的解答、用专业化的角度和眼光为进入到展位的浏览者给与指导。
  • 美国博纯将参加2019中国国际氢能与燃料电池技术应用展览暨产业发展大会
    全球环境监测、医疗和科研应用气体预处理解决方供应商美国博纯将于2019年5月5日至8日参加在北京中国国际展览中心(静安庄馆)举行的2019中国国际氢能与燃料电池技术应用展览暨产业发展大会。在这一年一度氢能与燃料电池技术盛会上,主办方组织呈现产业链上全系产品及各种燃料电池终端应用产品,特别是在交通、电力和能源系统中的应用提供一站式“氢能与燃料电池”解决方案。众所周知,燃料电池系统工作时,电堆对反应气体的相对湿度具有较高要求。一般来说,电池堆的性能随着反应气体相对湿度的增大而提高。如果反应气体湿度达不到湿度要求,电池堆的性能会降低,同时会缩短运行寿命;如果反应气体湿度超过100%,则极容易夹杂液态水进入电池堆,容易影响电池堆的运行稳定性。因此,对氢燃料中的H2及空气中的O2加湿控制成为至关重要的一步。届时,美国博纯会带来具有卓越的湿度管理解决方案。使用Nafion技术,博纯开发出独特的FC系列加湿器,可为不同功率的燃料电池电堆及实验平台提供个性化技术支持,为客户大大提高燃料电池性能及运行时间。博纯展台设在6号馆6601号,欢迎各位业内专家的莅临参观!美国博纯(Perma Pure)是英国豪迈旗下公司,是一家提供高性能气体预处理解决方案生产厂商,产品包含干燥管、加湿器、过滤器、凝聚过滤器、专业洗涤器和完整的样气预处理系统。总部位于新泽西州莱克伍德,在中国和印度设有服务支持中心。作为使用Nafion™ (由杜邦公司研发的离子交换共聚物)管解决方案的指定生产商,我们提供高性能、高质量和可靠性产品,博纯是医疗、科研和环境监测市场先行者们的信赖之选。公司产品有助于全球数百万人的健康,安全和幸福。博纯通过了ISO 9001:2015,13485:2016认证,并获得FDA注册。
  • 电弛新能源亮相CIBF 2024重庆国际电池技术交流展览会
    4月27日,重庆国际博览中心,第16届中国国际电池技术交流会/展览会盛大开幕。本次展会由中国化学与物理电源行业协会主办,以“链动全球赋能绿色驱动未来”为主,共计2200多家业内知名企业全方位、多维度参与展示全新技术成果,助推中国新能源产业高质量发展。作为此次展会参展商,电弛新能源携多款重磅产品亮相,展示在锂电池、氢能领域的测试技术产品,包括GPT-1000原位产气量测定仪、IPT-2000气体内压测测定仪、SFT-3000原位膨胀力测试仪、980Pro燃料电池测试系统、780电解水制氢测试系统、DSR数字型旋转圆盘电极等多款产品。近年来,我国新能源行业蓬勃发展。“新质生产力”引领绿色低碳发展。电池行业已然由高增长阶段迈入高质量发展阶段,人们更多地把目光投向电池的性能安全,从源头上开发更安全的电池产品。电弛新能源加大创新投入,基于电池原位产气量、内部气压、膨胀力等关键领域展开研究,研制了先进的电池测试设备,对于探索优化电池材料、结构,具有重要意义。在展会现场,电弛新能源以“专于电池,精于测试”为主题,带来的系列全新电池测试应用解决方案吸引了不少嘉宾的关注。“大家的热情超出我们的预期,对我们展示的最新电池测试技术产品兴趣浓厚,电弛新能源期待与业界朋友合作,一起助力中国电池产业发展”,电弛新能源代表感慨现场观众的热情,认真解答专业技术问题,介绍新产品特色功能。GPT-1000 原位产气量测定仪GPT-1000电池原位产气量测定仪可实现对锂/钠/半/全固态电池化成、过充、循环及存储等不同阶段产气情况的在线或离线监测。该系统提供一整套原位产气量与产气组分的在线测试解决方案。IPT-2000 原位气体内压测定仪IPT-2000原位气体内压测定仪采用先进的GSP气体采样接口设计,实现了对多种不同规格电芯的适配,满足大规模电芯测试的需求,进而为电芯产气分析、失效模式研究以及热失控安全性评估提供强有力的技术支持。SFT-3000 原位膨胀力测试仪SFT-3000原位膨胀力测试仪可在模拟真实的电池充放电工况下,对多种不同形态的电池进行膨胀尺寸和膨胀力的精确评估,助力电极材料的研发和电池膨胀机理的深入分析研究。近年来,我国氢燃料电池汽车产销量高速增长,氢燃料电池测试、电解水制氢等专业设备需求井喷,通过这些仪器设备,开发先进的氢能技术产品,有着重要意义。在本次展会上,电弛新能源展示了近年来在氢能技术研发成果,得到了与会专家、学者的关注。980Pro 燃电池测试系统980Pro燃料电池测试系统是专为PEM燃料电池膜电极(MEA)和电堆性能评估而设计的先进测试平台。可对燃料电池的性能和稳定性进行全面评估,已成功部署国内多所高校实验室。780 电解水制氢测试系统780电解水制氢测试系统兼容PEM与AEM技术应用的创新型电解水制氢测试系统。充分考虑了中国实验室的操作习惯。DSR 数字型旋转环盘电极在展台上,数字型旋转圆盘电极DSR凭借具有中国特色的“千山绿”设计吸引众多嘉宾围观,科技彰显人文,DSR凭借“数字化、更精准、‘狠’稳定”的技术优势,助力中国催化剂及氢能科研。目前,重庆国际电池技术交流会/展览会(CIBF2024)火热进行中,欢迎大家参观电弛新能源展会交流互动!
  • 凯尔邀您共聚CIBF深圳国际电池技术展览会
    第十五届深圳国际电池技术交流会/展览会,即将在深圳国际会展中心隆重举办。 凯尔测控是一家专注于电池检测仪器研发和生产的高新技术企业,携专为电池领域研发的检测设备亮相展会现场,欢迎各位莅临我们的展台,期待现场与您共同探讨电池技术的前沿动态和未来发展趋势。参展信息■ 展会时间:2023年5月16日~18日■ 展会地点:深圳国际会展中心 (深圳市宝安区福海街道展城路1号)■ 凯尔展位:1号馆 1B065 此次CIBF2023深圳国际电池展集中展示全球动力电池、储能电池、3C电池、充换电设备及配套设施、氢能及燃料电池、各种电池材料、制造设备、动力及储能系统解决方案,重点展示近两年来我国在各种新能源乘用车、客车、物流车、载重卡车、船舶等用动力电池、燃料电池和储能领域的一系列成果。展品“剧透”1极片电阻率分布测试系统 可进行极片电阻率测试,评估电池极片材料的导电性能和适用性,以确定其在电池中的性能和稳定性。极片材料需要具有良好的导电性能,以确保电池的电流传输和充放电效率。产品介绍■ 双电极开尔文四线法测量极片整体电阻 (率) ,更接近电池内电流真实传输路径。■ 初始厚度分布图、电阻分布图、接触厚度分布图、电阻率分布图一建导出。■ 自动生成测试报告。2微型电磁式动态力学试验系统 可进行电池隔膜穿刺试验,穿刺测试用于评估电池隔膜抗刺穿性能的测试方法。模拟电池在使用过程中可能发生的温度变化、碰撞、机械应力等情况,以评估其是否会发生短路、爆炸等安全问题。3微型多尺度原位力学试验系统 可进行电池隔膜涂层剥离试验,用于评估电池隔膜涂层材料的粘附性能,以确定其适用性和耐久性。 还可进行电池隔膜拉伸试验,用于评估电池隔膜材料的拉伸强度和延展性,以确定其适用性和耐久性。更多展品,现场揭晓!2023年5月16日~18日第十五届深圳国际电池技术交流会/展览会CARE与您相约1B065欢迎各位的莅临,我们不见不散!
  • 展会通知|搭配高科技,FLIR产品为氢能及燃料电池行业的蓬勃发展赋能!
    可再生资源——氢能随着中国正式进入“双碳时代”,可持续发展日益成为企业增长战略中的关键一环。氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源,在全球的能源体系中占据着越来越重要的位置。氢能的应用氢是一种清洁燃料,在燃料电池中消耗,只产生水。氢气可以从各种资源中生产,如天然气、核能、生物质以及太阳能和风能等可再生能源。氢燃料可以通过多种方法生产。目前最常见的方法是天然气重整(一种热工艺)和电解,其他方法包括太阳能驱动和生物过程等。目前,氢能产业还属于初期,主要应用在交通领域,其关键技术是氢燃料电池。在氢能生产和应用中,总会遇到各种各样的问题,那么我们该如何解决呢?生产:压缩机泄漏——声像仪电解水制氢作为一种成熟的制氢方式现已被广泛应用。该方法会将制作好的氢气通入压缩机,然后储存加注到加氢车辆中。如果未来建造大量的加氢站,那么对压缩机泄漏检测的要求也将提高,这是一个非常巨大的市场。目前主要是在线和接触式检测工具,但这种检测方式繁琐又不十分准确。幸好,声学成像仪的出现,让非接触精准检测气体泄漏成为可能。FLIR Si124-LD Plus是菲力尔专门为压缩空气泄漏检测设计的最新工业声像仪,其重量轻、可单手操作, 内置124枚麦克风,检测频率范围为2kHz至65kHz(范围可根据实际情况调整),涵盖了更宽范围的可听声和超声波,自动滤波、自动测距和连续自动校正功能,让用户在嘈杂的环境中也能直观地显示压缩机气体泄漏源的超声波信息,生成精确的声学图像,大大提升了气体泄漏检测的工作效率!应用:氢燃料电池研发——热像仪氢燃料电池的膜电极是燃料电池电化学反应发生的区域,是整个燃料电池系统的核心部件,由于薄膜针孔或者边框封装等缺陷的存在,稍有不慎就可能会引发氢气泄漏。在其设计和研发过程中,一定要选择一款高灵敏度的红外热像仪进行监测,避免任何漏洞的出现。比如FLIR T1K(包含T1010、T1040和T1050SC)配有1024x768像素的非制冷红外探测器,其灵敏度是非制冷传感器行业标准的2倍,所生成的图像质量非常出众。搭配尖端技术——UltraMax高清图像增强技术和MSX® 专利技术(专利号:201380073584.9),能生成最高达310万像素的明亮清晰的热图像。这样用户在监测氢燃料电池的研发和测试过程中,即使微小的温度变化也能捕捉到,快速发现故障点,避免因氢气内漏而降低效率和形成氢氧界面等问题给电池运行带来的严重风险。我国从“十一五”时期开始关注氢能和燃料电池产业的基础研究,2019年首次将氢能写入政府工作报告。2022年3月,国家发展改革委和国家能源局印发《氢能产业发展中长期规划(2021-2035年)》促进氢能产业高质量发展。在政策和行业标准的引导下,氢能及燃料电池行业技术快步提升,产业发展进入快车道。为推动氢能与燃料电池技术融合发展,实现产业共赢,2023国际氢能与燃料电池汽车大会暨展览会(FCVC 2023)将于7月5-7日在上海汽车会展中心召开。届时,菲力尔将携众多高端产品参会,相关行业的小伙伴一定要来我们的展位试用下产品哦~FCVC 2023 7月5日-7日 上海汽车会展中心展位:B126氢能产业是科技和资本密集型产业涉及领域包括新材料、电力装备新能源汽车、航空航天、国防军工等氢能未来将会成为一大能源趋势来参展的小伙伴不妨来FLIR展位瞧瞧亲手试验下FLIR高科技产品是如何辅助氢能的生产和研发我们还为您准备了神秘礼品哦~7月5日-7日小菲在展位:B126期待您的莅临~
  • 环球分析测试仪器有限公司助力第三届中国国际氢能及燃料电池高峰论坛
    2024年4月11日-4月13日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在重庆帕格森蒂两江蒂苑酒店举办的“第三届中国国际氢能及燃料电池高峰论坛暨展览会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借其性能优异、简洁易用操作软件、强大离线数据分析软件、优越性价比及强大的拓展功能等诸多亮点受到广大参会科研学者的支持。 本次大会以“氢助双碳、引向未来"为主题,邀请来自政府主管部门、行业精英、涉氢企业、社会组织负责人、专家学者、企业家等齐聚美丽山城。旨在促进氢能产业技术“政、产、学、研、用"协同发展,推进氢能产业链基础设施建设,深入拓展氢能产业领域相关新技术、产品示范应用,助力实现双碳目标,推动氢能产业高质量发展。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 科技部:继续加强氢能与燃料电池技术攻关
    p style=" text-indent: 2em " 针对这份《关于加快推动燃料电池商用车发展的建议》,答复文件明确,科技部将结合国家中长期科技发展规划研究和“十四五”国家重点研发计划重点专项凝练等工作,继续加强氢能与燃料电池技术攻关,加快关键核心技术取得实质性突破,提升燃料电池技术成熟度,为燃料电池商用车技术进步和产业发展提供强有力技术支撑。 /p p style=" text-indent: 2em " 不仅如此,目前,财政部正联合科技部等部门,通过“以奖代补”方式,重点在积极性高、经济条件和政策基础好、具备氢能和燃料电池汽车产业基础、有市场需求的地区进行燃料电池汽车示范推广。 /p p style=" text-indent: 2em " 值得关注的是,科技部高度重视燃料电池汽车技术研发。“十五”期间,科技部启动实施电动汽车重大科技专项,确立“三纵三横”(三纵:纯电动汽车、混合动力汽车、燃料电池汽车,三横:电池、电机、电控)研发布局,燃料电池汽车技术作为“三纵”之一得到重点研发部署,并在“十一五”到“十三五”期间持续进行科技攻关。 /p p style=" text-indent: 2em " “十三五”期间,科技部牵头组织实施国家重点研发计划“新能源汽车”和“可再生能源与氢能技术”两个重点专项,氢能和燃料电池技术持续得到重点部署。具体来说,“新能源汽车”重点专项在车用燃料电池技术方面启动项目13项,重点在燃料电池乘用车及商用车应用领域,对面向产业化的和未来前瞻性的关键核心技术进行了针对性研发部署,其中,重大共性关键技术项目主要由整车企业牵头,将极大带动燃料电池系统技术和产业快速发展。“可再生能源与氢能技术”重点专项已启动项目17项,重点在高效电解水制氢、先进制氢技术,高压储运氢、固态储运氢、加氢站及安全评价技术,燃料电池发电、长寿命电堆及关键组件、分布式热电联供系统技术,膜电极、空压机、循环泵、氢气纯化、催化剂技术加强研发部署。 /p p style=" text-indent: 2em " 答复文件指出,经过四个五年国家科技计划的组织实施,我国燃料电池从电堆、系统到关键部件技术研发均取得一系列关键突破,形成了涵盖制氢、储氢、氢安全及燃料电池及整车应用等技术的产学研用研发体系,培育了一批从事燃料电池及关键零部件研发生产的企业,以分布式能源领域、移动通信基站以及城市客运、物流等商用车型为先导开展了规模化示范运行,并以资本为纽带,带动广东、江苏、湖北等多地初步形成了产业集群,开展一定规模的示范应用。 /p p style=" text-indent: 2em " 在加强技术研发的同时,科技部积极推动燃料电池汽车示范运行考核工作。2008年北京奥运会投入燃料电池轿车作为马拉松先导车和燃料电池客车作为运动员收容车开始,燃料电池汽车示范运行拉开序幕。到2020年,在北京、上海、郑州、佛山、盐城等地开展累计百辆级的燃料电池客车、轿车、物流车商业化示范运行工作。  /p p br/ /p
  • 氢能产业要发展,质量检测标准应先行!——访氢能与燃料电池分析方法标准制定工作组组长潘义研究员
    为推进气候变化治理和能源转型,促进能源行业供给改革,保障国民经济和民生的可持续和高质量发展,我国以负责任的大国担当态度提出了“3060双碳”目标。氢能因其来源广、燃烧热值高、能量密度大、可储存、可再生的特点,成为我国节能减排和能源变革过程中最理想的能源互联媒介。近几年,国家各部委和地方政府密集出台了一系列促进氢能产业发展的顶层设计方案,以中石化、中石油、国家能源集团、国家电投等为代表的相关央企纷纷布局氢能产业链。质子交换膜燃料电池(PEMFC)汽车作为氢能利用的重要场景,我国早在2006年就将其列入了国家中长期科学和技术发展规划纲要。氢气作为燃料电池汽车的能量载体,其质量的优劣将直接影响PEMFC的运行和寿命正常与否。国内外相关科研机构围绕氢气中杂质组分对燃料电池的损伤机理开展了大量的探索与验证工作,各种微痕量杂质对燃料电池会产生不同的影响:水含量过高会使气体的扩散效率下降,阻止气体到燃料电池的催化层进行反应,影响燃料电池的效率、稳定性和耐久性;二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象;一氧化碳会占据 PEM 催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活;不同种类的硫化物如硫化氢、硫氧碳、二氧化硫、硫醇、硫醚等都会对PEMFC 阴极催化剂产生不可逆的毒化作用;甲酸和甲醛具有类似的毒化作用,两者均会在电池膜电极催化剂表面产生吸附,从而降低反应表面积;氨会降低电池电极电化学反应界面,对 PEMFC 性能产生不可逆的损坏;卤离子在电池阴极上与氧气的竞争吸附会影响燃料电池的工作效率,降低电池性能;颗粒物杂质会占据膜电极的活性位影响电池性能效率,并会影响氢气储存和反应系统的安全[1]。氢燃料质量相关标准的进化史目前ISO以及各个国家针对PEMFC所用燃料氢气中对电池性能以及关键零部件会会造成损害的杂质组分/种类和限值都作了明确的规定,并制定了相应的标准,如ISO 14687:2019、ISO 21087:2019、ISO 19880-8:2020、BS EN 17124:2018、SAE J 2719:2015和GB/T 37244-2018等。我国PEMFC汽车用燃料氢气的现行产品标准为GB/T 37244-2018,最初是以团体标准T/CECA-G 0015-2017的形式于2017年12月发布实施,后在2018年12月以国家标准的形式发布,2019年7月开始实施,该标准中对杂质组分种类和限值要求完全参照国际标准ISO 14687-2:2012和SAE J2719:2015。ISO 14687系列标准经历20多年的制定完善过程,最初以氢燃料质量标准ISO 14687:1999版本发布,后经2004年美国能源部召开的研讨会讨论将氢燃料的关注重点由纯度(Purity)转变为质量(Quality),并与2012年形成ISO 14687-2:2012,该标准系统规定了14类杂质组分的组成和限值要求。目前国际上现行有效的产品质量标准 ISO 14687:2019 由ISO/TC 197 Hydrogen technologies(国际标准化组织氢能技术委员会)于2019年发布,相较于国内现行版本 GB/T 37244-2018 有以下异同处(具体指标见表1)。BS EN 17124:2018规定的内容与ISO 14687:2019完全一致。在对氢气纯度、非氢气总量、水、氧、氦、二氧化碳、一氧化碳、氨、甲酸、总卤化物、最大颗粒物浓度等这11个指标的要求上,ISO 14687:2019与GB/T 37244-2018保持了一致。两者的主要区别在于,ISO 14687:2019放宽了对甲烷、氮、氩和甲醛等4个杂质含量限值的要求,其中对甲烷的含量限值作了单独规定,为100 μmol/mol;氮和氩由原来的合计不超过100 μmol/mol,更改为各自不超过300 μmol/mol;总烃含量的计量方式由“按照甲烷计”更改为“按照C1计且不包含甲烷”;甲醛的含量限量值由原来的0.01 μmol/mol提高为0.2 μmol/mol;总硫含量的计量方式也由“按照硫化氢计”更改为“按照S1计”。此外,ISO 14687:2019还针对一氧化碳、甲醛、甲酸的总含量提出不可超过0.2 μmol/mol的要求。需要注意的是,ISO 14687:2019标准内“总硫”参数所推荐的检测方法ASTM D7652已经于2020年作废了,目前ISO/TC 197正在组织开展ISO 14687:2019下一个版本的修订工作。表1. 国内外现行标准对燃料电池用氢杂质组分的限量值要求项目名称GB/T 37244-2018ISO 14687:2019氢气纯度(摩尔分数)99.97%99.97%非氢气总量300 μmol/mol300 μmol/mol单种/类杂质的最大浓度水(H2O)5 μmol/mol5 μmol/mol总烃2 μmol/mol(按甲烷计)2 μmol/mol(按Cl计、不含甲烷)甲烷(CH4)/100 μmol/mol氧(O2)5 μmol/mol5 μmol/mol氦(He)300 μmol/mol300 μmol/mol氮(N2)100 μmol/mol(两者总量)300 μmol/mol氩(Ar)300 μmol/mol二氧化碳(CO2)2 μmol/mol2 μmol/mol一氧化碳(CO)0.2 μmol/mol0.2 μmol/mol总硫0.004 μmol/mol(按H2S计)0.004 μmol/mol(按S1计)甲醛(HCHO)0.01 μmol/mol0.2 μmol/mol甲酸(HCOOH)0.2 μmol/mol0.2 μmol/mol氨(NH3)0.1 μmol/mol0.1 μmol/mol总卤化物(按卤离子计)0.05 μmol/mol0.05 μmol/mol颗粒物1 mg/kg1 mg/kg我国现行质子交换膜燃料电池汽车用氢气GB/T 37244-2018中提出了需要关注的氢燃料质量有影响的系列杂质组分限量值要求,并针对每种杂质组分分别引用了不同的分析方法标准。考虑到氢气背景条件下的适用性,从经济适用性等角度考虑,笔者认为部分方法标准还存在可以优化和提升的空间。氢能工作组全力开展检测方法标准化体系建设工作产业要发展,标准需先行。质子交换膜燃料电池用氢气作为产业“前端生产的产品”和“后端应用的原料”,建立准确可靠、具有溯源性的质量检测分析方法标准体系至关重要。在制定标准的过程中,要注重标准的质量:既不能造成标准实施过程中技术门槛和成本过高,现场适用性差,变为“僵尸标准”;亦要注意尽量采用先进的技术和方法,有利于技术的更新迭代,促进产业进步发展;既要响应国家提倡的分析仪器装备国产化要求,尽量实现技术自主可控;同时还要兼顾氢能产业对在线和离线测试需求的特点。为了健全我国氢燃料质量分析方法标准体系,2019年3月7日,经全国气体标准化技术委员会批准,依托中国测试技术研究院化学研究所为秘书处,成立全国气体标准化技术委员会气体分析分技术委员会氢能与燃料电池分析方法标准制定工作组(SAC/TC206/SC1/WG1,以下简称“氢能工作组”),氢能工作组负责国内氢能与燃料电池领域气体分析标准化的归口工作。工作组成立之后,在全国气体标准化技术委员会的指导下,秘书处承担单位组织科研人员,并联合工作组各成员单位,针对GB/T 37244和ISO 14687标准中规定的质子交换膜燃料电池汽车用氢气质量检测所涉及到的所有气态组分杂质和颗粒物组分杂质的取样和检测开展联合科研攻关和标准化工作,主要包括各类组分分析方法标准,气体分析术语标准,气体标准样品/物质制备方法,气体采样、取样方法标准等方面。如何确保痕量甚至是超痕量水平的测量需求,准确的取样、高水平的分析方法以及量值稳定、准确、可靠的气体标准物质是非常重要的三个环节。基于以上原则,结合全国气体标准化技术委员会在气体分析方法标准领域的经验积累和氢能工作组的技术优势,我们从2019年开始组织开展了大量针对性的标准化研究工作,目前已经联合国内外的优势分析仪器厂家共同开发了多个整体解决方案。针对不同指标灵活搭配检测仪器针对8个无机和烃类杂质组分需要3台不同仪器检测的问题,中国测试技术研究院的研究人员以岛津GC-2030气相色谱为应用测试平台,采用多阀多柱,热导检测器、火焰离子化检测器和甲烷转化炉组合的气相色谱分析方法,实现一次进样完成8个参数的准确定性定量分析,分析谱图见图1,实验表明THC、CO、CH4、CO2、Ar、O2、He、N2的线性相关系数R20.995,检出限分别为0.020 μmol/mol、0.033 μmol/mol、0.039 μmol/mol、0.14 μmol/mol、0.25 μmol/mol、0.32 μmol/mol、9.5 μmol/mol、1.7 μmol/mol。图1. 氢气中甲烷、二氧化碳、一氧化碳、氧、氦、氮、氩等7个组分的连续7次进样典型谱图针对标准中限值最为严格和分析难度最大的总硫含量(4 nmol/mol),中国测试技术研究院的研究人员开发了基于不同来源的氢气中9种典型硫化合物的低温富集与GC-SCD相结合的在线分析解决方案。此方案主要包括高准确度微痕量氢气中多组分硫化物混合气体标准物质、集成了在线动态稀释功能的半导体低温富集系统和硫化学发光气相色谱仪。结果表明此系统的校准曲线的相关系数高于0.999,仪器检出限不高于0.050 nmol/mol,方法检出限最低可达到0.01 nmol/mol,精密度和准确度令人满意(RSD5%,SD15%)。开发的系统成功地应用于实际样品分析[2]。在该方案中,将毛细管色谱柱更换为非保留色谱柱即可用于氢气样品中总硫的分析。图2. 低温富集-GC-SCD在线分析系统数据示意图(出峰顺序为:H2S、COS、CH3SH、C2H5SH、CH3SCH3、CS2、CH3SC2H5、C4H4S和C2H5SC2H5)(左图浓度为0.1、0.2、0.5、1、4、8、10、15、20、30和40 nmol/mol;右图为0.1、0.2,0.5和1 nmol/mol)图3. 燃料电池汽车用氢中痕量硫化物解决方案系统组成图标准的最大价值在于服务社会进步、经济发展和产业创新,其最大使命在于指导、规范和约束使用者得到合理、科学和准确的结论。分析方法在实验室离线使用以及现场在线应用中,要充分考虑方法的适用性、合理性、安全性和经济性,氢能工作组在充分调研和前期实验研究的基础上,紧跟国际上最新的燃料电池用氢气质量标准ISO14687:2019中规定的杂质组分组成和限值要求,分别整理了一些分析方法解决方案供检测实验室和现场参考使用,具体见表2。表2. 针对ISO 14687要求的气体杂质组分分析方法解决方案杂质参数名称限量值要求分析方法解决方案总烃(按Cl计、不含甲烷)2 μmol/mol“三阀四柱+GC-(TCD+FID+MTN)”,在线/离线(注:可采用电化学氧气分析仪在线监控O2组分)甲烷(CH4)100 μmol/mol一氧化碳(CO)0.2 μmol/mol二氧化碳(CO2)2 μmol/mol氧(O2)5 μmol/mol氦(He)300 μmol/mol氮(N2)300 μmol/mol氩(Ar)300 μmol/mol总硫(按S1计)0.004 μmol/mol“低温富集+GC-SCD”,在线/离线甲酸(HCOOH)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”,在线/离线甲醛(HCHO)0.2 μmol/mol“FTIR”或“低温富集+GC-MS”或“CRDS”,在线/离线氨(NH3)0.1 μmol/mol“FTIR”或“CRDS”或“在线吸收-离子色谱法”,在线/离线总卤化合物(按卤离子计)0.05 μmol/mol无机卤化物:“在线吸收-离子色谱法”,在线/离线;有机卤化物:“预浓缩+GC-MS”或“预浓缩+GC-ECD”,在线/离线水分5 μmol/mol露点法、电容法、石英晶体震荡;在线/离线颗粒物1 mg/kg在线滤膜取样+称重法目前,氢能工作组正在组织开展的与燃料氢气质量检测相关的国家标准制修订项目有:“气体分析 质子交换膜燃料电池用氢气质量分析方法 指南(制定)”、“气体分析 微型热导气相色谱法(制定)”、“GB/T 28726-2012 气体分析 氦离子化气相色谱法(修订)”、“气体中微量水分的测定”系列标准修订,“气体中微量氧的测定”系列标准修订等;正在开展的团体标准制定项目:《气体分析 氢气中硫化物含量的测定 低温富集-硫化学发光气相色谱法》、《气体分析 氢气中氨含量的测定 光腔衰荡光谱法》、《气体分析 氢气中氩、氧、氦、甲烷、非甲烷总烃、一氧化碳、二氧化碳含量的测定 气相色谱法》。同时,氢能工作组已组织团队完成了“氢气中甲烷、一氧化碳、二氧化碳、甲醛、甲酸、氨和氯化氢的测定 傅里叶变换红外光谱法”、“氢气中卤化物的测定 在线吸收-离子色谱法”、“甲醛的测定 低温富集-气相色谱/质谱法”、“气体中微量水分的测定 电容法”、“高压气态氢气的取样方法”等系列方法标准的前期验证试验工作,下一步将在全国气体标准化技术委员会的组织下积极申报国家标准,完善涉及燃料氢气质量检测相关的取样和分析方法标准体系,满足我国氢能产业高质量发展对气体分析标准化的需求。参考文献[1] 潘义,邓凡锋,王维康,杨嘉伟,张婷,林俊杰,龙舟,姚伟民,方正.车用燃料氢气中杂质组分分析方法标准化现状与探讨——以质子交换膜燃料电池汽车为例[J].天然气工业,2021,41(04):115-123.[2] Yi P, Feng F D, Zheng F, et al. Integration of cryogenic trap to gas chromatography-sulfur chemiluminescent detection for online analysis of hydrogen gas for volatile sulfur compounds[J]. Chinese Chemical Letters, 2021(DOI:10.1016/j.cclet.2021.05.067)(作者:中国测试技术研究院化学研究所 潘义,邓凡锋)
  • “燃料电池及氢源技术国家工程研究中心”在北京化工大学挂牌
    近日,由中国科学院大连化学物理研究所、新源动力股份有限公司、北京化工大学、中氢新能技术有限公司和国创氢能科技有限公司等五家单位联合共建的“燃料电池及氢源技术国家工程研究中心”,经大连市发改委批准并报告国家发改委,完成了共建单位的迭代更新重新挂牌,北京化工大学作为在该领域拥有核心技术专利的新共建单位被引入,中心挂靠材料电化学过程与技术北京市重点实验室。“燃料电池及氢源技术国家工程研究中心”是在国家发改委和大连市政府的支持下,依据《国家工程研究中心管理办法》和《纳入国家工程研究中心新序列管理》相关要求建立,旨在通过具备自主知识产权的技术构建氢能及燃料电池创新链、产业链,解决发达国家制约我国氢燃料电池行业发展的关键共性技术与“卡脖子”问题,带动产业升级。中心重新挂牌后,将在国家发改委、大连市发改委和中国科学院共同领导下,实行主任负责制,副主任由共建单位各派1名领导专家担任,并设立科学技术委员会,由我国燃料电池与氢源技术领域著名专家组成。中心将坚持“资源共享、模式创新、做大做强”方针,分设多个技术平台,包括燃料电池系统科学与工程研究平台、绿色制氢技术平台、化石能源高效制氢技术研究平台、燃料电池及氢源技术商业化应用科创平台、分布式氢源及低碳应用技术研发平台等,逐步打造为创新引领型技术攻关平台,高效赋能“双碳”战略。北京化工大学表示,作为中心共建单位之一,目前在燃料电池和氢能研究领域,已形成了一支由院士、国家杰青领衔的高层次人才队伍,先后承担了一系列国家级和省部级重大科研计划项目。在未来国家工程研究中心建设中,将继续聚焦燃料电池和氢能行业关键共性技术和“卡脖子”课题,进一步发挥在燃料电池、电解水、储氢等方面的专长,通过产学研用跨学科协同创新,加速提升成果转化和市场化能力,积极推动燃料电池和氢源技术产业化进程。
  • 氢燃料电池催化剂实现量产 打破国外垄断
    p style=" text-indent: 2em " 记者从清华大学核能与新能源技术研究院新型能源及材料化学研究室获悉,燃料电池关键材料催化剂产业化生产难题,已被清华大学氢燃料电池实验室与武汉一家科技公司的联合研发团队攻克。目前,该催化剂获得17项专利,产能达到每天1200克,且价格仅为进口产品一半。 /p p style=" text-indent: 2em " 催化剂作为燃料电池核心材料,其综合性能与国产化直接关系到我国燃料电池技术的核心竞争力及其产业化前景。但相关知识产权一直掌握在西方少数发达国家手中,催化剂核心材料长期依赖进口的高成本现状,制约了我国氢能产业的自主发展。 /p p style=" text-indent: 2em " 2015年,清华大学与武汉喜玛拉雅光电科技股份有限公司开展校企深度合作,联合利用清华大学催化剂制备工艺开展Pt/C催化剂的量产技术攻关。目前,催化剂产能达到1200克/天的规模,可满足40台36kW燃料电池电堆使用,并具备大规模工业化生产条件。该系列成果彻底打破少数国家对该技术的长期垄断,且价格仅为同类进口产品一半。 /p p style=" text-indent: 2em " 催化剂系列化产品已应用在中科院、高校和多家燃料电池公司的燃料电池电堆中。今年底,采用该催化剂生产的氢燃料电池可达1000台。 /p p style=" text-indent: 2em " 攻关团队带头人、清华大学氢燃料电池实验室主任王诚表示,下一步团队将继续提升催化剂的各项指标,提高对硫化物、氮化物等杂质的耐受性,为我国燃料电池国产化不断注入强大动力。 /p
  • 美国欧盟联手推动 燃料电池技术标准国际化
    近日,欧盟联合研究中心同美国能源部阿尔贡国家实验室签署聚合物电解质燃料电池测试程序协议,标志着双方迈出了燃料电池技术标准国际化的第一步。近年来,全球燃料电池与燃料电池堆栈技术发展迅速,已展现出在道路交通电动汽车行业广泛应用的前景。协议的签署,有利于双方在燃料电池测试技术与测试方法上的相互协调与标准化,扩大双方间燃料电池技术的信息交流与数据交换,加速燃料电池技术的商业化应用进程。   根据燃料电池国际专家组最新提供的研究报告,“从国际视角看燃料电池测试协议”显示,签署国际协议的重要性和必要性显而易见。目前,世界上燃料电池主要存在两大类性能测试方法和五大类负荷曲线,包括占空比的耐久性测试方法。其中,美国以动态应力测试法为主,而欧盟以新欧洲驾驶循环模拟汽车功率测试法为主。暂且不论不同测试方法提供的数据参数准确性与误差率,仅不同测试方法很可能导致的不同技术发展路线,包括国际间燃料电池技术参数的对比交换,必将造成延迟燃料电池技术商业化应用的严重后果。   双方代表在测试程序协议签字仪式后表示,欧盟美国将加强燃料电池这一战略能源新兴技术领域的科技合作,积极推动燃料电池技术标准的国际化。
  • 中国车用燃料电池的现状:几乎为空白
    p   前段时间,国务院总理李克强在日本丰田汽车北海道工厂参观考察了氢燃料电池车。这一举动,被解读为对氢燃料电池车产业释放出利好信号。 /p p   一个有些尴尬的现实是,国外的燃料电池车已实现量产,但我国车用燃料电池还处在技术验证阶段。南方科技大学机械与能源工程系教授王海江指出,我国车用燃料电池的现状是——几乎无部件生产商,无车用电堆生产公司,只有极少量商业运行燃料电池车。 /p p style=" text-align: center " strong   燃料电池是“一支队伍” /strong /p p   一般来说,单节燃料电池的电压偏低、电流偏大,在实际应用中需要由多节燃料电池串联形成电堆,以提升输出电压。 /p p   氢燃料电池的动力来源是氢气和氧气,两者会在燃料电池中开始它们的“奇幻”旅程:氢在阳极催化作用下氧化,生成质子和电子 电子经外电路做功,到达阴极 而质子通过质子交换膜从电池内部传输到阴极,质子与电子在阴极汇合并在催化作用下与氧反应生成水。 /p p   看起来似乎只是初中化学知识。但实际上,燃料电池的运作,是一个系统工程。 /p p   燃料电池不像普通蓄电池,反而更像发电机——把燃料和氧化剂“喝”进去,将电发出来。所以,除了电堆,燃料电池还有燃料供应子系统,氧化剂供应子系统,水热管理子系统以及热管理和控制系统……总之,人家是团队作战。 /p p   “燃料电池车是新能源车的一种,它是未来的发展方向之一。”中科院大连化物所燃料电池研究部部长邵志刚告诉科技日报记者,2014年年底,日本丰田公司宣布实现燃料电池车的商业化 而在国内,一切尚处于起步阶段。 /p p style=" text-align: center "   strong  关键材料还缺批量生产线 /strong /p p   车用燃料电池,一般为质子交换膜燃料电池。 /p p   它有两大关键部件,一个叫膜电极组件,一个叫双极板。前者其实是由“三兄弟”构成:质子交换膜、催化层和气体扩散层。 /p p   质子交换膜的主要功能是传输质子,分隔反应气体以及电子绝缘。它负责“把门”,把质子放过去,把电子拦下来 催化层主要搭载的是催化剂,催化剂可以促进氢、氧在电极上的氧化还原过程并产生电流 气体扩散层则由基底层和微孔层组成,它要求具有高导电性、导热性和疏水性。 /p p style=" text-align: center "   strong  这些关键材料,决定着燃料电池的寿命和性能。 /strong /p p   “巧妇难为无米之炊。我们的关键材料长期依赖国外,一旦国外禁售,我国的燃料电池产业便没有了材料基础支撑。”清华大学氢燃料电池实验室主任王诚说。 /p p   其实,这些材料我国并非完全没有,有些实验室成果甚至已达到国际水平。但是,没有批量生产线,燃料电池产业链依然梗阻。特别是在气体扩散层量产技术方面,我国还是空白。“这是因为气体扩散层的石墨化工序需要经过2000℃以上的高温才能制备,但关键设备高温炉技术还掌握在国外手中。”王诚解释。 /p p   要实现材料的批量生产,就得解决一致性和成本控制问题。它和实验室制备的难度不可同日而语。以催化剂为例,王诚告诉科技日报记者,目前商用的燃料电池催化剂仍是铂基催化剂,实验室制备水平一般为毫克级,量产技术需公斤级水平。批量生产要突破三项关键技术:一是反应条件的均一,确保批次稳定性 二是铂颗粒纳米尺寸控制,确保催化活性比表面积 三是提升碳载体的稳定性,达到车用工况下的使用寿命。 /p p   将实验室成果进行工业化放大是一项关键技术,需要企业介入。“长期以来,我国燃料电池的研发主要由高校和科研院所进行。企业持观望态度,参与得少,加入得晚。”邵志刚所在的大连化物所从1994年就开始开展车用燃料电池研究。但基础研究和应用之间的断裂,使得关键材料的工业化成为一道坎。 /p p style=" text-align: center " strong   要商业化,还得强链、补链 /strong /p p   王海江此番回国,就是想带着在燃料电池领域深耕多年的经验,和团队在深圳建成燃料电池产业链。 /p p   先有了南科燃料电池有限公司,主要做电堆关键部分生产、电堆集成和测试。但如果电堆原材料均需从国外进口,成本太高。于是,团队又成立了一家公司,主攻气体扩散层、质子交换膜和催化剂三种关键材料的国产化。“到时,燃料电池的成本能下降三分之一。”王海江说。 /p p   目前,我国电堆及产业链企业数量逐渐增长,预计2018年国内电堆产能将超过40万kW。“纯电动汽车近几年有很大进步,为燃料电池的应用创造了非常好的条件。”王诚表示,“此时,我们就更需要聚焦燃料电池内核创新。” /p p   要打破发达国家的长期技术垄断,就得加大对燃料电池核心材料产业化的投入。接受采访的专家均指出,燃料电池产业链“非常长”,涉及到氢能系统、燃料电池发电系统以及汽车等终端产品。“国内零部件、氢基础设施以及标准规范还不健全,需要强链、补链,带动新材料、新能源、汽车高端装备制造成长,才能促进燃料电池商业化提速。”王诚强调。 /p p br/ /p
  • 贝士德即将参加CIBF2012第十届中国国际电池技术交流会/展览会
    展位号:1BT007 展位面积:36m2 展位负责人:张军峰(13126859900) 展会时间:2012年06月20日~22日, 展会地点:深圳会展中心(地址:深圳市福田中心区福华三路) 主 办: 中国化学与物理电源行业协会 支持单位: 中国电子科技集团公司 第十八研究所 中国机电产品进出口商会 信息产业部化学与物理电源产品质量监督检验中心 中国电子学会化学与物理电源技术分会 中国电工技术学会氢能发电装置专业委员会 中国电工技术学会电池专业委员会 全国碱性蓄电池标准化技术委员会 全国太阳光伏能源系统标准化技术委员会 化学与物理电源重点实验室 展会简介: &ldquo 中国国际电池技术交流会/展览会(CIBF)&rdquo 是由中国化学与物理电源行业主办的电池行业国际例会,每两年在中国举办一届。CIBF是中国电池行业第一个通过商标注册保护的国际会展。继2010年6月24日-26日在深圳会展中心成功举办了&ldquo 第九届中国国际电池技术交流会/展览会(CIBF2010)&rdquo 后,中国化学与物理电源行业协会定于2012年6月20日~22日在深圳会展中心举办规模空前的&ldquo 第十届中国国际电池技术交流会/展览会(CIBF2012)&rdquo 。 CIBF2010展览会面积将达到45000平方米,展位数量达到2500个,将有来自50多个国家和地区的25000多名观众参观展览会。CIBF2012技术交流会(即:国际新型电池前沿技术交流会)将继续以 &ldquo 动力电池和储能电池&rdquo 为主题,重点探讨电动汽车用电池及智能电网用各种储能电池的最新进展,预计将有来自50多个国家和地区的800多人参加会议。 2012年是我国&ldquo 十二五&rdquo 计划全面实施的一年,鉴于新能源、新能源汽车与新材料已经列入我国重点支持发展的七项战略性新兴产业领域之中,新型电池储能技术与上述产业发展紧密联系在一起。事实上,储能电池技术不仅是电动车发展的关键技术,而且也已经被公认为是未来再生能源有效利用或智能电网中的关键技术。从另一方面来看,电池的发展又离不开新型能源等相关材料的发展,因此新材料技术又是新型储能电池的核心技术。正如国际评论所述,2011年至2015年将是国际电池界最重要的发展机遇期,一是能否实现电动车与动力电池的商品化,逐步减缓或甚至最终解决传统汽车CO2排放以及减低其对石油的依赖?二是确认电池在电网储能中的可行性,为实现未来的再生能源大规模开发利用以及智能电网建设提供重要支撑,大力推进低碳经济社会发展;同时要通过新材料与新型电池体系的研究,不仅形成新材料的规模产业,而且确保储能电池技术的持续发展。 届时,贝士德仪器科技(北京)有限公司将会携公司主打产品:3H-2000系列全自动氮吸附比表面积仪,BET比表面积分析仪,静态容量法比表面及孔径分析仪,真密度分析仪等产品盛装参展,欢迎广大新老朋友前来指导。 贝士德仪器专业生产全自动氮吸附比表面积和孔径分析仪为国内高精度比表面积仪的代表,在电池行业享有很高的美誉度,为中国锂电池行业发展做出了自己应有的贡献。我公司在电池行业客户最广,仪器测试精度高,重复性好,公司总共获得国家10项各类技术专利,凸显技术优势,3H-2000系列产品成为电池材料行业的知名产品。2010年被认定为北京科技园区高新技术企业资质;通过ISO9001国际质量体系认证的生产性企业;获得2012至2014年度政府创新基金的资金支持企业资格; 欢迎广大新老客户前来参观指导: 如需索取邀请函,请致电以下联系电话: 北京总公司:010-62960251 62960252 82176880 82709850 上海办事处:021-34615662 34615663 13391235663
  • 德国ETAS氢燃料电池控制器HIL测试方案
    德国ETAS氢燃料电池HIL方案- FCU HIL测试方案(面向2020年最新版)ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink® 元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink® 的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系&nb软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 干货:实验室选择燃料电池测试系统应注意哪些技术问题?
    燃料电池具有工作温度低、启动响应快、能源效率高、电池寿命长、产物无污染等优点,是交通、工业、建筑等领域实现能源转型的重要途径。当前,全球主要经济体都在加大氢燃料电池技术研究投入,破解氢燃料电池商用化难题。燃料电池测试系统作为氢能实验室科研必备仪器,发挥着重要作用。燃料电池测试包含电池性能测试(稳态模型、极化曲线V-I特性、极限电流、气体计量比、扩散增益、温度、压力、湿度、过载等)、气密性测试、耐久性测试及环境适应性测试等内容。一套功能强大的燃料电池测试系统可以帮助科研人员高效率完成测试工作,实验数据更准确,结果易重现,节约大量的宝贵时间。实验室选择燃料电池测试系统应该注意哪些技术问题呢?这3个技术点值得注意。1、 自动背压与手动背压背压的作用是根据燃料电池电堆进气需求,与空压机配合,提供适当流量和压力的空气。有自动背压与手动背压两种类型。实验室一定要首先考虑自动背压型燃料电池测试系统。手动背压依赖实验人员的动手经验,操作费时费力,不能非常细腻地调控数值,反应滞后,且存在压力波动现象,测试数据受人为干预因素较大,不利于结果复现。自动背压完全由计算机程序控制,可以连续实时保持恒流恒压的状态,保证了实验的重复性和精准性,避免物料浪费,加快研发效率。2、 电子负载多参数极化曲线测试是典型的燃料电池测试项目,通过描述输出电压和电流密度曲线,表征燃料电池的电化学反应和电子传输情况。在测试时,需要面临“0V启动”、“大电流”问题。具备“0V启动”功能的燃料电池测试系统可以从0电压开始测试,即便是满电流带载运行也无须担心设备问题。燃料电池测试系统的“大电流”选择也很重要,实验室测试所用的电子负载并不是越高越好。过高电子负载的燃料电池测试系统仪器规格不仅尺寸庞大,造价不菲。也非常占空间,操作复杂繁琐,维护保养成本高。很多测试实验根本用不到那么高的电流、功率。一般而言,0-300A即可满足绝大多数测试需求。合理的电子负载,不仅价格经济、不挑空间,而且功能完善、性能卓著。以武汉电弛新能源研制的DC 980Pro燃料电池测试系统为例,该系统电子负载规格10V/240A/1600W,具备0V启动功能,100毫秒超高响应速度,反极也能测试,电子负载的精度、分辨率与进口设备同水平。3、 质量流量控制燃料电池本质上是氢、氧化学反应的发电装置,质量流量控制至关重要,是衡量一套燃料电池测试系统的重要指标。当参与反应的氧气量不足时,电堆输出电压降低,质子交换膜过热,降低电堆寿命。反之参与反应的氧气量过高,电堆输出功率不会随之增加但对应的空压机功耗变大,燃料电池系统净输出功率减少。[1]以武汉电弛新能源DC 980Pro为例,流量计和压力仪表负责主要液体、气体和压力测量和控制相关任务。该系统拥有10000:1(0.01%-100%量程)超宽稳定控制,精度可+/- 0.125%满量程。阳极气体流量控制最大可到5 SLPM,阴极气体流量控制最大可达10 SLPM,应用国际一线品牌T型热电偶,连续实时检测燃料电池质量流量数据,为后续开发节能型燃料电池产品技术打下坚实基础。结语工欲善其事,必先利其器。燃料电池测试系统强大的应用功能不仅能帮助科技工作者快速完成分析测试工作,其多功能性特点也有助于材料学、界面科学、电化学、流体力学等多学科交流创新,对我国氢能源技术加速发展,意义非凡。引用资料[1] 西南交通大学 张玉瑾, 《大功率PEMFC空气系统控制策略研究》
  • 由我国牵头修订的氢燃料电池电动汽车动力性国际标准发布
    国家市场监督管理总局(国家标准委)发布公告:由我国牵头修订的国际标准《使用压缩氢气的燃料电池电动汽车动力性试验方法》近日发布。近年来,燃料电池电动汽车因为零排放,成为各国汽车行业的发展重点,也是国际标准化组织的重要工作方向。试验方法在完善最高车速测试方法的基础上,进一步增加了加速能力试验以及爬坡试验,从而形成了完整的燃料电池电动汽车动力性测试方法。试验方法的发布,促进了国内国际标准相互促进融合机制的形成,提高了中国参与国际标准协调的贡献度,同时将助力中国燃料电池电动汽车产业走出去。
  • 燃料电池车国际标准将采用日本方案
    日本、美国和欧盟等33个国家和地区本周将在有关燃料电池车安全性的国际标准方面采用日本方案。日系车厂商有望按日本国内性能参数进行出口。日本政府将简化行驶实验申请手续,以促进丰田和日产汽车等厂商的开发。为了抢占有望在10年内将扩大至3万亿日元(约合人民币1886亿元)的全球市场份额,日本厂商将发起攻势。   燃料电池车利用燃料电池促使氧和氢发生化学反应产生电力,以此驱动马达并作为汽车驱动力。行驶期间的尾气排放为零,在新一代汽车中,环保性能最高。有分析认为,与纯电动汽车(EV)相比,燃料电池车行驶距离将会更长。然而,在推进燃料电池车普及的过程中,制订防止氢爆炸的安全标准一直是一个课题。   此前,联合国发布的燃料电池车的安全标准的最终方案中大部分采纳了日本的提案。6月24~28日在瑞士日内瓦召开的联合国工作组会议上,各国将正式达成协议。中国和印度等新兴市场国家也将对此表示支持。   在日本方案成为国际标准后,日本厂商将无需为配合出口目的地要求而改变性能参数。丰田表示,“如果国际标准得以明确,将更容易建立量产体制”。各公司为了配合燃料电池车普及,计划将在2010年前曾为每辆1亿日元(约合人民币629万元)的售价降至500万日元(约合人民币31.4万元)左右,日本政府也将通过放宽限制来推动燃料电池车的普及。在公共道路上实施行驶实验需要获得日本国土交通大臣的批准,今后申请时间将从8周缩短至6周,这将推动汽车厂商的技术革新。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)原创 飞飞 赛默飞色谱与质谱中国高丽1. 前言 随着全球能源消费结构向低碳转型的加速,氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源和工业还原物料而备受瞩目。氢能是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,氢气质量是确保燃料电池正常运行的关键因素之一。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢,不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,发现二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象。一氧化碳会占据PEM催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活等。由此可见,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。赛默飞与北京石科院合作,采用1台气相色谱仪,配置TCD、FID和PDD三个检测器、多阀多色谱柱分析系统检测质子交换膜燃料电池汽车用氢气中氦、氩、氮、一氧化碳、二氧化碳和烃类组分,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。2. 仪器及配置 表1 气相色谱仪仪器配置(点击查看大图)3. 结果与讨论 3.1氢中微量一氧化碳和二氧化碳检测用气体标准样品或通过气体稀释仪将一氧化碳和二氧化碳标气稀释至0.05 µ mol/mol~10 µ mol/mol 范围内的8个浓度级别并进行检测并绘制多点校正曲线(强制过原点),典型样品色谱图见图1,一氧化碳和二氧化碳测试校正曲线相关系数分别是0.9999和0.9992。图1 一氧化碳和二氧化碳分析(PDD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.05 μmol/mol的样品,平行测定至少10次,样品峰面积的相对标准偏差、方法检出限结果列于表2中。样品叠加色谱图见图2。从测试结果得到2种杂质的检出限均低于20 ppb。图2 一氧化碳和二氧化碳检出限测试谱图(点击查看大图)表2 样品组分低浓度点连续10针进样重复性及检出限测试结果(点击查看大图)3.2氢中烃类组分检测用气体标准样品或通过气体稀释仪将烃类标气分别稀释至6个浓度级别,甲烷浓度范围0.1 µ mol/mol~5.3 µ mol/mol,其他烃组分浓度范围0.1 µ mol/mol~2 µ mol/mol,绘制校正曲线(强制过原点)。烃类组分典型色谱图见图4,绘制校正曲线见图3,绘制校正曲线的线性相关系数均大于0.9992。图3 烃类组分(FID流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.1 μmol/mol的样品,平行测定至少7次,样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表3中,从测试结果得到烃组分杂质的检出限均低于0.1 ppm。表3 烃组分低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)3.3氢中氦、氩、氮组分检测用气体标准样品或通过气体稀释仪将氦、氩、氮标气稀释至5个浓度级别(10 µ mol/mol~602 µ mol/mol范围内),绘制多点校正曲线(强制过原点),TCD流路典型样品色谱图见图4,测试校正曲线相关系数均大于0.9992。图4 氢中氦氩氮(TCD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体标准样品平行测定7次, 样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表4中,七针测试叠加色谱图见图5。从测试结果得到氦、氩、氮组分的检出限均低于10 ppm。图5 氢中氦氩氮低浓度点叠加色谱图(点击查看大图)表4 氦氩氮低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)结 论方案操作简单,灵敏度高、能够满足质子交换膜燃料电池汽车用氢气对杂质的分析需求。经验证考察,各杂质组分相关系数均大于0.9992,满足GB/T 37244《质子交换膜燃料电池汽车用燃料 氢气》、团标T/CECA-G 0179—2022《氢气中氦、氩、氮和烃类的测定 气相色谱-热导和火焰离子化检测器法》和团标T/CECA-G 0181—2022《氢气中一氧化碳和二氧化碳的测定 气相色谱-氦离子化检测器法》对校准曲线相关系数、检出限等要求;同时,也完全满足 GB/T 3634.2和ISO 14687中规定的各杂质的检出限要求。如需合作转载本文,请文末留言。
  • 《燃料电池电动汽车 燃料电池堆耐久性试验方法》公开征集起草单位
    燃料电池堆作为燃料电池汽车的核心部件,其耐久性的优劣直接影响了燃料电池汽车的大规模商业化进程,受到了国内外的科研机构及企业的高度重视。目前,GB/T 38914-2020通过提取典型工况及寿命预测的方式为燃料电池堆耐久性测试提供了参考,但行业内仍缺少以实际车用工况进行耐久性测试的相关标准。由中汽研新能源汽车检验中心(天津)有限公司牵头发起的CSAE标准《燃料电池电动汽车 燃料电池堆耐久性试验方法》已按《中国汽车工程学会标准(CSAE)制修订管理办法》有关规定通过立项审查,现正式列入中国汽车工程学会标准研制计划,起草任务书编号:2022-61。本标准中的耐久性循环工况是基于GB/T 38146.1-2019和GB/T 38146.2-2019规定的中国汽车行驶工况转化的,可以反映燃料电池堆在中国实际道路条件下的运行情况;本标准采用实测的性能衰减速率对燃料电池堆进行耐久性评价,不进行寿命预测。本标准的的提出可以进一步丰富燃料电池堆耐久性的标准体系,填补基于实车工况的燃料电池堆耐久性测试方法的空白。本标准旨在明确耐久性循环工况,细化性能复测方法,完善耐久性评价指标。在试验方法方面,统一了活化、极化曲线、耐久循环工况步骤、停机频率等;在循环工况方面,提出了基于中国工况的符合中国实际道路特点的燃料电池堆的工况;在性能复测方面,明确了性能复测的内容、频率和测试步骤;在评价指标方面,提出了电压衰减、功率衰减、效率衰减、一致性变化、安全性变化的评价测试体系。本标准将为燃料电池堆的制造商、应用方和第三方检测机构提供参考,为鉴别市场上电堆产品的优劣提供可靠依据,进一步推动燃料电池堆耐久性评价的系统化和规范化。标准发起单位:中汽研新能源汽车检验中心(天津)有限公司、上海韵量新能源科技有限公司、上海捷氢科技有限公司、北京氢璞创能科技有限公司、森碧欧(上海)科技有限公司、中国第一汽车集团有限公司、深圳市氢蓝时代动力科技有限公司、广东国鸿氢能科技股份有限公司、东方电气(成都)氢燃料电池科技有限公司、佛山市清极能源科技有限公司、航天氢能(上海)科技有限公司、天能控股集团有限公司。欢迎相关领域的企业、测试机构、研究机构等单位积极参与到标准研究和编制工作中。如加入在研标准起草工作组,可添加标准管理部联系人微信,申请加入工作组交流群,并在CSAE标准信息平台(http://csae.sae-china.org/)注册登记。咨询方式:中国汽车工程学会 标准管理部电话:010-50911054邮箱:wwq@sae-china.org扫码添加联系人微信
  • 环球分析测试仪器有限公司亮相2024氢燃料电池 技术创新与应用大会
    2024年4月18日-4月19日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在上海美仑国际酒店举办的“2024氢燃料电池技术创新与应用大会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借优异的硬件和专业的软件功能等优点吸引许多参会科研学者的驻足咨询交流。 此次活动由士研咨询主办,同时得到了同济大学燃料电池汽车技术研究所、上海市汽车工程学会、江苏省汽车工程学会、日本氢能燃料电池株式会社、韩国电池工业协会(KBIA)、嘉定氢能港等业内机的大力支持,力求将此次大会打造为业内交流合作的最佳平台。本次大会的主题定为“创新赋能,降本增效",聚焦氢燃料电池产业的前沿科技创新与高效发展,呼唤氢能行业精英汇聚上海,共同探讨氢燃料电池产业未来的新实践、新思路和新洞见。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 新型天然气燃料电池问世 取暖供能两不误
    新型燃料电池或可取代传统供电,工作产生的高温也能够为家庭所用。   无论你生活在地球上的哪个地方,你的家里或许都需要电和天然气供应。每一种的费用都取决于你每年的用量和价钱波动。但是如果有一个小盒子能够以固定的价格取代它们,为你提供家庭所需的能量会怎样呢?这就是费劳恩霍夫研究所设计的一种以天然气为基础的新燃料电池试图达到的目标。   这种固体燃料电池是由许多组合电池组成的,每一块电池都只有一张CD大小。当你打开它的时候,它能达到高达850摄氏度的高温,并且能有效的使用天然气来产生电能。它产生的电能足以为一个四口之家提供日常所需。   即使是这种燃料电池的温度如此之高,安装在家中墙壁上也是非常安全的。事实上,150个专门设计的取暖原型设备已经在欧洲开始使用。这种燃料电池的价格尚未进行讨论,但是它将依靠高效和廉价进行市场推广。   它的工作高温使它的设计极其简化,因此它的产能非常廉价。由于在设计中并未使用贵重材料,因此成本将进一步降低。它的静音效果使它能够安装在屋内的任何位置,而且能够连接到现有的天然气管道,它能够将天然气转变成富含氢的气体为燃料电池所用。   虽然这种燃料电池依靠天然气供应,但是它将取代你的电力供应商。因此这就会缩减你的家庭开支,而且天然气费用也变得更容易规划。而且不要忘记它所产生的高温能够成为家庭取暖和烧水的良好工具,而且是免费的副产品。
  • 贝士德盛装参加第三届中国(上海)国际电池产品及技术展览会
    9月19日-21日,由中国电子学会、广东省电源行业协会及广东振威国展展览有限公司联合举办的2011第三届中国(上海)国际电池产品及技术展览会在上海成功举行。上百家展商集中展示了锂离子电池、锂聚合物电池、超级电容器等系列新型电池材料、电池设备、电池成品。作为锂离子电池材料检测环节的著名仪器制造商贝士德携众仪器参加了此次展览会。 展会上,公司领导刑总与俄罗斯友人Oleg Yu. LEBEDEV先生进行了友好的洽谈。经双方认可,在展会现场,Oleg Yu. LEBEDEV先生当即订购了贝士德公司的3H-2000PS2型比表面及孔径分析仪1台。 合作的成功让我们也看到,随着科学技术不断的进步,国产设备逐步取代进口设备已经成为可能。众所周知,锂离子电池材料是锂电产业链的关键环节,而正、负极材料是锂离子电池组成的核心部分。 正负极材料的优劣直接影响到锂电池性能的好坏,而正负极材料的检测环节贝士德有着不可替代的巨大贡献。 在展会现场,贝士德公司的工作人员向新老客户讲解仪器的性能与具体操作方法、以及贝士德公司在售后服务方面的情况一一向与会者介绍。贝士德公司的热情与周到的服务赢得了参观者的一致赞扬,作为拥有七项国家标准的著名比表面仪制造商来说,贝士德表示,在今后的研发过程中,更加的注重新理念、新设计、新观点来制造出更好的产品,来回馈新老客户对贝士德公司的关注与肯定。 为期三天的展览会,贝士德公司接待了数百面参会者,为仪器的使用者与制造者的交流互动搭建了一座平台,亦为公司以后的工作收集了大量的宝贵建议。贝士德公司通过此次展览会,到达了展示产品,树立形象,扩大影响、取长补短的目的,展览活动取得了圆满成功。 公司简介:贝士德仪器科技(北京)有限公司是国内专业比表面仪生产厂家,在中国早期从事氮吸附比表面积测试仪的研发、生产、销售、培训等。贝士德公司自行研发生产的3H-2000系列比表面及孔径分析仪被广泛用于石墨、电池、稀土、陶瓷、氧化铝、化工等行业及高校粉体材料的研发、生产、分析、监测环节。
  • 美国麦克仪器公司亮相CIBF2018中国国际电池技术展览会
    初夏深圳,骄阳似火。2018年5月24日,比天气还要火热的第十三届中国国际电池技术交流会/展览会(CIBF2018)在深圳会展中心圆满落幕。本届展会历时3天,展会规模创CIBF展会历史之最,盛况空前。作为材料表征仪器领域的全球领先供应商和中国国际电池技术展的常客,美国麦克仪器公司热情参与了CIBF2018,并一如既往受到了广大观众的高度关注和广泛认可。中国国际电池技术交流会/展览会每两年举办一届,是全球电池行业规模最大的展览会。第十三届中国国际电池技术交流会/展览会(CIBF2018)总展览面积超过了11万平方米,比上届增长了33.33% 1253家全球电池行业及产业链相关厂商参展,比上届增长了10.40% 总参观人次近62000,比上届增长了33.75% 再创多项历史新高。CIBF2018以其国际化的舞台、电池行业全产业链的产品、专业化的观众群体、多样化的展示手段,为国内外用户、采购商等提供了展示交易平台,成为了电池行业全球瞩目的中国盛会。今年,美国麦克仪器公司作为展商积极再次参与了中国国际电池技术交流会/展览会,并携Tristar II 3020系列全自动比表面积与孔隙度分析仪、AutoPore V系列高性能全自动压汞仪、AccuPyc 1340系列全自动真密度仪、GeoPyc 1365系列全自动包裹密度分析仪等多款广泛应用于电池正负极材料表征的分析仪器资料和最新电池材料表征技术解决方案亮相。展会现场,美国麦克仪器公司展台吸引了众多公司忠实用户和展商、观众踊跃咨询、洽谈,现场气氛活跃。公司技术人员耐心地向大家介绍了我司的最新产品与技术成果,获得了客户的一致认可,许多客户也表达了与我公司进行深度合作的意向。我公司今年还将积极参与第四届全国储能工程大会、全国环境催化与环境材料学术会议、全国青年催化学术会议等多个重要行业会议,并期待与您在现场沟通交流。
  • 博纯(Perma Pure)将参展中国国际环保、废弃物及资源利用展览会
    由中国环境科学学会、上海中贸国际展览有限公司和德国慕尼黑国际博览集团联合举办的2010中国国际环保、废弃物及资源利用展览会(简称IFAT)将于2010年5月5日至7日在上海浦东新国际博览中心开展。博纯届时将参展IFAT,展位号E3馆3777。产品展示将包括Nafion® 干燥器、Gass™ 采样系统、Baldwin™ 冷凝器、采样探头、处理系统和流量控制装置、稀释法采样探头,以及一些优质的过滤器、洗涤器和附件。博纯的产品应用之一是环保产业连续排放及过程监控中的脱硫后烟气预处理,比如GASS™ 2040样气处理系统等。博纯利用自身独特的技术,协助环保企业,更有效的开展环境保护工作,很好地诠释着本届展会的主题“科技绿动世界”。 关于博纯 成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。 博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器(产品已应用于2010年上海世博园内的燃料电池车),并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。 博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。 拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。 销售联系方式 夏黎明先生 中国区销售经理 博纯中国 上海市长宁区仙霞路137号盛高国际大厦1801室 邮编:200051 电话:021-52068686 传真:021-52068191 电子信箱: fxia@permapure.com 网址:http://www.permapure.com.cn
  • 理化联科深圳CIBF 2021国际电池展览会完美落幕
    2021年3月19-21日,理化联科(北京)仪器科技有限公司参加了在深圳举行的第十四届中国国际电池技术交流会/展览会 CIBF 2021。期间理化联科公司展出的全系新产品吸引了众多用户参观。 iPore 400 – 全新一代数字式高端比表面积及孔径分析仪在展览引起巨大反响全自动比表面积及孔径分析仪iPore 400和全自动智能脱气单元iBox 26引起了广大用户的极大兴趣。很多用户来到公司的展台前详细了解iPore 400和 iBox 26的性能和技术参数,并实际操作仪器,现场感受全新一代比表面积及孔径分析仪iPore 400 的科技感及其准确的分析数据。iPore 400 这一革命性的全新一代数字式全自动物理吸附仪,采用欧盟标准设计制造,唯一满足5S标准,配合iBox 26 全自动数字式智能脱气单元,带给新能源行业崭新的体验,将超低比表面积的电池样品的分析精度提升到新的高度。在iPore 400数字式全自动物理吸附仪在市场上出现之前,新能源行业的用户饱受低比表面积样品分析精度不高及重复性差的困扰。众所周知,物理吸附仪的技术难度不在于对超大比表面积/大比表面积样品的分析,技术难度更多的是对低比表面积的样品分析。传统的比表面积及孔径分析仪,很好的解决了超大比表面积/大比表面积样品的分析要求,但是从未很好的解决低比表面积样品/超低比表面积样品的分析问题。在这样的背景下,iPore 400 横空出世,完美的解决了这个问题。更值得一提的是,iPore 400 不仅解决了低比表面积样品/超低比表面积样品的分析问题,而且还满足了小样品量的问题。iPore 900 – 首台中国制造高端膜孔径分析仪在中国国际电池技术交流会/展览会展出理化联科(北京)仪器科技有限公司作为中国高端分析仪器的代表,隆重推出全新设计制造的iPore 900 全自动膜孔径分析仪,并于近日在中国国际电池技术交流会/展览会亮相。膜孔径分析仪也称为泡压法滤膜孔径分析仪(BUBBLE PRESSURE METHOD FILTER MEMBRANE PORE SIZE ANALYZER),过滤材料孔径分析仪,泡点孔径分析仪。iPore 900 – 全自动膜孔径分析仪 (CAPILLARY FLOW POROMETER) 符合ASTM F316-08 和 GB/T 32361-2015 分离膜孔径测试方法的要求。iPore 900 全自动膜孔径分析仪可用于锂电池隔膜,高分子薄膜,纺织布,过滤材料,陶瓷,粉末冶金等通孔孔径的分布及液体渗透率的分析。其测定方法为应用气体或液体渗透压力从毛孔中驱排流体的分析方法,并根据WASHBURN方程计算孔径大小,同时可以进行渗透率的分析。分析报告中包含:干湿曲线及半干曲线图,孔径分布图,最大孔径,最小孔径,平均孔径及气体渗透率等。 锂电池隔膜的孔径分布,最大孔径,最小孔径的数据对锂电池的最终性能起到至关重要的作用。iPore 900,作为最新款的膜孔径分析仪iPore 900为锂电池隔膜的研发和质量控制起到至关重要的作用。欢迎您联系我们,给我们机会向您展示理化联科公司产品的卓越性能和精准数据。欢迎致电 400-860-5168转4685, 理化联科(北京)仪器科技有限公司的技术团队随时准备为广大用户提供服务。
  • 日立应用|燃料电池的电镜观察
    燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。燃料电池的能量利用效率高,环境污染小,是最有发展前途的发电技术之一。燃料电池按照电解质的种类不同,可分为碱性燃料电池(AFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。按照燃料的类型可分为氢燃料电池,甲烷燃料电池,甲醇燃料电池,乙醇燃料电池。目前各类燃料电池电动车主要使用的是质子交换膜燃料电池(PEMFC)。质子交换膜燃料电池的结构和化学反应上图是PEMFC的结构和化学反应。PEMFC由膜电极(membrane-electrode assembly,MEA)和带气体流动通道的双极板组成。其核心部件膜电极是采用一片聚合物电解质膜和位于其两侧的两片电极热压而成,中间的固体电解质膜起到了离子传递和分割燃料和氧化剂的双重作用,而两侧的电极是燃料和氧化剂进行电化学反应的场所。PEMFC通常以全氟磺酸型质子交换膜为电解质,Pt/C或PtRu/C为电催化剂,氢或净化重整气为燃料,空气和纯氧为氧化剂,带有气体流动通道的石墨或表面改性金属板为双极板。膜电极(MEA)的截面SEM图片Sample: Courtesy of Prof. Takeo Yamaguchi, Tokyo Institute of Technology膜电极(Membrane Electrode Assembly ,MEA)是燃料电池的主要部分,它每层的结合情况以及颗粒的聚集状态会影响发电性能。MEA截面的结构观测非常重要。上图显示了一个聚合物膜样品在冷却时的横截面离子研磨后的结果,为减少离子束的热损伤使用了-100 ℃的条件进行加工。MEA横截面的整个图像显示各层接触时没有分层。在高倍放大时的阳极图像可以观察到纳米尺寸的铂粒子,碳粒子和其中的空隙。阴极层是纳米胶囊催化剂与铂铁纳米颗粒结合,从它的横截面可以看到,催化剂胶囊被紧密地包装在中空空间中。因此,离子研磨法可以在没有应力的情况下进行加工,能够通过冷却功能加工截面样品来减少热损伤,产生具有减少热损伤的横截面样品,进而可以有效的理解MEA的整体结构和分析催化剂颗粒的纳米结构。燃料电池催化电极材料高倍图像和三维重构结构from Prof. Chihiro Kaito, Ritsumeikan University上图左图是使用日立HT7830得到的燃料电池催化电极材料高倍图像,加速电压使用120kV,高分辨模式(HR mode),放大倍数为×50,000。C基底上的Pt颗粒的分散状态可以很清晰的看到。上图右图是同样的样品从+60°~-60°每2°拍照一次得到一系列图片后做三维重构后的结果,可以清楚的看到三维结构的Pt颗粒的分散情况。CNT和PTFE复合膜的SEM图像Sample:courtesy of Prof. Yoshinori SHOW Department of Electrical and Electronic Engineering,School of Engineering, Tokai University由于导电性和耐腐蚀性好,碳纳米管(CNT)和聚四氟乙烯(PTFE)复合膜有时会作为 MEA 的保护膜使用。CNT 在PTFE 中分散的均匀性非常重要,因为膜的导电性会受此影响。上图中,左图为0.2eV时观察CNT和PTFE的表面形貌,由于电压非常低,所以样品没有被电子束损伤。 右图为0.2eV时观察CNT和PTFE的电位衬度,CNT的亮度比PTFE明显要高,这是因为CNT的导电性更好。利用电位衬度就可以非常清晰的区分成分衬度相差不大的CNT和PTFE。燃料电池气体扩散层的电镜观察气体扩散层(Gas diffusion Layer,GDL)作为连接催化层和流动区域的桥梁,一般具有多孔性,导电性,疏水性,化学稳定性和可靠性。常用的支撑材料有碳纤维和聚四氟乙烯/碳膜组成的微孔层(MPL),目前碳纤维布附着MPL可以达到气体扩散层的要求。上图就是碳纤维布及附着MPL的SEM图片,可以观察到二者之间的紧密接触,各自空隙及厚度。高分辨观察自组装Fe3O4纳米颗粒Sample:courtesy of Electrical Computer Engineering department, National University of Singapore过渡金属基材料比如自组装Fe3O4纳米颗粒现在被作为储氢材料,这对氢能的利用来说是非常关键的。上图是高分辨观察自组装Fe3O4纳米颗粒,所用的着陆电压为1.5 kV,使用了电子束减速功能。纳米颗粒非常有规则的组装在一起,每个颗粒的直径约为12nm。利用电镜观察燃料电池各部分的形貌和结构,有助于高性能燃料电池的研发。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 佰汇兴业将亮相AMTS2012 上海国际汽车制造技术与装备及材料展览会
    佰汇兴业汽车及内燃机检测设备将亮相AMTS2012 上海国际汽车制造技术与装备及材料展览会 AMTS2012上海国际汽车制造技术与装备及材料展览会将于2012年8月22日--2012年8月24日在上海新国际博览中心举行。佰汇兴业将携德国APL汽车测试服务于德国BMT汽车及发动机粗糙度及表面轮廓测量设备参加展览,展示最新的汽车粗糙度测量设备,展示欧洲最大的独立的检测服务商提供的汽车测试服务,以期更好地服务于中国汽车制造业及相关行业。 佰汇兴业将在此次会议上展出德国BMT精密测量仪器&mdash &mdash MiniProfiler 轮廓仪(灵活多变的多功能粗糙度测量仪)和CylScan气缸壁扫描仪(简单易用的珩磨结构测量仪)。德国BMT还为奔驰、宝马、大众、现代等公司提供各种表面测量的整体解决方案。 MiniProfiler 轮廓仪可用于:缸盖在线粗糙度测量、曲轴轴颈粗糙度测量、缸套在线粗糙度测量、三坐标测量系统、刹车盘粗糙度测量、连杆粗糙度测量、凹槽位置的粗糙度测量、凸轮轴各位置的粗糙度测量及特殊部位粗糙度测量等。我公司将在展会现场展示MiniProfiler 轮廓仪,并对MiniProfiler进行现场应用测量。 CylScan气缸壁扫描仪可对气缸壁进行360° 完全扫描。我公司技术人员将在展会现场对完整的气缸壁进行扫描测试。 德国APL公司是欧洲最大的中立的独立检测服务商,检测范围包括:润滑油、燃料油、发动机、汽车传动系统、混合动力、燃料电池、蓄电池、汽车整车及零部件、各项检测操作系统的研发等领域。还为多家汽车公司进行检测服务,包括:大众汽车用油检测、PSA用油检测、OPE用油检测、Porsche自检、MAN自检、奔驰发动机、奔驰整车性能测试。 欢迎各界人士莅临我公司展位参观咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制